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Abstract—In this paper we investigate the impact of the pilot 
density (and associated pilot distances for both frequency and 
time domains) in the performance of the channel estimation for 
MC-CDMA systems, when using dedicated sub-carriers to 
transmit pilots with 2-D rectangular patterns.  

The analytical formulation of the channel estimation MSE 
for the single-user downlink scenario with a generic channel 
estimation scheme for a given power efficiency is presented.  

The attained results go beyond the commonly accepted rule 
of thumb that suggests that an oversampling factor of two will 
result in a good trade-off between performance and pilot 
overhead.  

The analytical formulation was validated by system 
simulations. A scenario using the 2-D LS-DFT channel 
estimation scheme confirmed the analytical result. The lowest 
channel estimation MSE for a given value of power efficiency is 
achieved when the pilot density is the one that closely fulfils the 
2-D sampling theorem. Equation Chapter 1 Section 1 

I. INTRODUCTION 
Multicarrier Code Division Multiple Access (MC-CDMA) 

[1] is a strong candidate to be the transmission support for the 
4th generation broadband wireless applications. Extraction of 
accurate channel state information is crucial to achieve high 
spectral efficiency, with emphasis on demodulation/decoding 
and resource allocation operations. Blind estimation 
techniques that need to gather a large amount of information 
to perform the estimation exhibit a poor performance in 
mobile systems where the channel varies rapidly under the 
influence of Doppler’s effect and multipath propagation. To 
achieve better performance pilot-aided channel estimation 
techniques are commonly preferred, with emphasis on two-
dimensional (2-D) filtering algorithms and associated 2-D 
pilot patterns [2]-[4]. Detailed studies of optimum pilot 
pattern for 2-D channel estimation schemes for both uplink 
and downlink scenarios are present in [5],[6]. 

To the authors knowledge there is no in-depth analytical 
study on the influence of the pilot distances (frequency and 
time) and density on the performance of the channel estimator. 
This issue was addressed in [3], were a rule of thumb 
suggested that an oversampling factor of two would result in a 
good trade-off between performance and pilot overhead. In 
this paper this analytical study is introduced for the single-
user downlink scenario. The feasibility of the analytical model 

is substantiated by system simulations using a 2-D Least 
Squares – discrete Fourier transform (LS-DFT) channel 
estimation scheme and BRAN-A broadband wireless channel 
model [7]. 

II. SYSTEM MODEL 
Let us consider MC-CDMA modulation over Nc sub-

carriers for transmission over a multipath Rayleigh fading 
wireless channel, with a discrete-time channel impulse 
response (CIR) given by, 
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where L is the number of channel paths, lα  is the complex 
value of path l and lτ  is the delay of path l. The paths are 
assumed to be statistically independent, with normalized 

average power, 
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of path l. The time dependence of the CIR is not present in the 
notation for simplicity.  

We assume that the CIR remains constant for the duration 
of the symbol and that the insertion of a long enough cyclic 
prefix (CP) in the transmitter assures that the orthogonality of 
the sub-carriers in maintained after transmission. 

The system’s frame structure is made-up of Ns  symbols, 
each carrying Nc  M-ary PSK or QAM modulated sub-
carriers. To assist in the channel estimation process, dedicated 
sub-carriers with-in the frame convey pilots in a 2-D 
rectangular pattern with pilot separation in frequency and time 
domains of, respectively, Nf and Nt. 

The 2-D rectangular pilot pattern, like any regular 2-D 
pattern [8]-[9], corresponds to a non-singular matrix V 

represented by 2 basis vectors [ ]0 T
i Nt=v  and 

[ ]0 T
n Nf=v , 
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such that the set of the pattern points is defined by, 

 [ ]{ }2, : ,Tn i= = ∀ ∈y y Vx x , (3) 

and the pilot pattern density D is ( ) ( )1 1detD NtNf
− −= =V . 

Suppose that the receiver is perfectly synchronized and is 
disturbed by independent and identically (iid) zero mean 
Additive White Gaussian noise (AWGN) with a variance 2

Nσ . 

III. MSE ANALYTICAL FORMULATION 
The receiver’s channel estimator starts by obtaining the LS 

estimates LSH  of the channel for the set of pilot positions 
with-in the frame Ρ , 
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where H , N  and S  are Nc Ns×  matrices that contain, 
respectively, the channel’s frequency response (CFR), the 
noise samples and the transmitted symbols and after uses a  
2-D DFT interpolator to obtain the estimates in the remaining 
frame positions. 

Interpreting the LS estimates as noisy samples of the CFR, 
for the interpolator filter to be able to recover the CFR without 
aliasing, the pilot distances Nf and Nt should fulfill the 2-D 
sampling theorem, with maximum frequencies dependent of 
the channel’s minimum coherence time and minimum 
coherence bandwidth, that are, respectively, functions of the 
mobile speed and channel’s maximum propagation delay maxτ  
[2], 
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where f∆  is the sub-carrier separation, Df  is the Doppler 
frequency and ST  is the MC-CDMA symbol duration 
including CP. 

In the absence of noise, the discrete CFR can be 
reconstructed using an ideal 2-D sinc filter, [ ],Pw n i , 
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that oversamples the LS estimates by a factor Nf in the 
frequency domain and Nt in the time domain, 
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where, 
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The real LS estimates are noisy samples of the channel, that 
are used as the input to the 2-D estimation filter [ ],w n i , to 

obtain the channel estimate [ ]ˆ ,H n i , 
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Splitting '
LSH  in '

LS S SH = H + N , where the elements of 
the matrix containing the noise samples SN  are defined by, 
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the channel estimation can be rewritten as, 
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which can be interpreted as if the channel estimation is the 
summation of the real channel [ ],H n i  with two terms that 
negatively affect the estimate. The first term is due to the 
imperfect estimation filter,  
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and the second is due to the presence of noise, 

[ ] [ ], ,S
k l

N n k i l w k l
+∞ +∞

=−∞ =−∞
+ +∑ ∑ . 

Defining the error filter [ ] [ ] [ ], , ,e Pw n i w n i w n i= − , the 
estimation error of the n-th sub-carrier of the i-th symbol can 
be written as, 
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Applying 2-D discrete-time Fourier transform (DTFT) to 
(14), it can be equivalently written as, 

  ( ) ( ) ( ) ( ) ( ), , , , ,n i S n i e n i S n i n iE w w H w w W w w N w w W w w= + . (15) 

Using the 2-D discrete Parseval’s theorem [9], the channel 
estimation mean square error (MSE) can be written as, 
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Considering that the noise ( ),S n iN w w  and the channel’s 

response ( ),S n iH w w  are independent and recalling that SN  
is made-up of AWGN samples, 
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where ( ) ( ) 2
, ,

SH n i S n iS w w H w w= . Recalling that [ ],SN n i  is 

a sampled version of [ ],N n i  with a density D and considering 

that the pilots are transmitted with unit energy, 2 2
SN N Dσ σ= . 

The channel estimation MSE can be rewritten as, 
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The sampled channel’s power spectral density (PSD) 
( ),

SH n iS w w  is a replicated and scaled version of the original 

channel’s PSD ( ),H n iS w w  [8], 
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Fig. 1 presents the relationship between ( ),
SH n iS w w  and 

( ),H n iS w w , assuming that the channel’s PSD is limited in 
both frequency axes and that the pilot distances Nf and Nt are 
small enough to fulfill the 2-D sampling theorem, according to 
(5). The top figure represents the original channel’s PSD and 
the bottom one the sampled version. The position of the 
replicas is defined by [8], 
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Keeping in mind that the 2-D sinc filter is only non-zero in 
the area I (marked in Fig. 1), the 2-D DTFT of the error filter 
is given by,  
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Considering that the interpolator filters most of the energy 
of the channel replicas inside the area E (marked in Fig. 1), 
the error introduced by the first term of (18) in this area is 
neglectable and the channel estimation MSE can be rewritten, 
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In the area I ( )i nw wNt Nf
π π≤ ∧ ≤ , the sampled 

channel’s PSD is just a scaled version of the original 
channel’s PSD, 
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Fig. 1. Channel’s PSD: a) original; b) sampled. 
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where,  

 

( ) ( )

( ) ( ){ }

( )

( )

2
2

2

2

2
2

1 , ,
4

2 , Re ,
4

1 ,
4

1 ,
4

H n i n i n i
I

H n i n i n i
I

C H n i n i
I

F n i n i

A S w w W w w dw dw

B S w w W w w dw dw

E S w w dw dw

E W w w dw dw
π π

π π

π

π

π

π
− −

=

=

=

=

∫∫

∫∫

∫∫

∫ ∫

. (25) 

The MC-CDMA system’s energy per bit Eb is given by, 
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where symbolS  is the average MC-CDMA symbol power and 

datab  is the number of data bits sent per symbol. Due to the 
presence of pilot sub-carriers in the frame, the average number 
of data bits per symbol depends on the pilot density D, 
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where SF is the spreading factor and m is the size of the 
constellation. Replacing in (26), 
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The one-sided noise PSD 0N  is given by, 
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where St  is the MC-CDMA symbol duration (without CP). 

The system’s power efficiency 0
Eb

N  is defined by, 
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Expressing the noise power as a function of the power 
efficiency, 
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the channel estimation MSE can be directly expressed as a 
function of 0

Eb
N , by replacing in (24), 
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Equation (32) shows that the channel estimation MSE is 
dependent of the CFR, the noise present in the process and the 
frequency response of the estimation scheme used. 

A. 2-D LS-DFT channel estimator 
The 2-D LS-DFT channel estimation scheme uses the 2-D 

sinc filter expressed in (6) to perform the interpolation that 
will return the estimates of the channel for the frame positions 
where data sub-carriers were transmitted. In this scenario, 

pw w= , the error filter 0ew =  and (15) is reduced to 

 ( ) ( ) ( ), , ,n i S n i n iE w w N w w W w w= , (33) 

as the interpolator does not cause any distortion. Examining 
(22) it is straightforward that the channel estimation MSE 
with this scheme is 2 2

e Nσ σ= , or expressed in terms of power 
efficiency by rewriting (32), 
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A closer examination of (34) puts in evidence that, for a 
given value of power efficiency, the lowest MSE achieved 
with this channel estimation scheme is for the lowest value of 
pilot density D (with associated pilot distances Nf and Nt) that 
closely fulfill the 2-D sampling theorem. 

IV. SIMULATION RESULTS 
A simulation scenario was implemented where 1024Nc =  

sub-carriers were QPSK modulated. The system has a carrier 
frequency 5fc GHz=  and a sampling interval 10t ns∆ = . The 
transmission of symbols was carried out over BRAN-A model 
channels [7]. The surfaces presented in Fig. 2 summarize the 



attained results. The red surfaces represent the simulation 
results while the analytical values are represented by the blue 
ones. The green dot points out the best density D  (and 
respective pair ( ),Nt Nf ). Surfaces in the first row were 
obtained for a MT speed of 10km/h, while in the second row 
the speed was set to 200km/h. Each column represents a 
different power efficiency value, 0Eb N . From left to right, 
10dB , 20dB , 30dB  and 40dB . 

Observing the surfaces, we can conclude that in the area of 
interest, where the 2-D sampling theorem is fulfilled (there is 
no aliasing and the channel estimator performs the best), the 
analytical formulation of the channel estimation MSE closely 
follows the simulations results. This validates the 
approximation performed in the formulation process. Outside 
this area the surfaces diverge, as it would be expected, since 
the analytical formulation does not take into account the 
distortion caused by the aliasing. The optimum pilot density 
attained by simulation confirms the analytical result. 

V. CONCLUSIONS 
The analytical formulation of the channel estimation MSE 

as a function of the pilot density (and distances) for a given 
power efficiency is presented.  

Simulation results validate the analytical formulation in the 
area of interest, confirming that in the simulated scenario the 
optimum density is the one that closely fulfils the 2-D 
sampling theorem. 

The channel estimation MSE is very sensitive to the 
fulfillment of the sampling frequency in the time axis, due to 

Doppler spectrum energy being concentrated near the Doppler 
frequency. Even a small overlap of the channel PSD replicas 
causes a considerable increase of the channel estimation MSE. 
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