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resumo 
 

 

A presente tese pretende descrever o desenvolvimento de um sistema 
electrónico, cuja funcionalidade se baseia na transmissão de sinais áudio 
através da rede Wireless. 
Inicialmente foi estudada a família de microcontroladores PIC32, no qual se 
incluiu a sua forma de programação. Foi ainda realizada pesquisa acerca dos 
possíveis métodos de compressão de áudio, culminando com o 
desenvolvimento de algoritmos de compressão no software MATLAB. 
Seguidamente foi desenvolvida a PIC32 Module – daughterboard do projecto. 
Esta é uma componente universal que contém um microcontrolador PIC32, de 
fácil utilização em outros projectos. 
Posteriormente foi criado o dispositivo Wireless Audio Unit – o objectivo basilar 
desta tese. Este passo compreendeu a esquematização e PCB de ambas as 
partes: o transmissor e o receptor. Após a montagem, ambos os dispositivos 
forma colocados em caixas.  
O firmware dos dois microcontroladores PIC32 foi criado em linguagem de 
programação C. O ADC e o DAC são controlados pelo firmware  do PIC32, 
estando a ser executadas correctamente as suas funções. 
No momento do desenvolvimento da componente escrita desta tese, ainda se 
mantêm alguns problemas associados à manipulação do transceptor. Por esta 
razão, o firmware WAU não foi terminado, e o dispositivo não cumpre, ainda, a 
sua funcionalidade. 
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abstract 

 
The thesis aims to report on the development of an electronic system, which 
task is to transmit wirelessly an audio signal. 
The work was started by studying the PIC32 family of microcontrollers including 
the way of programming. The research on audio compression methods that 
was made, finished with development of compression algorithms in MATLAB 
software. 
Following, the PIC32 Module – the daughterboard of project was designed. 
This part is universal unit containing PIC32 microcontroller, which could be 
easily used in many other projects.  
Afterwards, it was created the proper Wireless Audio Unit device – the main 
objective of this dissertation. This step included design of schematics and PCB 
for two its parts: transmitter and receiver. After assembling, both devices was 
put into enclosures. 
The firmware for two PIC32 microcontrollers was created in C programming 
language. The ADC and DAC are controlled by PIC32 firmware and are 
correctly realizing their functions.  
At the moment of writing this document, the problem with handling transceiver 
was not solved. For this reason the firmware WAU was not finished and the 
device does not have its functionality. 
 

 

  



  



 

 

 
 
 
 
 
 

 

 

 

 

 

  

Słowa kluczowe 

 
System bezprzewodowy, mikrokontroler, obróbka cyfrowa sygnału, kompresja, 
transceiver, obróbka audio. 

 

Streszczenie 

 
Celem niniejszego dokumentu jest opis wykonanego systemu elektronicznego, 
którego zadaniem jest bezprzewodowa transmisja sygnału audio. 
Praca została rozpoczęta od zapoznania się z rodziną mikrokontrolerów PIC32, 
włączając w to poznanie metod ich programowania. Badania nad istniejącymi 
metodami kompresji audio, zostały uwieńczone opracowaniem algorytmów 
kompresji w oprogramowaniu MATLAB. 
Następnie został zaprojektowany moduł rozszerzenia -  PIC32 Module. Jest to 
uniwersalna jednostka zawierająca mikrokontroler PIC32, która może być łatwo 
wykorzystana również w innych projektach.  
Kolejnym krokiem było stworzenie właściwego urządzenia – Wireless Audio 
Unit (Bezprzewodowa Jednostka Audio), będącego głównym celem tej pracy. 
Etap ten zawierał projekt schematu oraz płytki obwodu drukowanego dwóch 
części projektu: WAU Transmitter (Nadajnik) i WAU Receiver (odbiornik). Po 
montażu, oba urządzenia zostały umieszczone w obudowach. 
Oprogramowanie dla mikrokontrolerów PIC32 zostało stworzone w języku 
programowania C. Przetworniki a/c oraz c/a są kontrolowane przez 
mikrokontroler i poprawnie realizują swoje funkcje.  
W chwili powstawania tego raportu, problem z obsługą transceivera nie został 
rozwiązany. Z tego powodu, oprogramowanie dla mikrokontrolerów nie zostało 
ukończone i urządzenie nie posiada założonej funkcjonalności. 
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CHAPTER 1  

INTRODUCTION 
 

 

Digital processing of audio is becoming more and more common. Increase of hardware 

performance with its prices drop, generates more possibilities for electronic audio 

engineers.  

The development of digital wireless systems is growing too. Recently it has been a trend 

to use wireless applications wherever possible. The examples might be: wireless sensors, 

lighting control systems and many more. This tendency also given in wireless audio 

systems. There have been growth in number of applications like wireless microphones, 

headsets, wireless solutions for musical instruments. 

Most of existing wireless audio devices are using digital transmission in except of 

analogue. An analogue system requires complex techniques to provide the performance 

level constant, since in analogue circuits almost always exists the problem of variable 

performance and adjustments of parts. In contrast, digital audio wireless transmission 

systems are almost free from such  difficulties. Therefore the choice to widely use these 

kind of applications is reasonable.  

1.1. Objectives 

The objective of this work was to build from scratch a transmitter/receiver device that is 

able to transmit audio signal that is captured from musical instrument or playing unit. 

This device further in this document will be referred as Wireless Audio Unit (WAU). 

Wireless Audio Unit is simply a substitute for a cable connecting two audio equipment. 

On Figure 1, there is an example of functionality of  WAU – connection between musical 

instrument and speaker. 
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Figure 1: Functionality of Wireless Audio Unit 

The proposed order of tasks necessary to develop the project was as follows: 

 Study and understand the PIC32 family of microcontrollers. This part includes 

learning the programming process in 32-bit processors. 

 Study on methods of audio compression 

 Development of PIC32 Module – the daughterboard of WAU  

 WAU schematics design and component selection.  

 Design of PCB for WAU.  

 Soldering the board and mounting it in enclosure. 

 Development of firmware for WAU. This task consists of creating the program 

code for PIC32  in both transmitter and receiver parts. 

 Final testing of the prototype 

1.2. Dissertation structure 

The dissertation is organized as follows: 

Chapter 2 presents the state of the art survey connected with the subject area of 

project.  There are described basic definitions from the field of analog and digital audio 

signals. Chapter presents the architecture of digital processing units, which includes the 

description of processors, analog-to-digital and digital-to-analog converters. This section 

ends with the specification of analog signal conditioning circuits. 

 



 

3 
 

Chapter 3 contains the description of design part of the work. It presents all steps that 

were made during the designing process from choosing appropriate components and  

making schematics to creating the PCB. It also includes the description of final assembly 

of Wireless Audio Unit. This chapter is divided in two sections. First characterizes the 

PIC32 Module – a daughterboard of WAU and the second describes Wireless Audio Unit  

device. 

Chapter 4 is dedicated to the specification of compression methods. First, it is briefly 

described the idea of compression and methods of assessment. Further are presented 

different types of compression algorithms, starting with basic, statistical and dictionary 

techniques and ending with audio compression methods. The chapter closes with the 

presentation of developed and tested compression algorithms.  

Chapter 5 is concentrated on two aspects: description of firmware for microcontrollers 

and presentation the results of device tests. This section characterizes certain 

components in category of their handling by microcontroller. The results of laboratory 

tests are illustrated with the use of several photos captured from oscilloscope. 

Chapter 6 summarizes realized work. It contains the conclusions, that were gathered 

during creating the project. It also states the proposed future work on the Wireless 

Audio Unit. 
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CHAPTER 2 

STATE OF THE ART 
 

 

2.1. Properties of audio signals 

2.1.1. Sound 

A definition of sound can be stated it two ways[Ballou 91]: 

 Psychophysical perception detected by ears and interpreted by a brain. 

 Physical disturbance in a medium. It propagates it a medium as a pressure wave 

by the movement of atoms or molecules. 

The most common medium in which sound is propagating is air. However it can 

propagate also in different medias like water, wood, metal. The best isolator for a sound 

is  vacuum where there are no particles to vibrate. In Table 1 there are some examples 

of speed of a sound in different medias [Ballou 91]. 

 

Table 1: Speed of sound in different medias. 

Medium Speed [m/s] 

Air, 21oC 344 

Water 1480 

Wood 3350 

Concrete 3400 

Mild steel 5050 

Glass 5200 

Gypsum board 6800 

 

As any wave, sound can by characterized by its amplitude and period.  
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The frequency, that is a number of periods per one second expressed in  hertz (Hz) of 

sound wave can vary in wide range. Normally the range of audio frequencies that can be 

heard by human auditory system is between 20Hz and 20kHz depending of human age 

and health[Ballou 91]. 

 

Figure 2: Range of audible frequencies 

Under 20Hz there are located infrasound, and above 20kHz ultrasound. 

The other property of sound is its amplitude. To human auditory system, the amplitude 

of a sound is identified as a loudness. Because the range of amplitudes which are audible 

to human ear is very wide, it is inconvenient to measure it in linear scale. In exchange 

the units of sound loudness are given in logarithmic scale of base 10. The level of sound 

is measured in two units: decibel (dB) and sound pressure level decibel (dB SPL). 

Bel unit is defined as a 10-base logarithm of a ratio of two quantities expressed as 

power. If the result is multiplied by 10, it gives a unit of decibel. 

               
  
  
     

The sound pressure level is a quantity in logarithmic scale describing the proportion 

of  effective sound pressure of a sound and a reference value: 

             (
    

    
)           

To see what are the typical amplitude values of real sounds, in table 2 there are some 

examples of decibel levels for various sounds [Katz-Gentile 06]: 

Table 2: Decibel (dBSPL) values of typical sounds. 

Source dB SPL 

Threshold of hearing 0 

Normal conversation  60-70 

Busy traffic 70-80 

Loud factory 90 

Power saw 110 

Discomfort 120 

Threshold of pain 130 

Jet engine (30 meters away) 150 
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The conclusion from this table, is that the range of level which is confortable to hear is 

up to 120dB and the audio systems should not exceed that value of signal amplitude. 

2.1.2. Audio signals 

Before describing what audio signal is, and how it is processed in digital systems, first it 

is necessary to define what signal is. 

A signal is physical quantity which varies in time, space or any in other variable. It can be 

defined as a function of one or more independent variables[Proakis – Manolakis 96]. For 

example these functions  

             

         

describe two signals which are changing one sinusoidally and other linearly in time.  

If in these examples t     the signals are continuous-time signals. If t is defined only for 

a sequence of time instances: 

                                      

than these signals are discrete-time signals[Morche 99]. Below, there is an example of 

continuous-time signal and his discrete-time equivalent. 

 

Figure 3: Analog and digital representation of a signal 

Analog audio 

Analog audio signal is a continuous-time signal, which has a frequency that can be 

detected as a sound to human ear.  

Real audio signals like speech and music waves differ from simple sine wave. 

Nevertheless due to Fourier analysis, each periodic wave can be reduced to sine 

components. In the other hand each complex wave can be constructed from sinusoids of 

different frequency, amplitude and phase.  
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Figure 4: Combination of sine waves 

On Figure 4a there is a simple sine curve y1 of frequency f1 and amplitude a1. Figure 4b 

shows another sinusoid of frequency f2 = 2f1  and amplitude a2 = 0.5a1. The wave shape 

from Figure 4c is the combination (sum at each point in time) of sinusoids y1 and y2. On 

Figure 4d there is third sinusoid y3 of amplitude a3 = 0.5a3 and frequency f3 = 2f1. Adding 

this one to  y1 and y2, wave from Figure 4e is obtained. Therefore, a sinusoid y1 has been 

distorted by adding other waves to it and it was created new wave shape.  

The first wave of lowest frequency is called the fundamental. The second one (y2) is 

named second harmonic and y3 – third harmonic.  If more waves (of frequencies which 

are successive multiples of f1 ) were added, they would be called fourth harmonic, fifth 

harmonic etc.  

The components of this signal can be represented in frequency domain graph as its 

spectrum. Figure 5 represents a spectrum of wave from Figure 4e: 
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Figure 5: Frequency spectrum of a wave from Figure 2.3e 

The frequency spectrum shows the fundamental of signal and all its harmonics.  

Audio and electronics engineers use the idea of harmonics as they are connected to 

physical characteristic of sound. Musicians rather use different notation which is called 

octaves [Everest 2009]. This is a logarithmic  concept which is implanted in musical 

scales because of its association with ear’s characteristic. Harmonics and octaves are 

compared in Figure 6. 

 

Figure 6: Comparison of harmonics and octaves 

As it can be seen, if the fundamental is 100Hz, the first octave is between 100Hz and 

200Hz. The second finishes at 400Hz which is twice of 200Hz. Consequently third octave 

starts at 400Hz and ends at 800Hz which is doubled 400Hz.  

Digital audio 

In order to process any analog signal (also audio) in digital system, first it is necessary to 

reduce signal to discrete samples in discrete time domain. Operation which converts 

analog signal to digital is called sampling. It is done by taking the values of continuous-
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time signal at the time moments that are multiple of Ts, called the signal interval. The 

quantity Fs = 1/Ts is called the sampling rate or sampling frequency.[Rochesco 3] 

Intuitively higher sampling rate would effect in higher fidelity of digital signal. However, 

if bigger value of the sampling frequency is, the result file occupies more space in 

memory. From the other side the sampling rate cannot be too low, because it would not 

be possible to reproduce original signal from sampled. 

The Nyquist-Shannon sampling theorem says[Rochesco 03], that  a continuous-time 

signal which is band-limited to Fb can be recovered from its sampled version, if the 

sampling rate Fs satisfies an inequality: 

       

When apply this theorem to audio signals, which are band-limited to 20kHz, it can be 

seen that the sampling frequency should be over 40kHz. That is why the music stored on 

Compact Disc (CD) is sampled with 44,1kHz. In table 3 there are some few examples of 

sampling frequencies in different systems. 

Table 3 Commonly used sampling frequencies  [Katz 154] 

System Sampling frequency [kHz] 

Telephone 8 

Compact Disc 44,1 

Professional audio 48 

DVD Audio 96 

 

The sampling rate in telephone which was originally designed for speech communication 

is 8kHz. That is because frequency band in human speech is about 4kHz [Rabiner 

78][Katz 06]. Therefore any sound with higher frequency than 4kHz send over the phone 

line would be distorted.  

When an analog signal is sampled with any sampling rate, first it is digitalized, which 

means that a signal is broken into series of very short samples of amplitude equal to 

instantaneous value of amplitude of analog signal(Figure 7b).  

After this procedure it is necessary to transform samples to discrete values that are 

suitable for digital processing and can be stored in memory. This is done by sample and 

hold circuits, which make that the amplitude of sample have constant value during the 

sampling period (Figure 7c). This process is called quantization. 



Chapter 2: State of the art 

11 
 

 

Figure 7: a) Analog signal, b) Digitalization, c) Quantization 

The other aspect of transforming continuous-time signal to digital-time domain, is size of 

samples. After quantization each sample becomes a number. The size of this number, 

which is called resolution is represented in amount of bits. Higher resolution effects in 

higher fidelity of quantized wave to original one. This means that in high resolution two 

(or more) adjacent samples can have different values, while in lower resolution this two 

samples are noted as the same number. This case is presented on Figure 8 where at 

Figure 8c there is higher resolution of sampling than at Figure 8b which leads to better 

representation of original wave (Figure 8a). The bit resolution, that is usually used in 

practical applications has values 8, 16 or 24 bits depending on desired quality.  

 

 

Figure 8: a) Analog signal, b) digitalized signal c) more precised digital signal 
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2.2. Digital processing units for audio signals 

A digital processing unit begins with a conversion from analog input signal and ends with 

a conversion to analog output signal as it is shown in Figure 9. 

 

Figure 9: Block diagram of digital processing unit 

Analog conditioning blocks contain antialiasing filters which in input are needed to 

remove high frequencies, that can interfere the baseband and are not carrying any 

information. At output, antialiasing filter removes the aliases that were produced during 

sampling. 

After the analog conditioning, the signal is transformed into digital form by analog-to-

digital converter (ADC). Then the signal is processed by microcontroller or other kind of 

processor. After processing digitalized signal is converted again to analog voltage or 

current by digital-to-analog converter.  

Digital processing units can include also other type of digital or analog operations on 

signal, but only those listed above will be described. 

2.2.1. Processors 

The choice of processor can be made from many different options. Each of them has his 

advantages and disadvantages. Selecting the processing device is very important for 

performance of digital processing unit, since it is the main element of the system. The 

basic available choices are: 

 Application-Specific Integrated Circuit (ASIC) 

 Field-Programmable Gate Array (FPGA) 

 Microcontroller (MCU) 

 Digital Signal Processor (DSP) 

ASICs [Smith M.J.S 97] are type of integrated circuits, designed to realize a 

predetermined specific tasks. Because of this, they can be optimized for both power and 

performance. ASICs usually are implemented after successful prototype. They can be 

applied to reduce the cost of final device which is produced in large quantities. 
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FPGAs [Smith G. 10] have generally the same functionality as ASICs, but it can be 

reprogrammed many times after manufacturing and mounting on target device. Because 

FPGAs are composed of optimized hardware blocks for a given collection of functions, 

they can achieve better performance than programmable processors. For example, it is 

common on FPGAs to do parallel computation in range, that is not possible on standard 

microcontrollers or DSP. In the other hand FPGAs are usually large, expansive, and 

consume a lot of power, therefore they are not suitable for portable applications. Also in 

systems which not require the performance of FPGA, it is reasonable to realize 

application using simpler processors.  

MCU [Crisp 04] typically acts as system controller. It specializes in situations, when many 

conditional operations and frequent changes in program flow are needed. The code of 

microcontroller is usually written in C or C++ which are among the most popular 

programming languages. There are many types of microcontrollers, that can have 

different performance from 4-bit, 32kHz models to even 32-bit, 500MHz devices. The 

need of connecting digital processing units to media sources and targets, in most cases 

eliminates microcontrollers that are not 32-bit. The real-time operations performed in 

digital processing units requires the bandwidth and computational power of 32-bit 

MCUs. This does not means, that 8-bit processors are not useful. They can be used in 

simpler applications specially with low-power requirement. Additionally they can act as 

a companion to 32-bit MCU in more complex systems. The advantage of MCUs is that 

they have implemented many useful peripherals like high speed USB, Ethernet 

connectivity etc. That makes them easy to use in complex applications. In digital 

processing unit, MCU can perform not only signal processing but also can serve as 

system controller.  

Digital signal processors (DSP) [Lyons 10] are used in applications, where MCUs 

computing power is not sufficient. DSPs are specialized and optimized to run in tight, 

efficient loops, performing as many multiply-accumulate (MAC) operations as possible in 

a single clock cycle. Achieving DSP full performance usually requires writing optimized 

assembly code. DSPs are running at very high clock rates. They are usually compared in 

number of MAC operations they can perform per second. However, a DSP is not ideal 

standalone processor. Often, when it is focused on signal processing, it is not able to 

deal with whole system control. That is why often DSP are used together with MCUs, 

which provides asynchronous system control functionality. 

2.2.2. Analog-to-digital converters  

Analog-to-digital converter (ADC) is a device, which turns analog quantities into digital 

form. The structure of basic ADC can be presented as it is shown on Figure 10. 
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Figure 10: Basic Analog-to-digital converter 

The main two signals in ADC is an analog input and data output. Input for an ADC is an 

analog signal such as voltage or current. Sometimes ADCs can have multiple analog 

inputs (i.e. multiple channels). The output data of transducer, which is a quantized 

signal, can be passed further using a single serial pin. In some types of ADCs, output data 

is served in parallel form with use of multiple pins.  

Often analog-to-digital converters have some other input signals. The sampling rate can 

be fixed by internal oscillator in ADC, but can be also set by the external sampling clock. 

Usually the manufactures inform the users in datasheets, in what range the sampling 

frequency can be situated. 

The other very important aspect of ADC is reference voltage (VREF). This factor 

determines the range of voltage in which ADC can operate. VREF value has to be lower or 

equal to the value of VDD. The minimum value is defined separately for different models 

of ADCs. 

The important part of internal structure of ADC are sample and hold circuits S/H (named 

sometimes also as sample hold amplifiers SHA). They are indispensable for analog-to-

digital converters to process non-DC signals[Kefauver 07]. The S/H function is added do 

ADC encoder as it is shown on Figure 11. 
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Figure 11: Sample and hold circuit 

The ideal SHA is a switch driving a hold capacitor trailed by the high input impedance 

buffer. The input impedance of buffer must be high enough to discharge the capacitor 

by less than 1LSB during the hold time. The SHA samples the signal during the sample 

mode, and holds it constantly during hold mode. The timing has to be set in the way, 

that the conversion is done during hold time.  

There are many architectures of analog-to-digital converters. Some of them are 

dedicated to work at high sampling frequencies, the others are committed to operate 

with high resolution. Further in this chapter will be briefly presented three popular types 

of ADCs. 

Successive Approximation ADC 

The basic structure of successive approximation ADC[Kester 05] is shown on Figure 12. 

On the assertion of signal START, the sample-hold block is placed in hold mode. All bits 

in the successive approximation register is set to zero, with exception of MSB that is set 

to 1. The output of SAR is passed to DAC. The output of DAC is compared now in 

comparator with output of S/H. If it is greater, the MSB in SAR is reset 0, otherwise it is 

left set. The next most significant bit is then set to 1. If the DAC output is greater than 

analog input this bit in SAR is reset, otherwise it is left set. This procedure is repeated 

until all bits in SAR have been tested. After this the content of SAR corresponds to the 

value of analog input and the conversion is done. 
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Figure 12: Basic Successive Approximation ADC 

 

The example of timing diagram is shown on Figure 13. The conversion starts with rising 

(can be falling, depending on device) edge of start signal. The end of conversion is 

indicated with signal EOC (End of conversion), BUSY or some similar signal fulfilling this 

functionality. Depending on SAR ADC model, the output data can be accessible after 

some delay. The output data can be transmitted further in serial or parallel mode. 

 

Figure 13: Typical SAR ADC timing 

Assuming that N-bit conversion takes N steps, the conversion time in 16-bit SAR ADC 

should be twice longer that conversion in 8-bit ADC. However in SAR ADC’s this 

condition is not met, because of internal DAC, which processing time is not linear in 

proportion to number of bits. For 8-bit SAR ADC conversion time is about hundreds of 

nanoseconds, while for 16-bit it can be counted in microseconds[Kester 05].  

The successive approximation ADC’s are very popular on the market of signal converters, 

thus there are available in many resolutions and sampling rates.  
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Pipelined ADC 

Pipelined ADC are multi stage converters. This means that they consist numerous 

identical cascaded stages that are separated by sample and hold amplifiers. On Figure 14 

there is a structure of pipelined ADC. 

 

Figure 14: Structure of pipelined ADC 

The first part of each stage consists a Sample Hold circuit followed by a sub ADC. This 

converter drives directly a p-bit DAC to reconstruct the quantized analog signal. Then 

this signal is subtracted from the sampled analog input signal of the stage. The result of 

subtraction (residue) is amplified and after this sent to following sub-converter stage. 

The pipelining allows optimization between maximum sampling clock and the speed of 

the circuits used. In the first stage maximum accuracy is obligatory. After this stage the 

accuracy can be reduced with low influence to overall accuracy. The resolution of each 

stage depends on resolution of whole pipelined ADC.  

Sigma-delta ADC 

A sigma-delta ADC (Σ-Δ ADC) in this structure consists some simple analog components 

(a comparator, voltage reference, a switch, integrators and analog summing circuits) and 

more complex digital circuitry. This circuitry contain a digital signal processor (DSP) 

which function is a low-pass filter. 
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The diagram of first order Sigma-Delta ADC is shown o Figure 15. 

 

Figure 15: First Order Sigma-Delta ADC 

To present how converter works it is easy to consider a DC input voltage. At point A, the 

integrator is repetitively ramping up or down. The output signal of the comparator (1-bit 

ADC) is going through the 1-bit DAC to the summing input at point B. This negative 

feedback loop is forcing the average dc voltage at node B to be identical to V IN. This 

means that the average DAC output voltage has to be equal to input voltage VIN. The 

average voltage of DAC is controlled by number of “ones” in 1-bit data stream from 

comparator output. With increment of input voltage in relation to +VREF, the number of 

“ones” in serial bit stream also is rising, and the number of “zeros” decreasing. Likewise, 

if the input signal is going negative towards -VREF, the number of “zeros” is incrementing, 

and number of “ones” is reducing. Therefore the serial bit stream from output of 

comparator is representing the average value of input voltage. Next this stream is 

processed in digital filter and decimator, which produces final output data. 

Sigma-delta Analog-to-Digital converters are used in applications where a low cost, low 

bandwidth, low power and high resolution ADC is required.  

2.2.3. Digital-to-analog converters 

Digital-to-analog converters (DAC) are devices which transforms the data in digital form 

to an analog signal. The basic structure od DAC is presented on Figure 16. 
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Figure 16: Basic structure of digital-to-analog converter 

The digital input in DAC can be a single serial pin or a set of multiple parallel pins. The 

analog output is a single pin (in one channel DACs) on which the result of DAC operation 

is present.  

Some DACs use external voltage references, while others have an internal sources of 

references. The value voltage reference, like in ADC determines the voltage span on 

which DAC can operate (i.e. the analog output voltage range).  

As in case of ADCs, there also many kind of DACs architectures. The short descriptions  

of some types of DAC will be further presented. 

The Kelvin divider (String DAC) 

The basic and the simplest architecture of DAC is  the Kelvin divider also known as String 

DAC. The example of 3-bit DAC is shown on Figure 17. The general N-bit string DAC 

consists of 2N resistors and the same number of switches (usually CMOS). These switches 

are placed between nodes of serial connection of resistors and the output. The output is 

taken from a voltage divider, which is created by closing one of the switches at the 

moment. The control of the switches is handled by the decoder (in example it is 3 to 8 

decoder) which input is N digital bits that has to be converted to analog signal. 
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Figure 17: The Kelvin divider (string DAC) 

 

This configuration can be linear if all resistors have the same values or nonlinear if 

resistances are different. The limitation of this DAC is a fact that, the number of resistors 

and switches needed in a structure is growing very fast (exponential) with the grow of 

resolution. Therefore this architecture is rather dedicated to low resolution DACs. 

Nowadays this type of DACs serve for example as digital potentiometers or as a 

components of more complex DAC architectures.  

R-2R DAC 

One of the most popular architectures of DAC is R-2R. It is based on resistor ladder 

network, composed of two values of resistors, which one has doubled resistance of the 

other. An N-bit DAC requires 2N resistors in his structure.  

There are two ways, in which R-2R DAC can work: voltage mode and current mode. Both 

modes have its advantages and disadvantages. 

In the voltage mode (Figure 18), the positions of switches are moved between the VREF 

and the ground. The output voltage is taken from the end of the ladder.  The voltage 

output is an advantage of this mode. The output impedance is constant, which is 

preferable when connecting amplifier to output of DAC. The disadvantage of this mode 

is that the switches operate within the VREF and ground, which is usually a wide voltage 

range. This is an inconvenience from a design and  manufacturing point, because the 

reference voltage must be driven from a very low impedance source.  
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Figure 18: R-2R DAC voltage mode 

In the current mode (Figure 19) the gain of the DAC can be adjusted with the series 

resistor next to VREF input (this feature is not possible in voltage mode). The positions of 

switches are changing between the ground (or sometimes an  “inverted output” at 

ground potential) and an output, which has to be held at ground potential. Usual the 

output is connected to an operational amplifier configured as current-to-voltage 

converter. Nevertheless the stabilization of this amplifier is problematic, due to non-

stable output impedance of DAC.  

Because the switches of a current-mode ladder network are always at ground potential, 

the problem of their design, which existed in voltage mode R-2R DAC is  eliminated. Also 

their voltage rating does not influence the reference voltage rating. Moreover, since the 

switches are always at ground potential, the maximum reference voltage can exceed the 

logic voltage of circuit.  

 

Figure 19: R-2R DAC current mode 

One of the advantages of R-2R DAC is that, existence of only two values of resistors, 

make them more easily to manufacture in technology of integrated circuits. 
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Sigma-delta DAC 

Sigma-delta DACs operate very similar to sigma-delta ADC, however there are some 

differences. The block schemes of one bit and multibit transducer is shown on Figure 20. 

 

Figure 20: Sigma-Delta DACs 

 

A Σ-Δ DAC is mostly digital. It contains of interpolation filter, which is a digital circuit that 

accepts data at a low rate, inserts zeros at a high rate, and then applies a digital filter 

algorithm and outputs data at a high rate[Kester 05]. A Σ-Δ modulator acts like low pass 

filter to the signal and like high pass filter to quantization noise. It converts the data to a 

high speed bit stream. The 1-bit DAC (in single bit converter) is acting like a switch, that 

connects his output either to positive or negative reference voltage. The output is 

filtered with low pass filter. 

2.2.4. Communication Protocols 

Communication between MCU and ADC or DAC can be provided by various types of 

protocols. Below there will be described most popular among them.  

SPI 

Serial Peripheral Interface (SPI) [SPI.specification] also known as Microwire is primarily 

used for synchronous serial communication between host processor and peripherals. 

Nevertheless it is possible to connect two processors via this protocol.  

SPI specifies four signals for communication: clock (SCK), data output (SO), data input 

(SI) and chip/slave select (CS/SS). Devices communicate using a master/slave 

relationship. The master provides a clock signal and controls the chip select line i.e. 

activates a slave when wants to communicate with him.  In Figure 21 there is an 

example connection between master and single slave. 
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Figure 21: SPI connection between master and single slave 

MOSI(Master Output Slave Input) carries data from master to slave and MISO(Master 

Input Slave Output) back from slave to master.  

A SPI device is basing on idea of shift register. Commands and data values are serially 

transferred, pushed into shift register and then internally available for parallel 

processing. The length of shift registers can vary. The most popular is 8 bit length, but 

also in some devices exists 16 and 32 bit lengths. 

There is also a possibility to connect multiple independent slaves to one master. This 

solution is shown on Figure 22. The SCK, MOSI and MISO lines are common to all slaves. 

Only the chip select lines are connected separately to provide for the master possibility 

to choose with which slave it is communicating at the moment.   

 

Figure 22: Connecting multiple slaves to one master 

Each transmission starts with a falling edge of SS controlled by master, which selects the 

particular slave. If SS/CS is pulled high, SPI device is not selected, and its data output 

goes in high-impedance state(Hi-Z).  

During transmission, commands and data are controlled by SCK and SS. In master device, 

the clock can be configured to shift data either on rising on falling edge depending which 

kind of shifting is implemented in slave device.  



Wireless Audio Unit 

24 
 

On Figure 23 it is shown an example of reading 8 bit status byte from SPI device.  

 

Figure 23: Timing sequence in SPI communication 

The CS pin is pulled low by master, which activates the slave and starts producing the 

clock signal. First master is sending on SO pin 8bit address (Data Sent) of register that he 

wants to read. At this time SO pin of slave (which is SI of master) is in Hi-Z state. To 

complete the reading process, master has to send a second (dummy) byte to capture the 

data on SI pin (Data Received). Dummy byte is usual composed by only “1” values (in this 

case eight of them). After completing the reading process the CS pin is pulled high to 

end the communication with slave. 

I2C 

I2C (also known as Inter Integrated Circuit bus) interface[I2C.specification] is also 

bidirectional serial communication protocol working in Master/Slave mode. In Figure 24 

there is a typical connection between master and slave devices. 

 

Figure 24: Connection between master and slave in I2C protocol 

As distinct from SPI it is using two wires to communicate: a clock (SCL) line which is 

controlled by master device and a bidirectional data line (SDA). 

It is possible to connect more than one device to master. Each of them is recognized by 

unique address which is sent on the beginning of transmission. Devices can be 

transmitters, receivers or both, depending on their function in all system. I2C also 

provides a possibility to connect multiple master devices. This means that in system can 

exist few devices which can take over the control of steering the signals. 
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During transmission of data, signal on line SDA has to be stable, when SCL is in high 

state. Changes on line SDA during high state of clock are interpreted as control signals. 

Therefore some rules of transmission were settled: 

 START condition – falling edge of SDA during high state of SCL 

 STOP condition - rising edge of SDA during high state of SCL 

 Data valid – states of line SDA represents valid data, when (after START 

condition) they are stable during high state of SCL signal. Change of data can 

occur during low state of clock signal.  

On the Figure 25, there is a timing sequence during transfer of data.  

 

Figure 25: Timing sequence in I2C communication 

The transmission starts by START condition after which, it is sent 7bit address of slave 

device. Direction of data transfer is determined by R/W bit. Then, takes place the proper 

exchange of data, confirmed by slave after each byte by acknowledge but (ACK). The end 

of transmission is determined by STOP condition. 

I2S 

I2S is a serial bus interface[I2S.specification] dedicated for connecting digital audio 

devices, mostly for stereo signals. Like the previous protocols, I2S is using master/slave 

organization of devices. As distinct from them I2S is providing one direction data 

transfer. The master can be a device which transmits data or the one which receives it. 

In Figure 26 there is typical connection between transmitter and receiver in two possible 

versions. 



Wireless Audio Unit 

26 
 

 

Figure 26: Connection between master and slave in I2S bus 

The protocol is using 3 lines to communicate: clock line (SCK), word select line (WS) and 

data line. Generation of SCK and WS signals is the responsibility of master device. 

The serial data is sent in two parts: left and right channel with the MSB first. It is possible 

that transmitter and receiver have different word lengths and it is not necessary for 

transmitter to know how many bits receiver can handle. In the other hand receiver does 

not to be informed how many bits transmitter is sending. Data transmission can be 

synchronized to be sent either on falling or rising edge of CLK signal. However serial data 

has to be latched in receiver on leading edge of clock signal.  

Word select line is responsible for switching between transmitting left and right channel. 

During low state of WS, transmitter is sending left channel and during high state right 

channel. The WS signal does not to be symmetrical, which means that more audio 

samples can be sent by one of the channels. In slave device, this signal is latched on the 

rising edge of clock signal. The WS is changing one clock signal before sending data from 

specific channel.  

The Figure 27 represent the timing sequence during transmitting data. 

 

Figure 27: Timing sequence in I2S protocol 
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As it can be seen, the data of left and right channels are sent alternately. There is delay 

of one clock cycle between changing the channel and sending MSB of next sequence of 

data. 

Comparison of protocols 
Each serial communication interface has its advantages and disadvantages. In Table 3 

there is a comparison of three described protocols[Jasio 08]. 

 

Table 3: Comparison of serial communication protocols 

 SPI I2C I2S 

Max bit rate 20 Mbit/s 1 Mbit/s 3,125 Mbit/s 

Max bus size 
Limited by number 
of pins 

128 devices 1 device 

Number of pins 3 + (n × CS) 2 3 

Advantages 

Two way 
transmission, high 
speed, low power, 
not limited to 8-bit 
words. 

Two way 
transmission ,small 
pin count, allows 
multiple masters 

Simple application 
for transmitting 
stereo audio signals 

Disadvantages 

Single master, 
requires more pins 
than I2C 

Slowest, limited size 
of bus 

Connection 
between only 2 
devices, one way 
transmission 

Typical application 

Direct connection to 
many common 
peripherals on the 
same PCB 

Bus connection to 
peripherals on the 
same PCB 

Transmitting stereo 
audio signals 
between two 
devices 

Examples 

Serial EEPROMs, 
ADC, DAC 
converters,  
temperature 
sensors, etc. 

Serial EEPROMs, 
ADC, DAC 
converters,  
temperature 
sensors, etc. 

ADC, DAC 
converters 
dedicated for stereo 
audio signals, DSP  

 

The conclusion is following: if in a system high speed of transmission or connecting more 

than 128 slaves is necessary, it is better to use SPI protocol. Otherwise, for application 

that can work at slower data rate I2C can be used. As it was stated I2S interface is strictly 

dedicated for stereo audio signals transmission and it can be applied in this kind of 

systems. 

2.3. Signal Conditioning  

A digital processing unit is usually dedicated to fulfill some specific task. This means, that 

it is prepared for an input signal that has certain characteristics in terms of amplitude, 

frequency etc. Also, the output signal should be prepared for interaction with a device 
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connected to the output of digital processing unit. To ensure the correct behavior of 

device it is necessary to use the analog signal conditioning circuits.  

Input conditioning block is driven directly by analog input signal. It is usually performing 

two functions. First is fulfilled by low pass filter which cuts off the frequencies that are 

not useful for processing unit. In audio systems, pass band is usually limited with the 

range of human auditory system, but can be also narrower for example in speech 

processing applications. Filters can either be passive or active. Usually active filters are 

adapted, because they have better shapes of response and quality factors than passive 

ones.  

Second function in input analog conditioning block is modification of the signal 

amplitude. Usually, the input signals have low amplitude and need to be amplified. The 

amplification is indispensible to exploit full dynamic range of an ADC. However, the 

signal should fit the input range of ADC. Too low amplitude, degrades the signal to noise 

ratio(SNR)[Self 10] as the top bits are not used. Too high amplitude will cause 

undesirable clipping of signal. Most of ADCs are using only positive reference voltage. 

Input signal often has both positive and negative values. For this reason a circuit that is 

adding an offset to signal is in some cases essential. To perform those tasks, usually are 

chosen circuits based on operational amplifiers. They are easy to implement, because it 

exists many of operational amplifiers produced as integrated circuits. Also only a few 

external elements have to be added to create complete circuitry.  

 

Figure 28: Analog signal conditioning 

The output signal conditioning has very similar structure to input block. It also consists of 

low pass filter, that removes high frequencies caused by aliasing. The cut off frequencies 

of output and input filters is usually equal. After filter is often placed function block 

which modifies the amplitude. It can be a circuit, which amplifies or attenuates the 

signal, depending on destination of output. If the offset was added to signal in the input 

conditioning block, it can be removed by adding a serial capacitor. Nevertheless it is 

recommended to place an operational amplifier on the output the circuit, which will 

separate the device from the output.  
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CHAPTER 3 

DESIGN OF WIRELESS AUDIO UNIT 
 

 

This chapter is divided in two sections.  It begins with description of “PIC32 Module” and 

ends with specification of  the design of Wireless Audio Unit. This partition is caused by 

the fact that whole Wireless Audio Unit device was created in two parts. Firstly PIC32 

Module was designed in collaboration with my colleague Marcin Janiszewski, who has 

also applied it in his project. After this, the proper Wireless Audio Unit – the main 

objective of this dissertation was developed.  

3.1. PIC32 Module 

The idea of creating PIC32 Module was to design a universal unit containing PIC32 

microcontroller, which could be easily used in many projects. The problem of using 32bit 

microcontrollers in prototypes and simple projects is that all of them, with few 

exceptions exists only in SMD packages. This implicates the necessity of producing 

precise PCB for each project. The main advantage and convenience of using PIC32 

Module, is that microcontroller is already soldered on PCB and all its pins are connected 

to output pins of PIC32 Module which are “trough-hole” pins. This makes, that the 

whole module can be treated as PIC32 in DIP package. The basic block schematic of 

PIC32 Module is shown of Figure 29. 

 

Figure 29: PIC32 Module block schematic 
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On PIC32 Module board were located all necessary components, so that just after 

providing power supply it is ready to use. Design includes also a USB functionality, 

therefore all required circuitry was placed in board. Moreover PIC32 Module is adapted 

to use with PICkit 3 in-circuit debugger and programmer. 

The spacing between two rows of output pins have a  value, that PIC32 Module can be 

easily used on universal boards and breadboards.  

3.1.1. Choice of microprocessor 

PIC32 module consists a 32-bit microprocessor from family of PIC32. This family is 

composed from 34 models, divided in five groups: PIC32MX3, PIC32MX4, PIC32MX5, 

PIC32MX6 and PIC32MX7. Difference between microcontrollers in each group is 

possession of various peripherals and functionality. Generally the power of MCUs (in 

those terms) grows with the order of group (form 3 to 7). In each of these groups 

microprocessors exists in in two kind of packages – 64 and 100pin.  

For PIC32 Module, the selected model was PIC32MX795F512H from group 

PIC32MX7[PIC32.datasheet].  This version of PIC32 is the most powerful microcontroller 

in 64pin case form PIC32 family. Since the idea of creating PIC32 module was not only 

applying it to WAU project, but also to other future designs, the decision of using the 

best possible chip was made. 

The properties of PIC32MX795F512H microcontroller are as follows: 

 64 pin case 

 512KB Flash memory + 12KB Boot Flash 

 128KB SRAM memory 

 80MHz of maximum operating frequency  

 3 channels of SPI 

 4 channels of I2C  

 6 channels of UART (Universal Asynchronous Receiver and Transmitter) 

 8 general and 8 dedicated DMA channels 

 USB 2.0-compliant full-speed device and On-The-Go (OTG) controller 

 10/100 Mbps Ethernet MAC with MII and RMII interface 

 5 channels of CAN2.0b  

 5 capture inputs, 5 compare outputs and 5 PWM outputs 

 16 channels of 10bit ADC 1Msps 

 2 analog comparators 

 One 32bit and five 16bit timers 

 RTTC 

 Parallel master port 

 JTAG Program, Debug, Boundary Scan 
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The PIC32MX795F512H microcontroller offers therefore many possibilities for system 

designers and programmers and can be used in many complex projects. 

3.1.2. Schematics 

The circuit of PIC32 Module is shown of Figure 30. It contains few parts which are 

described below: 

 P1 - Junction to PICkit3. It was realized using 6-pin male header. The connection 

to microcontroller was taken from PICkit3 User’s Guide *PICkit3+. 

 J1 – USB socket. For minimizing the size of module, it was selected the mini USB 

type AB socket. The connection to PIC32 was found in PIC32 Family Reference 

Manual[USB.specification]. As it can be seen, to use USB functionality in PIC32 it 

is necessary to make four connections between socket and microcontroller and 

include two capacitors (C7 and C9). 

 Y1, Y2 – quartz crystals. To enhance functionality, two different sources of 

clocking were placed. Y1, that is 8MHz crystal is the main clock supply, from 

which PIC32 can obtain (with correct setup of configuration bits) 80Mhz of 

operating frequency. The frequency of second crystal (Y2) is 32.768kHz. This part 

is required to use RTTC (Real time clock and calendar)[PIC32.datasheet] 

 P1 and P3 – output pins. These two 23-pin male headers are connected to all 

ports of microcontroller. On pins going form case of PIC32, particular ports are 

not grouped (Port D, Port E etc.). This was done in PIC32 Module, so that 

individual ports can be more easily accessed and used. Headers also includes the 

VDD and VSS pins. 

 S1 – reset button. This switch, when pushed shorts to ground the MCLR pin. This 

results in reset of microcontroller. 

 D1 – Power indicating diode. A low current LED, which is tuned on, while the 

power supply is provided to PIC32 module. 

 Capacitors C1-C5 – decoupling capacitors. Their values and amount was taken 

from PIC32 datasheet[PIC32.datasheet].  

 Resistors R1,R3 – connection from PIC32 datasheet[PIC32.datasheet]. 
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Figure 30: Schematic of PIC32 Module 
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3.1.3. PCB 

The project of PCB was created using Altium Designer software. The printouts are 

present in appendix. 

Following rules were applied in PCB design 

 Track width: 

 20mil (0,508mm) for VDD, VSS, AVDD, AVSS tracks 

 10mil (0,254mm) for other tracks 

 Clearance constraint between tracks: 

 20mil (0,508mm) for VDD, VSS, AVDD, AVSS tracks (in some places there 

are some exceptions and clearance is 10mil) 

 10mil (0,254mm) for other tracks 

 Size of vias : diameter 1mm, hole size 0,5mm 

To minimalize the size of board, all used elements (except for headers) are in SMD 

packages. The capacitors and resistors are in 0805 package which dimensions are 

2.0 × 1.3 mm.  

3.2. Wireless Audio Unit Design 

3.2.1. General architecture 

As it was written at the beginning of this document, the task of Wireless Audio Unit, is to 

substitute the cable connection between audio equipment. To achieve this, it was 

designed two devices: transmitter and receiver. The general block diagram is presented 

on Figure 31. 

 

Figure 31: General architecture of Wireless Audio Unit 
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The input of transmitter is analog audio signal. Since the WAU is mainly dedicated to 

work with musical instruments (electric guitar), expected input is a wave of maximum 

amplitude 2VPP. It also means, that WAU has only one input one output audio channel. 

The signal from input goes to “Analog signal conditioning” block. This section performs 

two functions: cutting off high (not audible) frequencies and preparing the signal for its 

digitalization. This preparation includes the amplification of signal and adding a DC offset 

to it. After conditioning, the signal is quantized in ADC. The samples of audio signal are 

being gathered by PIC32 microcontroller. PIC32 is performing a lossless compression on 

gathered stream of data. After this, the compressed samples are sent to wireless 

transceiver, configured as transmitter.  

In WAU Receiver part, the transceiver is obtaining the data sent by WAU Transmitter.  

This data, which are compressed samples, are directed to microcontroller. In PIC32 is 

done the decompression procedure. The reproduced samples are sent to DAC. The 

analog signal produced by this transducer is now being conditioned. The last block is 

removing the constant component and amplification to cause that output signal is 

identical to input.  

The power supply for both parts are provided by AC adapter. In WAU transmitter there 

is possibility to switch to battery supply.  

The specification of project can be stated as follows. The signal reproduced by the 

receiver has to be an exact copy of input signal. To achieve this, the proposed quality of 

digital processing is 16 bit resolution and 40kHz of sampling rate. Also the compression 

which is performed in microcontroller has to be based on lossless algorithm.  

3.2.2. Choice of components 

To fulfill those requirements and realize the project, the components were carefully 

selected on the ground of characteristics, functionality and price.  

In both input and output signal conditioning it was necessary to use a low-pass filter to 

sift high, not useful frequencies. To implement this filter, two solutions were possible. 

First option, was to design an active filter in one of the known topologies (Sallen-Key, 

MFB, etc.) based on operational amplifiers. Second opportunity was to use a ready 

integrated circuit , which serves as low-pass filter. In order to save more space on the 

PCB and have more confidence on reliability of filter, second option was chosen.  

In both input and output signal conditioning, it was used a low-pass filter LTC1569-7 

from Linear Technology. This is a 10th order analog filter featuring linear phase in the 

pass band. The cutoff frequency is configurable by the external resistor, up to 300kHz. 

According to datasheet the filter attenuation is 57dB at 1.5fCUTOFF and 80dB at 6fCUTOFF. 

The frequency response for three different cutoff frequencies is shown on Figure 32 

[LTC1569-7.datasheet]. The chip can work at single or symmetrical power supply (from 3 

to ±5).  
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Figure 32: Frequency Response, fCUTOFF = 128kHz/32kHz/8kHz 

To perform other signal conditioning such as amplification it was necessary to choose an 

operational amplifier. There are plenty of them available on the market, almost each 

with different characteristics. Most important properties, according to which 

the amplifier was chosen, was a rail-to-rail feature, single supply operation at 3.3V, low 

supply current and sufficient bandwidth. The operational amplifier that meets these 

conditions is AD8531 from Analog Devices[AD8531.datasheet]. It has 750μA supply 

current and 3MHz of bandwidth.  

The choice of ADC was limited by four factors:  

 16 bit samples resolution,  

 minimum 40kHz sampling rate,  

 single supply of 3,3V, 

 serial output, compatible with SPI protocol.  

Among the chips available on the market, it was selected LTC1864L ADC from Linear 

Technology. It is one channel, successive approximation ADC with 16 bit resolution and 

maximum sampling rate 150kHz. The communication is performed via 3-wire interface, 

that fits SPI standard. The supply voltage can have value between 2,7 and 3,6V. The 

maximum speed of conversion is 2μs per sample. 

The same requirements were put to the selection of DAC. The searches led to the chip 

from Linear Technology - LTC2641. The resolution of this transducer is 16 bit and it is 

compatible with SPI protocol. It can be supplied from a voltage of value between 2,7 and 

5,5V.  

Both ADC and DAC are low-power devices. Supply current for ADC is around 100μA (for 

sampling rate 40kHz) and for DAC 120μA. 
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To provide a wireless communication between two parts of Wireless Audio Unit, a 

proper wireless transceiver had to be selected. The choice was dictated by conditions: 

 The throughput of transceiver must be sufficient to let the transmission and 

reception of audio data at given quality. Since the resolution of samples is 16 

bits, and expected sampling rate is 40kHz, the predicted bitrate of audio data can 

be calculated: 

 

                                 

 

The compression, that would be done in microprocessor is estimated to be in 

order of 50% of size of input stream (see Chapter 4.4.5). Therefore the 

throughput of transceiver has to be at minimum 320 kbit/s. 

 The second aspect of choosing transceiver, was the range in which two devices 

can communicate. The minimum condition was few tens of meters. 

 Searches was also limited to transceiver modules, on which is already included 

the antenna, Balun and RF matching. In RF applications the accuracy of circuit of 

transceiver is essential to make them work properly. In those type of units, all 

passive components have precise values, inductances are often created with the 

use of track on PCB and the module is already tested.  

 As the other elements, the power supply should has a value of 3.3V 

 The communication between PIC32 should be provided via SPI interface 

The selected part is QFM-TRX1-24G from Quasar company[QFM-TRX1-24G.datasheet]. It 

is ready to use module with internal antenna, possible to mount on PCB board. The 

photo of this part is on Figure 33. 

 

Figure 33: Photo of QFM-TRX1-24G transceiver module 

This module is based on CC2500 chip from Texas Instruments[CC2500.datasheet]. It is a 

2,4GHz RF transceiver, with maximum throughput of 500kbps. The output power is 
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programmable, and at +1dBm the range is up to 50m in open area. The power supply is 

between 1,8 and 3,6V. The communication with transceiver (i.e. configuration and data 

interface) is done through the SPI interface.  

The assumed value of voltage supply for both WAU Transceiver and Receiver was 3,3V. 

The AC adapter, which was provided to use with project, produces 5V of DC voltage. To 

obtain 3,3V, it was necessary to use a power management system such as linear voltage 

regulator or DC-DC converter. Due to better efficiency, the second option was selected. 

The search led to TSR 1-2433 from Traco Power company [TSR-1.datasheet]. This 

component is a step-down switching regulator with high efficiency up to 96%. It 

produces 3,3VDC from wide input voltage from 4,75 to 36V. The maximum output 

current is 1A, which is sufficient to designed device. The main advantage of this part, in 

relation to others available on market, is that any external element such as inductor or 

diode is not necessary to be added. It is only recommended to place one input capacitor. 

Since in WAU Transmitter part, was added also possibility to power the device from 

batteries, proper cells had to be selected. To minimize the space occupied by them and 

maintain the sufficient value of voltage, it was chosen two 3V batteries, in 2032 case. 

After mounting them in proper battery holder, where they are connected in series the 

total voltage is 6V. The capacity of these batteries is 225mAh. 

The choice of microprocessor was previously made in design of PIC32 Module and this 

module was used in both WAU Transmitter and WAU Receiver. 

3.2.3. Schematics 

After selecting the components, it was necessary to connect them together on 

schematics. As two sub devices supposed to be created, the schematics is divided into 

two parts: Transmitter and Receiver. 

The schematics as well as PCB was created in Altium Designer software. 

WAU Transmitter 

On Figure 34 there is a block diagram of WAU Transmitter part. Each block represents a 

separated circuit. Connections between blocks signifies the signals, which are connecting 

those circuits together in one schematic of WAU Transmitter.  
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Figure 34: Block diagram of WAU Transmitter 

 

Battery Supply 

 

Figure 35: WAU Transmitter: Power supply circuit 

As it was written, WAU Transmitter has two possible sources of supply: AC adapter 

(connected to Power Supply1 junction) or batteries (connected to Battery1 junction). 

The selection is done using the 3-pole switch S1 (ON-OFF-ON). 

The place and value of capacitor C2 was taken from TSR-1 datasheet. 

The role of LED D1 is to indicate if the power supply is provided to circuit. The forward 

current of this diode is If = 2mA and forward voltage Uf = 1,9V. Taking this into account, 

the value of resistor R1 was calculated: 

   
   
   

 
       

  
 
         

   
      

The closest value form available resistors is 698Ω. 
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Input Analog Signal Conditioning 

 

 

Figure 36: WAU Transmitter: Input Analog Signal Conditioning circuit 

The input analog audio signal is connected to junction J1, which is a mono Jack socket. 

The possible DC component  in input signal is eliminated using the C3 capacitor. Further 

the signal is amplified in  inverting operational amplifier configuration. The amplification 

depends on setting of potentiometer RPot1. Its value is given as: 

    
     

  
 

Therefore the maximum possible amplification is -5V/V (for RPot1 = 5k). 

During amplification, also second operation on signal is done. With use of voltage divider 

composed by R3 and RPot2, connected to non-inverting input of operational amplifier, a 

DC offset is added to signal.  

This two changes of signal are performed to prepare the signal for the input of ADC. The 

amplification is done to exploit the full range of ADC resolution. Adding DC offset is 

caused by the fact that ADC is single supplied, therefore it cannot sample the negative 

voltage signals. 

After this stage, the signal is put on the input of low-pass filter LTC1569-7. External 

elements are connected according to its datasheet. Feeding the DIV/CLK pin with 3,3V 

and the value of potentiometer R5 are settling the value of cut-off frequency given by 

the equation: 

        
       

    
   

  
 

After filtration, the signal is going to the input of ADC 
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ADC 

 

 

Figure 37: WAU Transmitter: ADC circuit 

As it can be seen, only one external element, which is decoupling capacitor C1 had to be 

added to ADC circuit. LTC1864L possess a differential input, but in WAU the input signal 

is referred to the ground, therefore only positive input (IN+) was used. The reference 

voltage of ADC, which is determined by the potential on pin VREF was set to value 3,3V. 

The communication with microprocessor is performed with use of three wires, 

compatible with SPI interface. SDO is the serial output of ADC, SCK is SPI clock input and 

CONV is equivalent of CS signal in SPI protocol. 

PIC32 

Connections between PIC32 Module and the rest of the circuit are shown on Figure 38. 

 

Figure 38: WAU Transmitter: PIC32 Module circuit 
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Signals: CONV_ADC, SCK_ADC and SDO_ADC are connected to pins of PIC32, which share 

the function of SPI channel. According to numeration in PIC32, the number of this 

channel is 3. 

Signals SCLK_TR, SO_TR, SI_TR, CSn_TR, GDO0_TR and GDO2_TR are associated with 

control of transceiver. 

Additionally three diodes D2, D3, D4 were connected to first three pins of port B. Their 

role is to assist during testing the device. 

Transceiver 

 

Figure 39: WAU Transmitter: Transceiver circuit 

Since all necessary elements are placed on transceiver module board, only additional 

decoupling capacitor C6 was placed. 

The signals SCLK_TR, SO_TR, SI_TR, CSn_TR which are connected to PIC32, serve as SPI 

interface. The SPI channel is 2. Two additional connections GDO0_TR and GDO2_TR are 

digital pins for general use. They are helpful during communication between this module 

and microprocessor, because they can indicate some states in which transceiver is at the 

moment. Moreover these pins  can serve as serial communication interface, when SPI is 

not used. The detailed theory of operation of this transceiver will be described in 

chapter 5. 

WAU Receiver 

As in the WAU Transmitter part, block diagram  shown on Figure 40, represents 

particular schematics connected together with drawn connections. Diagram is also 

composed from five circuits and some of them are very similar to those from WAU 

Transmitter part. 
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Figure 40: Block diagram of WAU Receiver 

Power Supply 

 

 

Figure 41: WAU Receiver: Power supply circuit 

The circuit of power supply almost identical to this from the WAU Transmitter part. The 

only difference is the removal of the battery supply and replacing the 3 pole switch to 2 

pole S1. 

Transceiver 

 

 

Figure 42: WAU Receiver: Transceiver circuit 

This schematic is an exact copy of circuit from  WAU transmitter. 
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PIC32 

 

 

Figure 43: WAU Receiver: PIC32 Module Circuit 

Transceiver is connected to SPI channel  no. 3 and DAC to channel number 2. Like in 

previous circuit, three test diodes are connected to port B. 

DAC 

 

Figure 44: WAU Receiver: DAC circuit 

The DAC circuit includes two external decoupling capacitors(C2,C3). The pin REF in DAC 

is connected to 3,3V, which means that this value is the reference voltage for this 

transducer. The signals CS_DAC, SCLK_DAC and DIN_DAC are the SPI interface for this 

chip. The analog output (VOUT) is directly connected to operational amplifier configured 

as voltage follower. Adding this element was dictated by the recommendation from 

datasheet of DAC. In circuit it was placed the same model of operational amplifier as in 

the suggested application circuit. 
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Output Analog Signal Conditioning 

 

 

Figure 45: WAU Receiver: Output Analog Signal Conditioning circuit 

This circuit contains a low pass filter LTC1569-7 configured identically as in WAU 

Transmitter part. The output of filter is feeding the voltage follower, which is placed 

here to counter the effects of loading of the source. 

On the output of the operational amplifier there is a voltage divider composed from R3 

and Rpot1. Its role is to restore the level of amplitude from the input of device. The DC 

offset added in Input Analog Conditioning, is removed when signal passes through the 

capacitor C4. 

The output analog audio signal is connected to junction J1, which is a mono Jack socket.  

Corrections in schematics 

After assembling the device and start the tests, some mistakes were detected. 

 The input capacitor C3 in WAU Transmitter was removed. With potentiometer 

RPot2, it was creating an undesirable low pass filter, which was blocking the 

frequencies below 400Hz. 

 The value of resistor R3 in WAU Transmitter , was changed to 4,7kΩ. Only just 

with this resistance it was possible to obtain demanded 1,65V on the non-

inverting input of operational amplifier U3. 

 The both LTC1569-7 filters were supplied from voltage of 5V. This was caused by 

the fact, that the output voltage of this part turned out to be in the range of 

50mV to (VCC - 0,8V). This led to a situation in which ADC could not work at full 

resolution. The 5V voltage was taken from the AC adapter. 

 The SDO and SCK pins in ADC had been switched. This mistake was caused by 

wrong assignment of these pins during creating the schematic model for ADC. 
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 The CLR pin in DAC was connected to VCC. When this pin was floating, DAC had 

been working properly only for some time after turning on the device. 

Connecting CLR pin to 3,3V had eliminated this problem. 

 GDO0_TR, GDO2_TR pins in WAU Transmitter and GDO0_RE, GDO2_RE pins in 

WAU Receiver were connected to RD10 and RD11 pins in PIC32 instead to RE0 

and RE1. It was caused by the need of using external interrupts of PIC32 when 

handling transceiver. RD10 and RD11 are input pins for external interrupts INT3 

and INT4. Also, it was necessary to connect pull-down resistors to those pins. 

The corrected schematics are presented on Figure 46. 

 

Figure 46: Corrected schematics of WAU 
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The corrected schematics can be found also on DVD added to dissertation.  

3.2.4. PCB 

The printouts of PCB can be found in appendix. 

Following rules were applied in PCB design: 

 Track width: 

 15mil (0,508mm) for VDD, VSS, AVDD, AVSS tracks 

 10mil (0,254mm) for other tracks 

 Clearance constraint between tracks: 

 15mil (0,508mm) for VDD, VSS, AVDD, AVSS tracks (in some places there 

are some exceptions and clearance is 10mil) 

 10mil (0,254mm) for other tracks 

 Size of vias : diameter 1mm, hole size 0,5mm 

During the design, efforts were made to place capacitors as close as possible to 

integrated circuits. Also all tracks were routed with the minimum length wherever 

possible.  

The boards are a double layer PCBs. On both layers, the polygon was poured and 

connected to ground net. In order to the ground potential was equal on both sides of 

the boards, some additional vias on polygon plane was placed. The ground tracks were 

not routed, since the polygon took care of connecting ground pins. 

To minimize the size of the boards, most of the SMD elements were placed under the 

PIC Module. Trimmers were located in places, where they can be easily accessed.  

To make possible mounting the boards in cases, the holes for screws was placed on each 

corner of the boards.  

To connect external elements, such as power switches Jack and AC adapter sockets the 

trough hole screwed terminal blocks was used.  

The dimensions of both WAU Receiver and WAU Transmitter are equal: 56 × 61 mm.  
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3.2.5. Final Assembly 

The photos of produced PCBs are shown on Figure 47. As it can be seen the PIC Module 

is plugged into WAU motherboard.  

 

Figure 47: Produced PCBs of Wireless Audio Unit 

 

Finally, the both WAU Transmitter and WAU Receiver were put in the enclosures. Both 

has the same dimensions: 110×82×44 mm. 

 

Figure 48: Final assembly of Wireless Audio Unit 
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CHAPTER 4 

COMPRESSION 
 

 

Compression is the process whose objective is to reduce the size of a data set by writing 

the contained information in a different and more efficient way. The result of this 

transformation is a reduction of the number bits needed to store the information in the 

data set. This process is called encoding.  

To reconstruct the information after encoding, the compression must be followed by a 

de-compression method which has to possess also a procedure known as decoding. This 

algorithm is responsible for restoring to the previous form the information of the 

original data set.  

Compression techniques can be divided in two groups, when considering the loss of 

information during encoding: 

 Lossless – the original dataset can be reconstructed from the encoded stream 

without any loss. These methods are used when the quality of information is 

essential, and also in some sort of data, where the loss of information makes 

impossible the decoding process. Lossless algorithms are usually used in text, 

computer files and high multimedia compression. 

 Lossy–These techniques lose information after compressing the data set, thus in 

most cases they provide better results (in the final size of the compressed data) 

than the lossless methods. After decompression however, the final data is not 

identical to original. Lossy encoders are used especially in compression of music, 

video and images. In these cases, if the loss of data is small, the user cannot 

notice the difference. 

There are many known methods of lossless data compression. They have different 

means of operation, and are dedicated to different types of data, but they all share one 
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in common characteristic -  compression is performed by removing redundancy from 

original data. If a data set is generated from a non-random source, it has some structure. 

Compression methods are using this structure to represent a data set in a reduced form, 

where this structure is not directly recognizable.  

In text streams, for example, this structure can be connected with probability of 

occurring different characters in words, or words in sentences. In images redundancy is 

associated with fact that, in most cases, adjacent pixels have similar color. 

In the cases where the encoder and decoder are using the same algorithm (in opposite 

direction), the method of compression is called symmetrical. In contrast, the 

asymmetrical methods are those in which either compressor or decompressor have a 

more or less complex operation. For example, asymmetrical methods can be useful 

when files are rarely compressed, but their decompression is very often, and the 

decompression should be fast. 

If the encoder and decoder do not know the statistics of the input stream, the 

compression method is called universal. In most cases, however dedicated compressors 

provide better compression, as they are constructed to deal with particular types of 

data. The advantage of universal compressors is that they can be widely applied. 

The performance of compression can be represented by different factors listed 

below[Salomon 07]: 

 Compression ratio –defined as ratio of output size to input size: 

 

                  
                         

                        
 

 

From this equation it can be assumed that the smaller the ratio is, the better is 

the compression. For example, a value 0.7 means that the output stream 

occupies 70% of the input stream. For a ratio equal to 1, the encoder is not 

providing any compression. 

In some cases the compression ratio is used as a factor defined as 100 × 

Compression ratio. The result here is given in percentage, which is more suitable 

for presenting the outcome of compression. 

 Compression factor – it is the inversion of compression ratio: 

 

                   
                        

                         
 

In this factor, the values above 1 mean the positive result of compression, and 

below means data expansion instead of compression. Sometimes, using this 
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parameter is more readable and natural, because a higher value is symbolizing a 

better compression.  

 The compression gain – is defined as: 

 

                        
              

               
 

 

The reference size can be the size of the original stream, or the size of the stream 

compressed with some standard lossless compression method. The use of the 

logarithm functions allows compression gain comparison simply by subtraction. 

The unit of this factor is called percent log ratio and has symbol   
 

 
  . 

 Cycles per byte (CPB) - This parameter measures the speed of compression. The 

result is the number of machine code cycles that, in average, is needed to 

compress one byte.  

In the remaining of this chapter, some examples of compression methods will be shown. 

They are divided in four groups: Basic techniques, Statistical methods, Dictionary 

methods and, finally, Audio compression methods. 

4.1. Basic techniques 

4.1.1. Run-Length Encoding (RLE) 

The idea behind this compression method is the following: If a data item d occurs n 

consecutive times in the input stream, the encoder replaces it with a single pair nd. The 

n consecutive occurrences of a data item are called a run length of n. To better show 

how this method works, here is an example of text compression using RLE. 

Applying this method to the string ”2.˽this˽week˽will˽be˽good” would yield 

”2.˽this˽w2ek˽wi2l˽be˽g2od” but it would not work because the decoder will not 

know if the character “2” stands for the number of occurrences of the following 

character or if it a character belonging to the original message (moreover in this case 

RLE does not provide any compression). To solve this problem it can be used a special 

character “@” to mark the repetitions. But, for the given string in this example, would 

result in ”2.˽this˽w@2ek˽wi@2l˽be˽g@2od” which is longer than the original 

string, since two repeated letters are substituted with three characters. This method can 

be modified so that only three or more repetitions of the same character will be 

replaced with a repetition factor. A diagram below shows a block diagram of this 

algorithm. 
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Figure 49: Block diagram of the RLE alghoritm. 

According to the diagram of Figure 49, after reading the first character, the repeat count 

(R) is 1 and the character is saved in a temporary location. Consecutive characters are 

compared, with the first one already saved. If they are identical to it, R is incremented. 

When a different character is read, the following action depends of the current value of 

R. If it is smaller than 4, the saved character is written on the compressed file and the 

newly-read character is saved. Otherwise, an @ is written, followed by the repeat count 

and the saved character. 

To evaluate how efficient RLE is, it can be assumed a string of N characters that needs to 

be compressed. The string has M repetitions of average length L. Each M repetition is 

substituted with 3 characters, so the size of compressed string is N – ML + 3M = N – M(L 

– 3). Therefore the compression factor is: 

 

        
 

For example for N = 1000, M = 20, L = 5, the compression factor is 1.04. A better result 

is, for example, for N = 1000, M=50, L = 10 yielding a compression factor of 1.538. 

RLE is used in image compression. For example in fax documents, where the dominating 

color is white, this compression is very efficient. This algorithm is also used as one of 

filters in PostScript and PDF documents. 
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In audio compression, RLE is applied for example in FLAC format (described further in 

this chapter), being effective in cases there the input audio signal keeps a constant value 

during some periods. 

4.2. Statistical methods 

To compress data, statistical methods use shorter codes for symbols (or groups of 

symbols), that occurs more often in input data, which means that they have higher 

probability of appearing. There are two aspects for constructing a statistical method of 

compressing: 

 Creating a code that can be decoded unequivocally 

 Creating a code with minimum average size 

To go further it is necessary to define a factor called entropy. This factor measures the 

number of bits needed on average to represent single symbol from a stream of data. For 

a string of n symbols from a1 to an entropy can be calculated from: 

  ∑      
 

  
 

 

   

 ∑          

 

   

 

where Pi is the probability of occurrence of a symbol ai. This equation shows that data 

entropy is connected with the probability of single symbols. This factor is largest when 

all Pi are equal. Concerning this fact, it was created other factor, called redundancy of 

data (R). It is the difference between the maximum possible entropy and the real 

entropy of a data stream, and is given by: 

  ( ∑      

 

   

)  ( ∑        

 

   

)        ∑        

 

   

 

The principal statement of the statistical method, proved by Claude Shannon[Salomon 

07], is that information of n elements can be compressed to a maximum of nH bits. 

4.2.1. Variable-size codes 

The statistical methods to compress data are using codes of changing length. They are 

called variable-size codes. Applying this method of compression can be shown better 

with an example.  

Let us consider a string containing of set of four elements, with probability of occurrence 

written in a Table 4: 
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Table 4: Set of example elements with their probability of occurrence 

Symbol Probability 

a1 0,51 

a2 0,25 

a3 0,20 

a4 0,04 
 

Without any coding, the number of bits necessary to represent each symbol is 2 

(00,01,10,11).  

The entropy of this data is: 
 

   ∑         

 

   

                                                

                                                                         

 

This result means that the smallest possible number of bits needed to represent one 

symbol is 1.65 on average. 

The redundancy of this data set is: 

                          

The method to assign codes for each symbol is that the most probable element should 

have the shortest representation. Following variable-size codes can be assigned to 

symbols a1 to a4. 

Table 5: Assigned variable-size codes  

Symbol Probability Code 

a1 0,51 1 

a2 0,25 01 

a3 0,20 000 

a4 0,04 001 

 

The code assignment has to be chosen carefully so that it can be decoded 

unambiguously. The properly selected codes should have a feature called “prefix 

property”. The key of this ability is that, when a starting bit or pattern of starting bits in 

code is assigned to one symbol, it cannot be assigned to other symbol. This is essential 

for the decoder to work faster and decode the string of bits precisely. 
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In the example given above, the assigned code for a1 is “1”, and none of the other code 

for other symbols is starting with “1”. The same situation is with a2. The code for this 

symbol is starting with “01”, and this sequence does not occur at the beginning of any 

other code. 

The method of variable size coding can be applied now to sequence of 20 symbols given 

below:   

a3a1a2a2a2a3a1a2a1a1a1a2a4a1a3a1a1a2a2a1 

When the string is not compressed, it has length of 20 x 2bit = 40 bits. While applying 

variable-size coding, the given sequence assumes the form: 

000|1|01|01|01|000|1|01|1|1|1|01|001|1|000|1|1|01|01|1 

The length of this string is 35 bits, so the gain is of 5 bits. Of course, this example is very 

trivial, and applied to very short string. The variable-size coding method is most effective 

for very long sequences of compressing data, counted in thousands of bits. 

4.2.2. The Golomb-Rice Coding 

The Golomb coding is dedicated to encode streams of integers. In these streams there 

should be an assumption stating that: if the integer value is large, its probability of 

occurrence is low. The Golomb coding uses the unary code. This code for a positive 

integer n, is n “ones” followed by one “zero”. For example, the unary code for 5 is 

111110, and for 8 is 111111110.  

Salomon Wolf Golomb described his method of coding in a paper - “Run length 

encoding”*Golomb 66] where he presented the context for a problem as it is quoted 

below: 
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The Golomb code is parameterized by a factor m>0. The positive number n can be 

represented in Golomb code of parameter m, using two quantities q and r, where: 

  ⌊
 

 
⌋ 

and 

       

The number q is therefore a quotient and r the remainder. The quotient can take values 

0 ,1 ,2 ,… and the remainder 0, 1 ,2 ,… ,m- 1. It is useful also to define a parameter c, 

which takes value: 

  ⌈     ⌉ 

The ⌊x⌋ operator rounds x to the integer that immediately precedes it (for instance, 

⌊5,2⌋=5 and ⌊5,7⌋=5), and ⌈x⌉ rounds x to the integer value that immediately succeeds it 

(for example, ⌈5,2⌉ = 6 and ⌈5,7⌉ = 6). 

The Golomb code consists of two parts. The first is the value of q noted in unary code, 

and the second is the binary representation of r coded in a special way. The first 2c– m 

values of r, are noted in (c – 1) bits and the rest of r’s are coded in c bits each. When the 

m is the power of 2, the coding is easier, because there is no c – 1 bit codes (2c– m = 0). 

This case of Golomb code was developed by Robert Rice and it is called Rice coding. 

For example, Golomb code for m = 3 can be computed in following steps: 

First, computation of c: 

  ⌈     ⌉  ⌈     ⌉  ⌈    ⌉    

The r can take the values 0, 1, or 2. The amount of first r values coded using c – 1 bits is: 

            

So for r equal to 0, it will be coded using c – 1 = 1 bits. For r = 1 and r = 2, it will be coded 

using c = 2 bits.  

For m = 8 the value of c = 3, and r can take values from 0 to 7. Because 8 is the power of 

2 it is, in fact, Rice coding and all values of r will be coded using c = 3 bits. 
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Following is the table of Golomb code words, for m=3 and m = 8: 

n q r Codeword 

0 0000 0 0 0|0 

1 0001 0 1 0|10 

2 0010 0 2 0|11 

3 0011 1 0 10|0 

4 0100 1 1 10|10 

5 0101 1 2 10|11 

6 0110 2 0 110|0 

7 0111 2 1 110|10 

8 1000 2 2 110|11 

9 1001 3 0 1110|0 

10 1010 3 1 1110|10 

11 1011 3 2 1110|11 

12 1100 4 0 11110|0 
 

n q r Codeword 

0 0000 0 0 0|000 

1 0001 0 1 0|001 

2 0010 0 2 0|010 

3 0011 0 3 0|011 

4 0100 0 4 0|100 

5 0101 0 5 0|101 

6 0110 0 6 0|110 

7 0111 0 7 0|111 

8 1000 1 0 10|000 

9 1001 1 1 10|001 

10 1010 1 2 10|010 

11 1011 1 3 10|011 

12 1100 1 4 10|100 
 

 

As it can be seen, the number of bits needed to note the number in Golomb code is in 

some cases larger than number of bits in its binary representation. That is because 

Golomb code is not intended to compress the size of single numbers. Its purpose is to 

reduce the average length of a string of numbers, if the values in this string are from 

large range and the probability of occurrence the smallest numbers from this range is 

high. In other words, Golomb coding is dedicated to be used on strings of numbers 

which have a geometric distribution. 

The Golomb coding (and especially Rice coding) are used often as a last stage of 

compression in lossless audio encoders.  

4.3. Dictionary methods 

As distinct from statistical methods, dictionary methods do not use any statistical model, 

or variable size codes. In exchange, they choose a string of symbols and encode it as a 

“token” using a dictionary which contains strings of symbols and the associated tokens. 

A dictionary can be static or dynamic. The second one can adapt to input data by adding 

new strings of symbols to the previous set and associate it with new tokens. 

Compressors based on dictionary methods are entropy encoders. It means that a string 

of n elements can be at maximum compressed to nH bits, where H is the entropy of the 

string. These compressors have the best compression factors on vary large input files, 

and they are quite popular due to the good results in practical applications. 

The simplest example of a static dictionary can be the dictionary of any language. When 

an input string of symbols (in this case a word) is read from the input data, the 

compressor searches for it in the dictionary. If this word is found, it is replaced with and 
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index to the dictionary, corresponding to the selected word. If this input string is not 

found, it is send to the output without compression. 

The compressor with this static dictionary will only provide a good compression factor 

when working with an input data which is a text in the particular language (or, at least, 

most of the words are). Otherwise the output file would have the same, or even a larger 

(for example, due to flag bits), size. Therefore in general the compressor using an 

adaptive dictionary is more desirable. Such method starts with an empty dictionary, or 

filled with some basic symbols. During processing, new words are added to it, which are 

found in the input string. Also, it is desirable that processing method can delete old 

words from the dictionary, because a too large dictionary slows down the searching 

process. 

The processing loop in this compressor consists of the following steps: 

1) Reading the input string and parsing it into words. 

2) Searching for the words in the dictionary: 

a. If it is found – write the respective token to the output stream 

b. If it is not found – write the uncompressed word to the output, and add it 

to the dictionary. 

3) Checking if an old word should be deleted from a dictionary. 

The described method has two main features. The first is that, except for numerical 

computations, it uses searching and matching procedures. The other one is that the 

decoder is not symmetric, as it is in statistical methods, but asymmetric. In an adaptive 

dictionary-based method, the decoder has to read the input stream and decide if the 

current element is a token, or an uncompressed word. The advantage of this decoder is 

that it does not have to parse the input data as in statistical methods. 

4.3.1. LZ77 

The full name of this algorithm is Lempel-Ziv 77, due to its creators – Abraham Lempel 

and Jacob Ziv. The number 77 stands for the year when it was developed(1977). 

The idea of this method is to use a portion of previously encoded stream as a dictionary. 

The encoder creates a window and shifts it from right to left over the stream which is 

being encoded. It is called a sliding window. This window is divided in two parts: a search 

buffer and a look-ahead buffer. The search buffer contains a piece of recently encoded 

string, and it is treated like a dictionary of this method. The look-ahead buffer is the next 

portion of the stream to be encoded. An example of such sliding window is presented 

below. 
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Figure 50: Example of sliding window in LZ77 method. 

To encode the fragment of the stream in the look-ahead buffer, the encoder moves the 

match pointer back through the search buffer, until it matches the first symbol in look-

ahead buffer. Than encoder analyses the consecutive symbols, to check if they match 

the next symbols in the look-ahead buffer. The number of equal consecutive symbols in 

both buffers is called the length of match. The distance between the match pointer and 

the look-ahead buffer is called offset. To be most efficient, the encoder is looking for the 

longest possible match. When it is found, the compressor encodes it with a triple <o, l, c 

>, where o is the offset, l is length of the match and c is a code word corresponding to 

the symbol in the look-ahead buffer that is following the match. In the example of Figure 

50, the pointer is indicating the beginning of the longest match. The offset is 7, the 

length of match is 4, and the code word “r”. The encoder is, therefore, substituting the 

fragment of the stream by the triple < 7, 4, r>.  

If the encoder does not find any match in the search buffer, it sets the value of the offset 

and length to 0. The code word in this case is simply the symbol from the look-ahead 

buffer.  

The decoding algorithm is based on restoring original string of symbols from encoded 

triples. If the triple from previous example < 7, 4, r> is encountered, the decoder moves 

back 7 characters and starts copying 4 symbols. Then it adds the code word, which in 

this case is the letter “r”.  

The LZ77 algorithm is an example of universal compressing method. It does not requires 

any additional information from that contained in the input stream. The LZ77 method 

has many variations like LZSS, LZX, LZ78, LZFG, LZRW and many others. Lempel and Ziv, 

therefore, significantly contributed to the development of dictionary compression 

methods. 

4.4. Audio compression 

The audio compression methods, as general compression algorithms, are usually divided 

in two groups – lossless and lossy. The first ones, as it was described in the introduction, 

compress the audio file without any loss of data. Lossy encoders are skipping some 
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information in audio samples to significantly reduce the data size. The size of audio files 

compressed by lossy methods is usually several times smaller than those compressed by 

lossless methods. In Table 1.3 is a comparison of a particular music track compressed 

using lossless encoder – FLAC, and lossy MP3 (MPEG-1/2 Audio Layer-3). The duration of 

this track is 9m46s(586s). 

Table 6: Comparison of compressed track Miles Davis – “Freddie Freeloader”. 

 FLAC MP3 

Size 
MB 64,1 17,8 

kb 525107,2 145817,6 

Bit rate kbps 896,09 248,84 
 

As it can be seen, the size of the MP3 file is about 3,6 times smaller than the FLAC file. 

The cost of this, however, is a reduced quality of sound.  

The lossy audio encoders are based on psychoacoustics, which means that they are 

involving a model of human auditory perception system. The idea of this model is that 

some sounds are not possible to hear by humans, which is closely connected with 

frequencies.  

The first aspect of psychoacoustics is that some sounds which are equally loud cannot be 

perceived at different frequencies. This dependence is presented usually on a graph, 

where a sound pressure level (SPL) is plotted in a function of frequency. 

The sound pressure level is a quantity, in logarithmic scale, describing the proportion of 

effective sound pressure of a sound when compared to a reference value: 

          (
    

    
)       

Figure 51 shows the audible region of human auditory system[Sayood 06]. 

 

Figure 51: Audible and inaudible regions of human auditory system. 

http://pl.wikipedia.org/wiki/MPEG
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As it can be seen, a low amplitude sound for the frequencies on the order of 1-2kHz can 

be heard by the human ear, while for the same amplitude level but for low frequencies it 

cannot be heard. The lossy audio encoders use this characteristic to remove the parts of 

the recorded sounds which are not noticeable to listeners. 

Lossy methods also makes use of the spectral masking. The idea of this process is that 

the occurrence of a tone at certain frequency will raise the threshold of audibility in 

some band around this frequency, in detriment of other regions of the spectrum.   

Apart from lossy encoders there are also lossless audio compressors. They are not using 

any psychoacoustic model, but only algorithms which are compressing data without any 

loss in it, even when some parts of it are not hearable.  

To compress audio files the lossless audio algorithms are using prediction methods and 

variable-size coding such as Golomb-Rice. 

The result of lossless encoding can change significantly, depending on how much 

redundancy exists in the waveform under analysis. For example, the stream composed 

of only zeros can be compress to the single number representing the amount of 

samples, while a signal containing white noise would be hard to compress due to lack of 

redundancy.  

Universal lossless compressors which are based on the LZ77 method (and its variations) 

are not very efficient in compressing audio files. That is because the dictionary methods 

do not match the statistical characteristics of audio waves. The Ziv-Lempel methods 

exploit the repeating sequences which occur in input data. Though the audio wave is, in 

most cases, somehow periodic, the samples do not repeat exactly. This property  

imposes a difference from audio compression and compressing text streams or program 

source code, which are more structured (thus, with a higher redundancy level). 

As it was written, audio encoders usually use prediction algorithms to compress the 

data. These algorithms use the existing correlation between samples and, during 

encoding, predict the next samples from their predecessors. A general model of 

prediction is shown in Figure 52.  

 

Figure 52: General prediction structure. 
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The input samples s[t] are the input for predictor P(z). It is creating the signal estimate 

ŝ[t], which is further subtracted from original signal, producing an error signal e[t]. As 

the error signal contains less information that the samples, it can be coded with less bits 

than the original samples, thus creating compression. It is the error signal that is 

transmitted to the decoder. 

The decoder is symmetrical to the encoder. The values e[n] are added to the values of 

ŝ[n] produced using the decoder predictor. The final signal after decompression is 

identical to original. 

4.4.1. Shorten 

Shorten is a simple lossless compressor for waveform files. It was developed by Tony 

Robinson [Robinson 94] who has dedicated it especially for speech compression. 

Nevertheless, this method can be used to any file whose data items (samples) are 

formed like in a wave signal. Shorten does the best compression for files with low-

amplitude and low-frequency samples. 

This method encodes the file by initially partitioning it into blocks. The size of the blocks 

is typically 128 to 256 samples. In audio files which consist of more than one channel, 

Shorten separates each channel in each block.  Blocks are necessary for applying 

prediction algorithms, which cannot operate on single samples. Shorten has also a lossy 

mode, in which the samples are quantized before compressing. 

After making a block, the samples in each of them are predicted, and the differences are 

computed. A predicted value ŝ(t) for the current sample s(t) is computed from the p 

preceding samples (depending of the order of prediction). A possible implementation of 

the predictor algorithm is: 

 ̂    ∑        

 

   

 

The difference between estimated and actual sample, which is also called the error, is 

computed as follows: 

           ̂    

If the compression is properly performed, the error will have a small (positive or 

negative) value. Prediction can be achieved in different ways, involving different 

numbers of preceding samples. In other words, the order of prediction can vary. 

For the zero-order prediction each sample s(t) is predicted as zero. A first-order 

prediction predicts each sample s(t) only from its predecessor s(t-1) (see Figure 53a). 

Consistently, the second-order prediction computes s(t) from a linear combination of 

the two previous samples s(t-1) and s(t-2) (see Figure 53b). Extending this idea, the 
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third-order prediction is a computation of the 2nd degree polynomial from 3 preceding 

samples (s(t-3), s(t-2) and s(t-1)) and extrapolated to s(t) (see Figure 53c). 

 

Figure 53: Predictors of orders 1, 2 and 3 

The method of computing the second-order predictor is as follows. From the two given 

points: P2 = (t-2,s2) and P1 = (t-1,s1) , it is possible to write the parametric equation of the 

straight segment connecting them: 

                                           

                                     

P2 is the point from which the line starts, so L(0) = P2 and L(1) = P1. Extrapolation to the 

next point gives L(2) = (t,2s1-s2).According to this, the second-order predictor predicts 

the sample s(t) from the linear combination 2s(t-1) – s(t-2). 

For the third-order there are three points P3 = (t-3,s3), P2 = (t-2,s2) and P1 = (t-1,s1). The 

degree-2 polynomial that passes through those points is given by the uniform quadratic 

Lagrange interpolation polynomial: 
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To verify this equation, it can be checked that:  L(0) = P3, L(1) = P2, and L(2) = P1. 

Extrapolating equation to the next point gives L(3) = 3P1− 3P2+ P3. Therefore the 

prediction of the next sample is ŝ(t)= 3s(t-1) – 3s(t-2) + s(t-3). 

The predictors of first four orders are: 

     ̂        

     ̂             

     ̂                     

     ̂                             

From these predictors the respective error values can be computed as: 

                ̂           

                ̂                                

                ̂                                        

                ̂                                  

                

As seen above the computation is recursive. For maximum compression it is possible to 

count all predictors and errors and choose the smallest one. The Shorten, in default 

mode, uses the second-order (linear) prediction. 

4.4.2. FLAC 

The FLAC acronym stands for Free Lossless Audio Codec. According to the respective 

license, the specification of format can be used by anyone without any previous 

permission.  

The FLAC format evolves in some way from the Shorten method, following the idea of 

Josh Coalson [sourceforge.flac 06]. Similarly to many other audio codecs, it is composed 

of the following stages: 

 Blocking – The input signal is divided in adjacent blocks. The size of the blocks 

can vary and depends on different factors, like sample rate, spectral 

characteristics over time, etc. Default FLAC uses fixed block sizes, but it provides 

also possibility to vary the block size within a stream. 

 Interchannel decorrelation – When the audio stream has two channels, the 

encoder will create two signals: mid = (left + right)/2 and side = left – right. Then 

it chooses the best (smaller in terms of number of bits) result and sends it to the 

next stage. 

 Prediction – FLAC uses four types of prediction, which will be described later. 
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 Residual Coding –If the prediction is effective, this method ensures that the 

residual signal will require fewer bits per sample than the original signal. The 

method of residual coding used in FLAC is Rice Coding. 

As mentioned earlier, FLAC uses four prediction methods, but only two are general for 

providing compression (the last two in the following list): 

 Verbatim –This is the zero-order prediction considered in the Shorten method. It 

always predicts the next sample as equal to zero, so the difference is always 

equal to the original sample. The Verbatim predictor should provide almost the 

same compression as the others, when the input data follows a random pattern. 

 Constant – FLAC uses this method when an input block is pure DC (for example, 

in the case of silent parts of an audio stream). In this case, the signal is run-length 

encoded (RLE). The result of this method contains information about the sample 

value and the number of repetitions. 

 Fixed linear predictor–This is a predictor that fits a polynomial to the audio 

samples. The method is the same as presented in the Shorten method, but also 

includes a fourth-order predictor which is an extension of third-order predictor, 

involving one more previous sample. Skipping the mathematical transformations, 

the predicted sample is calculated by: 

 

 ̂                                     

 

The error value sent further is: 

 

            ̂                                          

 

 FIR linear prediction –This is more complex method, supporting 32nd order FIR 

linear prediction.  The algorithm consists on Linear Predictive Coding (LPC) where 

the maximum depth of the FIR filter is chosen from 1 to 32. Generally, the larger 

the depth of the filter is, more accurate is the prediction. The cost of this process 

is longer computational time. The LPC method is described below. 

 

LPC 

LPC is an algorithm that can predict an element ai from a set of correlated values {ai}, 

using n of its predecessors from ai-1to ai-n. The aim of this method is to try some values 

for the coefficient cj and choose the set that minimizes the difference: 

   (   ∑      
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To find the set of coefficients that minimizes this equation it is necessary to differentiate 

the expected value of di with respect to a coefficient cp, and to set such derivative to 

zero. This must be considered for all possible values of p, from 1 to n. The result is: 

  *(   ∑      

 

   

)    +               

or, 

∑             

 

   

                      

where E*∙+ returns the expected value of its argument. 

Before proceeding with these equations it is necessary to describe a parameter called 

autocorrelation (R). The Autocorrelation RV(d) of a random variable V is the correlation 

of V with a copy of itself, shifted by d positions. For example, from an array a of n 

elements two arrays x and y are constructed, each of n-1 samples: 

                  

                    

                  

Next it is computed the Pearson correlation coefficient [Salomon 07]R between x and y. 

This is the autocorrelation Ra(1) of array a with a shift of 1 position. Additionally, it 

should be noticed that autocorrelation can also be expressed as: 

                

Therefore, after replacing, in the above equations, the expectations with the 

autocorrelation coefficients, such equations can be written the form of a system of n 

linear equations with the n unknown coefficients cj: 
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which, in a matrix form yields: 

RC = P. 

It can be solved by Gaussian elimination or by inverting matrix R, but it will involve O(n3) 

operations.  
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FLAC uses a different, more efficient method called the Levinson-Durbin algorithm. It 

was first proposed by Norman Levinson in 1947 , improved by J. Durbin in 1960, and 

further improved by several researchers[Salomon 07]. In its present form it requires only 

3n2 multiplications. 

4.5. Implementation of algorithms 

Before implementing one of the compression methods in firmware of microcontroller, 

first it was desirable to realize them in appropriate computer software. For this purpose, 

the MATLAB application was used. All code listing (“m-files”) are available on DVD  

attached to dissertation. 

Algorithms created in MATLAB was based on prediction method. Two of them was 

derived from Shorten: second and third order prediction. The other one, was based on 

fourth order prediction known from FLAC method.  

To properly test each of algorithms, it was necessary to do following steps: 

 Create a compression function. In this step, it was built a predictor of order 

dependent on the method. Based on it, was created an error stream, which was 

result of compression. It is worth noting that few (depending of predictor order) 

first samples had to be copied to compressed stream, to make possible the 

decompression procedure. 

 Create a function which compares input and compressed streams in category of 

size. It was calculated average number of bits saved per sample. Basing on this it 

was possible to compute the compression ratio.   

 Create the decompression function. This function is inversion of compression 

algorithm. Like it was written, first few samples from input stream (e.g. for 

second order predictor it was 3 samples) were necessary to rebuilt the 

compressed data. 

 Create a function which evaluates if input and decompressed streams are 

identical. This function simply subtracted both streams sample by sample. 

Derisible result, was a string composed only of zeros.  

The algorithms were tested with eight different input streams, created for this purpose. 

These streams were recorded sounds from an electric guitar. The resolution of samples 

were 16 bits and sampling rate was 40kHz. These “tracks” can be found also on DVD 

attached to this document. 

The example results of algorithms operation applied to the same input stream (track1) 

are shown at Figures 54, 55 and 56.  
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Figure 54: Result of the algorithm based on second order predictor (Shorten_2ord.m) 

 

 

 

Figure 55: Result of the algorithm based on third order predictor (Shorten_3ord.m) 
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Figure 56: Result of the algorithm based on fourth order predictor (FLAC.m) 

As can be seen, the average amplitude of compressed stream is two order of magnitude 

smaller than original. It can also be noted, that in each of algorithm, the decompressed 

stream is identical to input one. 

All three algorithms were tested on all eight tracks. Every time, the compression ratio 

was calculated. The results were collected on the chart, that is presented on Figure 57. 

To remind, the lower value has the compression ratio, the compression method is more 

efficient (output stream is smaller). 

 

Figure 57: Comparison of tested compression algorithms 

First observation can be that, all three algorithms have different results for different 

input streams. This is caused by the fact that each of the input files have different 

redundancy.  
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Comparing all the methods, it can be concluded that, results are very similar. The 

average compression ratio is about 50% for each method. Fourth order prediction, 

which intuitively should have the best compression ratio, proved to have the worse. 

Therefore, when the results are comparable, the most reasonable choice is to select 

second order prediction, because its implementation requires the least number of 

calculations.  
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CHAPTER 5 

SOFTWARE DESIGN AND TESTING 
 

 

The purpose of this chapter is to describe how was formed the software of Wireless 

Audio Unit. This includes the firmware of PIC32 in WAU Transmitter and WAU Receiver. 

Also some laboratory tests was done to check the operation of WAU.  

At the moment in which this document is written, the author did not finished developing 

the software. It was caused by the difficulties in creating the firmware for transceiver 

module. This obstacle made impossible to finish the project in a assumed form. 

Description of the problem and attempted solutions will be presented in this chapter. 

The listing of all described codes can be found on DVD attached this dissertation. 

5.1. Components handling  

Firstly will be explained the theory of operation of three main elements which has to be 

handled by software of microcontroller. These three components are ADC, DAC and 

Transceiver.  

5.1.1. ADC 

As has been written, LTC1864L analog-to-digital converter is interfacing with PIC32 via 3-

wire protocol, which is compatible with SPI standard. These three signals are: SDO (serial 

data output), SCK (serial clock),  CONV ( equivalent to CS/SS signal). LTC1864L is 

configured as slave while PIC32 is master. This means that both clock and CONV signals 

are provided by microcontroller. 

The operating sequence of ADC is shown on Figure 58 [LTC1864L.datasheet]. 
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Figure 58: LTC1864L Operating sequence 

The conversion starts with rising edge of CONV signal. It is finished after the time equal 

to tCONV. LTC1864L datasheet states that duration of this time is typically 3,7μs. After this 

time, if CONV is still on high level, the ADC is going into sleep mode, drawing only 

leakage current (±1μA). During these two times, (tCONV and tSLEEP) even if master is 

providing clock, the ADC does not react to it. Also the SDO pin it in high impedance state 

(Hi-Z). On falling edge of CONV, LTC1864L is going into sample mode and SDO is enabled. 

SCK synchronizes the data transfer with each bit being transmitted from SDO on the 

falling SCK edge. The PIC32 therefore should capture the data on rising edge of SCK. The 

speed of receiving the data by microprocessor is determined by the frequency of clock 

signal. The maximum frequency that can be safely applied to LTC1864L is 8MHz. This 

means that the minimum sampling time can be calculated as: 

      
 

    
    

 

    
        

After analyzing the timing sequences, it can be concluded that, the sampling rate of ADC 

is determined by the frequency of CONV. To obtain assumed 40kHz, the period of this 

signal has to be set to 25μs (1/40kHz).  

This was achieved with use of internal timer of PIC32.  Timer 3 was configured to 

generate interrupt every 25μs. To do this, it was necessary to set the period of timer by 

putting into register PR3 a proper value. It was calculated from an equation presented 

below. FPB is the clock frequency of PIC32 which is 80MHz and the prescale of timer 3 

was set to 1. 

    
       

                   
   

          

 
        

 

The handler of  this interrupt is calling the function, which is setting the CONV signal to 

“0” and after sampling time to “1”.  
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5.1.2. DAC 

Communication between LTC2641 and PIC32 is also performed using 3-wire interface 

compatible with SPI. These 3 wires are SCLK (serial clock), DIN (serial input) and CS (chip 

select). DAC is also like ADC configured as slave device to PIC32. The operating sequence 

is presented on Figure 59[LTC2641.datasheet]. 

 

 

Figure 59: LTC2641 operating sequence 

The falling edge of CS signal starts loading the serial data on DIN pin into shift register. 

The bits are shifted on rising edge of SCLK, MSB first. After loading 16 bits, a rising edge 

of CS signal transfers the data to the 16-bit DAC latch, updating the DAC output. To 

acquire correct data, exactly 16 periods of SCLK must occur. While CS pin remains high, 

the input shift register is disabled.  

The maximum frequency of SCLK is 50MHz, which means loading of the data can last at 

minimum 320ns. Nevertheless the maximum frequency of SPI bus in PIC32 working at 

80Mhz clock is around 26MHz so it this case the minimum time lengthens to 615ns. 

To test the functionality of DAC, in PIC32 firmware, a dedicated function has been 

created. This function fills an array with values from one period of sinusoid. These values 

of 16 bit resolution are being successively sent to DAC in infinite loop. The test were 

performed on three sinusoid frequencies. The results are shown on Figure 60.  

 

Figure 60: DAC testing; a) 100Hz (1V/DIV;5ms/DIV) b) 1kHz 100Hz (1V/DIV;0,5ms/DIV) c) 10kHz (1V/DIV;50μs/DIV) 

Shown signals were captured at the output jack socket. After conversion in DAC, they 

have been filtered and the DC offset was removed. Also the amplitude of signal was 
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weakened from 3,3Vpp to 2Vpp with use of output voltage divider. Captured sinusoids 

can prove correct operation of DAC. 

5.1.3. Transceiver 

The RF Transceiver CC2500, mounted on module QFM-TRX1-24G is communicating via 4-

wire SPI compatible interface (SI, SO, SCLK, CS).  SPI is used to configure the radio and 

can be also used to read and write buffered data. All addressing and data transfer is 

done MSB first. 

The microcontroller must be configured to operate in SPI master mode. The clock should 

be configured so the data is sent or received on rising edge(Figure 61 

[CC2500.datasheet]). The SPI clock can run at maximum 9MHz for single access and  

6,5MHz for burst access. 

CC2500 has 47 configuration registers (address 0 to address 0x2E). They are responsible 

for the aspects like: type of modulation, throughput, form of packet etc. The values of 

these registers was fixed with help of SmartRF Studio software [SmartRF] provided by 

the manufacturer.  

Before sending any data to CC2500 it is necessary to load the address of demanded 

register. The address header is shown on Figure 62. The R/W bit controls, if register 

should be written or read. The B bit determines if the access is single or burst.  

 

Figure 61: CC2500 SPI timing 

 

Figure 62: CC2500 adress header 

The communication over SPI starts with falling edge of CS. It is necessary to wait for the 

MISO to go low before sending the address header.  
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For the single access to registers (bit B is cleared) it is possible to write or read  one data 

byte depending on value of R/W bit. After the data byte, a new address is expected (CS 

can remain low). For the burst access, CC2500 expects one address header and then the 

consecutive data bytes, until terminating by setting CS high. 

Another type of communication over SPI are command strobes. They are single byte 

instructions which starts an internal sequences like start TX, enter IDLE mode etc. 

Command strobes share the addresses (from 0x30 to 0x3F) with other type of registers 

which are called status registers. They belong to read only memory and can be accessed 

only in burst mode. The command strobes can be written or read only in single access 

mode. This distinction allows sharing the addresses. 

When the header byte, data byte or command strobe is sent on the SPI interface, the 

chip status byte is sent from the radio on the MISO pin. The status byte contains key 

status signals, useful for the MCU like the current main state machine mode. 

The other accessible directions are RX FIFO and TX FIFO. When using SPI mode to 

transmit data between two transceivers, in these two 64 byte registers data is loaded 

before sending (TX FIFO) or available to gather after receiving(RX FIFO). Both FIFO share 

the same address 0x3F. When the R/W bit is zero, the TX FIFO is accessed, and the RX 

FIFO is accessed when the R/W bit is one. The TX FIFO is write-only, while the RX FIFO is 

read-only. Both registers can be singe or burst accessed. 

To summarize, Figure 63 gives a brief overview of different register access types 

possible. 

 

 

Figure 63: CC2500 Register access types 

Besides 4-wire interface, also two additional pins GDO0 and GDO2 are connected to 

microcontroller (in CC2500 also exists GDO1 pin and is shared with SO pin). These are 

general control pins configured using proper registers. There are several different 

signals, that can be observed on these pins and can be useful for MCU which controls 

the transceiver.  There are 64 possibilities to configure GDO pins. For example, GDO pins 

can help the microcontroller to handle the communication by indicating when packet is 

received or sent.  
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CC2500 has implemented packet handling support in hardware. Packet can be 

configured, to add following components to its content: 

 A programmable number of preamble bytes 

 A two/four byte synchronization word.  

 A CRC checksum computed over the data field 

It is not possible to only insert preamble or only insert a sync word. In the RX FIFO, it is 

optional to add two status bytes with RSSI value (Received Signal Strength Indicator), 

Link Quality Indication, and CRC status. The general packet format is shown on Figure 64.  

 

Figure 64: Packet format 

It is possible to send packets of any length, but the code becomes more complex, if the 

packet size is longer than 64 bytes (the FIFO size). The packet size is understood as all 

bytes, that follow sync word except the optional CRC16 bytes. 

There are three possible packet length modes:  

 Fixed. In fixed mode, the preprogrammed value of appropriate register (PKTLEN) 

indicates the length of the packet.  

 Variable. For variable size mode, PKTLEN register only tells the receiver what is 

maximum allowed length of packet. The size of packet is determined by the value 

of first byte after a sync word, which is called length field. 

 Infinite. This mode is used to send packets of length greater than 255 bytes, 

which is maximum for fixed and variable modes.  

Besides the possibility of using SPI protocol together with TX and RX FIFOs, in CC2500 

also exists different type of communication called serial synchronous mode, which does 

not use this 4-wire interface[AN095]. In this mode data is transmitted or received 

serially over a two wire interface. This interface is provided by general control pins 

GDO0 and GDO2, where one of them carries the clock signal and the other data. In both 

RX and TX modes, the clock is provided by the CC2500 (Figure 65 ). The exchange of data 

is performed bit-by-bit. The clock is configured, that in RX mode data is set up on the 

falling edge of clock and in TX mode, data is sampled by CC2500 on the rising edge of the 

serial clock.  



Wireless Audio Unit 

76 
 

 

Figure 65: CC2500 Serial synchronous mode 

Regardless of which method is used, before configuring transceiver and just after 

providing power supply, it is recommended to perform proper reset procedure. This 

procedure is illustrated on Figure 66[DN503] and has following steps: 

 Strobe CS low / high. 

 Hold CS high for at least 40 μs relative to pulling CS low 

 Pull CSn low and wait for SO to go low. 

 Issue the SRES strobe on the SI line.  

 

Figure 66: CC2500 Power-On-Reset with SRES 

After this process the chip is in idle mode and can be further configured. 

5.2. Software description 

In this subsection will be described several attempts of creating properly working 

firmware for WAU, particularly the different types of transceiver handling.  

However at the beginning, there will be brief description of originally assumed firmware 

algorithm for WAU. The flowchart of this algorithm is shown on Figure 67. 
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Figure 67: Flowchart of assumed firmware algorithms: a) WAU Transmitter b) WAU Receiver 

In WAU Transmitter, first it is necessary to define a variable N, which is counting number 

of collected samples from ADC. Since the compression method that uses any prediction 

algorithm can be applied only to a set of data, it is necessary to define a variable B equal 

to number of samples on  which compression is performed. Next step is the PIC32 port 

initialization. This includes determining which ports are input and which output. To 

output ports, initial values are assigned. Transceiver is reset and configured. The 

configuration registers are written with appropriate values as well as power table 

register (PATABLE), which corresponds to output power of radio. Further the interrupts 

are configured. One is them is the timer interrupt required for ADC operation. The 

others are connected with transceiver. Their number and purpose depends on mode in 

which transceiver is configured. After enabling interrupts, the samples from ADC are 

being gathered by MCU. When the number of collected samples reaches the size of 

block, the compression algorithm is applied on collected set of samples. After this, the 

compressed stream is sent to WAU Receiver with use of transceiver configured as 

transmitter.  

In WAU Receiver the initialization includes ports, transceiver, DAC and interrupts 

(associated with transceiver operation). After setting the transceiver to operate as 

receiver in one of the modes, it is listening for incoming packets. After receive one, it 
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sends it to MCU, where decompression procedure is performed. Next, the recovered 

samples is being sent one by one to DAC. 

Both algorithms (WAU Transmitter and WAU Receiver) should work in infinite loop to 

provide constant transmission of audio.  

The first attempt to creating firmware was to develop a software, which transmits audio 

signal without providing any compression on it. For this purpose, the sampling rate is 

halved to 20kHz. The ADC and DAC was configured as it was described in section 5.1. 

Four modes of communication between PIC32 and CC2500 were tested. First, was tried 

the mode in which TX FIFO is filled with one sample (two bytes) and then the packet 

containing length field and data is sent to receiver. The result of this operation was not 

satisfactory, because the delay between consecutive packets was too big. This interval 

was measured with use of oscilloscope (Figure 68a). One pin of PIC32 was programmed 

to toggle each time the packet has been transmitted (in WAU Transmitter) or received 

(in WAU Receiver).  In both cases, these delays are equal to about 2ms. Therefore it can 

be estimated that, in one second would be transmitted/receiver 1000 bytes. That gives 

the throughput of 8kbps, which is two orders of magnitude smaller than required 

500kbps.  

 

Figure 68: a) One sample transmission (1V/DIV, 1ms/DIV); b) 30 samples transmission (1V/DIV, 2ms/DIV) 

In the second attempt, TX FIFO was filled with 30 samples (60 bytes) each iteration. This 

time, the delay between packets was 4ms (Figure 68b). Consequently, the expected 

bitrate was 120kbps. 

Since these two options did not produce desirable throughput, other had to be 

considered. Because increasing the number of samples in the package improved 

throughput, the reasonable step was to go further in packet size. To achieve this, the 

combination of infinite packet mode and fixed packet mode was adapted. This solution 

allows to transmit packets of length greater than 255. The procedure proposed in 

CC2500 design note[DN500] assumes switching between fixed and infinite packet 
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modes. However, the bitrate has improved slightly. The average throughput of channel 

when  sending 135 samples (270 bytes) was about 135ksps, when sending 225 samples 

(450 bytes) about 138ksps and when sending 500 samples (1kB) about 148ksps.  It can 

therefore be notices a very slight increase in throughput, with a relatively large increase 

in the length of the packet. Because this method also proved to be not efficient enough, 

another was adapted. 

The last option which remained, was to use Serial Synchronous Mode. In this case, only 

configuration of CC2500 was performed with use of SPI interface. Exchange of data was 

done with use of two-wire interface, where GDO2 pin was configured as  serial clock of 

frequency 500kHz and GDO0 pin as data carrier. Since the exchange of data is done bit 

by bit with the frequency of clock, the throughput in this mode is equal to 500kbps. To 

test the operation of transceiver in this mode, PIC32 was programmed to send a single 

16bit number in infinite loop. To meet the requirement of this type of communication, 

this number was sent bit by bit, MSB first. The example results captured with use of 

oscilloscope are shown on Figure 69. The square wave on the top is the clock signal 

provided by CC2500. The signals on the bottom are the data loaded serially by the PIC32. 

The examples show transmissions of two values: Figure 69a AAAA16 

(10101010101010102) and Figure 69b B5A316 (10110101101000112). First results were 

satisfactory, because the bitrate of transfer was 500kbps and the WAU Receiver was 

collecting the values sent by WAU Transmitter (Figure 70).  

The further tests showed however that, after some time of operating, the transmission 

is becoming unstable. This manifests itself with the fact that some bits are being lost 

during transmission. The example WAU Receiver output analog signal is shown on Figure 

71. It was measured before output capacitor, to keep the DC component. The WAU 

Transmitter is continually sending a constant 16 bit value (B5A316). Therefore, the 

output analog signal is expected to have a constant value in time. However, the 

obtained signal varies in time, which may prove that there is some disturbance in 

transmission.  

At the moment of writing this document, the problem with handling CC2500 transceiver 

was not solved. For this reason the firmware WAU was not finished and the device does 

not have its functionality. 
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Figure 69: Serial synchronous mode transmission a) Transmission of AAAA16 (1V/DIV, 2μs/DIV); b) Transmission of 
B5A316 (1V/DIV, 10μs/DIV) 

 

Figure 70: Serial synchronous mode; top signal - WAU Receiver data output, bottom signal - WAU Transmitter data 
input (1V/DIV, 10μs/DIV) 

 

Figure 71: Incorrect WAU Receiver output signal 
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CHAPTER 6 

CONCLUSIONS AND FUTURE WORK 
 

 

6.1. Conclusions on Wireless Audio Unit 

Summarizing the work, which has been done, the following objectives were 

accomplished: 

 The PIC32 Module has been fully realized. Both schematics and PCB were 

designed, and this unit is working as assumed. The main advantage of this part, is 

that it can be also easily used in other projects. 

 The schematics of Wireless Audio Unit was created and adopted on designed 

PCB.  

 The input analog signal conditioning circuit is performing his task which is 

preparing the signal for processing. Its output counterpart also fulfills his role. 

 The ADC and DAC have been handled by PIC32 firmware and are correctly 

realizing their functions. 

 The compression algorithms were developed and examined in MATLAB software. 

The tests proved, that they are providing sufficient compression to be used in 

WAU application. 

The difficulties with handling the transceiver module made impossible to complete the 

project. There were tested different transceiver modes and none of them has not 

brought satisfying effects. Author believes that the problem lies not in the hardware 

side, but on the side of the PIC32 firmware.  
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6.1. Future work proposed 

Since the project was not finished and does not have assumed functionality, the primary 

objective of future development is to complete the work by solving the software 

problem connected with handling transceiver.   

If Wireless Audio Unit had been fully realized,  following ideas could be proposed to 

extend project further: 

 To improve quality of transmitted sound, a higher sampling rate can be applied. 

Both ADC and DAC can work at frequencies higher than 40kHz. The PIC32 

firmware can be optimized to provide this possibility. Since the both transducers 

have 16-bit resolution, increasing of sampling rate can be only possibility to 

improve quality without interfering in WAU hardware.  

 To achieve the objective presented above, a more efficient compression 

algorithm can be developed. If the audio samples were more compressed, the 

bitrate of transmitted sound could be greater.  
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