Riemann-Hilbert problem associated with Angelesco systems

A. Branquinho ${ }^{\mathrm{a}, 1, *}$, U. Fidalgo ${ }^{\mathrm{b}, 2}$, and A. Foulquié Moreno ${ }^{\mathrm{c}, 3}$
${ }^{a}$ CMUC, Department of Mathematics, University of Coimbra, Largo D. Dinis, 3001-454 Coimbra, Portugal.
${ }^{\mathrm{b}}$ Departamento de Matemáticas, Universidad Carlos III de Madrid, c/ Universidad 30, 28911 Leganés, Spain.
${ }^{\text {c Department of Mathematics, University of Aveiro, 3810-193 Aveiro, Portugal. }}$

Abstract

Angelesco systems of measures with Jacobi type weights are considered. For such systems, strong asymptotics for the related multiple orthogonal polynomials are found as well as the Szegő-type functions. In the procedure, an approach from Riemann-Hilbert problem plays a fundamental role.

Key words: approximation by rational function, rate of convergence, simultaneous approximation, 1991 MSC: 41A20,41A25,41A28

1 The statement of the Riemann-Hilbert problem

In this work the problem considered is a particular case of the general situation analyzed in [2]. However, due to the simplicity of the case considered, we are able to compute the Szegő-type functions in great detail (cf. (11)).

[^0]Let $\Delta_{1}=[-\lambda,-1]$ and $\Delta_{2}=[1, \lambda]$ be two intervals on the real line \mathbb{R}. For each $j=1,2$, take a holomorphic function h_{j}, on a neighborhood $\mathcal{V}_{h_{j}}$ of Δ_{j}, i.e. $h_{j} \in H\left(\mathcal{V}_{h_{j}}\right)$. We also require that such function h_{j} does not vanishes on $\mathcal{V}_{h_{j}}$, acquiring only positive values on Δ_{j}. Observe that $1 / h_{j} \in H\left(\mathcal{V}_{h_{j}}\right), j=1,2$. Let us define the system of measures (σ_{1}, σ_{2}) where σ_{1} and σ_{2} have the differential form

$$
d \sigma_{j}(x)=\frac{h_{j}(x) d x}{\sqrt{(\lambda-|x|)(|x|-1)}}, x \in \Delta_{j}, j=1,2
$$

This system $\left(\sigma_{1}, \sigma_{2}\right)$ belongs to the class of Angelesco systems introduced by Angelesco in [1]. Fix a multi-index $\mathbf{n}=\left(n_{1}, n_{2}\right)$, we say that a polynomial $Q_{\mathrm{n}} \not \equiv 0$ is a type II multiple-orthogonal polynomial corresponding to a system $\left(\sigma_{1}, \sigma_{2}\right)$, if $\operatorname{deg} Q_{\mathbf{n}} \leq|\mathbf{n}|=n_{1}+n_{2}$ and $Q_{\mathbf{n}}$ satisfies the following orthogonality conditions

$$
\begin{equation*}
\int_{\Delta_{j}} x^{\nu} Q_{\mathbf{n}}(x) d \sigma_{j}(x)=0, \nu=0, \ldots, n_{j}-1, j=1,2 \tag{1}
\end{equation*}
$$

It is well known (see [1]) that for any multi-index $\mathbf{n}=\left(n_{1}, n_{2}\right)$, the polynomial $Q_{\mathbf{n}}$ has for each $j=1,2$, exactly n_{j} simple zeros lying in the interior set of Δ_{j}, which we represent by $\stackrel{\circ}{\Delta}_{j}$. We will denote the function of the second kind

$$
\begin{equation*}
R_{\mathbf{n}}^{j}(z)=\frac{1}{2 \pi i} \int_{\Delta_{j}} Q_{\mathbf{n}}(x) \frac{d \sigma_{j}(x)}{x-z} \tag{2}
\end{equation*}
$$

Let us take a subset of multi-indices $\Lambda=\{\mathbf{n}=(n, n): n \in \mathbb{Z}\}$. In the present article we obtain results about the strong asymptotics of the sequence of multiorthogonal polynomials $\left\{Q_{\mathbf{n}}: \mathbf{n} \in \Lambda\right\}$. An effective method for such study with this kind of so "very nice" measures, is analyzing the Riemann-Hilbert problem for multi-orthogonal polynomials, which was introduced in [12]. Let us consider a 3×3 matrix, Y, whose entries are complex functions $Y_{s, k}: \mathbb{C} \backslash\left(\Delta_{1} \cup \Delta_{2}\right) \rightarrow \mathbb{C}$, $s, k=1,2,3$. Given a point $x \in \stackrel{\circ}{\Delta}_{1} \cup \stackrel{\circ}{\Delta}_{2}$, the following matricial limits, where $z \in \mathbb{C} \backslash\left(\Delta_{1} \cup \Delta_{2}\right)$ tending to x, represent the formal pointwise non tangential limits of all entries of Y at the same time:

$$
\lim _{z \rightarrow x} Y(z)=Y_{+}(x), \Im m(z)>0 \quad \text { and } \quad \lim _{z \rightarrow x} Y(z)=Y_{-}(x), \Im m(z)<0
$$

Let $\delta_{s, k}: \mathbb{N}^{2} \rightarrow\{0,1\}$ denote the Kronecker delta function, i.e. $\delta_{s, k}=0$ when $s \neq k$, and $\delta_{s, s}=1, s, k \in \mathbb{N}$. Let us look for a matrix function Y, which satisfies the following conditions:
(1) The entries of $Y, Y_{s, k}$, belongs to $H\left(\mathbb{C} \backslash\left(\Delta_{1} \cup \Delta_{2}\right)\right)$, which we write as $Y \in H\left(\mathbb{C} \backslash\left(\Delta_{1} \cup \Delta_{2}\right)\right) ;$
(2) For each $\Delta_{j}, j=1,2$, the so called jump condition takes place

$$
Y_{+}(x)=Y_{-}(x)\left(\begin{array}{ccc}
1 \frac{\delta_{1, j} h_{1}(x)}{\sqrt{(\lambda-|x|)(1-|x|)}} & \frac{\delta_{2, j} h_{2}(x)}{\sqrt{(\lambda-|x|)(1-|x|)}} \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right), x \in \grave{\Delta}_{j}
$$

(3) Given a multi-index $\mathbf{n}=(n, n) \in \Lambda$, we require the following asymptotic condition at infinity,

$$
Y(z)\left(\begin{array}{ccc}
z^{-2 n} & 0 & 0 \\
0 & z^{n} & 0 \\
0 & 0 & z^{n}
\end{array}\right)=\mathbb{I}+\mathcal{O}(1 / z) \quad \text { as } \quad z \rightarrow \infty
$$

where \mathbb{I} is the identity matrix of size 3×3;
(4) For each $i, j=1,2$, we set the following behavior around the endpoints $c_{1,1}=-\lambda, c_{2,1}=-1, c_{1,2}=1$ and $c_{2,2}=\lambda$,

$$
Y(z)=\mathcal{O}\left(\begin{array}{l}
1 \delta_{2, j}+\frac{\delta_{1, j}}{\sqrt{\left|z-c_{i, j}\right|}} \delta_{1, j}+\frac{\delta_{2, j}}{\sqrt{\left|z-c_{i, j}\right|}} \\
1 \delta_{2, j}+\frac{\delta_{1, j}}{\sqrt{\left|z-c_{i, j}\right|}} \delta_{1, j}+\frac{\delta_{2, j}}{\sqrt{\left|z-c_{i, j}\right|}} \\
1 \delta_{2, j}+\frac{\delta_{1, j}}{\sqrt{\left|z-c_{i, j}\right|}} \delta_{1, j}+\frac{\delta_{2, j}}{\sqrt{\left|z-c_{i, j}\right|}}
\end{array}\right), \quad \text { as } z \rightarrow c_{i, j}
$$

This problem, which consists in finding the matrix function Y, was called in [12] a Riemann-Hilbert problem for type II multiple orthogonal polynomials, and for the system of measures $\left(\sigma_{1}, \sigma_{2}\right)$, RHP in short. The solution Y is unique and has the form

$$
Y(z)=\left(\begin{array}{ccc}
Q_{\mathbf{n}}(z) & R_{\mathbf{n}}^{1}(z) & R_{\mathbf{n}}^{2}(z) \tag{3}\\
d_{1} Q_{\mathbf{n}_{-}^{1}}(z) & d_{1} R_{\mathbf{n}_{-}^{1}}^{1}(z) & d_{1} R_{\mathbf{n}_{-}^{1}}^{2}(z) \\
d_{2} Q_{\mathbf{n}_{-}^{2}}(z) & d_{2} R_{\mathbf{n}_{-}^{2}}^{1}(z) & d_{2} R_{\mathbf{n}_{-}^{2}}^{2}(z)
\end{array}\right)
$$

with

$$
d_{j}^{-1}=-\frac{1}{2 \pi i} \int_{\Delta_{j}} x^{n-1} Q_{\mathbf{n}_{-}^{j}}(x) d \sigma_{j}(x),
$$

where $\mathbf{n}_{-}^{1}=(n-1, n)$ and $\mathbf{n}_{-}^{2}=(n, n-1)$.
The key of our procedure is inspired in the works $[2,3,9,10]$ and it is based in finding the relationship between Y and a matrix function R which is the solution of the following RHP:
(1) $R: \mathbb{C} \rightarrow \mathbb{C}^{3 \times 3}$ belongs to $H(\mathbb{C} \backslash \gamma)$;
(2) $R_{+}(\xi)=R_{-}(\xi) V_{n}(\xi), \xi \in \gamma$;
(3) $R(z) \rightarrow \mathbb{I}$ as $z \rightarrow \infty$;
where $V_{n} \in H(\mathcal{A})$, with $\mathcal{A} \subset \mathbb{C}$ a certain domain, $V_{n}=\mathbb{I}+\epsilon_{n}$, such that $\epsilon_{n} \rightarrow 0$ uniformly on compact subsets of \mathcal{A} as $n \rightarrow \infty$, and γ is a contour or system of contours, that is contained in \mathcal{A}. In this case we can assure that

$$
R=\mathbb{I}+\mathcal{O}\left(\epsilon_{n}\right) .
$$

The RHP for Y is not normalized in the sense that the conditions (3) at infinity for Y and R are different. In order to normalize the RHP, we are going to modify Y in such a way that we set another RHP with the same contours (possibly different jump conditions), for which the solution tends to the identity matrix as $z \rightarrow \infty$. For normalizing we need to take into account the behavior of $Y(z)$ for large z. This behavior depends on the distribution of the zeros of the multiple-orthogonal polynomials. The zero distribution of the orthogonal polynomials is usually given by an extremal problem in logarithmic potential theory. In section 2 we introduce some concepts and results which we will need about this theory and we will normalize the Riemann-Hilbert problem at infinity. In section 3 such a Riemann-Hilbert problem with oscillatory and exponentially decreasing jumps can be analyzed by using the steepest descent method introduced by Deift and Zhou (see [5,6]). The first work such that the orthogonal polynomials appear as solution of a Riemann-Hilbert problem is [7], and in [4] these ideas were for the first time applied to get strong asymptotics for orthogonal polynomials.

2 The equilibrium problem and the normalization at infinity

Let us fix $j \in\{1,2\}$. $\mathcal{M}_{1 / 2}\left(\Delta_{j}\right)$ denotes the set of all finite Borel measures whose supports, i.e. $\operatorname{supp}(\cdot)$, are contained in Δ_{j} with total variation $1 / 2$. Take $\mu_{j} \in \mathcal{M}_{1 / 2}\left(\Delta_{j}\right)$ and define its logarithmic potential as follows

$$
V^{\mu_{j}}(z)=\int \log \frac{1}{|z-x|} d \mu_{j}(x), \quad z \in \mathbb{C} .
$$

For each pair of measures $\left(\mu_{1}, \mu_{2}\right)$, where $\mu_{j} \in \mathcal{M}_{1 / 2}\left(\Delta_{j}\right), j=1,2$, we define the quantities

$$
m_{j}\left(\mu_{1}, \mu_{2}\right)=\min _{x \in \Delta_{j}}\left(2 V^{\mu_{j}}(x)+V^{\mu_{k}}(x)\right), j, k=1,2, j \neq k
$$

The following Proposition is deduced immediately from the results of [8].
Proposition 1 There exists a unique pair $\left(\bar{\mu}_{1}, \bar{\mu}_{2}\right) \in \mathcal{M}_{1 / 2}\left(\Delta_{1}\right) \times \mathcal{M}_{1 / 2}\left(\Delta_{2}\right)$,
which satisfies for $j, k=1,2$

$$
2 V^{\bar{\mu}_{j}}(x)+V^{\bar{\mu}_{k}}(x)=m_{j}\left(\bar{\mu}_{1}, \bar{\mu}_{2}\right)=m_{j}, x \in \operatorname{supp}\left(\bar{\mu}_{j}\right)=\Delta_{j}, j \neq k .
$$

For each $j=1,2$ the measure $\bar{\mu}_{j}$ is absolutely continuous and has the following differential form

$$
d \bar{\mu}_{1}(x)=\frac{\rho_{1}(x) d x}{\sqrt{(\lambda-|x|)(|x|-1)}}, \quad d \bar{\mu}_{2}(x)=\frac{\rho_{2}(x) d x}{\sqrt{(\lambda-|x|)(|x|-1)}},
$$

where ρ_{j} is a function which has an analytic continuation to a neighborhood $\mathcal{V}_{\rho_{j}}$ of the interval Δ_{j}.

In what follows we consider $\mathcal{V}_{j}=\mathcal{V}_{h_{j}} \cap \mathcal{V}_{\rho_{j}}$. The pair $\left(\bar{\mu}_{1}, \bar{\mu}_{2}\right)$ is called extremal or equilibrium pair of measures with respect to $\left(\Delta_{1}, \Delta_{2}\right)$. Let us denote for each $j=1,2$ the analytic potentials

$$
g_{j}(z)=\int_{\Delta_{j}} \log (z-x) d \bar{\mu}_{j}(x)=-V^{\bar{\mu}_{j}}(z)+i \int_{\Delta_{j}} \arg (z-x) d \mu_{j}(x)
$$

where arg denotes the principal argument function.
Substituting the logarithmic potential in Proposition 1 we obtain for each $j, k=1,2$ with $j \neq k$ that

$$
-\left(g_{j+}(x)+g_{j-}(x)\right)-g_{k-}(x)=m_{j}, \quad x \in \Delta_{j} .
$$

Observe that if $c_{1,1}=-\lambda, c_{2,1}=-1, c_{1,2}=1$ and $c_{2,2}=\lambda$, then

$$
g_{j+}(x)-g_{j-}(x)=\left\{\begin{array}{lll}
0 & \text { if } \quad c_{2, j} \leq x \\
i \pi & \text { if } \quad c_{1, j} \geq x \\
2 i \pi \int_{x}^{c_{2, j}} d \bar{\mu}_{j}(t) & \text { if } \quad x \in \Delta_{j}
\end{array}\right.
$$

Let us introduce the matrices

$$
G(z)=\left(\begin{array}{ccc}
e^{-n\left(g_{1}(z)+g_{2}(z)\right)} & 0 & 0 \tag{4}\\
0 & e^{n g_{1}(z)} & 0 \\
0 & 0 & e^{n g_{2}(z)}
\end{array}\right) \quad \text { and } \quad L=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & e^{-n m_{1}} & 0 \\
0 & 0 & e^{-n m_{2}}
\end{array}\right) .
$$

We define the matrix function $T=L Y G L^{-1}$, where L, G are as in (4) and Y is given by (3). Hence T is the unique solution of the RHP:
(1) $T \in H\left(\mathbb{C} \backslash\left(\Delta_{1} \cup \Delta_{2}\right)\right)$;
(2) $T_{+}(x)=T_{-}(x) M(x), x \in \stackrel{\circ}{\Delta}_{1} \cup{\stackrel{\circ}{\Delta_{2}}}$;
(3) $T(z)=\mathbb{I}+\mathcal{O}(1 / z)$ as $z \rightarrow \infty$;
(4) T and Y have the same behavior on the endpoints of the intervals Δ_{j}, for $j=1,2$;
where the jump matrix M has the form

$$
M(x)=\left(\begin{array}{ccc}
e^{-2 n i \pi \int_{x}^{c_{2, j}} d \bar{\mu}_{j}(t)} & \frac{\delta_{j, 1} h_{1}(x)}{\sqrt{(\lambda-|x|)(x \mid-1)}} & \frac{\delta_{j, 2} h_{2}(x) d x}{\sqrt{(\lambda-|x|)(|x|-1)}} \tag{5}\\
0 & e^{2 n \delta_{j, 1} i \pi \int_{x}^{c_{2,1}} d \bar{\mu}_{1}(t)} & 0 \\
0 & 0 & e^{2 n \delta_{j, 2} i \pi \int_{x}^{c_{2,2} d \bar{\mu}_{2}(t)}}
\end{array}\right)
$$

with $x \in \stackrel{\circ}{\Delta}_{j}$.

3 The opening of the lens

Let us consider

$$
\phi_{1}(z)=-\pi \int_{z}^{-1} \frac{\rho_{1}(\zeta) d \zeta}{\sqrt{(\zeta+\lambda)(\zeta+1)}}, z \in \mathcal{V}_{1}
$$

and

$$
\phi_{2}(z)=-\pi \int_{z}^{\lambda} \frac{\rho_{2}(\zeta) d \zeta}{\sqrt{(\zeta-\lambda)(\zeta-1)}}, z \in \mathcal{V}_{2}
$$

We have considered $\sqrt{(\zeta+\lambda)(\zeta+1)}$ and $\sqrt{(\zeta-\lambda)(\zeta-1)}$ as analytic functions on $\mathbb{C} \backslash \Delta_{1}$ and $\mathbb{C} \backslash \Delta_{2}$, respectively, where we have taken the branches which are positive for real $\zeta>-1$ and $\zeta>\lambda$, respectively. Observe that for each $j=1,2$, the function $\phi_{j} \in H\left(\mathcal{V}_{j} \backslash \Delta_{j}\right)$, the real part of the functions $\phi_{j \pm}$ vanish on $\Delta_{j}, \Re e\left(\phi_{j \pm}\right)(x)=0, x \in \Delta_{j}$, and their derivatives

$$
\phi_{j \pm}^{\prime}(x)=\mp i \pi \frac{\rho_{j}(x)}{\sqrt{(\lambda-|x|)(|x|-1)}} .
$$

By the Cauchy-Riemann conditions we have that

$$
\pm \frac{\partial \Re e \phi_{ \pm}}{\partial y}(x)>0, x \in \Delta_{j}
$$

Since $\Re e \phi_{j}$ is a harmonic function on $\mathcal{V}_{j} \backslash \Delta_{j}$ we can assure that $\Re e \phi_{j}(z)>0$, $z \in \mathcal{V}_{j} \backslash \Delta_{j}$.

Factorize the jump matrix function M in (5) as follows

$$
M(x)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
\frac{\delta_{j, 1} e^{-2 n \phi_{1}-(x)} \sqrt{(\lambda-|x|)(|x|-1)}}{h_{1}(x)} & 1 & 0 \\
\frac{\delta_{j, 2} e^{-2 n \phi_{2}-(x)} \sqrt{(\lambda-|x|)(|x|-1)}}{h_{2}(x)} & 0 & 1
\end{array}\right)
$$

$$
\begin{aligned}
& 0 \frac{\delta_{j, 1} h_{1}(x)}{\sqrt{(\lambda-|x|)(|x|-1)}} \\
& \times\left(\begin{array}{ccc}
\frac{\delta_{j, 2} h_{2}(x)}{\sqrt{(\lambda-|x|)(|x|-1)}} \\
-\frac{\delta_{1, j} \sqrt{(\lambda-|x|)(|x|-1)}}{h_{1}(x)} & \delta_{j, 2} & 0 \\
-\frac{\delta_{2, j} \sqrt{(\lambda-x \mid)(|x|-1)}}{h_{2}(x)} & 0 & \delta_{j, 1}
\end{array}\right) \\
& \times\left(\begin{array}{ccc}
\frac{1}{\frac{\delta_{j, 1} e^{-2 n \phi_{1+}(x)} \sqrt{(\lambda-|x|)(|x|-1)}}{h_{1}(x)}} 1 & 0 \\
\frac{\delta_{j, 2 e^{-2 n \phi_{2+}+(x)} \sqrt{(\lambda-|x|)(|x|-1)}}^{h_{2}(x)}}{l} & 0 & 1
\end{array}\right) .
\end{aligned}
$$

Now we are going to follow a procedure analogous to the one in [3]. For each $j=$ 1,2 let us fix a closed curve γ_{j} contained in \mathcal{V}_{j}, with the clockwise orientation. Set Γ_{j} the bounded connected component of $\mathbb{C} \backslash \gamma_{j}$. Let us introduce the matrix function S, defined by

$$
S(z)=T(z)\left(\begin{array}{ccc}
1 & 0 & 0 \\
\frac{i \delta_{1, j} e^{-2 n \phi_{1}(z)} \sqrt{(z+\lambda)(z+1)}}{h_{1}(z)} & 1 & 0 \\
\frac{i \delta_{2, j} e^{-2 n \phi_{2}(z)} \sqrt{(z-\lambda)(z-1)}}{h_{2}(z)} & 0 & 1
\end{array}\right), z \in \Gamma_{j}
$$

and $S(z)=T(z), z \in \mathbb{C} \backslash \bar{\Gamma}_{j}$.
The matrix function S satisfies the RHP:
(1) $S \in H\left(\mathbb{C} \backslash \cup_{j=1,2}\left(\Delta_{j} \cup \gamma_{j}\right)\right)$;
(2) The jump conditions $j=1,2$ are,

$$
S_{+}(x)=S_{-}(x)\left(\begin{array}{ccc}
0 & \frac{\delta_{1, j} h_{1}(x)}{\sqrt{(\lambda-|x|)(|x|-1)}} & \frac{\delta_{2, j} h_{2}(x)}{\sqrt{(\lambda-|x|)(|x|-1)}} \\
-\frac{\delta_{1, j} \sqrt{(\lambda-|x|)(|x|-1)}}{h_{1}(x)} & \delta_{2, j} & 0 \\
-\frac{\delta_{2, j} \sqrt{(\lambda-|x|)(|x|-1)}}{h_{2}(x)} & 0 & \delta_{1, j}
\end{array}\right),
$$

when $x \in \stackrel{\circ}{\Delta}_{j}$, and if $z \in \gamma_{j}$,

$$
S_{+}(z)=S_{-}(z)\left(\begin{array}{ccc}
1 & 0 & 0 \\
\frac{i \delta_{1, j} e^{-2 n \phi_{1}(z)} \sqrt{(z+\lambda)(z+1)}}{h_{1}(z)} & 1 & 0 \\
\frac{i \delta_{2, j} e^{-2 n \phi_{2}(z)} \sqrt{(z-\lambda)(z-1)}}{h_{2}(z)} & 0 & 1
\end{array}\right) ;
$$

(3) $S(z)=\mathbb{I}+\mathcal{O}(1 / z)$ as $z \rightarrow \infty$;
(4) The conditions for the endpoints are the same as for T.

Now, we consider the limiting problem, because for the matrix S the jump matrix function on each γ_{j} for $j=1,2$ tends to the identity matrix when
$n \rightarrow \infty$. We look for the matrix function N which satisfies the following RHP:
(1) $N \in H\left(\mathbb{C} \backslash\left(\Delta_{1} \cup \Delta_{2}\right)\right)$;
(2) The jump conditions in $\stackrel{\circ}{\Delta}_{j}$ for $j=1,2$ are,

$$
N_{+}(x)=N_{-}(x)\left(\begin{array}{ccc}
0 & \frac{\delta_{1, j} h_{1}(x)}{\sqrt{(\lambda-|x|)(|x|-1)}} & \frac{\delta_{2, j} h_{2}(x)}{\sqrt{(\lambda-|x|)(|x|-1)}} \tag{6}\\
-\frac{\delta_{1, j} \sqrt{(\lambda-|x|)(|x|-1)}}{h_{1}(x)} & \delta_{2, j} & 0 \\
-\frac{\delta_{2, j} \sqrt{(\lambda-|x|)(|x|-1)}}{h_{2}(x)} & 0 & \delta_{1, j}
\end{array}\right) ;
$$

(3) $N(z)=\mathbb{I}+\mathcal{O}(1 / z)$ as $z \rightarrow \infty$;
(4) N satisfies the same conditions for the endpoints as S.

Let us consider the matrix function $K=\left[K_{k, l}\right], k, l=1,2,3$ that is the solution of the RHP:
(1) $K \in H\left(\mathbb{C} \backslash\left(\Delta_{1} \cup \Delta_{2}\right)\right)$;
(2) The jump conditions in $\stackrel{\circ}{\Delta}_{j}$ for $j=1,2$ are, because of (6),

$$
K_{+}(x)=K_{-}(x)\left(\begin{array}{ccc}
0 & \frac{\delta_{1, j}}{\sqrt{(\lambda-|x|)(|x|-1)}} \frac{\delta_{2, j}}{\sqrt{(\lambda-|x|)(|x|-1)}} \tag{7}\\
-\delta_{1, j} \sqrt{(\lambda-|x|)(|x|-1)} & \delta_{2, j} & 0 \\
-\delta_{2, j} \sqrt{(\lambda-|x|)(|x|-1)} & 0 & \delta_{1, j}
\end{array}\right)
$$

(3) $K(z)=\mathbb{I}+\mathcal{O}(1 / z)$ as $z \rightarrow \infty$;
(4) The conditions for the endpoints are the same as for N.

Notice that when $h_{j}=1, j=1,2, K$ and N have the same RHP. Analogously to the ideas in [3], let us again consider $\sqrt{(z+\lambda)(z+1)}$ and $\sqrt{(z-\lambda)(z-1)}$ as analytic functions on $\mathbb{C} \backslash \Delta_{1}$ and $\mathbb{C} \backslash \Delta_{2}$, respectively, where we have taken the branches which are positive for real $z>-1$ and $z>\lambda$, respectively,

$$
\left(\frac{1}{i} \sqrt{(z+\lambda)(z+1)}\right)_{ \pm}(x)= \pm \sqrt{(\lambda+x)(-x-1)}, \quad x \in \stackrel{\circ}{\Delta}_{1}
$$

and

$$
\left(\frac{1}{i} \sqrt{(z-\lambda)(z-1)}\right)_{ \pm}(x)= \pm \sqrt{(\lambda-x)(x-1)}, \quad x \in{\stackrel{\circ}{\Delta_{2}}}_{2} .
$$

For each $k=1,2,3$, we rewrite (7) as

$$
\left\{\begin{array}{l}
\left(\frac{1}{i} \sqrt{(z+\lambda)(z+1)} K_{k, 2}\right)_{ \pm}(x)=\left(K_{k, 1}\right)_{\mp}(x) \\
\left(K_{k, 3}\right)_{+}(x)=\left(K_{k, 3}\right)_{-}(x)
\end{array} \quad, x \in{\stackrel{\circ}{\Delta_{1}}}\right.
$$

$$
\left\{\begin{array}{l}
\left(\frac{1}{i} \sqrt{(z-\lambda)(z-1)} K_{k, 3}\right)_{ \pm} \\
\left(K_{k, 2}\right)_{+}(x)=\left(K_{k, 2}\right)_{-}(x)
\end{array} \quad, x \in{\stackrel{\circ}{\Delta_{2}}}_{2}\right.
$$

and we denote

$$
\begin{gathered}
\psi_{0}^{k}(z)=K_{k, 1}(z), \psi_{1}^{k}(z)=\frac{1}{i} \sqrt{(z+\lambda)(z+1)} K_{k, 2}(z) \\
\text { and } \psi_{2}^{k}(z)=\frac{1}{i} \sqrt{(z-\lambda)(z-1)} K_{k, 3}(z)
\end{gathered}
$$

Then from the relations (7), we may interpret each row $k=1,2,3$ of such matrix K as a function defined on a Riemann surface. Let \mathcal{R} define the Riemann surface which has two cuts. One of them connects the two branch points $-\lambda$ and -1 with the cut in the interval Δ_{1}. The other cut is made in the interval Δ_{2}, to connect the two other branch points 1 and λ. The sheet \mathcal{R}_{0} is glued to another sheet \mathcal{R}_{1} along the cut Δ_{1}, and \mathcal{R}_{0} is also glued to \mathcal{R}_{2} along the interval Δ_{2}. Let us denote by $\psi^{k}, k=1,2,3$, three multi-valued functions $\psi^{k}=\left(\psi_{0}^{k}, \psi_{1}^{k}, \psi_{2}^{k}\right)$, such that for each $k=1,2,3$ its components $\psi_{l}^{k}, l=0,1,2$, $k=1,2,3$, map the corresponding sheet \mathcal{R}_{l} onto \mathbb{C}, and satisfy:
i) $\psi_{0}^{k} \in H\left(\mathbb{C} \backslash\left(\Delta_{1} \cup \Delta_{2}\right)\right), \psi_{j}^{k} \in H\left(\mathbb{C} \backslash \Delta_{j}\right), j=1,2$;
ii) $\psi_{0 \pm}^{k}=\psi_{j \mp}^{k}, j=1,2$;
iii) $\psi_{0}^{k}=\delta_{k, 1}+\mathcal{O}(1 / z)$, and $\psi_{l}^{k}(z)=-i z \delta_{k, l+1}+\mathcal{O}(1), l=1,2$, as $z \rightarrow \infty$;
iv) $\psi_{l}^{k}(z)=\mathcal{O}(1)$, at the endpoints.

Observe that $\psi^{1}: \mathcal{R} \rightarrow \mathbb{C}$ is a bounded holomorphic function on \mathcal{R}, where $\lim _{z \rightarrow \infty} \psi_{0}^{1}(z):=\psi_{0}^{1}(\infty)=1$. This implies that ψ^{1} is the constant function identically equal to 1 , i.e. $\psi^{1} \equiv 1$. For the cases when $k=2,3$, G. López Lagomasino et al., [11], proved that up to complex constants c_{1}, c_{2}

$$
\psi^{2}(z)=\frac{c_{1}}{\varphi(z)} \quad \text { and } \quad \psi^{3}(z)=c_{2} \frac{\varphi^{1}(z)}{\varphi(z)}
$$

where

$$
\begin{gather*}
\varphi(z)=\left(\frac{1+a^{2}}{\left(1-a^{2}\right)^{2}}\right)^{1 / 3}\left(1+G^{-1}(z)\right), \varphi^{1}(z)=\frac{1+G^{-1}(z)}{1-G^{-1}(z)} \tag{8}\\
G(w)=\frac{H(w)}{H(a)}, \quad H(w)=w-\frac{\left(1-a^{2}\right)^{2} w}{\left(1+a^{2}\right)\left(1-w^{2}\right)}
\end{gather*}
$$

and a is the unique solution on the interval $] 0,1[$ of the biquartic equation

$$
\begin{equation*}
a^{8}+\left(16 \lambda^{2}-8\right) a^{6}+18 a^{4}-27=0 \tag{9}
\end{equation*}
$$

In this case, $H^{-1}(z)$ is the solution of the cubic equation

$$
\begin{equation*}
w^{3}-z w^{2}+\frac{a^{4}-3 a^{2}}{1+a^{2}} w+z=0 \tag{10}
\end{equation*}
$$

Notice that given a value $\lambda>1$, the equation (9) as well as (10) can be solved by elementary methods.

Let us find the diagonal 3×3 matrix function $D=\operatorname{diag}\left(D_{0}, D_{1}, D_{2}\right)$, such that $N(z)=D^{-1}(\infty) K(z) D(z)$. The conditions (7) imply that the entries of D must satisfy the following conditions
$h_{j}(x) D_{0 \pm}(x)=D_{j \mp}(x), D_{k+}(x)=D_{k-}(x)$ when $x \in{\stackrel{\circ}{\Delta_{j}}}_{j}, j, k=1,2, k \neq j$,
i.e. $D_{l}, l=0,1,2$ are the Szegö-type functions.

Analogously to the function ψ_{j}^{i}, we obtain the following problem for the entries of D :
i) $D_{0} \in H\left(\overline{\mathbb{C}} \backslash\left(\Delta_{1} \cup \Delta_{2}\right)\right), D_{j} \in H\left(\overline{\mathbb{C}} \backslash \Delta_{j}\right), j=1,2$;
ii) $h_{j}(x) D_{0 \pm}(x)=D_{j \mp}(x), j=1,2$;
iii) $D_{l}(z)=\mathcal{O}(1), l=0,1,2$, at the endpoints.

In order to find this matrix function D, we consider the function φ given by (8), such that its components $\varphi_{l}, l=0,1,2$, map the corresponding sheet \mathcal{R}_{l} on \mathbb{C}, and satisfy:
i) $\varphi_{0} \in H\left(\mathbb{C} \backslash\left(\Delta_{1} \cup \Delta_{2}\right)\right), \varphi_{j} \in H\left(\mathbb{C} \backslash \Delta_{j}\right), j=1,2$;
ii) $\varphi_{0 \pm}=\varphi_{j \mp}, j=1,2$;
iii) $\varphi_{0}(z)=\mathcal{O}(z), \varphi_{1}(z)=\mathcal{O}(1 / z)$, and $\varphi_{2}(z)=\mathcal{O}(1)$, as $z \rightarrow \infty$;
iv) $\varphi_{0} \varphi_{1} \varphi_{2}(\infty)=1$;
v) $\varphi_{l}(z)=\mathcal{O}(1)$, at the endpoints.

We denote by $\Sigma_{j}=\varphi_{0-}\left(\Delta_{j}\right) \cup \varphi_{0+}\left(\Delta_{j}\right)$, for $j=1,2$ the closed curves in the complex plane, with the clockwise orientation, and we denote by Ω_{j} the interior set of Σ_{j} for $j=0,1,2$ and by Ω_{0} the exterior set of $\Sigma_{1} \cup \Sigma_{2}$. Taking into account the behavior of the functions φ_{l} at infinity, $\Omega_{l}=\varphi_{l}(\mathcal{R}), l=0,1,2$. Using (10) we get that $\varphi(z)$ is the solution of the cubic algebraic equation

$$
w^{3}-\left(\frac{1+a^{2}}{\left(1-a^{2}\right)^{2}}\right)^{1 / 3}(3+z) w^{2}+\left(\frac{1+a^{2}}{\left(1-a^{2}\right)^{2}}\right)^{2 / 3}\left(2 z+\frac{3+a^{4}}{1+a^{2}}\right) w-1=0
$$

that is equivalent to

$$
z=\frac{w^{3}-3\left(\frac{1+a^{2}}{\left(1-a^{2}\right)^{2}}\right)^{1 / 3} w^{2}+\left(\frac{1+a^{2}}{\left(1-a^{2}\right)^{2}}\right)^{2 / 3} \frac{3+a^{4}}{1+a^{2}} w-1}{\left(\frac{1+a^{2}}{\left(1-a^{2}\right)^{2}}\right)^{1 / 3} w^{2}-2\left(\frac{1+a^{2}}{\left(1-a^{2}\right)^{2}}\right)^{2 / 3} w}=: r(w) .
$$

Using this rational function r we consider the complex function \tilde{D}, defined as

$$
\tilde{D}(w)=\left\{\begin{array}{ll}
D_{0}(r(w)), & w \in \Omega_{0} \\
D_{1}(r(w)), & w \in \Omega_{1} \\
D_{2}(r(w)), & w \in \Omega_{2}
\end{array} .\right.
$$

This function \tilde{D} verifies the multiplicative scalar Riemann-Hilbert problem

$$
h_{j}(r(\xi)) \tilde{D}(\xi)_{-}=\tilde{D}(\xi)_{+}, \quad \xi \in \Sigma_{j}, \quad j=1,2
$$

Taking into account that $D_{0} D_{1} D_{2}$ is an entire function, and using the behavior at $z=\infty$, it follows that $D_{0} D_{1} D_{2} \equiv c$, where c is a complex constant. We can choose a single valued branch of the complex logarithm, and we have the additive scalar Riemann-Hilbert problem

$$
\log h_{j}(r(\xi))+\log \tilde{D}(\xi)_{-}=\log \tilde{D}(\xi)_{+}, \quad \xi \in \Sigma_{j}, j=1,2
$$

Using the Sokhotsky-Plemelj formula we obtain that

$$
\log \tilde{D}(w)=\frac{1}{2 \pi i} \sum_{j=1,2} \int_{\Sigma_{j}} \frac{\log h_{j}(r(\xi))}{\xi-w} d \xi
$$

and so, the Szegő-type functions, are given explicitly by,

$$
\begin{align*}
& D_{l}(z)=\exp \left\{\frac { 1 } { 2 \pi i } \sum _ { j = 1 , 2 } \varepsilon _ { j } \int _ { \Delta _ { j } } \operatorname { l o g } h _ { j } (x) \left(\frac{-\varphi_{0+}^{\prime}(x)}{\varphi_{0+}(x)-\varphi_{l}(z)}\right.\right. \\
&\left.\left.+\frac{\varphi_{0-}^{\prime}(x)}{\varphi_{0-}(x)-\varphi_{l}(z)}\right) d x\right\} \tag{11}
\end{align*}
$$

for $l=0,1,2$, where $\varepsilon_{j}=1$ if orientation of $-\varphi_{0+}\left(\Delta_{j}\right) \cup \varphi_{0-}\left(\Delta_{j}\right)$ is in the clockwise direction, where we are considering that the intervals $\Delta_{j}, j=1,2$ are oriented from left to right, and $\varepsilon_{j}=-1$ if this not happen.

For this functions D_{l} the behavior at the end points of the intervals Δ_{j}, for $j=1,2$ is $\mathcal{O}(1)$ if we take into account the quadratic ramifications at these points suggested by the Riemann surface, \mathcal{R}.

Finally the matrix function N has the form

$$
N(z)=\left(\begin{array}{lll}
\frac{D_{0}(z)}{D_{0}(\infty)} & \frac{i D_{1}(z)}{D_{0}(\infty) \sqrt{(z+\lambda)(z+1)}} & \frac{i D_{2}(z)}{D_{0}(\infty) \sqrt{(z-\lambda)(z-1)}} \\
\frac{D_{0}(z) \psi_{0}^{2}(z)}{D_{1}(\infty)} & \frac{i D_{1}(z) \psi_{1}^{2}(z)}{D_{1}(\infty) \sqrt{(z+\lambda)(z+1)}} & \frac{i D_{2}(z) \psi_{2}^{2}(z)}{D_{1}(\infty) \sqrt{(z-\lambda)(z-1)}} \\
\frac{D_{0}(z) \psi_{0}^{3}(z)}{D_{2}(\infty)} & \frac{i D_{1}(z) \psi_{1}^{3}(z)}{D_{2}(\infty) \sqrt{(z+\lambda)(z+1)}} & \frac{i D_{2}(z) \psi_{2}^{3}(z)}{D_{2}(\infty) \sqrt{(z-\lambda)(z-1)}}
\end{array}\right) .
$$

Set $R(z)=S(z) N^{-1}(z)$. Since S and N have the same jump across $\stackrel{\circ}{\Delta}_{j}$, $j=1,2$, we have that $R_{+}(x)=R_{-}(x)$ for $x \in \stackrel{\circ}{\Delta}_{j}, j=1,2$. From the
definition of R, and the endpoint conditions for N, we can also deduce that these endpoints are removable singularities. Hence R is an analytic function across the full intervals Δ_{1} and Δ_{2}, and it has jumps on the curves $\gamma_{j}, j=1,2$. Then we have the following RHP for R :
(1) $R \in H\left(\mathbb{C} \backslash\left(\gamma_{1} \cup \gamma_{2}\right)\right)$;
(2) The jump conditions are for $j=1,2$

$$
R_{+}(z)=R_{-}(z) N(z)\left(\begin{array}{ccc}
1 & 0 & 0 \\
\frac{i \delta_{1, j} e^{-2 n \phi_{1}(z)} \sqrt{(z+\lambda)(z+1)}}{h_{1}(z)} & 1 & 0 \\
\frac{i \delta_{2, j} e^{-2 n \phi_{2}(z)} \sqrt{(z-\lambda)(z-1)}}{h_{2}(z)} & 0 & 1
\end{array}\right) N^{-1}(z) \text { if } z \in \gamma_{j}
$$

(3) $R(z)=\mathbb{I}+\mathcal{O}(1 / z)$.

Then in each compact $\mathcal{K} \subset \mathbb{C} \backslash\left(\gamma_{1} \cup \gamma_{2}\right)$, using the same argument as in [10], we have that $R=\mathbb{I}+\mathcal{O}\left(e^{-c n}\right)$, with $c(\mathcal{K})>0$ uniformly as $n \rightarrow \infty$, so it holds uniformly in compact sets of the indicated region that

$$
\begin{aligned}
& Y(z)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & e^{n m_{1}} & 0 \\
0 & 0 & e^{n m_{2}}
\end{array}\right)\left(\mathbb{I}+\mathcal{O}\left(e^{-c n}\right)\right) N(z) \\
& \times\left(\begin{array}{ccc}
e^{n\left(g_{1}(z)+g_{2}(z)\right)} & 0 & 0 \\
0 & e^{-n\left(m_{1}+g_{1}(z)\right)} & 0 \\
0 & 0 & e^{-n\left(m_{2}+g_{2}(z)\right)}
\end{array}\right)
\end{aligned}
$$

$z \in \mathbb{C} \backslash\left(\bar{\Gamma}_{1} \cup \bar{\Gamma}_{2}\right)$, and

$$
\begin{aligned}
& Y(z)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & e^{n m_{1}} & 0 \\
0 & 0 & e^{n m_{2}}
\end{array}\right)\left(\mathbb{I}+\mathcal{O}\left(e^{-c n}\right)\right) N(z) \\
& \times\left(\begin{array}{ccc}
1 & 0 & 0 \\
\frac{-i \delta_{1, j} e^{-2 n \phi_{1}(z)} \sqrt{(z+\lambda)(z+1)}}{h_{1}(z)} & 1 & 0 \\
\frac{-i \delta_{2, j} e^{-2 n \phi_{2}(z)} \sqrt{(z-\lambda)(z-1)}}{h_{2}(z)} & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
e^{n\left(g_{1}(z)+g_{2}(z)\right)} & 0 & 0 \\
0 & e^{-n\left(m_{1}+g_{1}(z)\right)} & 0 \\
0 & 0 & e^{-n\left(m_{2}+g_{2}(z)\right)}
\end{array}\right),
\end{aligned}
$$

$z \in \Gamma_{j}$, where N is given by (3).
Finally, we state the main result of this paper.

Theorem 1 The type II multiple orthogonal polynomial given by (1), has on any compact $\mathcal{K} \subset \mathbb{C} \backslash\left(\Delta_{1} \cup \Delta_{2}\right)$, uniformly as $n \rightarrow \infty$, the following strong asymptotic behavior,

$$
\begin{aligned}
Q_{\mathbf{n}}(z) & =\frac{D_{0}(z)}{D_{0}(\infty)} e^{n\left(g_{1}(z)+g_{2}(z)\right)}\left(1+\mathcal{O}\left(e^{-c n}\right)\right), \\
d_{1} Q_{\mathbf{n}_{-}^{1}}(z) & =\frac{D_{0}(z)}{D_{0}(\infty)} \psi_{0}^{2}(z) e^{n\left(m_{1}+g_{1}(z)+g_{2}(z)\right)}\left(1+\mathcal{O}\left(e^{-c n}\right)\right), \\
d_{2} Q_{\mathbf{n}_{-}^{2}}(z) & =\frac{D_{0}(z)}{D_{0}(\infty)} \psi_{0}^{3}(z) e^{n\left(m_{2}+g_{1}(z)+g_{2}(z)\right)}\left(1+\mathcal{O}\left(e^{-c n}\right)\right),
\end{aligned}
$$

and also holds on any compact $\mathcal{K} \subset \Delta_{j}, j, k=1,2, j \neq k$,

$$
\begin{aligned}
& Q_{\mathbf{n}}(x)=\left\{\frac{D_{0+}(x)}{D_{0}(\infty)} e^{n g_{j+}(x)}+\frac{D_{0-}(x)}{D_{0}(\infty)} e^{n g_{j-}(x)}\right\} e^{n g_{k}(x)}\left(1+\mathcal{O}\left(e^{-c n}\right)\right), \\
& d_{1} Q_{\mathbf{n}_{-}^{1}}(x)=\left\{\frac{D_{0+}(x)}{D_{1}(\infty)} e^{n g_{j+}(x)} \psi_{0+}^{2}(x)+\frac{D_{0-}(x)}{D_{1}(\infty)} e^{n g_{j-}(x)} \psi_{0-}^{2}(x)\right\} \\
& \times e^{n\left(g_{k}(x)+m_{1}\right)}\left(1+\mathcal{O}\left(e^{-c n}\right)\right), \\
& d_{2} Q_{\mathbf{n}_{-}^{2}}(x)=\left\{\frac{D_{0+}(x)}{D_{2}(\infty)} e^{n g_{j+}(x)} \psi_{0+}^{3}(x)+\frac{D_{0-}(x)}{D_{2}(\infty)} e^{n g_{j-}(x)} \psi_{0-}^{3}(x)\right\} \\
& \times e^{n\left(g_{k}(x)+m_{2}\right)}\left(1+\mathcal{O}\left(e^{-c n}\right)\right) .
\end{aligned}
$$

We can also state:
Theorem 2 The second kind function given by (2), has on any compact \mathcal{K} of the indicated region, uniformly as $n \rightarrow \infty$, the following strong asymptotic behavior,

$$
\begin{aligned}
R_{\mathbf{n}}^{1}(z) & =\frac{i D_{1}(z) e^{-n\left(m_{1}+g_{1}(z)\right)}}{D_{0}(\infty) \sqrt{(z+\lambda)(z+1)}}\left(1+\mathcal{O}\left(e^{-c n}\right)\right), z \in \mathbb{C} \backslash \Delta_{1}, \\
R_{\mathbf{n}}^{2}(z) & =\frac{i D_{2}(z) e^{-n\left(m_{2}+g_{2}(z)\right)}}{D_{0}(\infty) \sqrt{(z-\lambda)(z-1)}}\left(1+\mathcal{O}\left(e^{-c n}\right)\right), z \in \mathbb{C} \backslash \Delta_{2}, \\
d_{1} R_{\mathbf{n}_{-}^{1}}^{1}(z) & =\frac{i D_{1}(z) \psi_{1}^{2}(z) e^{-n g_{1}(z)}}{D_{1}(\infty) \sqrt{(z+\lambda)(z+1)}}\left(1+\mathcal{O}\left(e^{-c n}\right)\right), z \in \mathbb{C} \backslash \Delta_{1}, \\
d_{1} R_{\mathbf{n}_{-}^{1}}^{2}(z) & =\frac{i D_{2}(z) \psi_{2}^{2}(z) e^{-n\left(m_{2}-m_{1}+g_{2}(z)\right)}}{D_{1}(\infty) \sqrt{(z-\lambda)(z-1)}}\left(1+\mathcal{O}\left(e^{-c n}\right)\right), z \in \mathbb{C} \backslash \Delta_{2}, \\
d_{2} R_{\mathbf{n}_{-}^{2}}^{1}(z) & =\frac{i D_{1}(z) \psi_{1}^{3}(z) e^{-n\left(m_{1}-m_{2}+g_{1}(z)\right)}}{D_{2}(\infty) \sqrt{(z+\lambda)(z+1)}}\left(1+\mathcal{O}\left(e^{-c n}\right)\right), z \in \mathbb{C} \backslash \Delta_{1}, \\
d_{2} R_{\mathbf{n}_{-}^{2}}^{1}(z) & =\frac{i D_{2}(z) \psi_{2}^{3}(z) e^{-n g_{2}(z)}}{D_{2}(\infty) \sqrt{(z-\lambda)(z-1)}}\left(1+\mathcal{O}\left(e^{-c n}\right)\right), z \in \mathbb{C} \backslash \Delta_{2} .
\end{aligned}
$$

References

[1] M.A. Angelesco, Sur deux extensions des fractions continues algébraiques, C.R. Acad. Sci. Paris, 18 (1919), 262-263.
[2] A.I. Aptekarev, AB.J. Kuijlaars, and W. Van Assche, Asymptotics of Hermite-Padé rational approximants for two analytic functions with separated pairs of branch points (case of genus 0), Internat. Math. Research Papers, Vol. 2008, Article ID rpm007, 128 pages.
[3] A.I. Aptekarev and W. Van Assche, Scalar and matrix RiemannHilbert approach to the strong asymptotics of Padé approximants and complex orthogonal polynomials with varying weight, J. of Approx. Theory, 129 (2) (2004), 129-166.
[4] P. Deift, T. Kriecherbauer, K. T.-R. McLaughlin, S. Venakides, and X. Zhou, Strong asymptotics of orthogonal polynomials with respect to exponential weights, Comm. Pure Appl. Math., 52 (12) (1999), 1491-1552.
[5] P. Deift, X. Zhou, A steepest descent method for oscillatory Riemann-Hilbert problems, Bull. Amer. Math. Soc., 26 (1) (1992), 119-123.
[6] P. Deift, X. Zhou, A steepest descent method for oscillatory Riemann-Hilbert problems, Asymptotic for the MKdV equation, Ann. of Math., Second Series, 137 (2) (1993), 295-368.
[7] A.S. Fokas, A.R. Its, and A.V. Kitaev, The isomonodromy approach to matrix models in $2 D$ quantum gravity, Comm. Math. Phys., 147 (2) (1992), 395-430.
[8] A.A. Gonchar and E.A. Rakhmanov, On Convergence of Simoultaneous Padé Approximants for Systems of Functions of Markov Type, Proccedings of the Steklov Institute of Mathematics, 3 (1983), 31-50.
[9] A.B.J. Kuijlaars, Riemann-Hilbert analysis for orthogonal polynomials, In Orthogonal Polynomials and Special Functions (E. Koelink and W. Van Asshe, eds.), Lect. Notes Math., 1817, Springer-Verlag, Berlin, 2003, 167-210.
[10] A.B.J. Kuijlaars, W. Van Assche, F. Wielonsky, Quadratic HermitePadé approximation to the exponential function: a Riemann-Hilbert approach, Constr. Approx., 21(3) (2005), 351-412.
[11] G. López Lagomasino, D. Pestana, J.M. Rodríguez, and D. Yakubovich, Personal communication.
[12] W. Van Assche, J.S. Geronimo and A.B.J. Kuijlaars, Riemann-Hilbert Problems for Multiple Orthogonal Polynomials, Special Functions 2000: Current Perspectives and Futire Directions, (J. Bustoz et al., eds.), Kluwer, Dordrecht, (2001), 23-59.

[^0]: * Corresponding author: A. Branquinho.

 Email addresses: ajplb@mat.uc.pt (A. Branquinho), ufidalgo@math.uc3m.es (U. Fidalgo), foulquie@ua.pt (A. Foulquié Moreno).

 1 Research supported by CMUC/FCT.
 ${ }^{2}$ Research supported by grants MTM 2006-13000-C03-02 from Ministerio de Ciencia y Tecnología and CCG 06-UC3M/ESP-0690 of Universidad Carlos III de Madrid-Comunidad de Madrid and by grant SFRH/BPD/31724/2006 from Fundação para a Ciência e a Tecnologia.
 3 Research supported by UI Matemática e Aplicações from University of Aveiro.

