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resumo 
 
 

A contaminação de solos com metais é um problema ecológico grave que 
requer medidas de resolução urgentes. As metodologias de remediação 
convencionais revelam-se muitas vezes ineficazes e muito dispendiosas. O 
processo de fitoremediação surge como uma alternativa promissora para a 
recuperação de solos, a aplicar de um modo económico e com maior potencial 
para recuperar os serviços do ecossistema. Os programas de fitoremediação 
para além de se debruçarem sobre a escolha da espécie vegetal mais 
adequada para o processo, devem igualmente debruçar-se sobre as 
comunidades microbianas associadas às raízes das plantas, nomeadamente 
as bactérias endofíticas e da rizosfera. No presente trabalho, é estudado o 
potencial da espécie Fraxinus angustifolia para a fitoremediação de solos 
contaminados com metais, recolhidos na área de exploração de uma mina de 
urânio abandonada, na Cunha Baixa, Mangualde, Portugal. A estratégia 
assumida consistiu na exposição das plantas ao solo contaminado, a um solo 
de referência e a um solo controlo, por um período de aproximadamente 3 
meses. Com o fim de avaliar a capacidade de F. angustifolia de resistir ao solo 
contaminado, durante a exposição aos diferentes solos acompanhou-se o 
crescimento e o estado fisiológico das plantas medindo um conjunto de 
parâmetros bio- e fisiológicos (crescimento acima do solo, área foliar, conteúdo 
hídrico relativo, máxima eficiência e rendimento do fotosistema II e conteúdo 
foliar em clorofila a, clorofila b, carotenoides, prolina e malondialdeído) ao 
longo do período de exposição. Ademais, procedeu-se à análise genética dos 
perfis das comunidades bacterianas (endofíticas e rizosfera) associadas às 
raízes de F. angustifolia. Esta análise foi realizada através do método de PCR-
DGGE, tendo como alvo uma região conservada 16S rDNA, antes e após a 
exposição aos diferentes solos. Apenas o parâmetro “crescimento acima do 
solo” se revelou, ao longo de toda a experiência, claramente indicativo do 
efeito negativo das propriedades do solo proveniente da mina nas plantas. Nos 
restantes parâmetros, foi observada uma resposta positiva das plantas 
expostas à contaminação, tendo demonstrado capacidade de manter o seu 
estado fisiológico ou, após oscilações, retomar ao estado normal. 
Comparativamente às comunidades bacterianas analisadas pré-tratamento, as 
alterações dos perfis das comunidades foram notáveis, principalmente aquelas 
referentes às plantas expostas ao solo contaminado. As comunidades 
referentes às plantas do solo controlo e referencia apresentaram maior 
similaridades entre si e entre a análise pré-tratamento. O estudo fisiológico 
demonstrou que, quando expostas ao solo contaminado, as plantas F. 
angustifolia apresentam capacidade de resistência e adaptativa às condições 
adversas, demonstrando potencial passível de ser explorado para fins de 
fitoremediação. Foi igualmente demonstrado que as alterações exercidas 
sobre as comunidades bacterianas das raízes expostas ao solo contaminado 
resultaram em perfis consideravelmente diferentes dos observados nas 
restantes comunidades. O desempenho das plantas pode estar 
intrinsecamente relacionado com estas alterações microbianas. 
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abstract 
 

The contamination of soils with metals is a serious ecological problem requiring 
urgent measures to counteract the impacts. The conventional remediation 
techniques are, most of the times, inefficient and expensive. Phytoremediation 
comes as a promising alternative for the cleaning of the soils, to be applied in a 
more economic and eco-friendly manner, with a great potential for recovering 
ecosystem services.  Besides looking for the best suitable plant species for the 
task, phytoremediation programs should also focus in the microbial 
communities associated with the roots of the plants, namely endophytic and 
rhizosphere bacteria. In this work, it was studied the potential of the species 
Fraxinus angustifolia for the phytoremediation of metal contaminated soils, 
collected in the Cunha Baixa uranium mine area (Mangualde, Centre of 
Portugal). The planned strategy consisted of the exposure of the plants to the 
contaminated soil, a reference soil and a control soil, for a period of about 3 
months. In order to access the ability of F. angustifolia to tolerate the 
contaminated soil, growth and physiological performance of plants, a set of bio- 
physiologic parameters (above ground growth, leaf area, relative water content, 
maximum efficiency and quantum yield of photosystem II and leaf chlorophyll a 
and b, carotenoid, proline, malondialdehyde contents) were measured during 
the test. Furthermore, the analysis of the genetic profiles of the bacterial 
communities (endophytic and rhizosphere) associated with the roots of F. 
angustifolia was also performed. This analysis was carried out through the 
PCR-DGGE technique, targeted for a conserved region of 16S rDNA, pre- and 
post-treatment. Only the “above ground growth” parameter clearly showed to 
be, throughout the course of the experiment, an indicator of the negative effects 
of the properties of the mine soil on the plants. Concerning the remaining 
parameters, a good response of the exposed plants was observed, which 
showed the ability to maintain their physiologic status or, after some variation, 
return to a normal state. In comparison with the bacterial communities profiles 
analyzed pre-treatment, the alterations of the profiles were notable, principally 
those corresponding to the contaminated soil. The communities related to the 
plants from the control and reference soils showed more similarity between 
each other and the pre-treatment analysis. This physiologic study 
demonstrated that, when exposed to the contaminated soil, F. angustifolia 
plants had the ability to resist and adapt to the adverse conditions, revealing a 
potential which can be exploited for phytoremediation. It was also possible to 
demonstrate that the changes exerted on the bacterial communities from the 
roots exposed to the contaminated soil resulted in profile considerably different 
from those observed on the remaining communities. The performance of the 
plants might be related to these microbial alterations. 
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1. Introduction 

Many human actions and activities can harm the environment in numerous different 

ways. Since the 70’s bigger attention has been brought to this subject, in order to 

evaluate the dangers associated with it and find ways to fix the damaged environment 

(Neves and Matias 2008). The contamination of soils with metals and other pollutants is a 

serious problem that needs to be addressed with urgency. The soil grants shelter and 

food to many organisms, but in a way it also retains and concentrates chemicals, 

providing a natural protection of the water resources and the environment. Therefore 

when soils are greatly contaminated with metals, severe impacts can occur on the 

communities sustained by them (Abrahams 2002; O’Halloran 2006). 

Arising mostly from anthropogenic activities, such as mining explorations (Figure 

1.1), factory effluents, waste disposal, gas exhaust, fuel production and agricultural 

amendments this contamination not only has a great impact on the environment and 

wildlife, but might also have dire effects on human health as well (Prasad and Freitas 

2006; Antunes et al. 2008; Pereira et al. 2008; Hasan et al. 2009). Soil contamination can 

easily lead to an uncontrolled spread of dangerous contaminants that can alter 

ecosystems diversity and functions, enter food chains, cause disease and invade neighbor 

ecosystems (Abrahams 2002; Evseeva et al. 2003). Depending on the nature of each 

metallic element, its legacies to the environment can be either radiological or non-

radiological which themselves can end up resulting in carcinogenic and non-carcinogenic 

effects on human health (James 1996; WHO 2008; Nwoko 2010). For instance, metals 

such as uranium are of alarming concern for they can bring forth a double negative effect 

from acting both as a poisonous toxicant metal and as a hazardous gamma radiation 

emitting radioactive particle. Also, metals persist in the environment, aggravating its 

negative potential and empathizing the need to remove or neutralize them (Prasad and 

Freitas 2006). It is important to note that many of these metals actually have an 

important role in the physiology of some living organisms. For example, metals such as B, 

Cu, Mn, Mo, Ni and Zn are micronutrients needed by plant species and their deficit can 

cause development impairments (Phålsson 1989; Gallego et al. 1996; Mitsios and 
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Danalatos 2006). Thus, the real problem comes when the contamination of soils with 

metals reaches critical levels, especially for those with no beneficial physiological roles.  

 

 

Figure 1.1 – Grounds from a surrounding area of a uranium mine in Cunha Baixa, Portugal contaminated 
with metals. 

 

The dangers of these impacts turn into a much bigger issue when the main sources 

of pollution release are in the vicinity of dwelling places. Largely depending on the 

chemical and physical composition of the surrounding soil, the mobility of dangerous 

elements can be of great concern as they can easily reach water resources. Soil and water 

resources of the surrounding dwelling areas may be used either for agricultural or directly 

for drinking purposes, being, this way, available to humans (Pereira et al. 2008; Carvalho 

et al. 2009b, 2009c; Pereira et al. 2009). Additionally, some studies have already focused 

on the leaching and percolation of metals into private water wells and the transfer of 

metals to vegetables cultivated on contaminated soils or irrigated with contaminated 

water (Antunes et al. 2008; Neves and Matias 2008, Neves et al. 2008; Pereira et al. 2008; 

Neves and Abreu 2009; Pereira et al. 2009). In some cases it was found that both water 
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and food containing concerning levels of metals, pose a risk to consumers (Sarić et al. 

1995; Hakonson-Hayes et al. 2002; Neves and Abreu 2009). In fact, some studies have 

also reported considerable increases in the concentrations of metals in various tissues of 

people living in some urbanized areas situated near the contamination (Fergusson 1991). 

It is not just human life that is at stake. Wildlife can also be directly or indirectly 

affected by metal contamination. Organisms that contact directly with metals can suffer 

from their effects, while others end up being affected by means of intermediate events. 

For instance, when metals integrate or interact with plant tissues they can disrupt the 

normal growth and dissemination process of plant species (Love and Babu 2006). This, in 

turn, will consequently have effects on animal life and the landscape. The disappearance 

of some plant species due to contamination may represent a significant loss of habitat 

and food for animal species that may die or need to reallocate. Many plants are also 

linked to various soil properties and changes in the vegetation may cause soil alterations 

(Binkley and Giardina 1998). Animals that live and feed on the contaminated soil can also 

accumulate the contaminants in their tissues, which can lead to disease and their 

transference to other animals in the food chains (Sekhar and Prasad 2006). Several 

studies have shown that birds accumulate substantial amounts of metals by ingesting 

insects that feed on contaminated material (Sillanpää et al. 2008). In conclusion, the 

presence of metals in the various components of the environment can be problematic for 

all living organisms (Sanità di Toppi and Gabbrielli 1999). 

 In places where lands are highly contaminated, it becomes urgent to come up with 

remediation plans to secure the ecosystems that depend on them. In most places, the 

applied conventional methods do not always directly address the main issue of the 

decontamination. Among them, physical, chemical and engineering techniques, like 

encapsulation, “dig-and-dump” and capping are the ones mainly used which aside from 

being expensive, also fail to decontaminate larger areas in an eco-friendly manner 

(Martin and Bardos 1996; Huang et al. 1998; Pulford and Watson 2003). For example, 

dumping contaminated soils into a landfill only transfers the pollutants from one site to 

another, without neutralizing the contaminants. Furthermore, the excavation required for 
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the process may cause the disruption of the landscape and soil properties and structure 

(Jadia and Fulekar 2009). Other methods like soil washing also have unwanted effects 

such as soil structure and fertility issues, biological activity perturbation and high costs 

(Pulford and Watson 2003). Due to such factors the remediation process in large 

contaminated areas calls for some innovative and more appealing measures.  

The remediation programs should not only be aware of the major risks intrinsically 

related to the soil contamination, but should also try to establish the needed conditions 

for the re-use of the lands for: agriculture or reforestation purposes; the (re-)habitation of 

the lands; the healthy development of local flora and fauna (Pereira et al. 2009). 

Consequently, to correctly address the problem, important criteria like the extent of 

contamination, the uses of water and soil resources by the local population, the 

geological risks and even the effects on the landscape, should always be considered 

(Echevarria et al. 2001; Oliveira et al. 2002; Nero et al. 2003). In summary, the 

remediation programs applied, should guarantee as much as possible the restoration of 

at least some ecosystem services previously provided. 

 

1.1. Phytoremediation 

Phytoremediation or botanical bioremediation is a class of bioremediation that relies on 

the use of plant species to remove or render harmless contaminants from soils, water 

courses and sediments (Chaney et al. 1995, 1997; Salt et al. 1995; Pradhan et al. 1998). It 

is indeed a technology that has grown in the last years as a promising method for metal 

and radionuclide remediation, and investigation towards finding the right plant species 

for the task is being carried all around the globe (Huseyİnova et al. 2009). 

Phytoremediation is a process that can take various routes and it is now commonly 

divided in several different classes, as follows (Huang et al. 1998):  

 

o Phytoaccumulation or phytoextraction: this process refers to the 

concentration of metals in the harvestable parts of a plant, as they remove them 
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from the soil. Usually requires the plantation of plant species that accumulate the 

desired metal at high rates (Raskin et al. 1997). After a period of time, the 

harvesting of the aerial parts of the plant allows the removal of the metals from 

the site. Metal containing material can later be treated, which is often done by 

volume reduction, metal concentration, burning under controlled conditions and 

recycling the metals of economic valuable elements. If valuable metals are being 

extracted, its recovery is processed in a cost effective manner (Wang et al. 2006; 

Barceló and Poschenrieder 2003; Mukhopadhyay and Maiti 2010). In the case of 

radionuclide containing matter, the treatment involves the safely disposal of the 

treated material as waste (Dushenkov 2003). It has been proposed that, for 

phytoextraction to be an efficient process, plants should accumulate in their dry 

biomass no less than 1% of the soil total metal content (Karami and Shamsuddin 

2010). Despite the lack of many evidences of the effectiveness of this technique at 

larger scales, improvements have been increasing and its application has been 

demonstrated in the effective removal of some metals and radionuclides (Huang 

et al. 1998, Dushenkov et al. 1999; Dushenkov 2003). 

 

o Phytodegradation: also known as phytotransformation, this type of 

remediation consists in the capacity of plants to metabolize and degrade organic 

pollutants from contaminated soils and water resources. Depending mostly from 

the activity of their own enzymes, plants may be helped by the action of 

microorganisms, despite not being dependent on them (Salt et al. 1998; Turnau et 

al. 2006; Mukhopadhyay and Maiti 2010). Phytodegradation addresses mainly 

organic contamination and since metals cannot be degraded by this mechanism it 

is not adequate for their removal.   

 

o Phytostabilization: represents the reduction of mobility and/or 

bioavailability of contaminants by immobilization on the substrate or on the roots, 

or prevention of migration (Vangronsveld et al. 1995; Salt et al. 1998). This is 

usually accomplished by means of complexation/precipitation, metal valence 
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reduction and sorption (Ghosh and Singh 2005; Prasad and Freitas 2006). 

Phytostabilization also refers to the use of vegetation to directly stabilize the 

contaminated soils and adjacent sediments, thus, big perennial trees with deep 

and dense root systems are good choices for this type of remediation (Chaney et 

al. 1997). Since pollutants remain in the soil, this technique does not accomplish 

the cleaning of the soil but in turn it is a very useful technique to rapidly preserve 

ground and surface water (Ghosh and Singh 2005; Vandenhove 2006). Studies 

demonstrated that chemical reduction of dangerous species of chromium and lead 

into safer ones, by plants, appears to be effective (Chaney et al. 1997; Cotter-

Howells and Caporn 1996). A study showed that the roots of Agrostis capillaris 

plants growing in a Pb contaminated soil promoted the formation of 

pyromorphite, an insoluble and non-bioavailable form of Pb (Cotter-Howells and 

Caporn 1996). 

 

o Phytovolatilisation: in this mechanism plants perform the volatilization of 

pollutants to the atmosphere by transpiration. Initially the contaminants are taken 

into the roots and transported to the above ground parts. Meanwhile they are 

converted to modified forms, after which they are finally volatilized to the 

atmosphere (Salt et al. 1998; Burken and Schnoor 1999). Phytovolatilization offers 

the advantage of getting around the need of harvesting, as it happens with the 

phytoextraction, but on the downside the volatilization of these elements requires 

careful pondering (Salt et al. 1998). The phytovolatilization of selenium (Se) is a 

well known case of a metal element that is transformed to a modified form 

(typically to dimethylselenide) and volatilized at high rates, although mercury is 

also known to be eliminated by this mechanism (Neumann et al. 2003; 

Mukhopadhyay and Maiti 2010). Phytovolatilization has also been applied in the 

remediation of radionuclides. Trials with tritium (3H), an hydrogen isotope, have 

shown that phytovolatilization can be a safer, cost-effective alternative to the 

remediation of radionuclides in the environment (Dushenkov 2003). 
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o Rhizofiltration: in this case, roots directly absorb metals from contaminated 

waters. Rhizofiltration applies to the treatment of surface and waste waters, 

industrial effluents and mine drainages, and also agricultural runoffs (Raskin et al. 

1997). Acting as filters, the roots either precipitate, concentrate or absorb the 

pollutants in order to retain the contamination (Dushenkov 2003; Ghosh and 

Singh 2005; Nwoko 2010). For this task plants must have specific additional 

features like hypoxia tolerance and higher absorption surface, but do not 

necessarily need to have high accumulation rates of the contaminants (Dushenkov 

et al. 1995; Ghosh and Singh 2005; Mukhopadhyay and Maiti 2010). Early in the 

50’s, the first effort to control contamination using rhizofiltration revealed that 

plants like Cladophora glomerata and Elodea Canadensis were able to absorb 

considerable amounts of the radionuclides 137Cs and 90Sr (Timofeeva-Ressovskaia 

et al. 1962). Since then many other species have proven their utility as 

rhizofiltrators in the remediation process of other elements (Dushenkov et al. 

1995, 1997). 

 

Hence, by ways of immobilizing, degrading, transferring and accumulating 

pollutants, this mechanism seems to have the potential to become a successful “green” 

sustainable alternative for soil decontamination (Cunningham et al. 1995; Salt et al. 1996; 

Dickinson 2000). Besides, in comparison, the costs of reforesting a given land are almost 

insignificant comparing to the costs of soil replacement and other conventional methods. 

As a result, unless there is an urgent need to reuse a specific land in a short period of 

time, phytoremediation appears to be a more suitable replacement approach (Bollag et 

al. 1994; Riddell-Black 1994).  

However, this process is far from perfect and some disadvantages can be pointed 

out. Probably the most important one is the long period of time needed to get efficient 

outcomes. It may take several years until plants have grown sufficient biomass and 

accumulated enough amounts of metals (Shah and Nongkynrih 2007). Another major 

drawback is the treatment and disposal of contaminated harvested material (Raskin et al. 

1997). If controlled conditions cannot be ensured then contamination spread can occur. 
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Additionally, the requirements for particular environmental and climatic conditions, soil 

characteristics and nutritional status are also some of the challenges phytoremediation 

still faces (Karami and Shamsuddin 2010). 

 

1.1.1. The process of phytoremediation and tree species 

With the simple aim of cleaning up soils, phytoremediation might seem, at first, like a 

straightforward process. However, the process involves complex physiologic-biochemical 

mechanisms and interactions between the soils, plants and other organisms (Raskin et al. 

1997). When it comes to choosing the plants to be applied in the phytoremediation there 

are certainly some preferred qualities. The investigation of this subject and its associated 

mechanisms has targeted plant species that vary from very small plants to big trees. The 

present study will focus mainly on tree based remediation.  

Essentially because of their lack of mobility, trees usually face the task of adapting 

to environmental changes, in order to avoid death (Camejo et al. 2005). This process 

might involve both changes in metabolic activities and morphological characteristics. 

Nonetheless, given their long timed generation, trees species are not under a fast and 

strong natural selection for metal tolerance (Pulford and Watson 2003). Despite this low 

adaptation, which in turn led to few tolerant ecotypes, the trees that can still grow under 

contamination appear to survive for long periods of time and lack usual signs of toxicity 

(Dickinson et al. 1992; Kahle 1993). It is true that in most of this cases plants grow slower, 

but their strong persistence does point out the development of mechanisms of resistance 

against highly concentrated contaminants. Different research works look for many of such 

mechanisms, in terms of phytoremediation. Still it is important to note that facultative 

tolerance may also be behind the survival of some non-naturally selected trees growing in 

metal contaminated lands. The redistribution of the roots to less contaminated areas is 

an example of such tolerance (Watmough and Dickinson 1995).  

Compared to smaller plants, tall trees usually have deeper root systems which 

allow them to reach soil and water sheets at a greater depth. Not only does this allow 
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them to decontaminate larger underground areas, but it also confers trees the capability 

to better resist drought and transpire for a longer time than short-rooted plants 

(Domínguez et al. 2008). Also, trees usually have higher biomass yields than smaller plant 

species, which enables them to accumulate more quantities of pollutants (Pulford and 

Dickinson 2006). The leaves may concentrate metals transferred from the roots and 

stems, but direct surface deposition is also a way of concentration of elements in the 

plant’s tissues (Huseyİnova et al. 2009). If the local environment of a contaminated land 

presents propitious conditions for metals deposition in the leaves, taller trees may be 

preferable to smaller species since higher canopies reduce the concerns about 

herbivorous predation (Domínguez et al. 2008). Trees are also fairly accepted by the 

public as ecological and esthetical elements for rural and urban areas, and can have 

important commercial uses (Domínguez et al. 2008). 

The exploitation of trees might also entail some weaknesses. When natural tree-

related phenomena like litter fall, specific root/microbe interaction and soil acidification 

take place, increases in metal mobility and bioavailability can occur, leading to the spread 

of the contamination (Domínguez et al. 2008). 

Some plants are able to concentrate the accumulated contaminants in their roots 

by root immobilization. This physiological capability should function as a protection 

against the soil contamination, but some plants cannot achieve this. For these plants, 

once the contaminants are captured at the root level they are then transferred to the 

above ground parts (Pulford and Watson 2003). Nowadays, most scientists believe that 

for the phytoremediation process to be most efficient, it is truly important that the 

translocation of pollutants from the root system to the above ground parts occurs at high 

rates (Mihalík et al. 2010; Kholodova et al. 2011). On the basis of these thoughts stands 

mainly the fact that by concentrating metals in the harvestable parts of the trees, they 

can be easily accessed and extracted from the site – phytoextraction method (cf. section 

1.1.). Furthermore, it has been reported that high levels of some metals (like Ni) in the 

leaves of the plants confers them protection against insect predation and bacterial and 

fungal infections (Boyd et al. 1994; Raskin et al. 1997). Also, when translocated to the 
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upper parts, some contaminants can integrate the wood and bark tissues, which are 

natural sink tissues for some metals. Allied to the fact that these tissues are continuously 

produced every growing season, the very long decomposition time of these metabolic 

inactive compartments could permit the immobilization of target metals for a good 

amount of time, if they were to be accumulated by the plant (Lepp 1996). 

Nonetheless, the movement of pollutants from the roots to the stems and leaves 

of the plant (or the direct absorption by the leaves) can still be of concern as it may result 

in several negative consequences. Situated in the base of food chains, edible plants serve 

as food to many organisms and every part of a plant can be eaten. Should any of these 

parts of a plant concentrate the target substances of the phytoremediation process, and 

they could easily reenter food chains (Salomons et al. 1995; Wislocka et al. 2006). In the 

case of deciduous tree species, the seasonal leaf fall may just accelerate the process 

(Bañuelos and Ajwa 1999). Therefore, in some circumstances it can be advantageous to 

use arboreal species that can better retain a great amount of pollutants in their root 

systems. This could probably minimize the need for a bigger aboveground biomass 

productive species and possibly assist the control of the spread and entrance of 

contaminants in food chains and water resources. Ultimately, the roots could be safely 

extracted to further treatment or elimination, and the aerial parts of the trees could be 

recovered for other potential uses. According to these ideas, phytostabilization (cf. 

section 1.1.) seems like a more appropriate technique since it helps to retain the metals in 

a restricted area preventing its mobilization to other places and into food chains.  

 

1.1.2. Plant tolerance and accumulation mechanisms 

Not every plant is able to deal with the amounts of contamination present in the soil. 

Even worse, not all of those that can survive under such conditions are capable of 

extracting or degrading the pollutants at acceptable rates (Pulford and Watson 2003). 

Even intra-species cultivar metal accumulation variability is observed (Yang et al. 1995). 

These are just some of the aspects to have in mind when choosing the appropriate plant 

species as a phytoremediation model. Clearly the accumulation of metals in plants 
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depends on various separated factors ranging from the soil properties, to total and 

available metal concentrations and also plant physiology related parameters (Antoniadis 

et al. 2006).  

When the plants are able to safely accumulate metals in the roots and allow them 

to move up to the above ground tissues, some mechanisms must be active in order to 

confer them such tolerance (Figure 1.2). They might be principally associated with 

elevated internal requirements for such metals and highly expressed metal sequestering 

mechanisms (Shen et al. 1997). The “perfect” plant for phytoremediation is yet to be 

found, since there always seems to be a balance between some of the good and the bad 

properties of a species. Ideally, these plants (from the phytoextraction point of view) 

should: 

o Be capable of tolerating the presence of the contaminants in its cells, even 

if at high concentrations (Punshon et al. 1996);  

o Show high rates of contaminant accumulation from the soil (Prasad 2006); 

o Have the ability to translocate the contaminants from the root system to 

the above ground parts efficiently (Mihalík et al. 2010); 

o Grow in low nutrient content soils and have a deep root system (Punshon 

et al. 1996);  

o Have high growth rates and biomass levels (Landberg and Greger 1994; 

Punshon et al. 1996); 

o Defend itself against predation to resist more and avoid metals entry in the 

food chains (Prasad 2006). 

Even though not directly related to the remediation itself, the plants could 

preferably have another economically viable use, although this refers mostly to those that 

are not able to accumulate in the aerial parts. 
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1.1.3. Hyperaccumulation 

There is a rare group of plants with some attributes that makes them, indeed, specialists 

in phytoremediation. Named as hyperaccumulator plants, they have increasingly earned 

interest in the field as potential models for phytoremediation (Chaney et al. 1997). These 

plants can mobilize and accumulate from 10 up to 500 times more elements than normal 

crops, without undergoing critical yield reduction (Chaney et al. 1997; Salt et al. 1998). 

Additionally, they are able to accumulate greater amounts of metals from smaller metal 

pools than normal crops (Mitsios and Danalatos 2006). Hyperaccumulators were first 

defined as natural habitat growing plants with at least 1000 µg.g−1 of Ni concentration in 

its leaves (for a Ni hyperaccumulator plant) (Brooks et al. 1977). This definition was later 

updated as new phytoaccumulators were studied (Chaney et al. 1997).  

 

 

Figure 1.2 – Avoidance and tolerance mechanisms used by plants when exposed to high doses of metals 
(adapted from Shaw et al. 2006) 

 

Despite being known as rare, not all hyperaccumulators are completely suitable 

for phytoremediation. It has been suggested that, for the means of soil remediation, the 
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hyperaccumulation ability is more important than that of having high biomass rates 

(Chaney et al. 1997). However, if a given hyperaccumulator shows the downside of, for 

instance, being extremely small, having too low biomass yield, growing very slowly or not 

accumulating a specific element, it may not be a good choice. The plant Thlaspi 

caerulescens comes as an example of a Zn hyperaccumulator that has no great use in the 

field due to its small sized and slow growing specimens (Figure 1.3) (Ebbs and Kochian 

1997). 

 

 

Figure 1.3 – Live specimens of the Zn hyperaccumulator Thlaspi caerulescens (from http://www.hlasek.com)  

 

There is another class of plants often considered for phytoremediation programs. 

Plants from this class are called excluders due to the fact that they neither permit metal 

uptake in their roots (or only very small amounts), nor accumulate them in the above 

ground tissues (Robinson et al. 2006; Shaw et al. 2006). Since they are basically equipped 

with avoidance mechanisms, and do not directly interact much with the contaminants, 
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these are indeed, not very useful for the phytoremediation (extraction) process itself. 

However they are key helpers to the whole remediation process working as soils 

stabilizers, preventing the spread of pollutants by soil erosion and reducing metals’ 

availability to other plants (used in phytostabilization) (Shaw et al. 2006).    

 

1.2. Rhizosphere and endophytic bacteria in metal phytoremediation 

There is yet another important factor concerning the phytoremediation process – the 

non-pathogenic bacterial communities associated to the plants’ roots. Two major types of 

bacterial communities are known to have relevant effects on plants. The first is the 

bacteria that grow on or around normal roots’ surface, called the rhizospheric bacteria 

(Doty 2008; Mitsios and Danalatos 2006).  The rhizosphere refers to the fraction of soils 

that adheres to the roots of the plants, about 1 mm, and that is directly influenced by 

them (Gomes et al. 2001; Mitsios and Danalatos 2006). The other type is the bacteria that 

live inside the plant tissues, which are named endophytic bacteria (Doty 2008). 

Endophytic bacteria belong to a group of organisms called endophytes. These 

microorganisms are known for establishing an endosymbiotic relationship with the plants, 

in practically any of its organs from roots to seeds (Compant et al. 2010). They are not 

harmful to the plant in any visible way. In fact, they are typically beneficial to the plant in 

various manners (Weyens et al. 2011). These symbionts can be isolated either from the 

disinfected surface of the plants or directly from deep inside the tissues (Nimnoi et al. 

2010). 

Both seem to have an important role in the development of many plants species, 

concerning plant growth and health. Additionally, these bacteria may even be responsible 

for specific soil properties (Gomes et al. 2001; Compant et al. 2010). Before being 

considered for phytoremediation, these kinds of bacterial communities were used in the 

past for agricultural and forestry purposes, in order to improve plant growth and 

resistance to diseases (Karami and Shamsuddin 2010). However, interactions between 

plants and these microbial communities are rather complex and often ignored in studies 
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concerning metal uptake by plants. Hence, most details about such interactions are still 

unknown (Shtangeeva 2006). 

 

1.2.1. Interactions between rhizosphere/endophytic bacteria with plants 

The growth of a plant may be influenced by microorganisms, but in turn, the roots are 

also responsible for the bacterial communities’ composition and structure. The benefits 

of bacteria on the plant’s ability to grow and live healthy can depend on numerous 

factors, which reflect a quite complex interaction (Weyens et al. 2011). The main 

mechanisms utilized by bacteria to improve plant growth and productivity are: the 

production of a number of phytohormones that support the plants’ growth (Glick et al. 

1999; Lee et al. 2004; Mendes et al. 2007); the containment or elimination of injurious 

microorganisms (Cook et al. 1995; Walsh et al. 2001; Winding et al. 2004); indispensable 

nutrient solubilization (mainly phosphorus) and N2 fixation (Christiansen-Weniger and Van 

Veen 1991; Höflich et al. 1994; Roesch et al. 2007); the secretion of enzymes to reduce 

plant ethylene levels and the sequestration of metals with specific siderophores (Glick et 

al. 1995; Reed and Glick 2005). This way, they not only directly improve the development 

process of the plants, but also grant them protection against pathogens that can cause 

disease and seriously decrease plant growth (Chanway 1997; Bent and Chanway 1998). 

Similarly to what was mentioned before for the hyperaccumulator plants, one can only 

hope to find the perfect bacterial population as it always seems to be a balance between 

some good and bad traits. Indole-3-acetic acid (IAA) is a phytohormone known for 

promoting plant growth by enhancing root length and distribution and that is produced 

by some microorganisms in favor of the plants’ growth (Barazani and Friedman 1999; 

Kuklinsky-Sobral et al. 2004). However, what can be, for instance, a good IAA producing 

bacterium might not be the best nutrient solubilizer, and vice-versa (Dias et al. 2009).  

On the other hand, bacterial communities do not depend solely on environmental 

conditions and soil properties. Root exudate patterns, allow the plants to alter soil 

properties, change pH values and even change substrate availability in its vicinities, which 

controls bacterial proliferation (Miller et al. 1989; Jaeger et al. 1999; Yang and Crowley 
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2000). Roots can also secrete secondary compounds capable of controlling gene 

expression on the bacteria (Nwoko 2010). Differences in exudates composition, root 

location, growth stages and even plant species are all known to selectively influence 

microorganism population growth and structural diversity (Miller et al. 1989; Watkinson 

1998; Myers et al. 2001). It is also with its root exudates that the plants make metals 

more bioavailable. Being mainly organic exudates (e.g. organic acids), some of the 

compounds released can create strong chelates with the metal elements making them 

more easily absorbed by the plant (Cieśliński et al. 1998). 

In fact, rhizosphere and endophytic bacterial inoculants have already been 

specifically used with success in the acclimatization phase of some species to promote 

their growth (Khalid et al. 2004; Dias et al. 2009). It is important to note, though, that the 

positive effects brought up to a plant, are most probably not due to a single species but 

instead a multiple effect achieved by a mixed community of symbiotic bacteria (Dias et al. 

2009).  

Protecting and promoting the growth of a plant are very important features of 

bacterial communities but it does not end there. Bacterial population can actually 

enhance the tolerance and uptake of metals by the plants species. Either by making 

metals more available to plants outside the roots or by absorbing and immobilizing them 

inside the vegetal tissues, root-associated bacteria may facilitate the phytoremediation 

process almost directly (Yong and Macaskie 1998). It has even been suggested that 

bacterial influence may actually be more relevant than root exudates alone (Jackson 

1993; Zhou et al. 2004). Bacteria achieve this by means of oxidation-reduction reactions, 

synthesis of natural chelators and pH changes making metals, otherwise not accessible by 

plants, available for uptake (Wielinga et al. 1999). Bacterial specific sequestration 

mechanism can also significantly decrease the levels of phytotoxicity induced by metals 

(Lodewyckx et al. 2001). 

Bacterial communities are not the only microbial populations beneficial to plants. 

Mycorrhiza are also known to play important roles concerning plant growth and health 

(Bridge and Spooner 2001; Gomes et al. 2003). Although not much emphasis will be given 
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to these populations in this work, it is important to stress that advantageous bacterial 

communities also interact with and contribute to the establishment of favorable 

mycorrhiza populations near the roots (Turnau et al. 2006).  

 

1.2.2. Analysis of rhizosphere and endophytic bacterial communities 

In microbiology, it is only possible to culture in the laboratory a limited small 

number of the total microbe communities. Coined in 1985 as the ‘Great plate count 

anomaly’, this phenomenon has been, up until recently, a huge drawback in studies 

concerning the analysis of rhizosphere/endophytic bacterial populations (Staley and 

Konopka 1985). Fortunately, molecular-based techniques came to help overcome such 

difficulties. Through molecular microbiology evolution, new techniques became more 

adequate to study the microbial population structure and dynamics, and more specifically 

spatial and temporal variations in rhizosphere/endophytic bacterial root communities. To 

replace excessive laborious and time-consuming methods, namely 16S rDNA cloning and 

sequencing, molecular fingerprinting methodologies have been extensively used (Muyzer 

et al. 1993; Gomes et al. 2001).  

Denaturing gradient gel electrophoresis (DGGE) is a molecular based technique 

designed to identify small differences between DNA or RNA samples. It consists of an 

electrophoretic run, where multiple samples are run together on a denaturing gradient 

built gel (Muyzer et al. 1993). This method relies on the differences in mobility of partially 

denatured double-stranded DNA molecules. Even single nucleotide changes between 

samples will result in different band mobilities on the gel (Muyzer et al. 1993). Despite 

being originally used mainly for detection of point mutation in the medical field, with its 

almost 100 % of sensitivity when correctly used, DGGE is now also currently used for 

analyzing complex microbial community profiles (Muyzer and Smalla 1998; Aksoy and 

Demirezen 2006; Weyens et al. 2009). Furthermore, despite the fast evolution of the 

sequencing techniques this technique still proves to be a better alternative to direct 

sequencing by being faster, less laborious and by providing a qualitative and 

semiquantitative display of a microbial population’s constituents (Muyzer et al. 1993).  
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1.3. General and Specific Objectives  

Even though the overall attention over phytoremediation has clearly grown in recent 

years, precise information about the plant species to be recruited for the task is not 

enough. Moreover, the knowledge about the structure and dynamics of 

rhizosphere/endophytic bacterial communities, and their interactions with the plants 

during phytoremediation, needs more clarification. Karami and Shamsuddin (2010) have 

summarized some of the most recent studies on the relationship and effects of bacterial 

communities on plants grown in contaminated lands and the list of both plant and 

microbial species still appears to be short. There is a need for new investigations that 

would work on the unknown potential of plant species and its associated bacteria, to 

improve phytoremediation of metal contaminated soils, as fast as possible. 

The present study aims to combine the existing knowledge about 

phytoremediation and rhizosphere/endophytic bacteria to investigate the potential of 

native plant species for the remediation of metal contaminated soil.  

Belonging to the family Oleaceae the genus Fraxinus (commonly ash tree) 

comprises between 39-65 species of medium and big trees (Kostova and Iossifova 2007). 

There is not much knowledge about their ability to tolerate and accumulate metals from 

soils. Also, the research work available focused principally on a main species (Fraxinus 

excelsior) and lacks data regarding quantitative and spatial metal and radionuclides 

accumulation, physiological data and microbial communities analysis (Haro 2000; Rosseli 

2003; Mertens 2004; Pulford and Dickinson 2006; Tlustoš et al. 2006). In this work it will 

be investigated the potential of a native deciduous ash species, Fraxinus angustifolia, for 

the purpose of phytoremediation. 

 

The detailed goals of the present study are: 

i) to evaluate the growth and physiological performance of 1 native tree species, 

Fraxinus angustifolia, planted in a metal and radionuclide contaminated soil from an 
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abandoned uranium mine in the area of Cunha Baixa, Mangualde, Center of Portugal, 

under controlled laboratorial conditions; 

ii) to analyze several biologic and physiologic parameters (above ground growth, 

leaf area, leaf chlorophyll a and b, carotenoid, proline, malondialdehyde (MDA) contents, 

maximum efficiency and quantum yield of photosystem II and relative water content) 

which should reflect the health state and stress conditions induced in the plants; 

iii) to evaluate if the species could be an adequate candidate for the 

phytoremediation of this mining area; 

iv) to study spatial and temporal variations on the rhizosphere and endophytic 

bacterial communities isolated from the roots of plants grown in contaminated and non-

contaminated soils, by DGGE methodologies. 
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Materials and methods 

2.1. Study site and soil substrates sampling 

The soils used for the experiment were obtained from a uranium mine located at the 

region of Cunha Baixa, Viseu (Centre of Portugal). Despite not being active at the 

moment, this mine remained active for many years until complete closure in 1993 

(Pereira et al. 2009). The surrounding area was affected by its activity since both 

underground and open pit extractions were performed, which resulted in severe impacts 

in the area. Regarding soil contamination, metal and radionuclides and radiation are 

probably the most worrying problems. Several studies have already been made in order 

to evaluate the local ecological risks at the soil level and the area is now under close 

attention to minimize the impacts (Pereira et al. 2008, 2009; Carvalho et al. 2009a). 

For this work two natural soils and an artificial substrate were used. One of the 

natural soils, the contaminated soil (soil B according to Pereira et al. 2008), was collected 

in the Cunha Baixa mine area, within the exploitation zone (Figure 2.1). The general 

physical and chemical characterization of this soil was already made by Pereira et al. 

(2008, 2009) and is described in Table 2.1 (A and B). This soil was one of the most 

contaminated soils found in the area, with high total concentrations of Al (25628.5 

mg/Kg), Fe (8570.07 mg/Kg), Mn (3321.36 mg/Kg) and U (224.16 mg/Kg). The other 

natural soil, the reference soil, was collected from a site about 60 Km away from the 

mine, near Guarda city (Centre of Portugal) and it was characterized as a reference soil by 

Caetano et al. (unpublished data) (Table 2.1 A and B). Lastly, the artificial substrate, used 

as a control in the experiments, consisted of a moisturized mixture of non-acid 

vermiculite and humus substrate/turf at a proportion of 3:2.  

 

2.2. Experimental design 

All the plant specimens, belonging to the species F. angustifolia, were obtained directly 

from a nursery. A group of 54 rooted (grown from seed) plantlets were chosen according 

to their size and apparent good physiological conditions, in order to preserve group 
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homogeneity. The plantlets still in the soil from the nursery were initially kept in an 

acclimatized chamber, for 2 weeks. The local conditions of the chamber were as follows: 

photoperiod of 16hL:8hD; temperature of 23°C; light irradiance of 160 µmol.m-2.s-1.  

 

 

Figure 2.1 – Geographical representation of the Cunha Baixa region where the Uranium mine is situated. B – 
represents de location from where the “Contaminated Soil” was collected (Pereira et al. 2008). 

 
 
Table 2.1 A – Summarized physical and chemical characterization of the soil “B” from the 
Cunha Baixa mine and the “reference soil” from Guarda. Element concentration measured 
in mg/Kg (± standard deviation); N/A: Not available. 
  Soil "reference" Soil B   Soil "reference" Soil B 
Ag 0.1 ±0.0 N/A  Mn 386.8 ± 77.9 3321.36 ± 42.14 
Al 25628.5 ± 5130.0 26023.29 ± 160.04  Mo 0.9 ± 0.2 N/A 
B 2.2 ± 0.8 N/A  Na 78.1 ± 14.9 N/A 
Ba 45.8 ± 8.0 N/A  Ni 4.6 ± 0.9 53.08 ± 0.40 
Be 1.2 ± 0.2 40.40 ± 0.37  Pb 12.5 ± 2.2 6.68 ± 0.87 
Cd 0.1 ± 0.1 1.90 ± 0.03  Sb 0.2 ± 0.0 N/A 
Co 5.6 ± 1.1 37.34 ± 0.43  Sn 10.4 ± 1.9 N/A 
Cr 10.8 ± 2.1 N/A  Sr N/A 1.76 ± 0.03 
Cu 9 ± 1.8 53.38 ± 0.12  U 7.8 ± 1.7 224.16 ± 5.07 
Fe 24921.4 ± 4534.4 8570.07 ± 192.84  V 37.8 ± 14.1 N/A 
Li 124.4 ± 22.9 N/A  Zn 57.1 ± 8.9 219.67 ± 2.12 
Hg 5253.5 ± 1025.5 N/A     
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Table 2.1 B – Summarized physical and chemical characterization of the soil “B” from the 
Cunha Baixa mine and the “reference soil” from Guarda. N/A: Not available; SD: Standard 
deviation. 
  Soil B Soil "reference" 
pH 7.79 ± 0.01 5.91 ± 0.1 
Conductivity (mS cm-1 ± SD) 2263 ± 11.55 4860 ± 230 
Organic matter content (% ± SD) 7.71 ± 0.06 6.5 ± 0.004 
Soil texture class Sandy clay N/A 
Radioactivity (cps ± SD) 850 ± 349 N/A 

 

Following the acclimatizing period, plantlets were randomly distributed and transplanted 

for the 2 different natural soils and the artificial substrate. In order to try to maintain their 

natural structure the natural soils were not sieved nor treated in any way. A total of 20 

plantlets were transplanted to the reference and contaminated soils and lastly 10 plants 

were transplanted to the artificial substrate. Four plantlets were immediately used for the 

isolation of endophytic and rhizosphere bacteria from their roots (cf. section 2.4.1.). Each 

individual plantlet was planted in a small plastic pot (of about 760 cm3 of volume) which 

was filled with the corresponding soil/substrate. The 3 groups of plantlets were then kept 

in the chamber until the end of the test, for approximately 3 months. Throughout the 

test, plant maintenance included daily care procedures like regular watering, weed 

removal and checking for parasites and any other anomalies. Also, every 15 days a 

nutrient solution (Nutriquisa 5-8-10® - Agroquisa - 5 % (w/v) of nitrogen (N), 8 % (w/v) 

phosphorus (P) (P2O5) and 10 % (w/v) potassium (K) (K2O), chlorine-free, 0.3 % (w/v) 

magnesium (Mg), 0.4 % (w/v) of sulfur (S) and the following chemical elements: boron (B), 

copper (Cu), iron (Fe), manganese (Mn), zinc (Zn) and molybdenum (Mo)) was poured into 

the soil surface of each pot (about 50 mL per 450 g of soil). 

 

2.3. Plant measurements endpoints 

2.3.1. Fortnightly measurements 

A couple of non-destructive parameter measurements, namely above ground growth and 

maximal efficiency (Fv/Fm) of photosystem II (PSII)  and quantum yield of PSII (ΦPSI), were 

performed at intervals of 2 weeks.  
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Above ground growth 

The growth of the plantlets was quantified for all the specimens with a simple 

measurement of the height of each plant, from the lowest visible stem point above the 

soil level to its highest point. 

Photosystem II efficiency 

To study the efficiency of the PSII, the quantification of the maximum efficiency as the 

ratio between the variable and the maximum fluorescence (Fv/Fm) and quantum yield 

(ΦPSI) of PSII was carried out. This fluorescence analysis allows the calculation of the in 

vivo photosynthetic capacity and so it gives an indication of global photosynthesis. These 

measurements were made with a portable fluorometer (Walz MINI-PAM 

Photosynthesis Yield Analyzer) which allowed the reading of fluorescence values directly 

from the leaves in the plants without their removal. For each point of analysis, one leaf 

was chosen from ten randomly selected plantlets from each of the three treatments. For 

light-adapted leaves, the fluorometer was connected to one fully developed leaf of each 

plant and both the basal (Ft) and maximum (F’m) levels of fluorescence were recorded. 

According to the photoperiod of the chamber, the plants must had been under light 

emission for at least 30 min. To read the values from dark-adapted leaves, specialized 

dark adapted clips were placed in the leaves for at least 30 min, allowing a small area of 

the leaf to be completely devoid of light, putting the leaves’ photosystems in a steady 

state. The fluorometer was then adapted to the clips and the basal (F0) and maximum (Fm) 

fluorescence values were read. The raw basal and maximum fluorescence values required 

conversion into photosystem efficiency values. The efficiency values were obtained 

according to Maxwell and Johnson (2000): 

𝐹𝑣/𝐹𝑚 =
(𝐹𝑚 − 𝐹0)

𝐹𝑚
 

Φ𝑃𝑆𝐼 =
(𝐹ʹ𝑚 − 𝐹𝑡)

𝐹ʹ𝑚
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Where, 

ΦPSI – Quantum yield of photosystem II 

F’m – Maximum fluorescence in light-adapted state 

F0 – Basal fluorescence in dark-adapted state 

Fm – Maximum fluorescence in dark-adapted state 

Ft – Steady state fluorescence value 

Fv/Fm – Maximum photochemical efficiency of photosystem II 

 

2.3.2. Monthly measurements 

A different set of parameters were also analyzed every month (starting at day 15). These 

parameters were the measurement of leaf area, leaf relative water content, leaf 

chlorophyll a, chlorophyll b, carotenoid, MDA and proline content. For future utilization, 

every month one or more leaves were cautiously removed from each plant and 

immediately preserved at -80°C, until further use, to avoid any unwanted physiological 

alterations. 

 

Leaf area 

The calculation of the leaf area was achieved by computer analysis of leaf photographs 

with the aid of the image editing software ImageTool (The University of Texas Health 

Science Center in San Antonio, Ver. 3.00). From ten randomly chosen plants of each 

group, one leaf was carefully removed and photographed with a metric scale. 

Leaf relative water content 

To calculate relative water content (RWC) values, which give an index of plant water 

status, the protocol originally described by Weatherley (1950) was followed with a few 

minor changes. One leaf from ten plants was carefully removed and its fresh weight was 

recorded immediately to prevent drying. Next, each leaf was immersed in distilled water 
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for 24 h, after which their turgid weight was recorded. Excess water was removed from 

the leaves with absorbent paper before weighting, to ensure true turgid weights. Turgid 

leaves were then left to dry for at least 72 h on an incubator, at 60°C. After that, the dry 

weight of the leaves was quickly recorded and the RWC was calculated according to the 

following formula: 

 

𝑅𝑊𝐶 (%) = �
𝐹𝑊 × 𝐷𝑊
𝑇𝑊 × 𝐷𝑊� × 100 

 

Where:  

DW – Dry Weight (g) 

FW – Fresh Weight (g) 

RWC – Relative Water Content (%) 

TW – Turgid Weight (g) 

 

Leaf chlorophyll a, chlorophyll b and carotenoid content 

To quantify chlorophyll a, chlorophyll b and carotenoid leaf content, a spectrophotometry 

approach based on the methodology of Sims and Gamon (2002) with a few modifications 

was followed. Every spectrophotometric analysis was performed in a Thermo Scientific™ 

10S Vis spectrophotometer.  

Tissue samples with fresh weights ranging between 0.02 g and 0.072 g were cut 

from the previously frozen leaves and were homogenized with a mortar and pestle in 1.5 

mL of an acetone/Tris buffer solution [50 mM] (LabSolve – 99%; Applichem – pH 8.8) 

(80:20 v/v). For each sample the resulting suspension was then mixed in a vortex for 30 s 

and subsequently centrifuged for 5 min at 2800 g, in order to remove floating particles. 
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The supernatant was then transferred to falcon tubes covered with aluminum foil, to 

prevent contact with UV radiation, and 1.5 mL of the acetone/Tris buffer solution was 

added to the pellet. The pellet was briefly remixed with the solution in a vortex and the 

centrifugation step was repeated. The resulting supernatant was added to the previous 

extraction and acetone/Tris buffer solution was added until a final volume of 3 mL was 

reached. All samples were stored in ice and in the dark. Lastly, the absorbance of the 

samples was read at the wavelengths of 470 nm, 537 nm, 647 nm and 663 nm with the 

blank reading being set with the acetone/Tris buffer solution. Whenever needed, due to 

high absorbance values, samples were diluted until values fitted an acceptable range. 

The leaf chlorophyll a and b and carotenoid content values were obtained from 

the following calculations: 

𝐶ℎ𝑙𝑎 = ((0.01373 × 𝐴663) − (0.000897 × 𝐴537) − (0.003046 × 𝐴647)) × 𝐷𝑓 ÷ 𝑊 

𝐶ℎ𝑙𝑏 = ((0.02405 × 𝐴647) − (0.004305 × 𝐴537) − (0.005507 × 𝐴663)) × 𝐷𝑓 ÷ 𝑊 

𝐶𝑟𝑡 = ((𝐴470 − (17.1 × (𝐶ℎ𝑙𝑎 + 𝐶ℎ𝑙𝑏) − 9.479 × 𝑎𝑛𝑡)) ÷ 119.26) × 𝐷𝑓 ÷ 𝑊 

 

Where, 

ant – Anthocyanins, calculated as: 

𝑎𝑛𝑡 = (0.08173 × 𝐴537) − (0.00697 × 𝐴647) − (0.002228 × 𝐴663) 

Ax – Absorbance (x = wavelength [nm])  

Chla – Chlorophyll a content (µmol/gFW) 

Chlb – Chlorophyll b content (µmol/gFW) 

Crt – Carotenoids content (µmol/gFW) 

Df – Dilution Factor (mL) 

W – Leaf Weight (g) 
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Note that the “ant” (anthocyanins) value calculated above is an intermediate 

calculation and does not represent the true anthocyanins content on the leaves. It only 

serves the purpose of calculating the carotenoid values (see Simon and Gamon 2002). 

After the determination of the chlorophyll a and b content the ratio chlorophyll 

a/chlorophyll b (Chl a/b) was also calculated from the mean values of each measurement. 

Leaf MDA content 

Lipid peroxidation was analyzed through the quantification of leaf MDA content, which is 

a known product of lipid peroxidation at tissue levels (Cai et al. 2011). MDA is a natural 

marker of oxidative stress and its quantification is an essential parameter to assess 

membrane damage and serves as another way of determining the plant stress state 

(Gallego et al. 1996; Shah et al. 2001). Small samples of leaf tissue were obtained from 

frozen leaves as described previously. Tissue samples with a fresh biomass ranging from 

0.033 g and 0.103 g were homogenized in 5 mL of trichloroacetic acid (TCA) 0.1 % (w/v) 

(Acros Organics – Extra Pure) with a mortar and pestle. The resulting solutions were then 

centrifuged for 5 min at 10000 g. Then 4 mL of a TCA solution 20 % (w/v) containing 0.5 % 

(w/v) of thiobarbituric acid (TBA) (Sigma-Aldrich – 98 %) were added to 1 mL of the 

resulting supernatant and kept in a hot bath (95°C), for 30 min. After the hot bath, the 

samples were rapidly put on ice. When cooled, the absorbance of the samples was 

measured for 532 nm and 600 nm wavelengths, using a mixture of TCA/TBA (same as 

above) and H2O (4:1) to set the blank reading. 

The next formulas were used to determine the MDA content: 

𝐴𝑏𝑠(𝑀𝐷𝐴) = 𝐴532 𝑛𝑚 − 𝐴600 𝑛𝑚 

𝑀𝐷𝐴 = (𝐴𝑏𝑠 ÷ 𝜀 × 𝐶𝑊 × 𝐷𝑓 ÷ 𝑊) × 1000 

Where, 

ε – Molar extinction coefficient (155 mM-1.cm-1) 

Abs(MDA) – Corrected absorbance value  

CW – Cuvette width  



Materials and methods  ___________________________________________________________  

28 
 

Df – Dilution Factor (mL) 

MDA – Malondialdehyde content (µmol/gFW) 

W – Leaf Weight (g) 

 

Leaf proline quantification 

Leaf proline content was also quantified through a spectrophotometric approach. Small 

samples of leaf tissue were obtained from frozen leaves. For each sample fresh tissue that 

ranged from 0.029 g and 0.082 g was homogenized in 1 mL of sulphosalicylic acid 3 % 

(Sigma-Aldrich - ≥99 %) (v/v). The resulting solution was centrifuged for 10 min at 10000 g 

and 100 µL of the supernatant was mixed with 2 mL of glacial acetic acid (Panreac – 99 %) 

and 2 mL of ninhydrin acid (1.25 g of ninhydrin (Riedel-de Haën – Pro Analysis) dissolved 

with heating in 30 mL of glacial acetic acid and 20 mL phosphoric acid (6M) (Merck – Pro 

Analysis). Samples were then incubated at 100°C, for 60 min, and kept in an ice bath 

afterwards. Then, samples were warmed up to room temperature and 1 mL of toluene 

(Merck – 99 %) was added to the mixture. As the chromophore phase formed at the 

surface it was aspirated and its absorbance was recorded for the wavelength of 520 nm. 

The proline content was calculated from a calibration curve and its respective linear 

regression equation (Table 2.2). 

 

2.4. Microbiological analysis 

2.4.1. Endophytic and rhizosphere bacteria isolation 

At the beginning and at the end of the experiment, rhizosphere and endophytic bacteria 

were isolated from the roots of F. angustifolia specimens, to later proceed with the 

analysis of these communities’ 16S rDNA profiles. The protocol followed in this study was 

based on the works of Gomes et al. (2001), Forcheti et al. (2007), Aravind et al. (2009), 

Dias et al. (2009). During the isolation process all steps required sterile conditions and the 

procedure was mostly held in a laminar flow chamber using only sterilized equipment. 
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Table 2.2 – Proline calibration curve values and linear regression equation 

Proline 
concentration 

(mg/mL) 
Abs (520 nm) Linear regression equation 

0.06 0.5645 

y = 8.9192 x + 0.0023 
R² = 0.9995 

0.03 0.2725 
0.02 0.14 
0.01 0.0695 

0.004 0.0385 
0.002 0.024 
0.001 0.013 

0.0005 0.007 
 

 

The plants were firstly taken out from the pots and the soil was gently desegregated and 

shaken off. The roots of the plants in a total of 16 (4 random plants chosen before the 

transplanting procedure and 4 plants from each soil test at the end of the experiment) 

were cut with a pair of scissors and up to 5 g of each root was placed on a plastic 

sampling cup. Roots were then rinsed 4 times in a phosphate buffered saline solution 

(PBS) (Fisher – BioReagents 10x) to remove adherent soil particles and loose 

microorganisms. Excess PBS on the roots was removed with absorbent paper and, at that 

point, visible soil particles were removed with a pair of tweezers. Roots where put inside 

Erlenmeyer flasks together with glass beads of approximately 4 mm of diameter (the 

amount of beads on each flask was approximately equal to the weight of the 

corresponding roots) and immersed in a solution of sodium pyrophosphate 0.1 % (Acros 

Organics – Pro Analysis) containing 0.1 % Tween20 (Sigma-Aldrich) (the volume of the 

added solution was 45 mL per 5 g of roots). Next, the flasks were placed on an orbital 

shaker at 200 rpm for 30 min. This procedure allowed rhizosphere bacteria to concentrate 

in the liquid solution. Lastly, 1 mL of this root solution was transferred to eppendorf tubes 

and centrifuged for 20 min at 5000 g. To conserve the isolated rhizosphere bacteria, the 

supernatant was discarded and the pellet was resuspended with 1 mL of ethanol 96 % 

(Merck - Pro Analysis) and preserved at -20°C.  
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To proceed with the extraction of the endophytic bacteria, the same roots were 

again washed with distilled water and then cut into small 2-3 cm long segments with a 

pair of scissors. Root segments were immersed in PBS and let to soak for 10 min. In order 

to sterilize the root surfaces, root segments were sequentially immersed in ethanol 70 % 

for 1 min, in sodium hypochlorite 2.5 % (Sigma-Aldrich – 6-14 % Cl active) containing 0.1 

% Tween20 for 20 min and lastly again in ethanol 70 % for 30 s. After the immersions, 

root segments were once more rinsed in distilled water 5 times. From the resulting 

solution of the last washing, 100 µL were spread into tryptone soya agar (Himedia – IVD) 

plates containing cyclohexamide (Sigma-Aldrich – ≥94 %), to prevent fungi growth, in 

duplicate for each sample. Plates were incubated at 28°C, for 48 h, and were checked for 

the presence of fast growing bacteria. The absence of bacterial growth indicates the 

success of the sterilizing process.  Using a mortar and pestle the roots were grounded in 

PBS buffer (approximately enough volume to immerse the roots) which released the 

endophytic bacteria into the solution. From the resulting root solution 1000 µL were 

centrifuged for 7 min at 13000 g and, after discarding the supernatant, 1 mL of ethanol 

96% was added to the pellet and the samples were preserved at -20°C.  

 

2.4.2. Bacterial DNA extraction 

The extraction of DNA from rhizosphere and endophytic bacteria was performed with the 

Ultra Clean™ Soil DNA Isolation Kit (MO BIO Laboratories, Inc.). The procedure was 

performed according to the manufacturer protocol manual. Due to the high ethanol 

content of the samples, the protocol’s first step was replaced by an alternative pre-

treatment. Samples previously stored at -20°C were warmed up to room temperature 

and centrifuged for 5 min at 10000 g. Sample tubes were then left open at room 

temperature to allow the ethanol phase to evaporate. The buffer solution from the 

specialized bead tube (provided in the kit) was added to the sample pellet, briefly mixed 

in a vortex and transferred back to the kit bead tube. Samples were then ready to start 

the step 2 of the manufacturer protocol.  
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2.4.3. PCR-DGGE Fingerprinting  

DNA extracted from rhizosphere and endophytic bacteria was amplified and set ready for 

DGGE by nested polymerase chain reaction (PCR). Amplification was achieved with the 

following primers: 1st reaction, F27 5’-AGA GTT TGA TCM TGG CTC AG-3’, R1512 5’-ACG 

GCT ACC TTG TTA CGA CTT-3’; 2nd reaction, F984-GC 5’-CGC CCG GGG CGC GCC CCG GGC 

GGG GCG GGG GCA CGG GGG GAA CGC GAA GAA CCT TAC-3’, R1378 5’-ACG GCT ACC TTG 

TTA CGA CTT-3’. The underlined sequence represents a GC-clamp. This introduces a 

Guanine (G)/Cytosine (C) rich high melting domain in the double stranded DNA sample 

preventing its complete dissociation into single strands, increasing the sensitivity of the 

DGGE output (Muyzer and Smalla 1998). For the first nested PCR run was used the 

following 25 µL PCR cocktail: Bovine Serum Albumine (BSA) (0.4 µg/µL), 2.5 µL 10X 

DramTaq™ Buffer, 2.5 mM MgCl2, 200 µM of dNTPs, 100 nM of each primer, 1U 

DramTaq™, 1 µL DNA sample. The PCR reactions were carried on a thermal cycler (BIO 

RAD C1000™ Thermal Cycler), and the cycling regime used was of 94°C for 5 min (1 cycle); 

94°C for 45 s, 56°C for 45 s, 1,5 min for 72°C (30 cycles); 72°C for 10 min (1 cycle). For the 

second nested PCR run the same PCR cocktail was used, with a change of acetamide 

instead of the BSA. The cycling of the second PCR was achieved as follows: 94°C for 4 min 

(1 cycle); 95°C for 1 min, 53°C for 1 min, 1,5 min for 72°C (34 cycles); 72°C for 7 min (1 

cycle). For both runs was included a negative control containing only the cocktail solution 

without any DNA sample. 

The acrilamide gel for the DGGE electrophoretic run was prepared with the low 

and high gradient solutions as described in Table 2.3. The Tris acetate/Na2EDTA (2M) 

(National Diagnostics – Ultra Pure), bisacrilaminde (Sigma-Aldrich – 30 %) , formamide 

(Acros Organics – Extra Pure), urea (Panreac – Pro Analysis) and distilled water were 

previously mixed in a falcon tube and the ammonium peroxodisulfate (APS) 10% (Panreac 

– Pro Analysis) and Tetramethylethylenediamine (TEMED) (Sigma-Aldrich – 99 %) were 

only added immediately before the solutions were ready to be poured in the gel support, 

due to the fast polymerization of the solutions. When the gel was completely polymerized 

8 µL of each PCR (2nd run) product, mixed with 5 µL of DNA Loading dye buffer 
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(Fermentas - 6x) was loaded into the wells and the electrophoretic run was performed in 

a DCode™ System for DGGE (Bio-Rad Laboratories, Inc.) for 5 h at 200 V and 60°C. After 

the DGGE run was completed the gel was stained for 5 minutes in a ethidium bromide 5 % 

solution and digitally scanned with a Molecular Imager FX (Bio-Rad Laboratories, Inc.). 

DNA profiles were then analyzed with the software GelCompar II  (Applied Maths NV, 

Ver. 6.4).  For the analysis, the similarity between the bacterial communities was 

measured with the calculation of the Pearson correlation coefficient for each pair of lanes 

in the gel (similarity matrix). Dendrograms were built by applying the unweighted pair 

group method with arithmetic mean (UPGMA) hierarchical clustering to the similarity 

matrix obtained before. 

 

Table 2.3 – Acrilamide gel low and high gradient solutions 
(Muyzer et al. 1993) 

Reagent  35 % (low) 65 % (high) 

TAE 50x 320 µL 320 µL 

40 % Bis acrilamide 3.2 mL 3.2 mL 

Formamide 2.24 g 4.16 g 

Urea 4.36 g 2.35 g 

dH2O Adjust to 16 mL Adjust to 16 mL 
APS 10 % 140 µL 140 µL 
TEMED 14 µL 14 µL 

 

2.5. Statistical analysis  

To test the responses of the plants to the conducted measurements, the data was 

subjected to a univariate two-way analysis of variances (Two-Way ANOVA). When no 

significant interaction was found between the “soil” and “time” factors an independent 

one-way analysis of variances (One-Way ANOVA) was performed for the levels of each 

factor to search for significant differences. The established significant level was of α = 

0.05. When there was significant interaction between factors (chlorophyll b, carotenoid 

and Fv/Fm) simple main effect tests were done for each factor, using the MSresidual of the 
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previous Two-way ANOVA as the denominator for the calculation of the F statistics (Quinn 

and Keough 2003). When significant differences were found, the previous MSresidual was 

used as well for the calculation of q statistics in the Tukey multiple comparison tests to 

reduce the pairwise type I error. Both Tukey multiple comparison tests for equal sample 

sizes and Tukey-Kramer tests for unequal sample sizes, were performed to test for 

significant differences among the levels of the factor “time” for each soil, and among 

levels of the factor “soil” for each time, respectively. 

In the case of the “above ground growth” since every single plant was repeatedly 

measured over the course of time, a repeated measures (RM) ANOVA was performed to 

test for significant effect of soil and time on this parameter. Plants were the subjects, and 

soil and time were the between subjects and within subject factors respectively. Since the 

sphericity assumption was not met, the Greenhouse-Geisser estimate of ε was applied for 

the adjustment of the degrees of freedom of the repeated measures ANOVA (Quinn and 

Keough 2003). Since a significant interaction between factors was recorded, simple main 

effect tests were performed as described previously, using the MSresidual of the RM-

ANOVA. All the statistical analysis was performed with the SPSS© Statistics for windows 

(IBM© Ver. 19) software. 
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3. Results   

3.1. Plant measurements endpoints 

Above ground growth 

At the end of the test not all plants showed size increase over time, even though none of 

them died. However, the mean above ground growth values for all the groups increased 

after each measurement (Figure 3.1). Both soil and time factors had a significant effect on 

this parameter (Soil: F=5.521, d.f.=2, p=0.007; Time: F=38.457, d.f.=1.538, p=0.000). 

Further a significant interaction between both factors was recorded (F=11.165, 

d.f.=3.007, p=0.000). With respect to soil, the control plants showed the most 

pronounced growth, and significant differences in terms of this parameter between 

exposure times to the soil were recorded by the simple main effect test (F=12.521; 

d.f.=5.54; p<0.001). In the control soil, and after the second measurement (including T30), 

the average height of the plants started to be significantly different (p<0.05) from the 

initial measurements (T0 and T15), according to the Tukey’s multiple comparison test. 

After T30, significant differences in the growth of plants were recorded only between the 

reference and the control soil (p<0.05), but after T45, the plants from the control soil 

were significantly higher than those exposed to both the contaminated and the reference 

soil. No significant differences were recorded between plants from the reference and the 

contaminated soil, at any exposure period. Nevertheless, at T75 it was also clearly visible 

that in the reference and especially in the contaminated group, most of the plants were 

beginning to develop new shoots and leaves. 

 

Leaf Area 

For the 3 groups of plants, the same variation pattern was observed, concerning the 

average leaf area values (Figure 3.2) and no significant differences were recorded for 

plants exposed to the different soils (F=1.238; d.f.=2; p=0.296). The interaction between 

both factors was also non-significant (F=2.046; d.f.=4; p=0.096). However, the exposure 

time had a significant effect on this parameter (F=14.449; d.f.=2, p=0.000). Plants from  
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Figure 3.1 – Mean values of the above ground growth (cm) of F. angustifolia plants from the 3 groups 
(Control; Reference; Contaminated) after 0 (T0), 15 (T15), 30 (T30), 45 (T45), 60 (T60) and 75 days (T75) of 
testing. Error bars represent standard deviation. Bars not sharing any common letter (a, b or c) are 
significantly different to each other. 

 

the control soil showed a significant higher leaf area after 45 days of exposure, while for 

the reference soil it occurred after 75 days (p<0.05). However, no significant differences 

were recorded among exposure periods for the plants exposed to the contaminated soil 

(One-way ANOVA: F=2.776, d.f. 26,29; p=0.081).  

 

Leaf chlorophyll a, chlorophyll b and carotenoid quantification 

The reference and contaminated groups showed, each, a particular pattern in the content 

of the 3 measured pigments. For the chlorophyll a content assay the two-way ANOVA 

revealed significant differences among soils (F=6.281, d.f.=2, p=0.004) and exposure times 

(F=13.529, d.f.=2, p=0.000). No significant interaction between both factors was recorded 

(F=1.988, d.f.=4, p=0.112). The control soil was significantly different from the 

contaminated soil (p<0.05). Considering each soil individually, significant differences 

among exposure times were recorded only for the reference (F=7.428, d.f.=15.18, 

p=0.006) and contaminated soils (F=8.931, d.f.=15.18, p=0.003). The chlorophyll a content  
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Figure 3.2 – Mean values of the area (cm2) of the leaves of F. angustifolia plants from the 3 groups (Control; 
Reference; Contaminated) after 15 (T15), 45 (T45) and 75 days (T75) of testing. Error bars represent 
standard deviation. Bars not sharing any common letter (a or b) are significantly different to each other. 

 

on the leaves of plants growing on both soils was significantly higher after 75 days of 

exposure (p<0.05). The control group showed successive increases of chlorophyll a 

content over time, although without any significant differences found between 

measurements (Figure 3.3). As far as chlorophyll b content was considered no significant 

differences among soils were recorded (F=2.104, d.f=2, p=0.134), despite the significant 

effect of the exposure time (F=6.468, d.f.=2, p=0.003) and the significant interaction 

between both factors (F=4.497, d.f.=4, p=0.004) (Figure 3.4). Considering each soil 

individually significant differences in chlorophyll b content, throughout the exposure, was 

recorded only for plants exposed to the contaminated soil (F=12.704, d.f.=2.15, 

p=0.0006). This parameter displayed significantly higher values after 75 days of exposure 

(p<0.05). The Chl a/b ratio calculated for the 3 groups were the following: control 2.51 

(T15), 2.26 (T45), 2.98 (T75); reference 2.86 (T15), 2.56 (T45), 2.76 (T75); contaminated 

2.46 (T15), 2.52 (T45), 2.13 (T75). 



 _________________________________________________________________________  Results 

37 
 

 No significant differences were recorded in the carotenoid content on plants 

exposed to different soils (F=2.324, d.f.=2, p=0.109) and for the different exposure times 

(F=2.109, d.f.=2, p=0.133) (Figure 3.5). 

 

Leaf relative water content 

The 3 different groups showed significant differences among exposure times (F=19.132; 

d.f.=2; p=0.000) and soils (F=4.586; d.f.=2; p=0.013) for the RWC (%) values (Figure 3.6). 

However, no significant interaction was recorded for both factors, regarding this 

parameter (F=1.061; d.f.=4; p=0.381). The average RWC percentage was significantly 

higher in plants from the control soil, when compared with those from the reference soil 

(p=0.005). One-way ANOVAS performed for each soil have shown significant differences 

among exposure times for each soil (control soil: F=11.633; d.f. 25,28, p=0.000; reference 

soil: F=3.914; d.f. 26,29; p=0.033; contaminated soil: F=7.920; d.f. 26,29, p=0.002). A 

significant decrease in this parameter was recorded for the plants exposed to the three 

different soils, between the measurements of 45 and 75 days of exposure (T75: Control – 

69.4 %; Reference – 65.9 % ; Contaminated – 69.6 %). 

 

Leaf proline quantification 

No significant effect of both exposure time (F=0.596, d.f.=2, p=0.555) and soil (F=2.918; 

d.f.=2; p=0.065) were detected in the proline content of leaves. Furthermore, no 

significant interaction was recorded between both factors (F=0.379, d.f.=4, p=0.823) as 

well (Figure 3.7).  

 

Leaf MDA content 

As far as the MDA content on the leaves was concerned, only significant differences 
among times of exposure were recorded (F=6.386, d.f.=2, p=0.004) without a significant 
interaction between this factor (F=0.467, d.f.=4, p=0.759) and the type of soil tested 
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Figure 3.3 – Mean values of the relative chlorophyll a content (µmol/gFW) of the leaves of F. angustifolia 
plants from the 3 groups (Control; Reference; Contaminated) after 15 (T15), 45 (T45) and 75 days (T75) of 
testing. Error bars represent standard deviation. Bars not sharing any common letter (a or b) are 
significantly different to each other. 

 

 

 

Figure 3.4 – Mean values of the relative chlorophyll b content (µmol/gFW) of the leaves of F. angustifolia 
plants from the 3 groups (Control; Reference; Contaminated) after 15 (T15), 45 (T45) and 75 days (T75) of 
testing. Error bars represent standard deviation. Bars not sharing any common letter (a or b) are 
significantly different to each other. 
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Figure 3.5 – Mean values of the relative carotenoid content (µmol/gFW) of the leaves of F. angustifolia 
plants from the 3 groups (Control; Reference; Contaminated) after 15 (T15), 45 (T45) and 75 days (T75) of 
testing. Error bars represent standard deviation. 

 

(F=1.564, d.f.=2, p=0.221) (Figure 3.8). The MDA content was significantly different 

among exposure times only for plants exposed to the reference soil (F=6.890, d.f.=14.17, 

p=0.008). In these plants, the MDA content was significantly higher after 45 days of 

exposure (p<0.05), decreasing again for values similar to those recorded in the beginning 

of the experiment. 

 

Photosystem II efficiency 

Concerning the PSII efficiency, the Fv/Fm values obtained for the 3 groups indicated 

significant differences among soils (F=6.377; d.f.=2; p=0.002), exposure times (F=18.461; 

d.f.=4, p=0.000), as well as a significant interaction between both factors (F=3.210; d.f.=8; 

p=0.002) (Figure 3.9). In the 3 groups, the variation pattern was very similar, with the 

highest mean values detected at T15 and T60. However, significant differences among 

soils were recorded by a simple main effect test only after 60 days of exposure (T60) 

(F=15.0; d.f.=2.27, p<0.0001). However in the control soil, after such increase, a decrease  
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Figure 3.6 – Mean values of the relative water content (%) of the leaves of F. angustifolia plants from the 3 
groups (Control; Reference; Contaminated) after 15 (T15), 45 (T45) and 75 days (T75) of testing. Error bars 
represent standard deviation. Bars not sharing any common letter (a or b) are significantly different to each 
other. 

 

 

 

Figure 3.7 – Mean values of the proline content (µmol/gFW) of the leaves of F. angustifolia plants from the 
3 groups (Control; Reference; Contaminated) after 15 (T15), 45 (T45) and 75 days (T75) of testing. Error bars 
represent standard deviation. 
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Figure 3.8 – Mean values of the MDA content (µmol/gFW) of the leaves of F. angustifolia plants from the 3 
groups (Control; Reference; Contaminated) after 15 (T15), 45 (T45) and 75 days (T75) of testing. Error bars 
represent standard deviation. Bars not sharing any common letter (a or b) are significantly different to each 
other. 

 

of similar order of magnitude was registered. Considering each soil individually, significant 

differences in the Fv/Fm values obtained on plants among exposure times were recorded 

only for the control and contaminated soils (F=15, d.f.=4.42, p<0.0001 and F=12, 

d.f.=4.43, p<0.0001, respectively). The contaminated group of plants showed the most 

considerable decrease after at T30 and T45 but this was also later on followed by a 

recovery which led to a significant higher value at T60. 

 For the ΦPSI measurements both time of exposure (F=1.143; d.f.=4; p=0.233) and 

soil (F=2.199; d.f.=2; p=0.124) did not have a significant effect on this parameter (Figure 

3.10). The interaction between both factors was also non-significant (F=1.846; d.f.=8; 

p=0.074). 
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Figure 3.9 – Mean values of the Fv/Fm ratio of F. angustifolia leaves from the 3 groups (Control; Reference; 
Contaminated) after 15 (T15), 30 (T30), 45 (T45), 60 (T60) and 75 days (T75) of testing. Error bars represent 
standard deviation. Bars not sharing any common letter (a, b or c) are significantly different to each other. 

 

 

 

Figure 3.10 – Mean values of the ΦPSII ratio of F. angustifolia leaves from the 3 groups (Control; Reference; 
Contaminated) after 15 (T15), 30 (T30), 45 (T45), 60 (T60) and 75 days (T75) of testing. Error bars represent 
standard deviation. 
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3.2. Microbiological data 

Agar plates 

The plates where the washing solutions from the bacterial extraction process were 

incubated showed none or very little bacterial growth after 48 h (data not shown). 

 

PCR-DGGE band profile analysis 

In Figure 3.11 (A and B) are depicted the PCR-DGGE 16S rDNA band profiles of the 

extracted endophytic bacteria, in the beginning and at the end of the experiment, and the 

dendrogram cluster analysis of the same samples. The same information is present in 

Figure 3.12 (A and B) for the rhizosphere communities.  

Both fingerprints provided clear rDNA profiles where it was possible to detect 

distinct bands for each groups of samples analyzed but there were also bands with similar 

melting behavior common for all the analyzed lanes (shown in the rectangle boxes in both 

figures). There was more variety on the rhizospheric fingerprinting, as the band count was 

higher. 

In the endophytic bacteria gel the 4 lanes corresponding to the contaminated soil, 

although being similar among them, they appeared to show the most different profile 

comparing to the other lanes. An exception was lane nº 8 (control soil - sample 4) where 

the bands also showed a particular melting profile, in fact, quite similar to the 

“contaminated soil” lanes. As it is shown in the dendrogram (Figure 3.11 B), the 4 

“contaminated soil” lanes and lane nº 8 form a cluster very distinct to the other one. 

Despite such clustering, lane nº 8 still showed the smallest similarity index within the 

cluster. The other 3 groups of samples appear to be more similar in the gel, where 3 

bands appear with the same melting behavior in all samples, except lane 8 (indicated by 

the arrows in Figure 3.11 A). The cluster for these samples shows that the similarity 

between the “initial” samples and the control samples is greater than with the reference 
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ones. An intense band present in the “initial”, reference and in 3 of the control lanes is 

clearly absent in the “contaminated soil” lanes (lower arrow in Figure 3.11 A). 

In the gel of the rhizosphere samples the bands from the “contaminated soil” 

group of lanes once again showed a particular profile distinct from the rest (Figure 3.12 

A). In turn, the profiles from the other 3 groups are more similar between them, although 

some distinct melting behavior could be found for some bands between the groups. The 

data from the dendrogram supports the visual analysis and again 2 big individual clusters 

were formed (Figure 3.12 B). On the smaller cluster were the group of lanes from the 

“contaminated soil” samples and lane nº 8 (control soil - sample 4) that, in line to what 

happened in the other gel, had a profile more similar to that of the “contaminated soil” 

lanes comparatively to all the others. 

Concerning the bigger cluster, the grouping of the data from rhizosphere 

communities seems to differ from what was observed in the endophytic samples. This 

time the 3 groups appear to be more similar between each other than before. It is 

notable that an intense band (arrow in Figure 3.12 A) appeared in all the lanes of the 

contaminated soil samples although it did not appear in the other samples.  
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Figure 3.11 – A) PCR-DGGE fingerprinting of the 16S rDNA fragments from the endophytic bacteria 
extracted from the roots of 4 plants in the beginning of the test (Initial-I) and of 4 plants of each group in 
the end of the experiment [Final – Control (F-CTL); Final-Reference (F-REF); Final-Contaminated (F-CTM)]. 
Black arrows point to a common bands to all groups except the “Contaminated”; box represents a common 
band for all the lanes. B) Similarity cluster based dendrogram of the endophytic bacteria rDNA profiles. Built 
with the Pearson correlation coefficient and unweighted pair group method with arithmetic mean; genetic 
profiles differences shown as similarity percentage. 

 

A 

B 
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Figure 3.12 – A) PCR-DGGE fingerprinting of the 16S rDNA fragments from the rhizosphere bacteria 
extracted from the roots of 4 plants in the beginning of the test (Initial) and of 4 plants of each group in the 
end of the experiment [Final – Control (F-CTL); Final-Reference (F-REF); Final-Contaminated (F-CTM)]. Black 
arrow point to an intense band present only in the “Contaminated” samples; box represents a common 
band for all the lanes. B) Similarity cluster based dendrogram of the rhizospheric bacteria rDNA profiles. 
Built with the Pearson correlation coefficient and unweighted pair group method with arithmetic mean; 
genetic profiles differences shown as similarity percentage. 

A 

B 
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4. Discussion  

To evaluate the phytoremediation potential of the F. angustifolia trees, a set of 

parameters were analyzed to study the effects of contamination on the plants. 

Contamination of soils with metals is known to cause several effects in plants, ranging 

from oxidative stress to growth inhibition, reduction of photosynthesis, degradation of 

pigments, damage to chloroplast and mitochondria, inhibition of enzyme activities and 

changes in their ultrastructure and water status, among others (Barceló and 

Poschenrieder 1990; Van Assche and Clijsters 1990; Shanker et al. 2005; Hu et al. 2007; 

Maksymiec 2007; Kholodova et al. 2011). Some of these effects were targeted for 

evaluation in this study. 

The results from the two parameters most related to biomass, the above ground 

growth and the leaf area tests, suggest that the development of the plants was affected 

by the factor soil only for the former one, since plants from the control soil displayed a 

significantly higher values than the others. The leaf area has significantly increased for the 

control and reference plants throughout the experiment, however at the end no 

significant differences among the 3 soils were recorded. This happened because in the 

last 3 weeks of the test a rapid burst growth appeared to have began in the contaminated 

plants group. Such observation suggests that despite an evident growth inhibition of the 

contaminated group of plants has occurred, after such amount of time, should the test 

had continued and these plants would start to develop significantly. Several studies have 

demonstrated that the growth rates and biomass production of plants is inhibited by the 

contamination with metals (Shah et al. 2001; Manios et al. 2003). Previous studies that 

focused on the effects of cadmium also showed that metals can decrease plant cells and 

intercellular space sizes and have irreversible effects on proton pumps that intervene in 

the elongation of the cells and, thus, interfere with the plants’ growth (Barceló et al. 

1988; Aidid and Okamoto 1993). Metal contamination has also been implicated in the 

inhibition of leaf growth (Clijsters and Van Assche 1985). Since the over time growth of 

the reference and contaminated groups was very similar, it seems that the delay in the 
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growth of the plants from these groups was related to some other factors, like the soil 

structure, instead of being essentially related to the contamination levels.  

The quantification of chlorophyll a and b showed significant differences between 

the control and the contaminated group of plants. In fact, plants exposed to the 

contaminated soil displayed significantly lower contents of chlorophyll a after 45 days, 

only showing a significant recover in both chlorophyll a and b parameters after 75 days. 

The same trend was observed for plants exposed to the reference soil for chlorophyll a 

content. Nevertheless, Chl a/b ratios had little variations and always remained above the 

value of 2 for all groups. Chlorophyll content is considered to be one of the most 

important parameters in the evaluation of plant stress (Zarco-Tajeda et al. 2000). The 

stress caused by metal contamination is known to result in the reduction of total 

chlorophyll a and b and carotenoid contents (Van Assche and Clijsters 1990; Wonzy and 

Krzeslowska 1993; Krupa et al. 1996; Kastori et al. 1998; Fargašová 2001; Macfarlane and 

Burchett 2001; Pandey and Sharma 2002). This decrease in chlorophyll is usually 

explained due to impacts that metals have on the photosystem II and negative 

interferences in the chlorophyll synthesis process and associated enzymes (Prasad and 

Prasad 1987; Van Assche and Clijsters 1990; Ouzounidou 1993; De Filippis and Pallaghy 

1994; Moustakas et al. 1994; Sánchez-Viveros et al. 2010). This way, the analysis of the 

chlorophyll content relates to the physiological status and the productivity of a plant. This 

might give information related not only to the damage on the PSII but can also be related 

to growth and survival limitations (Vangronsveld and Clijsters 1994; Blackburn 1998). The 

somehow similar pattern observed in chlorophyll content on plants exposed to both 

natural soils (the contaminated and the reference soil) with a recovery (sometimes 

significant) near the end of the experiment, suggests, that not only the contamination 

with metals but other soil properties, as well, may interfere with plant performance. 

However, as far as the contaminated soil is considered F. angustifolia plants seemed to 

have surpassed the effects of such levels of contamination and were able to restore the 

pigments levels.  
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It is clear that metal toxicity has a tendency to reduce the chlorophyll content in 

plants but weather it reduces or increases the Chl a/b ratio is still debatable. The Chl a/b 

ratio is important because it can reveal some insights about the changes and adaptations 

of the plants under stress. Some studies reported that plants suffering from metal-

induced stress showed a reduction in the ratio (Ouzounidou 1993; Moustakas et al. 1994; 

Ewais 1997; Pandey and Sharma 2002) while others stated the opposite (Loggini et al. 

1999; Li et al. 2011). On the contaminated group of plants the Chl a/b ratios were of 2.46 

(T15), 2.52 (T45) and 2.13 (T75), while the ratios for the control soil were 2.51 (T15), 2.26 

(T45), 2.98 (T75) and for the reference soil were 2.86 (T15), 2.56 (T45), 2.76 (T75). Despite 

the very slight changes, the ratio only increased when the contamination effects were 

most notable. This contradicts the supposable reported greater sensitivity of chlorophyll a 

to environmental pollutants (Wong and Chang 1991; Somashekaraiah et al. 1992) but it 

may actually represent an adaptive mechanism against metal contamination based on 

beneficial pigment changes in the photosynthetic centers (Loggini et al. 1999). 

Proceeding with pigments evaluation, the analysis of the carotenoid content data 

revealed that the pattern of variation of the mean values was very similar to those 

observed for the chlorophyll b content. It has been suggested that the increase or 

decrease in the carotenoid content of the plants growing under metal contamination, can 

be either the result of tolerance or susceptibility to the contamination (Sánchez-Viveros 

et al. 2011). While a decrease in the carotenoid content is probably related to the toxic 

effects of the metals, an increase can be related to protective effects of carotenoids 

against the metal-induced stresses (Vajpayee et al. 2001; Mascher et al. 2002). Due to the 

lack of statistical proof, it is risky to draw many  conclusions, but 2 important observations 

can be pointed out: on the one hand, since there were no significant differences at any 

time between the contaminated group and the others, carotenoid content seem to have 

not been affected by the contamination; on the other hand, the increase recorded for the 

contaminated group at T75, following the low value at T45, could possibly be the 

beginning of a late adaptive response to the metal stress, i.e. metal-induced oxidative 

stress (Foyer and Harbinson 1994). Carotenoids seem to have beneficial effects against 

stress by helping maintaining the integrity of photosynthetic membranes, and although in 
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small amounts, this might have been true in the contaminated soil group of plants 

(Havaux 1998; Havaux et al. 1998). 

The term “relative water content” was firstly coined as the water content of the 

leaves (in per cent) correlated with their water content at a maximum turgor state. By 

expressing the amount of water that a plant needs in order to achieve a state of artificial 

full saturation, it is an indicator of the plant’s water balance and still serves today as 

another useful tool among plant stress related parameters (Weatherley 1950; Roger 

2003). Normal RWC values vary among species and may also be under influence of 

considerable genotypic diversity (Babu et al. 1999). However a range of RWC values is 

actually accepted as a rule for most species: RWC of 100 - 90 % represent normal leaf 

stomata pores closing and decreasing cell growth and expansion; values of 90 - 80 % are 

related to changes in photosynthesis and respiration rates and tissue composition, but 

plants are still healthy; <80 % values represent low water potentials associated with 

metabolism alterations and proline and abscisic acid accumulation (Roger 2003). The 

initial (T15) RWC values registered for the 3 groups of plants were not too low but were 

still below 80 %. These results might indicate some physiological changes due to the 

adaptation to the new conditions, reaction to the new soil (specially the contaminated 

plants since they had the lowest mean value – 72.8 %) or both. At T15, contaminated 

plants’ RWC mean value was significantly lower than the control value but not comparing 

to the reference plants and after 30 days (T45) the RWC values increased in all 3 groups of 

plants. Such reaction might mean a positive over time response of the plants, as an 

adaptation to the transplanting and an initial physiological shock to any adverse 

conditions of the soil. It is also possible that mechanisms of osmotic adjustment might 

have been behind such RWC values. Such mechanisms usually include the cellular 

accumulation of compatible solutes (or compatible osmolytes). Compatible solutes are 

soluble compounds, generally nontoxic to the plant cells even at high concentrations, 

which protect the cells in various ways. These include not only the lowering of the cell 

osmotic potential and consequently the rise of RWC, but also the detoxification of 

reactive oxygen species, buffering cellular redox potential, stabilization of 

proteins/enzymes and maintenance of membrane integrity (Yancey et al. 1982; Babu et 
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al. 1999; Bohnert and Jensen 1996). It is very typical for plants under several stresses, 

including metal contamination, to accumulate such molecules and would not be 

unexpected if it was found that such phenomenon took place in this case (Bassi and 

Sharma 1993; Kuznetsov and Shevyakova 1999).  

It was one of the aims of this study to analyze the accumulation of one of these 

compatible solute molecules, proline. Proline is an amino acid that is known to occur and 

accumulate in large quantities in higher plants, when they are under stressful conditions 

(Hare and Cress 1997; Ashraf and Foolad 2007). This usually allows plants to overcome 

stress situations for a period of time. The analysis of the proline content values did not 

provide much information regarding its relation with the RWC values. Since not many 

considerable variations and differences were observed it is difficult to establish a solid 

relation between both parameters.  

Nonetheless, at T75 the measurements of RWC showed a decrease in the 3 

groups, that were significant for the 3 groups. At this point the contaminated group’s 

mean value (69.6 %) was very close to the control mean value (69.4 %) and no significant 

difference existed between the 3 groups of plants (65.9 % for the reference soil) which 

were all notably below the 70 % mark. Contamination by metals has already been 

reported to be related to impairments in the water status of the plants and should allow 

the detection of metal effects on them (Barceló and Poschenrieder 1990). However, in 

this case it is uncertain if such a late decrease could have been due to a failure to 

overcome the contamination and adverse soil properties by the plants of the reference 

and contaminated lots. Still, that would not explain the similar drop of RWC  for the 

control plants. Therefore another explanation to such reaction could be that the fact that 

the plants’ roots were already overgrowing the pots at that point of the experiment, were 

also responsible for changes in the plants’ water balance and the consequent decrease of 

the RWC values. Additionally, at the end (T75) there were no significant differences 

between the mean RWC values of the 3 groups, although surprisingly the RWC of the 

contaminated lot was actually higher than the value of the control lot. This set of data 

also suggests a good response of the plants from the contaminated group. 
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The potential danger of metals is believed to be closely related to their oxidation-

reduction biological activity, which leads to the formation of harmful reactive oxygen 

species in plant cells (Gallego et al. 1996; Shah et al. 2001; Pandey and Sharma 2002). 

Since this can easily lead to dangerous levels of oxidative stress and damage to the 

membranes, this study also tried to evaluate the extent of that kind of cellular damage 

related to metal exposure, by means of MDA quantification. Increased rates of lipid 

peroxidation was already observed in plants growing on medium supplied with various 

metals (Gallego et al. 1996). However, metals can have different ways of action like the 

direct induction of radicals production or the decrease of enzymatic and non-enzymatic 

antioxidants (Gallego et al. 1996; Romero-Puertas et al. 2002). The fact that in this study 

the mean MDA content values for any of the measuring times were not significantly 

different between the 3 plant groups, seems to mean that lipid peroxidation was not 

significantly pronounced in a specific group of plants. Although not significant, the values 

for the contaminated lot were always slightly higher than the values obtained for the 

other groups so the contamination on soil probably had induced some oxidative stress, 

even if at a low extent. It is also curious to note that the mean values for all the lots 

increased from T15 to T45 and decreased again at T75. Like before, these results suggest 

that the existing stressful conditions affecting the plants triggered MDA production in the 

leaves, at first, but after some time the plants recovered from or adapted to such 

conditions and returned to a normal state. Once again the control lot followed the same 

pattern as the other groups, which makes it difficult to establish any direct relation 

between MDA values and soil contamination. Xu and colleagues (2009) also suggested 

that there could be a negative correlation between MDA levels and photosynthesis 

efficiency. The analysis of the results of the MDA content and PSII efficiency assays for F. 

angustifolia shows that there is some relation between increases of MDA in the leafs and 

decreases in PSII efficiency, especially in the contaminated group. It is, however, not 

possible to assure that there is a direct physiological connection. Firstly, many of the 

differences observed did not reach statistical significance and secondly, in this case the 

decreases of photosynthetic efficiency are probably related to multiple factors instead of 

just the MDA content and lipid peroxidation, which itself may be dependable on several 
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other factors (i.e. MDA may accumulate in order to help restore cellular osmotic 

homeostasis) (Cao et al. 2011). 

The absence of significant differences in the proline mean values seems like 

another indicator of the positive response of the F. angustifolia trees to the contaminated 

soil. Proline is known to have multiple roles in plant physiology, aside from the 

compatible solute function, some of them closely related to stress response (Pandey and 

Sharma 2002; Szabados and Savouré 2009). While in many cases it still remains unclear 

how precisely proline acts as a protective molecule and how it contributes to cellular 

homeostasis under stressful conditions, it has already been reported to be associated 

with many kinds of plant stresses including metal contamination (Schat et al. 1997; Rai 

2002). It is even considered one of the most common adaptive responses of plants to the 

contamination with metals (Zhao et al. 2008). It has been suggested that, in a situation of 

high concentration of metals, proline can act as a protector of membranes and proteins 

(i.e. protection of nitrate reductase), help maintain the NADP+/NADPH ratios, regulate the 

osmotic pressure, act as a free radical scavenger, regulate metal-induced cellular 

acidification, be a source of nitrogen and carbon and act as a component of stress signal 

transduction pathways (Smirnoff and Cumbes 1989; Saradhi 1993; Hare and Cress 1997; 

Sharma and Dubey 2005; Saygideger and Deniz 2008; Shevyakova et al. 2009). However, 

it has also been suggested that in some cases proline accumulation can mean nothing but 

a consequence of stress-induced damage in the plants’ cells (Matysik et al. 2002). 

A study with the plant Silene vulgaris demonstrated interesting results concerning 

the relation between proline and metal tolerance. When exposed to metal 

contamination, an ecotype of S. vulgaris non-tolerant to metals showed increments in the 

proline content while a metal tolerant ecotype of the same species already had higher 

basal constitutive proline levels before exposure (Schat et al. 1997).  

It is possible that the T15 proline value for the contaminated group, already higher 

than control, represented a physiological response to the contamination. It is unclear, 

though, if the following decreases after 30 and 60 days could represent an after-response 

stabilization of the levels. However, according to the proline contents of the reference 
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plants, these appeared to be the most stressed ones, having showed the highest values in 

all the measurements. It is suspected that in the reference soil, plants were probably 

under other kind of stress to which the leaves responded by producing higher amounts of 

proline. Another explanation to the high values in the reference lot and the increase in 

T75 for the control lot, could be that some water related stress (probably linked to the 

decrease in the RWC values) was responsible for the proline production. It would be also 

interesting to evaluate if compared to different ecotypes or similar species, the basal 

constitutive proline accumulation was higher for these trees. 

According to the Fv/Fm results, the plants from the contaminated groups did not 

differ much from the reference group of plants, only from those in the control soil. The 

Fv/Fm ratio is a physiologic non-invasive measure that is directly correlated with the 

photosynthetic efficiency (Lafabrie et al. 2011). It has an inverse correlation with the 

damage inflicted to the PSII reaction centers and is currently the most used fluorescence 

parameter in plant physiology (Björkman and Demmig 1987; Farquhar et al. 1989). When 

plants are under environmental stresses, the decreases in the Fv/Fm ratio are related to 

the reduction of photosynthetic capacity, by means of photoprotective mechanisms that 

are triggered to dissipate excess energy in a situation of a dynamic/reversible 

photoinhibition. Still, chronic photoinhibition can occur and in this case it might be 

related to permanent damage to the PSII reaction center complexes (Peñuelas and Llusià 

2002; Oliveira and Pañuelas 2004; Prieto et al. 2009). The inhibition of PSII activity has 

been related to metal exposure many times (Clijsters and Van Assche 1985). It has also 

been suggested that exposure to metals can cause several damage at the cell and 

ultrastructure level, like the destruction of sub-cellular structures and notably the 

disorganization in the chloroplasts, including the disappearance of grana (Clijsters and 

Van Assche 1985; Gallego et al. 1996; Huseyİnova et al. 2009).  

Significant differences in these parameters, among times of exposure, were 

recorded both for the control and contaminated groups of plants. Nevertheless, all the 

mean values recorded for all the groups of plants were above 0.8, with the exception of 

the T45 contaminated group value of 0.796 which is still very close to 0.8. Such values 
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usually show that the plants are healthy. Despite some inter-species variability, for most 

species it has been established that values of Fv/Fm above 0.8 are characteristic of 

healthy and vigorous plants and that values below 0.8 are usually related to some kind of 

stressful conditions (Schulze and Caldwell 1997; Zarco-Tejada et al. 2000). A noteworthy 

fact is that for the 3 groups an initial drop in the Fv/Fm mean values was recorded in the 

first 45 days of exposure, but it was followed by an increase until T60. This variation was 

especially significant for the control and contaminated plants. It appears that after an 

initial shock, especially in the contaminated group where the drop was the highest 

(probably due to metal contamination), the plants were able to adapt and restore their 

photosynthetic rates; even those exposed to metal contamination conditions.  

Being related with the reduction of photosynthesis, the low values of Fv/Fm are usually 

also associated with reduction of growth and biomass production (Clijsters and Van 

Assche 1985; Farquhar et al. 1989; Oliveira and Peñuelas 2004; Hermle et al. 2006). The 

outcome of the analysis of the Fv/Fm data actually reveals similarities with those of the 

growth test. Just like what was recorded for the growth test, in this case the reference 

and contaminated groups were also significantly different from the control group, but not 

between each other. This could mean that the higher Fv/Fm values in intermediate 

measurements for the control group could be related to the greater growth of the plants 

belonging to the group. Despite this, in the last measurement there were again no 

differences between the groups and the contaminated group showed, in fact, the highest 

value. This could also be related to the emergence of new shoots and leaves on the plants 

of this group. Still, given the similarity between the reference and the contaminated 

group one can believe that the growth limitation observed for both groups was probably 

not only related to metal-induced photoinhibition. It is likely that growth inhibition was 

also due to other factors like damage to the roots, inhibition of water uptake or reduced 

microbial activity, even though these could still be related both to soil characteristics and 

the presence of metals in the soil, or even the lack of soil volume to the evident 

outgrowing roots (Sanità di Toppi and Gabbrielli 1999). The data corresponding to the 

ΦPSI ratio did not show any significant difference between any type of soil or time of 

exposure. This shows that despite the differences observed for the Fv/Fm ratio, the 
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quantum yield of the photosystems II from the leaves of the plants were not affected by 

the imposed conditions. 

From the analyzed data, few parameters point to a negative effect of the 

contamination on the plants’ health status. Furthermore, at the end of almost 3 months 

of exposure, the plants growing on the contaminated soil even appear to be more healthy 

than the other plants. The evident differences found for the growth parameter may 

possibly be related to the soil properties or for instance to the metal-induced inhibition of 

nutrient uptake, which could be determinant to the plants’ growth rates (Pandey and 

Sharma 2002). Abundant metals in the soil can compete for root uptake, leading to the 

deficiency of other important elements that might influence the plant’s growth (Jarvis et 

al. 1976; Clijsters and Van Assche 1985). Plus, many of the existing data are based on the 

study of 1 or 2 metals under controlled conditions while little is known about the effects 

and responses to mixed contamination (Hermle et al. 2006). The possible synergistic 

effects of 2 or more metals, like those found in the contaminated soil, should not be 

ignored and could be a target of a new study.  

The metal quantification analysis for the various parts of the plants is a key point 

in a study based on the potential of a plant to be applied in phytoremediation. Being able 

to specify whether the plant is accumulating any metals and to what extent it does so, is 

crucial to clarify some of the observed physiological behavior patterns, to determine 

which phytoremediation class might be more suitable and also to reveal if the plant can 

be classified as a hyperaccumulator or even as an excluder. Unfortunately, due to the 

long duration of the quantification process and the need to be done outside the country,  

this analysis is still ongoing and the corresponding results will only be reported in a future 

opportunity. 

 Lastly, it is also worth mentioning that when plant assays are done in the 

laboratory under controlled conditions, some of the natural conditions are difficult to 

replicate. The light intensity from the lamps in the experimental chamber is constant and 

hundreds of times far below the intensity levels of solar light in the field. This does not 
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mean the output from the measurements would had greatly changed but maybe the 

global growth rates would be different, for instance. 

 The band profiling obtained through the technique of PCR-DGGE provided some 

insight on the variations in the composition of the endophytic and rhizospheric bacterial 

communities in the roots of the tested plants. The profiles indicated that for both types of 

bacteria, those associated with the roots of the plants from the “contaminated soil” were 

the ones which varied the most, over the course of the experiment. Naturally, this was 

most probably caused by the metal contamination present in the respective soil. Overall, 

the control and reference samples showed much less differences between each other and 

the “initial” extraction samples. Also, since these 3 groups showed more similarity 

concerning the rhizosphere communities, it may be a sign that the endophytic ones are 

more susceptible to change in response to changes in the environmental conditions. This 

is not in line with the concept that the communities of the rhizosphere are more prone to 

compete with each other and more vulnerable to soil-related conditions.  

Although root exudates interfere with the bacterial composition on the 

rhizosphere, endophytic communities are under a more direct selection and control by 

the plant’s roots, which might explain why there is an overall smaller variety in the 

endophytic communities (Doty 2008). 

In the rhizosphere fingerprinting the most intense bands, in the low end of the gel, 

were clearly present in the “contaminated” lanes but were nowhere visible on the 

remaining lanes (except lane 8). It seems that initially, and later on the control and 

reference soil samples, the bacterial communities showed more variety probably due to a 

more competitive balanced environment. However, the presence of the contaminants 

probably induced a more restrict environment, which favored only the most adapted 

species. Maybe the competitive tension was reduced and maybe the intense bands 

reflect the presence of some species that were able to thrive better in that environment.     

By contrast, in the endophytes profiles, the intense bands suggest bacterial 

abundance for some species that were present in the “initial” samples and that remained 

in the others groups except on the “contaminated” one (except lane 8). It appears that 
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what was initially an abundant bacterial community inside the roots, was later, upon 

contamination exposure, almost completely eliminated in detriment of other ones. This is 

understandable since the root tissue consists of a more controlled environment. Although 

this study does not clarify it, the bacteria that persisted in the tissues throughout the 

entire experimental period could possibly be determinant to the plants’ health and their 

capability to survive and develop under such conditions. Both analysis indicate that lane 

nº 8 should be classified as an experimental mistake and not be considered as 

representative of the “control group”. These results indicate that the metal 

contamination had strong effects in the structure of the bacterial communities associated 

with the roots. This strongly corroborates the documented roles of the root bacteria as 

helper simbionts under adverse conditions.  

It would be interesting to further study these bacterial communities in order to 

analyze their specific composition and discriminate potential useful bacterial species. 

These could be directly applied as new inoculants to promote the growth and provide 

resistance to other trees species. 

 

 

 

 

 

 

 

 

 



 ____________________________________________________________________  Conclusions 

59 
 

5. Conclusions 

Through the measurements of a selected set of parameters, the results allowed to 

demonstrate that the F. angustifolia species is indeed a good candidate for field pilot 

tests. The only pronounced stress factor detected in the trees growing in the 

contaminated soil was some growth limitation. The analysis of the growth and leaf area 

appears to be the most sensitive indicators of the effects of contamination. However, the 

similar growth between the reference and contaminated groups indicates that the 

inhibition of growth was probably not exclusively related to the contamination. Among 

the remaining parameters, some revealed supposable mid-term metal-induced effects 

soon after the transplantation, but all of them indicated that once the experimental 

period was completed no significant differences existed between the plants growing in 

the contaminated soil and the control and reference groups.  

In conclusion, the tested species appear to show tolerance and resistance 

mechanisms against the tested contamination but that there is a need for a certain period 

of time for the plants to adapt to the challenging conditions and resume normal growth 

and physiological condition. Still, it would be interesting to develop further studies in a 

larger scale and with longer periods, in order to investigate which factors besides the 

metal contamination could significantly hold back the growth of the plants. 

The PCR-DGGE analysis of the bacterial communities’ profiles proved to be a good 

indicator of the variations of these communities in the vicinities and inside the roots of 

the tested plants. It could also be concluded that the presence of contamination in the 

soil had strong effects in the communities growing in the roots of the respective plants. It 

is very likely that these changes had a preponderant influence in the adaptation and 

development of the plants. Further studies should be conducted in order to evaluate the 

use of these communities in the improvement of the establishment of this and other 

plant species for the end of phytoremediation. 
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