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A two-stage packing procedure  
for a Portuguese trading company  

Ana Moura, Andreas Bortfeldt 

Abstract: 

This case study deals with a two-stage packing problem that has to be solved in the 
daily distribution process of a Portuguese trading company. At the first stage boxes 
including goods are to be packed on pallets while at the second stage these pallets are 
loaded into one or more trucks. The boxes have to be transported to different customers 
and the actual goal is to guarantee a sufficient utilization of the truck loading spaces. A 
two-stage packing procedure is proposed to cover both problem stages. First boxes are 
loaded onto pallets using a well-known container loading algorithm. Then trucks are 
filled with loaded pallets by means of a new tree search algorithm. The applicability and 
performance of the two-stage approach was evaluated with a set of instances that are 
based on actual company data.  
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1 Introduction 

The Portuguese company Oliveira & Irmão (O&I) delivers sanitary articles and other goods to 
domestic and foreign customers. In the daily distribution process several decision problems 
regarding packing goods and routing trucks are to be solved. Up to now the daily packing and 
routing decisions are made by dispatchers throughout. The authors were asked by O&I to 
perform a case study and to examine whether an automated decision support tool could help 
improving the daily decisions in the distribution process. 

Among the decision problems in the daily distribution there is a two-stage packing problem: in a 
first step boxes with goods are to be packed onto pallets while in the second step these pallets 
are to be loaded into trucks. Solving this problem should ensure a sufficient utilization of the 
truck loading spaces used for transportation. At the same time several side-constraints have to 
be observed, e.g., the so-called LIFO (last in, first out) constraint. It stipulates that no reloading 
of boxes must take place at the different customer locations of a given truck route. Little 
attention has been paid so far to this two-stage packing problem in the literature and so the 
paper at hand deals with the development of an effective solution procedure for it.  

The remainder of the paper is structured as follows: in Section 2 the company and its 
distribution process are introduced. In Section 3 the two-stage packing problem mentioned 
above is formulated in detail. In Section 4 a general packing approach is devised for this task 
and in Sections 5 and 6 solution procedures for the two sub-problems of the two-stage packing 
problem are specified. Section 7 reports on computational results. Finally, in Section 8 some 
conclusions are drawn. 

2 The company and its distribution process 

Founded in 1954, the incorporated company Oliveira & Irmão is a long-established Portuguese 
company that is located in Aveiro, a city in the north of Portugal. Its core business is 
manufacturing plastic flushing cisterns and plumbing mechanisms, and marketing sanitary and 
central heating equipment. The company has experienced rapid growth in recent years and now 
half of the turnover comes from exports. O&I has turned itself from a small business into a 
medium-sized European company, with a strong customer base outside Portugal. While still 
most of the customers are located in Portugal, there are customers in Europe, Middle East and 
Asia as well. 

2.1 Basic facts concerning distribution 

The daily distribution is based on a set of customer orders for a given day. The company 
provides their products by means of a product catalog. A customer order comprises a list of 
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order positions and each order position consists of a product (selected from the catalog) and the 
demanded quantity (number of items). Moreover, an order has a delivery date and an 
appropriate time window. Typically the customers are served more or less periodically. Most of 
the customers get their goods delivered by trucks while some customers are served by means of 
standard containers. All goods are shipped in rectangular boxes and these boxes are the subject 
of packing. Each box may contain one or more items of a single product type. 

Within the whole distribution process the company strives for two main goals. On the one hand 
the customers are to be served punctually, i.e. the orders placed for a given day should reach 
their purchasers at that day as far as possible. On the other hand the distribution should be 
carried out efficiently. This requires above all that the capacity of transportation means (trucks, 
containers) is efficiently used, i.e. unused loading space should be minimized.  

There are three groups of daily orders that are dealt with strictly separately: (1) the orders of 
foreign customers who get their goods by trucks, (2) the orders of foreign customers who want 
to be served by containers and (3) the orders placed by domestic customers. These order groups 
are handled in a very different way and so they constitute three partial processes of the total 
daily distribution. The two-stage packing problem that is dealt with in this paper occurs in the 
distribution of goods for foreign customers by means of trucks. Hence, in the following the 
processing of orders of the first group is characterized more detailed and roughly compared to 
the processing of the orders of the other two groups.  

2.2 Serving foreign customers by means of trucks  

Only few foreign customers are to be served by trucks each day. These customers belong to 
groups of up to five customers whose members are far away from the members of all other 
groups. Hence defining suitable routes for a given day is a simple matter that can be well done 
by a (human) dispatcher. Moreover, routing and packing can be planned in two separate and 
consecutive steps without any negative impact on the quality of decision making. First some 
routes have to be stipulated and afterwards the stowage planning is performed.  

Only one type of trucks (without trailer) is available and thus all trucks have the same 
rectangular loading space. Trucks are not loaded with boxes directly. Instead first identical 
pallets are packed with boxes and then these pallets are loaded into trucks (two-stage packing). 
Since the pallets are packed with boxes by means of robots, rather simple packing patterns are 
to be chosen. In particular only congruent boxes are to be packed on one pallet. A stacking of 
pallets within trucks is allowed. In general a truck contains pallets of several customers and the 
LIFO constraint (see Section 1) has to be satisfied.  

All in all, in processing orders of the first group no automated decision support is needed for the 
routing of trucks while an effective procedure for solving the two-stage packing task could be a 
helpful tool for the O&I dispatchers.  

In the subsequent comparison of the distribution processes for the three order groups only the 
main differences are mentioned. However it should become clear enough that very different 
tools are needed to enhance the decision making within these partial processes.  

If foreign customers are served by containers (order group 2) each container is loaded by boxes 
of a single customer. Containers are packed with boxes directly while pallets are not used (one-
stage packing). Figure 1 illustrates this difference in the distribution of orders of group 1 and 2, 
respectively. 
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Figure 1 – 2-stage packing (order group 1) and 1-stage packing (order group 2) 

O&I has to serve some dozens domestic customers each day by trucks. Hence in the distribution 
of orders of group 3 the routing of trucks is a non-trivial task and a computer-based solution 
procedure could save considerable costs. The operation efficiency of the distribution process for 
this order group depends on the quality of the routing as well as the packing decisions. 
Moreover, an artificial separation of routing and packing will have a negative influence on the 
operation efficiency. So the planning of routes and the stowage planning on the other hand 
should be done in a combined one-level solution process – differently to order group 1. 

2.3 Proceeding of dispatchers and conflicting goals  

From now on only the distribution process for foreign customers who get their goods by trucks 
(order group 1) is considered. The flowchart in Figure 2 shows the daily planning for these 
orders. In particular it is considered in the flowchart that a trade-off can occur between the two 
main goals of the distribution mentioned above. If all orders (in group 1) of a given day are 
planned without exception it may happen that some of the used truck loading spaces are not 
sufficiently utilized. It is assumed now that the daily planning is generally executed by a 
dispatcher while the stowage planning is supported by a computer-based solution procedure.  

The flowchart is commented as follows:  

• First the order stock is initialized by the set of all daily orders (of group 1) in order to satisfy 
the service goal of a punctual supply of all customers without exception. The dispatcher then 
defines a routing plan consisting of one or more routes of customers so that each of the orders 
is involved by exactly one route. The routing can result in, e.g., two routes where one route 
serves three Dutch customers while the second one visits two Italian customers.  

• For each route of the current routing plan the corresponding two-stage packing problem is 
then solved by means of an automated packing procedure. The resulting total solution – 
comprising the routing plan and the packing plans for all routes – is stored (together with all 
input data).  

• The dispatcher decides whether the total solution just generated can be accepted in terms of 
efficiency. A solution may be inefficient for two reasons: (1) The volume utilization of one or 
more truck loading spaces is too low. (2) A better clustering and sequencing of the customers 
could lead to a considerably smaller total travel distance. For example, suppose that two 
trucks are needed to serve two Italian customers located in Milan and Rome and each truck is 
loaded by the goods of only one of them. Let originally one route be given, namely Aveiro–
Milan–Rome–Aveiro. Obviously the segmentation of this route, resulting in the routes 
Aveiro–Milan–Aveiro and Aveiro–Rome–Aveiro, yields a considerably saving of total travel 
distance. 
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Figure 2 – Daily planning of the distribution process concerning order group 1 

• If the total solution just generated is too inefficient then the dispatcher selects one of the 
stored total solutions including the corresponding input data. Now either the routes are 
changed while the order stock remains unchanged or the order stock is modified and the 
routes are also updated. Of course, the orders of a given day should only be changed after 
some negotiations with the affected customers. Different modifications of an order can be 
agreed: an order can be postponed to another day or the set of ordered goods may be extended 
etc. The modification of orders of a current day generally aims at a satisfying compromise 
between the two main goals of the distribution – punctual delivery of goods and efficiency of 
transportation.  

• After the input data and routes of a solution were changed a new total solution is computed, 
i.e. new packing plans are provided that are based on the modified order stock (if so) and the 
modified routing plan. The planning is finished after the dispatcher has found the first 
efficient solution.  

3 The two-stage packing problem 

The two-stage packing problem occurring in the distribution of goods for foreign customers 
who are served by trucks is now defined with all details as follows.  

Let be given the following entities:  

• A single truck type with a rectangular loading space and a single pallet type; the numbers of 
available trucks and pallets are not limited.  

• A route (i.e. sequence) of customers to be served and one order per customer. Each order 
comprises one or more box types and a corresponding number of demanded boxes per type.  

It is required to pack all boxes on pallets and then to load the pallets in a minimal number of 
trucks. In doing so all side-constraints that are specified for both packing stages have to be 
observed.  

When boxes are packed onto pallets the following constraints are to be met:   
 

Initialize order stock as  
set of all orders of group 1 

Define routes including  
all customer orders 

Provide one packing plan per 
route and store total solution 
set of all orders of group 1 

Select a stored solution and 
modify routes or  

order stock and routes 

 
Output efficient total solution 

Efficient 
solution 
found? 

y n 
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(C1) Each pallet can be packed only with boxes of a single customer. Furthermore each pallet 
can be packed only with boxes of the same type, i.e. congruent boxes.  

(C2) Each box must lie completely on its pallet, i.e. it is not allowed that a box does protrude 
over the lateral borders of its pallet.  

(C3) The loading height of a pallet is given by the distance between the highest top area of a 
box and the bottom of the pallet (the height of an empty pallet is viewed as part of the 
loading height). The loading height must not exceed a given maximum loading height 
which is stipulated individually per customer.  

(C4) The bottom area of each box has to be fully supported (i.e. to 100%) from below by the 
bottom area of the pallet or by the top areas of other boxes.  

(C5) For each box a single dimension is allowed to act as the height of the box.  

The rectangular loading space of a truck is organized in two strips, called "left strip" and "right 
strip" (see Figure 3), with equal dimensions. Each strip consists of nStPl stack places where 
stack place 1 lies at the driver cabin while stack place nStPl of a strip lies at the rear (near to the 
door) of the loading space. At each stack place several pallets can be stacked on top of each 
other. The dimensions of the truck loading space and of the pallets are adjusted so that the larger 
horizontal dimension of a pallet (pallet length) is a bit smaller than the width of a strip. Hence a 
pallet is always to set on a stack place in such a way that the pallet length lies parallel to the 
width of the appropriate strip. It results that the position of a pallet can be described 
unambiguously by four indices: index of truck (1,2,…), index of strip (left or right), index of 
stack place (1,…, nStPl) and index of position in stack (1,2,…) where value 1 means that the 
pallet lies on the bottom of a stack.  

 
Figure 3 – Organization of a truck loading space  

When pallets are loaded into one or more trucks the following constraints are to be satisfied:  
(C6)The height of a stack of one or more pallets is defined as the sum of the loading heights of 

all pallets and it must not exceed the height of the truck loading space (truck height).  
(C7)The total top area of a loaded pallet is defined as the sum of the top areas of all boxes 

whose top area does reach the loading height of the pallet (see (C3)). The support rate 
supTopArea of a loaded pallet A is given as the quotient (total top area of pallet A) / 
(bottom area of pallet type) (in %). A further pallet may only be stacked upon pallet A if 
supTopArea(A) is not smaller than a given support rate minSupTopArea (in %). Otherwise 
pallet A is called a cap pallet and has to be packed on the top of a stack.  

(C8)The boxes and pallets have to be stowed in such a way that no reloading of boxes is 
necessary at the different customer locations of a given truck route (LIFO constraint). This 
constraint shows two aspects. Let customers A and B be served in the same route and let 
customer A be visited first. Then a pallet with boxes for customer B must not lie upon a 
pallet for customer A in the same stack of a truck. Moreover, if a pallet for customer A is 
packed then a pallet for customer B must not be packed on a stacking place with higher 



  8

index in any strip of the same truck (cf. Figure 3).  

All given boxes of all orders have to be packed, i.e. the output of the packing process is fixed in 
a sense. On the other hand the number of trucks, acting as input of the process, is to be 
minimized. Hence the two-stage packing problem can be viewed as a three-dimensional Bin 
Packing problem (3D-BPP). Note that if two solutions differ with regard to the needed number 
of stacks they need not to differ regarding the needed number of trucks. Therefore, a second 
optimization criterion is introduced for the problem of loading pallets into trucks: if two 
solutions need the same number of trucks the solution with the lower maximum stack height is 
considered the better one. Obviously, this criterion will strengthen the load stability of generated 
packing plans. 

4 A general approach to the two-stage packing problem 

A straightforward solution approach to the two-stage packing problem was drafted:  

• For both packing stages a separate solution procedure is devised and each of the procedures is 
called once only per problem instance. By means of the first procedure, called LBOP (as 
loading boxes onto pallets) all boxes are packed on pallets and by means of the second 
procedure, called LPIT (as loading pallets into trucks) all pallets are loaded in a minimum 
number of trucks. The procedures are called consecutively and there is no feedback, i.e. after 
the boxes were packed the pallets are no longer repacked.  

• The procedure LBOP is based on a container loading procedure that serves to pack a single 
container with rectangular boxes. This allows for reverting to existing packing procedures (see 
below). The pallets are loaded separately and the container loading procedure is applied once 
per pallet.  

• After the pallets were loaded a one-dimensional packing problem remains to be solved. Each 
truck offers the same number of stack places (cf. Section 3) and the maximal height of each 
stack is the same. Each stack can be filled by one or more pallets with known (and generally 
different) pallet heights. In order to minimize the number of needed trucks the pallets are to be 
packed in such a way that the number of needed stacks becomes as small as possible. Hence 
the packing problem of the second stage turns out to be a (variant of) one-dimensional Bin 
Packing Problem (1D-BPP). Since the 1D-BPP has been successfully tackled in the literature 
by means of problem specific tree search procedures (see below) the procedure LPIT for 
loading pallets into trucks is devised as a tree search procedure too.  

In the sequel the procedures LBOP and LPIT are specified in detail.  

5 Loading boxes onto pallets 

To specify the procedure LBOP for loading boxes onto pallets first a container loading method 
is selected. The Container Loading Problem (CLP) requires packing a subset of a given set of 
boxes in a single rectangular container with given dimensions so that the volume utilization is as 
large as possible. The 3D-CLP is NP-hard in the strict sense and is regarded in practice as very 
difficult (cf. Pisinger 2002). Most of the solution methods that were proposed in recent years are 
heuristics and meta-heuristics. In Table 1 multiple successful CLP solution methods are listed.    
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       Table 1 – Recent solution methods for the three‐dimensional Container Loading Problem 

Authors, source Type of method
Bortfeldt and Gehring (2001) Genetic algorithm 
Pisinger (2002) Tree Search 
Eley (2002) Tree Search 
Bischoff (2004) Local Search 
Mack et al. (2004) Hybrid (Tabu Search, Simulated Annealing) 
Moura and Oliveira (2005) GRASP 
Parreño et al. (2007) GRASP 
Fanslau and Bortfeldt (2010) Tree Search 

The CLP solution methods quoted in Table 1 behave differently in at least three regards. First 
they achieve different levels of container utilization, secondly they have different abilities 
regarding additional side-constraints and thirdly the methods differ in terms of  computational 
cost. The method proposed by Moura and Oliveira (2005) was chosen as the basic module for 
the procedure LBOP. On the one hand this method achieves a good volume utilization for 
homogeneous box sets with a single type of boxes (cf. constraint (C1) above). On the other hand 
the method from Moura and Oliveira proved to be particularly sensitive in terms of load 
stability and this is a further important issue in the given situation. Last but not least solutions 
are provided very rapidly and this could encourage the O&I dispatchers to apply the 
corresponding decision support tool directly when negotiating with customers to perform what-
if-computations etc.  

As stated in Section 3 the boxes of different customers and/or different box types have to be 
packed on different pallets (cf. constraint (C1)). So it is sufficient to specify how the boxes of a 
single customer and of a single box type are loaded on one or more pallets (see Figure 4). The 
CLP method from Moura and Oliveira is now denoted as module CLGR1. For each customer 
and each box type the belonging boxes are loaded separately following the shown flowchart. 

Since module CLGR1 is a container loading procedure the constraints (C2) and (C3) (see 
Section 3) are automatically satisfied if the maximum loading height of a pallet is taken as the 
container height. Moreover, the module CLGR1 is able to observe the support constraint (C4) as 
well as the orientation constraint (C5) without any modification.   

In the first packing stage there are two critical success factors. On the one hand pallets should be 
loaded in such a way that the mean volume utilization of all packed pallets is as large as 
possible.  The volume utilization of a single loaded pallet is computed as the quotient (total 
volume of loaded boxes) / (volume of pallet space) (in %) where the pallet space volume is 
given as product (pallet bottom area) × (loading height – height of empty pallet) (see Section 3, 
(C3)). Furthermore the number of generated cap pallets (see Section 3, (C7)) should be as small 
as possible since a higher number of cap pallets will lead to a higher number of used stacks. 
Later it will be seen whether procedure LBOP does consider these critical success factors. 
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Figure 4 – Loading the boxes of a single customer and a single box type onto pallets 

6 Loading pallets into trucks  

All pallets that were packed with boxes in the first packing stage have to be loaded then into the 
minimum number of trucks during the second packing stage. Furthermore the constraints (C6) 
to (C8) and the second optimization criterion – minimization of the maximum stack height – 
must also be taken into account. In Table 2 the input and output data of the second packing 
stage are listed. Each packed pallet is given by its loading height, its total top area and the 
corresponding customer. Each stacked pallet is defined by a pallet index and by four indices 
regarding truck, strip, stack place and position in stack (see Section 3).   

       Table 2 – Input and output data of second packing stage 
Input data Output data
no. (nC) and sequence of customers  no. of loaded trucks (nTrucks) 
truck height (hT),  maximum stack height (maxStackHeight) 
pallet bottom area set of stacked pallets 
no. of stack places per strip (nStPl)  
requ. support rate per pallet (minSupTopArea)  
no. (nP) and set of packed pallets  

To our knowledge the considered problem of loading pallets into trucks has not been dealt with 
in the literature so far. However, it  can be viewed as a special variant of 1D-BPP  where the 
stack places act as bins with truck height as bin size and the heights of the packed pallets act as 
small pieces. Therefore, a tree search procedure was devised that adopts a well-known 
branching schema for the 1D-BPP. It is described now with its essential characteristics.  

6.1 Schema of tree search  

Solutions are constructed stepwise and in each step a solution is extended by stacking one 
further pallet. A depth first search is applied, i.e. the next solution to be extended is one of the 
existing partial solutions with the largest number of pallets already stacked. A pseudo-code 
representation of the tree search is shown in Figure 5. 

 

Initialize box set Bfree as set of all boxes 
of a given customer and a given box type  

Load next pallet with boxes from 
set Bfree using module CLGR1 

Output complete packing plan 
including all loaded pallets Bfree = ∅ ?

yn 

Store packing plan for pallet and 
update set Bfree 
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extendSolution(nStackedPallets, solution) 
 if nStackedPallets >= nP then  // solution complete 
 update bestSolution where necessary; 
 else // solution not complete 
 generate nStVar stacking variants for pallet (nStackedPallets+1); 
 oldSolution := solution; 
 for i := 1 to nStVar do 
 solution := oldSolution ⊕ ith stacking variant; 
 extendSolution(nStackedPallets+1, solution); 
 endfor; 
 endif; 
end. 

Figure 5 – Schema of the tree search 

Figure 5 needs some comments:  

• The recursive function extendSolution() takes a partial solution and the corresponding number 
of stacked pallets as arguments. If the solution is already complete the best solution so far is 
updated where necessary. Otherwise the current partial solution is extended by stacking 
another pallet in alternative variants and the function is called again.  

• To reduce the redundancy of the search the order in which the pallets are stacked is fixed. 
Before function extendSolution() is called for the first time (with zero values as arguments) 
the packed pallets are sorted according to the visiting sequence of the customers.  
Pallets that belong to customers to be visited last are stacked first (near the driver cabin) and 
vice versa. Pallets of the same customer are sorted according to the following criteria. A cap 
pallet has to be stacked before a non-cap pallet. If both of two pallets are either cap pallets or 
non-cap pallets then the pallet with greater loading height has to be stacked first.    

• For the next pallet to be stacked (with index nStackedPallets+1) all feasible variants are 
determined to place this pallet on top of an existing stack (with one or more pallets). 
Additionally a new stack is opened in front of the existing ones and the current pallet is placed 
there. This proceeding corresponds to the branching schema applied to the 1D-BPP by 
Martello and Toth (1989). However, the number of tested stacking variants nStVar is limited 
by a parameter maxSucc. All feasible stacking variants are sorted according to the residual 
height left in the filled stack in ascending order. Then only the first maxSucc stacking variants 
with the lowest residual heights (in the stacks just filled) are considered. In this way stacking 
variants with highly utilized stacks are favored.  

To limit the total effort of the procedure a time limit is used. Furthermore some bounds of the 
objective function serve to shorten the search.  

6.2 Bounding the search  

Two lower bounds are derived for the number of needed trucks. The first one (called static 
bound) refers to an “empty” solution, i.e. to a problem instance without any additional 
information. The second one (called dynamic bound) is based on a partial solution with one or 
more stacked pallets. Similarly, a static and a dynamic lower bound is derived for the second 
objective criterion, namely the maximum stack height.  
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a) Static bound of number of trucks 

The following notation is agreed (see also Table 2). Let the customers be indexed from 1 to nC 
so that a customer c is visited as the cth customer. Let hp(c) denote the total loading height of 
all pallets of customer c and let ncp(c) be the number of cap pallets of customer c (c = 1,…,nC). 
Finally, let be nst1(c) := ∑ ncp ii>c  and nst2(c) := ∑ hp(i)/hTi≤c , c = 0,1,...,nC. 

Proposition 1 
(i) LBnStacks(c) :=  nst1(c) + nst2(c), c = 0,1,...,nC, 

is a lower bound of the number of filled stacks. 
(ii) LBnStacks := max{ LBnStacks(c), c = 0,1,...,nC }  

is a lower bound of the number of filled stacks. 
(iii) LBnTrucks  :=   LBnStacks/(2*nStPl)   

is a lower bound of the number of needed trucks. 
Proof: (i) Since two cap pallets cannot be packed into one stack at least nst1(c) pallets are 
needed for the customers i = c+1,...,nC. Packing a pallet of a customer j ≤ c and a cap pallet of a 
customer i > c into one stack would violate one of the constraints (C7) or (C8). Hence at least 
nst2(c) additional stacks are necessary to load all pallets. The special cases c = 0 and c = nC are 
trivial. (ii) and (iii) are obvious.  

b) Static bound of maximum stack height 

A lower bound of the maximum stack height is formulated for a given number of trucks in a 
complete solution. Let maxhp denote the maximum loading height of a pallet.  

Proposition 2 
LBmaxStHeight := max{ maxhp,  ∑ hp cnC

c=1 /(2*nTrucks*nStPl)  }   
is a lower bound of the maximum stack height for all solutions with nTrucks trucks.  

Proof: Obvious.  

c) Dynamic bound of number of trucks 

Now let a partial solution with nStacks used stacks and nPallets (nPallets < nP) loaded pallets 
be given. Hence the pallets with indices nPallets+1,...,nP are free, i.e. still to be packed. The 
total pallet height of all free pallets is denoted as hpres. An existing (partially filled) stack is 
called usable if it can still accommodate at least one free pallet. Let hstres be the sum of the 
residual heights of all usable stacks.  

Proposition 3 
(i) LBnAddStacks := hpres-hstres /hT)  is a lower bound of the number of additional  

stacks needed to load the residual pallets. 
(ii) LBnTrucksD := (nStacks+ LBnAddStacks)/(2*nStPl)  is a lower bound of the  

number of trucks needed to load all pallets.  
Proof: (i) Note that the height difference hpres – hstres represents a lower bound of the total 
pallet height that can’t be accommodated in existing stacks. (ii) Obvious.  

d) Dynamic bound of maximum stack height 

Again a partial solution with nStacks used stacks and nPallets (nPallets < nP) loaded pallets is 
assumed. A lower bound of the maximum stack height is formulated for all complete solutions 
with nTrucks trucks. Let maxhst denote the maximum height of all used stacks. nStacksRes 
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stands for the difference nTrucks*nStPl – nStacks, i.e. for the maximal number of additional 
stacks.     

Proposition 4 

LBmaxStHeightD := max{ maxhst, maxhp, (hpres – hstres)/nStacksRes  }   
is a lower bound of the maximum stack height for all solutions with nTrucks trucks.  

Proof: Cf. proof of prop. 3.  

The static lower bounds are used each time a new complete solution was generated. In this case 
the search is aborted if the complete solution equals both of the lower bounds, i.e. if a globally 
optimal solution was reached. The dynamic lower bounds are used each time before the current 
solution is extended. The extension is saved if the best solution so far can’t be improved any 
longer.  

7 Computational test 

The solution procedure for the considered two-stage packing problem, consisting of the 
procedures LBOP and LPIT, was implemented in C and tested by means of an Intel PC (Core 2 
Duo 1.8 GHz). In this section first two sets of problem instances are introduced before the 
corresponding computational results are reported and commented.  

7.1 Two sets of problem instances 

The first set includes 12 instances of the (complete) two-stage packing problem and these 
instances are based on real data taken from the distribution process of company O&I. In Table 3 
the main characteristics of the 12 instances are listed.  

       Table 3 – Characteristics of the 12 instances of set 1 (all dimensions in cm) 
Characteristic  Data
Truck loading space length: 800, width: 250, height: 260 
Pallet type (empty pallet) length: 120, width: 80, height: 15  
Stack places per strip nStPl 10 
Requested pallet support minSupTopArea 70%   
No. of routes per instance  1 (constantly) 
No. of customers per instance 3 – 5  
No. of demanded box types per customer 1 – 4  
Mean no. of boxes per instance 17,000 

The maximum loading height of a pallet is stipulated individually per customer. This is 
illustrated in Figure 6 that shows some pallets which were loaded using different limits of the 
loading height.  

The second set of test instances comprises 126 instances of the packing problem that occurs at 
the second packing stage. Table 4 shows the main characteristics of these instances that serve to 
subject the procedure LPIT a more thorough test.  
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Figure 6 – Examples of loaded pallets 

The instances of set 2 are generally considerably larger regarding the number of pallets than the 
corresponding LPIT-instances that result from the 12 instances of set 1 (see Table 5). 

       Table 4 – Characteristics of the 126 instances of set 2 (all dimensions in cm) 
Characteristic  Data
Truck height (height of loading space) 230 
Stack places per strip nStPl 10 
Requested pallet support minSupTopArea 80%   
No. of customers per instance 1 – 3  
No. of pallets per instance 51 – 105  
Pallet heights (as rate of truck height) 16% – 33%  
Percentage of cap pallets (see Section 3) 2% – 30%  

7.2 Computational results 

The time limit for the procedure LBOP was set to 1 minute and one iteration is performed for 
each problem instance. Ten different values for α parameter are considered, ranging from 0 to 1 
in a step of 0.1 and for each α we run the GRASP algorithm 20 times. The time limit for 
procedure LPIT was set to 3 seconds while the number of stacking variants was bounded by 
maxSucc = 5.  

In Table 5 the main results for the 12 instances of set 1 are shown that were achieved in the first 
packing stage by procedure LBOP. The following data are offered per instance: number of 
customers, total number of loaded pallets, mean volume utilization over all loaded pallets (in 
%), number and rate (in %) of generated cap pallets.  

Considering the critical success factors, namely the mean volume utilization and the number (or 
rate) of cap pallets, it seems that procedure LBOP yields sufficient results. In particular the 
numbers of cap pallets will not contribute to increasing stack numbers.  

Table 6 shows the main results for the 12 instances of set 1 that were achieved in the second 
packing stage by procedure LPIT. For each instance the following data are indicated: number of 
customers, number of pallets to be packed, number of stacks used, number of loaded trucks  
(nTrucks), truck span, maximum stack height (maxStackHeight, in cm) and height gap. The 
truck span is based on the (static) lower bound of the truck number LBnTrucks (see Section 6) 
and is given as difference (nTrucks – LbnTrucks). The height gap is based on the (static) lower 
bound of the maximum stack height LBmaxStHeight (see Section 6) and is computed as ratio 
(maxStackHeight  – LBmaxStHeight)/LBmaxStHeight (in %).  

The core result is that in 6 of 12 cases the optimal truck number was reached. The height gaps 
are moderate: they do never exceed 32% and amount to 17.6% on average. It should be stressed 
that the results are compared only with lower bounds (that are more or less weak) while the 
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optimal truck number is unknown for 6 of 12 instances and the optimal stack height is even 
unknown in all cases. 
Table 5 – Overall results for the 12 instances of set 1, first packing stage 

Instance No. of 
customers 

No. of loaded 
pallets

Mean volume 
utilization (%)

No. of cap 
pallets

Rate of cap 
pallets (%) 

1 5 40 94 0 0.0 
2 4 50 90 5 10.0 
3 5 60 91 5 8.3 
4 4 40 93 0 0.0 
5 3 49 89 10 20.4 
6 4 60 86 8 13.3 
7 5 48 89 4 8.3 
8 3 40 90 0 0.0 
9 4 47 94 0 0.0 

10 5 50 91 6 12.0 
11 5 52 93 10 19.2 
12 5 51 91 6 11.8 

Avg. - 48.9 91 4.5 8.6 

A further result of the test of set 1 is that the computational effort per instance is rather low. The 
mean total computing time over the 12 instances amounts to ca. 65 seconds. The main part of 
the computing time falls upon the loading of pallets in the first stage while the computing time 
for the second stage never exceeds 5 seconds.  

Table 6 – Overall results for the 12 instances of set 1, second packing stage 
Instance No. of 

customers
No. of  
pallets 

No. of 
stacks

No. of 
trucks

Truck 
span

Max. stack 
height (cm)  

Height 
gap (%)

1 5 40 20 1 0 256 0.4 
2 4 50 37 2 1 170 31.8 
3 5 60 20 1 0 253 2.9 
4 4 40 20 1 0 256 0.4 
5 3 49 39 2 1 164 27.1 
6 4 60 20 1 0 249 1.6 
7 5 48 39 2 1 165 27.9 
8 3 40 20 1 0 256 0.4 
9 4 47 37 2 1 166 28.7 

10 5 50 38 2 1 168 30.2 
11 5 52 39 2 0 170 31.8 
12 5 51 40 2 1 165 27.9 

Avg. - 48.9 30.7 1.5 0.5 - 17.6

Regarding the second set of 126 instances, only overall results are reported here. Based on the 
(static) lower bound of the truck number LBnTrucks  (see Section 6)  it can be stated that for  
115 of 126 instances the optimal truck number was reached. For the residual instances the lower 
bound was failed by one truck. The values of the height gap (as defined above) turn out to be 
moderate. Now the height gap never exceeds 31% and it amounts to 9.3% on average. The 
computational effort amounts to a few seconds per instance. All in all, the test by means of the 
representative second instance set proves that LPIT is an effective and efficient solution 
procedure for loading pallets into trucks with predefined stack places. 
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In Figure 7 pallet charts are presented for an arbitrarily chosen instance of the second packing 
stage. Each chart visualizes the loading of pallets within one strip (left or right) of one truck. 
Since only one truck was filled two strips are shown. Pallets of different customers are 
differently shaded. Besides a pallet index (left index) each pallet has a customer position index 
(right index) that indicates the position of the customer in the given (single) route of the 
instance. So it can be realized that the LIFO constraint is completely satisfied (see Section 3, 
(C8)).      

 
Figure 7 – Pallet charts for one loaded truck 

8 Conclusions 

In this case study a two-stage packing problem is considered that occurs in the distribution 
process of a Portuguese trading company. Boxes including ordered goods are to be packed onto 
identical pallets which in turn are to be loaded into a minimal number of uniform trucks. Each 
truck provides a set of places for stacking pallets that are organized in two strips. Within each of 
the problem stages multiple packing constraints, as LIFO policy and support of boxes or pallets, 
are to be observed. A solution method was developed consisting of two procedures that cover 
the two problem stages. The procedure for packing boxes onto pallets was derived from the 
GRASP procedure for container loading from Moura and Oliveira (2005) while a new tree 
search procedure was devised for loading pallets into trucks.  The (total) solution method was 
tested by means of problem instances whose data were taken from the distribution process of the 
company. The method proved to be able to reach near optimal results regarding the number of 
needed trucks in short running times of about one minute. One can expect that the 
implementation of the solution method in the distribution process would be advantageous for 
the company: on the one hand suitable stowage plans including visualization are provided 
quickly and automatically. On the other hand the dispatchers can make more effective packing 
decisions. In particular they are enabled to make proposals to customers very rapidly that help 
to establish a suitable balance of customer service and utilization of truck volume. All in all, the 
developed method could serve as a core module of an effective decision support tool.      
  

53/4 14/226/246/3 8/259/4 42/3 27/244/3 5/1

52/4 13/230/232/3 7/258/4 36/3 19/250/3 2/1

51/4 12/220/240/3 24/257/4 35/3 18/249/3 1/1

56/4 17/223/241/3 11/245/3 43/3 25/231/2 6/1

55/4 16/222/234/3 10/239/3 38/3 29/248/3 4/1

54/4 15/221/233/3 9/260/4 37/3 28/247/3 3/1
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Right strip
Cabin Rear

Cabin Rear
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