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Abstract 

In this communication we consider the use of PPM 
based modulation methods, such as the hybrid modulation 
method called Amplitude and Pulse-Position Modulation 
(APPM) and Overlapping Pulse-Position Modulation 
(OPPM), to improve the performance of Infrared 
WLAN’s. The bandwidth eficiency expressions of these 
modulation schemes are presented and compared against 
the one of Pulse-Position Modulation (PPM), which 
allows to conclude that both APPM and OPPM can be 
used to improve the performance of PPM without 
significant bandwidth expansion, using Trellis-Coded 
Modulation (TCM) codes. We also derive the best codes 
for some APPM and OPPM schemes, and the results 
show that non-negligible coding gains without bandwidth 
expansion can be obtained with trellis codes of moderate 
complexity. 

1. Introduction 

There has been in recent years, considerable work on 
InfraRed (IR) links for WAN’S [l]. The performance 
and capacity coverage of IR WAN’S is highly dependent 
on the modulation and coding techniques used. In this 
communication we analyze and compare the following 
systems: uncoded PPM and Trellis-Coded Modulation 
(TCM) using PPM based modulation techniques. The 
PPM based modulation techniques we consider are: 

APPM (Amplitude and Pulse-Position Modulation) 
[2], which is an hybrid modulation where 
information is conveyed both in amplitude and 
position of one pulse. 
OPPM (Overlapped Pulse Position Modulation) [3] 
where the symbols contain a pulse transmitted in 
non-orthogonal positions, i.e. allowing some 
overlapping between pulses of different symbols. 
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The communication is outlined as follows. In the next 
section we present the system model and the modulation 
schemes we will be dealing with. In section 3 we present 
the expressions for the power spectral density, in order to 
compare the APPM and OPPM bandwidth efficiencies 
against PPM. In section 4 we consider trellis coding with 
AxM-APPM and M-OPPM, present the optimum codes 
for some values of the code memory, and evaluate the 
performance improvement relatively to uncoded 2-PPM. 
Finally in section 5 we present the main conclusions of 
this work. 

2. System Model 

The block diagram of the system we are concemed 
with is shown in Figure 1. The input data sequence { ak } 
is encoded, modulated and converted to the optical power 
signal ~ ( t )  . The channel adds background radiation, 
which is modeled by an additive noise source n b ( t ) .  At 
the receiver the photodiode converts the incoming optical 
power pi(r)  = p , ( t )+nb( t )  into an electrical current z ( t ) ,  

which is given by the product of its responsivity 31 
multiplied by the optical power integrated over the 
detector surface. After that, the signal is amplified, 
demodulated and decoded, giving the output data 
sequence { bk }, that is a replica of the sequence { ak } 
except for some positions where the decoder was not able 
to correct channel errors. The coding / modulation 
operations at the transmitter and decoding I demodulation 
at the receiver were grouped into single blocks (dashed) 
to accommodate the use of TCM where the operations are 
not separated. 

In this communication we consider that the received 
signal does not suffer a significant distortion and the 
elementary optical pulses received are rectangular. 
Moreover, the optical intensity modulation with direct 
detection (IM/DD) system is normally modeled by a 
signal dependent, Poisson rate, photon-counting model, 
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Figure 1. Block diagram of the transmission system. 

but for IR communications due to the intense ambient 
light in indoor environments the model can be simplified 
to lead to an AWGN channel. The information bearing 
electrical current can then be described by: 

where p r ( r )  is the received optical power in the absence 
of noise, n(t)  is the additive noise current which is the 
sum of the photodetector background radiation and 
thermal noise introduced by the receiver. The noise can be 
accurately modeled as white Gaussian with power 
spectral density no 1 2 .  

Assuming that the elementary received pulses are 
rectangular, the optical received power is given by: 

z ( t )  = 3. p ,  ( t )  + n(t> , (1) 

p r ( t ) = C P k ( f - k c )  9 ( 2 )  

where q. is the symbol duration, and p k ( t )  is the 
waveform corresponding to the symbol k. 

2.1. Modulation Formats 

The modulation formats we will consider are PPM, 
APPM and OPPM, which will be described in detail next. 

M-PPM (Pulse Position Modulation) 
In M-PPM, each word of k bits is mapped into one of 

M = 2k symbols and transmitted to the channel. The 
symbol interval is divided into M chips, and each symbol 
uses a different chip to transmit a pulse. Thus, the M 
possible waveforms are: pk(t)= PppT, (r-iT,) with 
i E {0,1 ,..., M -I}, and pT, ( t )  being a rectangular pulse 

The average power is related with the peak power by 

Detection of M-PPM symbols requires the estimation 
of the chip where the pulse was most probably 
transmitted. In the absence of multipath distortion, an 
optimum maximum-likelihood receiver employs a 
continuous time filter matched to one chip, whose output 
is sampled at the chip rate. Each block of M samples is 
passed to a block decoder, which makes a symbol 
decision, yielding k = log2 M information bits. 

with unit amplitude and chip duration T, = T,  I M . 

P, = Pp lM * 

AM-APPM (Amplitude Pulse Position Modulation) 
In an AM-APPM symbol there are M chips of 

T,duration as in M-PPM. The difference from the PPM 
symbols is that the impulse may take one of the A 
possible amplitude values, thus, the A x M  different 
symbol waveforms are: pk ( 1 )  = jPppT,  ( t  - i T c ) ,  with 

j e  {1,2,...,A} and ie {OJ, ..., M-I}. 
The average power is related with the peak power by 

It is clear that going from M-PPM to, for example 
2xM-APPM provides an expansion of the signal set size 
by a factor of 2, without in a fust order analysis a 
bandwidth expansion since the duration of the elementary 
chips remain the same. 

P’ = Ppx(1+A) /2M . 

M-OPPM (Overlapping Pulse Position Modul.) 

Overlapping PPM [3] allows multiple positions per 
pulsewidth, as well as fractional modulation indices 
(number of pulsewidths per frame) requiring more refined 
timing than that needed for conventional disjoint PPM. 
The symbol interval Ts is divided into n subintervals 
(referred as chips) of equal duration T, . The information 
is conveyed by the position of a pulse of duration 
Tp = w T c ,  starting in one of the M instants 

tk  = (k - 1)T, , k = 1,2 ,..., M , where t1  = 0 is the start of 
a symbol interval. It is clear that M is related to n and 
w by: M = n - w + 1 . Thus, the M waveforms allowed 
for M-OPPM symbols are: pk ( t )  = Pp pTp (t - iT,) with 
ic {OJ, ..., M-1}, and T, = T, / n being the chip duration. 

The average power is related with the peak power by 
P , = P p x w l n -  

Notice that Q = n l w  is the alphabet size of the PPM 
signal set with no overlap and that by allowing overlap 
between pulses we have increased the number of signals 
from Q to M . The pulsewidth of the OPPM signal is 
kept the same as that for Q-ary PPM. On the other hand, 
the extended signal set is no longer orthogonal, which 
implies worse error-probability performance for uncoded 
transmission systems. 
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To obtain efficient OPPM schemes, (nw) must be 
chosen, so that M is a power of 2. For example: (5 2), (6 
3) and (7 4) for M = 4 or (9 2) ,  (10 3) for M = 8 .  

3. Bandwidth Efficiency 

The bandwidth of a modulation scheme based on pulse 
position can be roughly approximated by the inverse of 
the shortest pulse width. Thus, the bandwidth required by 
OOK-NRZ is roughly the bit rate Rb , and the bandwidth 
required by M-PPM, OPPM and AxM-APPM to achieve 
a bit rate Rb is the inverse of the duration of the shortest 
pulse, or M R, I log, M , (n I w)Rb I log, M and 
M R, I log, M , respectively. More accurately, it is 
common to specify the bandwidth B, that includes x% of 
the signal power. 

Under the assumption that the codewords are chosen 
independently and with equal probability, the continuous 
part of the power spectral density functions S ( f ) ,  are 
given by: 

M-PPM [4] 

AxM-APPM [5] 

(4) 
M-OPPM [4] 

where for all equations, T, is the symbol duration. 
To perform a more accurate comparison, in. what 

concerns the bandwidth efficiency, we computed for each 
modulation method the parameter B,. This gives the 
bandwidth value below which 90% of the continuous 
power spectral density is contained. The results are 
presented in Table 1, as well the BNuu parameter, which 
is the lowest bandwidth value where the power spectrum 
is null and, in fact, it equals the inverse of the pulse 
duration used by each modulation scheme. Both 
parameters are normalized, i.e. multiplied by the symbol 
duration T,. Table 1 also indicates the number of 
symbols, i.e. the alphabet cardinality for the different 
modulation schemes. 

16 I 5.30 1 4 J  

Table 1. B,, and B,, for different 
modulation schemes. 

We can observe from the comparison between B, 
and BN, , not only their disparity but mainly that, while 
the latter one gives a very optimistic estimation for the 
bandwidth requirements of a certain modulation scheme, 
B, gives a more realistic estimation of the required 
bandwidth. Thus, in the next sections we will use Bm , to 
assess the bandwidth of TCM coded signals using APPM 
and OPPM modulations. 

4. TCM codes for APPM and OPPM 

It is well known that the classical separation of coding 
and modulation requires some bandwidth expansion. 
When the channel is bandwidth constrained, this may be 
unacceptable. To illustrate ideas let us consider the use of 
PPM with a convolutional code. In the absence of 

coding, the chip duration of the 2k -PPM pulse is related 
to the bit duration through: 

k 
(6) 

while with the use of the )$ convolutional code this goes 
to: 

T,=--. 
2k ',' 

(7) 

If one is bandwidth limited, and using the first order 
approximation that the PPM bandwidth is proportional to 
the inverse of the chip rate, then one has to reduce the 
PPM order to accommodate coding. Performing the 
calculations, one finds for example that, to maintain the 
bandwidth we should go from 16-PPM to 4-PPM or from 
64-PPM to 16-PPM. Asymptotically this represents a 
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Figure 2. General structure of systematic feedback convolutional 
encoder with k/(k+l) efficiency and memory v with k” checked bits. 

Yf 

Figure 3. Structure of systematic 1/3 feedback 
convolutional encoder with memory v. 

power penalty through the reduction of the set 
dimensionality of approximately 3 optical dB, which 
implies that the convolutional code must give at least 3dB 
coding gain with hard decoding. 

This means that if bandwidth is a constraint, one 
should combine the modulation and coding schemes 
according to TCM. So, it was already pointed out at [2] 
that AxM-MPM represents a method to augment the 

Figure 4. Structure of systematic 2/4 feedback 
convolutional encoder with memory v. 

4.1. Coding Structures 

In order to find out efficient TCM codes for M P M  
and OPPM schemes, we considered convolutional 
encoders with % , g , x and % rates. The J /z  encoders 
are used by schemes with 4 symbols, and % 
encoders by schemes with 8 symbols and % by schemes 

alphabet size of M-PPM without bandwidth expansion. In 
this communication we intend to enlarge this conclusion Figures 2, 3 and 4 illustrate the structures for the 
to OPPM. considered encoders. The % and convolutional 

encoders are particular cases of the general structure for 
W(k+ 1) systematic convolutional encoder with feedback. 

with 16 symbols. 
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This is represented in Figure 2 as proposed in [6] for 
memory v and k" checked bits (bits used to calculate the 
coded output bit y p )  The structure for the encoder with 
rate and memory v is obtained, making k = 1 e k" = 1 ,  

thus the encoder is defined by its two polynomials ho 
with v + 1  binary coefficients, and h' with 
vcoefficients. For the convolutional encoder we 
consider k = 2 and k" = 2 , and the encoder is defined by 
three polynomials: h o ,  h' and h 2 .  When h' = O  or 
h 2  = 0,  but h' f h2 the structure degenerates to k = 2 
and k" = 1 .  In the exhaustive search we performed, no 
restriction was made on h2 and then this situation was 
accommodated. In fact the results that will be presented 
later, show that for 2x4-APPM the optimum encoders 
lead to h 2  = O .  

In Figure 3 we present the structure of a x systematic 
feedback convolutional encoder with memory order v , 
suggested by Benedetto in [7]. This encoder is defined by 
the three polynomials: ho with v coefficients, and z ' ,  
z2  both with v + 1 coefficients. 

systematic 
feedback convolutional encoder with memory order v , 
also suggested in [7]. This structure is based on two 
independent rows of memory elements with orders p1 
and p 2 ,  whose sum equals the encoder memory v . Thus, 
this convolutional encoder is defined by 8 polynomials: 4 
(h" , h" , zl' and z ' ~ )  related to the upper memory 
row, and 4 ( h2' , h 2 2 ,  z2' and z,22 ) related to the lower 
memory row. The former ones have p1 + 1  coefficients, 
while the latter have p 2  + 1 coefficients. 

Figure 4 shows the structure of a 

4.2. Results 
Asymptotic Coding Gains 

In order to assess the merits of coding each modulation 
scheme, we must search the TCM codes that maximize 
the gains. For the desired infrared link applications 
working on high SNRs and having low error-probabilities, 
the asymptotic coding gain is a good approximation to the 
real coding gain achieved by TCM codes. The asymptotic 
coding gain of a TCM coded modulation scheme, 
relatively to uncoded 2-PPM transmission is given by: 

where djme is the squared minimum Euclidean distance 

between all coded sequences, Fed is the mean power of 
constellation signals that constitute the modulation 
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alphabet, d& is the squared minimum Euclidean distance 

between 2-PPM symbols and P,, is the mean power of 
2-PPM alphabet. If we normalize the amplitude of 2-PPM 
pulses to 1, we obtain P,, = 1/2 and dLc = 2 .  In Table 3 
we present the respective asymptotic coding gain 
expressions used for each APPM and OPPM modulation 
schemes considered. 

Hence, search for the best codes is equivalent to find 
out the codes with maximum asymptotic coding gains. 
From (8) we can conclude that the asymptotic coding gain 
maximization for a given modulation scheme, is 
equivalent to search the convolutional encoder with 
maximal djEe. This was the criterion used to find the best 
TCM codes, which were obtained by performing an 
exhaustive computational search. 

After exhaustive inspection, we noted that all 
considered TCM codes using any APPM or OPPM 
modulation schemes, belong to the symmetry class of 
quasi-regular codes (QRC or ZWC) by verifying the 
Zehavi-Wolf condition [SI. so, to proceed with djme 

evaluation, the GUZWA algorithm [SI was used. 
Another important aspect is concemed with the 

modulation partition. It was necessary to do a previous 
selection of the best signal constellation partition for each 
TCM code (different modulation scheme or different 
convolutional encoder rate). This was not a trivial task 
and the criterion used was to select the partition that 
maximizes the summation of the distance profile used by 
GUZWA algorithm. For partitions with equal summation 
of the distance profile, exhaustive searches were only 
made for codes of small memory orders (typically up to 
4), while for high orders (5 and 6), the search was 
restricted to the partition that had already given the best 
results. This methodology does not ensure that the 
optimum TCM codes were found, but we guarantee good 
ones. 

In Table 2, we present the results of this search: the 
best free distance attained and one of the best codes 
found, for each modulation and for memory values 
between 2 and 6. The polynomials that define the 
different encoders are indicated in Table 2 using octal 
notation followed by Pietrobon in [6]. As an example: 
ho = (ht , h!, h;,  hp, h:)2 = (0,1,1,0,1)2 that is denoted in 

- 

In Table 3, we present the asymptotic power gains, 
achieved by using the best codes for each considered 
AxM-APPM and (n w) -0PPM schemes, relatively to 
uncoded 2-PPM. 

1349 VTC 2000 



2 1  3 6 4 5 

~ ~~~~ ~~ ~~ ~ ~ 

Table 2. Optimum TCM codes and obtained free distances for 
APPM and OPPM modulations. 

2x2-APPM 

4x2-APPM 

2x4-APPM 
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12 14 16 17 19 2 
dfree  

( h o ; h ’ )  (7;2) (15;2) (31;02) (45;12) (187;32) 

djree  31 36 42 46 53 

djree  12 15 17 19 21 

’ 
% 

( h O ;  z l ;  z 2 )  (3;2;5) (6;02;17) (16;12;27) (36;16;63) (71;056;135) 

( ho ; h ; h ) (7; 1 ;O) ( 13 ; 1 ;O) (23; 1 1 ;OO) (73 ;11 ;OO) ( 133; 1 1 ;OO) 
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Asymptotic power gains (dBelectric) 
Encoder memory order 

2 1  3 1  4 1  5 1  6 

Encoder 
Rate 

I 3.80 I 4.47 I 5.05 I 5.32 I 5.80 

I 3.15 I 3.80 I 4.47 I 4.87 I 5.48 2- 1 6.81 ~ 7.78 ~ 8 3 2  -1 8.81 1 9.24 

6.16 7.05 7.48 8.06 8.49 

6.99 7.78 8.45 9.03 10.00 

8.06 8.57 9.03 9.44 9.82 

Table 3. Asymptotic coding gains for the best TCM codes 
found with APPM and OPPM modulations relatively to 2-PPM. 

Since the photodetector has a squaring effect, it is 
clear, that the power gains in terms of the received optical 
power is half of the values reported in Table 3. 
Nonetheless one can conclude that quite appreciable gains 
can be obtained with convolutional encoders of moderate 
to low memory. 

Inspection of Table 3 shows that there is no advantage 
from increasing the number of amplitude levels in A M -  
APPM beyond 2. Concerning OPPM we observe that the 
best coding gains, for a given (n w) scheme, are achieved 
with a W(k+l) code. 

In order to compare all studied modulations, we plot in 
Figure 5, for all considered schemes their coding gains 
against uncoded 2-PPM versus their bandwidth 
requirements. The points plotted refer to the “bandwidth 
efficiencylcoding gains” figures of the following 
modulation formats: 

uncoded 2-PPM, which is used as the reference. 
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uncoded 4-PPM, which has a normalized bandwidth 
of 0.9 1 and a coding gain of 6 dB. 
coded modulation schemes for APPM and OPPM 
schemes with TCM encoders with memory orders 
equal to 2 ,4  and 6. 

It must be noted that for OPPM schemes with 8 
symbols, namely (9 2), (10 3), (1 1 4) and (12 5), the best 
performance was obtained with codes, and only these 
ones were plotted in Figure 5 .  The bandwidth required by 
each coded modulation scheme when used in a TCM code 
with rate z, is given in a fist order approximation by the 

(Bg0 -Tb)cod parameter, which is related with the 

(BW .Ts)unc values, presented in Table 1, by the 
expression: 

’Tb )cod = b 9 0  -Ts )mc 2 (9) 
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Figure 5. Asymptotic coding gains (Gcod) versus (B,.T,) for the various analyzed 
modulation schemes. The tradeoff: coding gains / bandwidth efficiency, for TCM 

coding with APPM and OPPM schemes. 

where r is the number of bits corresponding to one 
modulation symbol, i.e. the number of symbols of the 
modulation scheme is M = 2‘. 

We observe that appreciable coding gains are achieved 
without loss of bandwidth efficiency with AM-APPM. 
This improvement may still be enhanced by using some 
(n w)OPPM schemes. Also concerning OPPM the use of 
8 symbols gives significant bandwidth and coding 
improvements when compared to OPPM of 4 symbols. 

5. Conclusions 

In this communication, the bandwidth efficiencies of 
APPM and OPPM were derived and compared against the 
Pulse-Position Modulation (PPM) ones, which allows to 
conclude that these PPM based modulations can be used 
to improve the performance of PPM without significant 
bandwidth expansion, using Trellis-Coded Modulation 
(TCM) codes. The best codes for some AM-APPM and 
( n  w) -0PPM schemes were found and their asymptotic 
coding gains computed relatively to uncoded 2-PPM. The 
results show that both APPM and OPPM are quite simple 
but effective ways of expanding the alphabet size of PPM 
to apply TCM techniques, and then to improve the 
performance of wireless infrared communication systems. 
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