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In the present work, annual time series of traffic related pollutants (CO and PM10) were considered for

frequency analysis (Fourier series) with the aim to understand the underlying physical processes and the

influence of emission sources on the variability of the air pollutant concentrations. Several urban traffic

and suburban background air quality stations located in Porto metropolitan area (Portugal) were

analysed. The results obtained for CO and PM10 reveal the important contributions of short-term

fluctuations (12 h and 24 h periods). However, the spectrum signals at low frequencies are significantly

different between these pollutants thus stressing that temporal variations of CO and PM10 are

influenced by different processes. Cross-spectrum analysis of the air quality time series against wind

measurements and traffic counts allowed us to identify the contribution of long-range transport over

a period of about 21 days to the PM10 fluctuations. Also, a correlation of over 80% between the

pollution levels in the vicinity of traffic sources and suburban background levels are found for these

harmonic components in the PM10 spectrum, while correlations for CO is below a significant level.

Thus, the spectrum and cross-spectrum analysis performed in this study reveal the distinct influence of

local traffic emissions and long-range transport to CO and PM10 fluctuations in the polluted urban

area. The methodology shows to be a powerful tool for the analysis of the causes of air pollution.
1. Introduction

A common time series analysis based on the estimation of

summary statistics, such as central tendency and spread of air

pollutant concentration data, is a simple and effective tool to

describe the variation in the response over time. However, more

sophisticated techniques are required to better understand the

main reasons for these variations. Thus, spectral analysis is used

to describe time series in the frequency domain and to analyse

how the variation in a time series is accounted for cyclic

components at different frequencies.1

In atmospheric sciences, spectral analysis is widely used for

meteorological variables, for example, turbulence analysis. It

provides information on the contribution of eddies of different
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The solution to air pollution in urban areas is a complex issue

measures, high pollution levels are still frequently observed. Ther

required. This current work is focused on the Fourier series ana

underlying physical processes and the influence of emission sourc

spectrum and cross-spectrum analysis performed in this study revea

transport to CO and PM10 fluctuations in the polluted urban area. T

the causes of air pollution.
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sizes to the total turbulence kinetic energy2–6 and allows the

separation of synoptic and seasonal signals.7

However, studies on frequency analysis applied to air pollu-

tion data8 have emerged much later than in atmospheric physics,

although frequency analysis is presently becoming an important

tool in air pollution studies.9–13 Analysis of air quality data in the

frequency domain contributes to the understanding of periodic

behaviours and yields information about temporal and spatial

scales of the underlying mechanisms.

There is a strong relation between temporal and spatial scales

of air pollution. In this context, short-term fluctuations of the

pollutant concentrations are related with local scale phenomena,

including local dispersion conditions, local emissions and

chemistry. By contrast, seasonal changes in the emissions and

long-range transport of the pollution will contribute to the

spectrum at low frequencies. Usually, air pollution time series

have a broad spectrum related to periodicity of atmospheric

physical processes and precursor emissions. Decomposition of

the measurements into annual, seasonal, monthly, weekly, and

daily components allows the study of contributions at different

time scales and, therefore, from different phenomena.
and despite the continuous implementation of the abatement

efore, better understanding of the cause-effect relationship is

lysis of air quality measurements with the aim to understand

es on the variability of the air pollutant concentrations. The

l the distinct influence of local traffic emissions and long-range

his methodology shows to be a powerful tool for the analysis of
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Table 1 Statistics for air quality data measured in 2004

Concentration/mg m�3

No. of
exceedencesaMean Median SD Max.

CO Matosinhos 703 594 436 5416 —
S. Hora 548 434 405 5669 —
Antas 726 593 508 5033 —
Boavista 531 399 403 4288 —
Leça do Balio 521 407 365 3457 —
V. N. Telha 481 404 326 3175 —

PM10 Matosinhos 42 35 32 249 107
S. Hora 37 31 31 243 81
Antas 41 35 28 226 97
Boavista 50 40 46 641 136
Leça do Balio 35 26 33 221 84
V. N. Telha 36 29 28 240 73

a Number of days with an average PM10 concentration above 50 mg m�3.
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This paper describes the methodology for time series analysis

of air quality data in the frequency domain to obtain information

on variability of air pollutant concentrations, and gives an

example of the application of this method to the data obtained at

the National air quality monitoring network in Porto metro-

politan area (Portugal). Different types of air quality stations are

compared in terms of their spectrum pattern. This study is

focused on traffic related pollutants and includes carbon

monoxide (CO) and particulate matter with aerodynamic

diameter equal to or less than 10 mm (PM10). The time series of

these pollutants are analysed in the frequency domain and

a contribution of different periodic fluctuations to the variance is

discussed. Additionally, cross spectra of the pollutant concen-

trations with traffic counts and wind characteristics are analysed

for a selected location searching for an interpretation of the

spectrum peaks obtained for the time series.
2. Data and methodology

Several steps of the frequency analysis as well as pre-processing

of the air quality data applied in this study are described below.
2.1. Original data

Air quality data for CO and PM10, measured at different stations

during 2004 were analysed (Fig. 1). The criteria for the data

selection were proximity to the Porto urban area, completeness

of the measurements (data capture above 90%) and the type of

air quality station. Thus, urban traffic stations with direct

influence of road transport emissions and suburban background

stations to characterise background pollution levels were

selected. The time series for each pollutant consist of 1 year

concentration values with 1 hour resolution.
Fig. 1 Air quality monitoring stati

This journal is ª The Royal Society of Chemistry 2010
Descriptive statistics for the air quality measurements are

presented in Table 1. The CO concentrations measured at the

different stations are within the legislation limits, while PM10

concentrations are high and 3 of the 6 stations have annual

average values above the legislation limit (40 mg m�3). Also, all

the analysed stations are in noncompliance with the daily average

PM10 limit value (50 mg m�3 exceeded no more than 35 days per

year). To improve the air quality, understanding the principal

causes for high pollutant concentrations is important.

For the cross spectrum analysis, Antas urban traffic station

located in Porto was selected concerning the data availability.

The automatic vehicle counts available for two months only

(November and December) were used in the study. Looking at

air mass transport, wind speed and wind direction were selected

from the meteorological parameters and considered in the

analysis as u and v components.
ons considered for the analysis.
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2.2. Data pre-processing

Pre-processing of the original time series is necessary prior to

their analysis because of log-normal distribution of the data and

missing values. In this study, pollutant concentration measure-

ments were log-transformed for variance stabilisation. The

missing data in the time series were computed by interpolation

from the adjacent non-missing points. This approach assumes

that there is serial correlation in the data and that each obser-

vation is to some extent related to the previous observation.

However, the interpolation would introduce signals that are not

in the original data. Alternatively, padding with zeroes was tested

to resolve the problem of missing points. No considerable

differences were obtained from these two approaches in terms of

the resulting power spectra.

The overall mean is subtracted from the series prior to the

analysis because the goal of spectrum analysis is to detect

underlying periodicity and the overall mean is not of interest.

Detrending of the data is also important as spectral analysis is

intended for stationary series. The trend may be defined as low-

frequency components with a wavelength longer than the record

length. In this work, linear trend have been removed from the

data.
2.3. Fourier analysis

To describe a variation of concentration values over time, it is

assumed that measured data can be approximated by a periodic

function with period T, such that:

F(t) ¼ F(t + nT), where n is an integer.

Then, a time series Xt of length N is represented as a linear

combination of harmonic functions with frequencies {fj} and

amplitudes {Aj} and {Bj}:

X t ¼ mþ
X½N=2�

j¼1

�
Aj cos

�
2pfjt

�
þ Bj sin

�
2pfjt

��
;

t ¼ 1; 2; :::::N

where m is a constant, [N/2] is the greatest integer less than or

equal to N/2, and the frequencies fj are related to the sample size

N by

fj h j/N, 1 # j # [N/2]

Thus, the measurement data with 1 hour resolution do not allow

analysing waves with a period of less then 2 hours (Nyquist

theorem).

The fast Fourier transform (FFT) algorithm was used to study

the variance in the frequency-domain and to identify which

frequencies are more important to the variability of the time

series.
2.4. Periodogram

The results of the Fourier analysis are presented in the form of

a periodogram. The periodogram value indicates the strength of

the signal at the respective frequency and can be considered as
546 | J. Environ. Monit., 2010, 12, 544–550
a representation of the spectral density of variance. The highest

periodogram values reveal the most important cyclic components

and the contribution of seasonal, weekly or diurnal fluctuations

to the total variance of the pollutant concentration measure-

ments could be quantified.

For a discrete spectrum, the area of the periodogram is defined

as

S(f)*Df ¼ (Aj
2 + Bj

2)/2

where S(f) is the height of the histogram, Df is the width of the

histogram (Df ¼ 1/N) and N is the overall length of the series. In

a linear plot of spectrum values S against frequency, the area

under the curve between any pair of frequencies is proportional

to the portion of variance explained by that range of frequen-

cies,5 and the total area under the curve represents the variance of

the series.

However, it is difficult to represent and analyse a wide range of

frequencies at linear scale. Therefore, log-normal presentation of

the data has been chosen in this study. Also, the smoothed

spectrum is used as an alternative to the raw periodogram in

order to remove noisy peaks making interpretation of the spec-

trum easier.
2.5. Bivariate spectral analysis

Cross spectral analysis establishes the relationship between two

time series as a function of frequency and, therefore, allows us to

investigate how periodicities in the two datasets are interrelated.

The cross-spectral estimate is a complex function and can be

presented for two observed variables x and y by:

Sxy(f) ¼ Cxy(f) � iQxy(f),

where Cxy(f) is the cospectrum (the real part) and Qxy(f) is the

quadrature spectrum (the imaginary part) and they can be used

as a measure of covariance between the respective frequency

components in the two series.

Additionally, the squared coherence is used to interpret the

cross-spectrum:

Rxyðf Þ ¼
Cxyðf Þ2þQxyðf Þ2

S2
xðf ÞS2

yðf Þ

This function measures the square of the linear correlation

between the two components of the bivariate process at

frequency f and is analogous to the square of the correlation

coefficient. The coherence takes values between 0 and 1, and is

equal to 1 if the linear relation exists. The large coherence

amplitude implies that x and y are strongly correlated at that

frequency and accounts for the in-phase signal as well as to the

possible lagged relationships that occur between the two series.

However, if the phases of the signals are changing randomly in

the selected interval of frequencies, the coherency will tend to be

zero. To determine whether there is a statistically significant

linear relation between the two series at frequency f, the coher-

ence values are compared with the critical values calculated for

the level of significance a ¼ 0.01 using F distribution, as

described by Shumway and Stoffer.14
This journal is ª The Royal Society of Chemistry 2010
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3. Results and discussion

3.1. Spectrum analysis of CO and PM10 time series

The log-transformed air quality data were used for the spec-

trum analysis after removing the linear trend and subtracting

the annual average log concentration. An example of the results

for CO and PM10 is presented in Fig. 2 (the results for all

analysed stations can be found in the ESI†). The 95% confi-

dence interval is presented for the smoothed spectra. The plot

represents the relative contributions of different frequencies to

the variance.

The spectra obtained for CO and PM10 time series reveal

clearly identified peaks at higher frequencies (f z 0.083 h�1

and f z 0.042 h�1) corresponding to the period of T ¼ 12 h and

T ¼ 24 h for all monitoring stations. In some locations, the

contribution of the 12 h period to the total variance is even higher

than day-to-night variations. This pattern could be related to

local emission changes due to the traffic peak hours and wind

speed fluctuations. However, at low frequencies there is

a noticeable difference between PM10 and CO. The spectrum

obtained for PM10 reveals the significant contribution of the

waves with the periods of about 4–40 days to the total variance

not observed in the CO spectrum. Low frequencies (period about
Fig. 2 Power spectrum density of CO and PM10 at urban traffic sta

This journal is ª The Royal Society of Chemistry 2010
6 month) are the most important spectrum components for CO

at all analysed locations, while 1 week fluctuations are smoothed.

An intercomparison of the spectra for different pollutants

measured at the same monitoring point could provide important

information. If the emission sources for CO and PM10 are the

same, similar cyclic patterns can be expected. Differences in the

pollutants spectra can indicate contributions from distinct

emission sources or presence of chemical transformations,

because the dispersion conditions are identical for both

compounds when measured at the same point.

There is no doubt that CO fluctuations measured at urban

traffic stations are strongly influenced by the road traffic emis-

sions. However, PM10 could also be emitted by other sources,

such as soil erosion, building constructions, etc. Moreover,

pollution transported from the other locations may have an

important contribution to the observed levels. Therefore,

different fluctuation patterns observed for CO and PM10 may

provide evidence of non-local or/and non-traffic causes for PM10.

3.2. Spectrum analysis of traffic counts and wind components

Antas urban traffic station was selected to investigate how the

periodicity pattern in concentration fluctuations are possibly

related to road traffic and meteorological conditions.
tion (Boavista) and suburban background station (V. N. Telha).

J. Environ. Monit., 2010, 12, 544–550 | 547
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Firstly, the data for hourly vehicle counts (available for

November and December) and wind characteristics (available

for one year) were analysed. The traffic flows are strongly

affected by daily variations (periods with 24 h) and peaks for 8

h, 12 h and 1 week periods are clearly identified in the resulting

spectrum. Although the pollutant concentrations in the air are

not directly related with the number of vehicles but with their

emissions (which are also influenced by vehicle technology and

driving pattern), vehicle flow is still a crucial parameter to
Fig. 3 Results of the cross-spectrum analysis: squared coherency spectrum

counts, (b) u-wind component, (c) v-wind component and (d) concentration m

548 | J. Environ. Monit., 2010, 12, 544–550
analyse possible correlation between the road traffic and the

pollutants.

Spectra for absolute values of u and v wind components (see

the plot in the ESI†) allow the analysis of main fluctuations in

latitudinal and longitudinal wind components to be carried out.

Taking into account the location of stations (near the coast) and

the orientation of the dominant winds in Portugal, v component

is primary related with synoptic scale and long transport, while u

component is also affected by breeze circulations, which depend
and 0.01 significance level for pollutant concentrations versus (a) traffic

easurements at urban traffic station versus suburban background station.

This journal is ª The Royal Society of Chemistry 2010
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on the orientation of the ocean coast. The most important

spectrum peak obtained for the u component is attributed to day/

night fluctuations while the v component is mostly contains

harmonic waves with the period of about 21–30 days.
3.3. Cross-spectrum analysis of concentrations versus traffic

counts

The cross-spectrum analysis was performed considering

co-spectrum, quadrature spectrum and squared coherence. The

last parameter is one of the most useful in the cross-spectrum

analysis15 that provides linear correlation between two time

series.

The cross spectrum analysis confirms the existence of a strong

correlation (the squared coherence is about 0.7) between the road

traffic and pollutant concentration measurements for fluctua-

tions with a 24 h period (Fig. 3(a)). Additionally, both the

co-spectrum and the quadrature spectrum show an important

contribution of this peak to the covariance (co-spectrum and

quadrature spectra are included in the ESI†). Fluctuations with

12 h, 48 h and 1 week periods are present in the coherence

spectrum of the both pollutants. However, the correlation

between the CO and traffic counts for 1 week waves are not

distinguished from the noise (considering 0.01 significance level),

while for PM10 the correlation with 1 week traffic fluctuations is

about 45%.
3.4. Cross-spectrum analysis of concentrations versus wind

components

The results of the cross spectrum analysis for the pollutant

concentration versus wind components presented in Fig. 3(b), (c)

show that squared coherence is significantly different for CO and

PM10 (co-spectra and quadrature spectra are presented in the

ESI†).

The highest correlation (50%) between the CO concentration

and the wind velocity is observed for the frequencies of f z 0.083

h�1 and f z 0.01 h�1 corresponding to the wave periods of about

12 h and 4 days, respectively, and is related to the v component.

Oppositely, low frequencies are more important in u component

achieving the coherence of 0.4.

The analysis of PM10 versus u wind component shows that co-

and quadrature spectra fluctuate around zero. Few peaks, iden-

tified in the covariance within the frequency range of 0.001 < f <

0.01, are not significant in the coherence spectrum. This means

that the phase relationship in the two time series does not remain

stable resulting in a low coherence value.

A large contribution of low frequencies (f < 0.002 h�1) is

clearly seen in the plots for the v component. For these

frequencies, the correlation between PM10 concentrations and

wind velocity is about 35–45%. Furthermore, a positive covari-

ance found between the two time series for the periods of about

21 days means that the increase in the concentration levels is

related with the increase of wind speed and may indicate exis-

tence of a long-range transport of the pollution. Oppositely,

negative covariance will indicate a presence of higher pollutant

concentrations under low wind conditions (for example in anti-

cyclone conditions), or a decrease of the concentrations related

with an increase of wind speed due to the transport of clean mass
This journal is ª The Royal Society of Chemistry 2010
of air to the monitoring location. The presence of this signal in

the quadrature spectrum reveal that the fluctuations of the two

variables are lagged in time.
3.5. Cross-spectrum analysis of urban versus background

measurements

The cross spectrum analysis for urban traffic (Antas) and

suburban background station (V. N. Telha) have been carried

out to determine whether the periodicities found at these two

stations are correlated to each other. As can be seen in Fig. 3(d),

the correlation between the two stations for PM10 is very

important in a wide range of frequencies with the squared

coherence of >0.8. Additionally, the co-spectrum indicates that

a major contribution to the covariance of PM10 observed at

Antas and V. N. Telha is related with the cycles of about 28

days (f z 0.0015 h�1). This signal was previously identified in

the latitudinal (v) wind component (the figure is included in the

ESI†) and is related with the synoptic scale and long transport.

By contrast, for CO time series no correlation could be found at

this frequency between the urban traffic and suburban back-

ground stations (Fig. 3(d)) and the highest correlation is

attributed to the 12 h fluctuations. These results emphasize

a different nature of the processes that contribute to CO and

PM10 concentration variations. A similar cross spectrum

between Antas and Leça do Balio monitoring points was

obtained.
4. Conclusions

In the current work, the methodology of spectral analysis applied

to the air quality data is discussed and the time series of CO and

PM10 related to traffic emission sources in the Porto metropol-

itan area are analysed. The results show an important contri-

bution of short-term fluctuations (12 h and 24 h periods) to the

total variance for both pollutants. At this time scale, the

contribution of the local traffic source is confirmed by the cross-

spectrum analysis which indicates a 45–70% correlation between

the concentration and the traffic flux variations. The meteoro-

logical conditions are also important at this scale. The highest

correlation with the wind v component was obtained for CO 12 h

peak (about 50%). However, for the CO concentrations a nega-

tive covariance with the v wind component was found meaning

the CO concentration decrease in the presence of a strong wind.

Completely different spectrum patterns are observed for the

two pollutants in the frequency range of about 0.01–0.001 h�1

corresponding to the wave periods of approximately 4–40 days.

For CO, an unexpected result was found for the 1–2 week

periods, considering that in the urban areas the CO level is

directly influenced by the road traffic emissions. The peaks cor-

responding to these periods are smoothed in the CO spectrum

and their correlation with the traffic flow is not distinguished

from the noise. Contrary to that, the PM10 spectrum reveals an

important contribution of these cycles to the total variance

resulting in the cross-correlation of the PM10 peaks with those in

the traffic spectrum of about 45%.

A long-range transport of PM10 pollution was attributed to the

fluctuations with the periods of about 21 days, identified by

a positive covariance of the pollutant concentration versus v wind
J. Environ. Monit., 2010, 12, 544–550 | 549
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component in the quadrature spectrum, being the correlation

between these two parameters of about 35%. Moreover, long

waves with the similar periods were found to give the most

important contribution to the covariance spectrum between the

urban traffic measurements and suburban background levels

(with correlation above 80%) thus indicating the same underlying

processes for the PM10 variations at distinct monitoring points.

Low frequencies (approximately, f < 0.001 h�1, period > 40

days) contribute significantly to the variance of both pollutants

analysed in the present work, and a correlation of these signals

with meteorological parameters was detected. However, if the

CO fluctuations are better correlated with the u wind component,

the PM10 peaks are related with v component. Therefore,

concentration variations are associated with different wind

directions in the case of CO and PM10 and this fact indicates that

the pollutants are transported from distinct locations and origi-

nated by different sources.

The results obtained in this study show that the frequency

analysis of air quality time series is a powerful technique that

can provide important information about the nature of the

processes behind the measurements. The methodology imple-

mented in this work could be applied to determine representa-

tive background concentrations of air pollutants by removing

short-term fluctuations associated with influence of local emis-

sion sources.16 Also, cross spectral analysis could be valuable in

air pollution modelling to examine sources of the model

uncertainties. The findings from the current work contributes to

the understanding of the cause-effect relationship in the

pollutant concentration variations that required for air quality

management.
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