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palavras-chave 
 

Amplificador óptico de semicondutor (SOA), modulação cruzada de ganho, 
modulação cruzada de fase, processamento óptico, interferómetro de Mach 
Zehnder com SOA, modulação óptica de banda lateral residual, conversão de 
formato de impulso, regeneração, conversão de formato de modulação, 
multiplexagem por divisão no comprimento de onda  

resumo 
 
 

Nesta tese investigam-se e desenvolvem-se dispositivos para processamento 
integralmente óptico em redes com multiplexagem densa por divisão no 
comprimento de onda (DWDM). O principal objectivo das redes DWDM é 
transportar e distribuir um espectro óptico densamente multiplexado com sinais 
de débito binário ultra elevado, ao longo de centenas ou milhares de 
quilómetros de fibra óptica. Estes sinais devem ser transportados e 
encaminhados no domínio óptico de forma transparente, sem conversões 
óptico-eléctrico-ópticas (OEO), evitando as suas limitações e custos. A 
tecnologia baseada em amplificadores ópticos de semicondutor (SOA) é 
promissora graças aos seus efeitos não-lineares ultra-rápidos e eficientes, ao 
potencial para integração, reduzido consumo de potência e custos. 
Conversores de comprimento de onda são o elemento óptico básico para 
aumentar a capacidade da rede e evitar o bloqueio de comprimentos de onda. 
Neste trabalho, são estudados e analisados experimentalmente métodos para 
aumentar a largura de banda operacional de conversores de modulação 
cruzada de ganho (XGM), a fim de permitir a operação do SOA para além das 
suas limitações físicas. Conversão de um comprimento de onda, e conversão 
simultânea de múltiplos comprimentos de onda são testadas, usando 
interferómetros de Mach-Zehnder com SOA. 
As redes DWDM de alto débito binário requerem formatos de modulação 
optimizados, com elevada tolerância aos efeitos nefastos da fibra, e reduzida 
ocupação espectral. Para esse efeito, é vital desenvolver conversores 
integramente ópticos de formatos de modulação, a fim de permitir a 
interligação entre as redes já instaladas, que operam com modulação de 
intensidade, e as redes modernas, que utilizam formatos de modulação 
avançados. No âmbito deste trabalho é proposto um conversor integralmente 
óptico de formato entre modulação óptica de banda lateral dupla e modulação 
óptica de banda lateral residual; este é caracterizado através de simulação e 
experimentalmente. Adicionalmente, é proposto um conversor para formato de 
portadora suprimida, através de XGM e modulação cruzada de fase. 
A interligação entre as redes de transporte com débito binário ultra-elevado e 
as redes de acesso com débito binário reduzido requer conversão óptica de 
formato de impulso entre retorno-a-zero (RZ) e não-RZ. São aqui propostas e 
investigadas duas estruturas distintas: uma baseada em filtragem desalinhada 
do sinal convertido por XGM; uma segunda utiliza as dinâmicas do laser 
interno de um SOA com ganho limitado (GC-SOA).  
Regeneração integralmente óptica é essencial para reduzir os custos das
redes. Dois esquemas distintos são utilizados para regeneração: uma estrutura 
baseada em MZI-SOA, e um método no qual o laser interno de um GC-SOA é 
modulado com o sinal distorcido a regenerar.  
A maioria dos esquemas referidos é testada experimentalmente a 40 Gb/s, 
com potencial para aplicação a débitos binários superiores, demonstrado que 
os SOA são uma tecnologia basilar para as redes ópticas do futuro.  
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Semiconductor optical amplifiers (SOA), cross-gain modulation (XGM), cross-
phase modulation (XPM), all-optical processing, Mach-Zehnder interferometer 
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abstract 
 

This thesis investigates and develops all-optical processing devices for 
wavelength division multiplexing networks (DWM) of the future. The ultimate 
goal of optical networks is to transport and deliver a densely multiplexed 
spectrum, populated by ultra-high bit rate signals over hundreds or thousands 
of kilometers of optical fiber. Such signals should be transported and routed 
transparently in the optical domain, without recurring to optic-electro-optic 
(OEO) conversions, avoiding its limitations and costs. Semiconductor optical 
amplifier (SOA) based technology is a promising building block due to its 
inherent ultra-fast and efficient non-linear effects, potential for integration, low 
power consumption and cost. 
Wavelength converters are the basic optical functionality to increase the 
network throughput and avoid wavelength blocking. Methods to increase the 
operation bandwidth of cross-gain modulation (XGM) converters are studied 
and experimentally assessed to enable operation beyond the physical 
constraints of SOA. Single and multi-wavelength conversion exploiting cross-
phase modulation (XPM) in Mach-Zehnder interferometer with semiconductor 
optical amplifiers (MZI-SOA) is tested. 
High bit rate DWDM networks require optimized modulation formats with 
enhanced tolerance to fiber impairments and reduced spectral tolerance. As a 
consequence, it is crucial to develop all-optical modulation formats between 
legacy on-off-keying networks and networks employing advanced modulation 
formats. An all-optical format converter between optical double sideband 
(ODSB) and optical vestigial sideband (OVSB) based on SOA self-phase 
modulation is proposed and thoroughly characterized by simulations and 
experimental tests. A converter, which uses a mix of XGM and XPM to allow 
simultaneous pulse and modulation format conversion to the carrier 
suppressed format, is proposed. 
The interface between ultra-high bit rate transport networks and lower bit rate 
access networks requires optical pulse format conversions between return-to-
zero (RZ) and non-return-to-zero (NRZ). Two different structures are proposed 
and investigated. The first is based on detuned filtering of XPM converted 
signal; while the second uses the dynamics of the internal laser of a gain-
clamped SOA.  
All-optical regeneration is one of the most sought functionalities to reduce 
network costs. Regeneration is achieved in this work through two simple 
setups: a MZI-SOA based structure, and a method in which the internal laser 
from a GC-SOA is modulated with the input distorted signal. 
Most applications are experimentally validated at 40 Gb/s, with potential for 
even higher bit rates, demonstrating that SOA can be one of the key elements 
for the next generation of optical networks. 
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Chapter 1  

Introduction 

1.1 Context 

It is outstanding to analyse statistics of International Telecommunications Union 

which report, for example, that the percentage of world-wide mobile phone subscribers has 

grown from round 5% of world population in 1998 to an estimated 61 % in 2008  [1]. 

Similarly, broadband home internet connections have exploded: only 10 years ago typical 

home connection was just 52 Kb/s; while today 200 Mb/s are commonly offered below 

€100 per month  [2]. Even more impressive is to look back to the middle of the 20th 

century, where information was sent only by wire or radio. The remarkable growth in 

bandwidth has been feeding the burst of new internet applications, such as peer-to-peer, 

YouTube, MySpace, messaging, FaceBook, Twitter, Google earth, on-line gaming, etc; TV 

services like high-definition, 3D, and pay-per-view are also a reality in most homes. All 

these services and applications have dramatically changed the paradigm of communication 

between human beings. People want to be connected to everyone, everywhere, at all time. 

This revolution could only be possible because of optical fiber communications. In 

the 1970’s microwave communication systems were limited to only 100 (Mb/s)/km  [3]. 

Such limitation was eliminated with the deployment of optical fibers and especially after 

the invention of the Erbium doped fiber amplifier (EDFA)  [4]. In the last two decades, 

optical time division multiplexing (OTDM) and wavelength division multiplexed (WDM) 

networks, together with advanced modulation formats, have led to an explosion of the bit 

rate-distance product. Research records are now around 117 000 Tb/km  [5]. Commercial 
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systems are keeping up: Nokia Siemens Networks plans to provide 96 x 100 Gb/s systems 

during 2011 and have already an eye in 400 Gb/s per channel  [6]. 

Although deployed transmission capacity is only one step behind research, most 

signal processing, such as wavelength conversion, routing, and regeneration are still done 

in the electrical domain. Electrical signal processing may be the next impairment to the 

Holy Grail of service providers, which is to increase available bandwidth at the lowest 

costs possible. The price of a single regenerator for 40 Gb/s is today several times the cost 

of an EDFA, for example; and the high electrical consumption of electrical processing 

systems is becoming a major concern for operators  [7]. All-optical processing is expected 

to overcome such limitations and to lead optical communications to the next level. 

However, all-optical processing is not yet a reliable solution; therefore, it is considered a 

key research topic. 

The main objective of this thesis is to contribute to the study and development of 

all-optical processing devices, focusing on some of the decisive requirements of 

commercial systems: low cost, simplicity and robustness. 

1.2 Motivation 

The functionalities required from an optical network are increasing rapidly. Years 

ago it was sufficient that an optical system would transmit high volumes of information 

over large distances. Nowadays, it is also required that the optical network performs signal 

processing over the information being transported. 

Optical networks are now a mix of dense wavelength division multiplexing, and 

optical time division multiplexing  [8],  [9]. In DWDM several signals at different 

wavelengths are combined in the same optical fiber with outstanding spectral efficiency. 

Latest reports present efficiencies in the order of 7.7 b/s/Hz by the use of optical frequency 

division multiplexing  [10]. OTDM consists in interleaving several incoming signals in the 

same wavelength, reaching ultra-high per-channel bit rates. Currently, all this information 

is processed in the electrical domain to achieve the required functionalities, which consist 

mostly in: 
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• Wavelength conversion: where an input signal at wavelength λ1 is 

converted to λ2. Wavelength converters are key devices to increase network 

throughput and avoid wavelength blocking. 

• Regeneration: optical signals are distorted by several impairments in fiber 

transmission (such as dispersion, non-linearities, polarization mode 

dispersion (PMD), noise from amplification) and in the switching nodes 

(tight filtering, crosstalk, etc.). Regeneration consists in converting a 

distorted signal in an undistorted one. 

• Format conversion: different network scenarios require different optical 

modulation or pulse format. Therefore, the nodes at the edge of such 

networks are required to convert the optical signals to the appropriate 

format. 

Performing such operations in the electrical domain generally leads to a bottleneck-

effect, since the optical transmission capacity and costs keep improving but the processing 

capabilities are limited by slower, more expensive and in general less efficient electronics. 

It becomes urgent to develop all-optical functionalities which will enable the ultimate goal 

of building true fully optical routers. Besides the aforementioned essential functionalities, 

the following are also mandatory: 

• Add-drop multiplexing: since OTDM carries the information of several 

users, it is require to add / extract channels at switching nodes. 

• Switching: the optical signal is switched through the network from the 

transmitter to the end receiver. The information required for the switching is 

carried together with the optical signal (e.g. label). Such information should 

be extracted and added from the optical signal without optical-electro-

optical (OEO) conversions. 

• Optical memory: required to store the optical signal while the several 

processing functionalities are performed. 

• Optical logic: logical functions are the basis of any processing system. 
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All-optical functionalities are usually achieved by exploiting the non-linear 

characteristics of optical mediums. Most research has focused on optical fiber, (mostly 

highly non-linear fibers  [11]) and semiconductor optical amplifiers (SOA)  [12] as non-

linear mediums. In fiber, the interaction between the signals and the medium is called non-

resonant  [13] and has an ultra-fast response time (in the order of the femto-seconds); 

however, the efficiency is usually low, since the non-linear coefficients are relatively low. 

As a consequence high input optical power or large interaction lengths (hundreds of 

meters) are commonly required to achieve reasonable non-linearity. On the other hand, 

SOA have a much higher non-linear coefficient  [13], but the temporal response of its non-

linear applications is limited to tens or hundreds of picoseconds by slow carrier dynamics. 

Nevertheless, ultra-fast SOA operation is being enabled using, for example, a Mach-

Zehnder Interferometer structure with SOA in each arm (MZI-SOA), operated in a 

differential mode. SOA have also the advantage of being integrable, have potential for low 

cost, provide optical gain, are stable, and can be operated with very simple schemes. State- 

of-the-art research demonstrates simple operations at ultra-high bit rates, such as 

wavelength conversion at 640 Gb/s  [14], or add-drop multiplexing at 160 Gb/s  [15]. 

However, it is still essential to investigate and develop more complex functionalities which 

will enable the true and effective all-optical processing capabilities of the networks of the 

future. 

1.3 Thesis objectives and outline 

The objective of this thesis is to contribute for the development of all-optical 

functionalities, which may constitute the building blocks for the all-optical routers of the 

future. It is not the objective of this work to propose or develop a routing solution, as 

research is not yet at the level where realistic all-optical routers can be developed. We 

focus on surpassing the SOA inherent limitations, such as slow response time or signal 

degradation due to intra-channel distortion, and on developing some of the urgent network 

requirements, such as wavelength converters, pulse and modulation format converters, and 

regenerators. 
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This thesis is organized in five chapters where several SOA based functionalities 

are investigated, the present introduction chapter, and a conclusion chapter. 

Chapter 2 presents an overview of the fifty year history behind SOA 

developments. An overview of the principle behind amplification in semiconductor 

materials is delivered, and techniques employed for the design of more efficient SOA. 

Different SOA-based solutions, like multi-electrode SOA (ME-SOA), gain-clamped SOA 

(GC-SOA) or reflective SOA (R-SOA) are revised and different network applications are 

pointed for each of them. The non-linear behavior of SOA is detailed regarding gain and 

phase dynamics. Such dynamics are the base of all applications studied throughout this 

work. The simulation model considered in the rest of this work is presented. This chapter 

includes also the state-of-the-art regarding several applications of SOA. 

Chapter 3 is focused in wavelength conversion. This is most basic all-optical 

functionality and the principles behind it are fundamental for the development of other 

processing functionalities. Wavelength converters are divided in four main groups, 

depending on the main non-linear effect involved: cross-phase modulation (XPM), cross-

gain modulation (XGM), cross-polarization rotation (XPR), and four-wave mixing (FWM). 

From these, cross-phase modulation and cross-gain modulation are chosen to perform most 

of the functionalities along this thesis, due to their superior characteristics: robustness to 

variations in the input signal like polarization, power and wavelength; allow simple 

processing schemes, which operate at ultra-high bit rates; versatile configurations can be 

obtained by combining these two non-linear effects. We experimentally demonstrate 

methods to enhance the operation bandwidth of XGM based on detuned filtering. A 

method to convert phase modulation to intensity modulation, based on detuned optical 

filtering, is applied for the first time in a gain-clamped SOA wavelength converter. Phase-

to-intensity conversion in a MZI-SOA is experimentally characterized at 10 Gb/s and 

40 Gb/s 1 to 4 multi-wavelength conversion in MZI-SOA is experimentally demonstrated. 

In Chapter 4 two novel format converters are proposed. First, a format modulation 

converter from optical double sideband (oDSB) to optical vestigial sideband (oVSB) is 

presented. The converter is based on self-phase modulation (SPM) non-linear effect. The 

converter operation is enhanced by the use of a continuous wave signal (CW) holding 

beam, which avoids distortion caused by self-gain modulation (SGM). Operation is 
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demonstrated by simulations and experiments at 10 Gb/s and at 40 Gb/s. After 

characterization in back-to-back, the converted signal is transported over optical fiber to 

assess its transmission properties. Two scenarios are considered: without any optical or 

electrical dispersion compensation (ODC and EDC), and with simple EDC. A second 

modulation format converter, from on-off keying to carrier suppressed return-to-zero, is 

proposed. The proposed scheme, which exploits the interaction between XGM and XPM in 

a SOA, is first compared via simulations with the common transmitter. Afterwards, single- 

and multi-channel operation up to four channels are experimentally assessed at 40 Gb/s. 

Chapter 5 focuses on format conversions between return-to-zero (RZ) and non-

return-to-zero (NRZ) pulse formats. Two schemes to convert RZ to NRZ are proposed and 

experimentally demonstrated. The first uses a detuned optical filter and XPM in a SOA. 

The optical filter shape is optimized and approximated by Gaussian filters. 

Characterization is presented at 10 Gb/s and at 40 Gb/s. The second method employs a two 

stage structure: in the first stage the gain-clamped SOA internal laser is modulated with the 

data signal; the second stage consists in XGM in a common SOA. Demonstration is 

presented at 10 Gb/s for different pulse width at input.  

Optical regeneration is studied in chapter 6. A MZI-SOA structure is employed for 

the first time to suppress multiple access interference (MAI) noise of coherent 8 chip 

10 Gb/s OCDMA signals. A novel 2R regeneration scheme is proposed, which uses the 

modulation of the internal laser of a gain-clamped SOA. This regenerator is experimentally 

tested at 2.5 Gb/s. 

Chapter 7 delivers a summary of the work and the main conclusions. Proposals for 

future work are also presented. 

1.4 Main contributions 

The most important results presented in this thesis are: 

• Study of the cross-gain modulation (XGM) bandwidth limitation imposed 

by the effective carrier lifetime. 
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• Exploitation of a scheme which employs detuned optical filtering to convert 

phase to intensity and enhance up to 40 Gb/s the modulation bandwidth of a 

SOA device originally designed for operation at 2.5 Gb/s. 

• Investigation of a wavelength converter based on cross-phase modulation 

(XPM) in a Mach-Zehnder interferometer with SOA (MZI-SOA). Operation 

is enabled over single and multi-input signals at 40 Gb/s. This work resulted 

from collaboration with the Technical University of Eindhoven, 

Netherlands. 

• XPM wavelength conversion in a gain-clamped SOA is proposed and 

assessed at 10 Gb/s. 

• A novel all-optical converter between optical double sideband (ODSB) and 

optical vestigial sideband (OVSB) is proposed and demonstrated at 10 Gb/s 

and 40 Gb/s. To the authors knowledge this is the first true all-optical 

converter between these modulation formats that does not require optical 

filtering. The converter is characterized regarding robustness to optical fiber 

transmission and application in real networks. 

• Characterization of return-to-zero (RZ) to non-return-to-zero (NRZ) pulse 

format converter based on detuned filtering of a XPM signal with 

demonstration at 10 Gb/s and 40 Gb/s. 

• Proposal of a scheme to convert RZ to NRZ based on modulation of the 

internal laser of a gain-clamped SOA and assessment of its performance at 

10 Gb/s with ultra-short input optical pulses. This work was developed in a 

joint collaboration with ISCOM, Rome, Italy. 

• Proposal and implementation of converter from NRZ to RZ with 

simultaneous format conversion to carrier-suppressed. Experimental 

demonstration over 40 Gb/s single and multi-input. 
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• Regeneration of multi-access interference (MAI) of an optical coded 

division multi access (OCDMA) signal with MZI-SOA. This work was 

developed in a joint collaboration with NICT, Tokyo, Japan. 

• Proposal of the use of gain-clamped SOA to obtain true 2R regeneration and 

demonstration at 2.5 Gb/s. 

From this work resulted a total of three patent applications, eight journal papers, 

nineteen international conference papers, and five national conference papers. Appendix I 

lists the contributions resultant from this work. 

Effective research can not be done without sharing of knowledge, ideas, and 

facilities. This work includes the result of four collaborations: with University College of 

London (UCL), to characterize the dynamic response of SOA; with ISCOM, Rome, to 

explore the immense potentials of gain-clamped SOA; with the Technical University of 

Eindhoven (TuE) to experimentally develop efficient multi-wavelength applications; and 

with NICT, Japan to demonstrate the application of SOA-based devices in OCDMA 

networks. 

The work developed has been framed in a PhD program in an industrial 

environment at Nokia Siemens Networks (NSN) Portugal, S. A. (formerly Siemens, S. A.). 

NSN is one of the main optical network vendors in the market and leads research and 

development (R&D) of optical network solutions. As a consequence, this work has been 

earthbound by the premises and requirements of a demanding industry: low costs, 

simplicity, robustness, and potential for fast integration in real products. Some evidences 

of this link are the three patent applications filed during the development of this work, the 

development of a prototype for a modulation format converter, used internally in NSN in 

comparison with other solutions (detailed in appendix IV), and a very strong focus on the 

cost, simplicity and robustness of solutions. 
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Chapter 2  

Semiconductor optical amplifiers 

2.1 Motivation 

Semiconductor optical amplifiers (SOA) are the key device for the all-optical 

processing functionalities studied and proposed in this thesis. This chapter presents an 

overview of the history behind the development of SOA and of some basic design 

principles to optimize its characteristics. Propagation of optical signals in SOA is analysed 

via gain and phase dynamics. The simulation model utilized throughout this work is 

detailed, which includes intra- and inter-band effects. Finally, the most relevant linear and 

non-linear applications of SOA are presented. 

2.2 Historical development 

The development of semiconductor optical amplifiers (SOA) is closely related to 

progresses in semiconductor lasers (SL) technology. The first SOA were regular laser 

diodes biased below threshold  [12]: SOA are also know as semiconductor laser amplifiers 

(SLA) in the early literature  [16],  [17],  [18]. In 1966, anti-reflection coatings (ARC) were 

proposed to reduce the optical feedback and allow amplification of infrared light  [19]. The 

double heterostructure was demonstrated in 1969 and led to significant improvements in 

both lasers and SOA, such as enabling operation at room temperature  [20]. Whilst first 

studies focused AlGaAs SOA, operating in the 830 nm range  [21], in the 80’s decade 

InP/InGaAsP SOA were designed for operation in the 1300 nm and 1550 nm ranges  [16]. 
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By the second half of the 80’s the first transmission tests employing SOA as in-line 

amplifiers were reported  [22]; however, in 1987 the Erbium doped fiber amplifier (EDFA) 

was invented  [4] and began to compete with SOA for linear amplification purposes. The 

first true travelling wave SOA (TW-SOA) are reported in the end of the 80’s  [17]. These 

devices are enabled by developments in anti-reflection coatings and feature low 

polarization sensitivity – one of the main drawbacks of early SOA. By mid 90’s the first 

semiconductor amplifiers featuring simultaneously high gain, high saturation power, and 

low polarization dependence are reported  [23]. More recently, quantum-dot SOA (QD-

SOA) have been developed to provide higher cross signal independence, lower biasing 

currents and wider operation bandwidths, along with other advantages  [24]. 

Currently, SOA are presented as enabling devices for low cost amplification and 

processing in access networks  [25],  [26], since these can be used in photonic integrated 

circuits  [27], allowing integration with several other optical components – passive or 

active. Moreover, SOA are compact, electrically pumped, have a large optical bandwidth, 

and allow flexibility in the choice of the peak gain wavelength. Due to their non-linear 

characteristics and fast response, SOA are also key devices for state-of-the-art all-optical 

processing at ultra-high bit rates (BR)  [28].  

The increase in the per channel bit rate and in the total number of wavelength 

multiplexed channels are exhausting the electrical processing capabilities of networks. 

Electrical processing at ultra high bit rates, such as 40 Gb/s and superior has high costs, 

footprint and energy consumption  [29]. As a consequence, all-optical processing is 

currently one of the key research topics in optical networks  [30].  

2.3 Principle of SOA operation 

The operation of semiconductor optical amplifiers requires bringing together a 

p-type semiconductor and an n-type semiconductor to form a p-n junction. The 

denominations n- and p-type refer to the semiconductor doping with impurities that have 

an excess valence electron or one less valence electron, respectively, when compared to the 
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semiconductor atoms  [31]. Figure  2-1 depicts the energy band of a p-n junction. In thermal 

equilibrium, the Fermi level1 must be continuous across the junction (also know as 

depletion region). Under such condition, the charged particles set an electrical field that 

prevents diffusion of electron and holes across the depletion region (Figure  2-1 a)). By 

applying an external electrical voltage, the built-in electrical field is reduced, resulting in 

diffusion of electrons and holes across the depletion region. When an electron and a hole 

are present in the same region, recombination can occur, and a photon is produced. A 

photon may be generated through stimulated or spontaneous emission. Spontaneous 

emission originates photons with random phase and frequency; these are essentially noise 

and contribute to reduce the optical gain. On the other hand, stimulated emission is the 

mechanism responsible for the optical gain: the newly generated photon is identical to an 

emitting photon. Besides the radiative mechanisms, referred before, in a semiconductor 

material electrons and holes can also recombine non-radiativelly. These recombinations are 

not beneficial to the amplifier operation, thus efforts are made to its minimization. 
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a) Thermal equilibrium; b) Under forward bias. 

Figure  2-1: Energy band diagram of a homostructure p-n junction  [31]. 

2.4 Design of SOA 

Since the development of the first SOA devices, efforts have been made to improve 

their characteristics  [12] for application in optical networks. Ideally, an optical amplifier 

should feature the following characteristics:  

                                                 

1 The Fermi Level is defined as the highest occupied molecular orbital in the valence band at 0 K 
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• High gain, bandwidth, and saturation power;  

• Negligible reflections at the end facets;  

• Efficient coupling at the input and output;  

• Polarization independent amplification;  

• Low spontaneous emission noise;  

• Low bias current sensitivity; and low temperature dependence.  

To meet such requirements, it is required to optimize the SOA design. The SOA 

structure is usually a double heterostructure  [31], where the active layer is sandwiched 

between layers with different band gap energies. This configuration enables better 

confinement of the carriers to the active region, improving the device efficiency. Undesired 

reflections can be minimized through the simultaneous use of several methods, which have 

enabled reflectivities lower than 10-5 
 [32]: 

• Use of antireflection coating (ARC) at the end facets of the device  [33];  

• Utilizing angled facet structure, where the active region is not perpendicular 
to the facet cleavage plane  [34];  

• Guard a transparent region between the active layer and the active region 
end facets: window-facet structure  [35].  
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 a) Cross section; b) Top view with angled facet structure. 

Figure  2-2. Schematic representation of a buried ridge stripe SOA  [13]. 

Polarization independence is usually achieved by the use of a waveguide with a 

square cross section (and taper region to improve coupling efficiency). Other techniques 

can also be employed to enable polarization independence: ridge-waveguide SOA, and 
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structures based on strained materials. In Figure  2-2  a schematic representation of a buried 

ridge stripe SOA is depicted, showing some of the design techniques referred before  [13]. 

Semiconductor optical amplifiers are often classified in two main types depending 

on the facet reflectivity  [18]: Fabry Perot (FP) amplifiers and travelling wave amplifiers 

(TW). A FP-SOA is a resonant amplifier while TW-SOA features reduced facet 

reflectivity. Due to their characteristics, TW-SOA have replaced FP-SOA in most 

applications. Consequently, TW-SOA will be simply referred as SOA hereafter. 

2.4.1 Materials and structures for the active layer 

The type of material and the structure of the active region determine the behaviour 

of the SOA regarding unsaturated gain, gain spectral bandwidth, central wavelength, 

polarization dependence, etc. The most common structures are: bulk, and quantum well 

 [31]. In a bulk material all the dimensions of the active layer are significantly larger than 

the deBroglie wavelength, and the energy levels of the electrons and holes in the active 

region are continuum  [31]. In quantum well (QW) materials, the active region has one or 

more dimensions (usually thickness) of the order of magnitude of the deBroglie 

wavelength. Single QW devices have low carrier and optical confinement and high 

polarization dependence; therefore, are not commonly employed. Such drawbacks are 

avoided by the use of multi-QW (MQW). MQW materials have a series of stacked thin 

active layers separated by thin barrier layers  [32]. MQW devices have discrete energy 

density levels; therefore, the dependence with the photon energy (thus, its frequency) 

decreases: larger gain bandwidth is achieved  [32]. MQW also present improved noise 

figure, higher optical gain, and higher saturation power  [12]. On the other hand, bulk 

devices may be more interesting to non-linear applications, since these usually feature 

large optical confinement and phase to amplitude coupling. 

SOA employing quantum dot materials (QD-SOA) are currently blooming and 

being intensively studied. The active layer consists on nano-size semiconductor islands 

spatially isolated, which exchange carriers with a wetting layer; therefore, the energy states 

in the active layer are discrete.  QD-SOA are still under research, but it is expected that 

when mature they will present the following characteristics  [36],  [37]: 
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• Ultrafast gain recovery (order of the picoseconds); 

• Low noise figure; 

• Broadband gain; 

• High saturation output power; 

• High four wave mixing efficiency; 

• Low threshold current; 

• Low patterning effects; 

• Multi wavelength conversion; 

• Possibility of efficient 3R. 

2.4.2 Semiconductor optical amplifiers with specific design 

In addition to the regular SOA structure, specific design can be considered to 

overcome some of the SOA inherent limitations and allow particular applications. 

Reflective semiconductor optical amplifier (R-SOA) 

In a reflective SOA (R-SOA), represented in Figure  2-3, one of the facets is not 

coated with antireflective material. As a consequence, the optical beam is reflected in one 

of the ends, travelling twice through the active region.  
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a) simplified cross section b) propagation of light inside the active region 

Figure  2-3. Schematic representation of a reflective SOA (R-SOA). 

Due to its reflective properties, R-SOA have been proposed to integrate a 

wavelength division multiplexed / sub-carrier multiplexed - passive optical network 

(WDM/SCM-PON) that shares the same wavelength for the up and down links  [38]. The 
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R-SOA operates simultaneously as amplifier and optical modulator, reducing the overall 

cost of the network  [39], [40]. R-SOA and high-birefringence fiber Bragg grating (FBG) 

were used to generate broadband orthogonal pumps and tuneable broadband wavelength 

conversion  [41]. 

Multi-electrode semiconductor optical amplifier (ME-SOA) 

In a multi-electrode SOA (ME-SOA), schematically represented in Figure  2-4, the 

current bias is injected through more than one electrode. Different currents can be injected 

at each electrode. ME-SOA have been proposed to perform simultaneous amplification and 

detection  [42]. ME-SOA are particularly interesting for this application since it allows the 

conservation of the signal DC component, and independence to temperature and bias 

current. ME-SOA also enable amplification, modulation, and detection in only one device 

 [43], with reduced electrical processing. A two section SOA was used as phase modulator 

with intensity modulation (IM) suppression  [44]. The electrical modulation signal is fed in 

anti-phase to the two electrodes. This combination of bias currents results in the 

cancellation of the overall IM, while enabling phase modulation due to the different 

linewidth enhancement factors of the two sections. We have proposed a similar principle to 

obtain independent intensity and phase modulation in a ME-SOA in  [45]. 
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Figure  2-4. Schematic representation of a multi-electrode SOA (ME-SOA).  
I1 – I4 represent bias currents. 

2.5 Gain and phase dynamics in SOA 

Ideally an ideal amplifier should feature constant gain, regardless of the input 

power. However, the gain of amplifiers saturates for high power input signals, resulting in 
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different gain for input signals with different power values. This effect is usually called 

gain saturation and is represented in Figure  2-5. For low input / output powers, the 

amplifier delivers a high gain, usually know as small signal gain; as the power increases 

the gain is reduced. The output power at which the gain is 3 dB bellow the small signal 

gain, is known as saturation output power. 
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Figure  2-5. Representation of gain saturation in an optical amplifier. 

In an EDFA, the gain dynamics are in the order of the milliseconds  [4], whilst 

optical signals usually have bit periods in the order of the picoseconds. As a consequence, 

gain saturation occurs due to the average power of the signal being amplified, resulting in 

negligible inter- and intra-channel distortion. In SOA, the gain dynamics are reasonably 

fast: in the order of the tens of picoseconds, which is a value comparable to the pulse 

duration in current systems. The SOA gain saturation provokes intra and inter-channel 

patterning effects and newly generated frequencies, i.e. four-wave mixing (FWM). 

Moreover, phase modulation also occurs in the SOA due to variations of the refractive 

index with the input power. From the later considerations, it is evident that if a SOA is to 

be used as a linear amplifier, the input signal power must be carefully chosen to prevent 

undesired distortion effects. On the other hand, the fast gain and phase dynamics can be 

exploited for non-linear applications. 

The gain and phase dynamics of SOA are associated to the dynamics of free 

carriers. The free carriers density and distribution vary due to intra-band and inter-band 

transitions which are represented schematically in Figure  2-6. 

In inter-band transitions, carriers transfer from the conduction band to the valence 

band and vice versa. These transitions are determined by electrical pumping, stimulated 
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and spontaneous emission, non-radiative recombination, and two photons absorption 

(TPA)  [12]. In intra-band transitions, the energy distribution of the carriers varies within 

the same band and is determined by: spectral hole burning (SHB), free carrier absorption 

(FCA), carrier heating (CH), and carrier cooling (CC)  [12].  
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Figure  2-6. Representation of intra-band and inter-band transitions in a 
semiconductor. 

The carrier dynamics are evident through the gain response to an ultra-short optical 

pulse, as represented in Figure  2-7. The incoming optical pulse stimulates carriers which 

have energies similar to the incoming pulse photon to recombine. This provokes a hole in 

the carrier distribution and is associated with SHB. The carrier density within the band is 

also reduced via stimulated emission. Simultaneously, TPA occurs since there is a high 

photon density in the active region. FCA also takes place: a free carrier absorbs a photon 

and moves to a higher energy level in the same band. Carrier depletion is a fast process. 
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Figure  2-7. Representation of the SOA gain response to an optical pulse and 
associated carrier dynamics. 



32  Chapter 2 Semiconductor optical amplifiers  

 

 

When the optical pulse leaves the SOA, the Fermi distribution is restored through 

carrier-carrier scattering; the related time constant is referred as SHB relaxation time.  

Although the Fermi distribution is restored, the carrier temperature has been increased due 

to stimulated emission, FCA and TPA. The temperature decreases via phonon emission; 

the related time constant is referred as CH or temperature relaxation time. These are fast 

intra-band processes. The original carrier level is then restored by means of electrical 

pumping, which is a slow process (hundreds of picoseconds). More information on carrier 

dynamics can be found in  [12],  [46],  [47]. 

2.6 Modelling of signal amplification in SOA 

The propagation of the electromagnetic field inside a semiconductor optical 

amplifier is governed by the well known wave equation  [31],  [48] in the frequency 

domain2: 

( ) ( ) ( )
2

2 2 0
0

0 0

1
ki

w k w w
w

σ
ε ε

 
∇ Ε + + ⋅Ε = − Ρ 

 

% % % , ( 2-1) 

where ∇2 represents the Laplacian operator, 0ε is the electrical permittivity of free 

space, 0 2k w c π λ= = is the vacuum wave number, c is the speed of light in vacuum, w 

and λ are the optical signal angular frequency and wavelength. Ε%  is the electrical field 

vector of the optical field, P is the polarization density arising inside the medium in 

response to the optical field and σ  is the conductivity of the medium. Note that and Ε%  and 

Ρ%  are complex.  

Under steady state conditions the response of the medium to the electric field is 

governed by the susceptibilityχ% : 

                                                 

2 The Fourier transform definition used throughout this work is: 

( ) ( ) ( )1
exp

2
A w A t iwt dt

π

+∞

−∞

= ⋅ ⋅∫ , with t standing for time and w for the angular frequency.  
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( ) ( ) ( )0w w wε χΡ = ⋅ ⋅Ε% %%  ( 2-2) 

The full deductions of the equations that rule the pulse propagation are outside the 

scope of this work, more details can be found in  [12],  [48],  [49],  [50]. Hereafter only 

results that are required for the considered model are presented.  

To enable the deduction of a simple and practical equation for pulse propagation 

inside the SOA, it is necessary to consider some assumptions and simplifications: the 

amplifier is considered to be an ideal travelling-wave amplifier whose active dimensions 

are such that only a single waveguide mode is allowed. Assuming that the light is linearly 

polarized and remains as such during the propagation, the electric field inside the amplifier 

can be written as  [48]: 

( ) ( ) ( )1
ˆ, , , , ,

2
g

w zi w tv
x y z t x F x y A z t e

  ⋅ − ⋅  
  

  Ε = ⋅ ⋅ 
  

% , ( 2-3) 

where x̂  is the polarization unit vector, ( ),F x y  is the waveguide-mode 

distribution, ( ),A z t  is the slow varying envelope associated with the optical pulse, 

/g gv c n=  is the group velocity, ( )gn n w dn dw= + ⋅  is the group index, and n  the 

effective mode index.  

To derive the equation that governs the evolution of the pulse along the amplifier 

we will transform our referential in a frame moving with the pulse: 

'
g

z
t t

v
= −  

( 2-4) 

'z z=  ( 2-5) 

Without loss of continuity, and for simplicity of notation, the prime over t’ and z’ 

will be dropped hereafter. To facilitate the notation hereafter, the amplitude and phase 

information of the pulse are split: 
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( ) ( ) ( ), , exp ,A z t P z t i z t = ⋅ ⋅Φ  , ( 2-6) 

With ( ),P z t the pulse power, and ( ),z tΦ the pulse phase. 

2.6.1 Gain dynamics 

The signal power along the SOA is described by  [13]: 

( )T int

P
g P

z
α∂ = Γ ⋅ − ⋅

∂
, ( 2-7) 

Where αint is the SOA absorption coefficient caused by the internal waveguide loss, 

Γ is the confinement factor, which is described by ( 2-8) and describes the gain reduction 

due to the spreading of the optical mode beyond the active region of the SOA. 

( )

( )

2

0 0

2

,

,

w d

F x y dx dy

F x y dx dy
+∞ +∞

−∞ −∞

⋅ ⋅
Γ =

⋅ ⋅

∫ ∫

∫ ∫
 ( 2-8) 

For simplicity, the confinement factor is usually assumed to be a constant. In  [12] a 

more accurate model is presented, which includes dependence of the confinement factor 

with the wavelength and carrier density. 

The gain coefficient Tg  is also  assumed to be independent of the wavelength and 

is given by  [12] : 

T N CH SHB TPA,g g g g g= + + +  ( 2-9) 

With gN standing for the material gain, which reflects the contribution of inter-band 

processes (carrier density pulsation); and gCH, gSHB, and gTPA stand for the gain associated 

with carrier heating (CH), spectral-hole burning (SHB), and two-photon absorption (TPA), 

respectively. 
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Equation ( 2-7) can be simplified to: 

( ) ( ) ( ), ,inP z t P t G z t= ⋅ , ( 2-10) 

With Pin (t) = P(0,t) the optical power at the SOA input and G the gain, given by: 

( ) ( )T int

0

, exp
z

G z t g dzα
 

= Γ − ⋅ 
 
∫  ( 2-11) 

2.6.1.1 Inter-band processes 

Inter-band processes alter the carrier density, N; however, these do not affect the 

carrier distribution. Variations of N are also known as carrier density pulsation (CDP). The 

gain of the semiconductor material is directly determined by the free carrier density. The 

gain associated with inter-band processes is then given by  [18]: 

( ) ( )( )N , , .tr

dg
g t z N t z N

dN
= ⋅ −  ( 2-12) 

In the previous equation, dg/dN is the differential gain coefficient, which is here 

assumed to be a constant; N is the free carrier density in the conduction band and, for 

simplicity, will referred simply as carrier density hereafter; finally, Ntr is the carrier density 

at transparency (when gN=0). 

The carrier density is described by  [18]: 

ASE ST REC

dN I
R R R

dt eV
= − − − . ( 2-13) 

The first right hand term in ( 2-13) represents the rate of injected electrons in the 

SOA active layer; with I the injected current, q the electron charge, and V the active layer 

volume. RASE accounts for the carrier recombination, stimulated by spontaneous emitted 

photons and will be neglected here. RST is the stimulated recombination rate, described by: 

ST g TR v g S= ⋅ ⋅ . ( 2-14) 
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S represents the average photon density inside the active region  [12],  [51]: 

( ) ( )
( )

2 1
,

ln
in

g

L P t G
S z t

h V w v G

π ⋅ Γ ⋅ ⋅ −= ⋅
⋅ ⋅ ⋅ ⋅

, ( 2-15) 

With L the active layer length, and h the Plank constant. 

The recombination of carriers not directly affected by the signal or ASE 

propagation, spontaneous recombination rate, is represented by RREC and is given by the 

following expression: 

REC
S

N
R

τ
= , ( 2-16) 

With τS the carrier lifetime, often represented by  [13]:  

( ) 12
S NR SP AugerA B N C Nτ

−
= + ⋅ + ⋅ . ( 2-17) 

The coefficients in ( 2-17) denote non-radiative processes, spontaneous emission, 

and Auger recombination, respectively. RREC is also often represented by N/τS.  

Considering ( 2-12) - ( 2-17), the material gain can be represented by the following 

differential equation: 

N N tr
T g

s s

dg g Ndg I
g S v

dt dN eVτ τ
 

= − − ⋅ ⋅ ⋅ + − 
 

 ( 2-18) 

2.6.1.2 Intra-band processes 

Inter-band gain dynamics are the dominating gain mechanism when long pulses are 

used (i.e. above tens of picoseconds). However, for short optical pulses the intra-band 

processes become relevant in the overall gain dynamics. Intra-band processes alter the 

carrier distribution within the conduction band. The main intra-band processes are SHB, 

CH, and TPA. The differential equation for the gain associated with carrier heating, gCH, is 

given by: 
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CH CH

CH CH CH
T

dg g
g S

dt

ε
τ τ

= − − ⋅ ⋅ , ( 2-19) 

Where τCH is the CH relaxation time and εCH is the CH nonlinear gain compression 

factor. τCH usually ranges from hundreds of femtoseconds to few picoseconds. 

For the SHB process, the related relaxation time is faster (tens of femtoseconds) 

therefore an approximated equation is considered  [49]: 

SHB SHB Tg g Sε≈ − ⋅ ⋅ , ( 2-20) 

With εSHB representing the SHB nonlinear gain compression factor. 

The TPA process is neglected in this work since the TPA contribution is one order 

of magnitude smaller than the gain compression associated with CH and SHB, for sub-

picosecond pulses with moderate energies  [52],  [12]. 

2.6.2 Phase dynamics 

The gain and refractive index variations are not independent. These are linked by 

the Kramers-Krönig relations  [53]; as a consequence, if the gain is known, the refractive 

index can be calculated numerically, and vice-versa. The evaluation of the exact 

dependence is complex; therefore, the refractive index is usually calculated through the 

linewidth enhancement factors 3. The signal phase along the SOA can described by  [13]: 

( ) ( ) ( )
0

, ,0
2

z

N N CH CH SHB SHBt z t g g g dzα α αΓΦ = Φ − ⋅ ∆ + ⋅ + ⋅∫ , ( 2-21) 

With ( ) ( )stN N Ng g N g N∆ = − , Nst standing for the unsaturated carrier density:  

                                                 

3 The linewidth enhancement factor is also known in the literature as α-factor, phase amplitude 

coupling factor, or Henry factor  [12] [54] [55] [48]. 
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N

e V

τ⋅=
⋅

, ( 2-22) 

And αN, αCH and αSHB are the linewidth enhancement factors for CDP, CH and 

SHB. The linewidth enhancement factors usually depend on N, z, t, on the wavelength, and 

on temperature; however, for simplicity these are usually treated as constants. 

2.7 SOA simulation tool  

In the previous section the equations that describe the operation of SOA have been 

presented. However, such equations do not allow an analytic solution. In this section the 

simulation model considered throughout the rest of the work is described. 

L

1 2 3 j M-1 M

Lj

z

z0 z1 z2 z3 zj zM-2 zM-1 zMzj-1
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Φin(t) 
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Pout(t) 
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Figure  2-8. Schematic representation of the SOA active section division into M 
sections. 

The SOA simulation model relies on dividing the SOA active section into M 

sections  [12],  [56], as illustrated in Figure  2-8. Unidirectional propagation is considered: it 

reduces dramatically the simulation time; furthermore, most of the experimental work done 

in this thesis considered unidirectional propagation. The simulations carried in this work 

do not consider amplified spontaneous emission noise added by the SOA, for several 

reasons: first, the main impairment to SOA non-linear applications is the degradation 

caused by SOA gain dynamics, not optical noise; second, current SOA noise figures can be 
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as low as 6 dB  [57]; third, SOA input powers for non-linear applications are rarely below 

-10 dBm; by last, the impact of cascading multiple SOA based devices is not studied in this 

work.  

The power and phase at the input of the first section are obtained from the power 

and phase at the input of the patch cord that connects to the SOA (Pin(t) and Φin(t)) by: 

( ) ( )
( ) ( )

in
10

0 in

0 in

, 10

,

IL

P z t P t

z t t

−
= ⋅

Φ = Φ
, ( 2-23) 

With IL in the input losses (logarithmic units), determined mostly by fiber splices, 

coupling losses, and by the transmittance of the SOA input facet. 

 The power and phase at the output of the patch cord, Pout(t) and Φout(t) 

respectively, are obtained from: 

( ) ( )
( ) ( )

out
10, 10

,

IL

out M

out M

P t P z t

t z t

−
= ⋅

Φ = Φ
, ( 2-24) 

With ILout the output losses (logarithmic units), determined mostly by fiber splices, 

coupling losses, and by the transmittance of the SOA output facet. Note that P(zM,t) and 

Φ(zM,t) are not illustrated in Figure  2-8, but represent the power and phase at the output of 

section M, which is immediately before the output facet. 

In the considered model all sections have similar length and the number of sections 

(M) is adapted to the characteristics of the input signal (bit rate and pulse duration).  In 

each of the M sections, the carrier density and the bias current (I j) are assumed to be space 

independent. Following the model of the section  2.6, the power and phase at the output of 

section j are given by: 

( ) ( )
( ) ( ) ( )

1

1 , , ,

, ,

, ,
2

j j j

j
j j N N j CH CH j SHB SHB j

P z t P z t G

L
z t z t g g gα α α

−

−

= ⋅

Γ ⋅
Φ = Φ − ⋅ ⋅∆ + ⋅ + ⋅

 ( 2-25) 

With the jth section gain given by: 
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( ) ( )T, intexpj j jG t g Lα = Γ − ⋅  . ( 2-26) 

All the components of gT,j are obtained from the equations of the previous section, 

replacing L by Lj and I by I j. Assuming that all sections have similar lengths, Lj = L/M and I j 

= I/M. The differential equations are solved via the numeric method Runge-Kutta  [58].  

The simulation parameters considered in this work are detailed in Appendix II. 

2.8 Gain-clamped semiconductor optical amplifiers 

In early days of WDM systems (early 90’s), SOA working in the linear regime 

were pointed as a promising solution to perform optical amplification. However, it was 

observed that severe inter-channel penalties arise from cross gain modulation. To diminish 

such crosstalk, a new structure was proposed by Bauer et al  [59], which consisted on a 

laser amplifier where lasing is induced by distributed feedback (DFB). Later, a distributed 

Bragg reflector (DBR) scheme was also proposed  [60]. These two gain clamped SOA (GC-

SOA) schemes are illustrated in Figure  2-9. More recently, vertical gain clamping with 

DBR has also been reported  [61]. However, this work will focus on longitudinal gain-

clamping, since all our experimental work was developed with a DBR GC-SOA. 

 

Bragg 
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a) DFB GC-SOA b) DBR GC-SOA 

Figure  2-9. Schematic representation of a gain-clamped SOA (GC-SOA).  

The principle of gain-clamping in SOA is illustrated in Figure  2-10.  In a laser 

biased beyond the oscillation threshold, the cavity gain at the laser wavelength is clamped 

to a value similar to the cavity losses at that wavelength  [59]. This means that, when a 

probe signal is injected in the GC-SOA, the power of the internal laser will vary inversely 
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to the probe signal power, in order to maintain a constant cavity gain. When the probe 

signal power exceeds a threshold value, the internal laser is shut down and the GC-SOA 

operates similarly to a common SOA - Figure  2-10 a). The simulated optical gain of a GC-

SOA and of a common SOA are compared in Figure  2-10 b): the GC-SOA has an 

approximate constant gain up to higher input powers: higher saturation power is achieved 

at the expense of a decrease in the unsaturated gain. 
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a) Internal laser power b) optical gain 

Figure  2-10. GC-SOA operation. The x axis in the graphics denote the output 
power at the probe signal wavelength. Scales in the graphics are for illustrative 
purposes only. 

Since the reflectivity of the gratings is low, a considerable power of the laser leaks 

to the output of the SOA. This can be verified in Figure  2-11, where the output spectrum of 

a GC-SOA is presented in absence of input signal. 
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Figure  2-11. GC-SOA output spectrum in absence of input signals (resolution is 
0.5 nm). Inset: zoom at wavelength of internal laser (resolution is 0.01 nm). 
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GC-SOA provide insensitive gain for a broader range of input powers; therefore, it 

became an attractive solution for in-line amplification of analogue signals: amplification of 

77 channel Cable Television signals was reported in  [62]. 

GC-SOA are also attractive devices for all-optical signal processing due to several 

characteristics: the internal laser leads to faster response  [63]; the internal laser dynamics 

can be explored for specific non-linear applications  [64]; and enhanced gain independence 

on the injection current 
 [65]. A 2R regenerator with a “true” regeneration characteristic 

based on GC-SOA in an interferometric structure was proposed by Morthier et al  [65]. The 

digital regeneration characteristic of such structure is based on linear gain (in unsaturated 

condition) and on very reduced gain dependence on the bias current. A wavelength 

converter, where the GC-SOA internal laser is directly modulated by the input optical 

signal, was proposed in  [66], resulting in very low input power requirements. Fast optical 

space switches are essential elements for the deployment of WDM networks; GC-SOA 

have been proposed as a promising solution due to fast on-off gating, on-off ratios higher 

than 50 dB, and reduced inter-channel crosstalk. In  [67], an 8x8 space switch based on 

arrays of 8 GC-SOA is experimentally reported with operation over 16x10 Gb/s WDM 

channels. The outstanding results are mostly due to low noise figure and very linear gain 

up to a high output saturation power.  Patterning effects induced by common SOA have 

been mitigated by GC-SOA: in  [68], 5000 km of fiber transmission were obtained using a 

GC-SOA-saturable absorber 2R regenerator, cascaded with a GC-SOA. Further 

transmission results report the combination of a vertical GC-SOA and distributed Raman 

amplification  [69]; with this technique, transmission of 16x10 Gb/s amplitude modulated 

channels was obtained along 400 km of fiber.  

2.9 Applications of SOA 

In the last decades SOA have been proposed not only as low cost amplifiers, but 

also as a promising core component for the all-optical networks of the future. An overview 

of the main applications of SOA is presented in this section. 
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Linear Amplifier 

SOA have low cost potential due to: compatibility with monolithic integration  [27], 

being electrically pumped, and allowing flexibility in the selection of the peak gain 

wavelength. Therefore, these devices have been pointed as an interesting solution to 

perform linear amplification, particularly in access and metropolitan networks, where the 

amplification performance requirements are not so strict  [70] [71]. Figure  2-12 illustrates a 

WDM network employing SOA as booster, in-line amplifier, and pre-amplifier variants.  

 

Figure  2-12.  Application of SOA as linear amplifier in booster, in-line and pre-
amplifier variants. 

Experimental SOA based transmission tests have demonstrated 10 Gb/s single 

channel transmission over 550 km of standard single mode fiber, at 1300 nm  [72]. Tests 

with WDM signals demonstrated transmission over 1050 km of eight 10 Gb/s channels at 

1550 nm  [73], and 640 km of sixteen 10 Gb/s channels  [74]. In analogue transmission 

systems, such as CATV, the linearity requirements are more stringent than in the digital 

systems referred above; therefore, special SOA have been developed: gain-clamped SOA, 

which have been described in the previous section. 

One of the main impairments to the use of SOA as linear amplifiers is the 

degradation of signals with advanced modulation formats, which carry phase information, 

due to cross-phase modulation at the SOA. However, in  [75] we have demonstrated 

amplification of optical single sideband (oSSB) signals, whose sideband suppression relies 

on phase modulation, with reduced sideband suppression penalty, provided that the input 

power is controlled. 



44  Chapter 2 Semiconductor optical amplifiers  

 

 

Optical modulator and detector 

SOA have been proposed as optical modulator and receiver, with particular interest 

in low bit rate access networks  [76],  [26]. SOA are particularly interesting since they 

perform the referred applications and simultaneously amplify the signal. These 

applications are illustrated in Figure  2-13. 

The principle of operation of an intensity modulator based on SOA is quite simple: 

the power of the output amplified signal is dependent on the bias current; therefore, optical 

modulation is performed by modulating the bias current with the information to be 

transmitted. This is a low price modulator with reduced complexity; it provides gain; and 

also features polarization and wavelength independent operation (if the SOA is 

polarization insensitive and the input signal is within the gain bandwidth of the SOA). 

When an IM signal is being amplified in a SOA, the carrier density is modulated with the 

inverse of the logical information of the input signal. The carrier density variations lead to 

a modulation of the junction voltage, resulting in a detection process. The main 

disadvantage of SOA being used as modulators and detectors is that the operation is 

typically limited by the inter-band recombination to few GHz. ME-SOA are also promising 

devices for detection and modulation, as discussed in section  2.4.2. 
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Figure  2-13. Application of SOA as modulator and detector. 

Wavelength Conversion  

Wavelength converters (WC) are key elements in all-optical networks. SOA based 

wavelength converters usually use one of the following non-linear effects: cross gain 

modulation (XGM), cross phase modulation (XPM), cross polarization rotation (XPR), or 
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four wave mixing (FWM). All-optical wavelength converters (AOWC) based on SOA are 

studied in  Chapter 3. 

Logic gates 

Ultra fast logic operations are fundamental for the inline processing capabilities of 

next generation networks. Most of the network related functionalities such as add–drop 

multiplexing, packet synchronization, clock recovery, address recognition, and signal 

regeneration require logical operations, which should be performed all-optically, especially 

for high data rates. Several implementations of all optical logic functionalities using SOA 

have been presented, from the following are highlighted: XNOR, AND, NOR, and NOT 

functionalities achieved using a simple scheme which employs a single SOA and optical 

filtering  [77]; several simple and complex logic functionalities are achieved via FWM in 

SOA for polarization shifted keying modulated signals in  [78]; parallel MZI-SOA also can 

provide multiple logical functionalities, like XOR, NOR, OR, and AND, reported in  [79]. 
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Figure  2-14. Operation of a 2x2 space switch. 

All-optical routing also requires effective 2x2 space switches. Figure  2-14 

demonstrates the operation of a 2x2 space switch: inputs A and B are switched either to 

output A or B, depending on the logic state of the control signal. 2x2 space switches can be 

implemented using MZI-SOA with 4 input ports  [80]. Due to the difficulty in obtaining an 

exact π phase shift between the two arms and gain compression, the MZI-SOA has an 

inherent imperfect contrast ratio of the output ports: the input signals are not completely 

switched between the two output ports. Nevertheless, over 20 dB extinction ratio between 
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the two ports are reported in  [80], by independently controlling the SOA bias currents and 

phase shifters of the two arms.  

Multiplexing and add-drop multiplexing 

Future networks are likely to simultaneously employ WDM and optical time 

division multiplexing (OTDM). In the later, the lower bit rate information of several users 

is bit interleaved to generate a higher bit rate signal. To allow dynamic switching and 

routing it is essential to develop all optical demultiplexers and add-drop multiplexers.  
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Demultiplexercontrol stream

dropped channel
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time

time
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Figure  2-15. Schematic demonstration of the operation of a demultiplexer and 
an add-drop multiplexer. Different colours denote different sources of the 
OTDM signal. 

Demultiplexing and add-drop multiplexing is illustrated in Figure  2-15. In a 

demultiplexer one of the bit interleaved channels is extracted from the higher bit rate data 

stream. The pulse train should be at the base data rate and in phase with the channel to 

extract. In an add-drop multiplexer one (or more) channel is extracted (drop channel) and 

is replaced by a new channel (add channel). The most promising results for demultiplexers 

and add-drop multiplexers based on SOA resort to interferometer XPM gates or the FWM 

effect. The following reported experimental achievements are worth highlighting: 

demultiplexing from 336 Gb/s to 10.5 Gb/s using a MZI structure in  [81], and from 160 to 

40 Gb/s using FWM in  [82]; add-drop multiplexing from 160 to 10 Gb/s using a gain 

transparent UNI in  [83].  

Clock Recovery and Regeneration  

Clock recovery and regeneration are detailed and studied in  Chapter 6. 
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Pulse and modulation format conversion 

Pulse Format converters are expected to be fundamental in the all-optical networks 

of the future, as different network scenarios require specific modulation and pulse formats 

 [84]. Format converters are studied in-depth in  Chapter 4, and pulse format converters in 

 Chapter 5. 

Other applications 

Besides the main applications described in the previous sections, SOA have also 

been employed in other applications, from which we highlight the following: 

• Broadband light source using superluminescent light emitting diodes 
(SLED), which have basically the same structure as SOA  [85]; 

• Continuous wave source, with experimental results of 50 wavelengths 
generation  [86]; 

• Dispersion compensation using mid span spectral inversion through 
FWM  [87]; 

• Short pulse generation, at high bit rates  [88]; 

• Optical flip flops  [89]; 

• Packet switches for optical packet switching (OPS) or optical burst 
switching (OBS) networks with contention resolution via wavelength 
conversion  [90]; or delay of contention packets in synchronous 
networks  [91]. 

2.10 Summary 

This chapter has presented an overview of the historical development of 

semiconductor optical amplifier (SOA) technology and the current-state-of the art 

including different materials and structures for the active layer, which determine the static 

and dynamic characteristics of SOA. SOA with specific design, such as reflective SOA, 

multi-electrode SOA, and gain-clamped SOA, have been presented as solutions for 

different applications. 
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The SOA gain and phase dynamics have been studied. The non-linear behaviour of 

SOA has been detailed, as it is the foundation of all-optical applications which will be 

studied throughout this work. The model considered for the simulation work has been 

presented, including intra- and inter-band effects. 

A state-of-the-art in terms of the most preeminent applications of SOA in optical 

networks has been presented, with particular relevance for non-linear applications. 
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Chapter 3  

Wavelength Conversion 

3.1 Motivation 

Wavelength converters (WC) are essential devices in wavelength division 

multiplexed (WDM) optical networks, as they allow wavelength reuse, dynamic routing, 

and avoid wavelength blocking  [92] [93], increasing the network throughput. Figure  3-1 

demonstrates, with a simple example, how wavelength converters can reduce network 

wavelength blocking  [94]. A uni-directional network with two available wavelengths, λ1 

and λ2, receives three traffic requests: between A and C, B and D, and C and B. If 

wavelength conversion is not supported, a single wavelength must be continuously utilized 

end to end for each traffic request. After serving connections A�C and B�D, the network 
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a) Without WC capabilities;  b) With WC capabilities at node A. 

Figure  3-1: Exemplification of network capacity optimization through 
wavelength conversion (WC). 
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capacity is exhausted, as is exemplified in Figure  3-1 a). If WC capabilities are available at 

node A, all traffic requests can be served, as illustrated in Figure  3-1 b). 

Wavelength conversion capabilities, together with pulse and modulation format 

conversion are also required in the interface between different hierarchies of optical 

networks, as discussed in more detail in  Chapter 4 and  Chapter 5. 

A wavelength converter is a device capable to shift one input signal at wavelength 

λ1 to another wavelength λ2, and is schematically illustrated in Figure  3-2. Wavelength 

converters can be divided in two groups  [95]: optoelectronic WC (OEWC) and all-optical 

WC (AOWC). In OEWC the input optical signal at wavelength λ1 is detected, usually 

suffers regeneration, and is optically modulated using a laser with wavelength λ2. On the 

other hand, in AOWC all operations are performed in the optical domain: there is no OEO 

conversion. OEWC have reasonable deployment in optical networks; however, these are 

limitative: OEWC present reduced transparency, and the costs increase with the bit rate 

and number of channels to be converted. Therefore AOWC have been intensively studied 

to avoid the so called “electronic bottleneck”.  

Wavelength
Converter

input @ λ1 output @ λ2 
 

Figure  3-2. Schematic representation of a wavelength conversion. 

Among the desired characteristics of a wavelength converter we highlight the 

following  [92]: 

• Bit rate independence; 

• No extinction ratio degradation; 

• Reduced signal to noise ratio degradation; 

• Moderate input power required; 

• Operation over a large input and output ranges of wavelengths; 

• Operation over a large input power range; 

• Low chirp; 
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• Simplicity; 

• Polarization insensitivity.  

Wavelength converters are of upmost importance since these also enable several 

other functionalities, such as optical logic or add-drop multiplexing of OTDM signals. 

Wavelength conversion in SOA is mainly achieved through one (or more) of the 

following non-linear effects: 

• Cross gain modulation (XGM); 

• Cross phase modulation (XPM); 

• Cross polarization rotation (XPR); 

• Four-wave mixing (FWM). 

This chapter presents a general overview of the operation principles and current 

state-of-the-art of SOA based wavelength converters in section  3.2. This section focuses in 

the four main sub-types, presented before. 

In section  3.3 a technique to enhance the operation bandwidth of a XGM 

wavelength converter based on detuned optical filtering is proposed and studied; the 

detuned filter is optimized to allow conversion of the slow SOA device – which is usually 

limited to input bit rate of 2.5 Gb/s - up to 40 Gb/s. Simulation and experimental results are 

presented. The SOA bandwidth enhancement with detuned filtering was previously 

presented in  [96] –  [99].  

A wavelength converter, suitable for return-to-zero (RZ) input signals, based on 

filtering of the XPM induced frequency chirp is assessed for the first time over gain-

clamped SOA (GC-SOA) in section  3.4. The converter operation is experimentally 

validated at 2.5 Gb/s and at 10 Gb/s  [100],  [101]. 

In section  3.5 a XPM wavelength converter in MZI-SOA is experimentally 

characterized  [102]. This characterization is the base for the results presented in section 

 3.6, where a 40 Gb/s 1 x 4 multi-wavelength converter is experimentally assessed and 

characterized  [103]- [105]. 
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3.2 Wavelength conversion techniques with SOA 

In this section, an overview is presented regarding the the main SOA-based 

wavelength conversion schemes. The section is organized according to the main non-linear 

effects: cross gain or phase modulation (XGM, XPM); cross polarization rotation (XPR); 

and four-wave mixing (FWM).  

3.2.1 Cross gain modulation 

The rate of stimulated emission in SOA depends on the carrier density and 

distribution in the active region. When a strong optical pulse is injected in the SOA, the 

carrier concentration is depleted through stimulated emission, causing a decrease in the 

SOA gain. This effect is named gain saturation. This saturation affects all wavelengths 

within the SOA gain spectrum, since in SOA the material gain spectrum is homogeneously 

broadened  [32]. 

When an intensity modulated information signal at λ1 and a continuous wave (CW) 

probe at λ2 are amplified simultaneously in a SOA, the gain is modulated with the inverse 

of the logical information carried by the information signal. Due to gain saturation effect, 

the CW signal intensity becomes modulated with the logical inverse of the input signal 

information. This simple modulation mechanism is commonly known as cross gain 

modulation (XGM).  

As illustrated in Figure  3-3, XGM wavelength conversion in SOA can be 

performed in a co-propagation scheme – when the CW probe and the information signal 

travel in the same direction; or in a counter-propagation scheme – when the CW probe and 

the information signal travel in opposite directions. The counter-propagation scheme 

avoids the use of output optical filter, and allows conversion to the wavelength of the input 

signal (i.e. λ2=λ1). However, the counter-propagation scheme is usually not used for 

operation at high bit rates, since as the transit time inside the SOA cavity approaches the 

order of magnitude of the bit period, the converted signal suffers amplitude distortion and 

temporal distortion  [106] . 
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b) Counter-propagation scheme. 

Figure  3-3. Wavelength converter using cross gain modulation in a SOA. 

Wavelength converters based on cross gain modulation in SOA are attractive 

because of their simplicity, high conversion efficiency, polarization independence 

(provided that the SOA is also polarization independent), capacity to enable conversion 

over a high range of input and output wavelengths, and multiple conversion at the same 

time  [107],  [108]. The main disadvantages are: small extinction ratio (because the gain is 

never reduced to zero); the changes in the carrier density within the SOA cause a variation 

in the refraction index, which will provoke a chirp in the converted signal; the conversion 

efficiency is dependent on the input and output wavelengths   [92]; and the operation speed 

is limited by the slow carrier recovery times. In section  3.3 we explore a method to 

enhance the cross gain modulation bandwidth beyond the slow carrier recovery times, 

based on detuned optical filtering. 

3.2.2 Cross phase modulation 

As detailed in chapter  2.6.2, when a SOA is under gain saturation, the refractive 

index will change as a consequence of the gain saturation variations. The refractive index 

variations induce a phase change in the signals being amplified. This basic principle behind 
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XPM wavelength converters in SOA is illustrated in Figure  3-4. An intensity modulated 

(IM) information signal at λ1 and a CW probe signal at λ2 are simultaneously amplified in 

a SOA based scheme. If the power of the IM signal is enough to induce gain saturation, the 

output signal at λ2 is phase modulated with the input information. Since XPM affects the 

signal phase, and the converter should maintain the information in the intensity domain, it 

is then necessary to perform a phase to intensity conversion. 
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Figure  3-4: Illustration of an IM-to-IM wavelength converter based on cross-
phase modulation (XPM) in SOA. 

XPM based WC present significant advantages when compared to other techniques: 

high conversion efficiency and output extinction ratio; differential schemes can be 

employed to allow conversion beyond the SOA temporal response; and the output signal 

information is not logically inverted. XPM converted signals have narrow spectrum when 

compared to XGM signals, allowing transmission over higher distances of fiber  [92] and 

higher spectral efficiency. The main disadvantage is the increase in complexity due to the 

additional PM to IM conversion. Moreover, it should be noted that in SOA XPM and 

XGM occur simultaneously, therefore the converted PM signal also presents IM distortion, 

which may introduce patterning effects due to the recovery time of the SOA. 

3.2.2.1 Filter assisted XPM wavelength conversion 

Figure  3-5 represents the instantaneous frequency of a probe signal at the SOA 

output, when a pulse is simultaneously propagated at a different wavelength. When the 

input signal power is at constant power level (either high or low power), the CW probe 
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signal wavelength remains unchanged (λ2). For the leading edged of an optical pulse the 

pump signal shifts to upper wavelengths – this is usually known as a red wavelength / 

frequency chirp. For trailing edges of the optical pulse a blue wavelength / frequency chirp 

occurs: the CW probe wavelength shifts to lower values. 
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Figure  3-5: Illustration of the instantaneous frequency of the probe signal due to 
XPM modulation in SOA. 

One very popular technique to convert the phase modulation to intensity 

modulation in SOA is optical filtering of the converted signal at the SOA output with a 

detuned filter  [109], portrayed in Figure  3-6. An optical filter is detuned from the probe 

signal central wavelength and aligned with the blue or red part of the converted signal 

spectrum, retrieving an optical pulse of each leading / trailing transition of the input signal. 

The central wavelength of the converted signal is detuned from λ2 by the signal clock 

frequency; the discrete clock tone becomes the new optical carrier. This technique is not 

appropriate for NRZ signals, since for consecutive ‘1’s the NRZ signals do not have power 

fluctuations not causing frequency chirping. 

This technique is popular for several reasons: it is simple, as the only device 

required, besides the SOA, is an optical filter; the output signal maintains the RZ shape; 

and the output extinction ratio is usually very high. Since the red chirp is associated with 

ultra-fast gain depletion, this converter has proved operation at ultra high bit rates such as 

320 Gb/s  [111]. The disadvantages of such scheme are that a very stable pump laser is 

required; otherwise the optical filter may provoke pulse distortion; this technique is not 
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appropriate for NRZ pulse format; and the converted signal may present residual distortion 

due to XGM.  

In the literature, this technique has been demonstrated only over common SOA. In 

section  3.4 XPM wavelength conversion technique with PM to IM conversion through 

detuned optical filter is experimentally demonstrated with gain-clamped SOA devices. 
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Figure  3-6: Illustration of XGM wavelength conversion by means of SOA and 
detuned optical filter. 

3.2.2.2 XPM converters with standard-mode interferometric structures 

Interferometric structures are widely used to obtain phase modulation to intensity 

modulation conversions. XPM wavelength converters based on interferometer structures 

can operate on standard mode or differential mode. Hereafter standard mode interferometer 

structures are reviewed. Differential mode structures are detailed in section  3.2.2.3. 

Mach-Zehnder interferometer with SOA (MZI-SOA) 

Figure  3-7 presents the basic scheme for a MZI-SOA wavelength converter in 

standard mode operation. The basic converter structure requires a local CW probe signal 

with optimized polarization. This signal is amplified in both the SOA of the MZI structure. 

In the upper SOA the input information signal is also amplified, provoking the XPM. In 

the lower arm the probe signal is amplified alone. In absence of information signal, the two 

pump replicas combine with destructive interference at the output of the MZI-SOA. When 

there is a pulse at the input, the phase difference between the two replicas is no longer π 
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and an optical pulse is then transmitted at the probe signal wavelength. Finally, the optical 

filter at the output eliminates the input signal wavelength. 

Although it is possible to operate interferometer structures with discrete 

components, great advantages outcome from monolithic integration, since it allows long 

term stability  [92]. Other MZI-SOA structures are possible, for example, in a counter 

propagating scheme, the optical filter at the output is not necessary. MZI-SOA structures 

usually incorporate phase shifters in each arm (not represented in Figure  3-7) and 

independent bias current control to optimize the operation conditions. 
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Figure  3-7: Standard mode MZI-SOA wavelength converter. 

Compared to the detuned filtering technique, the standard mode MZI-SOA has the 

advantage that it is not necessary to have high precision optical filter. On the other hand, it 

is limited by the slow recovery times of SOA. Results from Nielsen et al.  [112] 

demonstrate standard mode conversion at 40 Gb/s using SOA with ultrafast response. 

Michelson interferometer with SOA (MI-SOA) 

Michelson interferometer with SOA (MI-SOA) wavelength converter is represented 

in Figure  3-8. A CW probe signal is fed to the MI-SOA, where it is split and amplified in 

two SOA. The two SOA have reflective coefficients different from 0; therefore, a part of 

the CW signal wavelength is reflected back. The probe signal is then coupled and leaves 

the MI-SOA. In absence of light of the input signal, the two replicas of the probe signal 

interfere with destructive interference. For an input pulse, the phase modulation in the 

upper and lower SOA differ and a pulse is generated in the probe signal at the output. 

MI-SOA structure has generally been abandoned in favor of the MZI-SOA, since in 

the former the probe signal is amplified twice in the SOA. For a typical SOA with active 
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length of 1 mm, the round trip time in the SOA cavity is around 25 ps, which is the bit 

period of a 40 Gb/s signal. For such reason, wavelength conversion in MI-SOA is limited 

to signals with bit period very long, when compared to the SOA round trip time. To the 

best of our knowledge, the maximum bit rate reported for wavelength conversion in 

MI-SOA is 10 Gb/s  [113]. Moreover, currently there are no MI-SOA commercially 

available.  
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Figure  3-8: Standard mode MI-SOA wavelength converter. 

3.2.2.3 XPM converters with differential-mode interferometric structures 

Standard mode interferometric structures have been review in the previous section; 

these are simple; however, are limited by the SOA recovery time. Differential-mode 

structures allow to over come such limitation and are presented in this section. Figure  3-9 

compares standard- and differential-mode interferometric stuctures. In the standard mode, 

the probe signal at λ2 is split in two replicas: one of the replicas suffers XPM, caused by an 

input pulse at λ1; whilst the second replica is not affected by the input signal (i.e. its phase 

remains un-modulated). At the interferometer output the two probe signal replicas interfere 

(i.e. are subtracted with each other). As a result, a transmission window opens due to the 

input pulse and the phase modulation of the first probe signal replica is converted to 

intensity at the output. If short optical pulses (when compared to the SOA dynamics) are 

converted, the output signal has a fast rise time, but the fall time is limited by the slow 

carrier recovery. In the differential mode, both replicas of the probe signal suffer XPM, 

caused by the input signal. However, the second replica has lower PM intensity and its 

phase modulation is delayed when compared to the first replica. At the interferometer 

output the transmission window is limited by the delay between the phase modulation of 
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the two replicas; therefore, the output signal is not limited by the SOA slow recovery time. 

For more information on the difference between the time dynamics of SOA during 

saturation and recovery, consult section  2.5. The main SOA based wavelength conversion 

schemes with differential operation are detailed below. 
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a) Standard mode;  b) Differential mode. 

Figure  3-9: Schematic comparison between standard and differential mode 
XPM based on interferometer structure  [13]. Φ1 and Φ2 represent the phase of 
the two replicas of the probe signal. 

Differential mode MZI-SOA 

The most common differential scheme is illustrated in Figure  3-10 and employs a 

MZI-SOA  [114]. Contrary to the standard mode, where the information signal is fed only 

to one of the MZI-SOA arms, in the differential mode the input intensity modulated signal 

is split in two replicas. One of the replicas (the lower replica in Figure  3-10) suffers 

additional delay and attenuation when compared to the upper replica. Each replica of the 

probe signal suffers XPM, caused by the input signal. Since the phase modulations of the 

two probe signal replicas are delayed, a transmission window opens in the interferometer 

output and a short optical pulse is generated. This method is also known as push-pull. 
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The operation of this converter is not completely independent of the carrier 

recovery, since for high bit rates the pump signal phase does not have time to completely 

recover (reach 0º) between consecutive bits, causing patterning effects. Nevertheless, this 

structure has allowed wavelength conversion up to 168 Gb/s  [115]. 

τInput  information  
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delay VOA  

Figure  3-10: Differential mode MZI-SOA wavelength converter. 

Differential mode and standard mode MZI-SOA wavelength conversion is 

experimentally characterized in section  3.5 at 10 Gb/s. A differential mode MZI-SOA 

scheme is used in section  3.6 to achieve multi-wavelength conversion at 40 Gb/s. 

Semiconductor Laser in a Loop Mirror  

The semiconductor laser in a loop mirror (SLALOM) was the first structure where 

the differential mode XPM was introduced  [116],  [117]. It is also known as non-linear 

optical loop mirror (NOLM), or terahertz optical asymmetric demultiplexer (TOAD) when 

operated as a demultiplexer.  

The SLALOM is a Sagnac interferometer with a SOA placed slightly 

asymmetrically, with regards to the center of the loop, as represented in Figure  3-11. The 

CW probe signal is fed to the loop through a 3 dB coupler and split in two components that 

propagate through the loop in opposite directions. In absence of input signal power, both 

components acquire the same phase shift in the SOA and recombine with destructive 

interference at the coupler. In the presence of the data signal, the pump signal suffers a 

phase shift in the SOA. Due to the asymmetry of the placement of the SOA, a delay (τ) – 

corresponding to 2∆x/c (where ∆x is the difference is distance between the two paths) – 

between the two components of the probe signal will result in a window of constructive 

interference at the output. The switching window (the pulse width at the output) is defined 

by the SOA displacement.  
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This scheme originates an asymmetric switching window, since the trailing edge of 

the switching window is determined by the length of the SOA (since the counter clock-

wise component is traveling in counter propagating relatively to the data signal), whilst the 

leading edge is determined by the stimulated lifetime of the carriers. This scheme is, 

therefore, limited to a maximum bit rate of approximately vg/2L, where L is the length of 

the SOA. The SLALOM has been employed as an OTDM add drop multiplexer  [118] and 

as wavelength converter  [119]. 

Compared to the MZI, the SLALOM is more stable when operated in a discrete 

scheme, since the interfering components in the SLALOM share the same physical 

medium. In MZI-SOA the interferometer arms are physically separated and will have 

different perturbations (e.g. thermal fluctuations). 
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Figure  3-11: Semiconductor laser in a loop mirror (SLALOM) wavelength 
converter. 

Delayed-Interference Signal Converter 

The delayed-interference signal converter (DISC) is one of the simplest wavelength 

converter schemes based on XPM in SOA. The basic scheme is represented in Figure  3-12. 

The information and CW probe signals are fed to a SOA and amplified simultaneously and 

the probe signal suffers XPM. The optical signal after the SOA is then fed to a MZI. The 

upper arm of the MZI has an additional delay, τ, when compared to the lower arm. At the 

MZI output the two replicas are combined with destructive interference; therefore a logical 
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‘0’ is retrieved at the CW wavelength for ‘0’ of the information signal. In presence of the 

data signal, the CW suffers a phase shift in the SOA. As a consequence, the two signals are 

recombined with constructive interference, and a transmission window, with width of τ, is 

created. The phase shift is necessary to compensate the fact that with a single SOA it is not 

possible to ensure that ΦXPM(t) = ΦXPM(t+τ) - where ΦXPM is the phase of the cross phase 

modulated signal. The DISC has been used to achieve WC at bit rates up to 640 GHz  [14], 

 [120]. 

The DISC, although simple, requires an MZI with delay and phase shift which must 

be optimized to the input signal bit rate and to the wavelength of the probe signal. This 

requires additional complexity and costs in case tracking of input wavelength is required.  
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Figure  3-12: Delayed interference signal converter (DISC). 

Comparison with fiber based interferometer structures  

Highly non-linear fibers can also be used to as non-linear medium in interferometer 

switches. Comparing these with SOA based devices results in the following main 

differences: 

• Due to the non-ressonant nature of the fiber nonlinearity, the fiber response 
is not limited by recovery processes, therefore it is not necessary to employ 
differential schemes; and the response is independent on the repetition rate 
of the data signal; 

• The effective nonlinearity in fiber is much lower than in SOA; therefore, 
high interaction lengths are required; the XPM is dependent on the state of 
polarization of the light signals; 

• In fiber the cross-phase modulation depends on the state of polarization of 
the two signals  [13]; 

• SOA have great potential for integration; 
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• SOA provide optical gain and usually require moderate power levels at 
input. 

3.2.2.4 Gain Transparent Operation 

In all the XPM based wavelength conversion structures referred above, the probe 

signal also undergoes XGM non-linearity. XGM is usually undesired in schemes based on 

XPM, since it introduces patterning effects and degradation of the output signal. An 

operation mode called gain-transparent was proposed by Diez et. al. [118] to mitigate the 

harmful effects of the gain compression non-linearity. 

In a SOA, the maximum refractive index change occurs at the wavelength where 

the SOA gain is maximized. Since the changes in the refractive index lead to the desired 

phase variations which cause XPM, the maximum gain wavelength is usually chosen to be 

the operating wavelength of schemes relying on such non-linear effect. For higher 

wavelengths (the so called gain transparent region), low gain changes are obtained; 

however, it is still possible to achieve significant refractive index variations. In the gain 

transparent operation mode, the wavelength of the data control signal is tuned to the 

maximum gain wavelength of the SOA, but the wavelength of the probe signal is set to the 

transparent region. Another advantage is the insignificant noise emission in the gain 

transparent region. The gain transparent operation mode has allowed interferometer 

schemes to operate as de-multiplexer, optical sampler and add/drop multiplexer  [13]. The 

main disadvantages of such operation mode are that the probe signal is not amplified, and 

such converters are limited to out-of-band probe wavelengths. 

3.2.3 Four-wave mixing 

Optical wave-mixing results from the non-linear interactions of the optical waves 

present in the non-linear material, which, in the case of SOA, is the semiconductor. A full-

description of four-wave mixing (FWM) fundaments is out of the scope of this work and 

can be found in  [121] -  [125]. 

Figure  3-13 presents a typical FWM wavelength converter scheme. An input data 

signal at λ1 and a CW probe signal at λ2 = λ1 + ∆ are injected simultaneously in a SOA 

with the same state of polarization. The SOA carrier density and distribution are modulated 
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by the beating of the two waves in the active medium, which generates dynamic index and 

gain gratings. The interaction of the injected waves with these gratings leads to the creation 

of new frequency components, called the FWM components. Of particular interest is the 

FWM signal that is generated at frequency λ2 + ∆, usually designated conjugate wave, 

because its phase is the conjugate of the data signal. 

Output signal 

Input information signal

λ1

λ2
CW probe signal 

λ2 

λ2+-∆

po
w

er
p

ow
er

SOA

p
ow

er

po
w

e
r

OF

λ1 λ1-∆ λ2+∆  

Figure  3-13: Illustration of FWM wavelength conversion in SOA. 

FWM in SOA originates from both inter- and intra-band effects. For a detuning, ∆, 

in the order of few tenths of GHz, FWM efficiency is high, due to the modulation of the 

carrier density at the beat frequency, which is an inter-band process. However, the 

modulation rate of the carrier density is determined by the effective carrier lifetime, as 

referred before. For higher detuning values, the efficiency of this mechanism declines and 

the intra-band dynamics will dominate. The most preeminent intra-band effects involved in 

FWM are those related with SHB and CH, which have very fast relaxation time, which 

implies ultrafast operation, allowing performance in conversion above hundreds of Gb/s 

 [126] [127]. In  [128] experimental operation over 160 GHz signals is reported. 

The main advantages of FWM in SOA include:  

• The inherent speed of the process;  

• The generated signal reproduces the input signal, being ideal for phase 
sensitive modulation formats;  

• Low optical powers are required at the input of the device.  
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• FWM in SOA has an intrinsic high efficiency compared to nonlinear 
crystals or optical fibers, enabling shorter interaction lengths of the injected 
waves and decreasing the phase matching requirements;  

On the other hand, the main disadvantages of FWM in SOA are  [127]: 

• Penalties in the OSNR due to the ASE of the SOA;  

• Waveform distortion due to the gain compression of the SOA;  

• The efficiency is polarization dependent; 

• Lower efficiency when compared to other mechanisms (for example XGM). 

3.2.4 Cross-Polarization Rotation 

The operation of cross-polarization (XPR), or non-linear polarization switching 

(NPS), wavelength converters can be understood from the illustration of Figure  3-14, 

where a low power probe signal, with well defined polarization, is amplified in a SOA 

simultaneously with the input intensity modulated data signal. The gain saturation of the 

transversal electric (TE) mode differs from that of the transversal magnetic (TM) mode 

 [129],  [130]. Consequently, the refractive index changes of the TE and TM modes, caused 

by gain saturation, are also different. The output signal will then have different phase 

modulation in the two modes. 

To exemplify the XPR operation, suppose that the probe signal is polarized with the 

same power at the two modes (at 45º) at the SOA input, and that, in the absence of data 

signal light, there is no probe phase rotation between the two modes. The polarization 

controller (PC) and the polarization beam splitter (PBS) are adjusted to guarantee that in 

this condition the output power is cancelled at the probe signal wavelength. When an 

optical pulse and the probe are simultaneously amplified in the SOA, the state of 

polarization of the probe signal is changed by the SOA. If the state of polarization is 

rotated by 90º, a strong optical pulse will be transmitted at the output of the PBS. Single- 

and multi-wavelength conversion at 40 Gb/s was reported using the XPR effect  [131]. 

When compared to XGM, this method has the advantage of allowing high ER; however the 

conversion efficiency is lower. Similarly to XGM, the applicability of this method to high 

bit rate signals is limited by the slow carrier density recovery. 
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Figure  3-14: Schematic representation of the setup to perform cross-polarization 
(XPM) wavelength conversion and operation principle. 

3.3 Enhancement of cross gain modulation bandwidth 

Cross-gain modulation converters are limited by the slow SOA recovery times, as 

referred above. In this section, enhancement of the bandwidth of XGM wavelength 

converters is studied and detuned optical filtering is employed to allow operation beyond 

the gain recovery limitations. 

3.3.1 Decrease of the SOA effective carrier lifetime  

The modulation of the carrier density (N∆ ) for a given input photon density inS at 

the frequency modf for a very short amplifier can be approximately described by  [106]: 

( )
mod1 2

eff
T in g

eff

N f g S v
j f

τ
π τ

∆ ≈ ⋅ ⋅ ⋅
+ ⋅ ⋅ ⋅

, ( 3-1) 

where vg is the group velocity, gT is the material gain and effτ is the effective carrier 

lifetime, which is approximately given by  [106]: 

out

1 SN
g

e

dR dg
S v

dN dNτ
≈ + ⋅ ⋅ , ( 3-2) 
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With RSN the stimulated recombination factor, Sout the SOA output photon density, 

and dg/dN is the differential gain coefficient. From ( 3-1) we verify that the carrier 

modulation response exhibits a low pass characteristic with an optical 3dB bandwidth of: 

3

3

2dB
eff

BW
π τ

≈
⋅

 ( 3-3) 

From ( 3-1)-( 3-3), we conclude that the lower is the effective carrier lifetime, the 

higher is the SOA carrier modulation bandwidth. Effective carrier lifetime reduction is 

achieved when the output photon density and the differential gain are increased. 

Consequently, improvements outcome from enhancing the following parameters:  

• Current injection; 

• Optical input power;  

• Confinement factor; 

• Differential gain. 

To increase the factors referred above, longer SOA have been designed  [106]. 

However, increasing the length of the SOA also has some disadvantages: it is difficult to 

fabricate very long SOA with uniform cross sections of the active region; the spectral gain 

bandwidth of the SOA diminishes as the length of the cavity increases. Moreover, the 

transit time increases for long SOA; therefore, only co-propagation of the input signal and 

the CW can be used (since the counter-directional scheme has speed limitations, such as 

jitter that arises for high bit rate signals). 

Increasing the SOA driving current is one of the simplest ways to reduce the SOA 

temporal response. Figure  3-15 presents the normalized intensity pulse response of the fast 

SOA device (consult appendix II for characteristics of the SOA devices) when the injection 

current is 200 mA, 300 mA and 400 mA. Increasing the injection current reduced the 

temporal recovery time from 10 % to 90 % from 119 ps to 78 ps and 62 ps, respectively. 

Nevertheless, the maximum current density in the SOA is limited, thus the current can not 

be increased indefinitely. 
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Figure  3-15: Simulated temporal response to an optical pulse with a low power 
probe and a high power probe at the SOA input. 

The use of a holding beam was proposed  [63] to increase the power level inside the 

SOA, enabling higher modulation speed for the carriers. Figure  3-16 presents the 

normalized intensity response to an optical pulse by the fast SOA device. When pumped by 

a low power signal (-20 dBm), the recovery time is around 78 ps; however, when pumped 

by a -5 dBm CW signal, the recovery time is reduced to 53 ps. Although it reduces the 

SOA temporal response, the holding beam method has the disadvantage of reducing the 

converted signal extinction ratio (ER). 
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Figure  3-16: Simulated temporal response to an optical pulse with a low power 
probe and a high power probe at the SOA input. 
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3.3.2 XGM bandwidth enhancement by detuned filtering 

We have demonstrated in the previous section that the XGM bandwidth is 

improved when the SOA effective carrier lifetime is reduced. Pumping the SOA with high 

powers or increasing the injection current are simple methods to improve the SOA 

response; however, pumping the SOA reduces the output signal ER, and the injection 

current has an upper limit, which depends on the device characteristics, but is typically 

below 500 mA. Employing such techniques, current state-of-the-art SOA devices are still 

limited to recovery times in the order of the tens of picoseconds: SOA manufacturers CIP 

and Amphotonix currently report recovery times around 25 ps  [133],  [134]. Therefore, it is 

important to further enhance the bandwidth of XGM in SOA to enable operation in the 

range of the hundreds of GHz. In this section, a simple method, based on detuned optical 

filtering, is proposed to enhance the XGM bandwidth beyond the SOA recovery times. 

3.3.2.1 Operation principle 

To understand the operation principle of the XGM bandwidth enhancement via 

detuned optical filtering, consider Figure  3-17, which presents the simulated temporal 

shape and the frequency chirp shape of a XGM converted signal. The slow SOA device and 

a 10 Gb/s NRZ input information signal are considered. In this analysis, the power of the 

input and CW probe signals at the SOA input are -3 dBm and 0 dBm, respectively. 

After the SOA, the CW probe signal is amplitude modulated with the logical 

inverse of the input information signal, due to cross gain modulation. However, due to the 

SOA limited response time, patterning effects occur, as can be verified on the intensity of 

the XGM signal in Figure  3-17, and inter-symbol interference (ISI) is provoked. Since the 

power variations of the data signal lead to variations in the refraction index, cross phase 

modulation occurs simultaneously with XGM in the SOA. The SOA output signal 

frequency chirp is also represented in Figure  3-17. A positive frequency chirp (blue chirp) 

happens in the transitions of ‘1’ to ‘0’ of the data signal and a negative chirp (red chirp) on 

the ‘0’ to ‘1’ transitions.  These frequency chirps lead to a change of the instantaneous 

wavelength of the probe signal inside the SOA, as illustrated already in Figure  3-5. 
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Figure  3-17: Simulated temporal characterization of cross gain modulated signal 
intensity and frequency chirp. The slow SOA device is considered.. 

Since the instantaneous probe signal wavelength changes with the transitions of the 

input signal, if the SOA output signal is filtered by a thin optical filter with positive 

frequency detuning from its central wavelength, a pulse is retrieved at each ‘1’ to ‘0’ 

transition of the input signal; similarly a pulse is obtained if at each ‘0’ to ‘1’ transitions in 

case the detuning is towards negative frequencies. To verify this conjecture a 3rd order 

Gaussian filter with -3 dB bandwidth of 10 GHz is employed. To retrieve the blue chirped 

part of the spectrum it is detuned by 6.5 GHz relatively to the probe signal central 

wavelength; to obtain the red chirped part of the spectrum the detuning is -10 GHz. Figure 

 3-18 presents present the temporal shape of the original XGM signal and of the resultant 

signals after filtering with the 3rd order Gaussian filter. 

Figure  3-18 demonstrates that the blue chirp filtered signal presents an optical pulse 

when the XGM signal is increasing its power and the red chirp filtered signal presents a 

pulse when the XGM signal is decreasing its power. Enhancing the power of the blue 

chirped part of the spectrum will lead to a stronger (faster) rising edge of the XGM signal; 

on the other hand, the red chirp part of the spectrum is impeding the XGM signal to return 

back to a low power level. Following this line of thought, faster response is expected if the 

blue chirped part of the spectrum is enhanced with relation to the red chirped part. 

Enhancement of the blue chirped part of the spectrum will be achieved hereafter using an 
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optical filter detuned from the probe signal central wavelength. Since the optical filter is 

detuned, the power of the red chirp part of the spectrum will be decreased in relation the 

blue chirp part.  
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Figure  3-18: Simulated temporal intensity of the XGM signal and of the filtered 
blue and red chirp parts of the XGM signal spectrum, for a bit rate of 10 Gb/s. 

This XGM bandwidth enhancement method relies on conversion of the phase 

modulation, provoked by XPM, in intensity modulation, by detuned filtering. The 

underlying principle can also be used to obtain RZ to RZ wavelength conversion, as 

detailed in section  3.2.2.1, where a detuned optical filter is used to completely isolate the 

red / blue part of the optical spectrum. The main difference between the two techniques is 

that, in the converter of section 3.2.2.1, the optical carrier and one of the sidebands of the 

SOA output signal are completely rejected by the detuned filter. In the XGM bandwidth 

enhancer the detuned optical filter only enhances the blue sideband in relation to the red 

sideband and there is no rejection of the optical carrier; therefore, the signal maintains the 

NRZ pulse format. 

3.3.2.2 Simulation tests and filter optimization 

10 Gb/s results 

The detuned filter bandwidth enhancer will be tested using the slow SOA device to 

assess the potential to enhance its operation bandwidth from 2.5Gb/s (its optimal 
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maximum bit rate) to 10 and 40 Gb/s. To characterize the performance of this method, the 

modified eye opening penalty (MEOP) will be considered. MEOP is used in detriment 

from the standard eye opening penalty (EOP) to isolate the signal penalties caused by the 

SOA slow response from those caused by ER variation. For more information on EOP and 

MEOP consult appendix III. 

Figure  3-19 presents the common XGM converted signal at the SOA output when 

the SOA input powers of the information and probe signals are -3 and 0 dBm, respectively. 

The signal eye diagram presents significant closure due to the slow carrier dynamics. The 

XGM signal MEOP is 3.5 dB. 
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Figure  3-19: Common XGM signal eye diagram  

The XGM bandwidth enhancement scheme operation principle is based on 

enhancing the blue chirped part of the XGM converted signal spectrum in relation to the 

red chirped part and to the optical carrier. First, a filter similar to that of Figure  3-20 is 

considered. The zero frequency refers to the central wavelength of the probe signal. The 

filter attenuation is zero for f > fpos; Att0 refers to the attenuation at the optical carrier 

frequency, and Attneg refers to the attenuation at fneg. 
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Figure  3-20: Optical filter to enhance XGM bandwidth. 
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It was verified that the XGM enhancement method performance is optimized when 

fpos and fneg >> fBR, with fBR the frequency equal to the bit rate of the data signal. As such, 

fpos = fneg = 3. fBR was considered. Figure  3-21 presents the eye closure penalty as a function 

of the Att0 and Attneg. It can be verified from the curves of Figure  3-21 that when the filter 

characteristics are optimized, the converted signal MEOP can be improved to 

approximately 0.6 dB, which is obtained with Att0 = 9 dB and Attneg = 7 dB. It was verified 

(not represented in the figure) that if the optical filter is designed to enhance the red 

chirped part of the spectrum (i.e. Att0 and Attneg < 0), the output signal degrades, even 

when compared to standard output XGM signal (when the optical filter is centered with the 

probe signal wavelength). 
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Figure  3-21: Eye closure penalty as a function of the gain at positive 
frequencies and attenuation at negative frequencies. 

 Figure  3-22 presents the optical spectra and eye diagrams of the detuned 

optical filter output signal. It can be verified that after the optical filter the positive (blue) 

frequencies are enhanced in relation to the optical carrier. On the other hand, the negative 

(red) frequencies are attenuated. As referred above, with this technique there is no rejection 

of the optical carrier. As expected, the optical filter improves both the leading and trailing 

edges of the optical signal when compared to the SOA output signal of Figure  3-19; as a 

consequence, the output eye diagram is practically undistorted. 

The previous test demonstrated that with an enhancement of the blue chirped part 

of the spectrum relatively to the optical carrier and the red chirped part of the spectrum, the 
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a) Optical spectra (note: the two signals are b) Detuned filter output eye diagram. 
normalized to the same optical carrier power; 

Figure  3-22: Characterization XGM bandwidth enhancement through optical 
spectrum and eye diagram. Att0 = 9 dB and Attneg = 7 dB. 

distortion caused by the slow carrier recovery is eliminated. Feasible optical filters are 

considered hereafter: the XGM bandwidth enhancer is tested considering Gaussian optical 

filters in Figure  3-23. The optical filters are detuned from the probe signal central 

wavelength to achieve the required enhancement of the blue chirped part of the spectrum. 

It can be verified that the 1st order Gaussian filter  [205]with -3 dB bandwidth around 50 

GHz enable an optimum MEOP of 0.75 dB, which represents only 0.15 dB penalty from 

the best result obtained by the filter shape of Figure  3-20. The signal attenuation due to 

detuned optical filtering (measured at the probe wavelength) is around 16 dB for the 

aforementioned case. For a filter with -3 dB bandwidth of 50 GHz, the filter central 

frequency can shift by +/- 12 GHz while keeping the converted signal MEOP degradation 

below 1 dB. Gaussian filters with 2nd order present worse results than those obtained by the 

1st order filter, since the out-of-band decay of 2nd order filter is too high; additionally, the 

sensitivity to filter detuning from optimum is also higher. 

XGM wavelength converters operation performance is penalized for high output 

signal ER, since higher ER requires higher gain saturation, which also increases the SOA 

response time. The detuned filter technique is applied to SOA output signals with different 

ER. The ER of the converter output signal is varied by adapting the input information 

signal power and keeping constant the CW probe signal power at 0 dBm. Converted signal 

ER of 3 dB, 6 dB, 9 dB and 12 dB are enabled with input information signal powers of 
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a) 1st order Gaussian filter 
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b) 2nd order Gaussian filter 

Figure  3-23: XGM bandwidth enhancement when 1st and 2nd order Gaussian 
filters are considered. 

-3 dBm, 1 dBm, 4 dBm, and 7 dBm, respectively. Figure  3-24 presents the converted 

signal MEOP as a function of the optical filter detuning for the different ER values. As 

referred above, the higher is the ER, the more severe is the degradation of the XGM signal: 

the MEOP of the XGM signal before the detuned optical filter are 3.5 dB, 4.1 dB, 5 dB, 

and 6.4 dB, for ER of 3 dB, 6 dB, 9 dB, and 12 dB, respectively. Since the signal 

degradation increases with the ER, stronger enhancement of the blue frequencies relatively 
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to the red frequencies is required for higher ER. As a consequence, the filter optimum 

detuning increases with the converted signal ER. With optimized filter detuning, MEOP of 

0.8 dB, 1.0 dB, 1.1 dB, and 1.3 dB are obtained for the set of ER under test: considerable 

improvement are obtained when compared to the MEOP of the common XGM signals, The 

main disadvantage of operating at high ER is that the optimum filter detuning increases, 

and so do the losses caused by it. The losses caused by the detuned filtering are 16 dB, 

18.7 dB, 27 dB, and 36 dB, for ER of 3 dB, 6 dB, 9 dB, 12 dB, respectively. The losses of 

the whole wavelength converter, including the SOA and the filter, (measured as the power 

difference between the output and the SOA input information signal) are 3.2 dB, 10 dB, 

24.6 dB, and 37.4 dB, for the referred ER values. 
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Figure  3-24: MEOP as a function of the 1st order filter detuning for different ER 
of the converted signal. Optical filter -3 dB BW = 50 GHz. Inset eye diagrams 
at optimum filter detuning. 

The transmission properties in dispersive fiber are impacted by the SOA induced 

XPM. For comparison, the converted signal with 6 dB ER and an OOK NRZ signal with 

6 dB ER, generated by a chirp-free MZM, are transmitted over dispersive fiber. The 

measured EOP after transmission is presented in Figure  3-25. It can be verified that the 

converted signal transmission properties are reduced when compared to the chirp-free 

OOK signal. For a maximum EOP of 3 dB, the maximum accumulated dispersion is 

reduced from +/- 1105 ps/nm to +/- 765 ps/nm. 
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Figure  3-25: Comparison of the transmission capabilities over dispersive fiber 
of ideal chirp-free NRZ signal and converted signal. 

40 Gb/s results 

We have demonstrated above that the detuned filtering technique is able to enhance 

the XGM operation bandwidth of the slow SOA device to 10 Gb/s, since a simple 1st order 

Gaussian filter, detuned from the optical carrier, eliminates the distortion caused by the 

SOA slow response. Hereafter, the same operation principle is explored to assess the 

feasibility of 40 Gb/s conversion using the same slow SOA device. 

The input information and CW probe signals powers at the SOA input are -3 dBm 

and 0 dBm, respectively. Under such condition, the SOA output eye diagram at the probe 

signal wavelength (i.e. common XGM signal) is presented in Figure  3-26 a). It can be 

verified that the eye diagram is completely closed due to the slow operation of the SOA.  

The MEOP of the detuned filter output signal is characterized in Figure  3-26 b) for 

different filter -3 dB bandwidth. It can be verified that the optimum filter bandwidth is 

around 60 GHz (1.5.BR); while for 10 Gb/s optimum operation was verified for much 

higher filter bandwidths (5.BR). The reason is that at 40 Gb/s the required enhancement of 

blue frequencies relatively to red frequencies is much higher than that at 10 Gb/s. 

Nevertheless, a clear and open eye diagram is obtained when the detuning is optimized. 

The losses due to detuned filtering are 21.1 dB for the optimum case referred above. The 

losses of the whole converter, including the filter and the SOA, are approximately 8.0 dB. 
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a) SOA output eye diagram at probe signal wavelength; 
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b) Converter output signal MEOP as a function of the detuning of the optical 
filter. Inset eye diagram for filter with -3 dB bandwidth of 60 GHz and detuning 
of 80 GHz. 

Figure  3-26: 40 Gb/s characterization of XGM bandwidth enhancement via 
detuned filtering with 1st order Gaussian filters. 

3.3.2.3 Experimental validation 

The experimental tests were performed with the slow SOA device, in agreement 

with the simulations of the previous section. The input information signal is generated by 

modulating an input CW signal at 1553.0 nm in a chirp free MZM. Due to experimental 

constraints, there was no tunable optical filter available; therefore, a WDM demultiplexer 

filter designed for a 200 GHz grid, is employed. This filter is approximated to a 2nd order 

Gaussian filter centered at 1547.61 nm, and has a -3dB bandwidth of 133 GHz and a 

-15 dB bandwidth of 190 GHz. Since the filter is not tunable, the detuning is performed by 

adapting the CW probe signal central wavelength. The signal after the detuned optical filter 
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are detected in a photo-detectors with 10 GHz / 37 GHz of -3 dB bandwidth, for the 10 

Gb/s / 20 and 40 Gb/s test, respectively; and the Q-factor is measured. 

10 Gb/s results 

For 10 Gb/s, the optical power measured at the SOA input is -1.8 dBm and 

3.1 dBm for the input data signal and the for the CW probe, respectively. The input 

information signal Q-factor is 7.1. The CW probe signal wavelength is varied from 

1547.60 nm to 1548.352 nm and the Q-factor of the detected signal is presented in Figure 

 3-27 a). For reference, the same figure also presents the attenuation of the optical filter. 

Figure  3-27 b) – d) presents the converted signal eye diagrams at different CW probe 

wavelengths.  
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a)  Q-factor of the detected signal as a function of the CW probe signal 
wavelength and the attenuation of the optical filter; 

 

b) Wavelength = 1547.61 nm; c) Wavelength = 1548.22 nm; d) Wavelength = 1548.35 nm. 

Figure  3-27: Characterization of experimental XGM bandwidth enhancement at 
10 Gb/s via converted signal Q-factor - a) - and eye diagrams - b) to d). 
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When the CW probe wavelength is aligned with the center of the filter, the 

converted signal eye diagram is significantly distorted (Figure  3-27 b)), due to the intrinsic 

slow behavior of the SOA. This eye diagram is in agreement with the simulation results. 

When the probe signal wavelength is detuned from the optical filter central wavelength 

towards higher wavelengths, an increase in the eye opening and in the Q-factor is 

observed, since, in these conditions, the blue chirp part of the spectrum is being enhanced 

in relation to the red chirp part. The Q-factor maximum is obtained for a wavelength of 

1548.22 nm. The resultant eye diagram is presented in Figure  3-27 c), which is completely 

open and does not present significant distortion. Q-factor improvements relatively to input 

are obtained for a frequency range of around 12 GHz. For higher detuning values the 

output signal Q-factor degrades abruptly, mostly due to the increasing attenuation of the 

filter, which reduces the signal to noise ratio after detection (since there is no pre-

amplification), as can be verified from the eye diagram of Figure  3-27 d). 

20 Gb/s results 

For 20 Gb/s input, the optical power values, measured at the SOA input, are 

1.48 dBm and 2.5 dBm for the input data signal and the for the CW probe, respectively. 

The input signal Q-factor is 8.8. Figure  3-28 a) presents output signal Q-factor versus 

detuning from the probe signal and optical filter central wavelengths.  

For the standard XGM signal – when the probe is centered with the optical filter – 

the converted signal eye diagram is completely closed, as can be observed in Figure  3-28 

b). When the probe signal is detuned from the center of the optical filter, the signal eye 

diagram opens and a maximum Q-factor of 5.6 is achieved. In the correspondent eye 

diagram depicted in Figure  3-28 b), a slow behavior is still noticed in the transitions from 

‘0’ to ‘1’. This slow behavior can be overcome by using a filter with a higher decay, which 

would enhance more the blue chirp part of the spectrum. Similarly to the 10 Gb/s tests, the 

converter performance decays abruptly for higher detuning of the probe signal central 

wavelength from the filter center. 
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a)  Q-factor of the detected signal and attenuation of the optical filter as a 
function of the CW probe signal wavelength;  

 

b) Wavelength = 1547.61 nm; c) Wavelength = 1548.18 nm; d) Wavelength = 1548.29 nm. 

Figure  3-28: Characterization of experimental XGM bandwidth enhancement at 
20 Gb/s via converted signal Q-factor - a) - and eye diagrams - b) to d). 

40Gb/s results 

Figure  3-29 depicts the 40Gb/s results using the same slow SOA device, when the 

power values utilized are the ones considered in the 20 Gb/s test. The input signal Q-factor 

is 5.7. Similarly to the 20Gb/s test, the eye diagram is completely closed for the standard 

XGM signal, as depicted in Figure  3-29 b), due to the high recovery times of the SOA 

device; however, this converter still produces a considerably opened eye opening when the 

probe wavelength is optimized (Figure  3-29 c)), allowing a maximum Q-factor of 4.3 for 

the mentioned conditions. 
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a)  Q-factor of the detected signal and attenuation of the optical filter as a 
function of the CW probe signal wavelength;  

 

b) Wavelength = 1547.61 nm; c) Wavelength = 1548.22 nm; d) Wavelength = 1548.30 nm. 

Figure  3-29: Characterization of experimental XGM bandwidth enhancement at 
40 Gb/s via converted signal Q-factor - a) - and eye diagrams - b) to d).  

Improved experimental results are expected, particularly at 20 Gb/s and 40 Gb/s, if 

the optical filter is a 1st order Gaussian filter (as discussed in the previous section), and if a 

pre-amplified receiver is considered. 

3.4 Filter assisted wavelength conversion in GC-SOA  

When a probe signal is amplified simultaneously in a SOA with an intensity 

modulated signal, XPM causes a red / blue chirping of the probe signal central frequency 

for the leading / trailing edges of the input signal optical pulses. In section  3.2.2.1, detuned 

filtering of the probe signal after the SOA was presented as a simple and effective method 

to convert the SOA induced phase modulation in intensity modulation. If the input 

information signal presents return-to-zero pulse format, detuned filtering the probe signal 
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at the output will retrieve a non-inverted RZ signal with high ER. As referred in section 

 3.2.2.1, this technique has been already demonstrated at very high bit rates.  However, to 

the author’s knowledge, all work published so far has focused on common SOA. Hereafter 

a gain clamped-SOA (GC-SOA) will be employed to experimentally perform wavelength 

conversion of RZ signals.  In a GC-SOA, the blue chirp is enhanced due to the relaxation 

oscillations of the internal laser; therefore, higher conversion efficiency is expected when 

filtering the blue chirp contributions, when compared to common SOA. Moreover, GC-

SOA response is inherently faster when compared to common SOA  [135],  [63], which is 

expected to allow operation at higher bit rates.  

To analyze the GC-SOA response, a 2.5 Gb/s data signal and a CW probe with very 

low power are fed to the GC-SOA. In Figure  3-30 the GC-SOA response to the 2.5 Gb/s 

data signal is presented through the temporal shapes of the GC-SOA internal laser and the 

lower power CW probe signal. Two operating conditions are considered: low power input 

data signal (-12 dBm) and high power input data signal (-2 dBm). Figure  3-30 a) presents 

the reference input signal. The operation principle is independent on the pulse shape, 

therefore NRZ pulses are considered. When the input information signal presents low 

power, the internal laser is modulated with the inverse information of the input signal – 

Figure  3-30 b). This illustrates the gain-clamping mechanism, which retrieves an 

approximately constant cavity optical gain as verified by the low power probe signal 

Figure  3-30 c). When the input signal power increases the internal laser power will 

decrease and shuts down for logical ‘1’s of the input data signal. For logical ‘0’s of the 

input signal the laser turns back on; as usual in DBR lasers, relaxation oscillations are 

verified in the output signal  [31]. Relaxation oscillations are transient effects, which are 

long when compared to the laser cavity loop time  [136] and are due to an intrinsic 

resonance in the nonlinear laser system  [31]. These oscillations are observed not only in 

the laser, but also in the carrier density (probed by the CW signal), as verified in the 

transitions from logical ‘0’ to ‘1’. Since a blue chirp occurs for such transitions, the 

relaxation oscillations lead to a significant increase in the contribution of the blue chirped 

part of the spectrum when compared to the remainder of the spectrum. Therefore, 

improved results are expected when filtering the blue chirped part of the probe signal 

spectrum at the SOA output, when compared to common SOA. 
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1.5 ns 

 

a) Input information signal; 

 

b) Laser generated by GC-SOA when input data signal power is -12.0 dBm; 

 

c) Low power probe at GC-SOA when input data signal power is -12.0 dBm; 

200 ps 

 

d) Laser generated by GC-SOA when input data signal power is -2.0 dBm; 

  

e) Low power probe at GC-SOA when input data signal power is -2.0 dBm. 

Figure  3-30: GC-SOA response to a 2.5 Gb/s input information signal.   
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To assess the performance of wavelength conversion via detuned filtering of the 

blue chirped part of the spectrum after GC-SOA, an input RZ signal with variable bit rate 

(2.5 Gb/s or 10 Gb/s) at 1547.30 nm is coupled to a CW probe signal at λ2 = 1548.95 nm. 

The two signals are simultaneously amplified in the GC-SOA device with driving current 

of 250 mA. After the GC-SOA, a detuned optical filter with -3 dB bandwidth of 15 GHz 

extracts the blue chirped part of the spectrum of the converted signal (i.e. the lower 

wavelengths). The converted signal is then detected in a pre-amplified receiver, which 

consists of an EDFA, an optical de-multiplexer filter with -3 dB bandwidth of 75 GHz 

centered with the signal, and a photo-detector. 

The optical spectrum at the GC-SOA output is presented in Figure  3-31 for a 

10 Gb/s input signal with 1.0 dBm and a CW probe signal with -3 dBm. The internal DBR 

laser generated by the GC-SOA is visible at 1509.0 nm. Besides the probe and data signals, 

a FWM contribution is also observed. 
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Figure  3-31: Optical spectrum at the GC-SOA output.  

In Figure  3-32 the experimental eye diagrams before and after the converter are 

presented. The detuning of the optical filter central frequency relatively to the central 

wavelength of the probe signal was 14.8 GHz and 22.7 GHz for the 2.5 Gb/s and the 

10 Gb/s tests, respectively. It is observed that, due to the detuned filtering, the converted 

signals present an increase in the ER when compared to the input signals, for both bit rates. 

The output signals present undistorted eye diagrams and the measured Q-factor is also 

improved when compared to the input, particularly for 2.5 Gb/s. A compression in the 
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pulse width was verified at 2.5 Gb/s since the input pulse width was 117 ps and after the 

conversion the pulses had a width of 47 ps. 

 

200 ps 

200 ps 
 

a) 2.5 Gb/s input signal eye diagram  
(ER = 12.1 dB, Q-factor = 11.5 dB); 

b) 2.5 Gb/s converted signal eye diagram 
(ER = 16.8 dB, Q-factor = 14.3); 

 50 ps 

50 ps 

 

a) 10 Gb/s input signal eye diagram 
(ER = 9.0 dB, Q-factor = 10.5 dB); 

b) 10 Gb/s converted signal eye diagram 
(ER = 12.1 dB, Q-factor = 10.8); 

Figure  3-32: Comparison of converter input and output eye diagrams.  

Figure  3-33 presents the optical spectrum of the SOA output at the probe 

wavelength when the input information signal bit rate is 10 Gb/s. The detuned filter 

transfer function and the resultant converted signal are also presented. It can be verified 

that the central wavelength (optical carrier) of the converted signal corresponds to the 

discrete spectral tone at the bit rate frequency. The resultant signal has reduced spectral 

occupancy and VSB characteristics. 

The dependence on the optical filter position is depicted in Figure  3-34 for 2.5 Gb/s 

and 10 Gb/s. For both cases the output signal extinction ratio is robust to variations in the 

optical filter central frequency; however, the Q-factor presents reduced tolerance to filter 

detuning. The reduced tolerance to the filter central position can be understood with the 

help of Figure  3-33: the optical carrier must be eliminated by the optical filter; if there is 
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even a small detuning to lower frequencies, the optical carrier reappears; on the other hand, 

if the filter is detuned to upper frequencies, the spectral tone at the bit rate frequency, 

which is the central frequency of the converted signal, is eliminated. 
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Figure  3-33: Optical spectra of: SOA output signal at pump wavelength, optical 
filter transfer function, and converter output signal. 

3

5

7

9

11

13

14 16 18 20 22 24 26 28
Detuning from optical carrier [GHz]

Q
-f

ac
to

r

7

8.5

10

11.5

13

14.5

E
xt

in
ct

io
n

 R
at

io
 [d

B
]..

10

13

16

19

22

25

28

12 14 16 18 20 22 24
Detuning from optical carrier [GHz]

Q
-f

ac
to

r

7

9

11

13

15

17

19

E
xt

in
ct

io
n

 R
at

io
 [
d

B
].
.

Q
-f

ac
to

r 

Q
-f

ac
to

r 

 

a) 2.5 Gb/s input signal; b) 10 Gb/s input signal; 

Figure  3-34: Characterization of converter performance as a function of optical 
filter detuning. 

In the previous tests filtering towards frequencies higher than the optical carrier 

(i.e. blue chirped part of the spectrum) has been considered. Figure  3-35  presents the 

converted signal eye diagram when the optical filter is detuned to optical frequencies lower 

than the optical carrier (i.e. red chirped part of the spectrum). The eye diagram presents 



88  Chapter 3 Wavelength Conversion 

 

 

distorted due to the laser relaxation oscillations, which cause two distinct frequency chirps 

towards the red part of the spectrum for each bit: one just after the leading edge of the 

pulse and another during the trailing edge – such behavior can also be observed in the 

temporal shape of the probe signal, depicted in Figure  3-30 e). 

 

200 ps 

 

Figure  3-35: Eye diagram of 2.5 Gb/s converted signal when the red chirp is 
retrieved. 

To effectively compare the performance of using SOA and GC-SOA for the 

presented wavelength conversion method, equivalent SOA and GC-SOA devices should be 

employed in experimental tests or an appropriate simulation model should be developed 

for the GC-SOA. Since equivalent devices are not available, and, within the frame period 

of this work, it was not possible to develop a detailed GC-SOA model for high bitrates, 

such comparison is not presented here. Nevertheless, the presented results demonstrate the 

high potential of GC-SOA for wavelength conversion of input RZ signals, when the probe 

signal blue chirp spectral components are extracted by a detuned filter; thus, a more 

thorough analysis is proposed as future work.  

3.5 Experimental characterization of MZI-SOA based 

wavelength converter 

As detailed in section  3.2.2, one of the most common and effective methods to 

perform wavelength conversion with SOA is through the use of a MZI-SOA structure. In 

such structures, a probe signal suffers XPM in the SOA, caused by an input intensity 

modulated information signal. The interferometric structure converts the probe phase 

modulation in intensity modulation at the output. In this section a MZI-SOA wavelength 
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converter at 10 Gb/s is characterized. The impact of several parameters is assessed and 

studied. The purpose of such study is to provide ground basis for the operation of the 

40 Gb/s multi-wavelength converter, presented in section  3.6; and also for the 2R 

regenerator employed in section  6.3. 

The setup employed in the wavelength conversion experimental tests is depicted in 

Figure  3-36. Optical pulses with 2.0 ps are generated by a 10 Gpulse/s mode locked laser 

diode (MLLD) at 1545.0 nm, modulated with a 10Gb/s PRBS signal, with a pattern length 

of 231-1, in a MZ modulator and fed to the differential wavelength conversion setup. The 

input data signal is also known as control signal. The CW probe wavelength is 1535.0 nm; 

this signal crosses a polarization controller to align its polarization with the SOA, due to 

SOA birefringence. The two signals are fed to the MZI-SOA wavelength converter in order 

to enable standard mode conversion, and differential mode conversion. Standard mode is 

achieved when the attenuation of VOA2 is equal to infinite; as a consequence, the 

information signal is fed only to the upper MZI-SOA arm. For differential mode operation, 

a variable delay and VOA control the conditions of the input signal in the lower arm. The 

system performance is assessed through bit error rate (BER) measurements for different 

optical signal to noise ratios (OSNR) at the photo detector input. To vary the OSNR, an 

ASE noise source is coupled to the optical signal. The -3 dB bandwidth of optical filters 

OF1 and OF2 is 0.85 nm, and the photo detector -3 dB bandwidth is 10 GHz. 
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PRBS, 231-1

EDFA
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SOA
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Figure  3-36: Experimental setup for XPM in SOA-MZI wavelength conversion 
at 10 Gb/s. 

Static characterization 

In this section the XPM WC is characterized in static conditions (i.e. the input 

control signal is a CW) for the standard operation mode; for the differential mode it is not 

possible to perform any static characterization. In Figure  3-37 a) the variation of the optical 

power at the probe signal wavelength, measured at OF1 output, is presented when the 
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phase shifter voltage at the upper arm (PS) is varied. For this test the control signal is 

disabled and the probe signal power is 10 dBm at the MZI input. Both SOA are driven by a 

current of 400 mA.  

When the PS voltage is set to 0 V, the phase shift suffered by the probe is similar in 

the two MZI arms, so the signals interfere with maximum constructive interference at the 

output. Increasing the voltage results in different phase shifts in the two arms; therefore, 

the output power is decreased; for a PS voltage of 7.5 V a phase difference of 

approximately π (maximum destructive interference) is obtained and a minimum in the 

output power at the probe signal wavelength is observed. For values higher than 7.5 V the 

phase difference between the two arms increases and the output signals interferes again 

with constructive interference. The maximum power contrast between the constructive and 

destructive interference conditions due to phase shift variation is around 28 dB.  

The influence of the probe signal polarization was observed by rotating the 

polarization controller (PC) to obtain maximum power variations at the output. A 

polarization sensitivity of around 8.5 dB was verified when PS voltage is 7.5 V 

(destructive interference), and of 1.3 dB when PS voltage of 0 V (constructive 

interference). 
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a) Variation of phase shifter; b) Variation of control signal power. 

Figure  3-37: Output probe signal power as a function of the phase shift voltage 
and control signal power. 
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During wavelength conversion, the probe signal output power is also determined by 

the control signal power. In Figure  3-37 b) the probe output power is plotted for variable 

control signal power, fed only to the upper MZI arm, when the MZI is biased at minimum 

transmission (PS voltage of 7.5 V). Increasing the control signal power produces a phase 

shift in the SOA and the destructive interference condition is abandoned, enabling a power 

contrast of 25.3 dB. This extinction ratio is inferior to that obtained by phase shift tuning, 

because the maximum probe output power is obtained when the input signal is also at a 

high power level, which causes gain saturation in the SOA. The curve presented in Figure 

 3-37 b) also reveals the potential for 2R regeneration using MZI-SOA, as detailed in 

section  6.3. 

These results demonstrate the ability of MZI-SOA structures to perform 

wavelength conversion of intensity modulated signals. A reduction of the probe signal 

power is expected to increase the slope of the output power curve of Figure  3-37 b), since 

the SOA will be operating in condition with lower saturation.  

Standard mode characterization 

The standard mode XPM WC is characterized through BER measurements; for this 

purpose the OSNR at the PD input was fixed to 13.7 dB. The OSNR is measured using an 

inline power meter before the PD by disabling sequentially the signal or the ASE noise and 

measuring the power relation between the optical signal and the ASE after the optical filter 

(OF2). The control signal consists on the short pulse 10 Gb/s data signal. In Figure  3-38, 

the converted signal BER is plotted as a function of the power of the probe and of the 

information signal. Eye diagrams at interesting conditions are also presented; a 35 GHz 

optical photodiode was used for the eye diagrams.  

In Figure  3-38 a) it can be verified that the input signal power for optimum BER 

increases for increasing probe signal power. This is because the SOA is more saturated 

(due to higher probe power), requiring higher data signal to obtain similar phase shifts. 

Similarly, for high power data signal, the optimum probe power also increases, as can be 

confirmed in Figure  3-38 b). For constant probe signal power, when the input data signal 

power is too low, the BER is penalized, since the phase shift at the output is low, and the 

converted signal OSNR is degraded; for very high powers of the control signal, the output 
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signal degrades due to severe distortion caused by the SOA extremely high gain 

compression. 
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a) Data (control) signal power variation; 
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b) Probe signal power variation. 

Figure  3-38: Converted signal BER as a function of probe and data signals 
power. 

Figure  3-38 b) demonstrates the converter performance improvement when the 

probe signal is increased (provided that the control signal power is also optimized). This 

improvement is due to a decrease in the SOA response time for high CW saturation 

 [137], [63]. As a consequence, the output pulse duration is decreased. Moreover, the output 

OSNR is improved due to higher SOA saturation. 
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The previous statements can be confirmed by the eye diagrams inset Figure  3-38. 

When the probe signal power is high (relatively to the data signal power) the OSNR is 

penalized and the eye diagrams are noisier, also the pulse duration of the converted signal 

becomes lower and the reduced photodiode bandwidth penalizes shorter pulses. When the 

probe signal has low power, the converter signal presents high distortion in the logical ‘0’.  

Differential mode characterization 

Differential mode XPM is tested hereafter, by feeding the lower MZI arm of Figure 

 3-36 with a delayed and attenuated version of the data signal. The influence of the relative 

delay between the two arms, τ, is evaluated in Figure  3-39. The OSNR at the PD input is 

fixed at 11 dB. The probe signal power is 10 dBm, the data signal power at the upper and 

lower arms is 1.7 dBm and -2 dBm, respectively. 

As discussed in section  3.2.2.3, the converted signal pulse width is determined by 

the relative delay between the two arms. For very low delays, short pulses are originated; 

however these are penalized by the PD bandwidth of 10 GHz. As the delay increases the 

pulses broaden, spreading the power; as a consequence, the eye diagram opening decreases 

for the same average power and the BER is penalized. An optimum delay of 7 ps is 

obtained for the referred experimental conditions. It is also verified that the converter is 

more tolerant to positive delays deviations, relatively to optimum, than to negative 

deviations. For a PD with higher bandwidth, a lower optimum delay is expected. 
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 Figure  3-39: Converted signal BER as a function of the relative delay between 
the two arms, τ. 



94  Chapter 3 Wavelength Conversion 

 

 

The data (control) signal power at the lower SOA arm is optimized in Figure  3-40, 

maintaining a CW probe power of 10 dBm and a delay between the arms of 10 ps. For a fix 

value of power at the upper arm, the BER is penalized when the power at the lower arm is 

very low. Such penalty is due to the fact that when the power at the lower arm is very low, 

differential operation is not enabled: the XPM suffered by the probe signal in the lower 

SOA is very small and the converter operates similar to standard mode. For very high 

power levels at the lower arm, the XPM modulation suffered in the lower SOA exceeds 

that suffered in the upper SOA, as a consequence the output pulse tail is not eliminated, 

causing BER penalties. The optimum power relation between the two arms is the one that 

grants ΦXPM(t) = ΦXPM(t+τ) (where ΦXPM is the phase of the cross phase modulated signal); 

it is observed that the optimum power at the lower arm is always 2 to 3 dB below the 

power at the upper arm. 
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Figure  3-40: Converted signal BER as a function of the data signal power at the 
input of the MZI. OptPowerRel = Optimum power relation between the two 
arms. 

Comparison between standard and differential modes 

Figure  3-41 presents the BER curves (for different OSNR) for the input data signal 

and converted signals. The standard mode WC output signal is compared to the differential 

mode signal. In the former, probe and data powers of 10 and 0 dBm, respectively, are 
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employed. In the latter, the delay between arms is 10 ps, the probe power is 10 dBm and 

the signal power is 3 and 0 dBm for the upper and lower arms, respectively. As expected 

from the findings above, standard mode WC introduces a high penalty in the BER curve: 

for a BER of 10-9 the required OSNR is penalized by 4 dB comparing to the input signal. 

Using differential mode WC improves the converted signal BER curve: a penalty lower 

than 1 dB is found for the same BER.  
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Figure  3-41:  Comparison of the converted and input signals BER. 

3.6 Multi wavelength conversion 

All-optical multi-wavelength conversion (MWC), illustrated in Figure  3-42, has 

attracted increasing research and industry interest in the last few years. It allows all-optical 

wavelength multicast by simultaneously converting the input information signal 

wavelength to several other wavelengths. All operations are done in the optical domain, 

which eliminates the necessity of employing multiple optic-electronic-optic (OEO) 

transponders, reduces the switching system and operational cost, lowers the blocking 

probability, and increases the optical network transparency, efficiency and effectiveness 

 [138]- [141]. All-optical MWC has also encouraged and facilitated several emerging 

applications, such as optical layer multicast  [142], wavelength routing, grid networking 

 [143], and service multi- or broadcast in access networks  [105]. 
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Figure  3-42: Illustration of multi-wavelength conversion. 

Several solutions to achieve MWC have been proposed in recent years. The most 

promising results have been obtained for schemes based on FWM in SOA  [142] or in 

optical fiber  [138]; supercontinuum generation  [144]; cross-phase modulation (XPM) 

 [145]- [148]; dual-stage cross-gain modulation (XGM)  [143]  [149]; cross-absorption 

modulation (XAM)  [150]; and fast nonlinear cross-polarization rotation (XPR)  [151]. 

However, FWM is limited by its low conversion efficiency and wavelength inflexibility. 

XGM in double-stage semiconductor optical amplifiers is limited by SOA slow recovery. 

XAM suffers from the large insertion loss of the electroabsorption modulator. XPR 

technique is polarization sensitive, requires high input power and consequently is also 

penalized by the significant FWM by-products generated in the SOA. MWC based on 

XPM in MZI-SOA offer the widest combination of features, including  [105]: high 

integrability, satisfactory and flat conversion efficiency, low power consumption, wide 

conversion bandwidth covering the SOA gain spectrum, simultaneous conversion of a 

considerable number of channels, wavelength flexibility, commercial product availability, 

compactness, supporting both RZ and non-return-to-zero (NRZ) data format, possible 

signal regeneration and noise suppression, and high operation speed. As discussed and 

demonstrated above, SOA-MZI can also be deployed with a differential scheme to operate 

beyond the speed limitation of the SOA devices. In this section, a 40 Gb/ MWC based on 

XPM in MZI-SOA operated in differential mode is experimentally assessed. 

3.6.1 Experimental results 

The setup considered in the experimental tests is shown in Figure  3-43, and is 

conceptually similar to that employed in the characterization of single wavelength 
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conversion at 10 Gb/s in section  3.5. An ultra-fast optical clock source generates 2 ps 

40 GHz optical pulses at 1557.36 nm, which are modulated by a Mach-Zehnder modulator 

(MZM) with a PRBS signal, with a pattern length of 231−1, to form the 40 Gb/s return-to-

zero (RZ) optical input signal. This signal is then split to feed to the upper and lower arms 

of the SOA-MZI; the lower data path is delayed by 7.6 ps by a variable optical delay line 

(VODL); the delay was optimized to improve the output signal bit error rate. Four 

continuous wave (CW) probes, with wavelengths from 1547.72 to 1552.52 nm are 

combined using an ITU 200 GHz spaced multiplexer to feed the SOA-MZI. After MWC, 

the converted multicast data signals are demultiplexed and individually fed to a pre-

amplified receiver. The -3 dB bandwidth of all the optical filters including the 

(de)multiplexers is 130 GHz. The photo detector (PD) has an electrical bandwidth of 

37 GHz. 

PC

CW probes
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1550.92 nm
1552.52 nm
1552.52 nm

40 Gb/s
PRBS, 231-1

EDFA
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VOA1
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WDM
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Figure  3-43: Experimental setup for 4 x 40 Gb/s all-optical multi-wavelength 
conversion.  

The characterization of the 2 ps width input optical pulses, modulated with the 

40Gb/s PRBS signal, is presented in Figure  3-44. Due to the ultra short duration of the 

optical pulses, the signal presents a very broad spectrum, with a spectral occupation at 

-15 dB of 5.5 nm. The optical spectrum of the input signal after the 130 GHz demultiplexer 

filter is also presented for reference. The eye diagram of the data signal is depicted in 

Figure  3-44: no visible differences were obtained comparing the signal before and after the 

demultiplexer since the photo detector used for the eye-diagram presents a -3 dB 

bandwidth of 35 GHz. 
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a) Optical spectra; b) Eye diagram. 

Figure  3-44: Characterization of the 40 Gb/s optical pulses.  

In a first analysis, the converter is characterized under single-wavelength 

conversion (SWC). For this purpose each of the CW signals is activated while all the 

others are deactivated. The probe signal power is 3.2 dBm; the data signal power is 2.5 

dBm for the upper arm and -9.1 dBm in the lower arm. It should be noted that the power 

difference of the data signal in the two arms is much superior to that optimized in section 

 3.5. The reason is that for the tests at 10 Gb/s of section  3.5, the relative delay of the two 

data signals replicas was 6 % of the bit duration, while for the 40Gb/s tests it is optimized 

around 30% of the pulse duration: the higher the delay between the two arms, the higher is 

also the optimum power difference between the two arms. The wavelength of the input 

data signal is 1557.36 nm. Figure  3-45 represents the optical spectra of the MZI-SOA 

output signal when the CW probe wavelength is 1547.72 nm; the converted signal 

spectrum is asymmetric around the optical carrier, due to the SOA induced chirp. 

Nevertheless, the eye diagram of the converted signal depicted inset Figure  3-45 is open 

and undistorted. 

Figure  3-46 presents the output signal BER as a function of the OSNR measured at 

the photo-detector input for the several wavelengths of the probe signal. For each BER 

measurement, the signal OSNR was degraded at the photo-detector input by increasing the 

amplified spontaneous emission (ASE) noise level while keeping the signal power constant 

at -1 dBm to ensure linear operation of the electrical circuitry. To enable a BER of 10-9, the 

back to back signal requires 14.3 dB of OSNR. The converted signals required OSNR 
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range from 18.0 dB to 19.0 dB, which represents an average required OSNR degradation 

of 4.2 dB. The converted signals OSNR penalty relatively to the input can be explained by 

the OSNR degradation of the SOA, but mostly due to the pulse broadening caused by the 

slow SOA gain recovery time, as it could not be completely suppressed via the differential 

configuration at 40 Gb/s. 
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Figure  3-45: 40 Gb/s single wavelength conversion. Input data wavelength is 
1557.36 nm, CW probe wavelength is 1547.72 nm. Inset: eye diagram of 
converted signal. 
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Figure  3-46: 40 Gb/s single wavelength conversion characterization through 
BER versus OSNR measurements. 

After the initial characterization of the converter in single-wavelength operation, all 

four probes are activated simultaneously, and fed to the MZI-SOA. Figure  3-47 presents 
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the SOA output spectrum with all the MWC eye diagrams as insets. The converted signal 

with higher wavelength is separated by 600 GHz from the input signal wavelength. The 

power of the data signal is optimized as 7.3 and -3.0 dBm for the upper and lower arms of 

the SOA. The power of the CW probe signals was optimized to enable identical output 

power at the converter output for all wavelengths: 6.3, 5.7, 4.4 and 3.3 dBm for 1547.72, 

1549.32, 1550.92, and 1552.52 nm, respectively. The reason why higher optical powers are 

required at lower wavelengths is due to the fact that the optical gain is reduced with the 

increase of |λP-λC|  [92], where λP is the frequency of the pump and λC is the wavelength of 

the data control signal. Clear eye opening was obtained for all wavelengths. FWM 

satellites due to the SOA nonlinear effect were observed in the converter output spectrum. 

The oscilloscope measured an average extinction ratio (ER) of 10.16 dB for the multicast 

channels, with the worst being 9.68 dB. 
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Figure  3-47: 40 Gb/s 1 to 4 multi-wavelength conversion. Input data 
wavelength: 1557.36 nm; CW probe wavelengths: 1547.72, 1549.32, 1550.92, 
and 1552.52 nm. Inset: eye diagram of converted signals. 

Figure  3-48 presents BER versus OSNR characterization of all the MWC channels 

(1 � 4); as reference, characterizations of a single wavelength conversion (1 � 1) and of 

the input signal are also presented. The average OSNR penalties of the MWC channels at 
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BER=10−9 ranged from 2 to 5 dB relatively to the SWC. The worse results of the outer 

channels can be due to the following: 

• The channel at 1552.52 nm suffers crosstalk penalty from spectral 
broadening of the data signal. This non-linear effect is due to the high 
power levels in the SOA, which provoke SPM and intra-channel FWM. 

• The channel at 1547.72 nm suffers from FWM by-products between the 
channel at 1552.52 nm and the input data signal. 
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Figure  3-48: 40 Gb/s 1 to 4 multi-wavelength conversion characterization 
through BER versus OSNR measurements. For reference a BER curve of single 
wavelength conversion is also presented. 

It should be noticed that in the single channel tests, characterized in Figure  3-46, 

the channel-dependent performance was not so evident because there were no FWM terms 

generated between the several CW probes, and the power levels launched in the SOA were 

inferior. The channel dependent performance could be mitigated if the individual CW 

probes power was optimized for uniform performance, as an alternative to constant output 

power. 

The maximum number of channels can potentially be increased, as we have 

demonstrated in  [105], where conversion to 8 wavelengths at 40 Gb/s was obtained by 

means of simulation. However, with experimental devices the maximum number of 

channels will be limited by several factors: 
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• The maximum power in the SOA devices (reduction of the per-channel 
power to accommodate more channels will result in further OSNR 
degradation of each channel);  

• The spectral gain bandwidth of the SOA; 

• Increase of the number of channels will increase the FWM products; 

• Operation performance is expected to decrease for higher bit rates, and 
increase for lower bit rates. 

3.7 Summary 

This chapter has presented an overview of wavelength converters based on 

semiconductor optical amplifiers (SOA). Wavelength converters have been divided in four 

groups according to the main non-linear effect involved: cross gain modulation (XGM), 

cross phase modulation (XPM), cross polarization rotation (XPR) and four-wave mixing 

(FWM). The study of wavelength converters is essential in the scope of SOA-based all-

optical processing not only due to its main functionality, but also because the underlying 

basic principles apply in other functionalities, such as: regeneration, format conversion, 

OTDM add-drop multiplexing, and others. 

XGM based converters are usually limited by slow inter-band processes to tens or 

even hundreds of picoseconds. We have revised methods to enhance XGM bandwidth 

based on the increase of the effective carrier lifetime. Operation bandwidth via detuned 

optical filtering has been proposed and studied experimentally and via simulations at 

10 Gb/s and 40 Gb/s. This method converts phase modulation (caused by XPM) in 

intensity modulation by detuned filtering. We have demonstrated that, with optimization of 

the optical filter, a device optimized for 2.5 Gb/s input signals can be employed in 

operation at least up to 40 Gb/s. 

Cross-phase modulation based wavelength converters require a stage of phase to 

intensity conversion. Detuned filtering of the SOA output XPM converted signal is a 

common method to allow such conversion. In this chapter, we demonstrated for the first 

time the application of the detuned filtering technique to the output of a wavelength 

converter based on XPM in a gain-clamped SOA. Such device has the advantage of 
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internal lasing, which enhances the carrier recovery time. Moreover, the internal laser 

enhances the blue chirping of the converted signal. Operation has been demonstrated at 

2.5 Gb/s, and 10 Gb/s. Phase-to-intensity conversion in a Mach-Zehnder Interferometer 

with SOA (MZI-SOA) is another common method to perform wavelength conversion, 

since it features high potential for integration and allows operation beyond the carrier 

dynamics bandwidth, due to differential mode operation. MZI-SOA wavelength 

conversion was characterized at 10 Gb/s with standard and differential mode operation. 

The impact of several converter parameters, such as input optical powers, polarization, or 

delay between the arms of the MZI, was studied. Finally, 40 Gb/s 1 to 4 multi-wavelength 

conversion has been experimentally demonstrated using a differential mode MZI-SOA 

converter. Output signals, spaced by ITU 200 GHz spacing, presented clear and open eye 

diagrams. Performance difference between the several channels is due to FWM terms and 

crosstalk from spectrally broadened input data.  
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Chapter 4  

Modulation format conversion 

4.1 Motivation 

In the last years, the study of transmitters for advanced modulation formats has 

been a hot topic in optical communications research and development. The use of 

advanced modulation formats should reduce network costs by allowing high per channel 

bit rate and by increasing the spectral efficiency; these advantages should come together 

with tolerance to chromatic dispersion, non-linear effects and other impairments of 

transmission and routing. Some of the most relevant modulation formats include 

differential binary phase shift keying (DPSK)  [152]; differential quadrature phase shift 

keying (DQPSK) [153]; duobinary  [154]; coherent-detected polarization-multiplexed 

quadrature phase shift keying (CP-QPSK)  [155]; carrier-suppressed return-to-zero (CSRZ) 

 [156]; and sideband suppressed signals, such as optical single sideband and optical 

vestigial sideband (oSSB / oVSB)  [157],  [158],  [159].   

From the previous formats, CSRZ and oSSB / oVSB have high potential for low 

cost networks. Sideband suppression allows an increase in the channel density of DWDM 

systems and improved tolerance to group velocity dispersion (GVD). Moreover, oSSB and 

oVSB enable the use of efficient electrical dispersion compensation (EDC) to further 

mitigate the effects of GVD  [157]. Recent results have demonstrated the effectiveness of 

EDC to compensate several thousands of ps/nm of GVD per 10 Gb/s channel  [160]- [163] 

even for optical double sideband (oDSB) signals; however, these schemes require complex 

and fast electrical processing. On the other hand, EDC on oSSB systems employing direct 

detection can be performed using simple passive dispersive lines, Butterworth filters, and 
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adaptive filters  [157],  [164],  [165],  [166]. Regarding CSRZ, its promising characteristics 

include high tolerance to non-linear transmission effects and polarization mode dispersion; 

moreover, when combined with tight optical filtering, CSRZ allows very high spectral 

efficiency without significant degradation of the RZ pulse shape  [167]- [169].  

All-optical converters between common oDSB and oVSB / oSSB or CSRZ are 

essential elements to reduce transmitter costs and in the interface between legacy networks, 

which still use OOK, and networks with optimized modulation formats. Figure  4-1 

demonstrates the need for all-optical modulation format converters. Optical networks #1 

and #2 employ the oDSB modulation format; and networks #3 and #4 utilize an advanced 

modulation format, such as oSSB, oVSB, or CSRZ; therefore, at the interface of the 

networks with different modulation formats, it is required to convert the input oDSB 

signals to an advanced modulation format. Moreover, all-optical format converters also 

allow the use of legacy oDSB transmitters for traffic locally added in networks #3 and #4, 

followed by format conversion; this brings a low cost potential, as the same type of optical 

transmitter may be employed in all the networks. 
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Figure  4-1: Representation of all-optical sideband suppression at the interface 
between networks employing oDSB and oSSB / oVSB formats; and after oDSB 
transmitters. 

The most common all-optical sideband suppression method consists in removing 

part of the sideband power by detuned filtering of an optical double sideband (oDSB) 

signal  [170], as illustrated in Figure  4-2. This is a conceptually simple method; however 

the sideband suppression is very dependent on the characteristics of the optical filter, such 



All-Optical Processing Systems with Semiconductor Optical Amplifiers 107 

 

 

as central wavelength, optical bandwidth and decay. Moreover, a very stable optical source 

is required (or tracking of the central wavelength, λ0), or information loss may occur. In 

 [171] an all-optical scheme that employs an optical quadrature filter to obtain the Hilbert 

transform of the information signal is reported. However, this is a very complex method, 

which is wavelength dependent, requires an optical interferometer, and may present high 

insertion losses. 
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Figure  4-2. Sideband-suppression through detuned optical filtering.  

All optical conversion from oDSB with NRZ or RZ pulse format to CSRZ has been 

achieved in a SOA based optical loop mirror  [172]. However, only 10 Gb/s single channel 

operation has been demonstrated; moreover, this setup relies on a non-linear loop, which is 

inherently complex.  

This chapter presents two novel all-optical format conversion schemes. The first 

scheme converts oDSB signals to oVSB format, based in self-phase modulation non-

linearity in SOA. This scheme is, to the authors knowledge, the first all-optical sideband 

suppression scheme which does not require detuned optical filtering of the input signal or 

Hilbert transforms of the information signal. The proposed method was disclosed in  [173] 

and experimental results have been published in  [174] with operation at 10 Gb/s and in 

 [175] at 40 Gb/s. The second novel scheme converts NRZ or RZ pulse shaped optical 

double sideband signals into CSRZ modulation format, based on the combination of cross 

gain modulation (XGM) and cross phase modulation (XPM) in SOA. This is a low cost 

and simple method, which presents negligible polarization dependence and high spectral 

bandwidth; moreover, the input signal is amplified by the SOA. This method was proposed 

in  [176] where single- and multi-channel operation was demonstrated at 40 Gb/s.  
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4.2 Format modulation conversion from oDSB to oVSB  

4.2.1 Introduction to optical sideband suppressed signals  

The electrical field of a carrier unsuppressed optical DSB signal, EoDSB, is 

described by:  

( ) ( )oDSB 1E t z m t= + ⋅ , ( 4-1) 

Where m(t), -1 ≤ m(t) ≤ 1, is the ac coupled normalized information signal; and the 

modulation depth, z, 0 < z ≤ 1, controls the ratio between the intensity modulation and the 

optical carrier. To obtain an ideal carrier unsuppressed optical SSB signal, the signal of 

( 4-1) has to be added to the Hilbert transform of the information signal  [177]: 

( ) ( ) ( )oSSB H1E t z m t j z m t= + ⋅ ± ⋅ ⋅ , ( 4-2) 

Where mH(t) is the Hilbert transform of the information signal; and the signal 

- / + defines whether the oSSB signal has the upper / lower sideband suppressed, 

respectively. The Hilbert transform is ideally obtained from the information signal by a 

quadrature filter  [178], whose transfer function is described by (With f the frequency, and 

sign( . ) the signum function): 

( ) ( )quad. signH f j f= ⋅ , ( 4-3) 

Hereafter only carrier-unsuppressed optical SSB / VSB signals are considered; for 

generation and properties of carrier suppressed optical SSB signals, refer to  [179].  

Figure  4-3 compares the optical spectrum of a NRZ oDSB signal with that of an 

oSSB signal with suppressed lower sideband (here called oSSB – upper sideband, as only 

the upper sideband remains), and with an oSSB signal with suppressed upper sideband 

(oSSB – lower sideband). It can be verified that oSSB signals have one of the sidebands 

completely suppressed and the remaining sideband presents +6 dB of power in addition to 

the corresponding oDSB signal sideband spectrum. 
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Figure  4-3. Optical spectra of ideal NRZ DSB and SSB signals.  

Optical SSB signals can be detected using common direct detection. Equation ( 4-4) 

represents the electrical current after direct detection of the oSSB and oDSB signals of 

( 4-1) and ( 4-2) in back-to-back situation, considering that the photo-detector bandwidth is 

much higher than the signal spectral occupancy. It is considered that the photo detector has 

a reponsivity of one. 

( ) ( ) ( )2 2
oDSB 1I t z m t z m t= + ⋅ + ⋅  

( ) ( ) ( ) ( )2 2 2 2
oSSB 1 HI t z m t z m t z m t= + ⋅ + ⋅ + ⋅  

( 4-4) 

Similarly to the result of the detection of the oDSB signal, the detection of the 

oSSB signal presents the data signal, m(t), and second order distortion. However, the 

detected ideal oSSB signal also presents second order distortion due to the Hilbert 

transform of the data signal; which can be source of distortion of the detected signal. 

4.2.1.1 Feasible oSSB and oVSB transmitters 

Several methods have been proposed to achieve optical SSB / VSB modulation. These 

can be divided in two groups: electro-optical methods and all-optical methods. 

Electro-optical SSB / VSB generation 

The most common electro-optical method was proposed by Sieben et al.  [157] and 

consists in a cascade of amplitude and phase modulation. The amplitude modulation stage 
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is driven by the information signal, and the phase modulation stage is driven by the Hilbert 

transform of the signal. This method does not produce intensity distortion after direct 

detection due to the Hilbert transform, and can be realized using a single dual-arm 

MZM  [157]. On the other hand, this method is not appropriate to generate carrier 

suppressed optical signals. 

A dual-MZM, which consists in a Mach-Zehnder structure with MZM embedded in 

each arm can also be employed to generate SSB signals  [179]. One of the MZM is driven 

by the information signal and the other by its Hilbert transform. This method is more 

appropriate to generate carrier suppressed oSSB signals; however, it produces distortion 

after detection, due the Hilbert transform of the signal, particularly when used with 

information signals with NRZ pulse shape, or RZ with high FWHM.  

Fonseca et al.  [180] have proposed a converter to the oSSB format where the 

incoming oDSB signal is split in two copies. One of the copies is detected and suffers 

electrical processing. The second copy is phase modulated with the processed electrical 

signal, to generate an oSSB signal. The advantage of this method is that it is wavelength 

independent and allows high sideband suppressions. On the other hand, it requires photo-

detection and electrical processing.  

All-optical SSB / VSB generation 

All-optical filtering is the simplest method to convert an optical DSB signal to 

oSSB / oVSB  [170]. This method, illustrated in Figure  4-2, is very limited by the 

characteristics of the optical filter, such as decay and out-of band attenuation. Moreover, 

high stability between the optical source and the optical filter is required. 

Transversal optical filters can also be used to convert oDSB signals to the oSSB 

format  [171]. However, this method is also based in the transfer function of an optical 

filter, and has similar disadvantages as the detuned filtering method. 

4.2.1.2 Transmission of oSSB signals over dispersive fiber 

The propagation of a single channel over silica optical fibers, which are only 

weakly non-linear, can be described by the non-linear Schrödinger equation, which is 
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considered accurate to describe the evolution of optical pulses as short as 1 ps  [11]: 

2 3
2

1 2 32 32 6 2

dE dE i d E i d E
E i E E

dz dt dt dt

αβ β β γ+ + − + = , ( 4-5) 

Where E is the electrical field of the optical signal, β1 = vg
-1, with vg the group 

velocity; β2 and β3 account for fiber dispersion, and γ is the non-linear parameter. 

Considering that β3 is negligible in the signal bandwidth, that γ|E|2 is insignificant 

when compared to the remaining terms, and that we transform our referential in a frame 

moving with the pulse; the pulse propagation can be simply described by the following 

transfer function in the frequency domain, where attenuation was also neglected, since it 

can be compensated by in-line amplification: 

( )
2

2
fiber exp

2

iw L
H f

β −=  
 

. ( 4-6) 

The dispersive fiber transfer function can also be represented considering the well 

know dispersion parameter, 2
2

2 cD π β
λ= − : 

( )
2 2

fiber exp
i DL f

H f
c

π λ 
=  

 
. ( 4-7) 

From previous equation results that signals with higher spectral occupancy suffer 

more degradation with chromatic dispersion. Since SSB signals have approximately half 

the spectral occupancy of DSB signals, enhanced transmission reach is obtained  [157].  

4.2.1.3 Electrical dispersion compensation 

The enhanced tolerance of oSSB signals to chromatic dispersion is an important 

asset; however, even in metro networks, an optical signal can travel several hundreds of 

kilometers. Dispersion compensation in the optical domain is a widely used technique in 

such networks. However, such modules are expensive, introduce additional latency, and 

usually there is still a reasonable amount of uncompensated dispersion due to non-ideal 
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match of the fiber and DCM dispersions (for example due to non equal dispersion slope of 

DCM and optical transmission fiber). 

Figure  4-4 illustrates the effect of direct detection in optical DSB and oSSB signals. 

For oDSB signals, the positive and negative sidebands overlap after direct detection. As a 

consequence, the phase modulation caused by the optical fiber dispersion is scrambled 

after detection. This effect is known as spectral back-folding, and makes impossible to use 

simple linear filters for dispersion compensation. For oSSB signals one of the spectral 

sidebands is suppressed; as a consequence, there is no spectral back-folding after detection 

and simple electrical dispersion compensation is enabled after direct detection  [164] or 

before modulation  [177].  
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Figure  4-4: illustration of direct detection in optical DSB and oSSB signals.  

The ideal filter to compensate the chromatic dispersion accumulated by the 

propagation of oSSB signals in optical fiber is described by the transfer function presented 

in ( 4-8)  [157]; where the - / + and +/- refer to upper and lower sideband signals, 

respectively. 
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2 2

EDC 2 2
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π λ
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 ( 4-8) 
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Figure  4-5 presents the response of the ideal electrical dispersion compensation 

filter for optical SSB signals of equation ( 4-8); considering transmission over 100 km of 

standard single mode fiber (SSMF) (D = 17 ps/nm/km at 1550.0 nm). This filter has a flat 

intensity response and a quadratic phase response. As demonstrated in previous works, 

approximations of this transfer function can be obtained through simple passive filters like 

microstrip lines or Butterworth filters, or through adaptive filters  [157],  [164],  [165],  [166], 

with results similar to the theoretical filter of  ( 4-8). 
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Figure  4-5: Phase and intensity response of the ideal electrical dispersion 
compensation filter for optical SSB signals, for 100 km of SSMF.  

4.2.2 All-optical generation of VSB signals with SOA 

The start point for this analysis is an optical SSB signal, generated through the 

method proposed by Sieben et al.  [157]. This method, illustrated in Figure  4-6, can be 

understood as a cascade of amplitude modulation (AM) and phase modulation (PM). The 

AM stage is driven by the electrical data signal and at its output the optical signal is a 

common optical DSB signal; the PM is driven by the electrical Hilbert transform of the 

data signal and converts the optical DSB signal into the oSSB format. 

An example of the temporal evolution of the Hilbert transform of the data signal is 

illustrated in Figure  4-7 for a bit period of 100 ps (equivalent to 10 Gb/s). The Hilbert 

transform signal presents negative or positive peaks for negative or positive bit transitions 

of the data signal, respectively. We have demonstrated in  [181] and  [182] that the Hilbert 

transform signal can be approximated by a low-pass filtered derivative of the data signal 
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with acceptable sideband suppression results. Figure  4-7 presents also the frequency chirp 

of a lower-sideband (in the frequency domain) optical SSB signal, ∆f(t), defined as: 

( ) ( )1
,

2

d t
f t

dt

φ
π

  ∆ = − ⋅  ( 4-9) 

Where φ (t) stands for the phase modulation. As it can be observed in Figure  4-7, 

the SSB signal presents a positive/negative chirp peak prior to the leading/tailing edge of 

the pulses, while afterwards it presents a negative/positive chirp peak. 
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Figure  4-6: Generation of SSB signals through cascade of AM and PM  [157]  
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Figure  4-7: Data signal and correspondent Hilbert transform for 10 Gb/s.  

The converter proposed in this work replaces the phase modulator stage of Figure 

 4-6 by a SOA, where the phase modulation is achieved through self phase modulation non-

linear effect in the SOA. It is a well know effect  [110] that, due to SPM, bit transitions lead 

to chirp peaks in the amplified signal. As a consequence, the signal after the SOA presents 
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negative / positive chirp peaks after the leading / tailing edges of the input pulses. 

Comparing to the oSSB signal generated according to the method described above, the 

chirp peaks before the bit transitions are not present in the signal after the SOA. 

4.2.2.1 Impact of non-ideal phase modulation in sideband suppression 

In the previous section we have compared the chirp of an oSSB signal with that of a 

signal after a SOA: in both cases there are negative / positive chirp peaks after the leading / 

tailing edges of the input pulses; however, in oSSB signals there are also chirp peaks 

before the bit transitions. In this section, the impact of the lack of chirp peaks prior to bit 

transitions in the suppression of a sideband is assessed, in order to understand the potential 

of SPM in SOA to suppress one of the signal sidebands. 

The chirp of the oSSB signal was altered through simulations: the chirp before bit 

transitions was removed. Figure  4-8 compares the chirp of the optical SSB signal generated 

after  [157], and the manipulated chirp.  
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Figure  4-8: Comparison of frequency chirp in an oSSB signal generated after 
 [157], and the chirp curve manipulated to eliminate chirp prior to bit transitions.  

Figure  4-9 compares the optical spectrum of the SSB signal generated after  [157] 

with the spectrum of the signal obtained with the manipulated chirp; the optical DSB 

spectrum is also presented for comparison. The ER of the plotted optical signals is 6 dB, 

value which maximizes the transmission reach in optical SSB systems  [183],  [157].  The 

oSSB signal depicted in Figure  4-9 presents a sideband suppression ratio of around 

25.5 dB. When the first chirp peak is filtered out, the SSR is reduced to around 18.2 dB. 
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This result demonstrates that there is still a reasonable suppression of one of the sidebands, 

when the first chirp moment is filtered out. 
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Figure  4-9: Optical spectra of oDSB signal, oSSB signal, and VSB signal with 
manipulated chirp.  

The transmission capabilities of the vestigial sideband signal, obtained by removal 

of the chirp contributions prior to transitions, are compared with those of the oSSB signal 

in Figure  4-10: the eye opening penalty (EOP) (consult appendix III for definition of EOP) 

is assessed after (linear) transmission over dispersive fiber, modeled with equation ( 4-7), 

with D = 17 ps/nm/km (similar to SSMF at 1550.0 nm). The optical DSB signal presents 

the highest degradation of EOP with the increase of transmission distance. The oSSB 

signal and the modified chirp signal present improved results when compared to the oDSB; 

additionally, the signal with modified chirp presents negligible increase in the EOP when 

compared to the oSSB signal. EDC is applied to both the oSSB and the modified signal, 

using the ideal transfer function of ( 4-8). It can be observed that EDC is effective also on 

the modified signal, since transmission over 500 km is enabled with an EOP of around 6 

dB; while the SSB signal achieves that same distance with a penalty only 0.7 dB inferior. 

The results presented in this section demonstrate that the lack of the chirp 

contribution prior to bit transitions does not affect significantly the sideband suppression. 

Moreover, small EOP degradation is obtained by the VSB signal with manipulated chirp, 

in comparison with oSSB, after transmission over dispersive fiber, in systems with and 

without EDC. 
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Figure  4-10: Comparison of the transmission capabilities of oDSB signal, oSSB 
signal, and VSB signal with manipulated chirp.  

4.2.2.2 SOA based converter operation principle 

The operation principle of the all-optical oDSB to oVSB converter proposed in this 

work is based on temporal frequency chirp, ∆fSOA(t), induced during amplification of an 

intensity modulated signal (IM) in a SOA  [48]. Frequency chirp originates from SPM in 

SOA. The chirp after the SOA is represented in Figure  4-11 for a bit rate of 10 Gb/s; the 

SOA was modeled to fit the behavior of the device used in the experimental tests. For more 

details on the SOA model parameters, see Appendix II. The chirp of an oSSB signal 

generated with the method described in  [157] is also depicted in Figure  4-11 for reference. 

These two signals have similar chirp curves for stand alone ‘1’ and ‘0’ of the data. For 

sequences of consecutive ‘1’ or ‘0’, the main difference between the two signals is that 

oSSB presents a positive/negative chirp peak prior to the leading / tailing edge of the 

pulses, and a negative / positive chirp peak after such edge; whilst the signal after the SOA 

only presents the negative  / positive chirp peak after the leading/tailing edge of the pulses. 

The chirp after the SOA presents strong similarities to the modified chirp analyzed in the 

previous section, where it was demonstrated that reasonable suppression of a sideband can 

be achieved without the chirp peak prior to the bit transitions. Since the sideband 

suppression can never be complete using the modified chirp, the terminology Vestigial 

Sideband (VSB) is used hereafter. Since the SOA phase to gain coupling factor is positive, 

this method only enables suppression of the upper sideband. 



118  Chapter 4 Modulation format conversion 

 

 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

-2

-1

0

1

2

Time [ns] 
0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 

F
re

qu
en

cy
 C

hi
rp

 [
G

H
z]

 

-2 

-1 

0 

1 

2 

 

 

 

1.6 

In
te

ns
ity

 [a
.u

.]
 

Reference IM Signal 
oSSB after [157] 
IM signal after SOA 

 

Figure  4-11: Data IM signal; frequency chirp of the IM signal after SOA 
amplification, and after oSSB generation with the method described in  [157]. 

The use of the modified chirp has been employed to convert a radio-frequency (RF) 

signal to the SSB format  [184]. However, direct application of this technique to broadband 

information signals causes significant amplitude distortion due to the occurrence of self 

gain modulation (SGM) simultaneously with SPM in SOA Such distortion can be observed 

in Figure  4-12, which compares the 10 Gb/s signal at the SOA input with the SOA output 

signal, when the SOA is saturates with an input power of -8 dBm. 

100 ps 100 ps 

 

Figure  4-12: SOA input optical DSB signal (left); signal after SOA (right). 

To minimize the power distortion caused by SGM effect, it is proposed in this work 

to couple the input data signal at λ1, to a CW probe, at λ2 ≠ λ1, at the SOA input. The 

conceptual converter setup is presented in Figure  4-13. The CW probe saturates the SOA 

and decreases the device response time [63]; therefore, higher frequency chirp is obtained 

for lower gain and phase variations. As a consequence, the proposed setup can operate with 

high bit rate broadband signals, achieving substantial sideband suppression with reduced 

intensity distortion. At the SOA output the two signals are present – due to XPM and XGM 
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the output WC probe presents residual IM and PM –, therefore an optical filter is used to 

remove the CW probe. 
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Figure  4-13: Proposed SOA based converter between oDSB and oVSB formats. 

4.2.3 Converter operation assessment 

In this section the operation of the optical DSB to oVSB converter is 

experimentally demonstrated at 10 Gb/s and 40 Gb/s. The setup of Figure  4-14 is used to 

test the performance of the converter. An optical DSB signal at λ1 is generated by driving 

a dual-arm chirp-free MZM with the information signal at the bit rate under test (10 Gb/s 

or 40 Gb/s). This signal is coupled with a CW probe at λ2. Due to the polarization 

dependence of the SOA employed for the 10 Gb/s tests, the polarization of such signals is 

optimized; the SOA employed in the 40 Gb/s tests had only residual polarization 

dependency and polarization adjustment is not necessary. At the SOA output the CW probe 

signal is filtered out by optical filter OF1; it is important to stress that the transfer function 

of the optical filters do not influence the sideband suppression of the data signal. 

Transmission over optical fiber can be done to test the transmission properties of the VSB 

signal. The signal is then detected in a pre-amplified receiver, which consists of an Erbium 

doped fiber amplifier, an optical filter with -3 dB of 130 GHz, and a photodiode receiver 

with -3 dB of 10 GHz and 37 GHz for the 10 Gb/s and 40 Gb/s tests. The performance of 

the converter is analyzed measuring the sideband suppression ratio. The SSR is 

experimentally measured with an optical spectrum analyzer (OSA) with a 0.01 nm 

resolution (RES). Since the SGM effect can cause amplitude degradation, Q-factor and 

BER measurements are also presented. 
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Figure  4-14: Experimental setup to assess the performance of the optical DSB 
to oVSB format converter. 

4.2.3.1 Results at 10 Gb/s 

For the 10 Gb/s tests, an IM oDSB signal with a pattern length of 211-1 bits is 

considered. The wavelengths of the data signal and CW probe are 1552.38 nm and 

1550.8 nm, respectively. The employed SOA is the slow device (consult Appendix III for 

characteristics of the SOA devices utilized throughout this work.). A notch rejection filter, 

realized through FGB, is employed to remove the CW probe signal at the output of the 

SOA; the notch filter, OF1, is centered at λ2, and has a -3 dB bandwidth of 0.73 nm. 

Figure  4-15 a) depicts the optical spectra of the optical DSB signal before the SOA 

and of the converted optical VSB signal; the correspondent eye diagrams are presented in 

Figure  4-15.b) and c), respectively. The extinction ratio (ER) of the input signal is 6 dB in 

order to optimize the optical VSB signal transmission over fiber  [157],  [183]. From Figure 

 4-15 a), a considerable part of the spectral power is moved to the lower sideband (in the 

frequency domain); the SSR in this case is 15.7 dB. 
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Figure  4-15: Optical spectra and eye diagrams of the input and converted signal, 
when the SOA input power of the optical DSB signal and CW probe are -0.4 
and 1.9 dBm, respectively. 
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The oVSB signal eye diagram depicted in Figure  4-15 c) evidences an 

improvement in the eye opening, comparing to the input oDSB, presented in Figure  4-15 

b). This improvement results simultaneously from the reshaping caused by the SOA 

response, which decreases the signal rise time  [48]; and the SOA gain compression that, 

for the referred input power conditions, reduces the variance of the logical ‘1’  [185]. 

Tolerance to power variations of data signal and CW  probe signal  

The operation of the proposed setup relies on SPM non-linear effect, which is 

dependent on the input signal power. The influence of the power of the data signal and of 

the CW probe signal on the converter performance is analyzed. Figure  4-16 presents the 

SSR and Q-factor of the converted oVSB signal for two scenarios: in the first, the CW 

probe signal is disabled, and the data signal is amplified in the SOA; in the second, the 

probe power is 1.9 dBm and both signals are amplified in the SOA. The input signal Q-

factor is 6.5. 
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Figure  4-16: SSR and Q-factor as a function of the data signal power at the 
SOA input. Inset: eye diagram for data signal power of -8.2 dBm and disabled 
CW probe. 

When the probe signal is disabled, a low Q-factor, 4.2, is retrieved for the power 

value of the data signal that enables the highest SSR. Under such condition, the SOA 

optical gain varies 4 dB between the two logical levels of the data signal (measured in 
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continuous wave conditions) resulting in high SGM and eye diagram distortion, which can 

be observed inset Figure  4-15. Similarly, a low SSR, 6.2 dB, is obtained with the input 

signal power is tuned for maximum output Q-factor. 

As discussed above, enabling the CW probe signal results in faster SOA response; 

therefore, lower gain variations are required for the same amount of chirp, and the SGM 

induced distortion is reduced. By optimizing the probe power, an optimum operation point 

can be reached, where the input data signal power that leads to the maximum SSR also 

enables the maximum Q-factor. Considering a CW probe power of 1.9 dBm a maximum 

SSR of 15.7 dB is retrieved, for data signal power of -0.4 dBm. In this condition, the SOA 

optical gain only varies 1.4 dB between the two logical levels of the data signal, so the 

SGM effect does not affect negatively the eye diagram. Furthermore, gain saturation leads 

to improvements in the data eye diagram  [185], and a Q-factor of 10.2 is retrieved. Under 

these conditions, the oVSB optical spectrum and eye diagram are presented in Figure 

 4-15.a) and c). Considering a minimum SSR requirement of 13 dB to assure the VSB 

characteristic, and a minimum Q-factor of 6.5 for the oVSB signal, the power of the input 

data signal can vary between -1.9 and 1.7 dBm, while keeping the probe signal power 

constant. 

If the probe signal power is adapted to the input signal power, higher operation 

range is expected. Higher data signal power leads to the increase of the frequency chirping 

above the optimum level. To compensate, the probe signal power should also be increased 

to drive the SOA further in saturation. Similarly, for lower data signal powers, the probe 

signal power should also decrease to reduce the SOA saturation. Figure  4-17 presents a 

characterization of the converted oVSB signal SSR and Q-factor as a function of data 

signal and the CW probe powers. 

Figure  4-17 demonstrates that SSR above 13.0 dB can be achieved simultaneously 

with an output Q-factor higher than the input (6.5), for a range of signal input power higher 

than 13 dB (from -9.2 dBm to 4 dBm), provided that the probe power is optimized. The 

probe signal is required to change from -16 dBm to 5.8 dBm to allow the referred 

operation range, Such results demonstrate the potential for the converter operation in a 

meshed network, where optical power values may assume arbitrary values, depending for 

example on wavelength, fiber type and fiber length, and other factors. 
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Figure  4-17: Converted signal characterization as a function of the power of the 
input data signal and of the CW probe. 

Input signal extinction ratio 

The impact of the input signal extinction ratio on the converter operation is studied 

in this section. For such purpose, the ER of the signal to be converted is varied by 

actuating the voltage swing of the electrical signals driving the MZM; the maximum ER 

obtained with the experimental MZM is 8.3 dB. The characterization of the converter 

output signal is presented in Figure  4-18, where the signal SSR and Q-factor are depicted. 

The input signal and CW probe powers are kept constant at -8 dBm and 2.5 dBm, 

respectivelly. 
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Figure  4-18: Characterization of the converted signal SSR and Q-factor as a 
function of the input signal ER. 
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The converted signal SSR is above 13.0 dB for provided that the input ER is higher 

3.5 dB. The converted signal Q-factor is above the input Q-factor, which is 6.5 for all 

tested ER. The decrease in Q-factor observed for high ER is due to penalty from SGM 

effect, which has a higher impact for higher input power variations between the two logical 

levels. The Q-factor degradation could be compensated by adapting the probe power 

separately for each ER. Nevertheless, these results demonstrate wide ER operation range. 

Input signal wavelength 

The proposed setup is expected to depend on the input wavelength, since the SOA 

gain is not constant with the wavelength: it has a -3 dB gain bandwidth of 41 nm. Figure 

 4-19 shows the variations in the Q-factor and SSR for different data signal wavelengths. 

The power conditions are maintained in all the measurements of Figure  4-19, and the CW 

probe wavelength was set to 1550.8 nm. The data signal wavelength is varied from 

1531 nm to 1569 nm, excluding 3 nm around the probe wavelength, due to the use of the 

FBG notch. An SSR higher than 13 dB is observed for data signal wavelengths ranging 

from 1537.3 nm to 1563.3 nm (26 nm). For this range the measured Q-factor is always 

above 8.5. The operation range can be increased optimizing the power levels at the SOA 

input for each wavelength or using a SOA with wider gain bandwidth. 
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Figure  4-19: Impact of the signal wavelength on the output SSR and Q-factor. 

Transmission tests 

One of the most interesting features of sideband suppressed signals is its robustness 

to chromatic dispersion. The original oDSB and the oVSB signals at 1552.38 nm are 

transmitted over fiber with positive dispersion (D+) (SSMF); the measured receiver 

sensitivity for a bit error rate (BER) of 10-9 is plotted in Figure  4-20 as a function of the 
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accumulated dispersion. The optical power at the fiber input is kept below 0 dBm, to 

ensure that non-linear effects are insignificant. For chirp free signals, such as the oDSB 

signal used throughout this work, transmission over positive and negative dispersion 

results in identical penalties; to verify the impact of the chirp induced by the SOA, the 

oVSB signal was also transmitted over fiber with negative dispersion (D-) (dispersion 

compensation fiber).  

The oDSB signal presents a 4.0 dB penalty in the receiver sensitivity for 

1360 ps/nm of accumulated positive dispersion (equivalent to 80 km of standard single 

mode fiber (SSMF)), relatively to back-to-back. On the other hand, the oVSB is penalized 

by only 1.1 dB for 1360 ps/nm of D+ and the transmission distance can be further extended 

to 2720 ps/nm (160 km of SSMF) with only 5.3 dB of penalty, demonstrating the enhanced 

tolerance of oVSB to chromatic dispersion. The transmission results and inset eye 

diagrams are in agreement with those of another setup to generate oSSB signals  [157]. 

Transmission of the oVSB signal over accumulated negative dispersion also demonstrates 

enhanced tolerance compared to oDSB, since -2720 ps/nm of dispersion result in a penalty 

of 8.2 dB. Small difference between transmission over positive and negative dispersion are 

due to SOA induced phase modulation. Improved results are expected if electrical 

dispersion compensation is used after the receiver  [157]. 
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Figure  4-20: Receiver sensitivity for the oDSB and oVSB signals. Insets: oVSB 
signal diagrams after 1360 and 2720 ps/nm of accumulated positive dispersion. 
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Electrical dispersion compensation after direct detection 

An important characteristic of sideband suppressed signals is their aptitude to 

electrical dispersion compensation using very simple dispersive lines. In this section, the 

sideband suppressed signal generated with SOA is transmitted and detected, and then 

filtered with an ideal dispersion compensation filter. 

Due to the unavailability in our facilities of an electrical dispersive filter 

appropriate to compensate dispersion on a lower sideband signal at 10 Gb/s, the tests of 

this section are performed through simulations. Figure  4-21 compares the eye diagram of 

an oSSB signal generated with the method of  [157] when an ER of 6 dB is considered (a), 

and of a VSB signal generated by SPM in a SOA (b). As previously noted, the detection of 

the oSSB signal generated by the method of  [157] does not present any amplitude 

distortion due to the Hilbert transform. On the other hand, the signal generated by the 

method presented in this work presents some amplitude distortion after detection. 

Nevertheless, the simulated sideband suppressed signal of Figure  4-21 still presents an 

open eye diagram, which can be employed in transmission over fiber. 
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Figure  4-21: Detected eye diagrams of ideal oSSB signal  [157] with 6dB ER 
(left), and oVSB signal generated with SOA (right). 

The optical spectra of the optical SSB signal after  [157] and of the oVSB signal are 

compared in Figure  4-22. The oSSB signal presents a SSR of approximately 29.0 dB, 

whereas the oVSB signal SSR is around 15.5 dB. This result is in agreement with the 

experimental results of the previous section. 
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Figure  4-23 compares the eye diagrams of the oSSB signal and the sideband 

suppressed signal after transmission over 160 km when EDC is not used – (a) and (b), 

respectively –,  and when ideal EDC, realized by equation ( 4-8), is considered – (c) and 

(d), respectively. Before EDC, both eye diagrams present significant opening, due to 

accumulated dispersion. When EDC is applied, the oSSB signal presents an eye diagram 

with reduced distortion, proving the effectiveness of EDC. The oVSB, resulting from 

conversion in SOA, also presents eye diagram improvements when EDC is considered, but 

it demonstrates considerably higher distortion than the oSSB signal, arising from non-ideal 

sideband suppression in the SOA. 

 

-60

-50

-40

-30

-20

-10

0

-25 -20 -15 -10 -5 0 5 10 15 20 25

Frequency [GHz]

N
o

rm
a

liz
e

d
 o

p
tic

a
l p

o
w

e
r 

[d
B

] .

Ideal optical SSB signal

Sideband suppressed signalOVSB signal 

 

Figure  4-22: Optical spectra of the oSSB signal generated after  [157] and of the 
oVSB signal generated with SPM in SOA. 

In  [186] and  [187] it was demonstrated that a composed electrical dispersion 

compensation filter, realized by the cascade of a dispersion compensation device with non-

ideal transfer function – a microstrip line – and a transversal filter, obtains results 

comparable to the ideal dispersion compensation filter of equation ( 4-8). In this work the 

ideal dispersion compensation filter is cascaded with a transversal filter to improve the 

transmission results of the sideband suppressed signal. Note that microstrip lines can not be 

considered, since these can only compensate for dispersion of upper sideband signals (in 

the frequency domain). The composed filter is presented in Figure  4-24. The input 

electrical signal is first equalized in the ideal dispersion compensation filter. The resultant 

signal is fed to a transversal filter with 7 taps. In the transversal filter, the input signal is 

split in seven replicas. The replicas suffer consecutive delays of τ, are amplified with gain 

ai and are added at the filter output. The delay between taps, τ, is 50 ps. The gain of each 

tap, ai, is optimized to improve the signal eye opening with a modified simplex algorithm, 
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known as Nelder-Mead method  [188]. The number of taps is chosen as a compromise 

between convergence time and obtained improvements in the output signal. 

The modified simplex method uses the general concept of simplex. In geometry, a 

simplex generalizes the concept of a triangle to N dimensions. The modified simplex 

method creates an N dimension object where each dimension represents one of the 

optimization variables (the filter coefficients in this specific case). In each step, the method 

modifies the object shape in size in order to converge to a minimum of the function to 

optimize (EOP in this case). The modified simplex algorithm is simple to implement and 

allows fast initial convergence. Moreover, it is robust as it allows discontinuities. The main 

disadvantages are that it may converge to local minimums, and its convergence pace slows 

close to the minimum. In depth description of the simplex algorithm can be found in  [188]. 
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a) SSB signal, no EDC; b) oVSB signal, no EDC; 
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c) SSB signal after EDC; d) oVSB signal, after EDC. 

Figure  4-23: Eye diagrams after transmission over 160 km of SSB signal and of 
the oVSB signal after conversion in SOA. Two scenarios considered: no EDC 
and EDC via ideal filter. 

Figure  4-25 compares the eye opening penalty as a function of the transmission 

distance for optical DSB, optical SSB with and without ideal EDC, and the sideband 
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suppressed signal with and without the composed EDC of Figure  4-24. If a maximum EOP 

of 6 dB is allowed, optical DSB is limited to 100km of transmission, according to the 

results of Figure  4-25. Optical SSB and the sideband suppressed signals increase this 

distance to 140 km without any EDC. When the composed EDC filter is employed, the 

maximum transmission distance for the oVSB signal is doubled to 280 km. This represents 

nearly the triple of the transmission distance of the oDSB signal. Optical SSB signal and 

ideal filter allows transmission over distance higher than 500 km. The inset in Figure  4-25 

presents the eye diagram of the oVSB signal when the composed EDC is considered, 

which presents considerable improvements when compared to the signal obtained with 

only the ideal EDC filter depicted in Figure  4-23 d). 
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Figure  4-24: Composed filter to compensate dispersion of the sideband 
suppressed signal. First stage consists on the ideal filter of equation ( 4-8), and 
second stage is an adaptive filter with 7 taps. 
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Figure  4-25: Comparison of the transmission capabilities of oDSB signal, oSSB 
signal with and without ideal EDC, and oVSB signal without and with 
composed EDC. Inset: eye diagram of the oVSB signal after 160 km and 
composed EDC. 
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4.2.3.2 Results at 40 Gb/s 

In the previous section we have experimentally demonstrated conversion of a 

10 Gb/s oDSB signal to the oVSB format with SOA. In this section the same operation 

principle is exploited to obtain conversion at 40 Gb/s. First, the slow SOA device (the same 

considered in the 10 Gb/s tests) is employed; afterwards the fast SOA is considered. Back-

to-back and transmission tests are performed. 

Performance with slow SOA device 

The process underneath suppression of sideband power of oDSB signals proposed 

here is based on the SPM induced by SOA. However, such non-linear process is limited by 

the SOA carrier lifetime. If the carrier lifetime is short in comparison to the bit period 

duration, the SPM process will be too fast and no power suppression will occur in the 

frequencies near to the optical carrier. On the other hand, if the carrier lifetime is too large 

in comparison to the bit period duration, frequencies distant from the optical carrier will 

suffer insufficient power suppression 

To illustrate the affirmation above for the case where a too slow device is employed 

(larger carrier lifetime), it is attempted to suppress a sideband of a 40 Gb/s signal with the 

slow device (employed in section  4.2.3.1 to perform conversion at 10 Gb/s). The optical 

powers of the CW probe and of the data signal are 2 dBm and 0 dBm, respectively. These 

values are approximately the optimum power values obtained in the previous section for 

conversion at 10 Gb/s. The resultant output optical spectrum and eye diagram are 

illustrated in Figure  4-26 where it can be observed that reasonable sideband suppression is 

obtained close to the optical carrier; however, for higher frequencies the sideband 

suppression mechanism is not efficient. 

It was observed in the section  3.3 that one of the techniques to improve the SOA 

carrier recovery time is to increase the power of the signals at its input. Figure  4-27 

represents the SSR and EOP as a function of CW probe signal power at the SOA input, for 

different input signal power values. The converter input signal presents an EOP around 

1.2 dB, corresponding to ER of 6 dB. 
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Considering a minimum acceptable SSR of 13 dB, the EOP of the output signal is 

5.6 dB, 5.0 dB for data signal power of 5 dBm, and 10 dBm, respectively (for 0 dBm, of 

input power, SSR of 13 dB is not obtained within the probe power range under test). Such 

EOP values represent a significant degradation of the data signal when compared to the 

input; therefore, we may conclude that for acceptable power levels in the SOA (below 10 

dBm) it is not possible to obtain acceptable sideband suppression at 40 Gb/s with the slow 

device employed for the 10 Gb/s tests. 

 

-60

-50

-40

-30

-20

-10

0

-100 -80 -60 -40 -20 0 20 40 60 80 100

Optical frequency [GHz]

N
o

rm
a

liz
e

d
 m

a
g

n
itu

d
e

 [
d

B
] 

 
 .

SOA output signal

SOA input signal

0 10 20 30 40 50

2

4

6

8

10

Time [ps]

E
le

ct
ric

a
l C

u
rr

e
n

t 
[m

A
]

 

a) Optical spectrum;  b) Output signal eye diagram;  

Figure  4-26: Simulation of sideband suppression at 40 Gb/s with the device 
used for 10 Gb/s. 
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Figure  4-27: SSR and EOP the 40 Gb/s oVSB signal converted in the device 
used for 10 b/s, as a function of the power of the input signals. 
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Back-to-back performance and sideband suppression with fast SOA device 

The setup of Figure  4-14 is employed to experimentally test the converter operation 

at 40 Gb/s. For such purpose a 40 Gb/s data generator is employed, originating an intensity 

modulated oDSB signal with a pattern length of 211-1 bits. The fast SOA device is operated 

with 400 mA. 

Figure  4-28 presents the experimental optical spectrum of the input oDSB signal, 

and of the converted oVSB signal. The converted signal presents the vestigial sideband 

characteristic spectrum, as significant power suppression of the signal upper sideband is 

observed; the measured SSR is 13.5 dB. Regarding the eye diagram, some distortion is 

observed in the converted signal, particularly in the transitions from ‘0’’s to ‘1’’s: this 

distortion is due to self-gain non-linearity. This effect is more preeminent in the 

experimental results of 40 Gb/s than in the 10 Gb/s results, due to the particular shape of 

the eye diagram of the input oDSB signal employed at 10 Gb/s; nevertheless, the converted 

signal eye diagram depicted in Figure  4-28 resembles the converted signal eye diagram of 

the 10 Gb/s simulations of Figure  4-21 b). 
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Figure  4-28: Experimental optical spectra of oVSB converter input and output 
signals. Inset: input signal eye diagram and converted signal eye diagram. 

In addition to the SSR, bit error rate measurements are performed to evaluate the 

intensity of the distortion introduced by the SGM. Figure  4-29 presents the BER and SSR 

of the oVSB converted signal, as a function of the optical power of the oDSB data signal at 

the SOA input; the CW probe power is kept constant at 0.5 dBm. The optical power at the 
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input of the receiver EDFA was chosen to grant BER=10-9 for the input oDSB data signal 

when the oDSB generator was characterized in back-to-back.  

Figure  4-29 shows that with constant probe signal power, the converter enables 

SSR values above 13 dB for input data signal power ranging from -2 dBm to 3 dBm, 

enabling a 5 dB variation of the signal power; the maximum SSR obtained is 14.5 dB, 

corresponding to a data input power of 0 dBm. It can be verified that there is a BER 

degradation when compared to input, which is due to OSNR degradation in the SOA and to 

distortion induced by SGM. Moreover, the degradation verified in the BER curve with the 

increase of the input data power is due to the eye distortion provoked by the SGM; such 

distortion increases with the data signal power, as can be verified from the inset eye 

diagrams. For the power range that allows higher SSR the BER is around 3.5.10-4; which 

represents a degradation of 4.5 orders of magnitude, when compared to the input signal. 
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Figure  4-29: BER and SSR of the converted oVSB signal, as a function of the 
data signal power at the SOA input for constant probe power of 0.5 dBm.  Inset: 
eye diagrams for input signal power of -6 dBm and -2 dBm. 

Transmission results 

Experimental tests of previous section showed that the 40 Gb/s converter output 

signal presents penalties in the BER in back-to-back condition. Here, the resilience to 

chromatic dispersion accumulation is assessed. For such purpose, different lengths of 

standard single mode fibre (SSMF) are introduced in the transmission link after the oVSB 
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converter, as illustrated in the setup depicted in Figure  4-14. The oVSB signal power at the 

SSMF input is below 5 dBm, guaranteeing negligible impact from the nonlinear 

transmission effects. The power levels of the data signal and the CW probe at the SOA 

input are -2.0 dB, and 0.4 dBm; such power levels are chosen from Figure  4-29, as a 

compromise between SSR and BER degradation. Figure  4-30 presents BER curves for 

oDSB and oVSB signals for different accumulated fiber dispersion values, as a function of 

the optical receiver input power. The back-to-back receiver required input power for a 

BER of 10-9 is 2.4 dB higher for oVSB than for oDSB; which is in agreement with the 

conclusions of Figure  4-29. However, after 102 ps/nm, the BER curve of the oVSB signal 

presents an improvement of 2.2 dB compared to back-to-back , due to the chirp introduced 

in the sideband suppression process using the SOA. The power penalty for a BER of 10-9, 

verified by the oVSB signal after 170 ps/nm, is 9 dB, when compared to the back-to-back 

oDSB signal. Overall, the results of Figure  4-30 demonstrate that the oVSB signal extends 

the maximum transmission distance when compared to original oDSB signal: whilst oVSB 

reaches 170 ps/nm (10 km of SSMF) without BER floor, whilst the oDSB signal already 

presents a BER floor after 102 ps/nm of accumulated dispersion (6 km). 
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Figure  4-30: BER as a function of the optical receiver input power for different 
fibre dispersion values.  

As detailed previously, self-homodyne detection of optical DSB signals introduces 

the so called spectral back-folding, which prevents from the use of simple methods to 

perform EDC. On the other hand, signals with a sideband suppressed, suffer reduced 
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spectral back-folding after self-homodyne detection; therefore, oVSB signals allow the use 

of efficient EDC at the receiver side. Hereafter experimental 40 Gb/s EDC, implemented 

using a transversal filter (TF) with 5 taps and tap delay of 18 ps  [189], is employed after 

self-homodyne detection. The degrees of freedom in the TF are the gain of each tap, which 

can be independently optimized to minimize the BER. Due to experimental constrains, 

there is no automatized feedback loop available; therefore, tap gain optimization is done 

manually. Figure  4-31 presents BER as a function of the optical receiver input power for 

different fiber dispersion values, using the TF at the receiver side. 

The use of the TF, allows significant improvements in back-to-back. This occurs 

because the TF optimizes the receiver bandwidth, reducing the total noise; moreover, the 

TF compensates for the inter-symbol interference introduced by the SGM of the SOA.  

Additionally, the TF also extends the allowed CD range from 170 ps/nm to 238 ps/nm for 

oVSB. A penalty of 10 dB in the received power for a BER of 10-9 is observed after 238 

ps/nm of accumulated dispersion (14 km of SSMF) using the TF. This result demonstrates 

the potential of the proposed method, especially when combined with adaptive EDC.  
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Figure  4-31: BER as a function of the optical receiver input power for oVSB 
and an adaptive transversal filter (TF), for different accumulated dispersions 

We have proposed and experimentallly demonstrated ODSB to oVSB conversion in 

a simple SOA-based scheme. This converter is resilient to input signal variations, such as 

power, wavelength or extinction ratio. Moreover, we demonstrated promising fiber 
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transmission results without any optical dispersion compensation devices. Since this thesis 

is developed in an industrial environment, 10 Gb/s and 40 Gb/s stand-alone prototypes 

have been developed. These are reported in detail in appendix IV. 

4.3 On-off keying to CSRZ converter 

4.3.1 Operation Principle 

In this section a converter from on-off keying (OOK) to carrier suppressed return-

to-zero (CSRZ) signaling, based on cross-gain and cross-phase modulation in SOA, is 

proposed. For comparison, Figure  4-32 a) presents the conventional CSRZ modulator 

scheme  [167]. A continuous wave (CW) signal is first modulated at a MZM, biased at 

quadrature, fed by an electrical NRZ signal. The MZM output signal is common optical 

OOK NRZ signal with double sideband modulation. The optical NRZ signal is then 

modulated in a second MZM; this modulator is biased at minimum transmission and driven 

by a clock signal, at half the repetition rate of the data signal. At the output of the second 

MZM, the optical signal intensity presents an RZ shape; however, consecutive the phase of 

consecutive bits is shifted of π. Since this method requires the use of two cascaded MZM 

devices, it presents several drawbacks: high insertion loss (IL), polarization dependence 

(since MZM are polarization dependent), an electrical clock generator is required, and is 

not cost effective. 

Figure  4-32 b) compares the CSRZ signal optical spectrum at the output of the 

CSRZ modulator scheme, and the optical spectrum of the NRZ optical signal at the output 

of the first MZM, for a bit rate of 40 Gb/s. The NRZ signal has one optical carrier at the 

center of the spectrum; on the other hand, the CSRZ signal has two optical carriers with 

equal intensity, separated by +/- 20 GHz from the center of the spectrum. The central 

frequency of the CSRZ spectrum, which corresponds to frequency 0 in Figure  4-32 b), 

coincides with the frequency of the continuous wave input signal and with the optical 

carrier of the NRZ signal. 
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c) Temporal intensity and phase of CSRZ signal. 

Figure  4-32: CSRZ signal generation via the conventional technique  [167]. 
Optical spectra and temporal shapes for 40 Gb/s. 



138  Chapter 4 Modulation format conversion 

 

 

The temporal intensity and phase of the CSRZ signal are depicted in Figure  4-32 c). 

As mentioned above, the CSRZ signal intensity is similar to that of a common RZ signal. 

The optical signal phase is analyzed considering a low pass equivalent of the optical signal, 

where a reference frequency (fR), relative to the input CW signal central frequency, is 

considered. To obtain the optical signal phase at an arbitrary reference frequency, fR, the 

signal time domain phase obtained when the reference is the input CW central frequency 

(fR = 0) should be added to exp(-j.2π.t.fR), where t represents time. When fR corresponds to 

the central frequency of the CSRZ signal (0 GHz in Figure  4-32 b)), constant phase is 

observed within the bit period, and π phase shifts occur between adjacent bits. Such π 

phase shifts contribute to the absence of optical carrier of the CSRZ signal. To facilitate the 

comprehension of the proposed converter, based on SOA, the signal phase is also analyzed 

considering fR detuned from the CSRZ central frequency towards negative frequencies by 

half the signal bit rate (fR = -20 GHz in Figure  4-32 c). For such reference frequency, linear 

phase with slope equal to fBR
.π (fBR is a frequency equivalent to the bit rate) is observed 

within the bit period, and π phase shifts occur between consecutive bits. We will 

demonstrate hereafter that similar phase evolution can be obtained due to self-phase 

modulation in a SOA. 

The proposed all-optical NRZ to CSRZ converter based on XGM and XPM in SOA 

is presented in Figure  4-33 a): an input optical OOK signal (here an NRZ signal is 

considered), at λ1, is coupled to an optical probe clock signal at λ2, with repetition rate 

equal to the signal bit rate. The two signals are then simultaneously amplified in a SOA. 

The optical clock can be obtained from a clock recovery circuit, not represented in the 

figure for simplicity. The power of each optical signal incoming the SOA is optimized so 

that the SOA non-linear effects are dominated by the optical clock signal. 

Figure  4-33 b) represents the intensities of the signals at λ1 and λ2 at the SOA input 

(to improve visualization, the intensities are normalized to their peak values). To guarantee 

correct operation of the proposed converter, the clock signal pulses must be aligned with 

the bit transitions of the NRZ signal. As referred above, the SOA non-linearities are 

dominated by the optical clock signal. The SOA gain is therefore depleted due to the clock 

pulses: due to XGM non-linear effect, the intensity shape of the input NRZ signal is carved 

into a RZ-like shape. The clock signal at the SOA output is removed by an optical filter.  
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b) Temporal intensity of input signals; 
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c) Temporal intensity of output signal;  
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d) Phase of output signal and comparison with CSRZ signal. 

Figure  4-33: Proposed on-off keying (OOK) to carrier suppressed return-to-zero 
(CSRZ) converter based on cross-gain and cross-phase modulation (XGM and 
XPM) in SOA. 
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The signal intensity after OF, obtained by means of simulation, is illustrated in Figure 

 4-33 c), confirming the return-to-zero shape. The gain saturation, caused by the clock 

signal pulses, also leads to cross-phase modulation, which provokes periodic variations in 

the information signal phase. The phase of the information signal after the SOA is 

presented in Figure  4-33 d) (considering fR correspondent to the input NRZ carrier 

frequency): when a clock signal pulse enters the SOA, a fast phase decrease is observed 

(caused by fast carrier depletion); when the optical pulse leaves the SOA, the phase slowly 

recovers to the initial value (the phase recovery is mostly determined by slower inter-band 

processes). The power of the clock signal at the SOA input is adjusted to achieve 

approximately π phase shifts between adjacent bits. The common CSRZ signal phase is 

also depicted in Figure  4-33 d) considering fR = -20 GHz, which presents strong 

similarities with the phase of the information signal after SOA. From the SOA output 

signal intensity and phase of Figure  4-33 d), we conclude that the input OOK NRZ signal 

is converted to the CSRZ format, with detuning of central frequency by 20 GHz (fBR/2). 

The principle of operation of the proposed converter supports conversion of 

multiple input NRZ signals. For such purpose it is necessary to ensure that the power of the 

input signals is kept at a low level, so that the non-linear effects are still dominated by the 

clock signal. Moreover, all the input NRZ channels must have the same baseline bit rate, 

and the bit transitions of all input signals must be temporally aligned with the clock signal 

pulses. These conditions may be granted without complexity, for example in multicast 

applications, where all the input NRZ signals have the same origin. Although the principle 

of operation has been presented for NRZ signaling, the proposed converter is not limited to 

NRZ signals: conversion of OOK RZ input signals is also supported. 

4.3.2 40 Gb/s simulation tests 

4.3.2.1 CSRZ generation with SOA 

The 40 Gb/s conversion is performed using the fast SOA device. The input 

information signal is a NRZ signal with infinite extinction ratio; -5 dBm optical power, 

measured at the SOA input; and central wavelength of 1548.0 nm. The clock signal is 

composed by optical pulses with 3 ps full width at half maximum (FWHM), intensity 
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Gaussian shape, and 2.0 dBm power at 1561.0 nm. The optical filter at the SOA output 

(OF in Figure  4-33 a)) is a 3rd order Gaussian filter detuned from the NRZ wavelength by 

40 GHz and -3 dB bandwidth of 90 GHz. The impact of the optical filter bandwidth is 

studied in section  4.3.2.2.  

Figure  4-34 a) depicts the optical spectra at the SOA input and output. Similarly to 

a CSRZ signal, the SOA output signal has two optical carriers with approximately the 

same power, separated by a frequency equal to the bit rate (40 GHz in this case). 

Comparing to the SOA input, the tone at the central wavelength is maintained, but the tone 

at 40 GHz is enhanced by the SOA non-linear behavior. Additionally, the SOA also 

enhances the tones at -40 GHz, -80 GHz, etc. This enhancement of the red tones is due to 

the ultra-fast carrier depletion. After the optical filter these tones are removed and the 

output spectrum is similar to the conventional CSRZ spectrum, presented in Figure  4-32 

b). The converted signal eye diagram, presented in Figure  4-34 b), is open, undistorted and 

presents RZ pulse format. 
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a) Optical spectra; b) Eye diagram. 

Figure  4-34: Optical spectra of the signals at SOA input, SOA output, and OF 
output; and signal eye diagram at OF output. (OF: optical filter at SOA output) 

The phase of the NRZ to CSRZ converter output signal is presented in Figure  4-35, 

considering fR = +20 GHz, and compared to the phase of a the CSRZ signal generated by 

the conventional method. For this comparison, the optical carriers of the SOA output signal 

are tuned to the carriers of the CSRZ signal generated by the conventional method. 

Similarly to the CSRZ signal, it can be verified that in each bit there is a phase shift of 
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approximately π (i.e. polarity inversion). Nevertheless, this method does not generate an 

ideal CSRZ signal, since the output phase is only an approximation to the ideal CSRZ 

phase evolution.   
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Figure  4-35: Comparison of temporal intensity and phase shapes for the 
converter output signal and CSRZ signal generated with common method. NRZ 
signal envelope is presented for reference. 

One of the methods to verify if an optical signal is a CSRZ consists in feeding it to 

a delay-add interferometer. The interferometer input signal is split in two replicas; the two 

replicas suffer a delay of a bit period relative to each other and are added at the 

interferometer output. Considering a set of consecutive CSRZ pulses at the input, the 

interferometer retrieves an optical pulse at the beginning of the pulse sequence; all 

consecutive pulses cancel mutually due to the relative phase shifts of π; finally, after the 

last pulse of the input signal, another pulse is retrieved. Figure  4-36 presents the delay-add 

interferometer output when it is fed by the conventional CSRZ signal and by the proposed 

converter output signal. The signal generated by the proposed converter behaves as 

expected: a high power optical pulse is retrieved at the beginning of a pulse train and 

another after the pulse train. Due to the non-ideal phase of the converter, low power 

satellite pulses are also retrieved. Nevertheless, such satellite pulses are 12 dB below the 

pulses power when there is constructive interference. 
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From the spectrum and intensity shape of Figure  4-35 and from the delay-add 

interferometer output of Figure  4-36, we conclude that the proposed method is able to 

effectively convert an input OOK NRZ signal to the CSRZ format. 
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Figure  4-36: Temporal shapes at the output of a delay-add interferometer, when 
it is fed by the conventional CSRZ signal and by the CSRZ signal generated by 
the proposed method. NRZ signal envelope is presented for reference. 

4.3.2.2 Comparison with common transmitter 

One of the key benefits of CSRZ signals, when compared to common RZ is high 

tolerance to tight optical filtering: since two consecutive bits have oppose phase, CSRZ 

signals are more tolerant to inter-symbol interference caused by tight filtering. Figure  4-37 

a) presents the simulated EOP, as a function of the optical bandwidth of an optical filter 

placed at the transmitter output for the proposed and conventional converters. A photo 

detector with 40 GHz -3 dB bandwidth is considered. The considered optical filters are 

Gaussian of second and third order. The presented results evidence that for high 

bandwidths (superior to 1.5*Bit Rate for 2nd order filters, and 2*Bit Rate for 3rd order 

filters), the conventional transmitter EOP excels the proposed transmitter, due to residual 

SOA amplitude distortion. However, for lower bandwidths the signal originated by the 

proposed converter presents similar or even lower distortion than the common transmitter. 

The eye diagrams of Figure  4-37 b) and c) present the filtered signals for 2nd order filter 
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with bandwidth of 1.2*Bit Rate: the signal generated by the proposed converter presents 

lower distortion than the signal generated by the conventional transmitter. 
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b) Eye diagram of filtered CSRZ signal c) Eye diagram of filtered CSRZ signal  
generated by conventional  method.; generated by the proposed method. 

Figure  4-37: CSRZ signal tolerance to tight optical filtering. N denotes the order 
of the Gaussian filter. Eye diagrams represent detected signal for 2nd order filter 
with -3 dB bandwidth of 1.2*Bit Rate. 

Another important characteristic of CSRZ is the enhanced tolerance to non-linear 

effects. Figure  4-38 presents a simple comparison of the robustness to non-linearities of the 

signal generated by the proposed converter, and the signal generated with the conventional 

method. The optical CSRZ signals are filtered by a 3rd order Gaussian filter with -3 dB 

bandwidth of 90 GHz and are transmitted over SSMF fiber with D of 17 ps/nm, attenuation 

coefficient of 0.2 dB/km and non-linear refractive index of 2.6.10-20. The signals under test 

are transmitted over 5 and 10 spans of 70 km of SSMF. After each span the chromatic 

dispersion and transmission losses are perfectly compensated. No noise is considered in 
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these tests. Since the chromatic dispersion is perfectly compensated, it is observed that for 

very low powers the calculated EOP after transmission is similar to back-to-back: the 

conventional transmitter presents better EOP. For increasing power, the proposed and 

common transmitter present similar evolutions, with the proposed converter slightly 

excelling. The superior results of the proposed transmitter are most likely due to higher 

pulse width (56% of FWHM), when compared to the conventional method (45% of 

FWHM). 
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Figure  4-38: CSRZ signals degradation with non-linear transmission. 

Since the SOA induces chirping, caused by SPM and XGM, it is also necessary to 

compare the tolerance to chromatic dispersion accumulation of the CSRZ signal obtained 

with SOA with the conventional CSRZ signal. Figure  4-39 plots the eye opening penalty of 

the signals generated by the proposed and common transmitter as a function of dispersion 

accumulation. For such tests the non-linear effects and attenuation of the fiber are 

disregarded and only the effect of β2 is considered. The CSRZ signal generated by the 

proposed method presents enhanced tolerance to negative dispersion, when compared to 

positive dispersion, due to SOA induced chirping. Nevertheless, similarly to the non-linear 

transmission tests, the proposed converter presents enhanced chromatic dispersion 

tolerance, due to higher pulse widths. 

The results presented in this section have demonstrated that the CSRZ signal 

presents similar tolerance to tight filtering, when compared to the conventional transmitter. 

Moreover, slightly improved tolerance to non-linear effects and accumulated dispersion are 
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obtained; mostly due to higher pulse width, when compared to the conventional 

transmitter. 
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Figure  4-39: CSRZ signals degradation with accumulated chromatic dispersion. 

4.3.2.3 NRZ to CSRZ converter robustness to input signal variations  

We have demonstrated in the previous section that under optimized conditions, 

feeding a SOA with a data signal and an optical clock, a CSRZ signal is obtained. 

Although the phase of the resultant optical signal does not present a perfect match with the 

ideal CSRZ signal phase, the converted signal presents similar advantages for optical 

network applications when compared to a  CSRZ signal obtained through the conventional 

method: tolerance to tight optical filtering, to non-linear effects, to the accumulation of 

chromatic dispersion. In this section, the converter robustness to variations in the input 

signal is assessed via simulations at 40 Gb/s. Such tests allow further understanding of the 

true potential of the proposed converter application in a real network.  

For practical application in a network, the converter should operate over a wide 

range of input power values. Figure  4-40 presents the imbalance between the two CSRZ 

signal optical carriers, as a function of the input and clock signal powers. The imbalance is 

measured as the absolute value of the power difference between the two spectral tones at 

+/- 20 GHz of the CSRZ spectrum. The results demonstrate that optimum performance 

over a wide range of input powers is possible, provided that the clock signal power is 

adapted accordingly. For the modeled device characteristics, the optimum clock signal 

power is approximately equal to the input power added by 7 dB. Figure  4-40 also presents 
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in grey the range where the output EOP is below -2.0 dB; it is observable that the grey area 

overlaps with the area where minimum power difference between the two carriers is 

achieved. For constant input power, the clock signal power may vary by approximately +/- 

0.75 dB relatively to the optimum value while keeping the power difference between the 

two carriers below 1 dB. On the other side, similar power variation is allowed for the input 

signal, when the clock signal power is constant. 
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Figure  4-40: Absolute value (in dB) of the power difference between the two 
CSRZ signal optical carriers as a function of input and clock signal powers. 
Grey area denotes the operation range where the signal EOP is below -2.0 dB. 

The impact of the clock signal pulse width is analyzed in Figure  4-41, which plots 

the power difference between the two optical carriers of the converted CSRZ signal, for 

varying clock signal power and different FWHM values. The input NRZ signal power is 

constant at -5 dBm and the SOA output signal is filtered by a 3rd order Gaussian filter with 

90 GHz of -3 dB bandwidth. It is verified that for higher FWHM, higher power is required 

to achieve the same frequency chirping; therefore, with the increase of the FWHM, the 

optimum clock power increases. For FWHM = 0.4, the  ideal condition (the two carriers 

having the same power) is never achieved. The EOP for clock FWHM of 0.1, 0.2, and 0.3 

was measured at target power difference between the optical carriers, 0 dB, and is 2.8 dB, 

3.1 dB, and 3.2 dB, respectively. As a conclusion, the optimum clock signal FWHM is a 
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compromise between converted signal EOP and necessary power at SOA input. Moreover, 

very short optical pulses are also more complex to generate. 
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Figure  4-41: Power difference between the two CSRZ signal optical carriers 
(power of the spectral tone at +20 GHz, relative to the center of the spectrum, 
subtracted by the power of the spectral tone at -20 GHz), as a function of the 
clock signal power, for different clock signal full width at half maximum 
(FWHM). Horizontal line represents the power difference target of 0 dB. 

As referred above, the proposed method is also appropriate for OOK RZ input 

signals. The converter operation with input OOK RZ signals is assessed in Figure  4-42. 

The RZ signal is generated using two cascaded MZM. In the first stage, a CW signal is 

first modulated in a MZM biased at quadrature and driven by an NRZ electrical signal. The 

resultant optical signal is fed to the second MZM, which is biased at quadrature and driven 

by a electrical clock signal, which oscillates at the signal bit rate frequency. The resultant 

RZ signal has an approximate FWHM of 0.5 * Bit Period. The RZ signal is then fed to the 

SOA-based converter with -5 dBm input power; the optimum clock signal power is now 

4.5 dBm. Figure  4-42 a) presents the converted signal spectrum, which also presents carrier 

suppressed characteristics. The red chirped part of the spectrum presents lower power than 

in the NRZ spectrum of Figure  4-34. This part of the spectrum is mostly generated by red 

frequency chirping originated by the leading edge of the clock signal pulses. For the RZ 

signal case, the optical clock pulses leading edge is temporally aligned to the RZ signal 

ditch between two pulses. As a consequence the red chirping occurs in an instant where the 
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RZ signal has no (or very low) power. The resultant eye diagram of Figure  4-42 b) is clear 

and undistorted (EOP of -3.3 dB).  
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a) Optical spectra of SOA input, SOA  b) Converter output signal eye 
output, and converter output signals; diagram; 

Figure  4-42: RZ to CSRZ conversion (OF: 3rd order Gaussian optical filter at 
SOA output with -3 dB bandwidth of 90 GHz). 

The results of this section have demonstrated that the proposed converter is fit for 

arbitrary input powers, provided that the clock signal power is adjusted accordingly. The 

ideal clock signal FWHM is a compromise between the output signal EOP and the required 

clock power. Finally, we have demonstrated that the proposed converter setup is also 

appropriate for input OOK RZ signals. 

4.3.3 40 Gb/s single- and multi-channel experimental validation 

The 40 Gb/s setup, considered in the experimental tests, is represented in Figure 

 4-43. Single- and multi-channel operations are experimentally assessed. In single channel 

operation, an NRZ signal at λS1 = 1547.72 nm is fed to the converter. In multi–channel 

operation two configurations are tested: conversion of two independent NRZ signals at λS1 

and at λS2 = 1549.32 nm with different binary information (dual conversion) but temporally 

aligned; and a configuration for multi-cast applications, where four ITU 200 GHz grid 

wavelengths (λS1, λS2, λS3 = 1550.92 nm, and λS4 = 1552.52 nm) with similar binary 

information are converted simultaneously to CSRZ (quadruple conversion). In all cases, 

the NRZ signals are obtained by driving a MZM with 40 Gb/s signal with a pattern length 

of 231-1 bit. The input data signals are coupled to a 40 Gb/s optical clock signal at 
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1562.23 nm with 2 ps pulses, generated by a mode locked laser diode (MLLD). The optical 

pulses are aligned with the data signal bit transitions by a variable delay line (VDL). The 

signals are amplified in the fast SOA device. Low SOA polarization dependency (≈ 0.5 

dB) avoids the use of polarization controllers. The signal after the SOA is filtered at OF1, 

which isolates the wavelength under analysis and reduces its spectral occupancy. OF1 is a 

tunable optical filter with intensity response approximated to a 3rd order Gaussian and -3 

dB bandwidth of 91.2 GHz. The signals are detected in a pre-amplified receiver, composed 

by an optical filter (OF2) with 130 GHz optical bandwidth centered with the wavelength of 

the signal under analysis, and a photo-detector (PD) with a -3 dB cut-off frequency of 

37 GHz. The signals are characterized via bit error rate measurements, as a function of the 

optical signal to noise ratio at the photo-detector input. The OSNR is adjusted by adding 

optical noise with variable power and maintaining the signal power constant at 0 dBm. 

  MLLD      VDL  VOA1   SOA       OF1      EDFA 

  ASE      VOA1 

  OF2        PD 

40 Gb/s input 
λS1, λS2, λS3, λS4 

τ 
 

Figure  4-43: 40 Gb/s format converter setup for experimental tests. 

Single channel conversion is characterized in Figure  4-44. Optical spectrum and 

eye diagram of the NRZ signal at the SOA input are depicted in Figure  4-44 a). Figure 

 4-44 b) depicts the optical spectrum of the λS1 signal at the SOA output when the optical 

pulse train is amplified simultaneously with the NRZ signal. The optical pulse train power 

is adjusted to 8 dBm: this value was found to optimize the CSRZ shape at output. The NRZ 

signal power is adjusted to -4 dBm, which is the maximum level at which the non-linear 

effects are still dominated by the clock signal. In this situation, the heavily saturated SOA 

induces conversion to the CSRZ format, as described in the previous section. The spectral 

shape of the signal at the SOA output is similar to that obtained in the simulation tests; the 

spectrum presents identical power of the two main spectral tones (difference of 0.17 dB), 

as expected for a CSRZ signal. OF1 is centered with the output CSRZ signal central 

wavelength: detuned from λS1 by 20 GHz. The resultant signal presents reduced spectral 

occupancy and a RZ shaped open eye diagram with negligible distortion, as can be verified 
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by the spectrum and the inset eye diagram in Figure  4-44 b). Comparing to the simulation 

tests, the experimental results require higher clock signal power; such difference is due to 

the fact that the simulation model ignores wavelength dependency, since the input 

wavelength is much lower than the clock signal wavelength, lower conversion efficiency is 

observed experimentally  [92]. 
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c) Signals after SOA for dual conversion;  d) Signals after SOA for quadruple conversion. 

Figure  4-44: Optical spectra and eye diagrams (10 ps/div). 

Dual and quadruple conversions are achieved by feeding the SOA with 8 dBm 

clock signal power. All input wavelengths are temporally aligned with the clock signal. 

The input signals total power is maintained approximately constant when the channel count 

increases, by reducing the power per channel. For dual configuration λS1 and λS2 NRZ 

signals with powers of -6.9 and -7.1 dBm are fed to the SOA; whereas for quadruple 

configuration, the powers of λS1, λS2, λS3, and λS4 are -9.8, -10.0, -10.1, -10.2 dBm. The 
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clock signal power is kept constant at 8 dBm in all tests. The multi-input conversion results 

are presented in Figure  4-44 c) and d). All signals present identical power of the two main 

spectral tones at the converter output. The inset eye diagrams are obtained detuning OF1 

by 20 GHz from λSi (similarly to the single channel test). Clear and open eye diagrams are 

obtained in both tests for all wavelengths.  

9 10 11 12 13 14 15 16 17 18
-11

-10

-9

-8

-7

-6

-5

 1547.72 nm (QC)
 1549.32 nm (QC)
 1550.92 nm (QC)
 1552.52 nm (QC)

 

 

lo
g 1

0(B
E

R
)

Optical Signal to Noise Ratio [dB]

 input NRZ 
 1547.72 nm (SC)
 1547.72 nm (DC)
 1549.32 nm (DC)

 

Figure  4-45: BER characterization versus OSNR (SC, DC, and QC – single, 
dual, and quadruple conversion). 

The converter performance is characterized in Figure  4-45 in terms of BER as a 

function of the OSNR. The input NRZ signal requires 16.1 dB OSNR for a BER of 10-9 

(OSNRreq). When single input is considered, a converted signal with 13.1 dB OSNRreq is 

obtained. The lower OSNR requirement of RZ signals is commonly observed, since these 

require lower power than NRZ for the same vertical eye opening. Considering two input 

channels, the output signals OSNRreq is 13.4 and 13.7 dB (0.6 dB of maximum penalty 

relatively to the single input test). When four channels are converted, the output OSNRreq 

ranges from 14.4 to 14.6 dB, representing a maximum penalty of 1.5 dB compared to the 

single input converted signal. From such results, it is expected that the maximum number 

of simultaneously converted channels can be further increased; the limiting factors will 

probably be the SOA induced noise, since the per-channel power is reduced by a factor of 

3 dB every time the channel count is doubled; inter-channel non-linearities in the SOA 

(such as XGM, XPM or FWM) are not expected to be a dominant factor, since the non-

linear effects are dominated by the high power optical clock signal. 
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4.4 Summary 

This chapter has focused on all-optical format modulation converters. Such 

schemes are especially required at the interfaces of optical networks with use different 

modulation formats. Two novel format modulation conversion schemes have been 

proposed. The first converts optical double sideband (oDSB) signals to the optical vestigial 

sideband (oVSB) format. To the authors knowledge this is the first all-optical method that 

does not depend on optical filtering and does not require Hilbert transforms of the 

information signal. The second converts on-off keying signals to the carrier suppressed 

return to zero (CSRZ) format with operation for both NRZ and RZ input signals. 

 The oDSB to oVSB converter operation is based on the frequency chirp generated 

by the self-phase modulation (SPM) nonlinearity in a semiconductor optical amplifier 

(SOA). An additional CW signal is introduced to minimize the self-gain modulation 

(SGM) distortion, improving the converted signal quality. The converter has been 

experimentally assessed at 10 Gb/s with sideband suppression ratio (SSR) above 15 dB and 

an improved Q-factor, due to the resultant gain compression effect on the SOA. Using a 

faster device, 40 Gb/s operation has also been experimentally achieved with SSR results 

above 14 dB. 

Enhanced tolerance to chromatic dispersion accumulation, when compared to 

oDSB has been verified with and without electrical dispersion compensation (EDC). At 

10 Gb/s experimental transmission was possible over 160km of SSMF (2720 ps/nm of 

dispersion), while the oDSB signal allowed only 80 km (1360 ps/nm). By simulation the 

use of EDC was assessed with transmission up to 280 km without any optical dispersion 

compensation. At 40 Gb/s extended dispersion tolerance has also been verified: without 

optical or electrical dispersion compensation, transmission over 170 ps/nm (10 km of 

SSMF) has been allowed, while oDSB allows only 102 ps/nm (6 km). Using only EDC at 

the receiver side, implemented by an adjustable transversal filter, fiber dispersions up to 

238 ps/nm (14 km) have been experimentally tolerated. 

Format conversion from OOK to RZ with modulation format conversion to carrier 

suppressed (CS) was proposed in a simple scheme where XGM and XPM interact in a 
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SOA. The converter operation was compared to the conventional CSRZ transmitter via 

40 Gb/s simulations: tight filtering penalty similar to the common transmitter was verified; 

improved tolerance to chromatic dispersion accumulation was obtained by the proposed 

transmitter; and also enhanced tolerance to fiber non-linear effects. The converter is able to 

operate with both NRZ and RZ input signals. Single- and multi-channel operation up to 

four channels has been experimentally assessed at 40 Gb/s. Carrier suppressed spectrum 

and clear RZ eye diagrams have been obtained at the converter output for all input 

configurations. For all input channel counts, the converted signal present improved 

required OSNR, when compared to the input NRZ signal. We expect that the channel count 

can still be further increased without major degradation of the output signal quality. To our 

knowledge, this is the first 40 Gb/s all-optical multi-channel demonstration of a OOK to 

CSRZ converter. 
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Chapter 5  

Pulse format conversions between RZ 

and NRZ 

5.1 Motivation 

Wavelength division multiplexing (WDM) and optical time division multiplexing 

(OTDM) technologies respond to the bandwidth demand increase, motivated by the data 

exchange growth. In transport networks, several channels are aggregated using OTDM, 

through the bit interleaving technique. Return-to-zero (RZ) pulse format is usually 

preferred in such networks due to superior tolerance to polarization mode dispersion, inter-

symbol interference, and nonlinear effects. On the other hand, non-return-to-zero (NRZ) is 

commonly employed on lower bit rate access networks, as these require pulse formats with 

improved spectral efficiency and enhanced jitter and dispersion tolerance  [190]. As 
 

O
T

D
M

de
m

ux WC + PFC

Ultra-high bit rate RZ signal
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OTDM demultiplexed RZ 
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Figure  5-1: Illustration of pulse and wavelength conversion functionalities 
required in the interface between transport and access networks. 
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illustrated in Figure  5-1, in the interface between transport and access networks, all-optical 

OTDM de-multiplexers, wavelength converters, and format converters are required to 

enable a transparent inter-connectivity between the two networks  [190]. In the reverse 

direction the inverse functionalities are required. 

Promising results for de-multiplexers and add-drop multiplexers have been 

reviewed already in section  2.9. Wavelength conversion is also thoroughly investigated in 

 Chapter 3. NRZ-to-RZ format conversion can be simply obtained by replacing the probe 

signal in the SOA based wavelength converters of  Chapter 3 by a pulsed clock signal  [191] 

-  [193]. Such functionalities have also been reported using highly non-linear optical fibers 

 [194]. On the other hand, optical RZ-to-NRZ pulse format conversion is a more complex 

functionality. 

Current implementations of all optical converters between RZ and NRZ include: a 

scheme which uses XGM and WDM to TDM conversion  [190]; a SOA based non-linear 

optical loop mirror (NOLM)  [195]; a Fabry-Perot laser with injection locking scheme 

 [196]; a scheme in which the red and the blue chirped parts of the spectrum of a XGM and 

XPM signal suffer different delays after which are recombined  [110]; a scheme using XPM 

in a SOA Mach-Zehnder interferometer (MZI) structure and a pulse duplicator  [197]; a 

SOA based Michelson interferometer (MI)  [198]; and finally, a method based on FWM in 

SOA  [199]. From these methods, only the scheme which is based on MI has been 

demonstrated at 40 Gb/s; however, MI-SOA is not a commercially available structure.  

In this chapter we propose and experimentally demonstrate two solutions to obtain 

wavelength and simultaneous pulse format conversion from RZ to NRZ. In section  5.2 a 

scheme is investigated, where amplification in SOA and detuned optical filtering are 

combined to reach wavelength and simultaneous RZ-to-NRZ format conversion at bit rates 

up to 40 Gb/s  [200]. A second novel method is presented in section  5.3  [64] [201]; the setup 

consists in two stages: in the first, the input RZ signal modulates the internal laser of a gain 

clamped SOA (GC-SOA); in the second stage, this signal is wavelength converted using 

XGM in a common SOA. Both proposed methods are simple, since these do not require 

interferometric schemes or non-linear loops; and retrieve a non-inverted converted signal. 

Moreover, in the scheme based on GC-SOA the output signal wavelength can match the 

input one if required. 
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5.2 RZ to NRZ converter with SOA and detuned filtering 

Detuned optical filtering can be used for several applications, as mentioned already 

in this work: oVSB generation  [170], enhancement of the modulation bandwidth in SOA 

 [202], or isolation of either the red or blue chirped part of the spectrum of a XGM 

converted signal to obtain RZ to RZ wavelength conversion  [110]. In this section we 

investigate format and simultaneous wavelength conversion based on XGM and detuned 

filtering. Experimental results according to this method have been presented in  [203]; 

however, to the author’s knowledge, the operation principle has not yet been investigated, 

the filter shape has not been optimized and only 10 Gb/s results have been presented.  

Pulse format conversion from RZ to NRZ based on detuned optical filtering only is 

first presented in section  5.2.1; in section  5.2.2 a XGM stage is added to the setup to 

reduce the insertion losses, allow input wavelength independence and enable wavelength 

conversion. 

5.2.1 Pulse format conversion based only on detuned filtering 

5.2.1.1 Operation principle 

In this section the principle of operation of the RZ to NRZ converter based on 

detuned optical filtering is presented and demonstrated by means of simulation. The 

principle of operation is bit rate (BR) independent, provided that the characteristics of the 

optical filter are dimensioned according to a scale factor dependent on the bit rate. 

The proposed scheme to convert RZ to NRZ signals is depicted in Figure  5-2. An 

input RZ signal at λ1 is fed to a detuned optical filter. If the filter spectral response is 

optimized, its output signal is converted to the NRZ pulse format. The spectral tone at the 

clock signal, typical of RZ signals, becomes the central wavelength of the converted NRZ 

signal. In absence of phase modulation, the RZ optical spectrum is symmetrical relatively 

to the optical carrier; therefore, the optical filter can either be detuned for positive or for 

negative wavelengths. For simplicity, the study presented hereafter considers always that 

the optical is detuned towards negative wavelengths (positive frequencies). 
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Figure  5-2: RZ-to-NRZ signal conversion based on detuned optical filtering 

Figure  5-3 illustrates the optical spectra of NRZ and RZ signals. The NRZ signal 

central frequency is detuned by a frequency equal to the bit rate. The RZ pulses have a 

raised cosine shape  [204] with a roll-off factor of 0.5, a full width at half maximum 

(FWHM) of a quarter of the bit period (BP). The NRZ signal was generated as rectangular 

pulses and limited by a 3rd order Bessel filter with a cut-off frequency of 0.8.BR. 
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Figure  5-3: RZ and NRZ optical spectra. NRZ signal is detuned by a frequency 
equal to the bit rate. 

The transfer function of the ideal optical filter to convert a RZ signal to the NRZ 

format, HRZ-NRZ (f) format is given by equations ( 5-1) and ( 5-2): 

( ) ( )
( )

,
NRZ f

RZ NRZ
RZ

S f
H f

S f−

+ ∆
=  ( 5-1) 

( ) ( ) ( ) ( )NRZ RZH1 1
,

2 2
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f ff
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f f
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π π
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∂ ∂

 ( 5-2) 
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Where ( )RZ NRZH f−  and ( )H fτ  stand for the filter spectral intensity response and 

group delay, respectively. Φ stands for the phase, and S stands for spectral power density. 

In Figure  5-4 the intensity and the group delay of the ideal optical filter for format 

conversion are depicted. Regarding the intensity response of the filter, several lobes are 

observed. However, considering the RZ and NRZ spectra of Figure  5-3, it can be observed 

that only the lobe centered at 1.BR has significant influence, since the other lobes are 

centered in frequencies where the resulting NRZ signal has low spectral power. Regarding 

the group delay of the ideal filter, in the frequency range of most interest (0 – 2.BR), 

correspondent to the main lobe, variations lower than +/- 0.1.bit period are required. From 

the considerations above, if the main lobe is considered the most important part of the filter 

spectrum, the results anticipate that an optical filter with linear phase response can be 

employed. The intensity response of such optical filter is also simple to obtain by feasible 

filters, since there are no discontinuities in the band of interest.  
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a) Intensity response;  b) Group delay. 

Figure  5-4: Simulated ideal filter response to convert RZ-to-NRZ pulse format, 
HRZ-NRZ (f). 

5.2.1.2 Simulation results 

In the simulation tests, Gaussian shaped optical filters will be considered, due to 

their similarity to available experimental optical filters and to potential for simple 

implementation. The transfer function of a Gaussian filter is described by the following 

expression  [205]: 
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( ) ( ) ( ) 2

C
Gauss

3dB

2
exp ln 2 ,

N
f f

H f
f

 ⋅ − 
 = − ⋅ ∆   

 ( 5-3) 

where fC is the center frequency of the optical filter, ∆f3dB is the -3 dB optical 

bandwidth and N represents the filter order. The group delay of the Gaussian filters is 

constant, which should not be impairment since the ideal filter required small variations in 

the group delay in the band of interest.  
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a) Optical amplitude response of filters;  b) Optical spectra. 

Figure  5-5: Comparison of ideal filter spectral response with one 2nd order 
Gaussian filter, and with a cascade filter composed by a 1st and 4th order 
Gaussian filters. 

Two filtering configurations are considered, and their spectral response is 

compared in Figure  5-5 a) with the spectral response of the ideal filter. The characteristics 

of such configurations have been optimized to allow highest similarity with the ideal filter 

intensity transfer function of Figure  5-4: 

• The first filtering configuration consists in a single 2nd order Gaussian filter 

with a -3 dB bandwidth of 1.1*BR and a detuning of 1.05*BR. 

• The second configuration consists in a cascade of a 1st and a 4th order 

Gaussian filters. The -3 dB bandwidth of the 1st and 4th order filters were 

0.8*BR and 1.6*BR, respectively; the detuning relatively to the optical 

carrier was 1.05*BR for both filters.  
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The single filter configuration is simpler; however, the spectral response diverges 

from that of the ideal filter. The cascaded filter presents an excellent match with the ideal 

filter for the main lobe. The spectra of the converted signals are compared with the target 

NRZ signal in Figure  5-5 b); as expected, the cascade filter enables a better approximation 

to the target spectrum, particularly near the optical carrier. However, both filtered signals 

present low-pass characteristics; since both optical filtering configurations only allow 

transmission of the main spectral lobe, there is a low-pass filtering effect in both output 

signals. The insertion losses of the filtering-based format converter are 6.3 dB for the 

single filter and 6.7 dB for the cascade filter case. Such high losses are due to the fact that 

the NRZ signal optical carrier is effectively a spectral tone at clock frequency of the RZ 

signal; and such component presents much lower power when compared to the original 

optical carrier. 

The signals after the filter-based converters are compared in Figure  5-6 in terms of 

eye diagram and temporal evolution. Both signals present NRZ signal shapes and open eye 

diagrams. As expected, both signals present high rise and fall times when compared to the 

target NRZ signal (inset Figure  5-3), due to the low pass filtering effect.  The signal after 

the cascade filter presents improved eye opening and reduced distortion, when compared to 

the signal after the single filter. The ER of the converted signals is very high (ideally 

infinite). This is related to the fact that the power ratio of the spectral component at the 

clock tone and the adjacent spectral tones in a RZ signal is similar to that of the optical 

carrier and adjacent tones in a NRZ signal with infinite ER. As will be verified later in this 

section, the converted signal still presents very high ER even when the input signal has low 

ER.  

To allow operation over arbitrary pulse rates of the transport network, the converter 

should ideally be independent on the pulse duration of the input signal. However, the 

spectral shape of the RZ signal is dependent on pulse duration. Figure  5-7 characterizes the 

optical spectrum of the RZ signal for different FWHM: for small FWHM the RZ spectrum 

is very broad, while for higher FWHM, the spectral occupancy is reduced. Moreover the 

RZ signal presents spectral notches which become closer to the optical carrier when the 

FWHM increases and affect the spectrum of the converted signal. 
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a) Temporal evolution (current is normalized); 
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b) Eye diagram with single filter;  c) Eye diagram with cascaded filter. 

Figure  5-6: Comparison of temporal evolution and eye diagrams of converted 
signals when the single and cascaded filter configurations are employed. 
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Figure  5-7: RZ signal optical spectrum for variable FWHM. 
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To characterize the converter resilience to the input pulse width, Figure  5-8 depicts 

the eye opening penalty (EOP) (consult appendix III for definition of EOP) and the 

insertion power losses as a function of the input RZ signal FWHM. The filters were kept 

constant throughout the test. 

For low FWHM the input signal spectral occupancy increases, spreading the power 

over a wider spectrum. As a consequence, the insertion losses of the converter are high 

under such conditions. On the other hand, for high FWHM the RZ signal spectral power is 

concentrated closer to the optical carrier, reducing the power of the clock signal tone, 

which also leads to an increase of the losses. The EOP shows reduced variation for FWHM 

between 0.1*BR and 0.5*BR and 0.6*BR for the single and cascaded configurations, 

respectively. For higher FWHM, the notch observed in the RZ signal spectrum (Figure 

 5-7) causes severe eye diagram degradation. Nevertheless, input signals with high FWHM 

(>0.5*BR) are not an interesting use case, since the typical signals to be used as input of 

the proposed converter are demultiplexed signals from a high bit rate transport network, 

which consist in short optical pulses. 
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Figure  5-8: Characterization of converter performance over variable input pulse 
width. Inset: eye diagrams of converted signal for the cascaded filter 
configuration when input FWHM = 0.1*BR and 0.7*BR. 

The conceptual principle of the RZ-to-NRZ conversion based on detuned optical 

filtering is to be applied to the XGM signal after a SOA, which has inverted polarity and 

low ER. Therefore it is essential that the conversion principle is independent on the input 
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signal polarity and ER. The ER and polarity of an OOK signal are determined by the 

intensity and phase of the optical carrier, respectively: with the exception of the optical 

carrier, the entire RZ signal spectrum is independent of its polarity and ER. The proposed 

method nearly removes the original optical carrier, and the resultant NRZ signal is centered 

around the spectral tone at the clock frequency, which is not affected by the original RZ 

signal polarity or ER; therefore, independent operation over a wide range of ER and 

absolute independence on the signal polarity is expected. 
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b) Output eye diagram when a single;  c) Output eye diagram when a filter 
is used; cascade filter is used. 

Figure  5-9: Converted signal when at the input RZ signal has inverted polarity 
and 3 dB of ER. 

The filter-based format converter is characterized in Figure  5-9 with an input 

inverted RZ signal with low ER (3dB). It can be observed that the output NRZ signal is 

inverted in relation to the input RZ signal; however, it is non-inverted in relation to the 

original logical information. Moreover, the ER of the converted signal is not affected by 
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the input ER. Negligible impact from the input signal ER and polarity is observed in the 

converted signals eye diagrams. The EOP was measured for a range of input signal ER 

between 3 dB and 50 dB and less than 0.1 dB variations was obtained. 

The RZ-to-NRZ converter with detuned filter has demonstrated promising results: 

undistorted eye diagram regardless of input signal extinction ratio, independence of input 

signal polarity, and high tolerance to input FWHM. However, it has high insertion losses 

and is dependent of the input signal wavelength, which would require wavelength tracking 

in realistic network scenarios. 

5.2.2 Pulse format and wavelength conversion based on SOA and 

detuned filtering 

The previous section demonstrated detuned optical filtering as a simple and 

effective method to convert RZ signals to the NRZ format. Such method is robust to the 

input signal FWHM, ER and polarity. Moreover, it is scalable to any bit rate, provided that 

the optical filter bandwidth is adjusted accordingly. However, it is highly dependent on the 

input signal wavelength, which would require wavelength tracking of the input signal 

wavelength; has high losses; and does not feature wavelength conversion. 

In this section we propose the use of the detuned filtering method on the signal 

resulting from XGM wavelength conversion of an input RZ signal. Several advantages are 

foreseen when combining XGM and detuned filtering:  

• No wavelength tracking is necessary, since the filtering is done over a 

locally generated laser; 

• The high filtering losses can be mitigated by the SOA gain; 

• The converter features wavelength conversion; 

• The converter output signal is not logically inverted and presents high ER 

(unlike the typical XGM converted signal); 
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• Higher operation speed is expected due to the detuned filtering technique, 

according to the results from section  3.2.2.1; 

• The overall operation principle is simple and uses low cost components. 

5.2.2.1 Operation principle 

The principle of operation of the RZ to NRZ and wavelength converter, based on 

wavelength conversion in SOA and detuned optical filtering, is presented in Figure  5-10. 

An input RZ signal at λ1 and a continuous wave (CW) at λ2 are simultaneously amplified 

in a SOA. At the SOA output, the signal at λ2 is intensity modulated due to XGM. Such 

signal is logically inverted; has reduced extinction ratio; and presents patterning effects due 

to the SOA slow gain response. This signal is then fed to a detuned optical filter with 

optimized transfer function. The detuned filter will retrieve at the output a non-inverted 

NRZ signal with high ER, as demonstrated in the previous section. 

Cross phase modulation (XPM) occurs in the SOA simultaneously with XGM; 

hence, the signal at λ2 presents phase modulation in addition to amplitude modulation. As 

a consequence, the signal at λ2 is shifted towards the red and blue wavelengths for the 

rising and falling edges of the λ1 input signal, respectively. Detuned filtering of the SOA 

output signal at λ2 will induce phase-to-intensity conversions. It is then expected that the 

detuned filtering will exploit fast frequency chirping to enhance the converted signal 

quality, together with the format conversion. Detuned filtering of the SOA output signal 

has been presented in  Chapter 3 as a common technique to obtain wavelength conversion 

of RZ signals with bit rates beyond the SOA gain response; however, without pulse format 

conversion. 

. 
 SOA output @ λ2          NRZ signal @ λ2-∆λ 
 

 RZ signal @ λ1 
 

CW signal @ λ2 
 

OFSOA

 

Figure  5-10: RZ-to-NRZ signal conversion based on detuned optical filtering. 
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5.2.2.2 Simulation tests and optimization 

As previously referred, one of the main applications for format converters is in all-

optical interfaces between transport and access networks. At such interfaces, the N time 

multiplexed channels of an ultra-fast OTDM signal are separated using a 1 x N time de-

multiplexer, and converted to the NRZ format. Afterwards, each signal is routed to the 

correspondent access network. Hereafter, a 40 Gb/s RZ signal with 3 ps pulses is fed to the 

format converter. Due to its FWHM, this signal can represent one of the 4 time de-

multiplexed signals obtained from a 160 Gb/s OTDM signal delivered from a transport 

network.  

40 Gb/s conversion with fast SOA device 

Figure  5-11 a) presents the simulated SOA output spectrum when the input signal 

presents 3 ps FWHM, with -5 dBm power, and wavelength of 1550.7 nm; and the CW 

probe signal power is 3 dBm and wavelength is 1543.4 nm. The SOA considered in these 

simulations was the fast SOA device (consult appendix II for more details). The SOA 

output signal at the probe wavelength (common XGM signal) is presented in Figure  5-11 

b). This signal was obtained after a broad optical filter centered with the probe wavelength. 

The signal is inverted, has low ER and presents eye opening distortion due to the SOA 

slow response. 
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a) Optical spectrum; b) Eye diagram. 

Figure  5-11: SOA output spectrum, and eye diagram at the probe signal 
wavelength after SOA when a broad optical filter is used. 
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Figure  5-12 illustrates the optical spectrum of the SOA output signal around the 

probe signal wavelength in more detail. The spectrum of a 40 Gb/s NRZ signal with 

infinite extinction ratio is also depicted. The NRZ signal carrier is detuned from the probe 

signal by a frequency equal to the bit rate (∆λ), to match the wavelength of its optical 

carrier with the discrete spectral tone at the clock frequency of the probe signal. The 

transfer function of the ideal filter to convert the SOA output signal to the NRZ format is 

obtained dividing the NRZ signal spectrum by that of the SOA output signal at the probe 

wavelength. The ideal optical filter spectral amplitude response is also depicted in Figure 

 5-12. In the frequency range of the NRZ main spectral lobe (between 0 and 80 GHz), the 

filter response does not present significant discontinuities. This result is consistent with 

that obtained in the previous section for an undistorted RZ input signal. The phase 

response of the ideal filter is not presented since it presents negligible group delay 

variations in the frequency range of interest, similarly to the converter of the previous 

section.  

The ideal optical filter intensity response can be approximated by feasible filters in 

the frequency range of interest, due to the reduced group delay variations and well behaved 

intensity response. Gaussian optical filters presented promising results in the previous 

section; therefore such filters will be also considered also hereafter. 
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Figure  5-12: Optical spectra of: SOA output at the probe signal wavelength; 
NRZ signal with infinite ER detuned from the probe wavelength by 40 GHz; 
and ideal optical filter to convert the SOA output to NRZ pulse format. 
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Two filtering configurations are considered and their characteristics are optimized 

in order to allow maximum approximation with the ideal filter: a single first order 

Gaussian filter with -3 dB bandwidth of 25 GHz and detuning of 51 GHz relatively to the 

probe signal central wavelength; and a cascade of a first and a second order Gaussian 

filters with -3 dB bandwidths of 30 GHz and 57 GHz and detunings of 55 GHz and 

39 GHz, respectively. The intensity transfer functions of the two filtering configurations 

are compared in Figure  5-13 with the response of the ideal filter. Both filtering 

configurations present a good agreement with the ideal filter curve for the main lobe 

frequencies. 
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Figure  5-13: Intensity response of ideal filter to convert the SOA output signal 
to the NRZ format, and approximation by a cascade of filters, and by a single 
first order Gaussian filter. 

Figure  5-14 a) compares the optical spectrum of the converted signals after SOA 

and detuned filtering with the spectrum of NRZ signal with infinite ER. The spectra are 

reasonably approximated for the main spectral lobe; for higher frequencies, the converted 

signals have complete spectral suppression due to the filtering. Figure  5-14 b) and c) 

present the converted signals eye diagrams. The signal after the cascade filter presents an 

open and undistorted eye diagram. Comparing to an ideal NRZ signal, the converted 

signals have high rise and fall times due to the low-pass filtering effect. The single filter 

provides insufficient suppression of the optical tone at 80 GHz (as can be verified in the 

optical spectrum), and as a consequence the resultant signal presents an oscillation in the 

logical ‘1’ level. Both signals present very high extinction ratio. Comparing the converted 
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signals eye diagrams to the converted signal obtained when a broad filter tuned with the 

probe wavelength is used (Figure  5-11 b)), demonstrates that the proposed scheme not only 

performs format conversion, but also improves the SOA temporal response. Both 

configurations feature optical gain, since the SOA amplifies the signals, and the 

information is converted to the higher power probe. With the single filter, the output signal 

optical power is 3.4 dB, corresponding to 8.4 dB of gain relatively to the input RZ signal; 

with the cascade filter a gain of 7.3 dB was obtained. 
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a) Optical spectra of NRZ signal, and signals after SOA and detuned filtering 
with single filter, and cascade configuration; 
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b) Output eye diagram for cascade filter 
configuration; 

c) Output eye diagram for single filter 
configuration. 

 

Figure  5-14: Optical spectra and eye diagrams of converted signals after SOA 
and detuned filtering for single and cascade filtering configurations. 
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The impact of detuning of the probe signal wavelength relatively to the optical 

filter is assessed in Figure  5-15, by means of output signal eye opening penalty and 

converter gain. For negative detuning, the optical gain of the configuration increases; 

however, the optical tone at the probe signal carrier causes distortion in the eye diagram 

and penalties in the EOP (as can be verified from the upper inset). For positive detuning 

the optical tone at 80 GHz becomes preponderant, which also causes distortion in the 

converted signal (although the EOP is not necessarily degraded): the output signal becomes 

shaped as an RZ (lower inset); moreover, positive detuning reduces the gain of the optical 

converter. Nevertheless, around +/- 4 GHz of filter detuning are allowed with a variation of 

the converter gain below 1.5 dB and with EOP below 0 dB. 
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Figure  5-15: Impact of detuning of the probe signal central wavelength 
relatively to the optical filters. Inset eye diagrams of the converted signals for: 
cascade filter structure with detuning of -10 GHz; and single filter with 
detuning of 6 GHz. 

The input signal pulse width may vary, for example due to tight optical filtering of 

the signal to convert or due to accumulated chromatic dispersion. Therefore, it is important 

that the converter is tolerant to such pulse width variations. Figure  5-16 characterizes the 

dependence of the converter performance on the input pulse width. Since the optical filters 

were designed for input FWHM of 3 ps, EOP penalties arise for both filtering 

configurations when the converter input signal presents higher FWHM. The optical gain is 

also penalized for higher pulse widths since under such circumstances the converted signal 

spectrum has lower power in the side lobes. Nevertheless, input pulse widths up to 7 ps or 
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9 ps are tolerated without penalizing the converted signal EOP above 0 dB, for the cascade 

and single filter configurations, respectively. 
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Figure  5-16: Impact of input signal pulse width. Inset eye diagrams of the 
converted signals for: cascade filter structure and FWHM of 1.5 ps, and single 
filter and FWHM of 12.5 ps. 

The powers of the input data signal and of the CW probe impact the converter 

performance. For constant probe signal power, variation of the input signal power leads to 

changes in the modulation of the SOA carrier density and, as a consequence, in the amount 

of XGM and XPM suffered by the probe signal. Similarly, for constant input signal power, 

changes in the probe signal power affect the level of SOA gain saturation, which also 

impacts the amount of XGM and XPM. Changes in the gain and phase modulation suffered 

by the probe signal lead to different output spectral shape: different optical filter transfer 

function is then required. Figure  5-17 characterizes the converted signal EOP as a function 

of the input and probe signal powers for the single and cascaded filter configurations. Both 

filtering structures show high tolerance to input signal power variations, provided that the 

probe signal power is adapted accordingly. When the probe signal power is adapted to 

optimize the converted signal EOP, the power of the converted signal is also kept 

approximately constant. For example, when the input signal power varies from -14 dBm to 

-2 dBm and the probe power is optimized to maximize the EOP, it was verified that the 

output power varies less than 1 dB. 
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a) Cascade filter structure; b) Single filter. 

Figure  5-17: Converted signal EOP as a function of input and probe signals 
power. 

It was referred in the previous section that the detuned optical filter can be applied 

both to the positive (blue) and negative (red) parts of the optical spectrum, when its input 

RZ signal is unchirped; however the SOA output signal presents chirp due to XPM. To 

verify if it is possible to perform format conversion using also the red chirped part of the 

spectrum, the ideal filter transfer function was derived for such condition. Figure  5-18 a) 

presents the intensity response of the ideal filter, detuned towards the negative frequencies. 

A reasonable approximation has been found by a cascade of a first order and a third order 

Gaussian filters. The -3 dB bandwidths of the first and third order filters are 27 GHz and 

67 GHz, respectively; and the detunings relatively to the probe signal central wavelength 

are -46 GHz and -43.5 GHz. Figure  5-18 b) presents the converter output spectrum under 

such conditions, and compares it to the ideal optical NRZ signal spectrum. The optical gain 

of this configuration is 7.7 dB. 

Figure  5-19 a) presents the eye diagram of the converted signal after the cascaded 

filter when applied over the red part of the SOA output signal spectrum. Severe signal 

distortion is observed in such eye diagram when compared to the converted signal when 

using the blue part of the spectrum, which is depicted in Figure  5-14 a). The amplitude 

distortion is due to the strong and fast red chirp occurring in the leading edge of the input 

optical pulses; this chirp translates in the overshoot observed in the ‘0’ to ‘1’ transitions of 

the output signal in Figure  5-19 a). To eliminate such distortion, it would be necessary to 

consider an optical filter with non-constant group delay. To confirm such assumption, the 
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ideal filter of  Figure  5-18 a) has been applied to the SOA output signal: an ideal NRZ 

signal is obtained when both intensity and phase response of the filter are considered (not 

presented in any figure); when only the intensity response of the filter is employed (the 

group delay is a constant), the distorted signal of Figure  5-19 b) is obtained. Therefore, we 

may conclude that the blue part of the spectrum is more appropriate for RZ-to-NRZ 

conversion than the red part of the spectrum. 
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a) Ideal and approximated filter transfer  b) Optical spectra of ideal NRZ signal, and 
function; converted signal with approximated filter. 

Figure  5-18: RZ to NRZ conversion by filtering the “red” part of the spectrum 
(negative frequencies) of the signal after the SOA. 
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a) Approximated filter by cascade of  b) Ideal filter with only intensity 
Gaussian filters; response (group delay is constant). 

Figure  5-19: Obtained signal after detuned filtering of the converted signal 
spectrum red frequencies.  
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40 Gb/s conversion with slow SOA device  

We have previously demonstrated RZ to NRZ conversion at 40 Gbit/s using the fast 

SOA device, with recovery times of approximately 80 ps. The detuned filtering not only 

enabled conversion to the NRZ format, but also reduced the patterning effects due to the 

SOA slow response. Hereafter, the potential of this method for overcoming the gain 

recovery limitations is investigated by using the slow SOA device, with recovery times of 

around 380 ps. 

The input signal FWHM is 3 ps, similarly to the previous tests. It was verified that, 

for optimum performance, higher probe signal power is required when compared to the test 

with the fast device, for constant input signal power. Therefore, the input signal power is 

-3 dB, and the probe signal power is 9 dBm. Higher probe power requirements are due to 

the fact that the SOA response improves for higher saturation. 

Figure  5-20 a) compares the slow SOA output spectrum at the probe signal 

wavelength with the equivalent spectrum when the fast SOA is employed. The slower 

response of the SOA acts like a low pass filter in the converted signal (consult section  3.3 

for more details), as can be verified from the optical spectrum of the converted signal when 

the slow SOA is used. The spectral tone at the clock frequency, which will be the NRZ 

signal central tone, presents power approximately 19 dB lower for the slow SOA. A broad 

optical filter, centered with the probe signal wavelength, is used to extract the common 

XGM signal. The resultant eye diagram is represented in Figure  5-20 b): due to the slow 

SOA response the converted signal eye diagram is completely closed. 

The spectral intensity response of the ideal filter to convert to NRZ format, when 

the slow SOA is used, is compared in Figure  5-21 a) to the ideal filter response for the fast 

SOA. The two filter responses are similar in the main lobe, with the exception that the slow 

SOA requires a much higher attenuation at the central wavelength of the probe signal. The 

higher attenuation relates to the lower modulation depth obtained from the slower SOA. 

The ideal filter is approximated by cascading a first and a third order Gaussian filters with 

-3 dB bandwidths of 27 GHz and 64 GHZ, respectively; and detunings of 48 GHz and 

45 GHz. Figure  5-21 b) presents the converted signal eye diagram, which presents very 

high ER and complete suppression of the distortion that was present at the SOA output 
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(Figure  5-20 b)). Unlike the fast SOA configuration, which features optical gain, the slow 

SOA converter scheme presents 12 dB insertion losses. This result proves that the detuned 

filter provides conversion beyond the SOA modulation bandwidth; however, in such 

condition the converter is penalized by a reduction of the output signal power. 
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a) Optical spectra; b) Eye diagram. 

Figure  5-20: SOA output spectra, and eye diagram at the probe signal 
wavelength when a broad optical filter is used. 
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a) Spectral response of ideal filters for  b) Eye diagram after the cascade of 
slow and fast SOA, and cascaded filter; Gaussian filters. 

Figure  5-21: Spectral response of filters for conversion of SOA output signal to 
NRZ format, and eye diagram considering a cascade of Gaussian filters. 

The simulation results of this section demonstrate the great potential of the 

configuration with SOA and detuned filter for simultaneous wavelength and format 
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conversion. Using the fast SOA device the scheme presents optical gain and an undistorted 

output signal was obtained at 40 Gb/s. Independence of the input signal FWHM was 

demonstrated and tolerance to a high input power range is enables, provided that the probe 

signal power is adapted accordingly. With the same method the slow device was also 

capable to convert an input 40 Gb/s RZ signal to the NRZ format with negligible 

distortion. The main drawback of using the slow device are the high insertion losses, due to 

lower carrier modulation at high bit rates. 

5.2.2.3 Experimental validation 

40 Gb/s conversion with fast SOA device  

The converter is experimentally tested at 40 Gb/s using the experimental setup 

depicted in Figure  5-22. The input RZ signal at λ1 = 1549.9 nm is obtained by modulating 

the output of an ultra-fast optical clock (UOC), which generates 3 ps optical pulses, in a 

MZM. The optical RZ signal spectrum and eye diagram are depicted in Figure  5-23. The 

RZ signal is coupled with a continuous wave (CW) at λ2 = 1552.52 nm and amplified in a 

SOA. The fast SOA is considered for this test. The power of the RZ and probe signals at 

the SOA input are adjusted to -2.0 dBm and 5.0 dBm, respectively. After the SOA, the 

signal is filtered by optical filters OF1 and OF2; such cascade of filters is employed to 

obtain an approximation of the ideal filter, as described in the previous section. 

Transmission of the converter output signal over SSMF is carried to assess its dispersion 

tolerance. The resultant signal is detected at a pre-amplified receiver, where OF3 is used to 

reduce the amplified spontaneous emission (ASE) noise spectral bandwidth. The -3 dB 

bandwidth (BW) of OF3 and the photo-detector are 130 and 37 GHz, respectively. 

    UOC, λ1      MZM          VOA 

40 Gb/s 

CW, λ2  

SOA   OF1         OF2      SSMF      VOA      EDFA       OF3    PD 
 

RZ generation      WC and format conversion        Detection and BER charact. (RX)  

Figure  5-22:  Wavelength and RZ to NRZ converter setup. 



178  Chapter 5 Pulse format conversions between RZ and NRZ 

 

 

Figure  5-24 presents the optical spectrum at the SOA output and the XGM signal 

eye diagram, retrieved at the SOA output when a broad optical filter is considered. The 

XGM signal was obtained after a broad optical filter, tuned with the probe signal 

wavelength. The eye diagram presents reduced ER (2.4 dB), and patterning effects due to 

the SOA slow gain response. The experimental eye diagram and optical spectrum present 

similarities with those obtained via the 40 Gb/s simulation tests presented in previous 

section (Figure  5-11). 

 
a) Optical spectrum;  b) Eye diagram. 
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Figure  5-23: Optical RZ signal with 3 ps optical pulses. Eye diagram obtained 
with a 65 GHz photo detector. 
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a) Optical spectrum; b) Eye diagram. 

Figure  5-24: SOA output spectrum; and SOA output eye diagram when a broad 
optical filter tuned with the probe signal wavelength is used. 

Figure  5-25 presents a detailed view of the probe signal optical spectrum, and the 

spectrum of an NRZ signal with infinite ER. From these two spectra, the intensity spectral 
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response ideal filter to convert the SOA output to the NRZ format is obtained and 

represented also in Figure  5-25. For comparison, the ideal conversion filter obtained via 

simulations (originally presented in Figure  5-12) is also represented. An excellent match of 

the two filters is observed in the main lobe. 
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Figure  5-25: Optical spectra of: experimental SOA output at probe signal 
wavelength, NRZ signal with infinite ER detuned from the probe wavelength by 
40 GHz; and ideal optical filters to convert the SOA output to NRZ pulse 
format obtained by simulations in section  5.2.2.2 and obtained from the SOA 
experimental output spectrum. 

Figure  5-26 presents the intensity transfer function of the filter that enables ideal 

conversion to the NRZ format, obtained from the experimental SOA output spectrum. Due 

to our experimental constraints, it was not possible to achieve an optimal approximation, as 

that obtained in the simulation results. Two cascaded filters are considered: OF1 and OF2, 

which can be approximated by 1st and 3rd order Gaussian shaped characteristics, with -3 dB 

bandwidth of 42 and 37.5 GHz, respectively. OF1 and OF2 have tunable central 

frequencies, which are optimized considering the ideal filter optical spectral response, and 

the output NRZ signal eye diagram. Optimum detuning of 61 GHz and 45.5 GHz relatively 

to the probe signal central wavelength were found for OF1 and OF2, respectively.  Under 

such conditions, the measured spectral intensity responses of OF1 and OF2 are depicted in 

Figure  5-26;  also the resultant intensity response of the cascade of the two filters; and the 

ideal filter response are illustrated. Comparing the responses of the ideal filter and the 

experimental cascade filter, a reasonable approximation is observed from 25 to 68 GHz, 

with intensity response difference lower than 3 dB. 
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Figure  5-27 a) and b) presents the converted signal optical spectrum and eye 

diagram. The signal eye diagram is open and has negligible distortion; moreover, this 

signal features high ER (12.1 dB). The signal slow rise and fall times (approximately 

17 ps), are due to the high decay of the experimental filter cascade for frequencies between 

0 and 25 GHz and from 68 to 80 GHz, when compared to the ideal filter. 
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Figure  5-26:   Ideal and experimental optical filters spectral intensity response. 

 

-70

-60

-50

-40

-30

-20

-10

0

-40 0 40 80 120

Optical frequency normalized to 1552.52 nm [GHz]

N
o

rm
a

liz
e

d
 o

p
tic

a
l p

o
w

e
r 

[d
B

].
.

NRZ signal

Signal after OF2

 

a) Optical spectra; b) Eye diagram. 

Figure  5-27: Comparison of ideal NRZ signal optical spectrum and spectrum 
obtained after the experimental filter cascade; and experimental eye diagram at 
converter output. 
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Figure  5-28 compares the temporal shapes of the input RZ signal with the signals 

obtained after the SOA when a broad optical filter extracts the probe wavelength (XGM 

signal), and after the filter cascade. It is visible that the information carried by the signal 

after the SOA is logically inverted relatively to the input signal data, and presents strong 

patterning effects due to the SOA slow carrier recovery. However, the filter output signal is 

no longer inverted and overcomes the signal degradation caused by slow carrier dynamics. 

50 ps   

 

a) RZ input signal; 

  

 

b) Signal after SOA at the probe wavelength (XGM signal); 

  

 

c) NRZ signal after detuned optical filtering. 

Figure  5-28: Experimental temporal shapes of input RZ signal, XGM signal and 
signal after the cascaded filter. 

The converter performance is characterized in Figure  5-29 for different central 

frequencies of OF1 and OF2, by means of bit error ratio (BER) measurements. The power 

at the input of the pre-amplifier receiver was kept fixed at -26.9 dBm. A bit pattern length 

of 211-1 is used for the BER tests. First, the central frequency of OF2 is detuned from 45.5 

GHz relatively to the probe signal wavelength and OF1 central frequency is varied. More 

than 35 GHz of OF1 central frequency variation are allowed for the BER to rise from 10-10 

to 10-9. The BER demonstrated less tolerance to OF2 central frequency deviations from the 

optimum value, due to its higher out of band decay: with OF1 tuned at 61 GHz, the 
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allowed variation of OF2 central frequency is only around 7 GHz for the same BER 

degradation.  
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Figure  5-29: Characterization of converter performance as a function of OF1 
and OF2 central optical frequency. 

The influence of the filter shape was assessed by replacing the cascaded filters with 

only one of the filters. Considering only OF1 (the 1st order Gaussian shaped filter), the 

spectral component at the probe signal wavelength is not sufficiently rejected, and a signal 

with distorted shape and closed eye diagram is observed. On the other hand, considering 

only OF2 (the 3rd order Gaussian shaped filter) detuned from 45 GHz from the probe signal 

central frequency, the NRZ eye diagram of Figure  5-30 is retrieved at the output. Although 

presenting an open eye diagram, this signal presents significant eye opening penalty, since 

OF2 diverges from the ideal filter response. In this case, a 2.5 dB power penalty at the pre-

amplified receiver is obtained in back-to-back for a BER of 10-9, when compared to the 

cascade of the two filters. Therefore, the cascade of the two filters is required to obtain 

proper converter performance, considering our experimental constraints. Nevertheless, the 

ideal filter may be approximated by a custom designed single device, using fiber Bragg 

grating technology, for example.  

The converter performance is characterized in Figure  5-31 for different 

transmission distances, by means of bit error ratio (BER) measurements, as a function of 

the pre-amplified receiver input power. The converted NRZ signal in back-to-back presents 

a penalty in the required optical power for a BER of 10-9 of approximately 1 dB, compared 

to the input RZ signal. Such a power penalty is commonly observed even when comparing 
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ideal NRZ and RZ signals, due to a higher vertical eye diagram opening of RZ for the same 

optical power. 

 

Figure  5-30: Obtained eye diagram when only OF2 is utilized at the SOA 
output. 

Since SOA induce phase modulation in the converted signal through XPM non-

linearity, it is important to verify the converted signal ability to be transmitted over 

dispersive optical fiber. The converted signal is transmitted over 4 km and 6 km of SSMF 

(68 ps/nm and 102 ps/nm, respectively) to characterize its tolerance to accumulated 

chromatic dispersion. The optical power penalty for a BER of 10-9, after such distances, is 

0.7 and 3.3 dB, respectively, when compared to the NRZ signal in back-to-back. These 

penalties are in agreement with the results of section  4.2.3.2 for conventional on-off keying 

(OOK) format, demonstrating that the SOA induced phase modulation does not impact the 

dispersion tolerance of the converted signal. 
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Figure  5-31: BER as a function of the pre-amplified receiver input power. 
Insets: eye diagrams of the converted NRZ signal after 4 and 6 km of SSMF 
transmission. 
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10 Gb/s conversion with slow SOA device 

The experimental 10 Gb/s RZ signal has a FWHM of about 60% of the bit period, a 

Q-factor of 10.1, and an ER of 8.4 dB. The power of the data signal at the SOA input is 

-5.6 dBm and the CW probe power is 2.3 dBm. The data signal wavelength is 1548.8 nm 

and the CW wavelength is 1547.55 nm. The detuned optical spectral intensity response is 

approximated by a 2nd order Gaussian filter with a -3dB bandwidth of 13.5 GHz. The slow 

SOA device is employed in the 10 Gb/s tests. 

In Figure  5-32 the optical spectrum after the SOA is presented, as well as the eye 

diagram of the converted signal when a broadband optical filter tuned with the probe signal 

is employed. The signal eye diagram presents patterning effects due to the SOA recovery 

time. 
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a) Optical spectrum; b) Eye diagram.  

Figure  5-32: Optical spectrum after the SOA, and eye diagram of the XGM 
converted signal. 

Figure  5-33 presents the converted signal measured Q-factor as a function of the 

detuning relative to the probe signal wavelength. For a detuning of 14.2 GHz from the 

input CW probe signal optical carrier, a non inverted NRZ signal with undistorted eye 

diagram is obtained. The converted signal presents an improved Q-factor of 9.4, and 

extinction ratio of 10.3 dB. It can also be verified that the slow response of the SOA is not 

noticed in the detected eye diagram, similarly to the 40 Gb/s tests. 
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Figure  5-33: Q-factor as a function of the detuning of the optical filter; the 
insets show the eye diagrams for selected values of detuning. 

5.3 RZ to NRZ pulse converter with GC-SOA  

5.3.1 Operation principle 

As detailed in section  2.8, GC-SOA are similar to a common SOA where lasing is 

induced by a distributed Bragg reflector (DBR). In absence of input signal, the internal 

laser power is constant at a level determined by the cavity losses.  When an optical pulse is 

injected into the GC-SOA the internal laser power decreases in order to obtain a constant 

cavity gain. However, if the input power is high enough, the carriers are depleted below the 

lasing threshold, the laser turns ‘off’ and the GC-SOA acts as a common saturated SOA. 

When the input power level decreases and the carrier density at the excited state becomes 

sufficient to provide the necessary gain, the internal laser turns ‘on’ again. In Figure  5- 5-34 

the GC-SOA carrier density and the internal laser power temporal evolutions are 

represented when two consecutive optical pulses are injected, considering a pulse spacing 

(TP) close to the maximum modulation rate of the GC-SOA internal laser. Two situations 

are considered: 
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• When a low power pulse train is injected (Figure  5- 5-34. a), the carrier 

density falls below the lasing threshold (i.e. the laser is extinct). When the 

pulse leaves the SOA, the carrier recovery time to the lasing threshold level 

(TOFF-ON) is lower than TP, and the laser turns back on before the next pulse. 

In this condition all the transitions of the input signal are tracked by the 

laser: it is modulated with the inverse of the input signal logical 

information. 

• In case of a high power pulse train (Figure  5- 5-34. b), the laser is also 

extinct when an optical pulse enters the GC-SOA. The difference from the 

low power pulses it that the amplifier is driven into deeper saturation (i.e. 

the carrier density is further reduced) and TOFF-ON is higher than TP. As a 

consequence, the laser remains ‘off’ during two consecutive pulses. In this 

condition, the internal laser is NRZ modulated with the inverted equivalent 

of the input signal logical information. 

 
 a) Low power pulses; b) High power pulses. 
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Figure  5- 5-34: Schematic representation of the variations in the GC-SOA 
carrier density and in the internal laser intensity, when low and high power 
pulses are injected. 

As illustrated, if the power of the RZ pulses signal is chosen so that TOFF-ON is 

slightly higher than TP, the GC-SOA internal laser is modulated with the inverse of the 

input signal logical information and with NRZ format. This laser is generated inside the 
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GC-SOA, but due to the limited reflectivity of the GC-SOA facets and gratings, it is 

available at the GC-SOA output. Such signal results from modulating a laser near its 

maximum rate; therefore significant distortion is observed. An additional stage, consisting 

of a XGM wavelength converter in a common SOA will be cascaded to overcome this 

impairment, due to the low pass effect characteristic of XGM. The resultant scheme is non-

inverting; moreover, the output signal wavelength may be the same as the input or it can be 

converted to any arbitrary wavelength within the SOA working range. 

5.3.2 10 Gb/s experimental results 

The setup of Figure  5-35 is used to obtain format conversion based on modulating 

the GC-SOA internal laser and XGM in a common SOA. The input 10 Gb/s optical pulses 

at λ1 of 1547.3 nm have variable FWHM of 5 ps or 40 ps. This signal is amplified in the 

GC-SOA and modulates the internal laser at λDBR = 1509.5 nm. As referred above, the 

internal laser is modulated with the inverse of the input signal logical information and NRZ 

pulse format. Due to the limited reflective of the GC-SOA gratings, the internal laser is 

available at the output; this signal is then amplified and filtered to remove the input 

wavelength and optical noise (OF1 is centered at λDBR). The resulting signal is then fed to a 

XGM stage, which removes part of the incoming distortion and allows for flexible output 

wavelength. In the tested scheme, the CW probe wavelength is the same as the original RZ 

signal, λ1. At the SOA output, an optical filter removes λDBR (OF2 is centered at  λ1). The 

fast SOA device is employed in this test. Optical filters OF1 and OF2 have -3 dB 

bandwidth of 0.4 and 0.46 nm, respectively. The converted signal is detected in a pre-

amplified receiver, which consists in an EDFA, an optical filter with -3 dB bandwidth of 

1.27 nm (OF3 is centered at λ1), and a photo detector (PD) with 10 GHz bandwidth. 

In a first analysis, the photo detector is placed at the output of OF1 to observe the 

amplitude dynamics of the modulation suffered by the GC-SOA internal laser. In Figure 

 5-36 b)-d) the time domain curves of this laser are presented for several RZ signal input 

powers; the input signal is also depicted in Figure  5-36 a). For this characterization the 

input signal FWHM is 5 ps. Figure  5-36 b) presents the laser temporal shape for low power 

pulses (-16.7 dBm); in this case the laser is intensity modulated with the inverse of the 
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input signal logical information. Since the carrier density never falls beneath the lasing 

threshold, the laser never turns ‘off’ and its modulation follows all the input signal 

transitions with reduced extinction ratio. For an input power of -9 dBm, the temporal shape 

of the GC-SOA laser is presented in Figure  5-36 c): the laser modulation speed is 

insufficient to follow all the transitions; therefore, the laser turns ‘off’ when an optical 

pulse enters the GC-SOA and remains in the ‘off’ state until the next logical ‘0’. In this 

condition, the input information is converted to the NRZ shape. Further increasing the 

input power rives the GC-SOA into deeper saturation - where stand alone ‘0’s are lost, as 

depicted in Figure  5-36 d) for an input power of 0 dBm. 
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Figure  5-35: Setup to perform non-inverting format and wavelength conversion. 
Inset: Optical spectra after GC-SOA and after SOA. 

We have verified that the signal of Figure  5-36 c) is converted to NRZ format and 

presents high extinction ratio (ER); however, it is limited by the GC-SOA characteristics. 

First, the reflection band of the internal gratings is broad; therefore, the internal laser has 

several modes, reducing its suitability for fiber transmission. Second, this signal presents 

distortion due to the relaxation oscillations that occur when the laser turns ‘on’. Third, the 

output signal presents inversion of the logical information; and its wavelength is 

predetermined to the wavelength of the internal grating of the GC-SOA. A XGM stage in a 

common SOA is added to overcome such drawbacks. In the XGM stage, a CW probe 

signal is amplitude modulated, allowing the converter to present wavelength conversion 

capabilities to an arbitrary wavelength (different from λDBR). Since the XGM stage is 

inverting, the converter output signal will be non-inverted in relation to the input RZ 

signal. Furthermore, the resulting signal presents less distortion than the GC-SOA 

modulated laser, due to the SOA gain compression effect and the low-pass effect of the 

XGM effect. In Figure  5-36 e), the temporal shape of the signal after the XGM stage (after 
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OF2) is depicted for -9 dBm input power. As discussed above, the resulting signal is non-

inverted in relation to the input RZ signal, and most of the amplitude distortion observed in 

the modulated laser (of Figure  5-36c)) has been removed. 

 

a) input signal 

 

b) laser generated by the GC-SOA for input powers of -16.7 dBm; 

 

c) laser generated by the GC-SOA for input powers of -9 dBm; 

 

d) laser generated by the GC-SOA for input powers of 0.0 dBm; 

 

e) Output signal after the XGM stage for an input power of -9 dBm. 

Figure  5-36: RZ to NRZ format converter characterization via temporal shapes 
of input pulses, GC-SOA internal laser and XGM output signal.  
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The optical spectra after the GC-SOA and SOA are presented in Figure  5-37. It can 

be verified that after the GC-SOA the spectrum of the optical signal is very broad, since 

the converted signal consists in the GC-SOA generated laser. After the second stage such 

signal is converted to a local wavelength, and the output spectrum is now similar to a 

common NRZ signal, with some residual chirping, visible from the unbalance of the red 

and blue parts of the optical spectrum. Such unbalance is due to XPM non-linearity.  
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a) After first conversion stage; b) After second conversion stage;  

Figure  5-37: Optical spectra of the signals after the first conversion stage (in 
GC-SOA) and after the second conversion stage (in common SOA).  

The converter operation is investigated using RZ pulses with FWHM of 5 ps and 

40 ps; for the former case the RZ signal input power is -9 dBm and for the latter the input 

power is -10 dBm. The eye diagrams of the input RZ and the converter output NRZ signals 

are illustrated in Figure  5-38. From the converted signals eye diagrams, it is noticeable that 

the converter retrieves open and undistorted eye diagrams in both cases. The output signal 

ER in both cases is around 6 dB. The jitter in the falling edges of the output signal is higher 

than in the rising edges; such jitter is caused by the turn ‘on’ of the GC-SOA internal laser.  

We have verified that GC-SOA input power can vary by +/- 1.5 dBm without 

significant performance degradation. For lower optical powers, the output signal format 

becomes RZ; and for higher optical powers, two stand alone ‘0’ are lost. The impact of the 

GC-SOA driving current was also verified: the tests presented above considered a driving 

current of 200 mA; when this value falls below 150 mA, the internal laser TOFF-ON 

increases and the output signal does not follow all the logical transitions. 
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a) Input (FWHM = 5 ps) b) Converted (input FWHM = 5 ps) 

 

c) Input (FWHM = 40 ps) d) Converted (input FWHM = 40 ps) 

Figure  5-38: Eye diagrams of the input and converted signals. 

To assess the impact of the CW probe signal wavelength, it was set to 1530 nm 

retrieving a converted signal ER of 7.5 dB, and to 1560 nm, retrieving an ER of 4.8 dB. 

Improved ER is expected if a GC-SOA with internal laser wavelength closer to the SOA 

central wavelength  is used, and if down conversion is performed at the SOA  [206] 

(conversion to lower wavelengths).  

The eye diagrams presented in Figure  5-38 were obtained when the GC-SOA and 

SOA input signals are polarized for the maximum amplifiers gain. Polarizing these signals 

orthogonally originates a small decrease in the output signal ER (less than 0.6 dB), since 

the employed SOA and GC-SOA present low polarization dependence, of less than 0.5 dB. 

The system BER is measured for the RZ input signals and for the corresponding 

converted NRZ signals, as a function of the optical power at the pre-amplified receiver 

input. The results are presented in Figure  5-39. A 211-1 sequence is utilized due to 3R and 

BER equipments limitations; nevertheless, when the sequence length is increased to 231-1, 

there is no visible eye diagram penalization. 
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The 5 ps RZ signal is penalized by 6 dB for a BER of 10-9, comparing to the 40 ps 

signal. This penalty is due to the low bandwidth of the photo detector, which was used to 

simulate the lower bandwidth of an access network receiver: as result, part of the spectral 

energy of the short pulses is lost. The two output NRZ signals BER curves are similar, with 

a difference of less than 0.8 dB; such similarity demonstrates the converter robustness to 

the input pulse width. For a BER of 10-9, the converted signal presents a power penalty of 

2.5 dB relatively to the 5 ps pulses, and of approximately 8.5 dB for the 40 ps RZ signal. 

Since the retrieved NRZ signals present open eye diagrams, as depicted in Figure  5-38, 

these penalties are mostly caused by two factors. First, the converted signal reduced ER; 

second, because RZ signals usually feature improved sensitivity when compared to NRZ, 

due to higher vertical eye opening for the same optical power. 
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Figure  5-39: BER measurements of the input RZ and converted NRZ signals. 

In this section we have proposed and experimentally demonstrated a 10 Gb/s 

converter from RZ to NRZ pulse format. The converter is non-inverting and features 

wavelength conversion. The converter delivers an open and undistorted eye diagram, 

mostly limited by an ER of 6 dB.  The output signal ER can be increased if the GC-SOA is 

designed so that the internal laser wavelength is higher, so that down-conversion is 

performed in the SOA. Optionally the XGM modulation can be replaced by XPM, which 

typically allows high output ER.  
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5.4 Summary 

Return-to-zero (RZ) to non-return-to-zero (NRZ) pulse format conversions are key 

elements in the interfaces between high bit rate transport networks and access networks. 

For full functionality, these should allow conversion of short optical RZ pulses and feature 

wavelength conversion. In this chapter we proposed and experimentally demonstrated two 

schemes to obtain such conversion. 

The first method employs cross-gain modulation (XGM) in semiconductor optical 

amplifier (SOA) and detuned optical filter and was assessed via simulations and 

experimental tests. The ideal optical filter shape was investigated, and approximated 

experimentally cascading two filters. NRZ signals have been obtained at 10 Gb/s and at 

40 Gb/s. The converted signal presents high ER and undistorted eye pattern. At 40 Gb/s the 

converter input pulses had 3 ps full width at half maximum, demonstrating the potential for 

support of 160 Gb/s networks. By appropriate filter design, we have demonstrated 40 Gb/s 

pulse format conversion using the slow SOA device. We have verified that the converter is 

robust to input signal power variations, provided that the probe signal power is adjusted 

accordingly. For constant optical filter shape, optimized for 3 ps optical pulses, the input 

signal FWHM can vary between 1 ps and 8 ps without EOP increasing above 1.5 dB. The 

converted NRZ signal presents similar tolerance to chromatic dispersion, when compared 

to conventional OOK, demonstrating that its transmission capabilities are not prejudiced by 

SOA induced chirp. 

The second proposed scheme is based on two stages. In the first stage the internal 

laser of a gain-clamped SOA is intensity modulated by the input signal; due to the laser 

dynamics, the output signal presents NRZ pulse format and high ER. The second stage 

consists in a XGM stage in a common SOA; this stage allows flexibility of the output 

wavelength and removes some of the distortion of the GC-SOA laser. The resultant signal 

is non-inverted and features eventual wavelength conversion. The operation of the 

converter was experimentally demonstrated at 10 Gb/s, where 5 ps and 40 ps pulses were 

successfully converted to the NRZ format, revealing robustness to the pulse width. Open 

and undistorted eye diagrams were obtained and error free operation was verified. 
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Chapter 6  

Optical regeneration 

6.1 Motivation 

With the outcome of the EDFA and dispersion compensation techniques, 

transmission of optical signals over hundreds or thousands of kilometers became possible 

without intermediate OEO regenerators. The increasing demand for optical bandwidth has 

lead to the development of WDM systems and to the increase of the per channel bit rate. In 

parallel to the explosion of per channel bit rates and transmission distances, optical systems 

are also evolving from simple transmission systems to a higher level of complexity, where 

switching and signal processing is supported by the optical layer. By eliminating the 

electronic bottleneck, all-optical signal transmission and processing are expected to enable 

the next generation of optical networks, by dramatically reducing costs, energy 

consumption, and increasing the network throughput. 

The increase of the per-channel bit rate usually leads to a reduction of the signal 

tolerance to optical impairments. Such optical impairments are mostly originated from 

propagation and from signal processing. Propagation degrades the optical signal due to 

various distortion sources; such as: uncompensated chromatic dispersion, polarization-

mode dispersion, non-linear effects, or noise accumulation. Optical signal processing 

degrades the signals by tight optical filtering; crosstalk in photonic-cross connects; 

polarization dependent losses (PDL) of components; and by imperfect optical 

functionalities, like wavelength or format conversion. Usually, signal distortion is divided 

in two main categories  [207]: amplitude distortion, and temporal distortion. Amplitude 
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distortion degrades the contrast between logical ‘1’ and ‘0; while temporal distortion refers 

to temporal fluctuations between optical pulses (also known as phase timing jitter). 

Signal degradation in optical systems is typically overcome by adding regeneration 

stages at periodic transmission distance intervals. The most common type of regeneration 

consists in detecting the optical signal, recovering it in the electrical domain and re-

transmitting it. However, this technique suffers from the general disadvantages of OEO 

signal processing.  On the other hand, all-optical regenerators are expected to overcome the 

drawbacks of OEO converters and are considered essential elements for fully-functional 

optical networks; however, all-optical regeneration at high bit rates is still a research topic. 

Regeneration can be divided in the three main functionalities of Figure  6-1: 

re-amplification, re-shaping, and re-timing. The simplest functionality is re-amplification 

(or 1R), which consists in simple optical amplification. A device which also provides re-

shaping in addition to re-amplification is known as 2R. Re-shaping consists in increasing 

the contrast between the two logical levels; which improves the required optical signal to 

noise ratio (OSNR) for a specific bit error rate (BER) level. Finally, 2R is combined with 

re-timing, to create a full 3R. Re-timing refers to the reduction of the signal jitter. 

 

Re-amplification Re-shaping Re-timing  

Figure  6-1: illustration of the basic regeneration functionalities applied to an RZ 
signal eye diagram. 

Section  6.2 reviews the state-of-the-art in all-optical regeneration using SOA based 

devices. Section  6.3 reports for the first time to the author’s knowledge regeneration of 

coherent optical code division multiple access (OCDMA) signals with distortion provoked 

by multiple access interference (MAI). The regeneration scheme is based on a Mach-

Zehnder interferometer exploiting cross phase modulation in semiconductor optical 

amplifiers. Experimental regeneration of an 8 Chip 10 Gb/s OCDMA signal is 
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demonstrated with improvements in the required optical signal to noise ratio and 

elimination of bit error rate floor. This work has been presented in  [208] and in  [209]. 

Section  6.4  presents a novel scheme based on Gain-clamped SOA, which has been 

assessed with 2.5 Gb/s input signal and reported in  [200]. 

6.2 All-optical regeneration techniques in SOA 

Figure  6-2 depicts the basic all-optical 3R scheme  [210]- [212]. The input signal is 

split in two replicas; one of the replicas feeds a clock recovery sub-system, which produces 

stable optical pulses with reduced jitter. The second input signal replica is then used to 

control a non-linear gate, which encodes the logical information in the optical clock signal. 

Usually 3R features also wavelength conversion, as the output signal wavelength is the 

same of the clock signal. This scheme only supports on-off keying input signals. The two 

main building blocks of Figure  6-2 are revised hereafter. 

Clock 
recovery

Non-linear 
gate

Degraded input 
signal @ λ1 

Regenerated 
output signal @ λ2 

clock signal 
@ λ2 

 

Figure  6-2: Common all-optical 3R scheme. 

6.2.1 Non-linear gate 

In an optical regenerator, the non-linear gate is responsible for the re-shaping 

functionality. Therefore, non-linear gates are employed in 2R and in 3R. Figure  6-3 

illustrates the conceptual transfer function of such non-linear gate  [213]. The input signal is 

improved in two distinct manners. First, signal improvement is achieved through an 

increase of the ER; obtained by the steep slope of the transfer function between the logical 

‘0’ and ‘1’ of the input signal. Second, fluctuations in logical ‘0’ and ‘1’ levels are reduced 

by the approximately constant output power over input logical ‘1’ and ‘0’. Such re-shaping 

functionality is similar to that performed in electronic decision circuits, present in most 
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opto-electronic regenerators. The main drawback of the decision circuit like transfer of 

Figure  6-3 is that input amplitude noise is converted in output timing jitter  [213]; therefore, 

in 2R regeneration there is a trade-off between amplitude regeneration and output jitter 

degradation. 

Pin

P
ou

t

ERin

pdfin,0 pdfin,1

ERout

pdfout,1

pdfout,0

 

Figure  6-3: Transfer function of non-linear gate. Pin and Pout: input and output 
power; pdfi: probability density function; ERin and ERout: input and output 
extinction ratio. 

Optical 2R and 3R regenerators with non-linear gates such as the one illustrated in 

Figure  6-3 do not necessarily allow recovering from errors in the input signal: the input 

BER is not improved. Therefore, 2R and 3R should be periodically employed over the 

signal transmission line to decrease the error accumulation with further transmission. 

Optical re-shaping requires a scheme to provide the non-linear transfer function 

depicted in Figure  6-3. SOA can be employed to achieve such purpose through one of two 

means: directly using the SOA non-linear intensity transfer function, which arises from 

carrier density modulation; and recurring to the non-linear transfer function of a scheme 

employing SOA. SOA-based non-linear gates are usually divided in two groups: pass-

through, and wavelength-conversion, as depicted in Figure  6-4  [214]. In pass-through 

schemes, the input signal is self-modulated at the SOA-based regenerator; as a 

consequence, the output and input signal wavelengths are the same. Pass-through 

regenerators can only perform 2R. In wavelength-conversion schemes, the input signal at 

λ1 is fed to the non-linear gate together with a CW signal or an optical clock signal (CLK) 
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at λ2. The non-linear transfer function is applied from the input signal at λ1 to a local 

wavelength, λ2. The input signal is also know as control-signal. Such non-linear gates are 

appropriate for both 2R (when the signal at λ2 is a CW) or 3R (when the signal at λ2 is an 

optical clock). 

Input signal @ λ1 

Regenerated signal 
@ λ1 

Non-linear 
gate

 

a) Pass-through 2R regenerator; 

Input signal @ λ1 

Regenerated signal 
@ λ2 

CW or CLK signal 
@ λ2 

Non-linear 
gate

 

b) Wavelength-conversion 2R / 3R regenerator. 

Figure  6-4: Use of non-linear gates in pass-through and wavelength-conversion 
schemes.  

One of the most common regeneration schemes with SOA is based on MZI-SOA 

devices, which is a wavelength-conversion scheme. This basic regeneration scheme is 

similar to the wavelength conversion scheme of Figure  3-7, when standard operation is 

considered, or to that of Figure  3-10, when differential operation is employed. To 

understand the principle behind regeneration in MZI-SOA structures, consider the 

conceptual schematic of Figure  6-5, which depicts an interferometer with a non-linear 

medium in one of the arms. The input signal at λ1 is the control signal of the non-linear 

medium and the CW signal at λ2 is the local probe wavelength. Considering that the non-

linear medium response to a control signal is a phase modulation of the probe signal: 

( ), , expprobe out probe in ctlE E j Pα= ⋅ ⋅ ⋅ + Φ   , ( 6-1) 

Where Eprobe,out and Eprobe,in are the electrical fields of the input and output optical 

signals, Pctl is the power of the control (information) signal, and α and Φ are constants. 

The interferometer output power is then given by: 



200  Chapter 6 Optical regeneration  

 

 

( )( ),
, 1 cos

4
probe in

probe out ctl

P
P Pα= ⋅ + ⋅ + Φ , ( 6-2) 

Where Pprobe,in is the CW signal input power, and Pprobe,out is the output power at the 

CW signal wavelength. 

Input signal @ λ1 

OF 

Non-linear 
medium

Regenerated signal 
@ λ2 

CW signal 
@ λ2 

 

Figure  6-5: optical 2R regeneration via interferometric schemes 

Figure  6-6 exemplifies the static power transfer function of an interferometric gate, 

similar to Figure  6-5, when parameters α and Φ are optimized to obtain optimum 

regeneration characteristics. It can be verified that such transfer function reshapes the input 

signal, since for logical ‘0’ and ‘1’ the input power can vary by +/- 10% around the 

nominal logical level and the output power only varies by +/- 2.5%. Cascading two of 

these interferometric gates results in further improvements of the 2R characteristics: with 

two gates the input signal power at each logical level can vary by +/- 15% with only 

+/- 2.5% of output power variation. 

With the aforementioned simple example, we have illustrated the potential for 

signal regeneration of interferometric structures with phase modulation in one of the arms. 

MZI-SOA are excellent candidates to implement non-linear gates with regeneration, and 

have been experimentally demonstrated in scheme with single MZI-SOA  [215] and with 

cascade MZI-SOA  [216], where 4000 km of optical transmission are enabled. MZI-SOA 

can also be used in pass-through configurations, provided that the parameters of the system 

are optimized, as demonstrated in  [217]. A similar operation principle has been presented 

with GC-SOA  [218]. 

Optical regeneration has been achieved in other SOA-based schemes, such as a 

method which employs SOA birefringence in pass-through and wavelength conversion 
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schemes  [219],  [220]; the use of cross-gain compression (XGC), where the SOA is fed 

with the signal to regenerate and a second signal which is the logical complement of the 

input signal  [221]; a pass-through method where a saturable absorber, which regenerates 

the logical ‘0’, and a SOA, which regenerates the logical ‘1’, are cascaded  [222]; a scheme 

where a highly non-linear fiber and a SOA with a delay interferometer enable transmission 

of 40 Gb/s signals over 1.000.000 km [223]; and a scheme where parameters of FWM in 

SOA are optimized to enable reshaping  [224]. 
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Figure  6-6: Characteristic of non-linear gate similar to Figure  6-5, when the 
signal passes by one gate, and by two cascaded gates.  

6.2.2 Clock recovery 

Clock recovery is a key element to achieve 3R as it performs the re-timing 

functionality. One approach for the clock-recovery subsystem is to use electro-optical 

schemes; the other is to use an all-optical scheme. All-optical 3R can employ electro-

optical schemes to achieve clock-recovery without loosing the all-optical label  [207]. All-

optical 3R allows some electronic processing, provided that such processing is narrow-

band, as is clock recovery. Several electro-optical schemes have been proposed with 

operation at high bit rates  [225],  [226]. However, electro-optical schemes have higher 

power consumption and costs; therefore, all-optical clock recovery is generally preferred.  

One simple method to recover the clock signal is presented in Figure  6-7  [227]. The 

clock-recovery consists in a first stage, where the information signal is wavelength 
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converted in an MZI-SOA. The converted signal is filtered with a Fabry-Perot filter (FPF), 

which extracts the clock components of the converted signal. The power of the pulses at 

the FPF filter output fades exponentially for consecutive ‘0’ of the input signal. Therefore, 

a second MZI-SOA wavelength conversion stage is used to equalize the power of the 

optical pulses. The first wavelength conversion stage could potentially be omitted; 

however, since the FPF central frequency must be tuned with the input wavelength, 

wavelength tracking would be required. 

The clock recovery scheme based on MZM-SOA with FPF has great potential due 

to its simplicity, and very fast clock acquisition time, which is very useful in packet or 

burst applications, for example. 

MZI-SOA

MZI-SOA
FPFInput information  

signal  @ λ1 

CW signal 
@ λ2 

CW signal 
@ λ3 

Output clock 
signal @ λ3 

 

Figure  6-7: Clock recovery circuit using MZI-SOA and Fabry-Perot filter. 

Other all-optical SOA based schemes to extract optical clock include: the use of a 

FPF and a single SOA  [228]; a technique where a phase-comparator based on FWM in 

SOA is employed  [229]; in  [230], SPM in SOA and a detuned optical filter are used to 

convert a NRZ signal into a pseudo-RZ signal and allow clock recovery of input NRZ 

signals; and in  [231], a pulse format independent principle is presented, based on a SOA 

and a FPF to extract and enhance the clock components of an input signal, and a self-

pulsating DFB laser to recover the clock signal. 

6.3 2R Regeneration of OCDMA with MZI-SOA 

Wavelength and time division multiplexing (WDM, TDM) have been found as 

interesting solutions for the increasing demand for bandwidth in metro and wide-area 

networks. However, for local area networks (LAN), optical code division multiple access 



All-Optical Processing Systems with Semiconductor Optical Amplifiers 203 

 

 

(OCDMA) is a very attractive and common solution due to its promising features  [232]. 

These include  [233]: 

• Full asynchronous transmission; 

• Low latency access;  

• Soft capacity on demand;  

• Protocol transparency;  

• Simplified network control;  

• Increased flexibility of QoS control;  

• Robust information security. 

Several different OCDMA implementations have been proposed; these can be 

roughly classified according to the operation principle as incoherent and coherent OCDMA 

 [233]. The coherent OCDMA technique has received growing attention due to the overall 

superior performance over incoherent OCDMA and improvements on compact and reliable 

encoder/decoders, such as spatial light phase modulator (SLPM), super-structured fiber 

Bragg grating (SSFBG), and planar lightwave circuit (PLC)  [234]- [236]. PLC encoder and 

decoder are illustrated in Figure  6-8. An optical pulse arrives to the converter and is split in 

N replicas, each delayed by a multiple of τ. The replicas suffer a phase shift, θi, of 0 or π 

and are coupled again. At the encoder output, a pulse train is present with positive or 

negative amplitude. The decoder performs the inverse function: a strong optical pulse is 

transmitted when the code of the encoder and decoder match. 

The maximum number of active users in an OCDMA network is usually limited by 

multiple access interference (MAI) noise  [234]. MAI is illustrated in Figure  6-9: three 

signals are fed to an OCDMA decoder: a signal which matches the decoder sequence, a 

signal which is orthogonal with the decoded sequence, and a third signal which is not 

matched nor orthogonal. In the first case a strong pulse is retrieved at the decoded output. 

For the orthogonal signal, no MAI is created since no pulse is generated after the decoder. 

However, for the last signal a low power optical pulse is generated, which creates MAI. 



204  Chapter 6 Optical regeneration  

 

 

 

je θ⋅ je θ⋅

τ τ

je θ⋅

τ

je θ⋅

Σ

je θ⋅ je θ⋅

τ τ

je θ⋅

τ

je θ⋅

Σ

Optical encoder

Optical decoder

Input pulse

Decoded signal

Encoded signal

 

Figure  6-8: Illustration of PLC based OCDMA encoder and decoder. 

 

 

Figure  6-9: Illustration of generation of multiple access interference noise. 

Several techniques have been employed to suppress MAI noise, such as optical 

thresholding based on supercontinuum generation in dispersion flattened fiber (DFF), 

second harmonic generation (SHG) in periodically pooled lithium niobate (PPLN), and 

non-linear effect in highly non-linear fiber (HNLF)  [234]. 

In this section the use of cross phase modulation (XPM) non-linear effect in MZI-

SOA is used for the first time to suppress MAI noise. As referred above, MZI-SOA based 

regeneration is in principle similar to MZI-SOA based wavelength conversion, which has 
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been studied in section  3.5. Regeneration in MZI-SOA has several advantages when 

compared to other techniques: compactness and ability for integration; regeneration of both 

‘1’ and ‘0’ logical levels; reduced input power levels required; high conversion efficiency; 

allows the use of differential mode to overcome SOA speed limitations; and wide 

bandwidth operation.  

The utilized device is the MZI-SOA cased at Instituto de Telecomunicações in a 

stand alone box, as described in Appendix II. 

6.3.1  Experimental Setup and Operation Principle 

The setup employed in the experimental tests is depicted in Figure  6-10. A 10 Gb/s 

2 ps pulse train at 1545.0 nm, generated by a mode locked laser diode (MLLD) is 

modulated using a Mach-Zehnder modulator with a 221 - 1 PRBS data sequence at 10 Gb/s. 

The modulated signal is split, and fed to two 8 chip planar lightwave circuit OCDMA 

encoders, with codes 1 and 2. Polarization controllers are employed to align the 

polarization of the signal and the encoder. The resultant encoded signals, E1 and E2, are 

combined and decoded at the decoder, which is matched to code 1. On the other hand, 

code 2 is neither matched nor orthogonal with code 1; hence, E2 will produce MAI noise 

on the signal to recover at the decoder output. As the pulses are generated by the same 

source, 200 m of standard single mode fiber (SSMF) are used prior to encoder2 to avoid 

coherent distortion when E1 and E2 are added; delay1 is tuned to align the pulses of E1 and 

E2, maximizing the interference at the decoder output; and VOA1 controls the power of the 

MAI noise.  

After the decoder module, the decoded signal with MAI noise is wavelength 

converted to the probe signal wavelength, 1535.0 nm, and simultaneously regenerated in 

the MZI-SOA. VOA2 and delay2 control the differential mode operation. The SOA are 

operated with currents of 400 mA; the power of the Probe, and data signal at arms A and D 

are 10, 2.9, and -2.7 dBm, respectively; the delay between arms A and D (delay 2) is 23 ps. 

The input and regenerated signals are detected and characterized through bit error rate 

measurements. The -3 dB bandwidths of the optical filters and photodiode are 

approximately 105 GHz and 10 GHz, respectively. 
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Figure  6-10:  Experimental setup for OCDMA MAI 2R regeneration. 

The MZI-SOA has been experimentally characterized at 10 Gb/s in section  3.5. Of 

particular interest is the static characterization of Figure  3-37. From the results, voltage of 

7.5 V enables optimum destructive interference; therefore, PS is set at 7.5 V. Moreover, 

Figure  3-37 also demonstrates that such scheme is fit for 2R regeneration, as over 25 dB of 

output extinction ratio are obtained with compression at the ‘1’ and ‘0’ logical levels. 

6.3.2 Experimental OCDMA Regeneration Results  

The OCDMA regenerator is characterized in three situations regarding distortion: 

in the first, the output of encoder2 is blocked (without MAI); in the second, the 

interference signal power at the decoder input is -4.7 dBm (MAI case 1), and in the third 

the interference power is -3.4 dBm (MAI case 2). In all cases the power of the signal coded 

by encoder1 at the decoder input is 0.5 dBm. 

In Figure  6-11 the eye diagrams of the decoded signals after the OCDMA decoder 

and after the MZI-SOA based regenerator are presented for the three MAI cases. In 
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absence of MAI, an undistorted signal is retrieved after the regenerator; however pulse 

broadening is noticed. When MAI noise is considered, the signals at the regenerator input 

present very high eye diagram distortion in both logical levels. The regenerator achieves 

compression of the two logical levels with particular improvements in the ‘1’s, retrieving 

opened eye diagrams in both cases of MAI noise. 

 

a) Dec. signal without MAI;  b) Signal after the reg. without MAI; 

 

c) Dec. signal with MAI, case 1;  d) Signal after reg. with MAI, case 1; 

 

e) Dec. signal with MAI, case 2;  f) Signal after reg. with MAI, case 2. 

Figure  6-11: Eye diagrams (obtained from an oscilloscope with 30 GHz 
bandwidth) after the ODCMA decoded (dec.) and after the MZI-SOA 
regenerator (reg.). (20 ps / div) 

 
In Figure  6-12 the BER is presented for the signals after the decoder and the 2R 

regenerator. For the BER measurements, the OSNR is adjusted at the PD input by 

changing the ASE noise power (with VOA4), while keeping the signal power constant at 

-1 dBm to ensure linear operation of the PD.  
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Figure  6-12:BER as a function of the OSNR, of the signals after decoder (dec.) 
and regenerator (reg.). 

When the signal without MAI crosses the regenerator, 1.8 dB OSNR penalty is 

verified for a BER of 10-9, comparing to the signal at the decoder output; this penalty is 

mostly due to the increase of the pulse width after the regenerator, as the regenerated signal 

does not present distortion or patterning effects (Figure  6-11 a) and b)). In the two cases 

where MAI is added, clear BER floors are observed above BER of 5.10-9 (case 1), and of 

5.10-7 (case 2); these are due to the severe eye opening verified in Figure  6-11 c) and e). 

After the regenerator, both BER floors are eliminated: BER floor-free curves down to 10-10 

are retrieved.  

These results demonstrate the ability of MZI-SOA based regenerators to enhance 

performance of OCDMA networks by suppression MAI noise. Moreover, improved results 

are expected if the single MZI-SOA, which is biased to regenerate the two logical levels, is 

replaced by a cascade of two MZI-SOA; in this configuration the operation point of one 

MZI-SOA is optimized to regenerate the ‘0’ level, while the other is optimized to 

regenerate the ‘1’ level   [216]. 
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6.4 2R Regenerator using a GC-SOA 

6.4.1 Operation principle 

A GC-SOA is a regular SOA with a distributed Bragg reflector (DBR), which 

create an internal DBR laser, as discussed in  2.8. The gain-clamping mechanism consists in 

a self-adaptation of the internal laser power, when the power of a signal being amplified 

varies. As a consequence, the gain of the cavity maintains constant. However, when the 

power of the input signal increases above a threshold, the carrier density falls below lasing 

threshold and the gain can no longer be maintained constant and the laser is disabled. Since 

the gratings have low reflectivity, a considerable power of the laser leaks to the SOA 

output. 
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a) Experimental setup; b) Optical filter (OF1) transfer function. 

Figure  6-13: Setup to test the GC-SOA regenerator at 2.5 Gb/s. 

Figure  6-13 a) presents the setup of the regenerator based on GC-SOA. A degraded 

2.5 Gb/s NRZ signal at λ1 = 1550.8 nm is fed to a GC-SOA. At the GC-SOA output the 

laser generated by the GC-SOA is encoded with the inverse of the input signal logical 

information. As will be detailed below, this signal presents notorious re-shaping in relation 

to input. After the GC-SOA the input wavelength (λ1) is removed by an optical filter. The 

GC-SOA internal laser is centered at 1509.5 nm, which is outside the C-band; therefore, in 

our facilities there are no means to amplify this signal (regular C-band EDFA do not have 
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gain at 1509.5 nm); moreover, there is no available filter centered at 1509.5 nm, which can 

isolate λDBR. To remove the input wavelength a cascade of a C-band rejection filter and a 

fiber Bragg grating (FBG) with a notch at 1509.8 nm are cascaded. The resultant transfer 

function is depicted in Figure  6-13 b): although not ideal this filter allows removing the 

input wavelength and also part of the ASE generated by the GC-SOA. The employed 

photodiode  has a 3dB bandwidth of 4.5 GHZ. 
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Figure  6-14: Power of the laser generated inside the GC-SOA as a function of 
the input signal power under static conditions. 

In Figure  6-14 the power of the laser generated by the GC-SOA is presented as a 

function of the power of a signal being amplified, when the input signal is replaced by a 

continuous wave (CW) signal at the same wavelength (static measurements). This power is 

measured at the power monitor (PM) module of Figure  6-13. When the power of the input 

signal is at a low level, small variations are observed in the power of the generated laser. 

Under such conditions the internal cavity gain is kept constant. Above a threshold power, 

of about -3 dBm and -4.5 dBm for currents of 250 mA and 200 mA, respectively, the 

power of the internal laser drops considerably: for a 2 dB variation of the input power, the 

output power decreases 12 dB. For higher power levels of the input signal, a variation in 

the laser power of about 0.6 dB per each dB of input power variation is observed. Note that 

under such conditions, the laser is completely extinct; however, due to our measurement 

setup, significant amount of ASE is being fed to the power monitor. From observation in 

an optical spectrum analyzer, the internal laser is extinct for input powers above -2.8 dBm 

and -1.4 dBm, for currents of 200 mA and 250 mA. Which demonstrates also regeneration 

of the input logical ‘1’ level. From this static characterization is evident that simple 

modulation of the GC-SOA internal laser presents reshaping characteristics. This scheme 
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could be cascaded with a second stage of wavelength conversion in SOA to allow flexible 

output wavelength. However, our available SOA devices do not have considerable gain at 

1509.5 nm. 

With the available GC-SOA the maximum operation bit rate is 2.5 Gb/s, for higher 

bit rates the laser dynamics cause signal distortion, since the bit rate becomes close to the 

laser maximum modulation rate. Therefore, this work is a proof-of-concept: for real 

applications at higher bit rates, an improved device would have to be custom designed. 

6.4.2 Experimental regeneration of a distorted signal 

In this section a preliminary characterization of the proposed regenerator is 

presented. A full characterization is not possible since the GC-SOA internal laser 

wavelength is 1509.5 nm, and in our facilities there is not experimental equipment 

appropriate for such wavelength.  

To test the capacities of regeneration of the proposed scheme, a 2.5 Gb/s signal was 

distorted and then fed to the regenerator under test. Figure  6-15 presents the eye diagrams 

of the signal before and after the regenerator under three scenarios: 

• Figure  6-15 a) presents the back-to-back signal without any distortion and 

with  10.8 dB of ER. The signal after the 2R (Figure  6-15 a)) is perfectly 

undistorted, and presents Q-factor improvement in relation to input. The ER 

is penalized in relation to input, but this penalization is also due ASE-ASE 

beating since substantial amount of ASE is fed to the photo-detector. Note 

that oscillation relaxations are not visible in the GC-SOA modulated laser, 

because of the low bandwidth of the photo detector;  

• Figure  6-15 c) presents a back-to-back signal with reduced ER (3 dB). After 

the regenerator (Figure  6-15 d)) the signal still presents undistorted eye 

diagram, but the ER is increased to 8 dB; 

• Figure  6-15 e) presents an optical signal which was obtained after cross-

gain modulation in a SOA device with recovery times around 800 ps. This 
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signal presents high degradation when compared to the back to back signal 

both in Q-factor and in ER (7.5 dB). After the regenerator (Figure  6-15 f)), 

this signal is fully recovered: the output signal eye diagram presents no 

distortion and the ER is increased to 10.2 dB.  

 

a) Back-to-back signal,  
Q-factor = 9.9, ER = 10.8 dB; 

b) Back-to-back signal after 2R, 
Q-factor = 13.1, ER = 10.1 dB; 

 

c) Back-to-back signal,  
Q-factor = 8.7, ER = 3.0 dB; 

d) Signal of c after 2R, Q-factor = 7.5, 
ER = 8.0 dB. 

 

e) Distorted signal via XGM in slow 
SOA, Q-factor = 4.4, ER = 7.5 dB; 

f) Signal of e) after 2R,  
Q-factor = 10.8, ER = 10.2 dB; 

Figure  6-15: Eye diagrams of distorted and regenerated signals at 2.5 Gb/s. 

To quantify the regeneration capacities of our setup, the BER of the detected signal 

is measured for variable added optical noise. Since a noise source at 1510 nm is not 

available (and commercial C band EDFA have little ASE at this wavelength) out of the 

band ASE noise is added, which produces mainly ASE-ASE beating noise. For such 
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purpose ASE with 25 nm of bandwidth and centered at 1530.0 nm was added to the signals 

under test. 

The dependence of the BER with the relation between the power of the signal and 

the added optical noise (OSNR) is depicted in Figure  6-16 for the signals of Figure  6-15. 

The back to back signal with ER of 10.8 dB presents approximately the same BER as the 

same signal after the 2R, demonstrating that the 2R does not cause signal degradation to 

the back-to-back signal. The back-to-back signal with 3 dB of ER presents an OSNR 

penalty of around 4 dB in relation to the back-to-back signal with 10.8 dB of ER. 

However, after the 2R the OSNR penalty is reduced to only 1 dB. For the signal distorted 

by a slow wavelength converter, a BER floor at approximately 10-9 is verified. When this 

signal is regenerated, a behavior very similar to the back-to-back case is verified and no 

BER floor is observed for BER down to 10-11. Such results demonstrate that the proposed 

converter is able to recover from low input ER and from severe eye distortion. 
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Figure  6-16: Dependence of the BER with the OSNR Only out-of-band ASE 
noise is considered. B2B – back to back signal. 

Ideally, a 2R regenerator should be resilient to variations of the input signal ER. 

The ER and Q-factor of the regenerated signal are presented in Figure  6-17 as a function of 

the input signal ER. It can be verified that for the range of input ER tested, the converter 
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always enhances the ER; furthermore, for input ER higher than 5 dB, the output ER is 

always above 10 dB. The regenerated signal Q-factor is also superior to input for input ER 

higher than 5 dB. 
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Figure  6-17: Regenerated signal ER and Q-factor as a function of the input 
signal ER (dashed lines represent input ER and Q-factor). 
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Figure  6-18: Characterization of the regenerator performance for different input 
optical power. 

To assess the constraints of the regenerator in terms of input power, the Q-factor 

and the ER of the regenerated signal are plotted as a function of the input power in Figure 

 6-18; the input signal ER is 10.8 dB. According to the curve, the optimum operation range 

of input signal power is between 4 and 6 dBm. For lower power, the input laser does not 
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shutdown; therefore the output signal ER is not optimum. For higher input powers are 

severe distortions at the laser wavelength due to cross gain modulation. 

In this section we have demonstrated optical 2R regeneration of a 2.5 Gb/s signal 

using GC-SOA. We have demonstrated Q-factor, ER and required OSNR improvements 

over wide range of input ER and when the input signal presents amplitude degradation. 

Further studies of such method would require a faster GC-SOA device which is designed 

so that the internal laser wavelength is in the C-band. 

6.5 Summary 

This chapter is devoted to all-optical regeneration schemes; from which we focused 

in optical reshaping, which is essential to 2R regeneration. Two 2R schemes have been 

experimentally exploited. 

A cross-phase modulation (XPM) based regenerator using Mach-Zehnder 

interferometer with semiconductor optical amplifiers (MZI-SOA) was experimentally 

tested for multiple access interference (MAI) noise suppression of coherent OCDMA 

signals. To the authors knowledge this is the first application of MZI-SOA regenerators in 

OCDMA networks for 2R purposes. Experimental results demonstrate clear noise 

compression of both logical levels in an 8 chip, 10 Gb/s OCDMA signal. After 

regeneration, signals with BER floors at 5.10-7 and 5.10-9 retrieve BER free curves and 

improved receiver sensitivities. These results demonstrate promising application of SOA 

based technology for OCDMA networks.  

A novel 2R regeneration method was proposed. In this method the gain-clamped 

SOA (GC-SOA) internal laser is modulated via XGM by an input distorted signal. Due to 

the non-linear power transfer from input to the laser wavelength, optical regeneration is 

obtained. The converter was experimentally characterized for an input 2.5 Gb/s signal, 

demonstrating true regeneration characteristics and extinction ratio improvements. With 

the GC-SOA device considered the maximum bit rate was 2.5 Gb/s, above which the bit 

rate becomes close to the laser maximum modulation rate and distortion occurs; therefore, 
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for real network applications at high bit rates faster GC-SOA devices would have to be 

designed.  
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Chapter 7  

Conclusions 

7.1 Summary and conclusions 

This thesis has investigated all-optical signal processing based on semiconductor 

optical amplifier (SOA) non-linear effects. The main objective was to develop key 

functionalities which can replace optic-electro-optic (OEO) conversions in photonic cross-

connects (PXC). The work developed is mostly based in cross-gain modulation (XGM) 

and cross-phase modulation (XPM) non-linear effects. 

Chapter 2 has presented a high level overview of the history of  SOA development, 

the principle behind amplification in semiconductor materials, and techniques employed 

for the design of SOA. Different SOA-based solutions for various network applications 

have been presented, like multi-electrode SOA (ME-SOA), gain-clamped SOA (GC-SOA) 

or reflective SOA (R-SOA). SOA non-linear gain and phase dynamics are the base of all 

applications studied throughout this work and have been detailed in this chapter, together 

with the simulation model employed in the simulation tests throughout the rest of the 

thesis. Finally, the state-of-the-art regarding several applications of SOA has been 

presented. 

The work developed in the context of this thesis can be divided in four groups: 

• Wavelength conversion, 

• Format modulation conversion, 
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• Pulse format conversion, 

• Regeneration. 

Wavelength conversion is the most basic all-optical functionality and has been 

studied in chapter 3, which has presented an overview of the main SOA-based schemes. 

Such schemes can be divided based on the main non-linear effect involved: cross-phase 

modulation, cross-gain modulation, cross-polarization rotation, and four-wave mixing. 

From these, cross-phase modulation and cross-gain modulation have been chosen to 

perform the required functionalities, due to their superior characteristics: robustness to 

variations in the input signal like polarization, power and wavelength; simple processing 

schemes are allowed, which operate at ultra-high bit rates; and these two non-linear effects 

can be used together to achieve versatile configurations.  

Cross-gain modulation wavelength conversion is likely the simplest non-linear 

functionality in SOA; however, it is usually limited to operation over few GHz by slow 

inter-band processes. We have proposed and studied XGM bandwidth enhancement by 

detuned optical filtering, which converts phase modulation to intensity modulation. By 

means of simulations, we have verified that a simple first order Gaussian shaped filter 

allows promissing results: the slow SOA device, which was designed to operate at 

2.5 Gb/s, has allowed conversion up to 40 Gb/s. Moreover, at 10 Gb/s higher output 

extinction ratio (12 dB) has been enabled. The simulation results have been supported by 

experimental tests. 

We proposed and experimentally demonstrated the use of a detuned optical filter to 

convert the cross-phase modulation of the probe signal at the output of a GC-SOA in 

intensity modulation. This method is commonly used to convert return-to-zero signals in 

common SOA; however, it is expected that when combined with GC-SOA, the carrier 

recovery time is enhanced and the conversion efficiency is increased. Operation has been 

demonstrated at 2.5 Gb/s and at 10 Gb/s with improved extinction ratio and Q-factor, when 

compared to the input.  

Phase-to-intensity conversion in a Mach-Zehnder interferometer with SOA (MZI-

SOA) was characterized at 10 Gb/s with standard and differential mode operation with an 
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optical signal to noise ratio (OSNR) penalty below 1 dB when compared to input. The 

impact of several converter parameters, such as polarization, optical power, and relative 

delay between arms, has been experimentally evaluated. A similar scheme was exploited to 

allow 40 Gb/s multi-wavelength conversion. Conversion of a single input to four output 

signals has been reported for the first time. We have verified that the main souce of 

distortion is four-wave mixing between the several channels and the data signal; 

nevertheless, open and undistorted eye diagrams have been obtained with high extinction 

ratio. 

All-optical modulation format conversion is a key functionality to allow 

transparent inter-connection of networks which utillize different modulation formats. In 

chapter 4 we have proposed two novel all-optical modulation format conversion schemes 

with operation up to 40 Gb/s.  

First, conversion from optical double sideband (oDSB) to optical vestigial sideband 

(oVSB) has been proposed. To the author’s knowledge this is the first all-optical method 

for such format conversion which does not require optical filtering or Hilbert transform 

filters. The converter is based on the frequency chirp generated by the self-phase 

modulation non-linearity in a SOA. To avoid distortion caused by self-gain modulation, a 

continuous wave signal is amplified simultaneously in the SOA with the information 

signal. Experimental and simulation characterization at 10 Gb/s retrieved high sideband 

suppression ratio (15 dB) and improved Q-factor when compared to input. Enhanced 

tolerance to chromatic dispersion accumulation, characteristic of oVSB signals, was 

obtained: transmission over 160 km of standard single mode fiber (SSMF) was enabled 

without any dispersion compensation, doubling the reach of oDSB. With simple electrical 

dispersion compensation (EDC) simulation results demonstrated transmission beyond 

400 km. The converter is resilient to input power variations, provided that the continuous 

signal power is adapted accordingly: operation over 13 dB power variation has been 

reported without degradation of the output signal Q-factor or sideband supression ratio. 

Similarly, high tolerance to variations of the input signal extinction ratio and wavelength 

has been experimentally verified. Promising results at 40 Gb/s have also been obtained 

with transmission over 10 km of SSMF without dispersion compensation (the reach of 

oDSB was 6 km), and over 14 km with EDC realized by an adjustable transversal filter. 
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Since this work was developed in an industrial environment, stand alone prototypes were 

developed for 10 Gb/s and 40 Gb/s operation; these are described in detail in appendix IV. 

The second modulation format converter is an all-optical scheme to convert on-off-

keying signals to the carrier suppressed format. This simple scheme is based on a mix of 

cross-phase and cross-gain modulations in SOA, when the input signal is amplified 

together with a high power optical clock signal. The proposed converter is able to convert 

both non-return-to-zero and return-to-zero input signals. The conversion scheme has been 

compared to the common transmitter through simulation tests, with similar resilience to 

tight optical filtering, and enhanced tolerance to linear and non-linear transmission. Single- 

and multi-channel operation up to four channels has been experimentally assessed at 

40 Gb/s. Carrier suppressed spectrum and clear RZ eye diagrams have been obtained at the 

converter output for all input configurations.  

Pulse format conversion is required at the interfaces between ultra-fast transport 

networks, which preferably use return-to-zero pulse format, and lower bit rate acess 

networks, which are likelly to employ non-return-to-zero pulse. Chapter 5 reports two 

schemes to convert return-to-zero signals to the non-return-to-zero format. 

In the first method a wavelength converted signal by cross-gain modulation in SOA 

is filtered with a detuned optical filter. The ideal optical filter shape has been investigated, 

and approximated experimentally cascading two filters. Converted NRZ signals have been 

obtained at 10 Gb/s and at 40 Gb/s with high extinction ratios and undistorted eye patterns. 

At 40 Gb/s, the converter input pulses had 3 ps full-width-at-half-maximum, demonstrating 

the potential for support of 160 Gb/s networks. Similar tolerance to chromatic dispersion as 

a conventional NRZ signal was obtained, demonstrating that the transmission capabilities 

are not prejudiced by the SOA induced chirp. By means of simulation we have 

demonstrated 40 Gb/s operation with the slow SOA device, since the optical filter also 

enhances the SOA recovery times. 

A second method, based on the modulation of a gain-clamped SOA internal laser 

and on a second cross-gain modulation stage in a common SOA, has been proposed. The 

operation of the converter was experimentally demonstrated at 10 Gb/s. The resulting 

signal is non-inverted and features eventual wavelength conversion. Robustness to the 
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input pulse width was verified, since 5 ps and 40 ps pulses were successfully converted to 

the NRZ format. The main drawback of this scheme is the limited output extinction ratio, 

which can improved if the cross-gain modulation wavelength conversion stage is replaced 

by cross-phase modulation. 

All-optical Optical regeneration is one of the most desired functionalities for an 

all-optical network, since transmission and processing of optical signals generally 

introduce jitter and amplitude distortion.  

We have demonstrated for the first time suppression of multiple-access interference 

(MAI) noise of coherent optical code division multiple accesss (OCDMA) signals using a 

2R scheme based in MZI-SOA. The converter demonstrated recovery of severely distorted 

eye diagrams in an 8 chip 10 Gb/s OCDMA signal and eliminated error floors. It is 

expected that further improvements are possible if two cascaded MZI-SOA stages are 

employed. 

We have proposed a simple 2R regeneration scheme where the internal laser of a 

gain-clamped SOA is modulated with the input distorted signal. Due to the clamping 

mechanism, the modulated laser signal presents reshaping when compared to input. The 

scheme operation has been demonstrated at 2.5 Gb/s with true regeneration characteristics 

and extinction ratio improvements. To allow regeneration of higher bit rate signal, gain-

clamped SOA with faster lasing are required.  

7.2 Directions for future work 

It is commonly stated that “the only constant in technology is change”. As a 

consequence the work developed in the scope of this thesis is far from being a closed-topic. 

Subsequent investigations are recommended: 

• In the past years, gain-clamped SOA have generally been forgotten by 

research in all-optical processing. We have demonstrated the potential of 

such devices by proposing several functionalities. Simulation models, fit for 

high bit rates, are required for gain-clamped SOA. The simulation model 
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detailed in this thesis (appropriate for common SOA) could be developed to 

consider the dynamics of the internal laser. Such model could be used to 

perform more accurate comparisons between regular SOA and GC-SOA. To 

allow operation over higher bit rates, modern design techniques, which 

allow operation at bit rates around 40 Gb/s, should be applied to the 

development of GC-SOA with faster lasing mechanisms. 

• Wavelength converters are usually limited to one of the four main non-

linear effects. In this work we exploited intensively scenarios where cross-

phase and cross-gain are combined. One step ahead would be to combine 

cross-polarization rotation with cross-phase modulation in MZI-SOA. We 

expect that such schemes allow MZI-SOA to operate as true switches with 

high extinction ratio in both output ports. 

• The topic of modulation formats is one of the most evolving areas in 

research and development. Currently, it is foreseen that signals with only  

intensity modulation will have reduced application in real optical networks 

beyond 40 Gb/s. The study of wavelength conversion should then be 

extended to allow conversion of the most modern modulation formats (such 

as differential phase shift keying (DPSK), and coherent polarization-

multiplexed quadrature phase shift keying (CP-QPSK). Similarly, format 

converters which are able to cope with complex modulation formats must be 

developed to enable the all-optical networks of the future. 

• In  [45] we proposed a scheme based on multi-electrode SOA, which is 

expected to allow optical intensity modulation in SOA without phase 

distortion and phase modulation without intensity distortion. However, 

further simulations and experimental tests are required, to assess the full 

potential of this method. 
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Appendix II 

SOA devices used in this work 

The most relevant semiconductor optical amplifier (SOA) devices considered in the 

experimental tests are a bulk device from OptoSpeed (1550MRI/P: R1408 – L932) and a 

multi-quantum well device from CIP (SOA-NL-OEC-1550 - 1.55µm Non-Linear). The 

former device is called throughout this work as slow SOA and the latter as fast SOA.  The 

main characteristics of these devices are summarized in Table II-1. 

Typical value 
Parameter 

Slow SOA Fast SOA 

Peak wavelength 1555.0 nm 1550.0 nm 

Polarization dependent gain 0.8 dB 0.5 dB 

Noise figure (NF) 9.6 dB 8 – 11 dB 

Saturation output power (-3dB) 6.1 dBm 7 dBm 

Maximum gain 21.3 dB 34 dB 

Unsaturated recovery time (10-

90%) 
380 ps 80 ps 

Table II-1: Typical parameters of the two devices used in this work. Slow SOA 
refers to OptoSpeed (1550MRI/P: R1408 – L932) and Fast SOA to CIP (SOA-
NL-OEC-1550 - 1.55µm Non-Linear). 

The parameters considered in the simulations are detailed in Table II-2. These 

parameters are fit to the simulation model described in detail in sections  2.6 and  2.7. 
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Parameter Slow SOA Fast SOA 

Number of sections (NS) 1 5 

Differential gain (dg/dN) 2.8.10-20 m3 2.2.10-20 m3 

Carrier density at transparency (Ntr) 1.2.1024 m-3 1.0.1024 m-3 

Injection Current (I) 0.25 A 0.30 A 

Active layer volume (V) 1.1.10-16 m3 2.2.10-16 m3 

SOA cavity length (L) 0.45.10-3 m 1.0.10-3 m 

Optical confinement (Γ) 0.15 0.35 

Absortion coefficient (αint) 2.5.103 m-1 4.0.103 m-1 

Rec. rate related to non-radiative processes 1.8.108 s-1 1.0.108 s-1 

Rec. related to spontaneous emission (BSP) 1.4.10-16 m3.s-1 0.8.10-16 m3.s-1 

Rec. rate related to Auger recombination 3.2.10-41 m6.s-1 1.5.10-41 m6.s-1 

Relaxation time related to CH (τCH) 5.1.10-13 s 5.1.10-13 s 

NL gain compression related to CH (εCH) 1.2.10-24 m3 1.2.10-24 m3 

NL gain compression related to SHB  (εSHB) 4.0.10-25 m3 4.0.10-25 m3 

Linewidth enhancement factor for CDP (αN) 6.0 5.5 

Linewidth enhancement factor for CH (αCH) 0.0 1.2 

Linewidth enhancement factor for SHB 0.0 0.0 

Table II-2: Simulation parameters of the two devices used in this work. Slow 
SOA refers to OptoSpeed (1550MRI/P: R1408 – L932) and Fast SOA to CIP 
(SOA-NL-OEC-1550 - 1.55µm Non-Linear). Rec.: recombination; CH – carrier 
heating; SHB: spectral hole burning; CDP: carrier density pulsation. 

Apart from the two referred devices, a gain-clamped SOA (GC-SOA) from Alcatel 

was utilized in the scope of a joint experiment. This device was gently lended by Instituto 

Superiore delle Comunicazioni e delle Tecnologie dell' Informazione (ISCOM), Rome, 

Italy. Since this device is no longer commercially available and we had limited access to it, 

there was very few information available: maximum gain of 15 dB; output saturation 

power of 10.3 dBm ; and noise figure of 6.8 dB.  

The Mach-Zehnder interferometer with SOA (MZI-SOA) included SOA with 

characteristics similar to the ones of the Fast SOA. The utilized MZI-SOA device was 

operated in a stand alone box at Instituto de Telecomunicações, pictured in Figure II-3, with 
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electrical circuitry which performs variable current injection, temperature control and 

phase shift adaptation. Figure II-3 a) presents the SOA schematic, with independent current 

control for the two SOA, and independent phase shift control in the two output arms.  

Generally V2 is set to zero and the phase shift is controlled by PS1 only. Figure II-3 b) 

presents a photography of the MZI-SOA inside the custom made box. 
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a) MZI-SOA schematic; 

 

a) Photography of the MZI-SOA inside the stand alone configuration. 

Figure II-3: MZI-SOA in a box with electrical stand alone control. 
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Appendix III 

Performance assessment in simulations 

The simulation tests performed in this work focus mainly in assessing the 

deterministic distortion induced by semiconductor optical amplifiers (SOA) based 

schemes. Since SOA induced optical noise is not considered in the utilized model, 

performance is assessed via the eye opening penalty (EOP).  

The EOP does not depend on the signal optical signal to noise ratio (OSNR); 

therefore, it is fit to account for deterministic signal distortions. Moreover, it has the 

advantage that low computation effort is required for its calculation. There are numerous 

definitions of the EOP in the literature  [237],  [238]. In this thesis the following definition 

is considered: 

E

Ref

10 log ,
I

EOP
I

 ∆
= − ⋅  ∆ 

 (III-1)  

Where ∆IE is the height of the highest rectangle, with a width of ∆T, that can fit 

inside the eye diagram of the signal to analyze; and ∆IRef refers to the highest rectangle 

with similar width that can be fitted inside the eye diagram of a reference signal. In this 

work ∆T is considered 20% of the bit period and the reference signal is an unfiltered NRZ 

signal with extinction ratio (ER) of 9 dB and 10 dB for 10 Gb/s and 40 Gb/s, respectively, 

according to the standard data for long-haul systems  [239]. 

Figure III-1 illustrates an eye diagram with the defined rectangle of ∆T = 0.2.TB, 

with TB the bit period. EOP is adequate to account for signal degradation, but also for ER 

degradation. 
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Figure III-1: Illustration of eye opening penalty calculation. 

To characterize the opening of a signal eye diagram independently of its ER, a 

modified version of the EOP, MEOP is also considered in this work: 

E

max

10 log ,
I

MEOP
I

 ∆
= − ⋅  ∆ 

 (III-2)  

With ∆IMax the difference between the maximum and minimum levels of the signal 

under analysis. This figure of merit is appropriate to characterize reshaping systems which 

do not alter the signal ER, but enhance its opening. 
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Appendix IV 

Optimization and development of a 

prototype to convert optical DSB to VSB 

 

In  Chapter 4 we have proposed a novel format converter from optical double 

sideband (oDSB) to vestigial sideband (oVSB). The converter operation is based on self-

phase modulation (SPM) non-linearity in a semiconductor optical amplifier (SOA). SPM 

induces a frequency chirp which has similarities with that of a vestigial sideband signal. 

Due the promising results obtained by the converter, such as: high tolerance to input power 

variations, extinction ratio, or wavelength, and the low cost potential of SOA devices, 

Siemens Networks filed a patent for the proposed converter  [173] and requested that stand-

alone prototypes were developed for 10 Gb/s and 40 Gb/s. 

Figure IV-1 presents two stand-alone configurations for the proposed converter. 

Figure IV-1 a) presents a co-propagating scheme; the input signal is split in two replicas by 

a 90/10 coupler. The lower power replica is detected in a slow photo-detector – the 

bandwidth of this photo-detector can be as low a few MHz. The current at the photo-

detector output is measured by slow electrical processing, which then adapts the current 

that controls an optical laser source. The continuous wave (CW) signal is coupled (in a 

50/50 coupler) to the higher power replica of the input signal and fed to the SOA. At the 

SOA output a notch optical filter removes the CW signal wavelength. This scheme has the 

advantage of using low cost optical components; however, the input signal passes by a 

splitter and coupler, suffering high losses; moreover, an optical filter is required to remove 
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the CW signal wavelength. Figure IV-1 b) represents a counter-propagating scheme, where 

the CW signal is back-fed to the SOA, through a circulator. Since the CW signal counter-

propagates in the SOA, an isolator is required at the input. This scheme does not require 

optical filtering at the output, has lower insertion losses than the co-propagating scheme, 

and has potential for lower costs since a coarse laser can be used and the CW signal suffers 

less attenuation before being fed to the SOA, enabling the use of a lower power laser 

(higher power lasers are usually more expensive). 
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b) Counter-propagating scheme. 

Figure IV-1: Stand-alone configurations to convert optical DSB to VSB. 

10 Gb/s prototype 

For the 10 Gb/s prototype the counter-propagating scheme was employed due to its 

potential for low costs and simplicity. In this section we first characterize the optical 

equipment required to build the 10 Gb/s prototype; afterwards, the prototype is 

experimentally characterized. 
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Equipment characterization and optimization 

Laser characterization 

A low price coarse laser was employed as probe signal. The optical spectrum of the 

laser is depicted in Figure IV-2. The laser spectrum is very broad (it is a Fabry Perot laser); 

however, since is travels in counter propagation with the signal, this should not be an 

impairment to the operation of the setup. The spectral bandwidth at -20 dB of the peak 

spectral power is around 6.5 nm. 
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Figure IV-2: Coarse laser optical spectrum (driving current of 34 mA). 

As concluded in Chapter 4, a wide range of power for the input signal is allowed, 

provided that the CW probe power is adapted accordingly. The CW power at the SOA 

input can be adapted either by using an external variable optical attenuator (VOA) or by 

varying the laser driving current. To enable lower costs, the second alternative was 

adopted. In Figure IV-3 a) the optical power at the laser output is plotted as a function of 

the electrical current, from where we verify that the laser power can vary from 2.9 to 

-9.0 dBm. In Figure IV-3  b) linear units are used, and a linear approximation is presented. 

The linear approximation, which presents an excellent fit to the measured power, was used 

for the peripheral interface controller (PIC), which performed the “slow electrical control” 

block. 
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a) Output power in log units; b) Output power in linear units, 
and linear approximation. 

Figure IV-3: Optical power at the output of the coarse as a function of the 
driving current. 

Photo-detector characterization 

The input signal power measurement was done by splitting the input signal in a 

80/20 splitter, with the lower power copy feeding a slow photo-detector. The photo-

detector was assembled in a setup similar to Figure IV-4. Vout was measured by an ADC 

(analog to digital converter).  

RL

PIN

VDC

Noise Filter

+

-

Vout

 

Figure IV-4: Setup for measuring the input power using a slow photo-detector. 

There are two critical parameters for the operation of the photodiode setup: the 

values of VDC and RL. VDC should be as high as possible to allow a big sensitivity to the 

input power; however increasing VDC above a threshold value will provoke an increase in 

the dark current. The value of VDC was optimized as 2.9 V, which was the maximum 

possible value at which the dark current was negligible. RL is also a compromise, since a 
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high value of RL allows a high range of input powers; however the system becomes more 

sensible to the electrical noise. RL was chosen to be 18 kΩ to allow a maximum power of 

about -10 dBm. 

In Figure IV-5 a) the voltage measured at RL is presented. Figure IV-5 b) presents 

the error between the optical power at the photo-detector input and the optical power 

expected from the measured Voltage: P = Vout / RL / ℜ, with ℜ = Responsivity = 0.9. A 

range of input power from -9 dBm to -22 dBm is allowed with an error smaller than 

+/- 0.05 dB. 
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a) Voltage measured at RL;
  

b) Error between optical power at photo 
detector input and expected power. 

Figure IV-5: Photodiode output voltage and power error as a function of the 
input optical power. 

CW power optimization 

After characterizing the laser and photodiode, it is necessary to find the relation 

between the optical power measured at the photo-detector and the optimum power of the 

CW signal when using the counter-propagation scheme. The optimum CW laser power 

was obtained as the value which allows the optimum relation between SSR and Q-factor at 

the converter output. In Figure IV-6 the measured optimum laser power is plotted as a 

function of the input power. The continuous line in the figure depicts the estimated laser 

power value for each power at the photo-detector input. It was obtained as: 
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= 0.08-0.68laser laserP I ⋅ . (IV-1) 

This relation was obtained from Figure IV-3 b). The relation between the laser 

current and the measured voltage at RL was optimized to be: 

2= - 17.0 47.3 4.1laser out outI V V⋅ + ⋅ + , (IV-2) 

With Vout obtained from: 

( ) = in
out

L

P
V R

⋅ℜ
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Figure IV-6: Optimum laser power as a function of the power at the photodiode. 

Final prototype and results 

Back-to-back results 

The 10 Gb/s experimental prototype setup is similar to that represented in Figure 

IV-2 b). Figure IV-7 presents the photography of the setup, including the configuration 

where the PIC was assembled together with the local CW laser and photo-detector to 

measure the input power. The prototype results have been presented in  [240] and  [201]. 
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In Figure IV-8 the SSR and Q-factor of the output converted signal are plotted as a 

function of the input signal power, measured at the input of the 90/10 coupler. The local 

CW laser power was optimized by the PIC, based on the results of previous section; 

therefore a stand alone adaptive system is implemented. The input signal ER was 6 dB and 

had a Q-factor = 6.5, the signal wavelength was 1547.51 nm. The converted signal Q-

factor is always above input for input powers below 3.4 dBm. The SSR of the converted 

signal is above 12 dB for input powers above -6.6 dBm; and is above 13 dB for input 

powers above -4.6 dBm. This represents an allowed 9 dB input power variation for SSR 

above 13 dB and Q-factor above input; which is a considerable increase to the 3 dB 

obtained in section  4.2.3.1 for the case where the pump power was constant.  

SOA +  
controller 

 90/10 Power 
splitter at input 

PIC microcontroller +  Laser  
+ photodiode 

Circulator 
+ Isolator 

 

Figure IV-7: Photography of experimental 10 Gb/s prototype. 
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Figure IV-8: SSR and Q-factor as a function of the input signal power. 
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The converter output power is plotted in Figure IV-9 as a function of the input 

power, measured at the 90/10 splitter input. For the 9 dB input power range where SSR is 

above 13 dB and the Q-factor is better than the Q-factor at the converter input, the power 

varied less than 0.7 dB. The converter then acts also as a amplifier / attenuator with 

constant output power.  
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Figure IV-9: Power of the output signal as a function of the input signal power. 
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a) Optical spectrum (inset: zoom in the interest area, with input signal as 
reference); 

100 ps

 

b) Eye diagram. 

Figure IV-10: Converted signal characterization for input power of 2.5 dBm. 
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In Figure IV-10 the optical spectrum at the converter output is depicted for an input 

power of 2.5 dBm. The output optical spectrum reveals a residue of the coarse laser; this is 

mostly due to reflections in the fiber splicing and due to a finite isolation of the optical 

circulator, however a the data signal carrier is 26 dB superior to the highest power spectral 

component of the residual laser. The converted presents an open eye diagram with reduced 

distortion due to SGM non-linearity. 

VSB signal generation after transmission over fiber 

In  Chapter 4 we have demonstrated that the VSB signal obtained after conversion 

with the proposed method presents enhanced dispersion tolerance when compared to 

common DSB signals. Moreover, it also allows simple and effective EDC after direct 

detection. However, in all presented tests format conversion has been performed over 

undistorted oDSB signals. In a meshed network the DSB signal can travel through several 

kilometers before being converted to VSB. 

 

a) Input oDSB signal eye 
diagram (Q-factor = 6.15);  

b) Input oDSB signal spectrum; 

 

c) Converted oVSB signal eye 
diagram (Q-factor = 6.4); 

d) Converted oVSB signal 
Spectrum (SSR  = 11.4 dB). 

Figure IV-11: Eye diagrams and optical spectrum of an oDSB signal after 
40 km of fibre and of the oVSB signal obtained after conversion. 
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To test the impact of an input DSB signal with dispersion induced degradation in 

converted signal eye diagram and SSR, an oDSB signal was transmitted over 40 km of 

SSMF and then converted with the proposed setup. 

Figure IV-11 a) and b) presents the eye diagram and spectrum of the experimental 

oDSB signal after 40 km of SSM fiber (680 ps/nm of dispersion). The reference oDSB 

signal was obtained similarly to that of section  4.2.3.1. Figure IV-11 c) and d) characterize 

the converted oVSB signal. The SSR achieved with this scheme was 4.2 dB smaller 

compared to the case when the conversion is performed over an undistorted signal. This 

penalty is due to the transitions of the oDSB signal being less sharp (due to the 

accumulated dispersion). 

 The oVSB signal converted in the current scenario - the input oDSB signal has 

already been transmitted over 40 km – should still present enhanced dispersion tolerance. 

Figure IV-12 presents the eye diagrams of the oVSB signal after it has been transmitted 

over more 40, 80 and 120 km – total transmission lengths of 80, 120 and 160 km, 

respectively The obtained eye diagrams are still open, even for 160 km of total 

transmission length. These results demonstrate the resilience of the converter to dispersion 

induced degradation of the input signal. 

 

 a) Total length = 80 km; b) Total length = 120 km; c) Total length = 160 km. 

Figure IV-12: Eye diagrams of the oVSB signal when it is transmitted over 
40 km, 80 km and 120 km of fiber. The VSB generation is performed after the 
oDSB signal has already been transmitted over 40 km of fiber. 
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40 Gb/s prototype 

Due to the promising results of the counter-propagating scheme for 10 Gb/s, it was 

tested also for 40 Gb/s. The SSR results are similar in the co- and counter-propagating 

modes. Figure IV-13 compares the eye diagram of the converted signal in co- and counter-

propagating modes. In the counter-propagating mode, the signal presents increased 

distortion and jitter when compared to the co-propagating mode: the jitter of the converted 

signal in co-propagating mode is 5.2 ps and in the counter-propagating mode is 8.0 ps. The 

penalties in the counter-propagating mode eye diagram are due to counter propagating 

interaction between the data and CW signals, since the SOA cavity length is around 

0.5 mm, which corresponds to approximately one fifth of the bit period. 

25 ps 25 ps 25 ps

 

a) Input DSB signal; b) Converted signal 
(co-progagation);  

c) Converted signal  
(counter-propagation). 

Figure IV-13: Input and converted signals eye diagrams. 

Due to the signal distortion caused by counter-propagation, the co-propagating 

scheme was chosen for the 40 Gb/s prototype. As a consequence, a CW laser with central 

wavelength around 1530.0 nm was employed. However, lower wavelengths are farther 

from the SOA gain peak (1560.0 nm); as a consequence higher probe powers are required. 

The required CW probe power as a function of data signal input power is plotted in Figure 

IV-14 for CW wavelength of 1530.0 nm and 1540.0 nm. It can be observed that using a 

laser at 1530.0 nm with maximum power of around 5 dBm lowers the maximum allowed 

input to -3 dBm. It should be noted that the CW signal maximum output power is a key 

issue, since low cost lasers are usually limited to few dBm of maximum output power. 
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Figure IV-14: Optimum laser power as a function of the data signal at the SOA 
input, when laser wavelength is 1530.0 nm and 1547.0 nm. 

The detailed equipment characterization will not be repeated here for 40 Gb/s, since 

the basic design rules of 10 Gb/s can be applied. The 40 Gb/s prototype was assembled in a 

stand alone setup, appropriated for transportation, as presented in the photos of Figure 

IV-15 and Figure IV-16. 

The prototype includes the current source and temperature control for the SOA as 

well as the PIC controller for the CW probe current optimization and the passive optical 

equipment (splitters at the SOA input). Since the pump is co-propagated, an optical filter is 

required at the prototype output to remove its wavelength. The prototype allows for 

operation with and without local laser, so that the SOA device can also be used for other 

purposes. 

 

Figure IV-15: Photography of 40 Gb/s prototype external view. 
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Figure IV-16: Photography of 40 Gb/s prototype internal view. 

Figure IV-17 presents the converted signal spectrum and eye diagram when the 

input power is -1.8 dBm and wavelength is 1551.55 nm. A SSR around 14 dB is retrieved 

and the converted signal presents patterning, but is still open. 
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Figure IV-17: converted signal spectrum and eye diagram when input power is 
-1.8 dBm. 
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For the characterization of the prototype a pre-amplified receiver composed by an 

EDFA, an optical filter with -3 dB bandwidth of 90 GHz, and a photo-detector with -3 dB 

bandwidth of 37 GHz was considered. 

In Figure IV-18 the power of the output signal and of the CW signal are depicted as 

a function of the input power. For input powers below 3 dBm the CW signal power varies 

proportionally to the input power (since the control system reads the input power and 

adapts the CW driving current) and the output power is kept constant with a variation 

below 0.5 dB. For input powers higher than 3 dBm the maximum output power of the CW 

is reached and the output power increases proportionally to the input power. 
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Figure IV-18: Output and CW signals power as a function of the input power. 

In Figure IV-19 the output signal BER and SSR are plotted as a function of the 

input signal power measured at the input of the 90/10 splitter at input. The power at the 

pre-amplified receiver was maintained at -18.5 dBm, which corresponds to a BER of 10-9 

for the input oDSB signal; the input signal wavelength was 1551.72 nm and the ER was 

8 dB. The converter presents a BER penalty (already verified in section  4.2.3.2) due to a 

decrease in the converted signal ER, caused by the gain compression in the signal logical 

‘1’ level. The prototype presents a high input power range: the input signal power can vary 

from -5 to 6 dBm (11 dB of variation) maintaining the SSR above 13.0 dB and the BER 

below 10-5. 

Finally, the data signal wavelength dependence is verified in Figure IV-20, where 

all the control system was kept unchanged, and the input power was constant at -4 dBm. 



All-Optical Processing Systems with Semiconductor Optical Amplifiers 269 

 

 

The SSR is above 13 dB for data wavelengths between 1551 nm and 1563 nm. This range 

could be extended if the calibration curve of the CW driving signal was optimized for each 

wavelength. 

1.E-08

1.E-07

1.E-06

1.E-05

1.E-04

1.E-03

-9 -7 -5 -3 -1 1 3 5 7
Input signal Power [dBm]

B
E

R

8

10

12

14

16

18

S
S

R
 [

dB
]

BER

SSR

 

Figure IV-19: BER and SSR as a function of the input signal power. 
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Figure IV-20: SSR variation with the signal wavelength. 

 




