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Abstract. In this paper we extend the concept of coherent pairs of measures
from the real line to Jordan arcs and curves. We present a characterization of
pairs of coherent measures on the unit circle: it is established that if (µ0, µ1) is a
coherent pair of measures on the unit circle, then µ0 is a semiclassical measure.
Moreover, we obtain that the linear functional associated with µ1 is a specific ra-
tional transformation of the linear functional corresponding to µ0. Some examples
are given.

1. Introduction

Let µ be a nontrivial positive Borel measure supported on a subset E of the real
line. There exists a unique sequence {Pn} of monic polynomials, with deg Pn = n ,
such that ∫

E

Pn(x)Pm(x)dµ(x) = d2
nδn,m, dn 6= 0.

In this case {Pn} is said to be the sequence of monic orthogonal polynomials asso-
ciated with µ.

It is well known that {Pn} satisfies a three-term recurrence relation

(1) xPn(x) = Pn+1(x) + bnPn(x) + cnPn−1(x), n ≥ 0,

where P−1(x) = 0 and

cn+1 =

∫
E

P 2
n+1(x)dµ(x)∫

E
P 2

n(x)dµ(x)
, bn =

∫
E

xP 2
n(x)dµ(x)∫

E
P 2

n(x)dµ(x)
, n ≥ 0.

On the other hand, if (1) holds with cn > 0, there exists the sequence of monic
polynomials defined by (1) orthogonal with respect to the measure µ.

Let (µ0, µ1) be a pair of nontrivial positive Borel measures supported on subsets
E0 and E1 of the real line. We introduce an inner product in the linear space P of
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polynomials with real coefficients

(2) (p, q) =

∫

E0

p(x)q(x)dµ0(x) + λ

∫

E1

p′(x)q′(x)dµ1(x) ,

where p, q ∈ P and λ ≥ 0.

This kind of inner products define a sequence {Qn( · , λ)} of monic polynomials that
is orthogonal with respect to (2). It can be constructed using the standard Gram-
Schmidt process. But these polynomials do not satisfy a three-term recurrence
relation as (1). If {Pn} and {Rn} denote, respectively, the sequences of monic
polynomials orthogonal with respect to µ0, µ1, then Iserles et al. introduced the
concept of coherent pairs of measures in [6].

A pair of nontrivial Borel measures (µ0, µ1) supported on subsets of the real line is
said to be coherent if the corresponding sequences of monic orthogonal polynomials
satisfy

(3) Rn(x) =
P ′

n+1

n + 1
(x) + αn

P ′
n

n
(x), αn 6= 0, n = 1, 2, . . . .

From here, a relation between {Pn} and {Qn(·, λ)} follows:

Pn(x) +
n

n− 1
αn−1Pn−1(x) = Qn(x, λ) + βn−1(λ)Qn−1(x, λ)

where βn−1(λ) =
γn−2(λ)

γn−1(λ)
, γn is a polynomial of degree n in the variable λ, and {γn}

satisfies a three term recurrence relation.

In [6] the authors ask about the description of all coherent pairs of measures. The
answer was given by Meijer in [8], where he proves that at least one of the measures
must be a classical one (Laguerre or Jacobi). In particular, when the support is a
compact subset of the real axis, the following cases appear:

a) dµ0 = (1− x)α(1 + x)βdx, α, β > −1;

dµ1 =
(1− x)α+1(1 + x)β+1

|x− ξ| dx + Mδ(x− ξ), |ξ| ≥ 1, M ≥ 0;

b) dµ0 = (1− x)α(1 + x)β|x− ξ|dx, dµ1 = (1− x)α+1(1 + x)β+1dx, α, β > −1;

c) dµ0 = (1− x)αdx + Mδ(x + 1), dµ1 = (1− x)α+1dx, α, β > −1;

d) dµ0 = (1 + x)βdx + Mδ(x− 1), dµ1 = (1 + x)β+1dx, α, β > −1.

The aim of this contribution is the analysis of the concept of coherent pairs of
measures supported on compact subsets of the complex plane. In particular, we will
focus our attention when the support is the unit circle.

The structure of the manuscript is as follows. In section 2 we define coherent pairs
of measures supported on Jordan arcs or curves using the connection between the
corresponding sequences of orthogonal polynomials as in (3). As a consequence, the
relation between these sequences and the sequence of monic polynomials orthogonal
with respect to the Sobolev inner product associated with the pair of measures
(µ0, µ1) is deduced. In section 3 we present the basic results concerning Hermitian
orthogonality on the unit circle which will be used in the forthcoming sections. We
give a sufficient condition for a sequence of orthogonal polynomials on the unit circle
satisfying a first order structure relation to be semi-classical (see Theorem 3). This
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result is an extension to the result deduced by Branquinho and Rebocho in [3]. In
section 4 we present a characterization of pairs of coherent measures on the unit
circle; we prove that if (µ0, µ1) is a coherent pair of measures on the unit circle
(µ0, µ1) then µ0 is a semi-classical measure and the linear functional associated with
µ1 is a specific rational transformation of the linear functional corresponding to
µ0 (see, for example [2]). Finally, in section 5, we study the companion coherent
measure associated with the Bernstein-Szegő measure supported on the unit circle.

2. Coherent pairs of measures supported on Jordan arcs and curves

Let µ0, µ1 be positive Borel measures on E0, E1, respectively, which are Jordan curves
or arcs. For λ ∈ R+, consider the inner product

〈f, g〉S = 〈f, g〉0 + λ〈f ′, g′〉1, where 〈f, g〉k =

∫

Ek

f(ξ)g(ξ)dµk(ξ), k = 0, 1.

Let us denote by {Qn( · ; λ)}, {Pn}, {Rn}, the sequences of monic polynomials
orthogonal with respect to 〈 · , · 〉S, 〈 · , · 〉0, 〈 · , · 〉1, respectively.
We also denote

Sm,n := 〈zm, zn〉S = c0
m,n + λmnc1

m−1,n−1 , m, n ∈ N ,

where
{
ck
m,n

}
n∈N are the moments with respect to the measures µk for k = 0, 1,

respectively.

Taking into account this expression, we obtain the following representation in a
determinantal form for the polynomials Qn:

Qn(z; λ) =

∣∣∣∣∣∣∣∣∣∣

c0
0,0 c0

1,0 . . . c0
n,0

c0
0,1 c0

1,1 + λc1
0,0 . . . c0

n,1 + λnc1
n−1,0

...
...

. . .
...

c0
0,n−1 c0

1,n−1 + λ(n− 1)c1
0,n−2 . . . c0

n,n−1 + λn(n− 1)c1
n−1,n−2

1 z . . . zn

∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣

c0
0,0 c0

1,0 . . . c0
n−1,0

c0
0,1 c0

1,1 + λc1
0,0 . . . c0

n−1,1 + λ(n− 1)c1
n−2,0

...
...

. . .
...

c0
0,n−1 c0

1,n−1 + λ(n− 1)c1
0,n−2 . . . c0

n−1,n−1 + λ(n− 1)2c1
n−2,n−2

∣∣∣∣∣∣∣∣

.

Since the coefficients of the above polynomial are rational functions in λ, when λ
tends to infinity we get the sequence of limit polynomials, {Sn} . It is straightforward
to prove that the polynomial Sn satisfies

〈Sn, 1〉0 = 0, n ≥ 1 , 〈S ′n, zk〉1 = 0, 0 ≤ k ≤ n− 2 , n ≥ 2 ,

and so S ′n(z) = nRn−1(z) , n = 1, 2, . . . . See [4] for an analysis of such limit polyno-
mials when a pair of measures supported on the real line is considered.

Therefore, using the same arguments as in [6], we get the Fourier expansions of Sn

with respect to the sequences {Pn} and {Qn}, i.e.

Sn(z) =
n∑

k=1

an−1,kPk(z) ,(4)
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Sn(z) = Qn(z; λ) +
n−1∑
j=0

βn,j(λ)Qj(z; λ) .

From this we do not get more information, but if in (4) we assume that an−1,k = 0
for k < n−s (with s a fixed nonnegative integer number), it follows that βn,j(λ) = 0
for j < n− s. Thus, for n ≥ s,

n∑

k=n−s

an−1,kPk(z) =
n∑

j=n−s

βn,j(λ)Qj(z; λ) .(5)

Conversely, notice that if (5) holds, and an−1,n−s 6= 0, βn,n−s(λ) 6= 0, then
∫

E1

n∑
j=n−s

an−1,jP
′
j(z)p′(z)dµ1 = 0, p ∈ Pn−s−1 .

From this the following relation holds

n∑
j=n−s

an−1,jP
′
j(z) =

n−1∑
j=n−s−1

bn,jRj(z) .

Therefore the following problem arises: To describe the measures µ0, µ1 such that
the corresponding sequences of monic orthogonal polynomials {Pn} and {Rn} are
related by

Rn−1(z) =
P ′

n(z)

n
+ αn−1

P ′
n−1(z)

n− 1
, αn−1 6= 0 , n = 2, 3, . . . .(6)

From now on, for a sake of simplicity, we write βn instead of βn,n, as well as an

instead of an,n.

For a coherent pair of measures we get some extra information about the sequence
(βn(λ)). Indeed,

Pn(z) + an−1Pn−1(z) = Qn(z; λ) + βn−1(λ)Qn−1(z; λ) ,(7)

where for n = 2, 3, . . .

an−1 =
n

n− 1
αn−1,

βn−1(λ) = an−1
〈Pn−1, Qn−1( · ; λ)〉0

〈Qn−1( · ; λ), Qn−1( · ; λ)〉S
= an−1

‖Pn−1‖2
0

‖Qn−1(.; λ)‖2
S

.(8)

Therefore, taking into account (6) and (7), after some calculations we get

‖Qn−1( · ; λ)‖2
S = 〈Qn−1( · ; λ), Pn−1〉S

= ‖Pn−1‖2
0 + λ(n− 1)2‖Rn−2‖2

1 + ān−2 [an−2 − βn−2(λ)] ‖Pn−2‖2
0 .

Now, substituting in (8), and using the preceding notation for n = 3, 4, . . . , we
deduce that

βn−1(λ) =
An

Bn − βn−2(λ)
,(9)
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where

An =
an−1

ān−2

‖Pn−1‖2
0

‖Pn−2‖2
0

,

Bn = an−2 +
‖Pn−1‖2

0 + λ(n− 1)2‖Rn−2‖2
1

ān−2‖Pn−2‖2
0

,

with β1(λ) =
‖P1‖2

0a1

λ‖R0‖2
1 + ‖P1‖2

0

.

Notice that Bn is a polynomial of degree one in λ. In this way, once we obtain
the coherent pairs we can deduce a representation for βn−1(λ), which are rational
functions of λ and, eventually, from (7) we get an explicit expression for Qn( · ; λ) in
terms of {Pn}.
Theorem 1. The sequence (βn(λ)) is given by

(10) βn−1(λ) =
γn−2(λ)

γn−1(λ)
, n = 2, 3, . . .

where {γn} is a sequence of orthogonal polynomials associated with a positive Borel
measure supported on R .

Proof. Taking into account β1 is a rational function in λ such that the degree of
the numerator is zero and the degree of the denominator is one, by induction we
get (10) where γn is a polynomial of degree n. Moreover, from (9), we get

γn(λ) =
Bn+1

An+1

γn−1(λ)− 1

An+1

γn−2(λ) .(11)

Taking into account that Bn is a polynomial of degree one in λ, we get that {γn} is
a sequence of polynomials orthogonal with respect to a linear functional. This is a
straightforward consequence of the Favard Theorem, since they satisfy a three-term
recurrence relation (see [5]).

Indeed, if γn(λ) = snλ
n + lower degree terms, then (11) becomes

snγ̃n(λ) =
Bn+1

An+1

sn−1γ̃n−1(λ)− sn−2

An+1

γ̃n−2(λ) ,

or, equivalently, for n = 2, 3, . . .

γ̃n(λ) = (λ + cn−1)γ̃n−1(λ)− dn−1γ̃n−2(λ)

where

cn−1 =
|an−1|2‖Pn−1‖2

0 + ‖Pn‖2
0

n2‖Rn−1‖2
1

,

dn−1 =
‖Pn−1‖4

0|an−1|2
n2(n− 1)2‖Rn−1‖2

1‖Rn−2‖2
1

> 0 ,

and initial conditions γ̃0(λ) = 1 , γ̃1(λ) = λ+‖P1‖2
0/‖R0‖2

1 . Notice that, according
to the Favard Theorem, {γ̃n} is a sequence of monic polynomials orthogonal with
respect to a finite positive Borel measure supported on R . ¥
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3. Quasi-Orthogonality on the Unit Circle

Let T = {z ∈ C : |z| = 1}, and Λ = span {zk : k ∈ Z} be the linear space of Laurent
polynomials with complex coefficients. Given a linear functional u : Λ → C, and the
sequence of moments (cn)n∈Z of u, cn = 〈u, ξn〉, n ∈ Z, c0 = 1, define the minors of
the Toeplitz matrix ∆ = (ck−j) , by

∆k =

∣∣∣∣∣∣

c0 . . . ck
...

. . .
...

c−k . . . c0

∣∣∣∣∣∣
, ∆0 = c0, ∆−1 = 1, k ∈ N.

u is said to be Hermitian if c−n = c̄n,∀n ∈ N, and quasi-definite (respectively,
positive definite) if ∆n 6= 0 (respectively, ∆n > 0), ∀n ∈ N. We will denote by H
the set of Hermitian linear functionals defined on Λ.

In the positive-definite case, u has an integral representation given in terms of a
nontrivial probability measure µ with infinite support on the unit circle T,

〈
u, einθ

〉
=

1

2π

∫ 2π

0

einθdµ(θ), n ∈ Z .

The corresponding sequence of orthogonal polynomials, called orthogonal polyno-
mials on the unit circle, OPUC in short, is then defined by

1

2π

∫ 2π

0

Pn(eiθ)P̄m(e−iθ)dµ(θ) = enδn,m, en > 0, n,m = 0, 1, . . . .

If Pn(z) = zn+lower degree terms, {Pn} will be called a sequence of monic orthogonal
polynomials, and we will denote it by MOPS. It is well known that MOPS on the unit
circle satisfy the following recurrence relations, known as Szegő recurrence relations,
for n ≥ 1:

Pn(z) = zPn−1(z) + anP
∗
n−1(z), P ∗

n(z) = P ∗
n−1(z) + ānzPn−1(z)

with an = Pn(0), P0(z) = 1, and P ∗
n(z) = znP̄n(1/z), n = deg(Pn). In the literature

of orthogonal polynomials on the unit circle, the polynomials {P ∗
n} are called either

reversed or reciprocal polynomials (see [9]).

{P ∗
n} satisfies, for n ∈ N,

(12) 〈u, P ∗
n(z) z−k〉 = 0, k = 1, . . . , n, 〈u, P ∗

n(z)〉 = en.

The following relation holds (see [7])

(13) (P ′
n)∗(z) = nP ∗

n(z)− z(P ∗
n)′(z), n ≥ 1 .

For u ∈ H and A ∈ P, we define

〈Au, f〉 = 〈u,A(z)f(z)〉, f ∈ Λ ,

〈(A + Ā)u, f〉 = 〈u,
(
A(z) + Ā(1/z)

)
f(z)〉, f ∈ Λ .

Notice that (A + Ā)u is a Hermitian linear functional. We will use the notation
uA = (A(z) + Ā(1/z))u.

Definition 1 (cf. [1]). Let v ∈ H, p ∈ N, and let {Pn} be a sequence of monic poly-
nomials. {Pn} is said to be T-quasi-orthogonal of order p with respect to v if
i) 〈v, Pn(z) z−k〉 = 0, for every k with p ≤ k ≤ n− p− 1 and for every n ≥ 2p + 1;
ii) There exists n0 ≥ 2p such that 〈v, Pn0(z) z−n0+p〉 6= 0.
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Theorem 2 (cf. [1]). Let u ∈ H be quasi-definite and let {Pn} be the MOPS with
respect to u. Then {Pn} is T-quasi-orthogonal of order p with respect to v ∈ H−{0}
if and only if there exists only one polynomial B (B 6= 0) with deg(B) = p, such
that v = uB.

Taking into account Theorem 4.1 of [1] we give the following definition.

Definition 2. Let u ∈ H be quasi-definite and let {Pn} be the MOPS associated
with u. u is said to be semiclassical if there exists û ∈ H − {0} such that the

sequence {P̃n} given by P̃n(z) = 1
n
zP ′

n(z), n ≥ 1, P̃0(z) = 1, is T-quasi-orthogonal
with respect to û. In such a situation {Pn} is said to be a semiclassical sequence of
orthogonal polynomials.

In the sequel we define fn(z) = Pn(z)/P ∗
n(z), ∀n ∈ N, and we study the conditions

in order to {fn} satisfies a Riccati differential equation. This result will be useful to
the following theorem. Using the Szegő recurrence relations we get

(14) zfn(z) =
fn+1(z)− an+1

1− ān+1fn+1(z)
, n = 1, . . . .

Lemma 1. Let {Pn} be a sequence of monic orthogonal polynomials on the unit circle
and {P ∗

n} the sequence of reversed polynomials. If {fn} satisfies a Riccati differential
equation with bounded degree polynomial coefficients, i.e.,

(15) Anf ′n(z) = Bn(z)f 2
n(z) + Cn(z)fn(z) + En(z) , ∀n ∈ N

then, for every n ∈ N, the following relations hold,

An+1 = An ,(16)

zBn+1 = λ−1
n

{
Bn − ān+1(zCn + An) + ā2

n+1z
2En

}
,(17)

zCn+1 = λ−1
n

{
(−2an+1Bn + (zCn + An)(1 + |an+1|2)− 2ān+1z

2En

}
,(18)

zEn+1 = λ−1
n

{
a2

n+1Bn − an+1(zCn + An) + z2En

}
,(19)

with λn = (1− |an+1|2).
Proof. If fn satisfies (15), then

zAn(zfn)′ = Bn(zfn)2 + (zCn + An)zfn + z2En.

Using (14) in previous equation we get

zAn

(
fn+1 − an+1

1− ān+1fn+1

)′
= Bn

(
fn+1 − an+1

1− ān+1fn+1

)2

+(zCn+An)

(
fn+1 − an+1

1− ān+1fn+1

)
+z2En .

Since (
fn+1 − an+1

1− ān+1fn+1

)′
=

λnf ′n+1

(1− ān+1fn+1)2
with λn = 1− |an+1|2,

from the previous equations we get

zAn

λnf ′n+1

(1− ān+1fn+1)2
= Bn

(
f 2

n+1 + a2
n+1 − 2an+1fn+1

(1− ān+1fn+1)2

)

+ (zCn + An)

(
fn+1 − an+1

1− ān+1fn+1

)
+ z2En ,
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as well as

λn zAnf ′n+1 =
{
Bn − ān+1(zCn + An) + ā2

n+1z
2En

}
f 2

n+1

+
{
(−2an+1Bn + (zCn + An)(1 + |an+1|2)− 2ān+1z

2En

}
fn+1

+ a2
n+1Bn − an+1(zCn + An) + z2En .

If we divide by λn = (1− |an+1|2) then

zAnf
′
n+1 = λ−1

n

{
Bn − ān+1(zCn + An) + ā2

n+1z
2En

}
f 2

n+1

+λ−1
n

{
(−2an+1Bn + (zCn + An)(1 + |an+1|2)− 2ān+1z

2En

}
fn+1

+λ−1
n

{
a2

n+1Bn − an+1(zCn + An) + z2En

}
.

Now, comparing previous equation with (15) to n+1 and multiplied by z, i.e., with

zAn+1f
′
n+1 = zBn+1f

2
n+1 + zCn+1fn+1 + zEn+1,

we get (16)-(19). ¥
Theorem 3. Let {Pn} be a MOPS the unit circle and {P ∗

n} be the sequence of
reversed polynomials. If {Pn} satisfies a structure relation with bounded degree poly-
nomials, n ≥ 1,

zΠn(z)P ′
n(z) = Gn(z)Pn(z) + Hn(z)P ∗

n(z)(20)

zΠn(z)(P ∗
n)′(z) = Sn(z)Pn(z) + Tn(z)P ∗

n(z)(21)

then Πn doesn’t depend on n.

Let p = max{deg(Gn), deg(Hn) + 1, deg(Sn), deg(Π1 − Tn)}, ∀n ∈ N. If there exists
n0 ≥ 2p such that deg(Π1 − Tn0) = p, then {Pn} is semi-classical.

Proof. If we multiply (20) by P ∗
n , (21) by Pn, and divide the resulting equations

by (P ∗
n)2, we get, after subtracting the corresponding equations,

zΠn

(
P ′

nP ∗
n − Pn(P ∗

n)′

(P ∗
n)2

)
=

(Gn − Tn)PnP ∗
n + Hn(P ∗

n)2 − Sn(Pn)2

(P ∗
n)2

⇔ zΠn

(
Pn

P ∗
n

)′
= −Sn

(
Pn

P ∗
n

)2

+ (Gn − Tn)
Pn

P ∗
n

+ Hn .

Thus,

zΠnf
′
n = −Snf

2
n + (Gn − Tn)fn + Hn.

From previous lemma, Πn = Πn−1, ∀n ∈ N. Thus, Πn = Π1, ∀n ∈ N.

Let us write (20) and (21) in the form

A
zP ′

n

n
= G̃nPn + H̃nP ∗

n(22)

A
z(P ∗

n)′

n
= S̃nPn + T̃nP

∗
n , n ≥ 1 ,(23)

with A = Π1, G̃n = Gn/n, , H̃n = Hn/n, S̃n = Sn/n, T̃n = Tn/n. Furthermore, if we
use (13) in (23) then

(24) A

(
zP ′

n

n

)∗
= −S̃nPn + (A− T̃n)P ∗

n .
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On the other hand, from the Hermitian character of u, we have

〈uA,
zP ′

n

n
z−k〉 = 〈u,A

zP ′
n

n
z−k〉+ 〈u,A

(
zP ′

n

n

)∗
zk−n〉 .

Using (22) and (24) in previous equation we get

(25) 〈uA,
zP ′

n

n
z−k〉

= 〈u, G̃nPn z−k〉+ 〈u, H̃nP
∗
n z−k〉 − 〈u, S̃nPn zk−n〉+ 〈u, (A− T̃n)P ∗

n zk−n〉 .
Since

〈u, G̃nPn z−k〉 = 0, k = deg(G̃n), . . . , n− 1

〈u, H̃nP
∗
n z−k〉 = 0, k = deg(H̃n) + 1, . . . , n

〈u, S̃nPn zk−n〉 = 0, k = 1, . . . , n− deg(S̃n)

〈u, (A− T̃n)P ∗
n zk−n〉 = 0, k = 0, . . . , n− deg(A− T̃n)− 1

then, with p = max{deg(G̃n), deg(H̃n)+1, deg(S̃n), deg(A− T̃n)}, ∀n ∈ N, it follows
that

〈uA,
zP ′

n

n
z−k〉 = 0 for every p ≤ k ≤ n− p− 1 and for every n ≥ 2p + 1 .

Next we show that condition ii) of Definition 2,

∃n0 ≥ 2p : 〈uA,
zP ′

n0

n0

z−n0+p〉 6= 0,

holds for n0 ≥ 2p if and only if deg(A− T̃n0) = p .

From (25)

(26) 〈uA,
zP ′

n0

n0

z−n0+p〉 = 〈u, G̃n0Pn0 z−n0+p〉+ 〈u, H̃n0P
∗
n0

z−n0+p〉

− 〈u, S̃n0Pn0 z−p〉+ 〈u, (A− T̃n0)P
∗
n0

z−p〉.
Since deg(G̃n) ≤ p, deg(H̃n) ≤ p− 1, deg(S̃n) ≤ p, ∀n ∈ N, and n0 − p ≥ p, then

〈u, G̃n0Pn0 z−n0+p〉 = 〈u, H̃n0P
∗
n0

z−n0+p〉 = 〈u, S̃n0Pn0 z−p〉 = 0.

Therefore, (26) is equivalent to

〈uA,
zP ′

n0

n0

z−n0+p〉 = 〈u, (A− T̃n0)P
∗
n0

z−p〉.

Taking into account the orthogonality relations (12) and deg(A− Tn) ≤ p, we get

〈u, (A− T̃n0)P
∗
n0

z−p〉 6= 0 ⇔ deg(A− T̃n0) = p.

Thus,

〈uA,
zP ′

n0

n0

z−n0+p〉 6= 0 ⇔ deg(A− T̃n0) = p.
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Therefore, if there exists n0 ≥ 2p such that deg(A − T̃n0) = p, then the sequence
{ 1

n
zP ′

n} is T−quasi-orthogonal of order p with respect to the Hermitian functional uA

and we conclude that {Pn} is semi-classical. ¥

4. Characterization Theorem

In the sequel we will use the vectors defined by

ψn(z) = [Pn(z) P ∗
n(z)]T , ϑn(z) = [Rn(z) R∗

n(z)]T , n ∈ N .

We will use the Szegő recurrence relations in the matrix form for {ψn},

(27) ψn(z) = An(z)ψn−1(z), An(z) =

[
z an

ānz 1

]
, n ∈ N , an = Pn(0) ,

and for {ϑn},

(28) ϑn(z) = Bn(z)ϑn−1(z), Bn(z) =

[
z bn

b̄nz 1

]
, n ∈ N , bn = Rn(0) .

We will write X(i,j) to denote the entry (i, j) of a matrix X, i, j = 1, 2.

Theorem 4. Let (u, v) be a coherent pair of Hermitian linear functionals on the
unit circle and {Pn}, {Rn} the corresponding MOPS. Then, there exist A ∈ P and
matrices Kn,Mn of order two whose elements are bounded degree polynomials such
that, for n ≥ 1,

zA(z)ψ′n(z) = Kn(z)ψn(z)(29)

zA(z)ϑn(z) = Mn(z)ψn(z) .(30)

Moreover,
a) {Pn} is semi-classical;
b) {Rn} is quasi-orthogonal of order p ( p ≤ 6) with respect to the functional uzA.
Thus, there exists a unique polynomial B of degree p such that uzA = vB.

Proof. From

(31) Rn =
P ′

n+1

n + 1
+ αn

P ′
n

n
we get

R∗
n =

(P ′
n+1)

∗

n + 1
+ ᾱnz

(P ′
n)∗

n
.

Using (13), last equation is equivalent to

(32) R∗
n = P ∗

n+1 + ᾱnzP
∗
n − z

(P ∗
n+1)

′

n + 1
− ᾱnz2 (P ∗

n)′

n
.

If we write (31) and (32) in a matrix form and use (27), we obtain

(33) ϑn = Snψn + Tnψ′n, n ≥ 1,

with

Sn =

[
0 0
0 1

]
An+1 +

[
0 0
0 ᾱnz

]
+

[
1/(n + 1) 0

0 −z/(n + 1)

] [
1 0

ān+1 0

]
,

Tn =

[
1/(n + 1) 0

0 −z/(n + 1)

]
An+1 +

[
αn/n 0

0 −ᾱnz
2/n

]
.
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Using (33) for n + 1 and the recurrence relations (27) and (28), we get

(34) Hnψ
′
n = M̃nψn ,

where the matrices Hn and M̃n are given by

Hn = Bn+1Tn − Tn+1An+1, M̃n = Sn+1An+1 + Tn+1

[
1 0

ān+1 0

]
− Bn+1Sn.

Now, if we multiply (34) by the adjoint matrix of Hn, adjHn , we get

hnψ
′
n = Knψn

where hn = det(Hn) is a non-zero polynomial and Kn = adj(Hn)M̃n. Moreover,
hn(0) = 0, ∀n ∈ N, and deg(hn) ≤ 5, ∀n ≥ 1. From Theorem 3 it follows that hn is
independent of n. Thus, we obtain (29) with zA = h1 and Kn defined as above.

To obtain (30) we multiply (33) by zA and use (29). Thus, we obtain (30) with
Mn = zASn + TnKn.

To prove assertion a) we remind that equations (29) can be written as equations of
the same type as (20) and (21) of Theorem 3. Moreover, if

p = max{deg(K(1,1)
n ), deg(K(1,2)

n ) + 1, deg(K(2,1)
n ), deg(A−K(2,2)

n )}, ∀n ∈ N,

then one can see that p ≤ 4 and deg(A−K(2,2)
n ) = p, n ≥ 1. Thus, from Theorem 3

we conclude that {Pn} is semi-classical.

To prove assertion b) we use an analogue argument as in the proof of Theorem 3.
We write (30) in the form

zARn = GnPn + HnP
∗
n(35)

zAR∗
n = SnPn + TnP

∗
n , n ≥ 1 ,(36)

with Gn, Hn, Sn, Tn ∈ P . From the definition of uzA and the Hermitian character of
u, we have

(37) 〈uzA, Rn z−k〉 = 〈u, zARn z−k〉+ 〈u, zAR∗
n zk−n〉 .

On the other hand, using (35) and (36) in (37) we get, for n, k ≥ 0,

(38) 〈uzA, Rn z−k〉
= 〈u,GnPn z−k〉+ 〈u,HnP

∗
n z−k〉+ 〈u, SnPn zk−n〉+ 〈u, TnP ∗

n zk−n〉.
Using a similar reasoning as in the proof of Theorem 3, we obtain for

p = max{deg(Gn), deg(Hn) + 1, deg(Sn), deg(Tn)}, ∀n ∈ N,

that

〈uA, Rn z−k〉 = 0 for every p ≤ k ≤ n− p− 1 as well as for every n ≥ 2p + 1 .

Thus the condition i) of Definition 2 is satisfied.

Then, we can also establish that condition ii) of Definition 2,

∃n0 ≥ 2p : 〈uA, Rn0z
−n0+p〉 6= 0,

holds for n0 ≥ 2p if and only if deg(Tn0) = p. Moreover, we get that p ≤ 6 and
deg(Tn) = p, ∀n ≥ 1.
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Thus {Rn} is quasi-orthogonal of order p with respect to the functional uzA. In this
case, from Theorem 2, we conclude that there exists a polynomial B with deg(B) = p
such that uzA = vB. ¥

5. Examples of Coherent Pairs on the Unit Circle

In this section we present the examples of coherent pairs corresponding to the
Bernstein-Szegő class.

Theorem 5. Let (µ0, µ1) be a coherent pair of measures supported on the unit circle.
If µ0 is the Lebesgue measure, then µ1 belongs to the Bernstein-Szegő class, and the
corresponding MOPS, {Rn} , is given by, Rn(z) = zn−1(z + c), n ≥ 1 , with c a
constant, |c| < 1 .
Furthermore, dµ1 = dθ/(2π |z + c|2) .

Proof. If in (6) we assume the sequence {Pn} is a classical Hahn MOPS in the
sense that {P ′

n/n} is a sequence of monic polynomials orthogonal with respect to a
measure supported on the unit circle, we know that Pn(z) = zn (see [7]). Therefore,

Rn−1(z) = zn−1 + αn−1z
n−2 .

If we want that {Rn} is a monic orthogonal polynomial sequence on the unit circle,
then it will satisfy a forward recurrence relation

zRn−1(z) + Rn(0)R∗
n−1(z) = Rn(z) ,(39)

and so αn = αn−1 = · · · = α2 = c. As a consequence,

Rn(z) = zn−1(z + c) .

Thus the MOPS {Rn} belongs to the Bernstein-Szegő class and µ1 is defined as
stated (see [2], for example). ¥
Theorem 6. The only Bernstein-Szegő measure, µ0, that admits a companion mea-
sure µ1 supported on the unit circle such that it yields a coherent pair, is the Lebesgue
measure.

Proof. Let (µ0, µ1) be a coherent pair of measures supported on the unit circle
and {Pn}, {Rn} the corresponding MOPS. We will prove that if Pn belongs to the
Bernstein-Szegő class, then Pn(z) = zn.

Let us suppose that the monic orthogonal polynomial sequence {Pn} is defined by
Pn(z) = zn−kPk(z) for n ≥ k (for a fixed nonnegative integer number k), where Pk

is a monic polynomial of degree k with zeros of absolute value less than 1 and such
that Pk(0) 6= 0. Thus

P ′
n(z) = (n− k)zn−k−1Pk(z) + zn−kP ′

k(z) .

From (6) it follows that

Rn(z) = zn−k−1Pk(z)

[
n− k + 1

n + 1
z + αn

n− k

n

]
+ zn−kP ′

k(z)

[
z

n + 1
+

αn

n

]
.

Since Rn(0) = 0 for n ≥ k + 2 and taking into account (39), we have

Rn(z) = zRn−1(z) , n ≥ k + 2 .
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Thus, for n ≥ k + 2

(40) Pk(z)

[(
n− k + 1

n + 1
− n− k

n

)
z +

n− k

n
αn − n− k − 1

n− 1
αn−1

]

+ zP ′
k(z)

[(
1

n + 1
− 1

n

)
z +

αn

n
− αn−1

n− 1

]
= 0 .

Hence, taking into account that Pk(0) 6= 0, we get from (40) with z = 0,

αn =
n

(k + 1)(n− k)
αk+1 , n ≥ k + 2 .

Substituting this expression in (40),

kPk(z)− P ′
k(z)

[
z +

n(n + 1)

(k + 1)

1

(n− k)(n− k − 1)
αk+1

]
= 0 , n ≥ k + 2

then αk+1 = 0, as well as Pk(z) = zk. But this contradicts the fact Pk(0) 6= 0,
up to k = 0. In such a case we are in the previous situation. So we obtain that
Pn(z) = zn, n ∈ N . ¥
Lemma 2. Let (un) be a sequence of complex numbers. If a sequence of monic
polynomials {Pn} orthogonal with respect to a linear functional v on the unit circle
satisfies

zn

n
+ un−1 =

Pn(z)

n
+ αn−1

Pn−1(z)

n− 1
, n = 2, 3, . . . .(41)

where we assume that αn−1 6= 0, n = 2, 3, . . . then un = 0, n = 1, 2, . . . .
Furthermore, the moments cn, associated with v, are zero for n = 2, 3, . . . and c1 6= 0.

Proof. Take n = 2, 3, . . . , multiply (41) by 1, 1/z, . . . , 1/zn−1, respectively, and
use the linear functional v to get

cn

n
+ un−1c0 = 0(42)

cn−j

n
+ un−1c̄j = 0 , j = 1, 2, . . . , n− 2(43)

c1

n
+ un−1c̄n−1 =

αn−1

n− 1
〈v, Pn−1(z)P̄n−1(1/z)〉 .(44)

From (42) and (44) with n = 2 we get that c1 6= 0. From (42), (43) and (44) with
n = 3, 4 we get that c2 = c3 = 0 and, as consequence, u1 = u2 = u3 = 0.

Now, we use induction arguments to conclude the proof, i.e. assuming uk−1 = 0 as
well as ck = 0 for k = 2, 3, . . . , n− 1, then from (43) we get that un−1 = 0 and thus,
from (42), cn = 0. ¥
Theorem 7. Let (µ0, µ1) be a coherent pair of measures supported on the unit circle.
If µ1 is the Lebesgue measure then µ0 must be an absolutely continuous measure

dµ0 = |z − α|2 dθ

2π
, z = eiθ .

Proof. If we assume µ1 is the Lebesgue measure supported on the unit circle, i.e.,
Rn(z) = zn, then (6) becomes

zn−1 =
P ′

n(z)

n
+ αn−1

P ′
n−1(z)

n− 1
, n = 2, 3, . . . .
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Integrating the above expression, there exists a sequence of complex numbers (un)
such that

zn

n
+ un−1 =

Pn(z)

n
+ αn−1

Pn−1(z)

n− 1
, n = 2, 3, . . . .

According to the previous lemma, the moments, cn, associated with the linear func-
tional, v, such that {Pn} is the corresponding MOPS, satisfy cn = 0 , n = 2, 3, . . . ,
and c0, c1 are two complex arbitrary constants.

Furthermore, since v is a positive definite linear functional associated with a positive
Borel measure µ0 supported on the unit circle, then we get an integral representation
of such a functional taking into account its moments c0 and c1. Indeed,

c0 =
A

2π

∫ 2π

0

|z − α|2 dθ , c1 =
A

2π

∫ 2π

0

z|z − α|2 dθ

with z = eiθ. Thus, c0 = (1+|α|2)A, c1 = −αA. In other words,
α

1 + |α|2 = −c1

c0

. ¥
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