
Hawking radiation for a Proca field inD dimensions

Carlos Herdeiro,* Marco O. P. Sampaio,† and Mengjie Wang‡

Departamento de Fı́sica da Universidade de Aveiro and I3N Campus de Santiago, 3810-183 Aveiro, Portugal
(Received 4 November 2011; published 4 January 2012)

We study the wave equation of a massive vector boson in the background of a D-dimensional

Schwarzschild black hole. The mass term introduces a coupling between two physical degrees of freedom

of the field, and we solve the resulting system of ordinary differential equations numerically, without

decoupling. We show how to define decoupled transmission factors from an S matrix and compute them

for various modes, masses, and space-time dimensions. The mass term lifts the degeneracy between

transverse modes, in D ¼ 4, and excites the longitudinal modes, in particular, the s wave. Moreover, it

increases the contribution of waves with larger ‘, which can be dominant at intermediate energies. The

transmission factors are then used to obtain the Hawking fluxes in this channel. Our results alert for the

importance of modeling the longitudinal modes correctly, instead of treating them as decoupled scalars as

they are in current black hole event generators; thus, they can be used to improve such generators for

phenomenological studies of TeV gravity scenarios.
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I. INTRODUCTION

Separation of variables and decoupling of degrees of
freedom are two key properties in the study of wave
equations in gravitational backgrounds. Most remarkably,
the gravitational perturbations of the Kerr black hole both
separate and decouple, as first exhibited in the celebrated
work of Teukolsky [1], which allowed to show linear
stability of the Kerr solution. Introducing charge or con-
sidering higher dimensions, for instance, seems to spoil
such exceptionality; indeed, gravitational perturbations
do not seem separable in either the four dimensional
Kerr-Newman background [2] or the higher dimensional
Myers-Perry background [3].

Failure to achieve separation of variables or to decouple
individual degrees of freedom typically leads to the prob-
lem of solving sets of coupled ordinary differential equa-
tions (ODEs).1 In the absence of analytic strategies, a full
solution of the problem can only be obtained numerically.
Surprisingly, numerical solutions for such (common) prob-
lems seem to be essentially unexplored, in the context of
Hawking radiation, in contrast to the vast literature con-
cerning fully decoupled and separable problems. Perhaps
the reason is connected to the problem of quantization,
which is usually straightforward when a complete set of
decoupled modes is available. We will show, however, that
coupled systems (of the type considered herein) may be
treated similarly using an S-matrix–type formalism which
allows decoupling in the asymptotic regions.

In this paper, we shall consider a wave equation, which
separates but does not decouple, in the background of a

D-dimensional spherically symmetric Schwarzschild
black hole [4]: the massive spin 1, or Proca, field. In
contrast, observe that the Maxwell field in the D ¼ 4
Schwarzschild background has two physical decoupled
polarizations. Introducing the mass term, the spin 1 field
gains a longitudinal polarization, and two of the physical
degrees of freedom cannot be decoupled. In higher dimen-
sions, the situation is similar, when set in appropriate
variables. We shall solve the wave equation for the Proca
field in the D-dimensional Schwarzschild background nu-
merically to obtain a scattering matrix. This will allow us
to define transmission factors as well as the Hawking
radiation flux of vector bosons from such black holes.
The technique used herein can, in principle, be applied

to other problems of test field wave equations or studies of
gravitational perturbations, including the computation of
quasinormal modes.2 Our choice of the Proca field was
primarily due to its simplicity, but most importantly for its
phenomenological interest to TeV scale gravity scenarios
[7–10]. In such scenarios, scattering processes with center
of mass energy well above the fundamental Planck scale
should be dominated by classical gravitational interactions
[11]. Moreover, for sufficiently small impact parameter,
black holes should form in particle collisions, as made
manifest by numerical evidence [12]. This was predicted
by early trapped surface calculations [13] in D � 4, which
gives bounds on the gravitational radiation emitted; the
latter was also estimated through perturbation theory
studies of head-on collisions of shock waves in D ¼ 4.
In D> 4, recent results have produced improved semi-
analytic estimates within perturbation theory [14]. Other
estimates may be obtained from high energy black hole
collisions in numerical relativity. The first results for*herdeiro@ua.pt
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1Nonseparability leads to partial differential equations but

these may be discretized to systems of ODEs.

2See [5,6] for studies of quasinormal modes where similar
coupled systems have been considered.
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numerical collisions of higher dimensional black holes
have been released in [15–17], based on the frameworks
in [18,19]. These black holes would then decay via
Hawking radiation [20] and leave observable signatures
[21], such as large multiplicity of jets or large transverse
momentum, and considerable missing energy due to gravi-
tational wave emission. To better understand and model
these scenarios, as well as to improve the phenomenology
of black hole event generators such as CHARYBDIS2 [22]
and BLACKMAX [23], currently in use at the Large Hadron
Collider, it is important to understand the Hawking
radiation from higher dimensional black holes. This is
especially relevant because the first experimental tests of
trans-Planckian gravity scenarios are under way [24–26],
and therefore improving their phenomenology is very
timely. The computation of Hawking radiation for such
models requires solving the wave equation for various
fields with different spins, masses, and charges in these
black hole backgrounds. In particular, the Proca field in the
D-dimensional Schwarzschild background has not been
considered up to now.

Our results exhibit distinctive features as we introduce
the mass term, such as the lifting of the degeneracy of the
two transverse modes in four dimensions, the appearance
of longitudinal mode contributions (absent for Maxwell’s
theory) and, in particular, the s wave. One feature that
appears not to have been discussed in the literature is
that in four and five space-time dimensions, the transmis-
sion factor has a nonvanishing value in the limit of zero
spatial momentum. We will also find the expected suppres-
sion with M, but perhaps the most relevant feature is to
notice the increasing importance of the longitudinal modes
and larger ‘ partial waves. Moreover, the precise contribu-
tion of the longitudinal modes deviates from simple models
that have been used in the aforementioned Monte Carlo
event generators to produce phenomenological data, pro-
viding our results with phenomenological interest in this
context.

This paper is organized as follows. In Sec. II we explain
how to decompose the Proca field equation in a generic
factorizable background geometry consisting of a warped
product of an m-dimensional space with an n-dimensional
Einstein space, using the harmonic functions of the
Einstein space. In Sec. III we specialize the equations of
motion to aD-dimensional Schwarzschild background and
present an appropriate set of independent degrees of free-
dom of the Proca field. We then study the asymptotic and
near horizon behavior of the coupled radial equations,
which is required to impose the boundary conditions and
to define the scattering matrix. In Sec. IV we discuss how
the scattering matrix is used to compute the transmission
factor and the Hawking spectrum. In Sec. V we discuss the
numerical method and results, and we conclude with a
discussion in Sec. VI. Some technical relations are left to
the Appendix.

II. THE PROCA EQUATIONS IN EINSTEIN
SYMMETRIC SPACETIMES

In this section, we present the wave equations for a Proca
field which may be complex and charged under a Uð1Þ
electromagnetic field. This covers the effective fields de-
scribing the Z and W particles in the standard model (SM)
of particle physics, the former being a neutral Proca field
and the latter being an electromagnetically charged Proca
field. In the next section, we will specialize to the neutral
case which we want to study in detail. The Lagrangian is

L ¼ �1
2W

y
��W�� þM2Wy

�W
� þ iQWy

�W�F
��; (2.1)

where W�� ¼ @�W� � @�W� and we have included the

coupling of the W to the electromagnetic field strength
tensor F�� as in the SM.3 The equations of motion for W
when all the background fields are fixed are

r�W
�� �M2W� � iQW�F

�� ¼ 0: (2.2)

For the gravitational background, in this section, we con-
sider Einstein symmetric spaces of the form [27],

ds2 ¼ habðyÞdyadyb � rðyÞ2d�2
n; (2.3)

where �n is an n-dimensional Einstein space with constant
curvature K and

d�2
n ¼ �ijðxÞdxidxj: (2.4)

Later we will specialize to the Schwarzschild black hole.
We use indices a; b; c; . . . , for the first set of coordinates,
fyag, spanning them-dimensional space with metric habðyÞ;
and indices i; j; k; . . . , for the second set of coordinates,
fxig, spanning the Einstein space. Furthermore, geometric
quantities and differential operators on �n are denoted
with hats. This covers several interesting cases such as
2þ n-dimensional spherically symmetric black holes or
a singly rotating black hole in 4þ n-dimensions (Kerr,
Myers-Perry, etc. . . .).
To write down the equation of motion we use a decom-

position of the vector field in tensorial types [27].Wa arem
scalars, with respect to �n, so they must obey

ð�̂þ �2
0ÞWa ¼ 0; (2.5)

(�2
0 is the spin-0 eigenvalue). Wi is a covector field which

can be decomposed into a scalar �, and a transverse
covector WT

i , i.e.,

Wi ¼ D̂i�þWT
i ; D̂iŴ

Ti ¼ 0; (2.6)

where D̂i is the covariant derivative on �n and we use an
explicit hat to denote the raising of indices using �ij; i.e.,

note that ŴTi ¼ �rðyÞ2WTi. Since � is a scalar, it obeys
(2.5). The transverse vector obeys

3In this paper, we use the particle physics convention for the
signature of the metric ðþ ��� . . .Þ.
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ð�̂þ �2
1ÞWT

i ¼ 0; (2.7)

where now �2
1 is the spin-1 eigenvalue. This decomposition

allows for an expansion of the various degrees of freedom
Wa;�; WT

i in a basis of harmonics of the Einstein space.
Furthermore, this decomposition allows for a decoupling
of the field equations into an independent vector modeWT

i ,
and mþ 1 coupled scalar fields for each set of quantum
numbers labeling the basis of harmonic functions.
Observe, however, that not all of these modes correspond
to physically independent degrees of freedom, as shown
below.

III. NEUTRAL PROCA FIELD IN A SPHERICALLY
SYMMETRIC BLACK HOLE

Let us now specialize to the Q ¼ 0 case. We shall
consider, separately, two cases according to the value of �0.

A. Modes with �0 � 0

Expanding the field equations with the decomposition
(2.6), using conditions (2.5) and (2.7), and defining Ba �
Wa � @a�, we obtain

�2
0

r2
Ba �

haf
rn

@b½hdbhcfrnð@cBd � @dBcÞ�

þM2Ba þ @a

�
1

rn�2
@bðrn�2hbcBcÞ

�
¼ 0; (3.1)

1

rn�2
@aðrn�2habBbÞ �M2� ¼ 0; (3.2)

�
1

r2

�
�2
1þ

R̂

n

�
þM2þ 1

rn�2
@aðrn�2hab@bÞ

�
ŴTj¼0: (3.3)

We consider the spherically symmetric case with fyag ¼
ft; rg, jhj ¼ 1, hab is diagonal, htt ¼ �1=hrr � V ¼
1��=rn�1, and � ¼ rn�1

H . We choose units such that
the horizon radius is rH ¼ 1. Since � is given by the
second equation in terms of the other fields, it is a non-
dynamical degree of freedom. In four dimensions, this
agrees with the fact that a spin-1 massive field has three
possible physical polarizations which, in this case, will be
the two dynamical scalars and the transverse vector. In
higher dimensions, the transverse vector on the n sphere
will contain more (degenerate) polarizations.

We can factor out the spherical harmonics through the
expansion

Ba ¼ ��
a ðyÞY�ðxÞ; ŴTi ¼ q�ðyÞYi

�ðxÞ; (3.4)

where � denotes the mode eigenvalues for the correspond-
ing harmonic functions. Furthermore, making the ansatz,

��
t ¼ e�i!tc ðrÞ; ��

r ¼ e�i!t �ðrÞ
V

; q� ¼ e�i!t�ðrÞ;
and using (3.1) and (3.3) we find

�
V2 d

dr

�
1

rn�2

d

dr
rn�2

�
þ!2�

�
�2
0

r2
þM2

�
V

�
��i!V 0c ¼0;

(3.5)

�
V2

rn
d

dr

�
rn

d

dr

�
þ!2 �

�
�2
0

r2
þM2

�
V

�
c

þ i!

�
2V

r
� V 0

�
� ¼ 0; (3.6)

�
V

rn�2

d

dr

�
rn�2V

d

dr

�
þ!2 �

�
�2
1 þ R̂

n

r2
þM2

�
V

�
� ¼ 0:

(3.7)

Thus, we obtain two second order coupled radial equations
for fc ; �g and a decoupled equation for �. Note that �2

0 ¼
‘ð‘þ n� 1Þ and �2

1 ¼ ‘ð‘þ n� 1Þ � 1 with ‘ starting
at zero and one, respectively. The third combination is

�2
1 þ R̂

n ¼ ‘ð‘þ n� 1Þ þ n� 2.

The manipulations leading to the two coupled equations
above are only valid for nonzeroM. In the exactly massless
(Maxwell) theory, a similar calculation leads to a single
decoupled equation for one of the scalar modes, which is�

V
d

dr

�
V

rn�2

d

dr
rn�2

�
þ!2 � �2

0

r2
V

�
� ¼ 0; (3.8)

whereas the other mode c ¼ iVdrðrn�2�Þ=ð!rn�2Þ is
nondynamical. Here dr � d=dr. The transverse mode—
ruled by Eq. (3.7)—remains the same for any M; in par-
ticular, forM ¼ 0, and (only) n ¼ 2 it becomes equivalent
to (3.8). This will be manifest in the numerical results.

B. Modes with �0 ¼ 0

For the exceptional modes with �0 ¼ 0, � does not
enter the wave equation so it is a free nondynamical field.

The corresponding equation for Wð0Þ
a is (the superscript

denotes it is the exceptional mode)

haf

rn
ffiffiffiffiffiffijhjp @b½hdbhcfrn

ffiffiffiffiffiffi
jhj

p
ð@cWð0Þ

d � @dW
ð0Þ
c Þ�

�M2Wð0Þ
a ¼ 0: (3.9)

When M2 � 0, one uses an ansatz similar to the previous
section to obtain a radial equation for a dynamical degree
of freedom�

V

rn
d

dr

�
rnV

!2 �M2V

d

dr

�
þ 1

�
c ð0Þ ¼ 0; (3.10)

and a nondynamical one, �ð0Þ ¼ i!V=ð!2 �M2VÞdrc ð0Þ.
Otherwise, for M2 ¼ 0, we recover the well-known result
that all the exceptional modes are nondynamical (see, e.g.,
[28]).
Now that we have covered all possibilities, several com-

ments are in order. First, there is a discrete difference
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between the small mass limit and the exactly massless
theory since we have different sets of equations for each
case. This should not be surprising since there is an extra
longitudinal mode for massive vector bosons. Second, the
equations for the Maxwell theory case are all decoupled, in
agreement with previous work [29]. Since decoupled radial
equations have been extensively studied in the literature,
we will not present the details of our analysis of such
modes and refer to the method in [30,31]. Thus, in the
remainder of this paper, we will focus on the solution of the
coupled system for the massive theory, which will be used
in conjunction with the decoupled modes to obtain the full
Hawking spectrum in Sec. V.

C. Boundary conditions and radial system

In this section, we start by finding a series expansion of
the solution near the horizon for the coupled system fc ; �g.
This will be used to initialize the corresponding fields for
the radial integration at r ¼ 1:001. If we define y ¼ r� 1,
Eqs. (3.5) and (3.6) become�

MðrÞ d
2

dy2
þ NðrÞ d

dy
þ PðrÞ

�
c þQðrÞ� ¼ 0; (3.11)

�
~MðrÞ d

2

dy2
þ ~NðrÞ d

dy
þ ~PðrÞ

�
�þ ~QðrÞc ¼ 0; (3.12)

where the polynomials are defined in the Appendix.
Making use of the Frobenius method to expand c and � as

c ¼ y�
X1
j¼0

�jy
j; � ¼ y�

X1
j¼0

�jy
j; (3.13)

and inserting the above two equations into Eqs. (3.11) and
(3.12), we obtain

� ¼ � i!

n� 1
or � ¼ 1� i!

n� 1
: (3.14)

We want to impose an ingoing boundary condition at the
horizon, so we must choose the minus sign. Furthermore,
after this sign choice, the right-hand side case produces a
series expansion, which is a special case of the left-hand
side (where the first coefficient is set to zero), so without
loss of generality we choose � ¼ �i!=ðn� 1Þ. One then
writes down the recurrence relations and concludes that a
general solution close to the horizon can be parametrized
by the two coefficients �0 and �1. The other coefficients are
generated by the recurrence relations (A1).

To understand the asymptotic behavior of the waves at
infinity, we now study a large r asymptotic expansion in the
form

c ¼ e�rrp
X
j¼0

aj
rj

; � ¼ e�rrp
X
j¼0

bj
rj
: (3.15)

Inserting this into Eqs. (3.5) and (3.6) we obtain, at leading
order,

�¼�ik; p¼1�n

2
� i’ or p¼�n

2
� i’; (3.16)

where ’ ¼ �n;2ð!2 þ k2Þ=ð2kÞ. Thus, one can show that

asymptotically4

c ! 1

rðn=2Þ�1

��
aþ0 þaþ1

r
þ . . .

�
ei�þ

�
a�0 þa�1

r
þ . . .

�
e�i��;

�! 1

rðn=2Þ�1

���
� k

!
þcþ

r

�
aþ0 þ . . .

�
ei�

þ
��

k

!
þc�

r

�
a�0 þ . . .

�
e�i�

�
; (3.17)

where� � krþ ’ logr and c� is defined in the Appendix,
Eq. (A2). So as expected, each field is a combination of
ingoing and outgoing waves at infinity. This asymptotic
expansion also shows that for a generic wave at infinity, we
can choose four independent quantities fa�0 ; a�1 g at infinity
to characterize the solution. This is expected, since we
have two coupled scalar fields and for each scalar degree
of freedom we must have an associated ingoing wave
and outgoing wave. Thus, we can define four new fields
f��; c�g (which will asymptote, respectively, to fa�0 ;
a�1 g), by truncating the expansion for the fields and for
their first derivatives at infinity. Such a transformation can
bewritten in matrix form by defining the four-vector�T ¼
ðcþ; c�; �þ; ��Þ for the new fields, and another four-
vector VT ¼ ðc ; drc ; �; dr�Þ for the original fields and
derivatives. Then, the transformation is given in terms of an
r-dependent matrix T defined through

V ¼ T�; (3.18)

which we provide in the Appendix, Eq. (A3). Finally, we
obtain a first order system of ODEs for the new fields. First,
we define a matrix X through

dV

dr
¼ XV; (3.19)

which is read out from the original system (3.5) and (3.6).
Its explicit form is given in the Appendix, Eq. (A4). Then
we obtain

d�

dr
¼ T�1

�
XT� dT

dr

�
�: (3.20)

We can write other equivalent systems using different T
matrices. In particular, we have also integrated a first
order system using the fields c s ¼ kc � isdrc and �s ¼
k�� isdr�, which produced numerically equivalent re-
sults. The only difference is that for such fields we need
to extract Oðr�1Þ coefficients to obtain as1.

4We have used, without loss of generality, the leading power
behavior for p and discarded the second option similarly to the
near horizon expansion.
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IV. THE HAWKING SPECTRUM

The boundary conditions we have chosen in Sec. III C
are suitable for the computation of the Hawking spectrum
of radiated quanta from the black hole. The Hawking
spectrum is generically given by a sum over a complete
set of modes with labels 	 , of the transmission factor T	

times a thermal average number of quanta produced at the
horizon hn	 i. This is defined for a basis of decoupled

modes. In our problem, we have a subset of modes, the
transverse vector mode, and the ‘ ¼ 0 (�0 ¼ 0) mode,
which are decoupled. But we also have a tower of modes
which are coupled two by two for each ‘ > 0, the two
scalars c and �. It is not obvious how to decouple them for
all r through an explicit transformation. Instead, let us try
to understand how to extract the relevant information in the
asymptotic regions.

Let us denote the two coupled fields by a two-vector
UT ¼ ðc ; �Þ and represent the coupled system of radial
equations through a (linear) second order matrix differen-

tial operatorDð2Þ acting on U, i.e.,Dð2ÞU ¼ 0. The system

is coupled because of the off diagonal elements of theDð2Þ
operator. To decouple the system we would have to find a
transformation of the fields U ¼ A �U, such that the new

differential operator �Dð2Þ ¼ Dð2Þ �A is diagonal, i.e.,

�Dð2Þ ¼
�Dð2Þ
1 0

0 �Dð2Þ
2

0
@

1
A: (4.1)

Even without finding such a transformation explicitly, one
can draw some conclusions by assuming its existence.5 In
particular, we may establish a map between our general
solution of the coupled system and the actual decoupled
solution, for each of the asymptotic regions (horizon and
far field). To find such a map let us first summarize the
information we have on the general solution of the coupled
system.

In Sec. III we have found that a general solution is
parametrized by 4 independent coefficients in one of the
asymptotic regions, either at the horizon or at infinity. Once
we have chosen one set of coefficients, say at the horizon,
due to the linearity of the equations, the 4 independent
wave components at infinity are a linear combination of the
4 coefficients at the horizon. Let us formally denote the
ingoing and outgoing wave coefficients at the horizon
(þ =� , respectively) by

~h ¼ ðhþ;h�Þ ¼ ðhþi ; h�i Þ;
where i ¼ 1; 2 since we have two fields. Similarly, the
coefficients at infinity are defined as the large r limit of

the� field components (up to linear transformation which
we will define next), i.e.,

~y ¼ ðyþ; y�Þ ¼ ðyþi ; y�i Þ;
with i ¼ 1; 2 for c and �, respectively. Because of linear-
ity, we can define a scattering matrix

~y ¼ S ~h , yþ

y�

 !
¼ Sþþ Sþ�

S�þ S��

 !
hþ

h�

 !
, yþi

y�i

 !

¼ X
j

Sþþ
ij Sþ�

ij

S�þ
ij S��

ij

 !
hþj
h�j

 !
; (4.2)

which is a set of numbers (depending on energy, angular
momentum, etc.) containing all the information on the
scattering process. It can be fully determined by consider-
ing specific modes at the horizon and integrating them
outwards. In our problem, we have imposed an ingoing
boundary condition at the horizon which is simply hþ ¼ 0.
Then

y s ¼ Ss�h�: (4.3)

Taking the s ¼ �component, and denoting the inverse
matrix of S�� by ðS��Þ�1, we invert (4.3) to obtain the
wave at the horizon given the ingoing wave at infinity

h� ¼ ðS��Þ�1y�: (4.4)

Inserting this relation back in the s ¼ þcomponent of (4.3),
we obtain the outgoing wave in terms of the ingoing wave, at
infinity

y þ ¼ Sþ�ðS��Þ�1y� � Ry�; (4.5)

where in the last line we have defined the reflection matrix
R. Before proceeding, we note that there is still some free-
dom in the definition of the asymptotic coefficients since
any (nonsingular) linear combination is equally good from
the point of view of satisfying the boundary condition. This
freedom can be written in terms of 3 matrices Ms;M�

H

relating some new fields (hatted) to the old fields,

y s ¼ Msŷs; h� ¼ M�
Hĥ

�: (4.6)

Since this represents the most general parametrization of the
solution in the asymptotic regions, there must be a choice
which decouples the fields in those regions. To find the
correct transformation we need a physical prescription.
To obtain the transmission factor for the decoupled

components, it is instructive to remind ourselves of the
calculation of the transmission factor for a single de-
coupled field. It is defined as the fraction of the incident
wave which is transmitted to the horizon. If we look at a
wave with energy ! (for an observer at infinity), with

ingoing/outgoing amplitudes Yð1Þ
� , then [32]

5In fact, for example, if we consider A to be a general
r-dependent matrix, we can write down two conditions for the
four arbitrary functions of such a matrix. Thus, in principle, there
is enough freedom.
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T¼jYð1Þ� j2�jYð1Þ
þ j2

jYð1Þ� j2 ¼!ðjYð1Þ� j2�jYð1Þ
þ j2Þ

!jYð1Þ� j2 ¼F in
H

F in1
; (4.7)

where in the last step we note thatT can be reexpressed as a
ratio between the total incident energy flux F in

H (which is
the difference between the energy carried by the ingoing
wave and the energy of the outgoing wave) and the incident
energy flux associated with the ingoing wave at infinity
(F in1). The former is the flux of energy transmitted down to
the horizon.

We now compute the energy fluxes through a sphere at
radius r using the energy momentum tensor. This will
allow us to identify the decoupled fields at infinity and at
the horizon, and, in particular, the ingoing and outgoing
decoupled waves at infinity. Such a flux is shown to be
conserved in our background, by using the conservation
law for the energy momentum tensor, combined with the
fact that the spatial integral of Tt

t for each energy eigen-
mode is constant. It is defined, evaluated at r, as

F jr ¼ �
Z
Sn
d�Tt

r; (4.8)

where d� is the volume element on a t; r ¼ constant
hypersurface; up to an irrelevant normalization, the energy
momentum tensor for the complex neutral Proca field is

T�� ¼ � 1

2
ðWy�
W�


 �M2Wy�W� þ c:c:Þ � g��

2
L:

(4.9)

If we insert this in (4.8), assume a field configuration with a
well-defined energy !, and make use of the equations of
motion, then, for the nontrivial case of M2 � 0 � �2

0, we

obtain

F jr ¼
X
�

i!V�y
�

2r2
d��

dr
þX

�

�
�2
0

2r2
c y�

� 1

2M2

�
V

rn
dðrn�yÞ

dr
��2

0c
y

r2

��
i!�þ�2

0�

r2

��
þc:c:;

(4.10)

where for convenience we define � ¼ drc þ i!�. Modes
with different angular momentum eigenvalues are clearly
decoupled, as are the transverse vector mode contributions
in the first sum. The terms in the second sum couple two
fields for fixed �. We can compute the flux at infinity and
close to the horizon and express it in terms of the asymp-
totic coefficients in the corresponding region. Focusing on
a specific mode and in the coupled part of the flux [second
sum in (4.10)],

F coupled
1 ¼ jy�0 j2 � jyþ0 j2 þ jy�1 j2 � jyþ1 j2

� ðy�Þyy� � ðyþÞyyþ; (4.11)

where ysi are linear combinations of the asymptotic coef-
ficients asi given in the Appendix, Eq. (A5). This choice of

ysi is already in a form close to decoupled, since we have
separated the modulus square of the incident contribution
from the reflected contribution, without interference terms.
This form is invariant under separate unitary transforma-
tions of y�. Using the reflection matrix we obtain

F coupled
1 ¼ ðy�Þyð1�RyRÞy� � ðy�ÞyTy�; (4.12)

where we have defined a (Hermitian) transmission matrix
T. This can be diagonalized through a unitary transforma-
tion, which is the remaining freedom we have for y�. In
fact we can do even better, and diagonalize the reflection
matrix R with a bi-unitary transformation using the arbi-
trary unitary M� transformations. Then the fields are
manifestly decoupled at infinity, both at the level of the
reflection matrix and the transmission matrix. As a con-
sequence, in the decoupled basis, an incident wave is
reflected back in the same decoupled mode without inter-
ference with the other mode. Finally, the transmission
factors are simply the eigenvalues of T, since they are
each associated with a decoupled component.
Furthermore, one can use the conservation law for the

flux, to find an alternative expression for the transmission
matrix at the horizon (this will be useful to control numeri-
cal errors). The total flux at the horizon is

F coupled
H ¼ ðh�Þyh�; (4.13)

where the h�i coefficients are linear combinations of the
two independent �i coefficients (i ¼ 0; 1), given in the
Appendix, Eq. (A6). Equation (4.13) establishes the im-
portant point that the flux is positive definite, so the trans-
mission factors must be positive definite (as expected since
there is no superradiance in Schwarzschild space-time).
Finally, using the relation between y� and h� through6

S��, we find

T ¼ ðS��Sy��Þ�1: (4.14)

Once we have obtained the transmission factors, the num-
ber and energy fluxes are given by the standard result

dfN;Eg
dtd!

¼ 1

2�

X
‘

X
	

f1; !g
expð!=THÞ � 1

d	T	 ; (4.15)

where 	 is a label running over the final set of decoupled
scalar modes and the transverse mode, and d	 are the

degeneracies of the corresponding spherical harmonics.
Labeling the scalar and vector harmonic degeneracies by
dS and dV , respectively, we have [33]

dS ¼ ðnþ 2‘� 1Þðnþ ‘� 2Þ!
ðn� 1Þ!‘! ; (4.16)

6Note that the relation between h� and ðM�Þ�1y� can be
made diagonal usingM�

H , so the problem is also decoupled at the
horizon.
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dV ¼ ðnþ 2‘� 1Þðnþ ‘� 1Þðnþ ‘� 3Þ!
ð‘þ 1Þð‘� 1Þ!ðn� 2Þ! : (4.17)

The Hawking temperature in horizon radius units is

TH ¼ n� 1

4�
: (4.18)

V. RESULTS

In this section we present a selection of numerical results
to illustrate the behavior of the transmission factors and the
corresponding Hawking fluxes. To integrate the coupled
and decoupled radial equations, we first wrote test codes in
MATHEMATICA7 and then a code in the C++ language, using

the numerical integration routines of the Gnu Standard
Library. Besides using different programming frameworks,
we have also tested different integration strategies which
all agreed within relative numerical errors smaller than
0.1%. In fact, most of our numerical points have a precision
which is 1 order of magnitude better. To check numerical
errors, we have integrated the radial equations up to a large
radius of typically r ¼ 104rH and varied this up to a factor
of 3 to check the precision. Furthermore, we have used the
two expressions for the transmission factor from Eqs.
(4.12) and (4.14), which agree within the quoted precision
for almost all energies. The exception is for small energy,
where the first definition converges poorly. This can be
explained by a simple analysis of the propagation of errors
combined with the fact that the y� coefficients grow very
fast as we decrease energy, thus requiring a very large
precision for some fine cancellations to occur. The second
expression is thus more natural in that limit since it does
not need such cancellations and does not require such large
precision.

We have generated several samples of transmission fac-
tors, some of which are displayed in Fig. 1. Hereafter, we
shall denominate the partial waves associated to the differ-
ent modes of the Proca field by ‘1, ‘2, ‘T , and ‘ ¼ 0, where
‘1; ‘2 correspond to the two coupled modes ruled by
Eqs. (3.5) and (3.6), ‘T to the decoupled mode described
by Eq. (3.7), and ‘ ¼ 0 to the �0 ¼ 0 mode, ruled by
Eq. (3.10). Moreover, partial waves associated to the Max-
well field shall be denoted by ‘E, and are ruled by (3.8).

In the top row panels of Fig. 1, we show the partial wave
contributions for n ¼ 2; 3; 4 in the zero mass limit. Some
general properties are as follows. The T‘ curve becomes
shifted toward higher frequencies both as ‘ is increased for
n fixed, and as n is increased for ‘ fixed. The former can be
understood from standard geometrical optics arguments.
Moreover, for this choice there is always a numerical
coincidence between one of the partial waves (‘1) obtained
from the two coupled fields and the electromagnetic partial
wave ‘E. The ‘ ¼ 0 and ‘2 modes are always absent in the
Maxwell theory, so they can be associated with the longi-
tudinal polarization of the massive vector field. Similarly,

the ‘T and ‘1 partial waves are associated with the trans-
verse polarizations of the field. A qualitative dependence
on dimension is that for n ¼ 2, ‘T and ‘1 (or ‘E) modes are
all equal. Curiously, this is in agreement with the fact that
they describe the same number of transverse degrees of
freedom as can be seen from the degeneracies (4.16)
specialized for n ¼ 2. This degeneracy is lifted for n > 2.
For nonzero mass (middle and bottom row panels of

Fig. 1), the degeneracy observed for n ¼ 2 in the massless
limit is lifted. Also, we observe, for all n, that modes with
higher ‘ partial waves (especially ‘1 modes) become a
more dominant contribution at lower energies, as com-
pared to lower ‘ partial waves of other modes. In particular,
for M ¼ 1, the transmission factor for ‘1 becomes the
largest for small energy. This effect of the excitation of
subdominant partial waves is well known to exist, for
example, as we increase n (and we can also observe such
effect in our plots) as well as with the introduction of
black hole rotation [34]. If this effect persists cumulatively
on a rotating background, then we may have enhanced
angular correlations for massive Proca fields emitted
from the black hole, since higher ‘ partial waves are less
uniform.
Another outstanding point is that for large mass, when

n ¼ 2; 3, it can be seen that the transmission factor starts
from a constant nonzero value at the threshold ! ¼ M
(k ¼ 0), at least for small ‘. We have checked that this
does not happen for n � 4 for masses as large as M ¼
10� 15, where the curves always asymptote smoothly to
zero at k ¼ 0. Note that the parameter in the radial equa-
tions is M2 so these are very large masses. A possible
explanation for this phenomenon can be motivated from
considerations about the range of the gravitational field in
Rutherford scattering. In n ¼ 2, the total cross section for
Rutherford scattering diverges, so the Newtonian gravita-
tional potential is long ranged. This means that the effec-
tive size of the gravitational potential is infinite. The same
happens in n ¼ 3 but only at zero momentum k ¼ 0. This
indicates that a possible reason is that an incident wave at
infinity with a very small momentum will still be suffi-
ciently attracted by the gravitational field so that a constant
nonzero fraction is still absorbed by the potential. In par-
ticular, we note that some of the radial equations are
similar in form to those obeyed by massive scalar and
massive fermion fields, so the same effect exists for such
fields. To our knowledge, this feature has not been noted or
discussed in the literature. The only exception is the paper
by Nakamura and Sato [35] in four dimensions, where it is
claimed that the reflection factor for a scalar field always
goes to 1 at ! ¼ M (and thus the transmission factor goes
to zero). Their result seems, however, inconsistent with
Figs. 1, 2, and 3 of the paper by Page [36] (also in four
dimensions), where the Hawking fluxes for massive fermi-
ons become constant at the k ¼ 0 threshold (in agreement
with our result).
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Once we obtain the transmission factors, the computa-
tion of the Hawking fluxes (4.15) follows straightforwardly
by summing up partial waves with the appropriate degen-
eracy factors (4.16). We have chosen to show the flux of the
number of particles. The flux of energy has similar features
and is simply related by multiplying each point in the plots
by !.

In Fig. 2 we compare the Hawking fluxes of the
Maxwell theory with the small mass limit of the Proca
theory. For the particular case of n ¼ 2 we have repro-
duced the results by Page [37] for the electromagnetic
field and found very good agreement. All panels show a
red solid curve corresponding to the total Hawking flux
summed up over partial waves. The partial waves in-

cluded in the sum are also represented, scaled up by the
appropriate degeneracy factor. As claimed in the discus-
sion of the transmission factors, as we increase n, partial
waves with larger ‘ become more important, for both
Maxwell and Proca fields. One can clearly see that there
is a large contribution to the total flux from the longitu-
dinal degrees of freedom, since the vertical scales are
larger for the Proca field. In particular, the ‘ ¼ 0 mode
enhances the spectrum greatly at small energies. Note
that these extra contributions associated with the longi-
tudinal degrees of freedom cannot, in general, (for arbi-
trary mass) be described by a scalar field, since there is
always a contribution from the coupled modes ‘1; ‘2.
That is, however, the approximation done so far in black

FIG. 1 (color online). Transmission factors: The three rows of panels show the first few partial waves contributing to the Hawking
spectrum. Each row corresponds to a fixed mass and each column to a fixed dimension. In particular, the first row shows the small mass
limit of the Proca theory in order to compare it with Maxwell’s theory.
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hole event generators, where the W and Z fields
Hawking spectra in use are those of the electromagnetic
field (for transverse polarizations) and a scalar field (for
the longitudinal polarization). Thus, our results can
be readily applied to improve this phenomenological
modeling.

In Fig. 3, we show the variation of the total number flux
with n and M. The left panel shows the expected variation
with M: that the flux not only gets cut off at the energy
threshold ! ¼ M, but it is also suppressed with M (the

same holds for n > 2). This is the same behavior as found
in [30,31]. As pointed out already, in event generators
massive vector particles are modeled using the Hawking
fluxes for the Maxwell field and a massless scalar, with a
cutoff at the mass threshold. In [30,31] it was shown that
simply imposing a sharp cutoff on the fluxes of massless
scalars and fermions overshoots the real amount of
Hawking radiation emitted in the massive scalar and fer-
mion channel. Qualitative inspection of our results sug-
gests a similar effect for the W and Z channels in the

FIG. 2 (color online). Number fluxes for M ¼ 0 (top panels) and M ! 0 (bottom panels): The red solid curve of the top panels
shows the Hawking flux of particles summed over the dominant partial waves for the Maxwell theory. The different partial waves are
multiplied by the corresponding degeneracies. In the bottom panels the small (but nonzero) M limit of the Proca theory is shown for
comparison. The 	 symbol denotes the addition of modes which are numerically equal.

FIG. 3 (color online). Number fluxes for variousM and n: (Left panel) Variation of the flux of particles for fixed n ¼ 2 and variable
mass. (Middle and right panels) Variation of the flux with n in a linear and logarithmic scale, respectively. The logarithmic scale shows
more clearly that the limiting flux at k ¼ 0 is finite for n ¼ 2; 3.
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evaporation. A quantitative comparison, however, requires
a consideration of a Proca field confined to a thin brane.
The middle and right panel show variation with n. In
addition to the well-known large scaling of the area under
the curve and the shift of the spectrum to larger energies,
we can also see that more partial waves start contributing to
the shape of the curve which becomes more wavy. This is
particularly true because the degeneracy factors for fixed ‘
increase rapidly with n, which is a consequence of the
larger number of polarizations available for a vector boson
in higher dimensions. Finally, regarding n ¼ 2; 3 we con-
firm the feature that the flux becomes a constant at k ¼ 0.
This can be seen more clearly in the right panel in a
logarithmic scale where the lines for n � 4 curve very
rapidly around that point, whereas for n ¼ 2; 3 they tend
to a constant.

VI. CONCLUSION

In this paper, we have used a numerical strategy to solve
the coupled wave equations obtained in the study of a
Proca field in the background of a D-dimensional
Schwarzschild black hole. Our results show some expected
features, such as the mass suppression of the Hawking
fluxes as the Proca mass is increased, but also some novel
features, such as the nonzero limit of the transmission
factor, for vanishing spatial momentum, in n ¼ 2; 3.
Moreover, for the first time a precise study of the longitu-
dinal degrees of freedom was carried out.

One application of our results will be to improve the
model in the CHARYBDIS2 Monte Carlo event generator
[22] currently in use by the ATLAS and CMS experiments.
This simulates the production and decay of higher dimen-
sional black holes in parton-parton collisions, a scenario to
be soon tested at the LHC 14 TeV center of mass energy
collisions. The Hawking evaporation can still be improved
greatly through the numerical study of various wave equa-
tions in black hole backgrounds, which approximate the
ones that could be produced at the LHC. This is illustrated
by our results in this paper, which show the inaccuracy of
the naive modeling of longitudinal modes by scalar fields,
an approximation that has been used in event generators.
For the phenomenology of TeV gravity scenarios, an im-
portant extension of the results herein is to consider a Proca
field on the brane for scenarios where the vector bosons are
confined within a thin brane. We hope to report on such
results soon.
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APPENDIX: FUNCTIONS AND MATRICES

MðrÞ � X2n�1

m¼0


my
m ¼ rðrn�1 � 1Þ2;

NðrÞ � X2n�2

m¼0

�my
m ¼ nðrn�1 � 1Þ2;

PðrÞ � X2n�1

m¼0

my
m ¼ �ð�2

0 þM2r2Þðr2n�3 � rn�2Þ

þ!2r2n�1;

QðrÞ � X2n�2

m¼0

�my
m ¼ i!rn�1ð2rn�1 � n� 1Þ;

~MðrÞ � X2n
m¼0

~
my
m ¼ r2ðrn�1 � 1Þ2;

~NðrÞ � X2n�1

m¼0

~�my
m ¼ ðn� 2Þrðrn�1 � 1Þ2;

~PðrÞ � X2n
m¼0

~my
m ¼ �ð�2

0 þM2r2Þðr2n�2 � rn�1Þ

þ!2r2n � ðn� 2Þðrn�1 � 1Þ2;
~QðrÞ � Xn

m¼0

~�my
m ¼ �i!ðn� 1Þrn:

The recurrence relations are

�0 ¼ �0;

�1 ¼�ð�ð�� 1Þ
3þ��2þ1þ�1Þ�0þ�0�1

�ð�þ 1Þ
2þ0

;

�j ¼!2þðn� 1Þ2ð�þ jÞð�þ j� 1Þ
Dj

fjþ i!ðn� 1Þ
Dj

~fj;

�j ¼!2þðn� 1Þ2ð�þ jÞð�þ j� 1Þ
Dj

~fjþ i!ðn� 1Þ
Dj

fj;

(A1)

with

Dj ¼ ðn� 1Þ2!2 þ ð!2 þ ðn� 1Þ2ð�þ jÞð�þ j� 1ÞÞ2;

fj ¼ � Xj
m¼1

½ð
mþ2ð�þ j�mÞð�þ j�m� 1Þ

þ �mþ1ð�þ j�mÞ þ mÞ�j�m þ �m�j�m�;

~fj ¼ � Xj
m¼1

½ð~
mþ2ð�þ j�mÞð�þ j�m� 1Þ

þ ~�mþ1ð�þ j�mÞ þ ~mÞ�j�m þ ~�m�j�m�:
The coefficients used in the asymptotic expansion in the
text are
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c� ¼ i

2!

�
��2

0 þ
nð2� nÞ

4
þ ð2!2 �M2Þð�2;n þ �3;nÞ þ

�
�i

M2

2k
�
�
M2

2k

�
2
�
�2;n

�
: (A2)

The matrices used in the text are as follows:

T ¼ 1

rðn�2Þ=2

ei�

r
e�i�

r ei� e�i�

ikei�

r � ike�i�

r

�
ikþ i’�n�2

2

r

�
ei� �

�
ikþ i’þn�2

2

r

�
e�i�

0 0

�
� k

! þ cþ
r

�
ei�

�
k
! þ c�

r

�
e�i�

0 0

�
� ik2

! þ ikcþ�k
!ði’�n�2

2 Þ
r

�
ei� �

�
ik2

! þ ikc�þk
!ði’þn�2

2 Þ
r

�
e�i�

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA
; (A3)

X ¼

0 1 0 0

� P
M � N

M � Q
M 0

0 0 0 1

� ~Q
~M

0 � ~P
~M

� ~N
~M

0
BBBBB@

1
CCCCCA; (A4)

and the two-vectors,

y� ¼

ffiffiffiffiffiffi
�2
0k

!

q
a�0ffiffiffiffiffi

!k
M2

q ��
�i’� n�2

2 þ i!c� � ik�n;2

�
a�0 � ika�1

�
0
BB@

1
CCA; (A5)

h� ¼
ffiffiffiffiffiffi
�2
0

q
�0

i!ð�1��ðn2�0þ�1��1ÞÞþ�2
0�0

M

0
B@

1
CA: (A6)
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