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Resumo

Tanto para os humanos como para os robds, a visdo é um sentido muito im-
portante e que permite a interpretacdo do espaco a mais do que uma dimen-
s3o. No caso de robds humanoides, cuja forma se assemelha a um humano,
a utilizacdo de visdo & um enorme desafio devido as restricées que derivam
da diferenca entre o corpo humano e o robé. Um sistema de visdo robusto
deve ser capaz de disponibilizar informac3o precisa sobre o ambiente e uma
correcta representacdo dos objectos de interesse. Esta dissertacdo apresenta
uma solucdo para um sistema de visdo de um robd humanoide. Os algorit-
mos desenvolvidos para todos os médulos do sistema, desde a aquisicido da
imagem até ao seu processamento e deteccdo dos objectos de interesse foram
testados num robd humanoide desenvolvido para jogar futebol. Neste tipo
de aplicacdo, o mundo envolvente ao robé é simplificado, havendo um con-
junto de cores com significado especial neste contexto. Nesta aplicacdo em
particular, a correcta deteccdo em tempo real de linhas brancas num campo,
balizas amarela e azul bem como bolas laranja, mostram a eficiéncia do sis-
tema proposto. No entanto, o trabalho desenvolvido nesta dissertacdo pode
facilmente ser exportado para outras plataformas humanoides com alteracdes
minimas, como apresentado nos resultados experimentais desta dissertacdo.
Para além dos algoritmos referidos, esta dissertacdo apresenta um conjunto
de aplicacdes que podem ser executadas num computador externo ao robd,
desenvolvidas para uma melhor manipulacdo das imagens adquiridas pela

plataforma robdtica e para efeitos de depuracdo dos algoritmos.






Abstract

For both humans and robots vision is a very important sense that has the
task of interpreting spatial data, indexed by more than one dimension. In
the case of a humanoid robot, that is a robot whose structure imitates the
human body, vision is a very challenging area because of all the restrictions
that come from the differences between the human body and the robotic
one. A robust vision system should be able to provide accurate information
about the environment and a precise description of the objects of interest.
This thesis presents a solution for an accurate implementation of a vision
system for a humanoid robot. From acquiring images, processing them and
detecting the objects of interest all the algorithms have been tested on a
soccer playing humanoid robot. For a soccer playing robot the world is
simplified to a number of colors that are meaningful in this context. In this
particular case, the algorithms for real-time detecting the white field lines,
the blue and yellow goals and the orange ball have proven their reliability.
The work implemented can be easily exported to other humanoid platforms,
as presented in the experimental results of this thesis. Moreover, this thesis
presents several applications that can run on an external computer and that
have been created for a better manipulation of the images acquired by the

robotic platform and for debugging purposes.
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Chapter 1

Introduction

For both humans and robots vision is a very important sense, the latter representing the
point of interest of this project. In the robotic world many different sensors can be used, but
usually, the vision system is the main sensorial element as it is capable to provide a great
amount of information such as spacial, temporal and morphological. Based on the robot
purpose, the vision system has to perform different tasks. The majority of the systems must
perform object recognition, object learning and localization perception. An efficient robotic
vision system should also be able to perform its tasks in real time, which means that several
constraints are imposed. First of all, real time applications imply that algorithmic complexity

is limited, allowing thus a small processing time.

One of the most interesting and popular branches of robotics nowadays is robotic soccer.
For a soccer playing robot vision plays probably the most important part. In robotic soccer,
the environment is always changing, the ball and the robots are always moving, most of the
time in an unpredictable way. The vision system is responsible for capturing all these fast
changing scenes, processing them and taking valid decisions in the smallest possible amount

of time, thus allowing real-time operations.

This thesis focuses on the development of a modular vision system for a humanoid robot.
The work that will be presented has been applied to the humanoid robots of the Portuguese
Team [7] competing in the RoboCup Standard Platform League [8]. The goal of the project
was the development of a generic vision system for humanoid robots, that is a vision system
that could be used with a wide range of humanoid robots. A platform for tests was needed
and the first and most used available platform was the robotic soccer player NAO robot [1].
However, with a small number of adjustments, the same vision system has been successfully
applied to a Bioloid humanoid robot [9]. This thesis focuses on the implementation of the
vision system for the NAO robot, with emphasis on its modularity. One section will also be
dedicated to the usage of the proposed video system with the Bioloid robot in the chapter of

the experimental results.



1.1 Objectives

The aim of this project is finding a solution for overcoming all the challenges and restric-
tions that robotic vision has to face and presenting an accurate implementation of several
algorithms for detecting objects of interest for a humanoid soccer-playing robot. The specific

goals of this thesis are:

e Study of already existing algorithms for implementing a robotic vision system.

e Development of algorithms that can be applied to the humanoid platforms that the

University can provide.
e Integration of the proposed algorithms with the given platforms.

e Testing of the developed algorithms.

1.2 Humanoid Robots

Human-friendly robotics is nowadays more and more concerned about providing a variety
of mechanically constructed solutions for some of the most common daily tasks of a human
being. One of the many branches of robotics that best accomplishes the task of imitating
human behaviours is humanoid robotics.

A humanoid robot is a robot whose overall appearance is very similar to the human body,
thus allowing it to interact with objects and environments that were initially designed exclu-
sively for human usage. The body of the most humanoid robots consists of a head, a torso,
two legs and two arms. There are also several models of robots whose bodies include a face
with eyes and even a mouth. The idea behind the construction of a humanoid robot is to
imitate different physical and mental tasks that humans undergo daily.

A humanoid robot that is fully autonomous should be able to:

Gather information about the environment.

e Work for an extended period without human intervention.

Move either all or part of itself throughout its operating environment without human

assistance.

Avoid situations that are harmful to people or itself unless those are part of its design

specifications.

Probably the most important feature of a humanoid robot is that it should be capable of
learning new strategies for adapting to previously unknown situations in order to accomplish

its tasks, as well as to cope with changing surroundings. Being a great source of information,



vision usually is the main sensorial element of the robot [10]. Through their vision system,
robots are able to sense the environment, to classify objects of interest and to continuously
learn new techniques for adapting to all the changes that might occur in the surrounding
world. Despite their autonomy while accomplishing given tasks, a humanoid robot, just like
any other machine, requires regular maintenance.

Humanoid robots are being used nowadays in a large number of scientific research branches.
Among the most interesting and innovative examples is probably robot NAO [1] (Fig. 1.1
(b)) a soccer playing robot, fully autonomous developed by Aldebaran Robotics. ASIMO
(Fig. 1.1(a)), the world’s most advanced humanoid robot [11] is designed to operate in the
real world, where people need to reach for things, pick things up, navigate along floors and
even climb stairs. Last but not least, Robonaut2 [12] (Fig. 1.1(c)) is the first robot to enter
Earth’s orbit on a NASA space shuttle. These three examples only represent an infinitesimal
percent of what humanoid robotics stands for. It is a very wide research area through which

technology can bring imagination to life.

(a) ASIMO (b) NAO (c) Robonaut2 (d) Bioloid

Figure 1.1: Several humanoid robots.

1.3 Robotic vision in soccer applications

For any soccer robot the objects of interest are: the ball, the field lines, the goals, the
team members and of course the obstacles they might encounter on the field as well as the
opponent team’s members.

In humanoid robotics, the implementation of a vision system is yet restricted by several
other elements, out of which one of the most important is the lack of stability of the digital
camera due to the type of its locomotion. Another restriction comes from the limitation of
the energetic autonomy and processing capabilities. These issues, along with the rest of the

challenges that image processing implies, make humanoid vision a complex field of study.



Even though in the case of a robotic soccer player, the representation of a vision system
might seem simplified, on a first approach, because of the color codification of the objects of
interest, the things are not that simple. Figure 1.2 represents an example of what a robot
“sees” during a game. However, this would be an “ideal” situation, in which its vision is not
affected by its locomotion. Such frames are usually captured while the robot is not moving

any parts of its body.

Figure 1.2: An example of an image acquired by the NAO camera during a game, representing

what the robot “sees”.

Figure 1.3 presents a more common acquisition of images during a soccer game. That is,
apart from the objects that can be found outside the field but that are still included in the
robot’s representation of the surrounding world, the robot has to deal with the instability of
the camera while walking. The surrounding objects can be a source of false positives in what
concerns the detections of the objects of interest while the movements of the camera influence
the image acquisition process.

The research work done in the field of robotic vision is an ongoing process since providing
an accurate digital representation of the surrounding world is a very complex task when there
is not any human sense to rely on. Moreover, with every year that passes, restrictions in the
area of robotic soccer are lifted, this meaning that the environment is becoming more and
more generic, without having the reliability of color information and the one of the spacial

constraint.

1.4 Portuguese Team

Portuguese Team represents the joint effort of two Portuguese universities, University of
Porto and University of Aveiro, to build a new research oriented and competitive SPL team.
The project started in 2010 and it is composed of members of the three Portuguese teams that

achieved best results in RoboCup [13] European and world championships: FC Portugal [14],



(a) (b)

Figure 1.3: Two consecutive frames acquired while the robot is moving. Due to its locomotion,
consecutives frames acquired by the camera of the robot might represent different views of the

surrounding world.

CAMBADA [15] and 5DPO [16].

FC Portugal is a joint project of the Universities of Porto and Aveiro in Portugal. The team
participates in several RoboCup competitions since 2000, including: Simulation 2D, Simula-
tion 3D (humanoid simulation), Coach Competition, Rescue Simulation, Rescue Infrastructure
and Physical Visualization/Mixed Reality. The team research is mainly focused on creating
new coordination methodologies such as tactics, formations, dynamic role exchange, strategic
positioning and coaching. The research-oriented development of FC Portugal has been push-
ing it to be one of the most competitive over the years (Simulation 2D World champion in
2000 and European champion in 2000 and 2001, Coach Champion in 2002, 2nd place in 2003
and 2004, Rescue Simulation European champion 2006, Simulation 3D European champions
in 2006 and 2007 and World Champions in RoboCup 2006).

CAMBADA is the Middle-Size League RoboCup team and project from IEETA /University
of Aveiro that started in 2003. The team main research interests cover most of the Middle-Size
League challenges such as robot vision, sensor fusion, multi-agent monitoring, and multi-robot
team coordination. The team won RoboCup 2008, achieved 3rd place in RoboCup 2009 and
RoboCup 2010 World MSL competitions and was 2nd in the RoboCup German Open 2010.

Moreover, for the last 5 years it has been the national champion of the MSL.

5DPO is a project of INESC-P/FEUP aiming at researching in topics such as vision based
self localization, data fusion, real-time control, decision and cooperation. The team is active
in RoboCup since 1998 in the Small-Size and Middle-Size leagues. The team results have
been quite good in the Small-Size League. 5DPO won three European/GermanOpen Small-
Size League championships and achieved a 3rd place at RoboCup 1998 and a 2nd place at
RoboCup 2006 world championships in this league.

Portuguese Team attended the first robotic competition in March 2011 in Rome, Italy



(RoboCup Mediterranean Open [17]) and will also attend RoboCup 2011 in Istanbul, Turkey.
As a first approach and for testing purposes, the work presented in this thesis has been applied

to the humanoid robots of the Portuguese Team.
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Figure 1.4: Logo of the Portuguese Team.

1.5 Contribution and structure of the thesis

As stated in Section 1.4 the work described in this thesis has been applied in the context
of the robotic soccer and all the algorithms that will be presented in Chapter 4 have been
tested on the NAO humanoid robots of the Portuguese Team. Even though the goal of the
project was to develop a generalized vision system for a wide range of humanoid robots, it
was imperative to have an environment on which the work could be tested on. The algorithms
that was implemented had good results on the NAO robots and it can be easily exported to
other humanoid platforms, with a minimum number of changes. In the case of the soccer
playing robot NAO, the vision system is able to acquire good quality images by calibrating
the intrinsec parameters of the camera according to the environment. In the context of soccer
games, the robot can detect the ball and the goals as well as the lines of the field. Moreover,
the software was also used with a few adjustements with a Bioloid robot, which is a proof of
the modularity of the proposed vision system.

The thesis is structured in six chapters and two appendixes, each of them aiming to
explain different issues that have been approached in the development of the project. The
first chapter was an introductory one, stating the objectives of the thesis and presenting the
fundamental elements of the project. In this regard, there was presented an overview on the
state of the art humanoid robots and also on the issues that robotic vision has to overcome
nowadays. Moreover, a presentation of the SPL team Portuguese Team has been included
since it provided the environment for developing and testing of the work described.

The second chapter gives a more detailed description of what humanoid robotic soccer
means and also focuses on the work of the most important teams participating in RoboCup.

Mainly their vision systems were emphasized. Chapter 3 presents an overview of the vision



system architecture and focuses on two support applications that were developed: NaoViewer
(Section 3.3) and NaoCalib (Section 3.2). The first one, NaoViewer is a tool used for moni-
torizing and debugging purposes. It allows the user to follow in real-time the results of the
algorithms that run on the robot. NaoCalib is a very helpful tool in the process of calibrating
the colors of interest. The fourth chapter is dedicated to the description of the implementa-
tion of the main vision process that runs on the robot. The vision process can be divided
into three modules which are: access of the device, calibration of the camera parameters and
image acquisition and last but not least image processing which envolves color segmentation
and object detection. The details of the implementation of all three modules are presented.

Chapter 5 present the results of the implemented algorithms and describes the usage of the
developed vision system in a Bioloid [9] platform and finally, Chapter 6 concludes the thesis,
stating also several issues that might be approached in future work developments.

Appendix A presents the prototypes of all the methods that have been developed for the
several modules of the vision system, while Appendix B represents the user’s manual of the

applications, both the vision process running on the robot as well as the support applications.






Chapter 2

Humanoid Soccer

RoboCup is an international initiative that fosters research in robotics and artificial in-
telligence, on multi-robot systems in particular, through competitions like RoboCup Robot
Soccer, RoboCup Rescue, RoboCup@Home and RoboCupJunior. RoboCup is designed to
meet the need of handling real world complexities, though in a limited world, while maintain-
ing an affordable problem size and research cost. RoboCup offers an integrated research task
covering the broad areas of artificial intelligence and robotics. Such areas include: real-time
sensor fusion, reactive behavior, strategy acquisition, learning, real-time planning, multi-agent
systems, context recognition, vision, strategic decision-making, motor control, intelligent robot
control, and many more.

The ultimate goal of the RoboCup initiative is stated as follows:

“By mid-215" century, a team of fully autonomous humanoid robot soccer players shall win the
soccer game, comply with the official rule of the FIFA, against the winner of the most recent
World Cup.”

Such a goal might sound overly ambitious given the state of the art technology. Building
humanoid soccer players requires an equally long period of time as well as extensive efforts of
a broad range of research areas. Most probably the goal will not be met in any near term,
however it is important that such a long range goal be claimed and pursued.

The main focus of the RoboCup competitions is the game of soccer, where the research
goals concern cooperative multi-robot and multi-agent systems in dynamic adversarial environ-
ments. One of the most popular soccer league in RoboCup is the Standard Platform League
(SPL). In this league all teams use identical, standard robots which are fully autonomous.
Therefore, the teams concentrate on software development only, while still using state-of-the-
art robots. Omnidirectional vision is not allowed, forcing decision-making to trade vision
resources for self-localization and ball localization. The league replaced the highly successful
Four-Legged League, based on Sony’s AIBO dog robots [18], and is now based on Aldebaran’s
Nao humanoids.

In SPL, robots play on a field with a length of 6m and a width of 4m, covered with a



green carpet. All robot-visible lines on the soccer field (side lines, end lines, halfway line,
centre circle, corner arcs, and the lines surrounding the penalty areas) are 50mm in width.
The centre circle has an outside diameter of 1250mm. In addition to this, the rest of the
objects of interest are also color coded. The official ball is a Mylec orange street hockey ball.
It is 65mm in diameter and weights 55 grams. The field lines are white and the two teams
playing can have either red or blue markers. The red team will defend a yellow goal and the

blue team a sky-blue goal. Figure 2.1 shows an image of a typical SPL game.

Figure 2.1: Image taken during a SPL game - the RoboCup 2010 final between the B-Human
and rUNSWift teams.

The game is divided into two halfs, each being 10 minutes long, with an interval of 5
minutes between the two halfs. The only accepted human intervention during the game is the
one of the referee. The decisions taken by the referee are transmitted to the robots by wireless,
by means of an application called Game Controller. This application implements the six states
in which the robot can be: initial, ready, set, play, penalty and stop. For the teams that cannot
properly communicate with the Game Controller, the positioning and communication with the
robots is done manually by the referee, who communicates his decisions to the robots with
the help of the chest button and the feet bumps.

After booting, the robots are in their initial state. In this state, the button interface for
manually setting the team color and whether the team has kick-off is active. The robots are
not allowed moving in any fashion besides initially standing up. Pressing the left foot bump
sensor will switch the team color. Shortly pressing the chest button will switch the robot to
the penalized state.

In the ready state, the robots walk to their legal kick-off positions. They remain in this

state, until the head referee decides that there is no significant progress anymore (after a
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maximum of 45 seconds). This state is not available if only the button interface is implemented.

In the set state, the robots stop and wait for kick-off. If they are not at legal positions,
they will be placed manually by the assistant referees. They are allowed to move their heads
before the game (re)starts but are not allowed moving their legs or locomote in any fashion.
This state is not available if only the button interface is implemented. Robots that do not
listen to the Game Controller will be placed manually. Until the game is (re)started, they are
in the penalized state.

In the playing state, the robots are playing soccer. Shortly pressing the chest button will
switch the robot to the penalized state. A robot is in the penalized state when it has been
penalized. It is not allowed moving in any fashion, i. e. also the head has to stop turning.
Shortly pressing the chest button will switch the robot back to the playing state.

This finished state is reached when a half is finished. This state is not available if only the
button interface is implemented.

Another league based on humanoid robots in the RoboCup competition is the Humanoid
League. The main difference between the SPL and the Humanoid League is that in the latter
teams can participate with their own robots, there is not a standard robot that has to be used.
Just like in the SPL, in the Humanoid League autonomous robots with a human-like body
plan and human-like senses play soccer against each other. Dynamic walking, running, and
kicking the ball while maintaining balance, visual perception of the ball, other players, and
the field, self-localization, and team play are among the many research issues investigated in
the league. This league is divided in three subleagues, according to robot sizes:

Kid Size (30-60cm tall), Teen Size (100-120cm tall) and Adult Size (over 130cm). Examples

of the robots used in these competitions can be seen in Fig. 2.2.

(a) Adult Size (b) Teen Size (c) Kid Size

Figure 2.2: Several humanoid robots competing in the RoboCup Humanoid League.

2.1 NAO Robots

The project NAO, launched in early 2005, is a humanoid robot developed by Aldebaran
Robotics. Aldebaran Robotics has chosen to make NAO’s technology available to any higher
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education program. Throughout the program “NAO for Education” institutions of higher edu-
cation all over the world can purchase NAQO robots to special prices for education and research
purposes. As a result, NAO is at the moment the most used humanoid robot for academic
purposes worldwide. From simple visual programming to elaborate embedded modules, the
versatility of the NAO enables users to explore a wide variety of subjects at whatever level of
complexity.

In July 2007 NAO (version H1/H25 - Fig. 2.3(c)) was nominated as the official platform
for the standard league by RoboCup Organizing Commitee, and successor to Sony’s Aibo
robot dog [18]. NAOQO'’s first participation at the RoboCup occured in July 2008 at Suzhou,
China where 15 universities each used 2 robots per team competing in soccer matches. By
2009 almos 100 NAO competed at the RoboCup held in Graz, Austria. 24 teams (4 NAO per

team) made full use of the physical and cognitive capabilities of the robot.
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(a) NAO T2 (b) NAO T14 (c) NAO H1/H25

Figure 2.3: Several NAO platforms developed by Aldebaran Robotics.

More recently, the fully autonomous NAO robots (Fig. 2.5(c)) also started being used
in projects that develop behaviors for humanoid robots to be used in the environment of a
home [19]. In this environment, the robot has to perform specific tasks like bringing a can of
soda from the fridge to a human user. Moreover, in March 2011 Aldebaran robotics launched
a larger version of the NAQ, the so called robot Romeo (Fig. 2.4) designed exclusively for the
use at home.

The NAO robot used in the SPL (Fig. 2.5(a),(b)) has 57 centimeters of height and 4.5
kilograms. It comes equipped with a x86 AMD GEODE 500MHz CPU processor and 256 MB
SDRAM / 2 GB flash memory. The robot was initially designed for entertainment and has
mechanical, electronic, and cognitive features.

Reserved for the research and teaching fields, NAO Academics Edition is delivered with a

complete SDK that naturally includes a description of the programming methods, examples
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Figure 2.5: Aldebaran NAO humanoid robots used in RoboCup SPL.

and the appropriate compilation and debugging tools. Apart from this, NAO Academics
Edition has another standard feature called Choreographe, a software that allows NAO users
to interact with the robot in a very simple manner.

NAOuqi is a framework property of Aldebaran Robotics that runs on the robots and acts
as a server. Different modules can plug into NAQOqi either as a library or as a broker, with the
latter communicating over IP with NAOqi. It supplies binding for C, C++, Python, Ruby
and Urbi. NAOqi in NAO is automatically launched at startup if NAO is connected to the
network. NAOqi itself comes with several notable modules designed to ease the interaction
between the user and NAO. Such modules are: ALMemory, ALMotion, ALLeds, ALSonar,
ALRobotPose, ALVideoDevice, ALVisionRecognition, ALVisionToolbox, etc. The names of
the modules are generally relevant to their application, therefore only the ones related to vision

will be presented here as follows.
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ALVideoDevice is a module that allows a direct access to raw images from video source or
an access to images transformed in the requested format. ALVisionRecognition is a module
which detects and recognizes learned pictures, like pages of a comic book, faces of objects
are even locations. The ALVisionToolbox contains several different vision functionalities, like
picture taking, video recording, white balance setting. However, even though these modules
were used in the first steps of this project, in its final form they are no longer used due to real
time constraints, as it is described in Section 4.1.

From the point of view of the hardware most related to the developed vision system, NAO
has 2 identical video cameras that are located in the forehead, respectively in the chin area.
They provide a 640 x 480 resolution at 30 frames per second and the field of view is 58 degrees
(diagonal). They can be used to identify objects in the visual field such as goals and balls,
and bottom camera can ease NAQO’s dribbles. The native output of the camera is YUV422
packed and only one camera can be used at one time, due to the fact that the two cameras

share the same bus and both drivers will be loaded into the “videodev(” kernel module.

Figure 2.6: A RGB conversion of the raw image sent by the camera.

2.2 SPL Teams

This section focuses on the most important projects in the RoboCup SPL, with emphasis
on their vision systems. The information presented in this section is according to the Team

Description papers of the teams that attended RoboCup in 2010.

2.2.1 B-Human

B-Human [20] is a collegiate project at the Department of Computer Science of the Univer-
sity of Bremen and the DFKI Research Area Safe and Secure Cognitive Systems. The goal of
the project is to develop suitable software in order to participate in several RoboCup events.
They participated during several years in the humanoid league until they joined the Standard
Platform League in 2008. In 2010 they won both German Open and RoboCup worldcup.

14



Their software is based on 3 concurrent processes that run at frequency determined by the
limitations of the robot’s architecture. Each process represents a module of their software. The
modules are: Cognition, Motion and Debug. The module related to vision is the Cognition
module, which runs at a frequency of 30Hz since the camera provides 30 frames per second.
This module receives camera images from Video for Linux [21] and also sensor data from the
Motion module which will be used for the localization of the robot. Their vision system is
constructed based on the OpenCV image processing library.

The process Cognition is structured into three funcional units: perception, modeling and
behavior control [22]. The perception system is based on vertical scan lines which means that
the actual amount of scanned pixels is much smaller than the image size. The modeling unit is
responsible for providing an estimation of the world state, which includes the robot’s position,
the ball’s position and velocity and the presence of obstacles. The first step of the perception
unit is to provide a contour of the body of the robot. The robot being white might be easily
confused with the white lines of the field. By using forward kinematics the robot knows where
its body is visible in the camera image and exclude these areas from image processing.

After this, the image is processed in three steps: segmentation and region building, region
classification and feature extraction. First the field borders are detected by running scan lines
that start from the horizon downwards until a green segment of a minimum length is found.
Next to the usual scan lines there are also used some scan lines that only recognize orange
regions. For the goal detection two special scans are done to detect vertical and horizontal
yellow or blue segments above the horizon. Region classification is used for establishing if
the segmented regions are part of a line, goal or ball. For a white region to be considered a
white line it has to consist of certain number of segments, to have a certain size, and to have
a certain amount of green above and below if it is horizontally oriented or a certain amount
of green on its left and right side if it is horizontally oriented.

For detecting goals, since the foot of a post must be below the horizon and the head of
the post must be above, it is sufficent to scan the projection of the horizon in the image for
blue or yellow segments to detect points of interest.

An orange region, in order to be considered a ball cannot be above the horizon or at a
distance greater than the length of the field diagonal. The ball is validated based on the
distance of the Cb and Cr components of the surrounding pixels. The center and radius of

the ball are calculated and the relative position to the robot.

2.2.2 TT-UT Aston Villa

TT-UT [23] Austin Villa is a joint team of Texas Tech University and the University of
Texas at Austin. TT-UT Austin Villa won the 2009 US Open and the 2010 US Open in the
SPL. The team also finished third in the 2010 RoboCup competition and fourth in the 2009

RoboCup competition. Their software is divided into four main modules: vision, localization,
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locomotion, and coordination.

The vision module is based on Reinforcement Learning Algorithms - the robot should be
able to improve its own behaviour without the need for detailed step-by-step programming.
Their algorithm, Reinforcement Learning with Decision Trees uses decision trees to learn the
model by generalizing the relative effect of actions across states. The agent explores the
environment until it believes it has a reasonable policy. The robot is enabled to learn the
colors on the robot soccer fields by modeling colors as 3D Gaussians, using a pre-defined

motion sequence.

2.2.3 MRL

Mechatronics Research Laboratory [24] was established in 2003 as an independent research
centre under the supervision of Qazvin Islamic Azad University. One of its activities is par-
ticipating at the RoboCup international competition.

Their approach for the vision system is mostly based on pattern recognition. The ball
recognition algorithm is based on detecting a circle and filtering undesired noise. First the
image is segmented and scanned to find orange spots. After performing a search of 8 x 8
pixels around the detected pixel, the image is scanned in four different directions starting
at the detected pixel. The recognized object is most likely to be a square or a circle when
the two measured dimensions are equal. The final ball settlement position is estimated by
accurate ball kinetics formulation. Distance between the ball and robot is calculated by a
comparison between perceived ball radius and original radius. Then the absolute distance
could be achievable by filtering the elevation between camera and robot’s feet. The easiest
way to find the direction of ball is comparing current and latest ball positions.

Regarding goal perception, scan lines segmentation combined with fuzzy logic detection
have been used.The obstacle detection can be done by vision procedure or by using the Ultra
Sonic retrieved data. Ultra Sonic retrieved data is executed with a sensor fusion process to
detect an obstacle in front of the robots, then vision is admitted to detect those obstacles. In
the final step the robots are modeled in the world state and their location and orientation in

each period are updated successively.

2.2.4 Austrian Kangaroos

The team [25] started in 2010 and is supported by the Automation and Control Institute
(ACIN) and the Institute of Computer Languages Compilers and Languages Group (COM-
PLANG) from the Vienna University of Technology, as well as by the Institute of Computer
Science from the University of Applied Sciences Technikum Wien.

They developed their vision system based on the CMVision [26] color segmentation soft-
ware which provides a base to segment images in regions of interest, to whom were assigned

probabilities. Moreover, more useful information is retrieved by calculating a more precise
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camera pose relative to the ground plane, taking knowledge of the robot’s kinematic and its
internal sensor reading into account. Thus, the robots are able to estimate the distance to
regions of interest and to verify the accuracy of observations that are based on object sizes in
the image plane. To increase the robots world knowledge, a global model was implemented
and integrated into the robot’s world model via the multi-hypothesis approach. Every robot

shares his knowledge with the full team.

2.2.5 CMurfs

This team [27] was created in 2010 by researchers at the Carnegie Mellon University with
the purpose of joining the RoboCup SPL.

Their vision system is divided into two stages. The first one, low level vision, uses the
CMVision library [26] to perform color segmentation on the image. CMVision uses a lookup
table to map from YUYV pixel intensities to symbolic colors, such as red, blue or orange. The
library then builds up lists of the colored regions in the resulting image. These lists of regions,
which specify the bounding box and centroid of each region, are then used in the second stage
of vision, high level vision, for object detection. The Vision component processes the camera
images and reports Vision Features, such as balls and goal posts, with a heuristic confidence
value between 0 and 1, representing how confidence they are that the object is truly present in
the image. The Vision Features detected by the Vision component are used by the localization

component to generate a pose of the robot.

2.2.6 Cerberus

Cerberus [28] was the first international team in the Standard Legged Robot League. It
started as a joint effort of Bogazici University, Turkey and Technical University of Sofia,
Plovdiv Branch, Bulgaria. Currently Bogazici University is maintaining the team.

For their vision system they use a Generalized Regression Neural Network for maping the
real color space to the pseudo-color space composed of a smaller set of pseudocolors, namely
white, green, yellow, blue, robot-blue, orange, red and “ignore”. A look up table is constructed
for all possible inputs. Scan lines are used to process the image in a sparse manner, thus
speeding up the entire process.

The process starts with the calculation of the horizon based on the pose of the robot’s
camera with respect to the contact point of the robot with the ground, that is the base foot
of the robot. After that, scan lines that are 5 pixels apart from each other and perpendicular
to the horizon line are constructed, such that they originate on the horizon line and terminate
at the bottom of the image. Then, a scan through these scan lines is started to find where the
green field starts, which is done by checking for a certain number of consecutive green pixels
along the line. In order not to lose information about those important objects, a convex-hull

is formed from the starting points of the green segments.
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They define the real green field borders where all objects of interest fall inside. After the
field borders are constructed, the shorter scan lines are extended back to these borders, thus
being possible to use them to detect the goal posts and balls that are close

to the borders. After this, each scan line is traced to find colored segments on them. If
two consecutive segments touch each other, they are merged into a single region. For white
segments, there are some other conditions such as change in direction and change in length

ration, which guarantee that all field lines are merged into smaller and more distinctive regions.

2.2.7 Borregos

Borregos [29] is a Mexican team that has been participating in the RoboCup competitions
since 2004, starting in the 2D Simulation League and moving forward to the 3D Simulation
League with humanoids in 2007 and finally joining also the Standard Platform League in 2010.

The vision process of this team starts by obtaining a raw image from the camera device,
then a RGB matrix is extracted from the input image and the color classification process if
performed. The output of the color classification is an object map, which is a matrix of the
same size as the RGB matrix but instead of the RGB values it contains object labels. The
pattern recognition process takes the object map and tries to find flags and then construct a
vector for every recognized flag. Each vector contains distance, vertical angle and horizontal
angle to flags. Color classification is the process that maps pixel values of an image to a color
label that corresponds to a region of color space pre-defined in a look up table (LUT). The
raw values of ball distance, direction and elevation are calculated based on the supposition
that the ball is always on the floor, which is generally true. This is done by calculating the
centroid of all pixels corresponding to the ball in the image and dividing them over the image

width, then multiplying the resulting calculation by the fill of the view of the camera.

2.2.8 Robo Eireann

The team [30] consists of undergraduates, graduates and academics from The Hamilton
Institute, Computer Science and Electronic Engineering at NUI Maynooth.

Their vision uses OpenCV but with problems in obtaining the speed needed for high
levels of performance. Their approach has proven helpful for generating colour-segmentation
algorithms, based on optimization working in the HSI space for captured images. The system
seeks the optimal HSI space bounds for each color to minimize a compromise of false alarms
and misses in color segmentation. This is then used to generate a LUT in the robot color

space for color segmentation.

2.2.9 TJArk

The team [31]| was established in 2004 as a part of the Lab of Robot and Intelligent Control
of Tongji University in China and participated in RoboCup for the first time in 2006.
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Their vision system is based on scanning the image using a color look up table in order
to form segments of the same color, then using run length encoding algorithms to merge the
segment into blobs which can be then used in the vision recognition. For goal detection, they
scan horizontally the image then the horizontal run will be connected to blobs based on their
positions. Some extra scanning is made to decide the goal post blob. When there is only
one eligible post left, they use the crossbar and the corner in the forbidden area to decide
whether the post is on the right or left. In order to recognize the lines and kick-off circle they
adopted the approach of grouping points of the same color into blobs and then calculate the
characteristics of these blobs. Inspired by the resampling method, they use the run-length
encoding algorithm to detect the target region, then fit the sample to the Gaussian model or
the Histogram model. If the light condition changes, they chose the MAP method to adapt

the model to accommodate the current light condition.

2.3 Critical comments

The first step in developing the vision system that is presented in this document was
the studying of the work that has already been developed in the area of robotic vision, with
emphasis on the work of the teams currently participating in RoboCup Standard Platform
League. The information about the current level of progress of each of the teams was presented
in the previous subsections (Subsection 2.2.1 to 2.2.9). An overview of the work developed
so far in robotic vision was needed in order to better understand the context, the challenges
and the constraints that robotic vision implies. Moreover, having access to different solution
proposals that are being implemented by a wide range of researchers and consequently to the
advantages and possible flaws that each proposal brings, the choice of a personal approach
becomes easier. All of the vision systems presented so far have certain common features and
some of them can also be found in the architecture of the vision system described in this paper.
They will be detailed as follows. Nevertheless, none of the teams presented have approached
in their Team Description Papers the issues regarding image acquisition and calibration of the
camera intrinsic parameters.

The use of an image processing library is common to all projects envolving a vision system
and humanoid vision systems are not an exception. For the teams in the SPL, OpenCV
and CMVision libraries are two of the most common choices. They provide a wide range of
functions for manipulating images. For the project that is being described in this thesis, the
library chosen is OpenCV [32].

The environment in the SPL is still color coded which means that a good color classification
is a very important step in attaining good results. For this reason many teams use a LUT for
pre-defining labels for the regions that have one of the colors of interest. Then the values of
the pixels in the image are mapped to a corresponding color label, as it will be described in
Section 4.5.
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Since a vision system is a real-time application that has to perform its task in a limited
amount of time due to the restraints of the video device, time management when processing
an image has to be performed. For example, using a device that works at a frame rate of 30
frames per second implies that the total time that can be spent for acquiring and processing
one frame is 33 ms. The main approach for obtaining a small processing time is based on the
subsampling of the information acquired from the camera of the robot. In this way, either
the information about the color or the information about the luminance can be subsampled
while the acquisition process can still deliver good representations of the surrounding world.
In addition to this, in order to reduce the time spent for scanning an image in search of one of
the colors of interest, several teams choose the approach of using either vertical or horizontal
line scans, which means that the number of scanned pixels is much smaller than the size of
the image. For the project presented, vertical or horizontal scan lines are used for detecting
transitions from green to one of the colors of interest. Also only half of the columns and half
of the rows of the image are scanned in order to obtain a better processing time. The details
of this process are described in Section 4.6.

After having the color of interest segmented the common approach for the majority of
teams is to merge all neighbour pixels of the same color into blobs [33]. The idea of “neigh-
bourhood” might be different from team to team but the concept is the same. For this purpose,
the run-length encoding is one of the most common choices. Run-length encoding is a very
simple form of data compression in which sequences of the same value, that occur a large
number of time, are stored as a single data value and count, rather than as the original run.
In the case of the proposed system architecture, also based on run-length encoding, pixels of
the same color are grouped into blobs if they belong to parallel vertical or horizontal scan
lines that are close to each other. Then the blobs pass a first validation test towards being
labeled as objects of interest if they are preceded or/and followed by a certain number of green
pixels. Also common for this project as well as for the other projects mentioned before, after
having a valid blob is computing several measurements such as the center of mass and area of
the bounding box, which prove to be very helpful in the process of validating the objects of
interest. A more detailed description of these steps of the implementation of the vision system
is presented in Section 4.8.

The concepts discussed might be common for a large number of robotic vision systems
but every implementation has its particularities which differentiate it from the others. The
particularities of the project described in this document will be described in the following

chapter.
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Chapter 3
Vision system architecture

This thesis presents a modular vision system developed for humanoid robots, but which
can be used, with small changes, in other robotic platforms that have a digital camera as the
main sensor.

In this chapter the architecture of the vision system will be described, giving more details
about some support modules and applications that are not running on the robot. The main
vision process running on the robot will be presented in Chapter 4. The modular vision system
is presented in Fig. 3.1.

Apart from the vision system process running in real-time on the NAO robot, several
other modules and applications were developed for support and debugging purposes. These
modules make possible the communication of the robot with a local host as well as the sharing
of the information provided by the vision process with the rest of the processes running on the
robot. The two applications developed can be used either for color classification, which is the
first step of the object detection process, or for image visualization an debugging, considering
that the NAO physical architecture does not support any graphical interface. Moreover, the
Linux operating system that comes with the robot does not have graphical server, such as
XServer . These two applications (NaoCalib - Section 3.2 and NaoViewer - Section 3.3) run

on an computer different from the one of the robot and receive data through sockets.

3.1 Communications

Limitations of NAO’s hardware architecture (see Section 2.1) make impossible the visu-
alization of the results of the vision algorithms on the robot. Moreover, when robots are
operating the human user cannot look directly to the results, in terms of what the robot
“sees”. This is valid for most of the mobile robots. Interfaces for the display and analysis of
the images cannot be supported since they would need to access and use a great amount of the

resources available on the robot. Also the operating system running on the NAO robot does

'www.x.org/releases/current/doc/man/man1/Xserver.1.xhtml
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Figure 3.1: Vision system architecture including the applications that do not run on the robot.

not have graphical support. As in image processing the use of tools that allow at least image
displaying it is imperative, a solution for implementing them was needed. The chosen solution
is based on the development of tools that run on an external computer and communicate with
the robot by means of a network socket, using a server-client model.

A socket represents an endpoint of a bidirectional inter-process communication flow across
a computer network. The socket is responsible for delivering incoming data packets to the
appropriate application process, based on a combination of local IP addresses and port number.
Each socket is mapped by the operating system to a communicating application process. The
combination of an IP address and the port into a single identity is called the socket address.
The network socket can also be seen as an application programming interface (API) for the
TCP/IP or UDP protocol stacks.

The client and server terms refer to two processes which will be communicating with each
other. One of the two processes, the client, connects to the other process, the server, typically
to make a request for information. The client needs to know of the existence and the address
of the server, but the server does not need to know the address of (or even the existence of)
the client prior to the connection being established. When a connection is established, both
sides can send and receive information. The system calls for establishing a connection are
somewhat different for the client and the server, but both involve the basic construct of a

socket.

Figure 3.2 shows the steps followed when implementing a server-client communication
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architecture.

Server
socket()
bind()
Client
listen() socket()
accept() - = Cconnect()

recv()fsend() «— 5 Tecv()/send()

close() -« Close()

Figure 3.2: Typical client server approach.

The steps involved in establishing a socket on the server side are as follows:

e Create a socket with the socket() system call.

e Bind the socket to an address using the bind() system call. For a server socket on the

Internet, an address consists of a port number on the host machine.
e Listen for connections with the listen() system call.

e Accept a connection with the accept() system call. This call typically blocks until a

client connects with the server.
e Send and receive data.
The steps involved in establishing a socket on the client side are as follows:
e Create a socket with the socket() system call
e Connect the socket to the address of the server using the connect() system call

e Send and receive data
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The main vision process running on the robot has the option of being a server thus sending
the required information for the client applications that have been developed and that will be
presented in detail in the following sections. When the main vision process is run with the
option “-server” the first step is to create a socket whose address will be the combination of
the IP of the host and the predefined port 5000. When the client connects to the server it will
start sending the information required by the client. The client can request and receive either
the YUV422 buffer with the raw data acquired by the camera or the buffer of the processed
index image. The first is converted in the client side and displayed as an RGB image with a
resolution of 640 x 480 pixels, the maximum resolution of the NAO camera is 640 x 480. The
latter is displayed with the resolution used int he processing algorithms (for the NAO robot
a sub-sampled resolution of 320 x 240 pixels is used). The index image represents an 8-bit
image of labels for all the colors of interest and it will be further explained in Section 4.5.
The client receives frames at a slower rate than the frame rate because of network delays and
the limitations of the bandwidth. Typically, it is necessary 1s to receive a full frame from the

robot.

3.2 NaoCalib and the configuration file

In the RoboCup SPL, as well as in other robotic applications, image analysis is simplified
due to the color coding of the objects. In SPL the robots play soccer with an orange ball
on a green field with white lines and yellow and blue goals. The color information of a pixel
is a strong hint for object validation. Because of this, a good classification of the colors is
necessary.

Along with the calibration of the parameters of the camera (presented in Section 4.4), a
calibration of the color range associated to each color class has to be performed whenever the
environment or the illumination conditions change. These two processes are co-dependent and
crucial for image segmentation and object detection.

NaoCalib is an application created after a model used by CAMBADA [34, 35], the RoboCup
Middle-Size League team of the University of Aveiro. It is used for the classification of the
colors of interest and it allows the creation of a configuration file that contains the Hue (H),
Saturation (S) and Value (V) minimum and maximum values of the colors of interest. The
configuration file (Fig. 3.3) is a binary file that apart from the H, S and V maximum and
minimum value also contains the values of the intrinsic parameters of the camera.

In other applications, the configuration file can contain more information that could be
relevant for the vision process. For example, in the situation when the camera of the robot has
a fixed position relative to the ground, the configuration file could contain information about
the mapping between pixels and real distances. Moreover, information about the regions of
the images that do not have to be processed can be added.

In the case of the NAO robot, NaoCalib is only responsible for the saving on the file of the
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H, S and V range of the colors of interest. The information about the intrinsic parameters of
the camera is filled when the calibration module (Section 4.4) is run. The configuration file is
created on the client side and then exported to the robot and loaded when the vision process

starts.

pe | red | gain brightness | contrast | exposure| fps | #cols | #fOWS | #colors color Hmax | Hmin Smax | Smin Vmax | Vmin

dbytes dbytes dbytes  4bytes  4byles  dbytes 4DYIeS dbytes 4bytes 4byles  4byles  bytes  4dbytes  4byles dbytes  4dbytes  4bytes

X #colors

Figure 3.3: Structure of the binary configuration file used in the proposed vision system.

The calibration of the colors is performed in the HSV color space because the results are
more accurate than in the case of the RGB color space [36].

Having the vision process running as a server, according to how it has been described in
the previous section, NaoCalib can act as a client that receives from the NAO robot the image
buffer and displays it in the RGB format with a default resolution of 640 x 480 pixels. These
frames are used for calibrating the color range associated to each color class.

The interface is based on the histograms of the three color components (Hue, Saturation
and Value) and it allows the selection of the color range for each color class with the help of
sliders. For each of the colors of interest, a set of pixels corresponding to the color class that
is being calibrated can be selected with the help of the mouse. The color classes correspond
to the colors of interest, which are: white, green, orange, yellow, blue, blue-sky, magenta and
black. Based on this and with the help of the H, S and V histograms the user can manipulate
the sliders for selecting the maximum and minimum values of the three components for each
color class. These values are then updated in the configuration file, copied to the robot and

loaded when the vision module is next started.

(a)

Figure 3.4: On the left, an original image acquired by the NAO camera. On the right, the

same image with the colors of interest classified by means of the NaoCalib application.

The interaction between the user and this application is smoothen by the use of different

keys of the keyboard, each of them being responsible for one of the commands that is shown
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in Fig. 3.5.

Display the sliders
used for the color
classification

| Visualize pixel value
for a pixel selected
with the mouse

NaoCalib

Update the
configuration file

Quit the application

Figure 3.5: An illustration of the features of the NaoCalib application that can be accessed

by pressing several keys of the PC keyboard.

3.3 NaoViewer

Another client application that has been developed and that is being used for debugging
purposes is NaoViewer. NaoViewer is a client tool that has several options useful in the
monitoring and testing of the implemented algorithms.

As a first option, NaoViewer can be run with the basic purpose of receiving and displaying
frames acquired by the camera of the robot. The client receives the YUV422 raw buffer
acquired by the NAO camera which is converted into an YUV422 image as an intermediary
step and then converted to the RGB color space with the help of the OpenCV functions. The
RGB image is displayed with a default resolution of 640 x 480 pixels.

The second option of this application is to display the 8-bit indexed image as well as its
“painted” RGB version, the former also having the option of containing markers for the de-
tected objects of interest. In this situation, the resolution used in the processing algorithms
(in the case of the NAO robot, the resolution was sub-sampled to 320 x 240 pixels, see Sec-
tion 4.5). The index image, as previously mentioned, is an 8-bit image in which all the colors
of interest are labeled accordingly to the look-up table. The painted image is a 3-channels
RGB image of the same resolution as the index image. The index image is scanned and for
each pixel labeled as having one of the colors of interest, the color of the corresponding pixel
in the RGB image is forced as having the respective pure color of interest. If there are pixels
that do not have any of the colors of interest they will be painted as gray. Moreover, all the

detection and validation algorithms are performed on the index image but their results can
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also be visualized on the RGB painted image. Figures 3.6 and 3.7 presents an example of the

features of the application.

Color Calibration

Figure 3.6: On the left, an original image acquired by the NAO camera and displayed by the
NaoViewer application. On the right, the same image with the colors of interest classified by

means of the NaoCalib application.

@ ~ MainWindow

Figure 3.7: On the left, the index image with all the classified colors labeled. On the right,
the RGB image obtained by “painting” the index image according to the labels.

Furthermore, the NaoViewer application allows the recording of a video by saving all
the frames received. This is also very helpful in the task of understanding what the robots
“see” and for offline debugging. Complementary to this, a basic application for reading and
displaying the video acquired has been implemented. Moreover, the main vision process was

adapted to send the raw data previously saved.

3.4 Real-time database

Cooperation is one of the key words that should describe a team and this also applies
in the case of a robotic soccer playing team. A common approach for achieving cooperative
sensing is by means of a database where each agent publishes the information that is generated

internally and that might be requested by others. In the proposed vision system a Real-time
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Data Base (RtDB) based on [37] is used and it holds the state data of each agent (running,
penalised or stopped), together with local images of the relevant state data of the other team
members. This approach allows a robot to use the information provided from the rest of the
robots to complement its own. For example, if a robot cannot get track of the ball it can
easily use the position of the ball as detected by another robot.

The RtDB is implemented over a block of shared memory and it is divided into two
areas. A private one, for local information only and a shared area. The private area contains
information that is not to be broadcasted to the rest of the robots while the shared one
contains global information provided to all players. The information is shared using a process
described in 3.5. The last one is then divided into a number of areas equal to the number of
agents in the team (four in the case of an SPL team), each of the area corresponding to an
agent. Each of the areas is written by the corresponding agent while the remaining ones are

used to store the information received from the other agents (Fig. 3.8).

Figure 3.8: Internal representation of the RtDB [2].

The allocation of shared memory is done with a specific function call, DB;,;() which is
called once by every Linux process that needs to access it. The actual allocation is executed
only at the first call, the following calls return the shared memory block handler and increment
a process count. The memory space can be freed by using the function call DBj,c.() that

decreases the process count. When the process count reaches 0 the shared memory block is
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released.
The RtDB is accessed concurrently by Linux processes that process images and implement
behaviors. The access is made with non-blocking function calls, DB}y () and DBge () that

allow writing and reading records, respectively.

3.5 Communication among agents

Taking the example of a SPL game, the agents communicate among them using an IEEE
802.11 network, sharing a single channel with the opposite team and each team can use a
bandwidth of up to 500Kbps of the wireless lan. Because of the reduced bandwidth and
the impossibility of controlling the access to the channel, a robust solution for agent to agent
communication was needed. The approach chosen is based on the communication architecture
developed by CAMBADA [3] and it uses a dynamic adaptive TDMA transmission control that
will be described as follows.

TDMA stands for Time Division Multiple access and it is a channel access method for
shared medium networks that allows several users to share the same frequency channel by
dividing the signal into different time slots. The users will transmit in rapid succession,
one after the other, each using his own time slot. The approach that is being used for the
communication among team members defines a round period called team update period (T,y)
that sets the responsiveness for the global communication. Tj,, is divided equally by the
number of currently active team members generating the TDMA slot structure [38]. This
structure is reconfigured dynamically everytime a node leaves (e.g., crashes) or joins the team.
Each running agent has one single slot allocated so that all slots in the round are separated
(Fig. 3.9). The target inter-slot period Tyyp is calculated as T,,/N, where N is the number

of running agents.
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Figure 3.9: Illustration of a TDMA round |[3].

A rate-monotonic scheduler is used for scheduling the transmissions generated by each
agent according to the production periods specified in the RtDB records. When the respective
TDMA slot comes, all currently scheduled transmissions are piggybacked on one single 802.11
frame and sent to the channel. The required synchronization is based on the reception of the
frames sent by the other agents during 7},,. If delays affect all TDMA frames in a round,

then the whole round is delayed from then on, thus its adaptive nature. Figure 3.10 shows
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a TDMA round indicating the slots allocated to each agent and the adaptation of the round

duration.
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Figure 3.10: Illustration of a TDMA adaptive round |[3].
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Chapter 4

Vision process: from image acquisition

to object detection

The architecture of the vision process is quite complex and represents the best compromise
that has been reached between processing requirements and the hardware provided in order
to accomplish the goals of this project.

In this chapter the main vision process that runs on the robot will be presented. First, a
brief description on each of the modules developed will be presented and then, in the following
sections more details about each module will be provided. The vision process can be divided
into three main parts, as follows: access of the device and image acquisition, calibration of
the camera parameters and object detection and understanding. The block diagram of the
proposed vision process is presented in Fig. 4.1.

As mentioned before, the NAO robot has two video cameras and the presented module
can be used with any of them. The current version of the software allows to switch between
cameras in a small amount of time (on average, 29ms). However, since only one camera can
be used at a time, only the lower camera of the robots is being used since it can provide more
meaningful information about the surroundings. The switch between cameras can be very
useful when more evolved game strategies will be developed and the upper camera can ease
NAO’s dribbles. The camera is accessed using V4L2 API [21] and its raw output is in the
YUV422 packed format.

The calibration process and the one of object detections do not run simultaneously on
the robot. The calibration module is not continuously running on the robot due to the
processing time limitations. It is run just once whenever the environment or the lighting
conditions change, having the purpose of setting the parameters of the camera so that the
images acquired give the best possible representation of the real world.

For the detection module, with the use of a look-up table (LUT) the raw buffer can be
converted into an 8-bits grayscale image in which only the colors of interest are mapped

(orange, green, white, yellow, blue, pink, blue sky and gray - stands for no color).
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The next step is the search for the colors of interest in the grayscale image and the forma-
tion of blobs of the same color. The blobs are then marked as objects if they pass the validation
criterias which are constructed based on different features extracted from the blobs.

Finally, after merging the information about the objects found in the image with the
estimation of the pose of the robot provided by another module running on the robot, the
vision module is capable of delivering a set of 2D coordinates for the other modules that
necessitate them. The details of the implementation of all these steps will be presented in the

sections that follow.

Object detection
Color Objects
Segmentation Understanding
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Image Acquisition Lt
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New camera
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Figure 4.1: Block diagram of the vision process that runs on the robot.

4.1 Accessing the device and acquiring images

NAO has 2 identical video cameras that are located in the forehead and chin area, re-
spectively. They provide a 640 x 480 resolution image at 30 frames per second. They can be
used to identify objects in the visual field such as goals and balls, and bottom camera can be
useful when the NAO robot is dribbling the ball. The native output of the camera is YUV422
packed.

A first approach for accessing the NAO cameras was based on the NAOqi framework that
works on the robots. NAOqi is a framework property of Aldebaran Robotics that runs on
the robots and acts as a server. Different modules can plug into NAOqi either as a library
or as a broker, with the latter communicating over IP with NAOgqi. It supplies binding for
C, C++, Python, Ruby and Urbi. NAOqi itself comes with several notable modules, two of
them being the ALVideoDevice and the ALVisionToolbox modules, which provide methods

not only for accessing both cameras of the robot but also methods for acquiring images of
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different resolutions and for converting them between different color spaces. However, after
conducting a series of tests of the available methods, it was proved that this approach could
not be a useful one in the process of developing real-time applications since only the acquiring
time of one frame was elevated (approximately 120 ms for the minimum resolution of 160 x 120
pixels).

The solution chosen for accessing the cameras is based on the Video For Linux (v.2) API, a
kernel interface for analog radio and video capture and output drivers. Programming a V4L2

device consists of the following steps:

e Opening the device.

e Changing device properties, selecting video and/or audio input, video standard, picture

brightness, etc.

Negotiating a data format.

Negotiating an input/output method.

The actual input/output loop.

Closing the device.

The V4L2 driver is implemented as a kernel module, loaded automatically when the device
is first opened. The driver module plugs into the “videodev” kernel module.

The raw format of the NAO cameras is YUV422 packed. In the YUV colorspace the Y
component stands for luminance or luma and determines the brightness of the color, while the
U (also called Cb) and V (also called Cr) components determine the color itself (the chroma).
The luminance can be seen as a grayscale range that goes from white to black. The chromatic

components are represented in Fig. 4.2. In digital formats Y, U and V range from 0 to 255.

!
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Figure 4.2: Representation of the U and V components on a scale from -0.5 to 0.5. [4].
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Being a packed format it means that Y, U and V samples are packed together into
macropixels which are stored in a single array (Fig. 4.3(a)). The numerical suffix attached
(422) indicates the sampling position across the image line. For the Y sample, both horizontal
and vertical periods are 1 while for the U and V samples the horizontal period is 2 and the
vertical one is 1. This means that the two chroma components are sampled at half the sample
rate of the luma: the chroma resolution is halved (Fig. 4.3(b)). By this, the bandwith of an
uncompressed video signal is reduced by one third with little visual difference. The human eye

is more sensitive to the luminance, thus chroma reduction does not have such a great visual

impact.
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Figure 4.3: In (a) a YUV422 Macropixel |5] and in (b) chroma subsampling in the YUV color

space illustration [4].

4.2 Conversions between color spaces

For a better visualization and understanding of the images provided by the NAO camera
in certain situations it was necessary for them to be converted to a colorspace that is more
approachable or that can provide an easier manipulation. Color space conversion stands for
the representation of the colors in an image from one space to another, with the purpose of
making the image translated to the new color space as close as possible to the original one.

The RGB color space is the most convenient one to work with in computer graphics since
it is the closest to the way the human eye works. A RGB color space is an additive color space,
defined by the three chromaticities of the red, green, and blue. The main purpose of the RGB
color model is for the sensing, representation, and display of images in electronic systems, such
as televisions and computers, though it has also been used in conventional photography [10].

Before the electronic age, the RGB color model already had a solid theory behind it, based
in human perception of colors. To form a color with RGB, three colored light beams (one
red, one green, and one blue) must be superimposed (for example by emission from a black

screen, or by reflection from a white screen). Each of the three beams is called a component of
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that color, and each of them can have an arbitrary intensity, from fully off to fully on, in the
mixture. The RGB color model is additive in the sense that the three light beams are added
together, and their light spectra add, wavelength for wavelength, to make the final color’s

spectrum.

(a) (b)

Figure 4.4: On the left, the RGB cube and on the right, an example of an additive color
mixing: adding red to green yields yellow, adding all three primary colors together yields
white [4].

The HSV color space is a related representation of points in an RGB color space, which
attempts to describe perceptual color relationships more accurately than RGB, while remain-
ing computationally simple [10, 36]. HSV stands for hue, saturation, value and it describes
colors as points in a cone whose central axis ranges from black at the bottom to white at the
top (Fig. 4.5a) with neutral colors between them, where angle around the axis corresponds
to “hue”, distance from the axis corresponds to “saturation”, and distance along the axis cor-
responds to “value”, “lightness”, or “brightness”. The hue represents the percentage of color
blend, the saturation the strength of the color and the value is the brilliance or brightness of
the color.

The HSV color space is mathematically cylindrical, but it can be thought of conceptually
as an inverted cone of colors (with a black point at the bottom, and fully-saturated colors
around a circle at the top). Because HSV is a simple transformation of device-dependent
RGB, the color defined by (h, s, v) triplet depends on the particular color of red, green,
and blue “primaries” used. Each unique RGB device therefore has an unique HSV space to
accompany it.

A first step in the conversions process is the conversion of the YUV422 packed buffer to
a YUV444 image, to be compliant with the Ipllmage structure provided by OpenCV. In a
YUV444 pixel, all three components are sampled at the same rate (Fig. 4.3b). Each pixel in
the image contains all the information about color. In this case, the mapping of the three

components is:
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(a)

Figure 4.5: The conical and cylindrical representations of the HSV color space [4].

Youovo Y1U1V1 ... YnUnVn

The formulas used for the conversions between color spaces are the following [39]:
YUV to RGB conversion:

R=Y +1.403 x (V — 128)
G=Y —0.344 x (V — 128) — 0.714 x (U — 127)
B=Y +1.773 x (U — 128)

RGB to HSV conversion:
V =maz(R,G, B)

S — w if VI=0, 0 otherwise

6092 if V=R
H=4 120+ 60552 if V=aG
240 + 6085E if V=B

4.3 Camera parameters

One of the most important premises that have to be considered when developing a robotic

vision system is that the core of the vision system, which in this case represents the NAO

camera, should work within the best possible parameters. The implemented vision system

has to guarantee an accurate image acquisition that can best replicate the surrounding world.

The results of the image processing algorithms highly depend on the quality of the image

acquired. A good calibration of the parameters of the camera is imperative for a satisfying

image acquisition. In this section will be presented the most significant intrinsic parameters

of the camera. These are present in almost every camera and have the grater influence on the

process of image acquisition.
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4.3.1 Exposure

Exposure represents the total amount of light allowed to fall on the photographic medium
(in this case the image sensor). Correct exposure may be defined as an exposure that achieves
the effect that was intended when taking the picture. In photography, shutter speed is a
common term used to discuss exposure time, the effective length of time a camera’s shutter is
open. The total exposure is proportional to this exposure time, or duration of light reaching
the film or image sensor. In the case of NAO cameras, the exposure has a range from 0 to
255. Overexposed images are characterized by a loss of highlight details, the bright parts
of the image are all white. In an underexposed image the dark areas cannot be distinguish
from the black ones. Over- or under- exposing are also referred as “shooting to the right” or
“shooting to the left”, respectively, as these shift the intensity histogram to the right or to the
left. Figure 4.6 shows an example of an image correctly exposed (a), an overexposed image

(b) and an underexposed one (c)

(a) (b) ()

Figure 4.6: On the left, an accurate image acquired with the camera parameters correctly

calibrated. In the middle, an overexposed image and on the right, a underexposed image.

4.3.2 Gain

This parameter is related to image brightness and contrast but also to the noise of the
image. Increasing this factor makes the image brighter and increases the contrast but at the
same time adds noise to the image since the original noise of the image is also amplified. An
increase value of the gain can spread out the histogram of intensities, as well as a low value of
the gain can compress it. Figure 4.7 (b) shows an example of an image acquired after setting

a high value of the gain parameter.

4.3.3 White Balance

White balance is a parameter that when set correctly determines the objects that are
white in real world to appear as white in the image acquired by the camera. The image colors
appear different depending on the illumination under which the image was taken. Proper

camera white balance has to take into account the color temperature of a light source, which
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(a) (b)

Figure 4.7: On the left, an accurate image acquired with the camera parameters correctly

calibrated. On the right, the same image after significantly increasing the gain value.

refers to the relative warmth or coolness of white light. When this parameter is not properly
adjusted the image has a red or blue tonality. The correction can be done by adjusting the
red and blue channels gain. The white balance red and blue chromas range from 0 to 255.
Figure 4.8 shows an example of an image acquired with correct values of the white balance

parameters (a), and images acquired when the red chroma (b) and the blue chroma (c) are

’ ...
(a) : ©

not set properly.

(b)

Figure 4.8: On the left, an accurate image acquired with the camera parameters correctly
calibrated. In the middle, an image in which the red chroma has a too elevated value, thus

the redish tonality of the image. On the right, an image in which the blue chroma is too high.

4.3.4 Brightness

The brightness parameter is responsible for adjusting the black level of an image. If not set
properly, the images could appear darker or brighter than they really are. The black level of
an image is adjusted by adding or substracting an offset for each pixel. The value of brightness
can range from 0 to 255. Figure 4.9 presents an example of a too bright (b) or a too dark (c)

picture acquired with different values of the brightness parameter.
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(a) (c)

Figure 4.9: On the left, an accurate image acquired with the camera parameters correctly

(b)

calibrated. In the middle, an image that is too bright due to a high value of the brightness
parameter of the camera. On the right, a too dark image captured when the brightness

parameter is too low.

4.3.5 Contrast

This parameter is useful for turning the bright colors more bright and the dark colors more
dark in order to accentuate details in an image. In an image with a low contrast details cannot
be distinguish since the brightness of different elements is almost the same. The range of the
contrast is from 0 to 127. Figure 4.10 illustrates an example of a too bright (b) or too dark

(c) image.

(a) (

Figure 4.10: On the left, an accurate image acquired with the camera parameters correctly

b) ()

calibrated. In the middle, an image acquired with a high value of the contrast parameter

andon the right, an image acquired with a low value of the contrast parameter of the camera.

4.4 Self-calibration of the camera intrinsic parameters

The use of camera in auto-mode has raised several issues which made the segmentation and
validation of objects hard to be performed (Fig. 4.11). By using the camera in auto-mode the
images acquired were far from being accurate and the colors of interest were not represented
in a way that the human eye perceives them. Thus, the classification of colors was difficult to
be performed and the robots’ perception of colors was distorted when compared to the human

one. Moreover, the camera changes its parameters along the time.
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Camera calibration plays probably the most important role in the process of detecting
objects in a color coded environment. It is strongly related to the degree of accuracy of
the images acquired, which should give a representation of the surrounding world as close as
possible to the real one. Calibration has to be performed whenever the environment changes
or when the lighting conditions change over time. This means that, considering the available
resources and the small amount of processing time, the calibration module has to be run only
when the playing field changes or when the illumination of the field changes over time.

The use of camera in auto-mode has raised several issues which made the segmentation

and validation of objects hard to be performed.

Figure 4.11: An example of an image acquired with the camera working in auto-mode. The
color of the carpet is different than the green we would expect to see and the white areas and

the yellow goals are too bright.

The algorithm proposed for the autocalibration requires a minimal human intervention
and it is based on a PI controller (Fig. 4.12) for adjusting the exposure, the gain and the
white balance of the camera based on some statistical measures performed on the acquired
image [40]. The self-calibration algorithm is used only for the mentioned camera parameters
since a good calibration of these parameters is sufficient for acquiring reliable images. The
problems of the camera working in autmode are mostly related to the brightness of the image
and to the representation of the white objects, therefore chosing an appropriate range for the
gain, exposure and white balance settings can solve these problems.The human intervention is
only needed for positioning a white object in a specific, known in advance area of the image for
calibrating the white balance parameter of the camera. The algorithm uses the configuration
file for saving and loading the values for the camera parameters.

The intensity histogram of an image, that is the histogram of the pixel intensity values,
is a bar graph showing the number of pixels in an image at each different intensity values
found in the image. For an 8-bit grayscale image there are 256 different possible intensities,

from 0 to 255. Image histograms can also indicate the nature of the lighting conditions, the
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Figure 4.12: Block diagram of a PI controller. r(t), e(t) and wu(t) represent the response,
the error and the control signals, respectively. The constants K, and T; are experimentally
determined coefficients associated to the gain, respectively to the integrative action of the

controller.

exposure of the image and whether it is underexposed or overexposed. The histogram can be
divided into 5 regions as shown in Fig. 4.13 (b) . The left regions represent dark colors while
the right regions represent light colors. An underexposed image will lean to the left while an
overexposed one will be leaning to the right. Ideally most of the image should appear in the
middle region of the histogram.

From the gray level histogram, the MSV can be computed based on the following formula

and it represents a useful measure of the balance of the tonal distribution in the image:

St (+1)z;
S S

=0
where z; is the sum of the gray values in region j of the histogram. The image is considered
to have the best quality when the MSV = 2.5. MSV is a mean measure which does not take
into account regional overexposures and underexposures in the image.
The block diagram of the self-calibration algorithm is presented in Fig. 4.14.

The proposed algorithm works as follows:

e The camera starts with the parameters set accordingly to the values loaded from the

configuration file and a frame is acquired.

e The histogram of the image is computed and based on this the Mean Sample Value
(MSV) is calculated.

e If the MSV is not in a small proximity(+0.2) of 2.5 the gain is compensated with the
help of a PI controller.

e A new frame is acquired and the process is restarted. If the gain reaches the minimum or

maxim possible value the exposure is adjusted until the MSV gets in the correct range.

41



(b)

Figure 4.13: On the left an image acquired by the NAO camera after the intrinsic parameters
of the camera have converged. On the right, the histogram of the image. As expected, most

of the image appears in the middle region of the histogram.

Y

Load camera Setti
[(unnﬁguratinn file) e ]"[ Acquire new frame ]—>[ Calculate MSV ]

NO
Compensate
exposure and gain
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A
Analyze white area  |-g—

Compensate
red chroma and
blue chroma

Set new camera settings
and write them to the
configuration file

Figure 4.14: Block diagram of the autocalibration process.

e Having the gain and the exposure set the white balance is adjusted by analyzing a white
object in front of the robot whose localization in the image has been previously defined.

In the YUYV color space the average value of U and V for a white area should be 127.

e The red chroma and blue chroma are compensated by means of the PI controller until
the U and V values of the white pixels get into the range of [125,129].

e The new parameters of the camera are written to the configuration file.

Figure 4.15 shows the results of both steps of the algorithm applied. Step one implies the
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calibration of the gain and the exposure parameters and step two is the calibration of the

white balance parameter.

(a) (b) (c)

Figure 4.15: On the left, an image acquired with the camera used in auto-mode. The white
rectangle, in the top middle of the image, represents the white area used for calibrating the
white balance parameters. In the middle, an image acquired after calibrating the gain and
exposure parameters. On the right, the result of the self-calibration process, after having also

the white balance parameters calibrated.

The difference between working with the NAO camera in automode and after calibrating

its intrinsic parameters can be seen in Fig. 4.16.

Figure 4.16: On the left a color calibration after the intrinsic parameters of the camera have
converged. On the right, the result of color classification considering the same range for the
colors of interest but with the camera working in auto-mode. Most of the colors of interest are
lost (the blue, the yellow, the white and the black) and the shadow of the ball on the ground
is now blue, which might be confusing for the robot when processing the information about

the blue color.
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4.5 LUT and the index image

Image analysis in the context of the SPL branch of RoboCup is simplified by the fact that
the objects are color coded. The color of a pixel is a helpful clue for segmenting objects. Thus
color classes are defined with the use of a look-up table(LUT) for fast color classification. A
LUT represents a data structure, in this case an array used for replacing a runtime computa-

tion with the following basic array indexing operation:

indexrpr =Y << 16+ U << 8+ V

This approach has been chosen in order to save significant processing time. The image
acquired in the YUV format is converted to an index image (image of labels) using an appro-
priate LUT.

The table consists of 16,777,216 entries (224, 8 bits for Y, 8 bits for U and 8 bits for V).
Each bit expresses if one of the colors of interest (white, green, blue, yellow, orange, red, blue
sky, gray - no color) is within the corresponding class or not (Fig. 4.17). The process of color
classification is done with the help of the NaoCalib application. The details about this process
were described in Section 3.2. A given color can be assigned to multiple classes at the same
time. For classifying a pixel, first the value of the color of the pixel is read and then used as
an index into the table. The 8-bit value then read from the table is called the “color mask” of
the pixel. Table 4.1 shows three examples of the calculation equivalent to the array indexing
operation necessary for determining indexryr and also the equivalent binary value for three

of the colors of interest: red, green and blue, respectively.

‘ RGB triplet ‘ YUV triplet ‘ indexpyr binary value

(255, 0, 0) | (76, 84, 255) | 76x216 + 84x28% + 255 | 00000001

(0, 255, 0) | (149, 43,21) | 149x216 + 43x2% + 21 00010000

(0, 0, 255) | (29, 255, 107) | 20x216 + 255%28 + 107 | 10000000

Table 4.1: Table presenting the calculation of the array indexing operation necessary for
determining indexpyr and, as example, the equivalent binary value for three RGB / YUV

values corresponding a three colors of interest: red, green and blue, respectively.

The resulting index image is a grayscale image with the resolution of 320 x 240 pixels.

A smaller resolution was obtained with the purpose of further decreasing the time spent on
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Figure 4.17: The mapping of the colors of interest for a NAO robot based on a one color to

one bit relationship.

processing the image. The reduced resolution was obtained by using a subsampling approach.
By using the YUV422 packed format of the image, a subsampling of the image across the
image line is obtained. For the Y sample, both horizontal and vertical periods are one, while
for the U and V samples the horizontal period is two and the vertical one is one. This means
that the two chroma components are sampled at half the sample rate of the luma: the chroma

resolution is halved.

Then, by type casting the YUV422 buffer [41], which is an unsigned char buffer to an
integer one, thus making the reading of four bytes at the same time possible, every one
column in four of the image is ignored, by reading only half of the luminance information
(Fig. 4.18). Even though for the human eye the luminance is the component of a color that
has more significance, this is not valid in the case of robotic vision. Moreover, using this
approach we access four times less the memory. This image of labels will be the basis of all
the processing techniques that will be described in the following sections. An example of an

index image was presented in Fig. 3.7 (a).

YO |UO[Y1VO[Y2 [UL|Y3 |V ... |- —_— .UUYl VO.Ul Y3 Vi|...

unsigned char buffer integer buffer

Figure 4.18: An illustration of the type casting of the unsigned char buffer to an integer one,
allowing thus the reading of four bytes at the same time. Using this approach a reduced
resolution of the images can be obtained. Thus the processing time is significantly decreased

and reliable results can still be attained.

The algorithm for the type casting and construction of the index image is depicted next:
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Algorithm 1 Algorithm of the type casting of the unsigned char buffer to an integer one and

the construction of the index image.

unsigned int * b = (unsigned intx)Y UVbuf
for i = 0; i < nColsIndex x nRowsIndex; i + + do
lutPos = (b[i] & 0200FFFFFF) >> 8
IndexImageDatal(r x nColsIndex + ¢)| = lut[lut Pos|
c++
if ¢ > nColsIndex then
i+ = nColsIndex
c=0
r++
end if
end for

4.6 Color analysis using scan lines

Having the colors of interest labeled, scan lines are used for detecting transitions between
colors. The digital representation of an image is nothing more than a matrix, each pixel of the
image is an element of the matrix, whose position is specified by a pair (i, j), where i represents
the number of the line and j represents the number of the column. For the segmentation of
the colors of interest, horizontal and/or vertical scan lines are used. Thus, in the case of
horizontal scan lines, the lines of the matrix are scanned while looking for certain values of
the pixels. When using vertical scan lines, the columns of the matrix are scanned. Both types
of scan lines start at the upper left corner of the image and go along the width and the height,
respectively, of the image (Fig. 4.19). Scan lines of a certain color of interest are formed by
adjacent pixels that have the given color.

Scan lines are used for finding transitions between colors of interest. In the robotic soccer
environment, since all the objects of interest are on the green field during a game, transitions
between green and another color of interest are searched. The information about the green
color is used as an assertion that only the region of interest of the image, that is the soccer
field, is being processed.

While scanning the image in search of a color of interest, with every new row/column a new
scan line of length 0 is being initialized. The algorithm processes all the pixels of a row/column
and for every green pixel found a counter called GPB is incremented (GPB stands for “green
pixels before”). If a pixel of the color in search is being found, a counter called CP (“color
pixel”) is incremented. Since the algorithm is based on transitions of the type green-color of
interest-green, after finding a given number of color pixels, a counter for the following green
pixels (GPA) is also incremented every time a new green pixel is found.

The scan line is then considered a valid scan line of the color of interest in search if GPB
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Figure 4.19: On the left, an illustration of the horizontal scan lines. On the right, the vertical

scan lines.

and GPA are larger than a predefined threshold. The length of the scan line will be the
number of the color pixels that have been found. This approach is an example of run-length
encoding, in which repetitive data is compressed. That is, sequences of pixels of the same

colors are counted and stored as a single data value.

All the information about the valid scan lines having the same color of interest is saved
into an array. The information relevant for a scan line is the initial point of the scan line, its
end point and its length. Figure 4.20 shows an illustration of the transitions between green

and a color of interest.

GPB ‘ ‘ cP GPA

Figure 4.20: Transitions between green pixels (G) and pixels of one of the colors of interest

(©).

The algorithm for the horizontal search of scan lines is depicted next. The only difference

in the vertical search is that the image is scanned on columns.
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Algorithm 2 Algorithm of the search for horizontal transitions.
for i = 0; i < nRows; i+ =2 do
for j =0; j <nCols; j++ do
while imageDatali x step + j] == GREEN do
GPB + +
Jj++
continue

end while
while j < nCols && imageDatali x step+ j] ! = GREEN do
if (imageDatali x step + j] & COLOR) ! = 0) then
CP+ +
end if
end while
for k=j; k< j+ 20 && k < nRows; k+ 4+ do
if imageDatali x step + k] == GREEN then
GPA + +
end if
end for
if GPB > threshB && CP > threshC && GPA > threshA then
vector.push(scanline)
end if
end for
end for

4.6.1 Orange segmentation

For the transitions between green-orange-green, both horizontal or vertical scan lines can
be used. However, practical results prove that in this case the horizontal scans offer more
valid information. A scan line is considered to be orange if before finding the orange pixel,
a minimum number of 5 green pixels have been found and the same number of green pixels
has been found after the last orange pixel detected. Moreover, in order to be considered a
valid orange scan line, its lenght has to be larger that 20 pixels. The low values of the green
thresholds have been chosen experimentally, in order to ensure the detection of the ball (or at
least, parts of the ball) even when it is close to the white lines of the field, in the proximity of
the goal posts, or when it is caught between robots. Figures 4.21 and 4.22 provide an example

of horizontal and vertical orange scanlines.
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(a)

Figure 4.21: On the left, the RGB painted image in which the center of all valid orange

horizontal scan lines are marked with a black cross. On the right, the index image.

Figure 4.22: On the left, the RGB painted image in which the center of all valid orange vertical

scan lines are marked with a black cross. On the right, the index image.

4.6.2 White segmentation

Transitions of the type green-white-green are found using both horizontal and vertical scan
lines. The horizontal scan lines are used for the detection of the side lines of the field, while
the vertical ones are used for detecting the white line and circle in the middle of the field. The
values of the thresholds of green pixels in this case is 10 and the length of the scan line has to
be larger than 20 pixels. Figure 4.23 illustrates an example of the white lines segmentation

based on vertical search for transitions of the type green-white-green.
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(a) (b)

Figure 4.23: On the left, the RGB painted image in which the centers of the scan lines are

marked with black crosses. On the right, the corresponding index image.

4.6.3 Yellow/blue segmentation

For the detection of the blue/yellow goals horizontal scan lines are used for detecting only
the lower half of the goals. Even though in this way only half of the color information related
to the position of the goals is being used, it is enough and sufficiently relevant for an accurate
detection of the goals. Horizontal scan lines are used in the search of green - yellow/blue -
green transitions. The counter of the green pixels before and after de yellow/blue ones have
to be larger than 10 and the number of yellow/blue pixels found has to be at least 25. An

example of valid yellow horizontal scan lines is presented in Fig. 4.24.

(a)

Figure 4.24: On the left, the RGB painted image in which the center of all valid yellow

horizontal scan lines are marked with a black cross. On the right, the index image.

The values of the thresholds have been determined experimentally and they have the role
of minimizing the number of false positives since the beginning of the detection algorithms.

Having in mind the fact that the robotic vision system is a real-time application which
implies as low as possible processing times, the scanning of the images is done for every second
row or/and column, respectively. This subsampling approach guarantees smaller processing

times while still allowing the acquisition of reliable results.
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4.7 Cluster formation

Scan lines of a certain color of interest are formed by adjacent pixels that have the given
color and that pass the threshold comparisons that were described in the previous section.
After scanning the image, all the scan lines of a certain color are stored in a vector of scan
lines. The next step is the formation of clusters from parallel scan lines that are close one to
another. For this reason, the mass center of every scan line has to be known. The first scan
line from the vector of scan lines is considered as part of a first cluster. From here on, all the

following scan lines are analyzed and they are merged into clusters as follows:

The distance between the mass center of the first cluster (containing only the first scan

line) and the mass center of the second scan line in the vector is computed.

e If the distance between them is less than 15 pixels and the two scan lines are parallels,
the second scan line is added to the cluster and the mass center of the cluster is updated

accordingly.

e If the second scan line is not parallel or close enough to the first scan line, it will be the

origin of a new cluster.

e The algorithm is repeated for all the scan lines of the same color that are contained by

the vector.

e When there is more than one cluster, the distance between the mass center of a new

scan line and the mass center of every cluster is calculated.

e The scan line will be added to the first cluster for which the distance between the mass

centers respects the stated condition.

e If the scan line is not in the proximity of any already formed cluster, a new cluster will

be started with that scan line.

The formation of clusters only makes sense for the segmentation of the goal posts and
the ball. In the case of the white lines, the information about them that is sent to the other
modules is an array of scanlines of the white color. An example of cluster detection is presented
in Fig. 4.25.

The algorithm for the cluster formation considering a specific color is depicted in Algo-
rithm 3. In the algorithm, color is considered the run length information of the color in a

specific scan line.
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(a) (b)

Figure 4.25: An example of cluster formation. The lower part of the yellow posts, as well as

the orange ball are validated as yellow, respectively orange blobs.

Algorithm 3 Algorithm of the formation of clusters.
for i = 0; i < colorList.size; i + + do
blob = NULL
for j =0; j < blobListSize; j+ + do
if distance(color,blobMassCenter) < threshold then
blob = blobList|[j]
end if
end for
if blob! = NULL then
blob.add(color)
blob.update()
else
blob.create N ew Blob()
blob.add(color)
blob.update()
end if

end for

4.8 Object Detection

Having the blobs of colors formed is not enough for validating the blob as being one of the
objects of interest. Not every orange blob in the green field is the ball as well as not every
yellow or blue blob is a goal. Several measurements of the color blobs are used for validating
the objects of interest.

For the yellow/blue goals the size of the blob is used for determining whether a yellow
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blob is a goal or not. It has been proven experimentally that when the robot is centered on
the furthest point on the field from the goals, the goals have the minimum size of 1500 pixels.
Thus, in order to validate a yellow/blue blob as a goal, its size has to be larger than 1500
pixels. In the situation in which just one of the goals is visible to the robot, the mass center
of the respective goal is returned. If more than two yellow clusters are validated as being
the goals, only the two of them that are parallels are considered as being the goals. In this
situation the middle point of the distance between the two points is returned by the detection
method.

The detection of the ball is more complicated because at large distances from the robot the
size of the ball can be very small, which could increase the number of false positives. The size
of the orange cluster has to be larger than 45 pixels and when more than one cluster is found,
the algorithm validates as being the ball the cluster whose size verifies the size condition and
that is the closest to the robot. In the absence of the information about the pose of the robot,
the mass center of the robot is considered to be the center column and the lower line of the
image. Figure 4.26 is a graphical representation of the relation between the size of the ball in

pixels and the distance from the robot at which it is found, in meters.
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Figure 4.26: A graphic of the relation between the size of the ball and the distance from the

robot at which it is found.

Moreover, Fig. 4.27 shows three examples of the ball at different sizes from the robot. The
size of the ball in for each of the cases is presented.

Examples of the goals detection can be seen in Fig. 4.28. In (a) only one goal posts is seen
by the robot, its mass center is marked. After having the information about the localization
of the robot, merging that information with the information provided by the vision would let
the robot know if he has to send the ball to his left or right. When both goal posts are visible
for the robot (b), the middle of the goal is marked.
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(a) distance = 50cm, size = 1360 (b) distance = 1.55m, size = 204 (c) distance = 3m, size = 48 pixels

pixels pixels

Figure 4.27: Ball size at different distances from the robot.

(a) (b)

Figure 4.28: On the left, the detection of just one post of the goal. On the right, the detection
of the goal when both posts are visible.
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Chapter 5
Experimental results

This chapter presents some results obtained with the proposed vision system. Even though
the NAO robot was the main robotic platform on which the algorithms developed have been
tested, the modularity of the proposed vision system has been proved by adapting it for the
usage with another robotic platform, which was the Bioloid robot from Robotis. In Section 5.1
presents a series of results obtained with the NAO robot. Section 5.2 provides an introduction
about the Bioloid platform, as well as an overview about the competition environment in which
it has been used and finally, Section 5.3 presents the results that have been obtained with the
Bioloid robot. All these results prove not only the efficiency of the proposed algorithms,
but also the modularity of the vision system, which allows it to be used with several robotic
platforms.

At the time of writing this document, the robots are still being prepared for participating
in the RoboCup 2011 competition. Besides the vision process, several other processes run
on the robot (agent, comm, rtdb) but not all of them are finalized in such way that allows
the presentation of more detailed results that could transmit the idea of a robotic team. The

results that will be presented are strictly related to the vision process.

5.1 Results obtained with the NAO robot

This section presents a variety of results that were obtained by the proposed vision system
as well as information about the processing times of the most important tasks that have
been implemented. The images have been acquired on robotic fields that comply with the
SPL standards. Some of the results were obtained on the SPL field during the RoboCup
Mediterranean Open and some of them on an improvised field at the University of Aveiro. The
field from the University of Aveiro is actually built inside the MSL field that the University
already had and that has bigger measurements than the SPL field. For this reason, the lines of
the SPL field were drawn in light blue in order to be different than the white lines of the MSL
field, so that both robotic soccer teams of the university (MSL team CAMBADA and SPL

29



team Portuguese Team) could perform tests on the fields independently one from another.

The results that will be presented are related to the detection of the ball, of the goals and of
the white lines. The information about the white lines is important for the localization process,
while the information about goals can help in the correction of the calculated orientation of
the robot, as well as to help in the kicking behavior. The ball is probably the most important

object of interest, just like in the case of human soccer.

Figure 5.1 shows an original image acquired by the camera of the NAO robot, the index
image corresponding to the original one and the painted image containing markers for the
object of interest that have been detected. The black crosses represent orange points that are
part of valid orange scan lines and the black circle stands for the detection of the ball. The
black circle is constructed having the center in the center of mass of the orange blob formed by
the validated orange scan lines. The yellow circle is a marker for the validation of the yellow
goals. The center of the yellow circle is the middle of the distance between the two yellow

blobs validated as being part of the yellow goals.

(a) (b) ()

Figure 5.1: On the left, the original image. In the middle, the equivalent index image and on

the right, the image “painted” according to the labels in the 8-bit image.

Not always both posts of the goals are being “seen” by the robot. Figure 5.2 is an example
of a situation in which only a yellow post is validated as being part of the goal. The green
information before the left yellow post is lost, so the yellow blob cannot be considered part of
the goal. In this situation, the yellow circle marks only one validation of the goal posts and
its center corresponds to the mass center of the yellow blob. After the robot is localized, it is
possible to know if the one post that the robot sees is on its left or right side.

Another example of the detection of a single goal is shown in Fig. 5.3. The robot only
“sees’one blue posts which is validated as being part of the blue goals.

Figure 5.4 includes also a detection of the white lines. In Fig. 5.4 (¢) the green small
crosses represent the two yellow valid blobs. The larger green cross marks the middle point
between the two blobs. The red circle marks the center of the ball and the white crosses are

valid white points that are part of the white lines of the field.
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(a) (b)

Figure 5.2: On the left, the index image corresponding to the previous original image. On the
right, the equivalent image “painted” according to the labels in the grayscale image. Because

of changes in the illumination, some information about the green is lost and only one yellow

J - -
(b) ()

Figure 5.3: On the left, the original image. In the middle, the index image and on the right,

post is validated.

(a)

the painted image containing the markers for the ball and the blue goal.

(a) (b) ()

Figure 5.4: On the left, the index image. In the middle, the equivalent index image and on

the right, an image containing only the markers of the objects of interest.
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5.1.1 Ball detection

The ball is the most important object in the SPL. games since the goal of every team is to
mark as many goals as possible. The ball is also the most difficult object to detect not just
because it is a moving object but also because at far distances from the robot, its size is very
small.

When more than one orange blob is present in the image, the validation of the ball is
made according to the distance from the mass center of the robot. The mass center of the
robot is considered to be the center in terms of columns and last row of the image. Figure 5.5
is an example in which, having 3 orange blobs in the image, the closest one to the robot is
validated as being the ball. The larger black circle stands for the validation of the ball, while

the smaller circles are markers for the orange blobs that passed the size validation criteria.

(a) (b)

Figure 5.5: On the left, the index image. On the right, the equivalent image “painted” accord-
ing to the labels in the grayscale image and with the markers for all the valid orange blobs
and for the blob that has been validated as being the ball.

Figures 5.6 show the detections of the ball at different distances in front of the robot. The
distance is increased gradually and the ball is still being detected.

In addition, Fig. 5.7 presents a graphic of the area of the ball according to the distance from
the robot at which it is found. The measurements that are presented have been acquired under
the following scenario: the robot was not moving, with the lower video camera perpendicular
to the ground and the ball was manually placed at different distances in front of the robot.
The distances vary from 0.4 to 2.7m, with a step of 0.3m. Several frames have been acquired
for each of the positions of the ball and the size of the ball has been recorded for each of them.
In the resulting graphic it can be seen the influence of the light in the segmentation of the
ball. Due to the flickering of the illumination system of the field, the area of the ball slightly
varies with every frame acquired.

Figure 5.8 shows the coordinates of the mass center of the ball for the same frames acquired

in the previously described scenario. The coordinates of the mass center of the ball also vary
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) distance = 50cm ) distance = 1m ) distance = 1.5m
) distance = 2m ) distance = 2.5m ) distance = 3m

Figure 5.6: Images showing the ball being detected at distances from 50cm to 3m.
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Figure 5.7: Graphic of the ball area according to the distance from the robot in the situation

when the robot is not moving and the ball is placed in front of it at different distances.
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for the ball not moving due to the same illumination issue.

Experimental results
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Figure 5.8: Coordinates in pixels of the mass center of the ball according to the distance from
the robot in the situation when the robot is not moving and the ball is placed in front of it at

different distances.

The situation in which the ball is fixed and the robot is walking towards it is described
in Fig. 5.9. The graphic presents the coordinates of the mass center of the balls detected
while the robot was moving towards the ball. Because of the movements of the robot, the
coordinates of the mass center change in every frame. This result best show how difficult
is to process images in these types of applications, when the robot is performing a type of

locomotion.
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Figure 5.9: Coordinates in pixels of the mass center of the ball according to the distance from

the robot acquired while the robot is moving towards a fixed ball.
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As it has been described in Chapter 4, the size of the ball varies with the distance from
the robot. Figure 5.10 is a graphic of the coordinates of the mass center of the ball in the
following scenario: the robot is standing still while the ball is being sent towards it from a

distance of approximately 2m.
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Figure 5.10: Coordinates in pixels of mass center of the ball in the situation when the robot

is not moving and the ball is being sent towards it.

Another common scenario in the SPL games that has been tested is the detection of the ball
when the robot is dribbling. In this case the only relevant information that can be extracted
is the percentage of frames in which the ball is detected from all the acquired frames.

The performance of the vision system in terms of percentage of valid balls comparing to the
number of frames acquired by the robot is recorded in Table. 5.1. The percentages represent
frames in which the ball is seen and appropriately detected. The percentage of valid balls
in almost all of the scenarios is high, the more critical situation being the one in which the
robot is moving, as expected. Due to its type of locomotion, still images that give a good

representation of the surrounding world are hard to acquire.

Scenario Percentage
Robot dribbling the ball 93%
Robot stopped observing the ball 99%
Ball sent towards an imobile robot 99%
Robot moving towards the ball 30%

Table 5.1: Percentage of ball detections compared to the total number of frames acquired

under various scenarios.
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5.1.2 Processing time

Another important measure in real time systems is the processing time. As referred in
Chapter 4, huge efforts have been made to optimize the software and the algorithms. The
average processing time for the most time consuming tasks are presented in Table 5.2. Starting
from the acquisition of the images, based on V4L2 API, passing through an efficient algorithm
for subsampling, a LUT, scan lines and validation algorithms for the objects of interest, the
reduced processing time obtained, in average 28ms, allows the use of the camera at a frame
rate of 30 fps.

Task performed ‘ Time ‘

Acquiring an image 1ms

Conversion from YUV to index | 15ms

Orange detection 4ms
Yellow detection 2ms
Blue detection 2ms
White lines detection 4ms

Table 5.2: Processing times spent by the vision process.

Regarding the auto-calibration procedure, Table 5.3 presents the time spent in the per-
formance of the most important tasks of the algorithm. The main steps of the process are:
reading the value of an intrinsic parameter (Read), setting the value of an intrinsic parameter
of the camera (Write), calculating the MSV (MSV), calculating the error between the MSV
value of the acquired frame and the desired value of 2.5 (MSV), compensating gain (Gain),
exposure (Exposure), white balance values (Blue and Red) and calculating the average U and
V for the white area (U and V).

In terms of number of frames, the algorithm can be considered a fast one, since it only
requires an average number of 20 frames for the parameters of the camera to converge. The
times obtained do not allow the usage of this algorithm in real time, this being one of the
most important future developments of the vision system that will be considered. The average
total time spent by the self-calibration module is 10s when the calibration process starts from

the intrinsic values of the camera in automode.
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‘ Mode ‘ Read ‘ MSV ‘ Error ‘ Gain ‘ Exposure ‘ U ‘ \% ‘ Blue ‘ Red ‘ Write ‘ Total ‘

Auto Oms | 33ms | Oms 15ms 15ms Ims | Ims | 6ms | 5ms Oms 10s
0 Oms | 34ms | Oms 17ms 18ms Ims | Ims | 6ms | 6ms Oms 46s
Max Oms | 34ms | Oms 15ms 16ms Ims | Ims | 6ms | 6ms Oms 1min

Table 5.3: Processing times spent by the main tasks of the self-calibration module, when the
camera is started at different values of the intrinsic parameters. In the first situation, the
camera starts in auto-mode, in the second situation the camera starts with all parameters set
to 0. Finally, in the third situation the camera starts with all the intrinsic parameters set to

their maximum values.

5.2 Bioloid

The Bioloid platform represents a robotic kit produced by the Korean robot manufacturer
Robotis, which consists of several components, namely small servomechanisms Dynamixel,
plastic joints, sensors and controllers which can be used to construct robots of various config-

urations, such as wheeled, legged, or humanoid robots.

Figure 5.11: Several examples of robots constructed by means of the Bioloid robotic kit.

The humanoid Bioloid (Fig. 5.11 (a)) represents the second humanoid platform on which
the proposed vision system has been tested. The following subsections will present the changes
that were necessary for having a functional Bioloid robot for the Micro Rato robotic compe-
tition [42], held every year at the University of Aveiro. The results that have been obtained

with this platform are presented in Section 5.3.

5.2.1 The Micro-Rato competition

The Micro-Rato competition, held at the University of Aveiro is a competition between
small autonomous robots whose dimensions do not exceed 300 x 300 x 400mm (Fig. 5.12).

The competition is divided into two rounds: in the first one, all robots move from a starting
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area with the purpose of reaching a beacon, in the middle of a maze. In the second round,
the robots have to return to the starting area or at least to get as close as possible to it, using

the information that they acquired during the first round.

Figure 5.12: An image from the Micro Rato 2011 competition.

Most of the robots used in this competition do not rely on vision for accomplishing their
tasks. It is more common the use of sensors for detecting the walls of the maze and the area
of the beacon, which is an infrared emittor of 28cm high. However, the use of a vision system
is possible since there are several elements that allow the detection of the obstacles, of the
beacon and that can provide information about the localization of the robot.

The robots have to move on a green carpet and the walls of the maze are white (Fig. 5.13
(a)). Moreover, in each of the four corners of the maze there is a two-colored post and the bea-
con has also two predefined colors. Thus, the corner posts can have either one of the following
color combinations: pink-blue, blue-pink, pink-yellow, yellow-pink, while the beacon is half
orange, half pink (Fig. 5.13(b)). The information about the color combination of the posts
is helpful for the localization of the robot, in the challenge of reaching the beacon.Therefore,
by relying on visual information, it is possible to have a competitive humanoid robot in the

context of Micro-Rato.

5.2.2 Bioloid vision system

The vision system that has been presented and initially tested on the NAO robots was also
used with the Bioloid robot, after some small changes have been performed. The main changes
that have been made were in the acquisition part, due to the fact that the Bioloid robot uses a
standard USB camera, as described next, and also the colors of interest, as well as the objects
of interest changed in the case of the Bioloid. The main idea behind the functioning of the

vision system of the Bioloid is the same as for the NAO robot. A system of color classification
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(b)

Figure 5.13: On the left, an image of the Micro Rato field. On the right, a graphical repre-

sentation of the four corner posts and the beacon [6].

is used for the following colors of interest: white, green, yellow, blue, pink and orange. After
acquirinig an image, with the use of a look-up table, an 8-bit image of labels corresponding

to the original one is constructed.

The next step of the process is the search for the colors of interest in the image of labels,
using vertical scan lines and run-length coding. The information of the colors of interest are
merged into blobs and based on several measurements calculated from the blobs they are

validated as being objects of interest or not.

The video camera that was used with the Bioloid robot was a standard Logitech USB
webcam and the process of acquiring images was different than in the case of NAO. The
access of the device for the Bioloid camera was done by means of OpenCV, which provides
several instinctive methods for accessing and displaying the images. The methods used by
OpenCV also rely on Video For Linux v.2. This method was chosen instead of the acquisition
module developed for the NAO robot since the NAO camera configuration is accessed through
the 12C bus due to its special connection on the processing unit of the robot. No calibration
of the camera intrinsic parameters was performed in this case since the device did not allow

the access of its settings. The camera was used in auto mode in this application.

Another change that has to be made was the introduction of a new color of interest for
the color classification process. Pink is not an meaningful color for the NAO soccer player,
thus in the NaoCalib application had to be introduced the option of classifying the pink color.
The last change concerns the search for transitions between colors of interest. For the NAO
vision system, transitions between green and another colors of interest were used, so the green
information was always used in the process of the color segmentation. In the case of the
Bioloid robot, the method responsible for the search of transitions between colors of interest
became more generic, allowing the search of transitions between any two colors. This change

was needed because the detection of the posts is done by finding transitions between two
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different colors of interest that are part of the posts.

The main steps of the vision process are:

e Acquiring an image with a resolution of 640 x 480 pixels.

e Converting the color image into an index one with the use of a look-up table. The index
image continues to be an 8-bit image in which all the colors of interest are mapped using
a one bit per color relation. The resolution of the index image is 320 x 240 pixels and it
was obtained by ignoring one in two columns and one in two rows of the original image

with the purpose of reducing processing time.

e Vertical search lines are used for finding transitions between colors of interest. Transi-
tions between yellow and pink, pink and yellow, pink and blue, blue and pink, orange
and pink are searched for the detection of the posts and of the beacon. The four posts
are placed in the four corners of the maze and are helpful in the challenge of reaching
to the beacon. Also transitions between white and green are used for the detections of
the walls of the maze which are to be avoided during the movements of the robot. The
vertical search lines start with the first column of the image and continue progressively
within the width of the image. For every search line, pixels are ignored as long as they
are not of the first color of interest. Once a pixel of the colors of interest is found, a
counter of the pixels of the same color is incremented. When no more pixels of the first
color are found, pixels of the second color of interest will be searched. If there are no
pixels of the second color of interest, the scan line is ignored and a new scan line will be
started in the next column. Otherwise, a counter of the pixels having the second color
of interest will be incremented. Before validating the scan lines the values of the two
counters are compared to a threshold. Repeated experiments showed that an acceptable

value for the threshold is 20 pixels.

e Clusters are formed from valid scan lines containing the same two colors of interest. The
scan lines are grouped into clusters if they have the two colors of interest, in the same
order and they are found at a distance of at most 50 pixels one from another. In this
case, the clusters do not have the common meaning of a uniform region having a certain

color, they stand for a region in the image having the sequence of two colors of interest.

e For each cluster, the area is calculated and in order to be validated as one of the posts,
its area has to be in the range of [500,2000] pixels. For each valid cluster its mass center
is computed. The size of the cluster is a good hint for the distance of the robot from
the object.

e For the white-green transitions, clusters are not necessary and the information saved for

further use is an array of scan lines containing transitions from white to green.
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e The array of white-green transitions as well as the coordinates of the mass center for
each post and for the beacon are loaded on the RtDB so that they can be accessed by

other processes running on the robot.

5.3 Bioloid results

This section presents some results that were obtained by using the proposed vision system
with the Bioloid humanoid robot during the Micro-Rato competition. Figure 5.14 shows an
original image taken by the video camera connected to the Bioloid, and the corresponding color
segmented image. The original image contains a marker (a cross) for every detected object
of interest. Thus, all the posts are detected and also a part of the transitions from white to
green. Not all transitions from white to green are detected since because of the illumination
some of the white information is lost. Figure 5.15 shows another example of detection of the

four types of colored posts.

(a)

Figure 5.14: On the left, the original image acquired by the camera of the Bioloid robot,
also containing the markers for the objects of interest. On the right, the corresponding color

segmented image.

Figure 5.16 presents some more detailed results for the detection of the posts. For each
posts, the center of mass of each of the two color blobs is marked and also the center of mass
of the post is marked. The mass center of the post is found at the middle of the distance
between the mass centers of the two color blobs that form the post. The four posts are found

at different distances from the robot.
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(a) (b)

Figure 5.15: On the left, the original image with the markers for all the posts. On the right,

the color segmented image.

(a)

Figure 5.16: On the left, the original image having a marker for each color blob detected and
also a mark for the mass center of each post. The blue/pink post is situated the furthest
possible from the robot, the length of the maze, and it is still being detected. On the right,

the color segmented image.
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Chapter 6

Conclusions and future work

The work presented in this thesis addressed the field of robotic vision and presented a
proposal for a modular vision system that can be used for different classes of humanoid robots.
The vision system has been tested and used for the NAO and Bioloid humanoid robots and
for each of them results have been shown.

The vision system that has been presented has the main advantage of being a modular
one, this meaning that with a small number of changes it can be applied to different classes
of robots. Moreover, it runs in real-time, this being one of the most important features that
a solid vision system should have. The system has been implemented from scratch and it can
be divided into three main modules such as: acquisition of the images, self-calibration of the
camera intrinsic parameters and color segmentation and object detection.

The self-calibration algorithm for the camera parameters is an innovative and fast con-
verging one. The results of the processing are highly influenced by the quality of the images
acquired and a good calibration of the camera settings allows achieving much better results
than when having the camera working in auto-mode.

The module of color segmentation and object detections presented an approach for detect-
ing objects of interest for a robot based on color information. The process of color segmentation
is based on horizontal and vertical scan lines used for the search for transitions between two
colors of interest. From adjacent scan lines blobs of the same color are formed and further on
they are validated as objects of interest after the analysis of different features extracted from
the blobs.

Apart from the vision process running in real-time on the robot, two other applications have
been developed for the purpose of debugging and color calibration of the colors of interest,
based on a client-server architecture. NaoViewer is a client that can receive and display
both original or segmented images acquired by the camera of the robot and NaoCalib is an
application used for a manual calibration of the colors of interest.

All the software implemented has been tested on the NAO soccer player robots of the

SPL team of University of Aveiro and University of Porto, Portuguese Team. Moreover,
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the algorithms have suffered minor alterations that allowed them to be applied to a Bioloid
humanoid robot of the team MusErectus for a demonstration during the Micro Rato robotic
contest, held at the University of Aveiro.

The effectiveness of the proposed vision system has been proved along this document by
pictures showing the results of the algorithms and by the reduced processing times that have
been acquired. Moreover, the participation of the Portuguese Team at RoboCup RomeCup
2011 and the demonstration of MusErectus team at Micro Rato strengthen the reliability of

the vision system described in this thesis.

6.1 Future work

Robotic vision is a research area in which developments and improvements are an ongoing
process. Providing an accurate representation of the surrounding world for a robot is a very
difficult task that can only be achieved in small steps that can make a transition from particular
descriptions to more generalized one. For this reason, several future developments can be

brought to the presented project.

e First, merging the information of the pose of the robot with the information provided
by the camera of the robot can significantly improve both the processing time spent and
the results of the algorithm. By knowing the pose of the robot certain areas in the image
containing the body of the robot could be excluded from processing, thus decreasing the
global amount of processing time. Moreover, the pose of the robot could be a helpful

information when computing distances from the objects of the interest or vision angles.

e Visual information should also be used for the detection of the team markers in a soccer
game. The algorithms used for the segmentation of the colors of interest could be used

for the segmentation of the team markers.

e Future developments of this work also include more validation criteria for the ball de-
tection based on feature extraction and classifiers training which are more generic and
are not color dependent. Algorithms like Speeded-Up Robust Features (SURF [43]) or
Scale-Invariant Feature Transform (SIFT [44]) can be a good choice for the task of im-
proving the object detections. The rules in robotic soccer are evolving from year to year,
thus pushing the research in this area to become focused on more and more generic im-
plementations that are closer to the rules for the human soccer. Thus, soon the objects
of interest will no longer be color coded and solutions for their detections have to be

provided.

e The choice of the color space used in the algorithms of image processing turns out to be a
very important part of the performance of the vision system. Different implementations

of robotic vision systems are based on different color spaces, all claiming that the specific
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color space provides best results. A deeper study on the performances of the most used

color space could be a helpful tool in the future development of this work.

Another important improvement that could be brought to the work presented would be
the adjusting of the self-calibration algorithm of the intrinsic parameters of the camera,
so that it could be used in real time. Since the algorithm uses a white area whose
position in the image is already known, this part could be improved once the pose of the
robot is estimated. The fixed white are that is now use could be replaced by a white area
on the body of the robot, to which he could “look” when adjusting the white balance
parameter. Moreover, solutions for reducing the time spent by this process should be
studied.
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Appendix A

Modules of the vision system

The main classes and methods implemented for the modular vision systems described in
this thesis are presented here. Detailed documentation of all software can be obtained from

the source code using the doxygen documentation program.

e Class NaoCamera
NaoCamera () - Constructor
NaoCamera() - Destructor
void initOpenI2CAdapter() - Opens the 12C adapter
void initSelectCamera(Camera camera) - Selects camera
void initOpenVideoDevice() - Opens the video device
void initSetCameraDefaults() - Initializes default parameters of the camera
void initSetImageFormat () - Sets the format of the image
void initSetFrameRate() - Sets the frame ret
void initRequestAndMapBuffers() - Maps buffers
void initQueueAllBuffers() - Queues buffers
void initDefaultControlSettings() - Set default values for the control settings of the cam-
era
void startCapturing() - Starts the capture
void setSettings(const CameraSettings& settings) - Sets the camera control settings
const CameraSettings& getSettings() const - Reads the camera control settings
bool captureNew() - Captures new frame
const unsigned char* getImage() const - Returns the last captured image
unsigned getTimeStamp() const - Time stamp of the last captured image
Camera switchToUpper () - Switches to upper camera
Camera switchToLower () - Switches to lower camera
Camera switchCamera(Camera camera) - Switches to the camera that is not currently in use
Camera getCurrentCamera() - Returns the camera currently in used

void assertCameraSettings() - Asserts that the actual camera settings are correct
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void writeCameraSettings() - Writes the camera control settings

e Class Config
Config(const char* fileName) - Constructor
void CreateDefault() - Creates a default configuration file with all fields set to 0
virtual Config() - Destructor
CameraSettings &getCamSettings() - Reads the camera settings from the configuration file
ColorRange *colors() const - Reads the color range of the colors of interest from the con-
figuration file
void setCamSettings() - Writes the camera settings to the configuration file
int LoadAscii(char *fName) - Reads a text configuration file
int SaveAscii(char *fName) - Saves a text configuration file
int LoadBinary() - Reads a binary configuration file
int SaveBinary() - Saves a binary configuration file
void Print() - Prints all information retrieved from the configuration file

const charx getFilename() const - Returns the name of the configuration file

e Class Lut
Lut () - Default constructor
Lut (Configk config) - Constructor
Lut () - Destructor

void init(ColorRange* cr) - Initializes LUT

e (Class Calibration
Calibration() - Constructor
Calibration() - Destructor
CvHistogram* calcHistogram() - Calculates the histogram of an image
void update(const unsigned char *b) - Updates the information about the statistical mea-
surements
void drawHistogram(IplImage* image, CvHistogram* hist) - Draws the histogram of an
image
float calcMean(CvHistogram* hist) - Calculates the mean value
float calcMSV(CvHistogram* hist) - Calculates MSV
float calcACM(CvHistogram* hist) - Calculates ACM
void calibrateGain(CameraSettings &s, NaoCamera &Ncam, float err) - Compensation
of the gain parameter
float UpdateMSV() - Updates the MSV value
void calibrateWB(CameraSettings &s, NaoCamera &cam, int errwb) - Compensation of

the blue chroma
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void calibrateWR(CameraSettings &s,NaoCamera &cam, int errwr) - Compensation of
the red chroma

unsigned int getU(CvRect rect) - Calculates the average U value for the white area in the
image

unsigned int getV(CvRect rect) - Calculates the average V value for the white area in the

image

e Class PI
PI(float P, float I, float m, float M) - Constructor
pi(const pi& cpi) - Copy constructor

int compensate(float value, float err) - Implements the PI compensation

e Other methods
IplImage* Yuv422_to_Index(const unsigned char* buf, unsigned nCols, unsigned nRows,
Lut &lut) - Converts a YUV422 image to an index one
IplImage* Yuv422_to_Index_Fast(const unsigned charx buf, unsigned nC, unsigned nR,
Lut &lut) - Converts a YUV422 image to an index one based on the type casting of the un-
signed char buff
IplImage* Yuv422_to_Yuv444(const unsigned char* buf, unsigned nCols, unsigned nRows)
- Converts a YUV422 image to a YUV444 image
IplImage* Yuv422_to_GRAY(const unsigned char* buf, unsigned nCols, unsigned nRows)
- Converts a YUV422 image to a grayscale one
void yuv_to_rgb(int y, int u, int v, int* r, int* g, int* b) - Transforms YUYV pixel
values to RGB pixel values
void rgb_to_hsv(int r, int g, int b, int* h, int* s, int* v) - Transforms RGB pixel
values to HSV pixel values
void yuv_to_hsv(int y, int u, int v, int* h, int* s, int* vv) - Transforms YUV
pixel values to HSV pixel values
IplImage* paintRGB(IplImage* img) - Converts an index image into an RGB painted one
int Distance(CvPoint pl, CvPoint p2) - Calculates the distance between two points
void DrawX(IplImage *img,CvPoint center,int d, CvScalar color) - Draws a cross on
the image
void DrawCircle(IplImage *img, CvPoint center, int r, CvScalar color) - Draws a
circle on the image
void FindTransVert(IplImage *img_idx, unsigned color, int index, vector< vector<ScanLine>
> &obj) - Searches for vertical transitions between colors
void FindTransHoriz(IplImage *img_ids, unsigned color, int index,vector< vector<ScanLine>
> &obj) - Searches for horizontal transitions between colors void FormCluster(vector<Blob>
&blobs, vector<ScanLine> lines) - Aggregates scan lines to clusters
int findBlobs(vector<Blob> &blobs, ScanlLine &sc) - Forms blobs of the same color
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void UpdateBlob(Blob &b, ScanLine sc) - Update the information about the blobs

int ValidateGoals(vector<Blob> &b, CvPoint &cm) - Validates the yellow/blue blobs as
goals

int ValidateBall(vector<Blob> &b) - Validates the orange blob as ball

int createSocket( int *socketId, unsigned short localPort ) - Creates a new socket
on the local machine

int connectTo( int socketID, char* destHost, unsigned short destPort ) - Connects
the selected socket to a destination

int waitForCall( int socketID, int* acceptedSocket, char* fromHost,unsigned short*
fromPort ) - Waits for a connection on the socketld socket

int sendData( int socketId, void* data, int dataLength ) - Sends the data contents
to the socket’s destination

int receiveData( int socketId, void* buffer, int* bufferSize ) - Returns anything

that arrives to the socket
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Appendix B

User’s manual

This appendix explains how to use the applications developed for the robots.

+ Vision

The “vision” application represents the main program of the vision software. It is respon-
sible for the entire vision process that runs on the robot, from video acquisition, to camera

calibration and object detection. Vision can be run with the following parameters:
e -h - displays a help menu of the program

e -cf #config.file - loads a configuration file with the name specified by #config.file. If
no configuration file is specified, a default configuration file with the name “nao.conf”
will be created and used. In the default configuration file all the field of the file are set
to 0.

e -auto - uses the camera in automode

e -calib - starts the self-calibration of the camera intrinsic parameters. When the cali-
bration module is run, the configuration file should also be specified since the camera
settings will be written to it. If no configuration file is specified, a default one with the

name “nao.conf” will be used.

e -server - works as a server that expects a client to connect in order to start sending
frames. When run in server mode, several other command line arguments are needed.

These are presented as follows:
e -server period # - a numerical value for the period at which a frame is sent

o -f # - a flag that can be 0 if the YUV422 buffer will be sent to the client or 1 if the

buffer of the index image will be sent
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* NaoViewer

NaoViewer is a client that connects to the vision server and can display either the frames
acquired by the robot in RGB format, or the index and the corresponding “painted” images.

NaoViewer has to be run with the following command line arguments:

e -ip - IP of the robot on which the vision server is running

o -f # - the same flag that is needed in the server part. If the flag is 0 the client will
display RGB images, else, the application will display the index and the “painted” images

containing the markers for the objects of interest detected.

e -cf #config.file - the configuration file

+ NaoCalib

NaoCalib is the application used for the calibration of the colors of interest. When run,

the arguments that is requires are:

e -ip - IP of the robot on which the vision server is running

e -cf #config.file - the configuration file

When NaoCalib is started, the user can calibrate the colors of interest by means of sliders
which are displayed when pressing the “y” key. The sliders are manipulated with the help
of the mouse and are used for setting the H, S and V range of all the colors of interest.
The H, S and V histograms are also displayed next to the sliders with the purpose of better
understanding the classification process. The user can place the mouse over a pixel that has
one of the colors of interest and by pressing the “i” key, the H, S and V values of the selected
pixel will be displayed on the screen. When the classification process is done, pressing “u”
will update the information about the color ranges in the configuration file. Finally, pressing

“q” will exit the application.
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