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Physical Behavior of Eigenvalues and 
Singular Values in Matrix Decompositions  

Azmol Huda, R. L. Aguiar 

Abstract— An apposite as well as realistic treatment of eigenvalue and singular value problems are potentially of interest to a 
wide variety of people, including among others, design engineers, theoretical physicists, classical applied mathematics and 
numerical analysis who yearn to carry out research in the matrix field. In real world, it is extensively used but at sometimes 
scantily understood. This paper focuses on building a solid perception of eigenvalue as well as singular value with their 
substantial meanings. The main goals of this paper are to present an intuitive experience of both eigenvalue and singular value 
in matrix decompositions throughout a discussion by largely building on ideas from linear algebra and will be proficiently to gain 
a better perceptive of their physical meanings from graphical representation.  

Index Terms—Eigenvalue, singular value, matrix decomposition, orthonormal basis, linear mapping.  

——————————      —————————— 

1  INTRODUCTION
IGENVALUE as well as singular value has wide-
spread  application  in  diverse  fields  of  empirical  
science from mathematics to neuroscience because 

they are a straightforward, non-parametric value that 
extracts pertinent information from a large matrix. With 
nominal effort they make available a roadmap to divulge 
the hidden, simplified structures in a large matrix that 
frequently lie beneath it. Eigenvalues take part in a signif-
icant role in situations where the matrix is a transforma-
tion form one vector space onto itself. The primary para-
digms of it are systems of linear ordinary differential eq-
uations.  The eigenvalues of  a  matrix be capable of  keep-
ing  up  a  correspondence  to  frequencies  of  vibration,  or  
critical values of stability factors or energy level of atoms. 
The most application of eigenvalue probably in the field 
of dimension reduction. 

Singular values also play a vital role where the matrix 
is  a  transformation  from  one  vector  space  to  a  different  
vector space, possibly with a dissimilar dimension. Sys-
tems of over or undetermined algebraic equations are the 
most important examples. The term “singular value” re-
lates to the distance between a matrix and the set of sin-
gular matrices. From the seminal study of eigen and sin-
gular value, there has been a lot of research work related 
to this field [1], [2], [3], and incredibly common to all ma-
thematicians or engineers although nearby there is very 
little works straightforwardly in attendance to the rela-
tion of eigenvalues and singular values simultaneously 
with their graphical properties, in an efficient and repre-
sentative way. In paper [4], the author addresses a num-
ber  of  numerical  issues  of  singular  value  arising  in  the  
study of models of linear systems with its applications. 
Numerical computation of the characteristic values of a 
real symmetric matrix and numerically stable, fairly fast 
technique for achieving the singular values are discussed 
in  paper  [5]  and  [6].  Authors  in  paper  [7],  describe  the  
solution of large scale eigenvalue problems. In paper [8] 
and [9], the authors illustrate that the largest eigenvalue 

of the sample covariance matrix have a tendency to a lim-
it under certain conditions and the limit of the cumulative 
distribution function of the eigenvalues is likely to deter-
mine by using a technique of moments. In paper [10], C.B. 
Moler, presents a graphical depiction, but the singular 
value decomposition as well as the relation with the ei-
genvalues is not discussed in a broader consideration. In 
this paper, we put in plain words an instictive feel of the 
physical meaning of eigenvalues and singular values 
along with emphasizing more on their graphical conse-
quence with numerical example in a meticulous way.  

The rest of this paper is structured as follows. The no-
tations used all the way throughout of this paper are giv-
en in section 2. We discuss the eigenvalue and singular 
value matrix decompositions in section 3. Relation be-
tween eigenvalue and singular value and their geometric-
al  elucidation  are  given  in  section  4  and  5  respectively.  
Graphical representations are presented in section 6. Con-
cluding remarks are presented in section 7. 

2  BACKGROUND NOTATIONS 
Symbol Meaning 
A  : square or rectangular matrix of order n over      

  a field F ; 
i  : eigenvalues of matrix A ; 
 : n-by-n diagonal matrix with the j on the    

  diagonal ; 
X  : denotes n-by-n diagonal matrix whose j-th    

  column is jx ; 
,U V  : orthogonal or unitary matrices; 
i  : singular values of A; 
 : n-by-n diagonal matrix with the r on the    

  diagonal;  
TA  : transpose matrix of A; 
HA  : Hermitian matrix of A; 
 : set of real numbers; 

 
 

E
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3  EIGENVALUE AND SINGULAR VALUE 
DECOMPOSITIONS 

3.1 Eigenvalue Decompositions 
Let A be a square matrix of order n over a field F. A scalar 

F is an eigenvalue of a matrix A if there exists a non-
zero column vector x for which 

Ax x                                           (1) 
The eigenvalue-eigenvector equation for a square ma-

trix can be written as 0, 0A I x x where I denotes 
the identity matrix of order n. This implies that A I is 
singular and hence that det 0A I . This is christened 
the characteristic equation or characteristic polynomial of 
A. The degree of polynomial is the order of the matrix 
and an n-by-n matrix has n eigenvalues, counting re-
peated roots. Suppose 1 2, ,..., n be the eigenvalues of a 
matrix A and 1 2, ,..., nx x x be a set of corresponding eigen-
vectors. Let denote the n-by-n diagonal matrix with the 

j on  the  diagonal,  and  let  X denotes  the  n-by-n  matrix  
whose j-th column is jx , then we can write 

AX X                                        (2) 
From  equation  (2),  it  is  indispensable  to  put on the 

right side so that each column of X can be multiplied by 
its resultant eigenvalues. A noteworthy key conjecture is 
that, this statement is not factual for all matrices. At this 
juncture, we assume that the eigenvectors are linearly 
independent, afterward the inverse of matrix X exists and 

1A X X                                      (3)   
with the non singular matrix X. This is well-known as the 
eigenvalue decomposition of matrix A. When it exists, it 
consents us to investigate the properties and characteriza-
tion of A by  exploring  the  diagonal  elements  of . For 
illustration,  repeated matrix powers can be put across in 
terms of powers of scalars i.e. 

1k KA X X                                  (4) 
But,  if  the  eigenvectors  of  A are not linearly indepen-

dent, then such a diagonal does not exist and the powers 
of A give  us  an  idea  or  an  evidence  of  a  more  complex  
behavior. If T is any non singular matrix, then 1A TQT is 
known as similarity transformation and A and Q are said 
to be similar. If Ax x and x Ty then Qy y . So a simi-
larity transformation preserves eigenvalues. Commonly, 
the eigenvalue decomposition is an attempt to find a simi-
larity transformation to diagonal form. 

3.2 Singular value Decompositions 
Let A  be  a  rectangular  matrix  of  order  m-by-n  and  the  
rank of TAA is r . Therefore, TAA is a square symmetric 
matrix of order m-by-m.  Let us define some more quanti-
ties: let 1 2, ,... rV v v v be the set of orthonormal 1m ei-
genvectors with associated eigenvalues 1 2, ,... r for the 
symmetric matrix TAA . Therefore, ( )T

i i iAA v v . Also let, 
1 2, ,... rU u u u be the set of 1n vectors defined by 

1
i i

i

u Av where 
1

.
0i j

if i j
u u

otherwise
 

and i  is  related  with  the  eigenvalues  by  the  relation  

i i . This makes an unexpected property, 

i iAv . A scalar F is called a singular value of a 
rectangular matrix A , with a pair of singular vectors 
U and V if it satisfies the relation 

AV U                                           (5) 
This  can  be  written  as  in  matrix  form AV U  or 

H HA U V where stands for the n-by-n diagonal matrix 
with the r on the diagonal. The superscript H stands for 
Hermitian transpose. The mathematical intuition behind 
the  construction  of  the  matrix  is  that  we  craving  to  ex-
press all n scalar equations in just one equation. The ulti-
mate  form  of  SVD  is  thick  and  it  is  uncomplicated  to  
comprehend this process in graphically. The complete 
structures of singular value decomposition are described 
in Figure 1.   

Figure 1.(a) is the basic form of singular value decom-
position of a matrix, whereas, Figure 1.(b) and 1.(c) are 
the form of singular value decomposition of the matrix 
when m n  and m n  respectively. It yields that singular 
vectors  can  constantly  be  chosen  to  be  perpendicular  to  
each other, so the matrices U and V, whose columns are 
the normalized singular vectors, satisfy 

HU U I and HV V I . In other words, U and V are ortho-
gonal, if they are real and unitary, if they are complex. 
From equation (4), we can effortlessly derive 

HA U V                                         (6)  
with the diagonal matrix  and orthogonal or unitary 
matrices U and V . This is well-known as the singular 
value decomposition or SVD, of matrix A. 

(n×n)

(m×n) (m×n)(m×m)  

A U ?  
VH

Figure 1.(b) when m<n

(m×n) (m×m)  (m×n)

(n×n)
A U ?  

Positive 
number

n

m nm

Figure. 1(a) General form of SVD

Figure 1.(c) when m>n  
Fig.1. Structures of singular value decompositions. 
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4  RELATION BETWEEN EIGENVALUE AND SINGULAR 
VALUE DECOMPOSITIONS 

In our earlier section, we have established that HA U V . 
Now we can obtain the relation between eigenvalues and 
singular values by a trouble-free computation. 

 
HH H H H H H H H

HH H H H H H H H

A A U V U V V U U V V V

AA U V U V U V V U U U
      (7) 

The right hand side of these two equations expresses the 
eigenvalue  decompositions  of  the  left  hand  sides.  It  is  
evidently seen that, the squares of the non-zero singular 
values of A are equal to the non-zero eigenvalues of their 

HA A and HAA .  Furthermore,  the  columns  of  U are eigen-
vectors of HAA and the columns of V are eigenvectors 
of HA A . 

5  GEOMETRICAL INTERPRETATION OF EIGENVALUE 
AND SINGULAR VALUE 

Let us take a closer look carefully of equation (1), Ax x  
and let  us now ask whether there are any vectors which 
are not changed in direction by the deformation? The an-
swer may be found easily from the equation (1). We could 
make some quick concluding remarks of equation (1).  
The square matrix A can be thought of as a transforma-
tion matrix. The multiplication of the matrix A, on the left 
of a vector x, the answer is another vector that is trans-
formed from its original position. The transformed vector 
x does not change its direction, only changes its magni-
tude. 

Moreover,  it  is  effortlessly  seen  that,  even  if  we  scale  
the vector x, by a few amount before we multiply it, we at 
a standstill get the same multiple of it as a result. This is 
for the reason that, if we scale by some amount, all we are 
doing is, building it longer, not change its direction. Per-
haps the preeminent way to think of an eigenvector x of a 
matrix A is  that  it  represents  a  direction  which  remains  
invariant under multiplication by A. The corresponding 
eigenvalues of A are then the representation of A in the 
subspace spanned by the eigenvector x.  The  benefit  of  
having this representation is that multiplication by A is 
reduced  to  a  scalar  operation  along  the  eigenvector.  For  
instance, from the equation (4), 1k KA X X  we can state 
that the effect of a power of A along x can be determined 
by  taking  the  subsequent  power  of  A.  From the  point  of  
linear algebra, eigenvalues are pertinent of a square n-by-
n matrix A which is reflection of as a mapping of n dime 
sional  space  onto  itself.  Here,  we  attempt  to  find  a  basis  
for the space so that the matrix is converted into diagonal. 
Even if A is  real,  this  basis  might  be  complex.  In  fact,  if  
the eigenvectors are not linearly independent, such a ba-
sis does not subsist. 

On the contrary, SVD is relevant to a possibly rectangu-
lar m-by-n matrix A which  is  thought  of  as  mapping  n-
space onto m-space. Eigenvalue decomposition is applica-
ble  only  for  square  matrix;  in  contrast,  the  singular  value  

decomposition is possible for any rectangular matrix. In 
SVD, we strive to find one change of  basis  in the domain 
and a typically different change of basis in the range with 
the intention that the matrix becomes diagonal. Such bases 
always exist and real if A is real. Usually, the transforming 
matrices are orthogonal or unitary so as they preserve 
lengths and angles and do not magnify errors. The geome-
trical  outlook  of  the  SVD decompositions  can  be  summa-
rized as follows: for every linear map : n mF F of the 
field F one can find orthonormal bases of nF and mF such 
that  maps the i-th basis vector of nF to a non-negative 
multiple of the i-th basis vector of mF . With respect to these 
bases, the map  is therefore represented by a diagonal 
matrix with non-negative real diagonal entries. Finally, let 
we look a more visual flavor of singular values and singu-
lar value decompositions, at least when it works on a real 
vector space. If S is a sphere of radius one in n , after that 
the linear map : n mF F  maps this sphere onto an ellip-
soid in m  and usually, nonzero singular values are simply 
the lengths of the semi-axes of this ellipsoid. 

 
Fig. 2. Plot of eigenvalues. 
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6  GRAPHICAL PRESENTATION OF EIGENVALUE AND 
SINGULAR VALUE 

Here we demonstrate a graphical view of eigenvalues and 
singular values by Mat Lab with a numerical example. We 
use the transformation matrix 

31
4 4

11 2
A   

of order 2 and a unit vector 1 0x to facilitate of draw-
ing a unit circle.  

The resulting trajectory of Ax is plotted. In Figure-2, 
the first four subplots, Figure-2.(a), 2.(b), 2.(c) and 2.(d), 
are the intermediate steps of their traversed orbits. The 
goal  is  to  find  the  vectors  x so that Ax is  parallel  to  x. 
Generally,  for  such a direction x, the transformation ma-
trix A is simply a stretching or shrinking by a factor of . 
Each such x is an eigenvector and the length of Ax corres-
ponding  eigenvalue.  From  the  last  two  subplots  Figure-
2.(e), 2.(d) of Figure-2 , the first eigenvalue is positive, so 
Ax lies on top of the eigenvector x and the second eigen-
value is negative and Ax is parallel to x but points in the 
opposite direction. We have plotted the SVD orbit in Fig-
ure-3 with subplots 3.(a) and 3.(b) respectively. The vec-
tors x and y are perpendicular each other and the resulted 
Ax and Ay are plotted.  In SVD mode,  the axes of  the el-
lipse do play a key role. The resulting Ax and Ay traverse 
on the ellipse, but are not perpendicular to each other 
though x and y are perpendicular. When Ax and Ay are 
perpendicular,  they  form  the  axes  of  the  ellipse.  In  this  
case, x and y are right singular vectors as well as the col-
umns of U in  the  SVD,  the  vectors  Ax and Ay are mul-
tiples of  the columns of  V and the lengths of  the axes of  
ellipse are the singular values. 

7  CONCLUSIONS 
In this paper, we have discussed several aspects of eigen-
values and singular values from the point of view of their 
underlying relations. To catch a better understanding, a 
pictorial visualization and elucidation, are presented. Here, 

we  have  characterized  and  discussed  the  effect  of  the  tra-
verse orbit both of eigenvalues and singular values. It puts 
on display of a mapping from sphere onto an ellipsoid. 
When the vector x moves on a circle, Ax moves on an ellip-
soid and the length of Ax is the eigenvalue. In singular val-
ue mode, non-zero singular values are the simply the 
lengths of the semi axes of the ellipsoid. 
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Fig. 3. Plot of singular values. 


