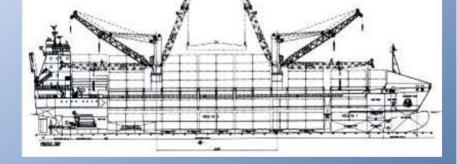
Genetic Algorithms approach for containership fleet management dependent on cargo and their deadlines


IAME 2010 - 07/06/2010

Paulo Triunfante Martins Portuguese Naval Academy (Escola Naval)

Ana Moura University of Aveiro

António Andrade-Campos University of Aveiro

Victor Lobo Portuguese Naval Academy (Escola Naval)

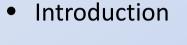


Table of contents

- Short Sea Shipping analysis
- State of the art of the Optimization problems
- Problem Definition
- Mathematical formulation
- Genetic Algorithm approach
- Examples and Results
- Conclusions
- Future development

Short Sea Shipping

ESCOLA-T-NAVAL

Advantages

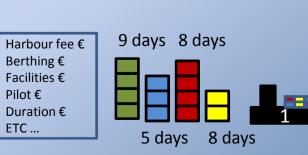
- Environmentally sound;
- Contribution to road safety;
- Low infrastructures cost (motorway is the sea);
- Reaches "peripheral" regions.

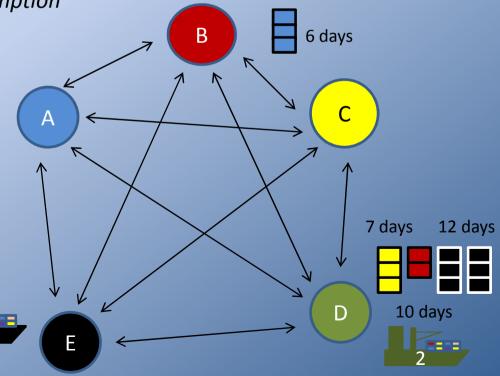
Disadvantages

- Customs bureaucracy;
- Port costs and efficiency;
- Dependency of environmental factors
- Travel duration;
- Inflexibility of routes.

State of the art - optimization

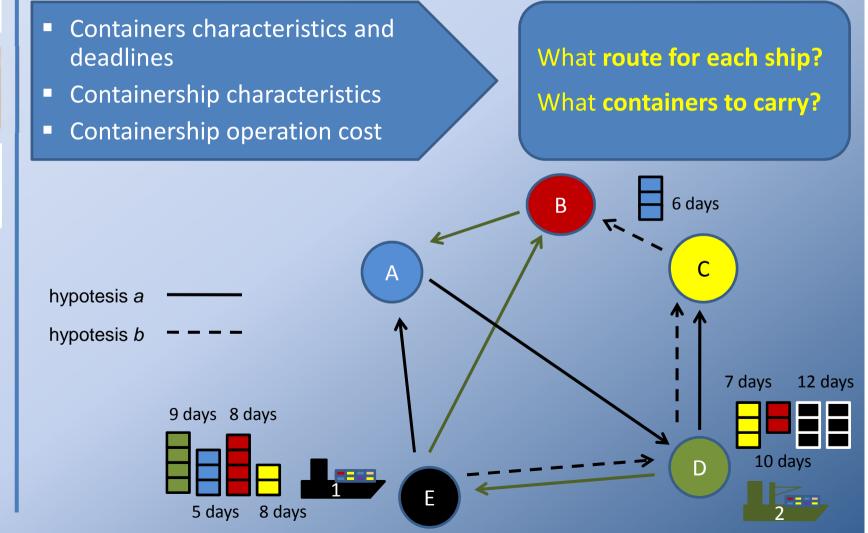
- ✓ Avriel et al.
- ✓ Wilson and Roach
- ✓ Several authors


- binary programming (1993)
- suspensory heuristics (2000)
- two phase method (1999)
- branch and bound application (2000)
- different implementation methods
- Ship routing and Scheduling
 - ✓ Christiansen and Nygreen (1998)
 - ✓ Agarwal and Ergun (2008)
- Vehicle routing problem with time windows supply chains
 - ✓ Gendrau et al. (2006)
 - ✓ Moura and Oliveira (2009)


Problem definition (1)

Scenario definition:

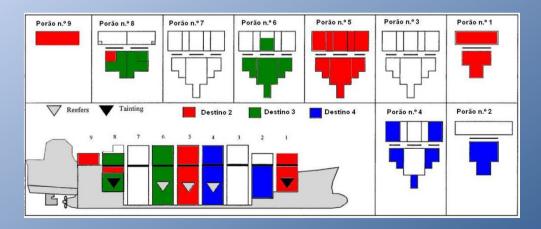
- Five ports A , B , C , D, E
- Distances between ports < 1000 nm 10 possible arcs</p>
- Fleet of Two containerships
 - i. dimensions ii. deadweight
 - *iii. speed iv. fuel consumption*
 - v. stability characteristics
- Several containers
 - i. originii. destinationiii. weightiv. deadline
- Costs at each port

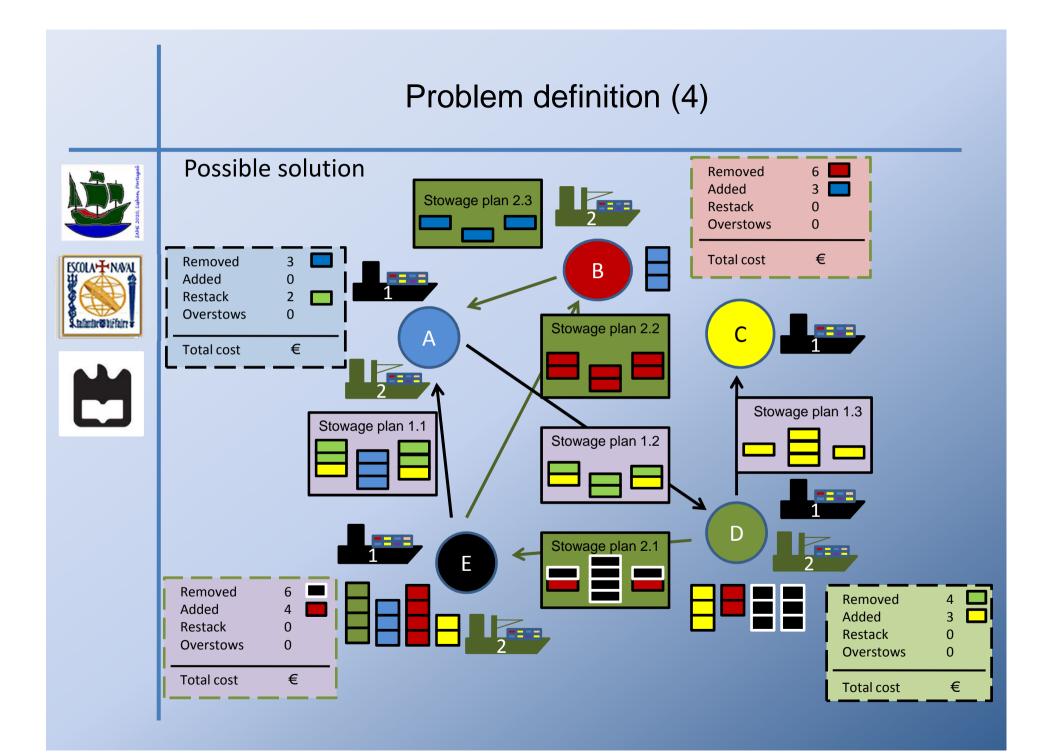


Problem definition (2)

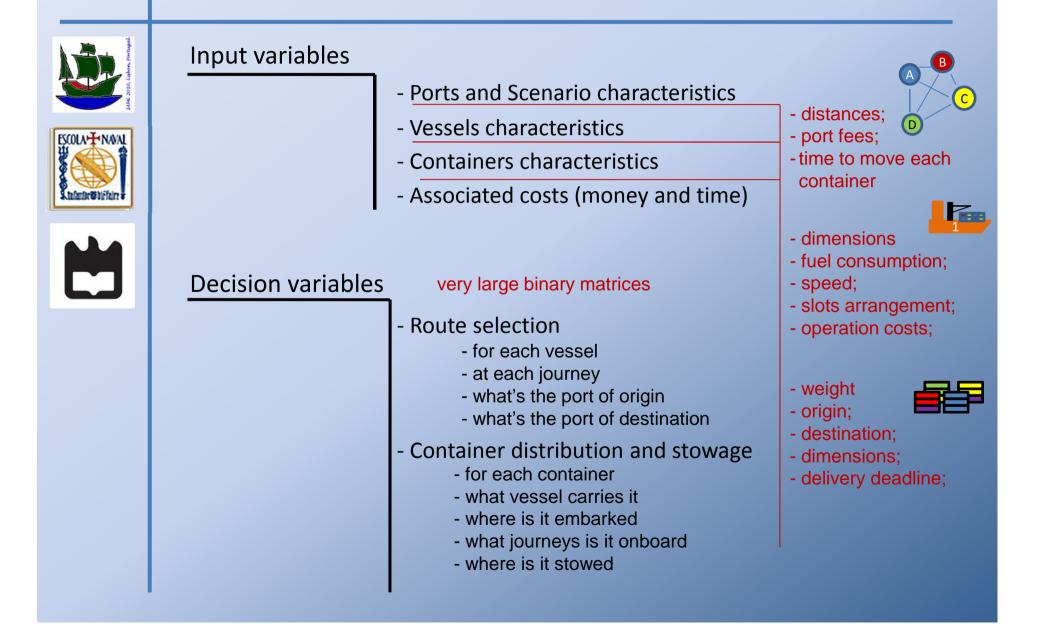
ESCOLATNAVAL

Stage 1


Problem definition (3)


Stage 2

- Containers characteristics and deadlines
- Containership characteristics
- Containership operation cost
- Containerships routes
- Containers carried in each journey


How to stow the containers

Altered from Wilson and Roach (1999)

Mathematical formulation (1)

Mathematical formulation (2)

Objective function :

 $W_2 \sum^p \sum^{\nu} \sum^{\phi_{\max}} \beta_{ik\phi} \mu_{ik\phi}$

i=1 k=1 $\phi=1$

- minimize cost;
- deliver all cargo within the time limits (accepted loss?)

 $W_1 \sum_{i=1}^{p} \sum_{j=1}^{p} \sum_{i=1}^{v} \sum_{j=1}^{\phi_{\text{max}}} (d_{ij}c_k x_{ijk\phi} + x_{ijk\phi}f_i)$ i=1 $j=1 \land j \neq i$ k=1 $\phi=1$

Operation costs outside harbour

Containers shift costs

 $W_{3} \sum_{k=1}^{p} \sum_{k=1}^{p} \sum_{k=1}^{v} \sum_{k=1}^{\phi_{\text{max}}} \sum_{k=1}^{c} (Corig_{ik\phi}r_{jk\alpha\phi} + Cdest_{jk\phi}r_{ik\alpha\phi})$ i=1 $i=1 \land i \neq i \ k=1 \ \phi=1 \ \alpha=1$

Containers load/ unload costs at the ports of origin and destination

Diapositivo 10

AM5	Para retirar
	Ana Moura; 25-06-2010

AM6 - Total cost minimization;

Objective function composed of three componentes Ana Moura; 25-06-2010

Mathematical formulation (3)

Constraints:

- route flow conservation at each journey the vessel's port of origin is the previous port of destination;
- time sequence the vessel service at each port does not begin before she arrives there;
- containers' deadline;
- vessel's capacity limit;

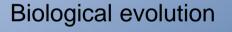
AM4

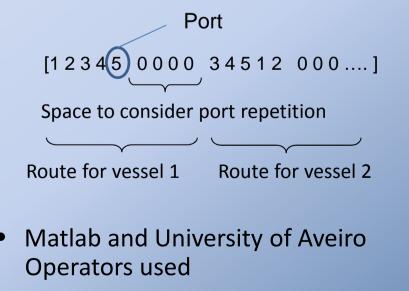
- containers' exclusivity only one ship can carry each container at the same time;
- cargo attribution the vessel that carries a container has to visit its port of destination (simplification);
- slots occupation if a slot is occupied than the ones bellow are also occupied (cargo hatches not considered).

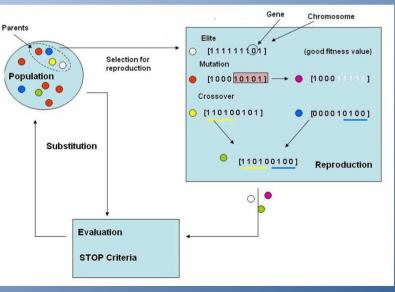
Diapositivo 11

AM2	at each port, the time service does not begins untill the vessel arrives Ana Moura; 25-06-2010
AM3	if a vessel arrives at a node then it has to leave from that node to another one. Ana Moura; 25-06-2010

AM4 Each container is transported by one and only one vessel between ports. Ana Moura; 25-06-2010


Genetic Algorithms Implementation




- Formulation of the problem into two different stages:
 - a. Port sequence;
 - b. Containers distribution by vessel;
 - c. Container stowage problem.

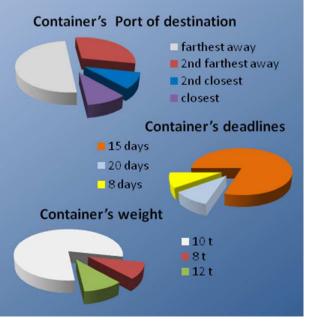
- 1st stage implemented
- 2nd stage not yet implemented

First stage chromosome construction:

Implementation Results

Example – scenario

ESCOLATINA


Scenario definition:

- Five ports A , B , C , D, E
- Fleet of Two containerships
- Several containers
- Operation costs and port fees

Ships	Length (m)	Beam (m)	Draught (m)	Speed (knots)	N.º TEU	Gross tonnage	Fuel (t/h)
AXE	95	15.6	6.15	12.5	348	3814	0.378
HEAVY	132.2	20	7.7	16.5	641	8445	0.945

Port tarifs (ship related costs)	Containers related costs	Voyage costs
 pilot charges; berthing; space; tugs and towing; 	 port tariff p/ TEU; container embarkation; container disembarkation; container shift; 	fuel;crew related;

Example – Problem 1

MatLab Implementation:

- Each square stands for 50 containers
- No shift nor stowage constraints considered
- Heavy departs from C and Axe departs from A
- After 1 circular route 100 not delivered
- After 9 ports following a circular route 300h, all delivered but 9 deadlines were surpassed
- After 9 ports following a GA route 271h, all delivered but 32 not in time, 5% cost reduction

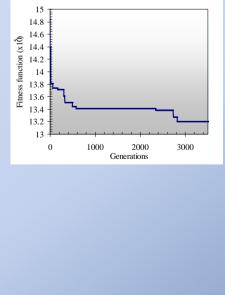
Containe	ers distrib		B — 100 E — 100	C – 200		
	Ship	Route	Travelled miles	Time interval	Deadlines surpassed	Total cost
	Axe	A – B – C – D – E		100 containar	not dolivered	
Circular	Heavy	C – D – E – A – B	100 containers not delivered			
routes	Axe	A – B – C – D – E – A – B – C – D	3372	300 h	0	460500
Heavy C		C – D – E – A – B – C – D – E – A	3164	232 h	9	469500
	Axe	A – B – E – D – B – A – B – E – D	3083	271 h	32	446060
GA Heavy		C – D – B – A – E – B – D – C	2693	209 h	52	440000

Example – Problem 2

MatLab Implementation:

- Each square stands for 100 containers
- No shift nor stowage constraints considered
- Heavy departs from C and Axe departs from A
- After 1 circular route no solution was found
- After 9 ports following a circular route 100 containers not delivered
- After 9 ports following a GA route 315.5h, all delivered but 68 not in time

		B – 200 E – 200	C - 400				
	Ship	Route	Travelled miles	Time interval	Deadlines surpassed	Total cost	
	Axe	A – B – C – D – E	Not every container was embarked				
Circular	Heavy	C – D – E – A – B					
Circular routes Axe		A - B - C - D - E - A - B - C - D	100 contain and stabilized				
Не	Heavy	C – D – E – A – B – C – D – E – A	100 containers not delivered				
Axe		A – B – D – E – B – A – B – D – E	0101 01010		624060		
GA H	Heavy	C – B – A – B – E – B – D – C	2653 236 h 68		00	634960	

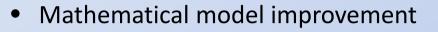

Example – Problem 3

University of Aveiro software:

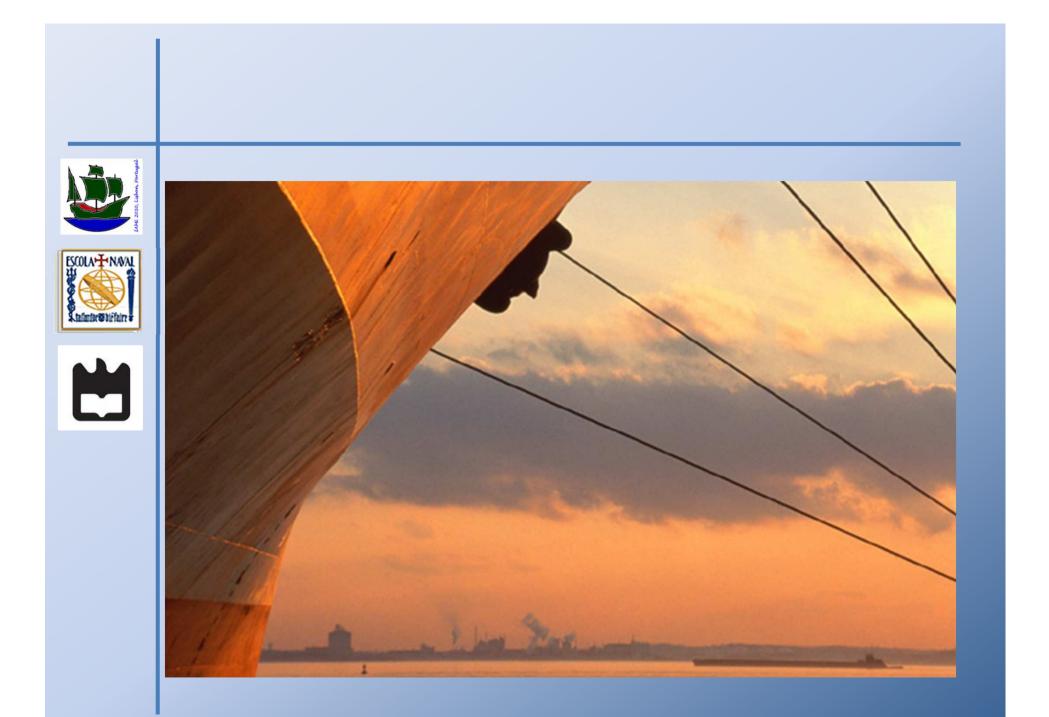
- No shift, deadlines, nor stowage constraints considered
- Heavy departs from C and Axe departs from A;
- Following a circular route it was found that 15 ports had to be visited by each ship
- Two solutions better were found, with cost reductions of 7% and 14%

Container	distribution:	from/to	А	В	C	D	
		А	0	100	500	300	10
		В	250	0	150	50	5
		С	500	100	0	100	
		D	250	50	50	0	15
		E	250	50	150	50	
	Ship	Route		Travelled	Time	Deadlines	Total cos
	Jub	Noute		miles	interval	surpassed	Total cost
	Axe	A - B - C - D - E - A - B - C - D -	E-A -	6536	637.3 h		566039.1
	Axe	B - C - D - E		0520			500059.1
Pre- Heavy defined Axe	Home	C - D - E - A - B - C - D - E - A -	B-C -	6844	620.3 h		958090.1
	пеачу	D - E - A		0644	020.5 11	-	936090.1
	Axe	A-B-E-D-A-B-E-C-	A-D	5437	561.7 h	5 L 4	551051.
	/inc	<i><i>N</i> B E B <i>N</i> B E C</i>	<i>N</i> D	5457	501.7 11	100	331031.
	Heavy	C-D-B-A-E-D-C-A-C		4367	527.6 h	-	871738.
	incury		1.15		SE/10 II		0.1.00
	Axe	A - C - A - B - E - D - C -	в	3831	435.2 h	-	481087.
GA			-				
	Heavy	C-A-B-C-D-C-E-B	- A	3657	451.8 h	-	833674.
	i i cu vy			5057	101.011	0.04	555674.

Conclusions



- Conceptual and mathematical models have been built for the containership fleet management considering cargo deadlines, which included:
 - ✓ Route selection;
 - ✓ Cargo distribution per ship;
 - ✓ Container stowage problem solution.
- A Genetic algorithm implementation for route selection and cargo distribution has been done;
- Using a simple scenario of 2 containerships and 5 ports with distances between them smaller than 1000 nm, it was seen that:
 - ✓ There are routes better than circular pattern ones;
 - It is possible to manage a fleet considering the cargo deadlines and reducing time duration when necessary;
 - ✓ It is possible to turn the maritime transport more flexible with cost reductions.


Future development

- Implementation of the CSP in the GA model
- Analysis of different methods efficiency to solve the model other than GA
- Analysis of real scenarios with real data (collaboration required)
- Analysis of the impact of vessel characteristics in the results
- Use the model to define owner requirements for new ship constructions based on known scenarios

