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1 Introduction and notation

1.1 Vector orthogonality

For a fixed p ∈ Z+, let us consider the sequence {Pn} of polynomials given by
the recurrence relation

xPn(x) = Pn+1(x) + an−p+1Pn−p(x) , n = p, p + 1, . . .

Pi(x) = xi , i = 0, 1, . . . , p











, (1)

where we assume aj 6= 0 for each j ∈ N. For m ∈ N and n = mp + i , i =
0, 1, . . . , p− 1, we can write



















xPmp(x) = Pmp+1(x) + a(m−1)p+1P(m−1)p(x)
...

xP(m+1)p−1(x) = P(m+1)p(x) + ampPmp−1(x) .

This is, denoting Bm(x) =
(

Pmp(x), Pmp+1(x), . . . , P(m+1)p−1(x)
)T

,

A =





















0 0 · · · 0
...

...
. . .

...

0 0 · · · 0

1 0 . . . 0





















, B =





















0 1
. . .

. . .

0 1

0





















and Cm = diag {a(m−1)p+1, a(m−1)p+2, . . . , amp}, we can rewrite (1) as

xBm(x) = ABm+1(x) + B Bm(x) + Cm Bm−1(x) , m ∈ N , (2)

with initial conditions B−1 = (0, . . . , 0)T
, B0(x) = (1, x, . . . , xp−1)

T
.

Let P be the vector space of polynomials with complex coefficients. It is well
known that, given the recurrence relation (1), there exist p linear moment
functionals u1, . . . , up from P to C such that for each s ∈ {0, 1, . . . , p− 1} the
following orthogonality relations are satisfied,

ui[xjPmp+s(x)] = 0 for







j = 0, 1, . . .m , i = 1, . . . , s

j = 0, 1, . . .m− 1 , i = s + 1, . . . , p
(3)

For details see [7, Th. 3.2], see also [5,8]. In all the following, for each se-
quence {an} in (1) we denote by u1, . . . , up a fixed set of moment functionals
verifying (3).
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We consider the space Pp = {(q1, . . . qp)
T : qi polynomial, i = 1, . . . , p} and

the space Mp×p of (p× p)-matrices with complex entries. From the existence
of the functionals u1, . . . , up, associated with the recurrence relation (1), we
can define the function W : Pp →Mp×p given by

W















q1

...

qp















=















u1[q1] . . . up[q1]
...

. . .
...

u1[qp] . . . up[qp]















. (4)

In particular, for m, j ∈ {0, 1, . . .} we have

W
(

xjBm

)

=















u1[xjPmp(x)] . . . up[xjPmp(x)]
...

. . .
...

u1[xjP(m+1)p−1(x)] . . . up[xjP(m+1)p−1(x)]















and the orthogonality conditions (3) can be reinterpreted as

W(xjBm) = 0 , j = 0, 1, . . . , m− 1 . (5)

For a fixed regular matrix, M ∈Mp×p, we define the function

U : Pp −→Mp×p

such that

U















q1

...

qp















= W















q1

...

qp















M ,















q1

...

qp















∈ Pp , (6)

being W given in (4). Briefly, we write

U =WM . (7)

We say that U , given by (6) and (7), is a vector of functionals defined by the
recurrence relation (2). In this case, we say that {Bm} is the sequence of vector
polynomials orthogonal with respect to U .

More generally speaking, for any set {v1, . . . , vp} of linear functionals defined
in the space P of polynomials, it is possible to define a function U : Pp −→
Mp×p like (6). It is done in the following definition.
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Definition 1 The function U : Pp −→Mp×p given by

U















q1

...

qp















=















v1[q1] . . . vp[q1]
...

. . .
...

v1[qp] . . . vp[qp]















MU

for each (q1, . . . , qp)
T ∈ Pp is called vector of functionals associated with the

linear functionals v1, . . . , vp and with the regular matrix MU ∈ Mp×p.

It is easy to see that, for any vector of functionals U , the following properties
are verified:

U(Q1 +Q2) = U(Q1) + U(Q2) , for Q1,Q2 ∈ P
p, (8)

U(M Q) = M U(Q) , for Q ∈ Pp and M ∈Mp×p . (9)

In our case, if U is a vector of functionals defined by the recurrence relation (2),
then U is associated with the moment functionals u1, . . . , up defined by the
recurrence relation (1). Therefore, the orthogonality conditions (5) are verified
for U . This is,

U(xjBm) = 0 , j = 0, 1, . . . , m− 1 . (10)

Using (8), (9) and the recurrence relation (2) we deduce

U (xmBm)=U
(

xm−1ABm+1 + xm−1BBm + xm−1CmBm−1

)

= AU
(

xm−1 Bm+1

)

+ B U
(

xm−1 Bm

)

+ Cm U
(

xm−1 Bm−1

)

.

Then, from (10), U (xm Bm) = Cm U (xm−1 Bm−1) and, iterating,

U (xm Bm) = CmCm−1 · · ·C1 U (B0) , (11)

where U (B0) = W (B0)MU and

W (B0) =















u1[1] . . . up[1]
...

. . .
...

u1[xp−1] . . . up[xp−1]















(12)

(see (4)). In the sequel we assume that W (B0) is a regular matrix. Then, the
vector of functionals U associated with the linear functionals u1, . . . , up and
with the matrix (W(B0))

−1 verifies

U (xj Bm) = ∆mδmj , m = 1, 2, . . . , j = 0, 1, . . . , m ,

∆m = CmCm−1 · · ·C1 , U (B0) = Ip .











(13)
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At the same time, given (q1, . . . , qp)
T ∈ Pp, for each i = 1, . . . , p we can write

qi(x) =
p
∑

k=1

α0
ikPk−1(x) +

p
∑

k=1

α1
ikPp+k−1(x) + · · ·+

p
∑

k=1

αm
ikPmp+k−1(x) , α

j
ik ∈ C ,

where m = max{m1, . . . , mp} and deg(qi) ≤ (mi + 1)p − 1 (we understand
α

j
ik = 0 when j > mi). In other words,

(q1, . . . , qp)
T =

m
∑

j=0

Dj Bj ,

being Dj =
(

α
j
ik

)

∈ Mp×p , j = 0, . . . , m. Then, due to (8) and (9), we

have that U : Pp −→ Mp×p is determined by (13). In the following, for each
sequence {an} defining the sequence of polynomials {Pn} in (1), we denote by
U this fixed vector of functionals.

We will use the vectorial polynomials

Pi = Pi(x) =
(

xip, xip+1, . . . , x(i+1)p−1
)T

, i = 0, 1, . . . .

(In particular, note that P0 = B0.) Also, for each vector of functionals V we
will use the matrices V (Pi). As in the scalar case (i.e. p = 1), we can define
the moments associated with the vector of functionals V.

Definition 2 For each m = 0, 1, . . ., the matrix V (xmP0) is called moment
of order m for the vector of functionals V.

1.2 Connection with operator theory

If {an} is a bounded sequence, then the infinite (p + 2)-band matrix

J =











































0 1
...

. . .
. . .

0 · · · 0 1

a1 0 · · · 0 1
. . .

. . .
. . .

. . .

ap 0 · · · 0 1
. . .

. . .
. . .

. . .











































(14)

induces a bounded operator in ℓ2 with regard to the standard basis. In this
case, we denote in the same way the operator and it matricial representation.
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When J is a bounded operator, then {z : |z| > ‖J‖} is contained in the
resolvent set. In this case we have

(zI − J)−1 =
∑

n≥0

Jn

zn+1
, |z| > ‖J‖ (15)

(see [9, Th. 3, p. 211]). Being e0 = (Ip, 0p, . . . )
T , we define the (p× p)-matrix

RJ(z) = 〈(zI − J)−1e0, e0〉 =
∑

n≥0

〈Jne0, e0〉

zn+1
, |z| > ‖J‖ , (16)

where we denote by 〈Me0, e0〉, for an infinite matrix M , the finite matrix given
by the formal product eT

0 Me0, this is, the (p × p)-matrix formed by the first
p rows and the first p columns of M .

If we rewrite the matrix J given in (14) as a blocked matrix,

J =





















B A

C1 B A

C2 B A

. . .
. . .

. . .





















,

then another way to express (2) is

J















B0

B1

...















= x















B0

B1

...















.

Analogously, we have

Jn















B0

B1

...















= xn















B0

B1

...















, n ∈ N , (17)

being

Jn =















Jn
11 Jn

12 · · ·

Jn
21 Jn

22 · · ·
...

...
. . .















an infinite blocked matrix and Jn
ij the (p× p)-block corresponding with the i

row and the j column. In particular, the numerators on the right hand side
of (16) are Jn

11 = eT
0 Jne0.
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Our main goal is to study the Bogoyavlenskii lattice,

ȧn(t) = an(t)

[

p
∑

i=1

an+i(t)−
p
∑

i=1

an−i(t)

]

(18)

being, here and in the sequel, aj = 0 when j ≤ 0 (see [3,4]). This dynamical
system was analyzed in [8] in the case am(t) > 0 , m ∈ N . We know (see [2])
that (18) can be rewritten in Lax pair form,

J̇ = [J, M ] , M = J
p+1
− , (19)

where J = J(t) is given by (14) for the sequence {an(t)}. Here, [J, M ] =
JM − MJ is the commutator of J and M , and J

p+1
− is the infinite matrix

(γij)i,j whose entry in the i-row and the j-column is γij = 0 , i ≤ j and γij =
βij , i > j , being Jp+1 = (βij)i,j the (p + 1)-power of J .

1.3 The main results

For each t ∈ R we consider the vector of functionals U = Ut defined by the
recurrence relation (2) when the sequence {an(t)} is used. This is,

Ut = Wt (Wt(B0))
−1

,

where Wt is given by (4) for the functionals u1
t , . . . , u

p
t . We are interested in

to study the evolution of RJ(z) and the vector of functionals Ut. Our main
result is the following.

Theorem 1 Assume that the sequence {an(t)} , n ∈ N , is bounded, i.e. there
exists M ∈ R+ such that |an(t)| ≤ M for all n ∈ N and t ∈ R , and an(t) 6= 0
for all n ∈ N and t ∈ R . Let U = Ut be the vector of functionals associated
with the recurrence relation (2). Then, the following conditions are equivalent:

(a) {an(t)} is a solution of (18).
(b) For each m, k = 0, 1, . . . , we have

d

dt
U
(

xk Pm

)

= U
(

xk+1Pm+1

)

− U
(

xk Pm

)

U (xP1) . (20)

(c) For each k = 0, 1, . . . , we have

d

dt
RJ(z) = RJ (z)

[

zp+1Ip − U(xP1)
]

−
p
∑

k=0

zp−k U
(

xk P0

)

(21)

for all z ∈ C such that |z| > ‖J‖.
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When the conditions (a), (b), or (c) of Theorem 1 hold, then we can obtain
explicitly the resolvent function in a neighborhood of z = ∞. We summarize
this fact in the following result.

Theorem 2 Under the conditions of Theorem 1, if {an(t)} is a solution
of (18) we have

RJ(z) = −ezp+1tS(z)e−
∫

J
p+1
11 dt (22)

for each z ∈ C such that |z| > ‖J‖, where S(z) = (sij(z)) is the (p×p)-matrix
defined by

sij(z) :=
p
∑

k=0

zp−k

∫

(

Jk
11

)

ij
e−zp+1te

∫

(J
p+1
11 )

jj
dt
dt , i, j = 1, . . . , p , (23)

and (Jn
11)ij represents the entry corresponding to the row i and the column j

in the (p× p)-block Jn
11.

Now we give a possible representation for the vector of functionals associated
with the solution for the integrable systems (18). Using the above notation, we
denote by U0 the vector of functionals defined by the recurrence relation (2)
for the sequence {an(0)}. Then, U0 is associated with the moment functionals
u1

0, . . . , u
0
p defined by (1) and verifying (3) (for t = 0). We define the linear

functionals exp+1tui
0 , i = 1, . . . , p, as

(

exp+1tui
0

)

[xj ] =
∑

k≥0

tk

k!
ui

0[x
(p+1)k+j ] , j = 0, 1, . . . . (24)

In particular, if J(0) is a bounded operator, then since [6, Th. 4, pag. 191] we
know that

|ui
0[x

(p+1)k+j ]| ≤ mij‖J(0)‖(p+1)k

and the sum in the right-hand side of (24) is well defined. Then, in this case
we have defined the vector of functionals, for all (q1, . . . , qp) ∈ P

p by

(

exp+1t U0

)















q1

...

qp















=















(

exp+1tu1
0

)

[q1] . . .
(

exp+1tu
p
0

)

[q1]
...

. . .
...

(

exp+1tu1
0

)

[qp] . . .
(

exp+1tu
p
0

)

[qp]















(W (B0))
−1

,

where W (B0) is given in (12).

Theorem 3 Let U = Ut be the vector of functionals associated with the re-
currence relation (2), and with the sequence of vector polynomials {Bm} . If
we have

Ut =Wt (Wt(B0))
−1

, with Wt = exp+1tU0 ,

then the sequence {an(t)}, defined by (11), verify (18).
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The rest of the paper is devoted to proving Theorems 1, 2, and 3. In section 2
we prove Theorem 1. (a) ⇔ (b) is proved in subsection 2.1 and (b) ⇔ (c)
is proved in subsection 2.2. We dedicate section 3 to the proof of Theorem 2
and, finally, in section 4 we prove Theorem 3.

In the sequel we assume the conditions of theorems 1 and 2, i.e. in (14) we
have a bounded matrix with entries an(t) , n ∈ N , such that an(t) 6= 0 , n ∈
N , t ∈ R.

2 Proof of Theorem 1

2.1 Evolution of the moments

In the following auxiliar result we determine the expression of the moment
U (Pn) = U (xn P0) in terms of the matrix J .

Lemma 1 For each n = 0, 1, . . . we have U (xn P0) = eT
0 Jne0 .

PROOF. We know that U (P0) = Ip (see (13)), then the moment of order 0 is
U (P0) = eT

0 J0e0 .

From (17),
∑

i≥1

Jn
1i Bi−1 = xn B0 . Then, using (8), (9) and (13),

U (xn B0) =
∑

i≥1

Jn
1i U (Bi−1) = Jn

11 ,

as we wanted to prove.

We need to analyze the matrix Jn and, in particular, the block Jn
11. We define

fi := (0, . . . , 0,
(i)

1 , 0, . . .) , i ∈ N .

Then, for each n ∈ N the formal product Jnfi is the i-th column of matrix Jn.
As in the case of aj, we will assume fi = 0 when i ≤ 0.

Lemma 2 With the above notation, for each i ∈ N and m = 0, 1, . . . we have

Jmfi =
m
∑

k=0

A
(m)
i,k fi+k(p+1)−m , (25)

9



where

A
(m)
i,0 = 1 , A

(m)
i,k =

∑

0≤j0≤···≤jk−1≤m−k

(

k−1
∏

r=0

ai+rp−jr

)

, k = 1, . . . , m . (26)

PROOF. We proceed by induction on m.

Firstly, for m = 1 we know

Jfi = fi−1 + aifi+p , i = 1, 2, . . . . (27)

(see (14)). Then, comparing (25) and (27) we deduce

A
(1)
i,0 = 1 and A

(1)
i,1 = ai , for i ∈ N

and, consequently, (25) holds.

Now, we assume that (25) is verified for a fixed m ∈ N. Then, for i ∈ N,

Jm+1fi =
m
∑

k=0

A
(m)
i,k Jfi+k(p+1)−m

=
m
∑

k=0

A
(m)
i,k

(

fi+k(p+1)−m−1 + ai+k(p+1)−mfi+k(p+1)−m+p

)

=
m
∑

k=0

A
(m)
i,k fi+k(p+1)−(m+1) +

m+1
∑

k=1

A
(m)
i,k−1ai+k(p+1)−p−(m+1)fi+k(p+1)−(m+1)

=
m+1
∑

k=0

A
(m+1)
i,k fi+k(p+1)−(m+1) , i = 1, 2, . . . .

Comparing the coefficients of fi+k(p+1)−(m+1) in the above expression,

A
(m+1)
i,k = A

(m)
i,k + ai+k(p+1)−p−(m+1)A

(m)
i,k−1 =

∑

0≤j0≤···≤jk−1≤m−k

(

k−1
∏

r=0

ai+rp−jr

)

+
∑

0≤j0≤···≤jk−2≤m−k+1

(

k−2
∏

r=0

ai+rp−jr

)

ai+(k−1)(p+1)−m , (28)

where we are taking A
(m)
i,m+1 = A

(m)
i,−1 = 0. But

∑

0≤j0≤···≤jk−2≤m−k+1

(

k−2
∏

r=0

ai+rp−jr

)

ai+(k−1)(p+1)−m

=
∑

0≤j0≤···≤jk−1≤m−k+1

(

k−1
∏

r=0

ai+rp−jr

)

−
∑

0≤j0≤···≤jk−1≤m−k

(

k−1
∏

r=0

ai+rp−jr

)

.
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Then, substituting in (28) we arrive at (25) in m + 1.

Remark 1 The coefficients A
(m)
i,k have just been defined only for m, i ∈ N and

k = 0, 1, 2, . . .m. In the sequel, we will take A
(m)
i,k = 0 for k > m , k < 0 , or

i ≤ 0.

Remark 2 In [2] the moments of the operator J were defined as

Skj = 〈J (p+1)k+j−1fj , f1〉 , k ≥ 0 , j = 1, 2, . . . , p .

Then, only the first row of U
(

x(p+1)k+j−1P0

)

was used there. With our nota-
tion, these vectorial moments are

Skj = A
((p+1)k+j−1)
j,k

(see [2, Th. 1, pag. 492]). As a consequence of Lemma 2, the so called genetic
sums associated to the sequence {an} can be expressed using (26). From this
we have

j
∑

i1=1

ai1

i1+p
∑

i2=1

ai2 · · ·
ik−1+p
∑

ik=1

aik =
∑

0≤j0≤···≤jk−1≤kp+j−1

(

k−1
∏

r=0

aj+rp−jr

)

In other words, Lemma 2 extends the concepts of genetic sums and vectorial
moments to the concept of matricial moments.

The next auxiliar result is used to prove the equivalence between (a) and (b)
in Theorem 1. Moreover, this lemma has independent interest. In fact, the
next result permits the inverse problem to be solved, restoring J from the
resolvent operator (see (14) and (15)).

Lemma 3 For m, i, k ∈ N we have

A
(m)
i,k − A

(m−1)
i−1,k = aiA

(m−1)
i+p,k−1 . (29)

PROOF. Using (25), A
(m)
i,k −A

(m−1)
i−1,k

=
∑

0≤j0≤···≤jk−1≤m−k

(

k−1
∏

r=0

ai+rp−jr

)

−
∑

0≤j0≤···≤jk−1≤m−k−1

(

k−1
∏

r=0

ai−1+rp−jr

)

=
∑

0≤j0≤···≤jk−1≤m−k

(

k−1
∏

r=0

ai+rp−jr

)

−
∑

1≤j0≤···≤jk−1≤m−k

(

k−1
∏

r=0

ai+rp−jr

)

=
∑

0≤j1≤···≤jk−1≤m−k

ai

(

k−1
∏

r=1

ai+rp−jr

)

,

and so we get the desired result.
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Now, we are ready to determine the main block of Jn.

Lemma 4

J
p+1
11 = diag {a1, a1 + a2, . . . , a1 + · · ·+ ap} . (30)

PROOF. It is sufficient to consider (25) for m = p + 1. In this case, the
entries of column Jp+1fi corresponding to the first p rows are given by the
coefficients A

(p+1)
i,k when k is such that i+k(p+1)− (p+1) ≤ p, this is, k = 1.

As a consequence of the above expression, we have

eT
0 J

p+1
− e0 = Op . (31)

We are going to prove (a) ⇒ (b) in Theorem 1. Assume that {an(t)} is a
solution of (18). Consequently, (19) is verifed. In the same way that in [1, p.
236], it is easy to see

d

dt
Jn = JnM −MJn .

Then,

eT
0

(

d

dt
Jn

)

e0 = eT
0 JnMe0 − eT

0 MJne0 . (32)

Let m, k ∈ {0, 1, . . .} be. For n = mp + k, from Lemma 1, and using the fact
that xmp P0 = Pm, we can write

eT
0

(

d

dt
Jn

)

e0 =
d

dt
U
(

xk Pm

)

. (33)

Moreover, using again Lemma 1, in the right-hand side of (20) we have

eT
0 J (m+1)p+k+1e0 −

(

eT
0 Jmp+ke0

) (

eT
0 Jp+1e0

)

. (34)

In other words, because of (32)-(34) it is sufficient to prove

eT
0 JnMe0 − eT

0 MJne0 = eT
0 J (m+1)p+k+1e0 −

(

eT
0 Jmp+ke0

) (

eT
0 Jp+1e0

)

. (35)

Consider Js as a blocked matrix. As was established in the proof of Lemma 1,
we denote by Js

ij the (p × p)-block corresponding with the i row and the j

column, and we use similar notation for M . Using (31), in the left-hand side
of (35) we have:

i) eT
0 MJne0 = M11J

n
11 =

(

J
p+1
−

)

11
Jn

11 = 0p, because M is a quasi-triangular

matrix, this is, the blocks Mij = 0p when i ≤ j.
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ii) eT
0 JnMe0 = eT

0 JnJ
p+1
− e0 = Jn

11

(

J
p+1
−

)

11
+
∑

j≥2

Jn
1j

(

J
p+1
−

)

j1
=
∑

j≥1

Jn
1j

(

J
p+1
−

)

j1
.

Then,
eT
0 JnMe0 − eT

0 MJne0 =
∑

j≥2

Jn
1j

(

J
p+1
−

)

j1
=
∑

j≥2

Jn
1jJ

p+1
j1 . (36)

In the right hand side of (35),

eT
0 J (m+1)p+k+1e0 −

(

eT
0 Jmp+ke0

) (

eT
0 Jp+1e0

)

= −Jn
11J

p+1
11 + J

n+p+1
11 = −Jn

11J
p+1
11 +

∑

j≥1

Jn
1jJ

p+1
j1 =

∑

j≥2

Jn
1jJ

p+1
j1

and (20) is proved.

To show (b)⇒ (a) we need to know the derivatives of coefficients A
(m)
i,k . From

the expression given in (25) for Jmfi, the i-th column of Jm, we denote by
(Jmfi)p the vector in Cp given by the first p entries in this column, this is,

(Jmfi)p :=
m
∑

k=0
1≤i+k(p+1)−m≤p

A
(m)
i,k fi+k(p+1)−m . (37)

Furthermore, as we saw in Lemma 1, another way to write (20) is

J̇m
11 = J

m+p+1
11 − Jm

11J
p+1
11 . (38)

The rest of the proof of (b) ⇒ (a) is an immediate consequence of the following
auxiliar result.

Lemma 5 Assume that (20) holds. Then we have:

• For i, k, m ∈ N such that 1 ≤ i + k(p + 1)−m ≤ p,

Ȧ
(m)
i,k = −(ai−p+1 + · · ·+ ai)A

(m)
i,k − A

(m+1)
i−p,k+1 + A

(m+p+1)
i,k+1 (39)

• (18) holds for each n ∈ N.

PROOF. We proceed by induction on i and n, proving (39) and (18) simul-
taneously.

1.- Firstly, we shall prove (39) for i ∈ {1, 2, . . . , p}. From (37), the derivative
of the first p entries in Jmfi are given by

m
∑

k=0
1≤i+k(p+1)−m≤p

Ȧ
(m)
i,k fi+k(p+1)−m .

13



Moreover, J
p+1
11 is a diagonal block (see (30)). Then, the i-th column of Jm

11J
p+1
11

is (a1 + · · ·+ ai) (Jmfi)p. Since (38),

m
∑

k=0
1≤i+k(p+1)−m≤p

Ȧ
(m)
i,k fi+k(p+1)−m =

(

Jm+p+1fi

)

p
− (a1 + · · ·+ ai) (Jmfi)p

=
m+p+1
∑

k=0
1≤i+k(p+1)−m−p−1≤p

A
(m+p+1)
i,k fi+k(p+1)−m−p−1

− (a1 + · · ·+ ai)
m
∑

k=0
1≤i+k(p+1)−m≤p

A
(m)
i,k fi+k(p+1)−m

=
m+p
∑

k=0
1≤i+k(p+1)−m≤p

A
(m+p+1)
i,k+1 fi+k(p+1)−m

− (a1 + · · ·+ ai)
m
∑

k=0
1≤i+k(p+1)−m≤p

A
(m)
i,k fi+k(p+1)−m . (40)

In the right hand side of (40) there is no term corresponding to k = m +
1, . . . , m + p, because in these cases i + k(p + 1)−m > p. Then,

m
∑

k=0
1≤i+k(p+1)−m≤p

Ȧ
(m)
i,k fi+k(p+1)−m

=
m
∑

k=0
1≤i+k(p+1)−m≤p

[

A
(m+p+1)
i,k+1 − (a1 + · · ·+ ai)A

(m)
i,k

]

fi+k(p+1)−m

and comparing the coefficients of fi+k(p+1)−m we deduce

Ȧ
(m)
i,k = A

(m+p+1)
i,k+1 − (a1 + · · ·+ ai)A

(m)
i,k ,

which is (39).

2.- We assume that there exists r ∈ N such that (39) is verified for each
i = (r− 1)p + 1, . . . rp. We will show that, under this premise, (18) is verified,
also, for each n = i = (r − 1)p + 1, . . . , rp.

Take k = 1 and m = rp+1 in (39). Then, 1 ≤ i+k(p+1)−m = i−(r−1)p ≤ p

and we have

Ȧ
(rp+1)
i,1 = −(ai−p+1 + · · ·+ ai)A

(rp+1)
i,1 − A

(rp+2)
i−p,2 + A

((r+1)p+2)
i,2 ,

14



this is,

rp
∑

j=0

ȧi−j = −(ai−p+1 + · · ·+ ai)
rp
∑

j=0

ai−j −A
(rp+2)
i−p,2 + A

((r+1)p+2)
i,2 . (41)

Moreover, taking k = 1 and m = rp in (39) we have 1 ≤ (i−1)+k(p+1)−m ≤
p and, consequently,

Ȧ
(rp)
i−1,1 = −(ai−p + · · ·+ ai−1)A

(rp)
i−1,1 − A

(rp+1)
i−p−1,2 + A

((r+1)p+1)
i−1,2 ,

this is,

rp
∑

j=1

ȧi−j = −(ai−p + · · ·+ ai−1)
rp
∑

j=1

ai−j − A
(rp+1)
i−p−1,2 + A

((r+1)p+1)
i−1,2 . (42)

Subtracting (41) and (42), and taking into account (29), we arrive at

ȧi = ai [(ai+1 + · · ·+ ai+p)− (ai−1 + · · ·+ ai−p)] ,

which is (18) in n = i.

3.- Finally, we prove that if there exists s ∈ N such that (39) and (18) are
verified for n = i = 1, 2, . . . , sp, then (39) is verified also for i + p.

Take i ∈ N in the above conditions. Let k, m ∈ N be such that

1 ≤ i + (k + 1)(p + 1)− (m + 1) = (i− 1) + (k + 1)(p + 1)−m ≤ p . (43)

Taking derivatives in (29),

ȧiA
(m)
i+p,k + aiȦ

(m)
i+p,k = Ȧ

(m+1)
i,k+1 − Ȧ

(m)
i−1,k+1 .

Therefore, from (39) and (18),

aiȦ
(m)
i+p,k = −ai [(ai+1 + · · ·+ ai+p)− (ai−1 + · · ·+ ai−p)] A

(m)
i+p,k − ai−pA

(m+1)
i,k+1

− (ai−p+1 + · · ·+ ai)A
(m+1)
i,k+1 + (ai−p + · · ·+ ai−1)A

(m)
i−1,k+1 + aiA

(m+p+1)
i+p,k+1

= −ai(ai+1 + · · ·+ ai+p)A
(m)
i+p,k − aiA

(m+1)
i,k+1 + aiA

(m+p+1)
i+p,k+1 .

Then, we arrive at (39) for i + p.

We have verified (39) for i + p when i = 1, . . . , sp is such that (43) holds.
But (43) can be rewritten as

1 ≤ (i + p) + k(p + 1)−m ≤ p .
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2.2 Resolvent operator and moments

We are going to prove the equivalence between (b) and (c) in Theorem 1.
Firstly, we assume that (20) is verified and we will show (21).

From Lemma 1 and (16),

RJ(z) =
∑

n≥0

eT
0 Jne0

zn+1
=

p−1
∑

k=0





∑

m≥0

U
(

xk Pm

)

zmp+k+1



 , |z| > ‖J‖ . (44)

We define

R
(k)
J (z) :=

∑

m≥0

U(xk Pm)

zmp+k+1
, k = 0, 1, . . . .

Then, from (44)

RJ(z) =
p−1
∑

k=0

R
(k)
J (z) , |z| > ‖J‖ ,

and using (20)

d

dt
RJ(z) =

p−1
∑

k=0

∑

m≥0

U
(

xk+1Pm+1

)

− U
(

xk Pm

)

U (xP1)

zmp+k+1

=
p−1
∑

k=0

∑

m≥0

U
(

xk+1Pm+1

)

zmp+k+1
−RJ (z)U (xP1) , (45)

where

∑

m≥0

U
(

xk+1Pm+1

)

zmp+k+1
= zp+1

∑

m≥0

U
(

xk+1Pm+1

)

z(m+1)p+(k+1)+1

= zp+1



R
(k+1)
J (z)−

U
(

xk+1P0

)

zk+2



 = zp+1R
(k+1)
J (z)− zp−k−1 U

(

xk+1P0

)

.

Substituting in (45),

d

dt
RJ (z)

= −RJ (z)U (xP1) + zp+1
p−1
∑

k=0

R
(k+1)
J (z)−

p−1
∑

k=0

zp−k−1U
(

xk+1P0

)

= −RJ (z)U (xP1) + zp+1
[

RJ(z) +R
(p)
J (z)−R

(0)
J (z)

]

−
p−1
∑

k=0

zp−k−1 U
(

xk+1P0

)

, (46)
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where it is easy to see that

R
(p)
J (z) = R

(0)
J (z)−

U (P0)

z
.

From this we arrive at (21) .

In the second place, we prove (c) ⇒ (b) in Theorem 1. For z ∈ C such that
|z| > ‖J‖ we have

zp+1RJ(z) =
p−1
∑

k=0

∑

m≥0

U
(

xk Pm

)

z(m−1)p+k

=
p−1
∑

k=0

U
(

xk P0

)

z−p+k
+ U (P1) +

∑

m≥2

U (Pm)

z(m−1)p
+

p−1
∑

k=1

∑

m≥1

U
(

xk Pm

)

z(m−1)p+k
.

From this and the fact that

U (Pj+1) = U (xp Pj) , j = 0, 1, . . . ,

we obtain

zp+1RJ (z) =
p
∑

k=0

U
(

xk P0

)

z−p+k
+
∑

m≥0

U (Pm+2)

z(m+1)p
+

p−1
∑

k=1

∑

m≥0

U
(

xk Pm+1

)

zmp+k

=
p
∑

k=0

U
(

xk P0

)

z−p+k
+

p
∑

k=1

∑

m≥0

U
(

xk Pm+1

)

zmp+k

=
p
∑

k=0

U
(

xk P0

)

z−p+k
+

p−1
∑

k=0

∑

m≥0

U
(

xk+1Pm+1

)

zmp+k+1
.

Then, in the right-hand side of (21) we have

RJ(z)
[

zp+1Ip − U(xP1)
]

−
p
∑

k=0

zp−k U
(

xk P0

)

= −RJ (z)U(xP1) +
p−1
∑

k=0

∑

m≥0

U
(

xk+1Pm+1

)

zmp+k+1

and, consequently,

d

dt
RJ(z) =

p−1
∑

k=0

∑

m≥0

U
(

xk+1Pm+1

)

− U
(

xk Pm

)

U (xP1)

zmp+k+1
(47)
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(see (44)). Moreover, taking derivatives in (44) we have

d

dt
RJ (z) =

p−1
∑

k=0

∑

m≥0

d

dt

U
(

xk Pm

)

zmp+k+1
. (48)

Comparing (47) and (48) in |z| > ‖J‖ we arrive at (20), as we wanted to show.

3 Proof of Theorem 2

Let {an(t)} be a solution of (18). In this section we assume that the conditions
of Theorem 1 are verified. Therefore, (21) holds. Using this fact, we shall prove
Theorem 2, obtaining a new expression for RJ (z). We remark that the right
hand side of (22) is completely known, being the (p × p)-blocks used in (23)
given by Lemma 2. In particular, J

p+1
11 is explicitly determined in Lemma 4.

Note that U (xP1) − zp+1Ip = U (xp+1P0) − zp+1Ip is a diagonal matrix (see
Lemma 1 and (30)). Then, writing

RJ (z) =















r11(z) · · · r1p(z)
...

. . .
...

rn1(z) · · · rpp(z)















,

due to (21) we have

d

dt
rij(z) =

[

zp+1 −
(

J
p+1
11

)

jj

]

rij(z)−
p
∑

k=0

zp−k
(

Jk
11

)

ij
, i, j = 1, 2, . . . , p , (49)

where (Jm
11)sj denotes the entry corresponding to the row s and the column j

of matrix Jm
11. It is well known that the solution of (49) is

rij(z) = −ezp+1te
−
∫

(J
p+1
11 )

jj
dt

[

p
∑

k=0

zp−k

∫

(

Jk
11

)

ij
e−zp+1te

∫

(J
p+1
11 )

jj
dt
dt

]

.

So, if we take

sij :=
p
∑

k=0

zp−k

∫

(

Jk
11

)

ij
e−zp+1te

∫

(J
p+1
11 )

jj
dt
dt , S := (sij)

p

i,j=1 ,

we can express RJ(z) as the product of a diagonal matrix by the matrix S.
This means we have proved (22).

18



4 Proof of the Theorem 3

Consider the matrix

S0 =
(

exp+1t U0(B0)
)−1

(50)

and let Ut =
(

exp+1t U0

)

S0 be the vector of functionals in the conditions of

Theorem 3. We will prove that this vector of functionals verify (20). For k, m =
0, 1, . . . , we know

Ut

(

xk Pm

)

=
(

exp+1t U0

) (

xk Pm

)

S0 . (51)

Because of S0 S
−1
0 = Ip we have

dS0

dt
= −S0

dS−1
0

dt
S0 . (52)

Moreover, from (24) and (50),

dS−1
0

dt
=















(exp+1tu1
0)[x

p+1] · · · (exp+1tu
p
0)[x

p+1]
...

. . .
...

(exp+1tu1
0)[x

2p] · · · (exp+1tu
p
0)[x

2p]















=
(

exp+1t U0

)

(xP1) . (53)

Then, taking derivatives in (51), and taking into account (52) and (53),

d

dt
Ut

(

xk Pm

)

=

[

d

dt

(

exp+1t U0

) (

xk Pm

)

]

S0 −
(

exp+1t U0

) (

xk Pm

)

S0
dS−1

0

dt
S0

=
(

exp+1t U0

) (

xk+1Pm+1

)

S0 − U0

(

xk Pm

)

S0

(

exp+1t U0

)

(xP1) S0

= Ut

(

xk+1Pm+1

)

− Ut

(

xk Pm

)

Ut (xP1)

and (20) holds.

Now, using the hypothesis we get from Theorem 1 that the sequence {an(t)},
defined by (11) with Ut(B0) = Ip, verify (18).
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