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ABSTRACT: Various analysis methods, either linear elastic or non-linear, static or dynamic, are available 
for the performance analysis of existing buildings. Despite its advantages, it must be admitted that non-
linear time history analysis can frequently become overly complex and impractical for general use as a first 
assessment. Simplified models, as the Capacity Spectrum Method, are frequently not able to accurately 
assess irregular structures. Considering these limitations, it is proposed and evaluated a simplified MDOF 
non-linear dynamic model, accounting for non-linear storey behaviour and storey damping. Based on the 
MDOF non-linear dynamic model, were developed optimization algorithms for the redesign of existing 
non-seismically designed structures. The optimization procedure searches for the optimum storey 
strengthening distribution (strength, stiffness or damping) in order to meet specific performance 
requirements, in terms of maximum inter-storey drift for a given seismic demand level. Numerical 
examples are presented in order to illustrate the capability of methodology. 
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1 INTRODUCTION 

In Europe, many structures are potentially 
seismically vulnerable due to the late introduction 
of seismic loading into building codes. Therefore, 
there is an evident need to investigate the seismic 
behaviour of existing reinforced concrete (RC) 
buildings, in order to assess their seismic 
vulnerability and ultimately to design optimum 
retrofitting solutions. 

Various analysis methods, either linear elastic or 
non-linear, static or dynamic, are available for the 
performance analysis of existing buildings. Despite 
its advantages, it must be admitted that non-linear 
time history analysis can frequently become overly 
complex and impractical for general use as a first 
assessment. Simplified models, as the Capacity 
Spectrum Method, are frequently not able to 
accurately assess irregular structures. 

Based on a MDOF non-linear dynamic model, 
were developed optimization algorithms for the 
redesign of existing non-seismically designed 
structures. The procedure searches for the optimum 
storey strengthening distribution (strength, stiffness 
or damping) in order to meet specific performance 

requirements, in terms of maximum inter-storey 
drift for a given seismic demand level. A four-
storey full-scale building was tested pseudo-
dynamically at the ELSA laboratory, at the Joint 
Research Centre, in Italy. Numerical strengthening 
design examples, based on the tested structure, are 
presented in order to illustrate the capability of the 
methodology. 

2 DESCRIPTION OF THE BUILDING FRAME 
MODEL, MATERIALS, VERTICAL LOADS 
AND SEISMIC INPUT MOTION 

Figure 1 shows the general layout of the building 
frame model. It is a reinforced concrete 4-storey 
full-scale frame with three bays, two of 5 m span 
and one of 2.5 m span. The inter-storey height is 
2.7 m and a 0.15 m thick slab of 2 m on each side 
is cast together with the beams (Fig. 2). Equal 
beams (geometry and reinforcement) were 
considered at all floors. The columns, all but the 
wider interior one, have equal geometric 
characteristics along the height of the structure. A 
comprehensive description of the frames, tests on 
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material samples used in the construction (steel 
reinforcement and concrete) and PsD test results 
can be found in Pinto et al. (1999). 

 

 
Figure 1. Plan and elevation views for the frame 

 

 
Figure 2. Models in the ELSA laboratory 

 
The materials considered at the design phase 

(Carvalho et al. 1999) were a low strength concrete, 
class C16/20 (Eurocode 2) and smooth reinforcing 
steel (round smooth bars) of class FeB22k (Italian 
standards). Vertical distributed loads on beams and 
concentrated loads on the column nodes were 
considered in order to simulate the dead load other 
than the self-weight of the frame. These correspond 
to the following vertical loads: weight of slab 25 × 
0.15 = 3.75 kN/m2, weight of finishings 0.75 
kN/m2, weight of transverse beams 2.5 kN/m, 
weight of masonry infills 1.1 kN/m2 of wall area, 
and live load 1.0 kN/m2 (quasi-permanent value). 

The input seismic motions were defined in order 
to be representative of a moderate-high European 
seismic hazard scenario Campos-Costa & Pinto 
(1999). Hazard consistent acceleration time series 
(15 seconds duration) were artificially generated 
yielding a set of uniform hazard response spectra 
for increasing return periods. Acceleration time 
histories for 475, 975 and 2000 years return periods 
(yrp) were used in the tests (PGA of 218, 288 and 
373 cm/s2, respectively). 

3 EQUIVALENT DAMPING 

To perform a structural assessment, it is essential to 
define accurately the damping as a function of the 
deformation demand. In the literature, there are 
some proposals of damping functions for new 
buildings, but not for existing structures. In this 
study, it was estimated a damping function for the 
tested frame, representative of existing RC 
structures (Varum 2003). 

The structural equivalent viscous damping was 
calculated. Firstly, at storey level from the curves 
inter-storey drift versus storey shear. Subsequently, 
the equivalent damping of the global structure was 
computed as a function of the damping at storey 
level, weighted by the storey potential energy. The 
best-fit logarithmic curve obtained, in terms of 
storey equivalent damping, as a function of the 
maximum inter-storey drift, is plotted in Figure 3. 

Even for considerable deformation levels, for 
existing structures, a low value of damping was 
estimated (maximum value less than 11%), which 
confirms that existing structures, with reinforcing 
plain bars, have a small energy dissipation capacity. 
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Figure 3. Equivalent global damping versus global drift for the 
existing structure 



4 IMPROVED MDOF NON-LINEAR 
DYNAMIC MODEL FOR STRUCTURAL 
ASSESSMENT 

4.1 Generalities 

Simplified non-linear static models considering just 
one DOF (such the Capacity Spectrum Method) are 
frequently not able to assess accurately irregular 
structural systems. 

As remarked by Peter & Badoux (2000), the 
seismic evaluation of buildings requires the 
prediction of the seismic performance, and, in 
consequence, the prediction of the inelastic 
deformations of the RC structures. 

Despite the advantages of a refined non-linear 
dynamic structural analysis, as fibre modelling, it 
must be admitted that this approach can frequently 
become elaborated and costly. This fact sustains 
the development of less complicated structural 
models without debasing the essential features of 
dynamic response. 

4.2 Model description 

The procedure is based on a generalization of the 
substitute-structure method. Linear spectral 
analysis and multi-modal response methods with 
quadratic combination are applied. The proposed 
model is applied to simulate the results of a series 
of PsD tests on full-scale regular and irregular 
structures. The results obtained are in good 
agreement with experimental ones, even for the 
irregular structure. This non-linear displacement-
based model can be an efficient numerical tool for 
seismic vulnerability assessment, which could 
allow for parametric studies and rapid screening of 
existing building classes. 

A simplified non-linear MDOF dynamic 
procedure, for structural assessment is here 
proposed and evaluated. The model accounts for 
two levels of non-linearities, namely: a) storey 
behaviour in terms of shear-drift; and, b) damping 
as a function of deformation. The procedure 
assumes that a non-linear MDOF system can be 
represented by an equivalent linearized system with 
element stiffness given the secant stiffness. 
Consequently, linear spectral analysis can be used 
and multi-modal response methods can be applied. 
The procedure is based on a generalization of the 
substitute-structure method, proposed by Shibata & 
Sozen (1976), which states that the response of a 
non-linear SDOF system can be accurately 
approximated by the response of an equivalent 
linear system with an equivalent period 
corresponding to the secant stiffness. 

The non-linear damping relationships can be 
modelled in two different ways, namely: a) variable 
(with damping functions defined for different 
structural components, e.g. for each DOF, storey); 
and, b) modal (global structural level). It was 
included the possibility of participation of several 
natural modes (multi-mode) for the structural 
response, with their quadratic combination. 

The building structure is idealised as a bi-
dimensional (2D) cantilever model (shear building), 
with a number of horizontal translational DOF's 
equal to the number of storeys. The structural 
model is fixed at the base, as represented in Figure 
4, and the rotation of each node is fixed against 
rotation. The shear force-displacement relationship 
of each beam-element represents the curves storey 
shear versus inter-storey drift. 
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Figure 4. MDOF simplified model with concentrated masses at 
storey levels being connected by shear beam elements: a) 
damping defined for each storey, b) global first mode damping 

 
In this model, represented schematically in 

Figure 4, the mass distribution of the building is 
defined for each floor level accounting for the mid-
height storey masses and lumped at floor level 
(equivalent total storey masses). Therefore, the i-th 
storey mass (mi) concentrates the total storey mass 
at node (storey) i, and these nodes are connected by 
shear-beam elements. The storey damping is 
labelled ξi. The force vector {F} is expressed in 
terms of the shear forces acting on the beam 
elements (storey shear), and the relative inter-node 



displacement vector {D} is expressed in terms of 
lateral deformation of the beam element (inter-
storey drift). The storey shear force (Fi) acting on a 
beam element and the inter-storey drift (Di) are 
related by the non-linear Fi-Di curve. 

In the iterative step-by-step procedure, for each 
step, the calculations are made with constant secant 
stiffness and damping at the storey levels. 

The required mechanical non-linear relationships 
can be obtained and calibrated from one or more of 
the following: a) experimental tests on structural 
specimens; b) simplified empirical expressions; and 
c) analytical calculations from a detailed structural 
model (pushover numerical analysis). 

The proposed simplified MDOF non-linear 
dynamic method for assessment of multi-storey 
building structures calls for a relatively small 
number of DOF's (one per floor), compared to a 
detailed FE model. Evident advantages come out, 
for example, fast parametric studies with a good 
level of confidence can be carried out with the 
model. A practical application of this simplified 
method is made in the next section. The method is 
described in the next section. 

4.3 Description of the implemented algorithm 

The basic steps of the proposed MDOF non-linear 
dynamic assessment iterative step-by-step 
procedure with two levels of non-linearities are: 
 

1st step: data, initial model and demand 
parameters (structure geometry; non-linear storey 
shear-drift constitutive behaviour laws and 
damping curves at storey, or global level; storey 
masses; elastic seismic demand). 

 
2nd step: starting point (number of fundamental 

modes to be considered in the structural response; 
select the initial values for the storey secant 
stiffness and for the storey or global damping 
coefficient, on the basis of the constitutive 
relations). 

 
3rd step: determine the seismic response 

(compute and assemble the stiffness matrix and the 
diagonal mass matrix of the MDOF system; 
compute the structural natural periods and modal 
shapes; compute the structural effective damping; 
compute the reduced elastic seismic response 
spectra according to EC8, with the damping 
correction factor; determine the structural response 
from the modal analysis with quadratic 
combination; determine storey shear forces and the 
inter-storey drifts). 

 

4th step: check for convergence at two levels 
(storey shear-drift and damping). If convergence is 
not satisfied, prepare new values for the next 
iteration point (for the secant stiffness and/or 
damping, on the basis of the constitutive relations 
and deformation demand), and return to step 3. 

 
5th step: graphical output of the converged 

response (graphical representation of the storey 
shear-drift response point, inter-storey drift profile, 
and damping). 

4.4 Verification of the model with earthquake test 
results 

In order to calibrate and verify the method in 
predicting global parameters (such as top-
displacement, maximum inter-storey drift, 
maximum storey shear, and equivalent damping), 
the proposed MDOF non-linear dynamic seismic 
analysis methodology (described in Sections 4.2 
and 4.3) is applied to simulate the PsD tests 
performed on the bare and strengthened structures. 

The structure was analysed for input motions 
corresponding to the maximum accelerations of the 
earthquakes considered in the tests, namely 218 
and 288 cm/s2 for the BF (corresponding to 475 
and 975-yrp). The description of the structure can 
be found in Section 2. 

For the structure under analysis, four DOF are 
considered, being the storey masses considered for 
the first three storeys (m1, m2 and m3) 44.6 ton, and 
for the fourth storey (m4) 40.0 ton. The envelope 
storey shear-drift behaviour curves, obtained from 
the PsD earthquake tests for the structure, were 
here adopted as capacity curves. The storey shear-
drift envelope curves of the PsD test are in good 
agreement with the storey behaviour curves 
obtained with the pushover analysis. In these 
numerical analyses, it was considered the structural 
damping at storey level (Fig. 3). 

The inter-storey drift profile obtained from the 
numerical analyses performed with the proposed 
simplified MDOF non-linear dynamic method is 
plotted in Figure 5, for the BF structure. In this 
figure, it is also plotted, for comparison, the 
maximum inter-storey drift profile observed in the 
corresponding PsD test. 

The structural response was estimated 
considering the participation of one and four 
natural modes of the equivalent linear system, in 
order to analyse the influence of the number of 
natural modes in the global response. These two 
situations is also represented in the graphic. 

A good estimation of the maximum response was 
achieved, with the simplified non-linear dynamic 



model, considering a small number of DOF (4 
versus 372 DOF's for the refined 2D FE model). 
Therefore, this displacement-based methodology 
can be an effective numerical tool to perform fast 
non-linear analyses, which could allow for 
parametric studies and rapid screening (seismic 
vulnerability assessment) of existing building 
classes. 
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Figure 5. Inter-storey drift profile computed and PsD test results 
for the BF structure and for the earthquake input action 975-yrp 

 

5 STRUCTURAL OPTIMIZATION 
PROBLEMS 

5.1 Introduction 

These optimization algorithms deal with non-linear 
objective functions and allow to impose constrains 
on the design variables (strength, stiffness or 
damping) and on any other response variable 
depending on the design variables, such as inter-
storey drift, top-displacement, etc. 

The optimization procedure can be a useful 
design tool, as a preliminary step, in the global 
structural strengthening decision, for one or 
multiple performance objectives. 

Structural optimization problems consist on 
determining the configurations of structures that 
obey assigned constraints, and produce an 
extremum for a chosen objective function. In order 
to solve them, they are normally transformed into a 
mathematical form that can be solved by general 
optimization tools. Since structural optimization 
problems are characterized by computationally 
expensive function evaluations, it is common to 
generate a sequence of convex, separable sub-
problems, which are then solved iteratively 
(Chickermane & Gea 1996). 

It is therefore judged appropriate to have a 
methodology that can address the strengthening 
design of MDOF structural systems, generating 
optimal distribution (location) of the strengthening 
in the structure components (at storey level). 

In this study, three methodologies for optimum 
redesign of existing structures are proposed and 
programmed. The optimization algorithms are 
based on the convex approximation methods, such 
as the Convex Linearization Method developed by 
Fleury (1989, 1979) and Braibant (1985), and the 
Method of Moving Asymptotes. These 
optimization algorithms can deal with non-linear 
objective functions (minimum cost of intervention) 
and allows to impose constrains on the design 
variables (strength, stiffness or damping) and on 
any other response variable depending on the 
design variables, such as inter-storey drift, top-
displacement, etc. 

The optimization procedure requires several 
structural response evaluations, namely of the 
objective function, of constraints, and of their 
derivatives. The calculation of the structural 
response is required many times during the 
optimization process, which would be unfeasible 
with a refined FE model. The simplified model 
allows for spectral analysis, which constitutes a 
great advantage over the multi-series analyses. The 
model is able to estimate the response of irregular 
structures those we address with the optimization 
of the retrofit. Therefore, the simplified MDOF 
dynamic method, presented in Section 4, was 
incorporated in the redesign optimization 
algorithms here proposed. 

In these three structural optimization problems, 
the design variables, or control variables, are 
defined at storey level, and they are: 
- The additional strength (Problem I); 
- The additional pre-yielding stiffness (Problem II); 
- The yielding strength of the energy dissipation 

device (Problem III). 
In the next are revised the theoretical concepts 

related with the optimization problem. One of the 
implemented optimization problems is explained. 
Strengthening design examples based on the 
structure under analysis are used to illustrate the 
capability of the proposed methodology. 

5.2 Structural strengthening optimization 
problems' formulation 

For the optimization problems here proposed, it is 
assumed that the behaviour of a multi-storey RC 
existing building (non-seismically designed) 
subjected to a certain earthquake action level can 
be represented by the multi-modal model proposed 



in Section 3. Buildings are modelled with one DOF 
per storey, linked by beam elements that represent 
the storey behaviour. The beam elements have an 
equivalent secant stiffness corresponding to the 
maximum deformation point in the non-linear 
storey constitutive curve. Furthermore, response 
spectra modal analysis with concentrated and/or 
distributed damping is used to compute the seismic 
response for each step of the optimization 
procedure. 

The optimization procedure requires previous 
identification of simplified (bilinear) storey shear-
drift constitutive relations made on the basis of 
pushover analysis, as represented in Figure 6. 
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Figure 6. Lateral storey shear versus inter-storey drift behaviour 
(exact and idealized bilinear behaviour) 

 
A seismic performance objective is formed by 

combining a desired building performance level (a 
damage limit-state) with a given earthquake ground 
motion (level of hazard). The objective of this 
analysis is to find the optimum retrofitting solution 
in order to comply with a certain seismic demand-
level defined for each limit-state. 

The optimization problem, in generic terms, is to 
minimise the total strengthening requirements in 
the structure, whilst satisfying the upper limits for 
the inter-storey drifts and strengthening at each 
storey. 

The objective function for each problem is the 
sum of the control variables (additional 
strengthening costs) at each storey level. The 
inequality constraints are upper inter-storey drift 
limits (to restrain the damage at storey level) and 
upper storey strengthening limits (to restrict the 
strengthening within acceptable values). 

Three design optimization structural 
strengthening problems were established in this 
work. They were conceptually based on the 
strengthening strategies commonly used in practice, 
which call for the control variables: the strength 
(controlled by the yielding shear force, ∆Fy), the 
pre-yielding stiffness (∆Ky), and the yielding 

strength of the energy dissipator devices (Fy
dev), as 

will be explained in the subsequent sections. 

5.3 Problem I: storey yielding strength 

Problem I (control variables: strength, ∆Fy, Fig. 7) 
can be described in the following mathematical 
form: 

Find 

{ }; ;...;,1 ,2 ,F F Fy y y NDOFyF ∆ ∆ ∆∆ =  (1) 

Minimise 

( ) ( )0
, , ,

1 1

NDOF NDOF
F F Fy y i y i y i

i i
Cost ∑ ∑∆ ∆ = −

= =
= F  (2) 

Subject to 

min max 1,2,...,,, ,
max 1,2,...,

F F F i NDOFy iy i y i

D D i NDOFi i

⎧∆ ≤∆ ≤∆ =⎪
⎨
⎪ ≤ =⎩

 (3) 

in which: F0
y,i, ∆Fy,i and Fy,i are the initial, 

incremental and total yielding strength of the storey 
i, respectively. NDOF represents the number of 
degrees of freedom of the problem, i.e. number of 
storeys. ∆Fmin

y,i and ∆Fmax
y,i are the lower and 

upper bound limits for each control variable (∆Fy,i). 
Di is the inter-storey drift at storey-level i. Di

max is 
the maximum admissible inter-storey drift for each 
storey-level. 
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Figure 7. Control variable: strength (yielding shear force - Fy) 

5.4 Implementation of the optimization problems 

The optimization problems were implemented in 
the finite element code CASTEM (Millard 1993). 
The philosophy of CASTEM is modular. Therefore, 
the optimization methodology was implemented in 
separate modules for pre-processing, structural 
analyses, optimization, pos-processing and 
graphical results visualisation. The basic steps of 



the iterative optimization process implemented can 
be summarised as follows: 
 

1st step: select the design control variables, i.e. 
strengthening intervention strategy (strength, 
stiffness, or damping). 

 
2nd step: define the structure geometry (NDOF 

storeys and inter-storey heights, hi), the original 
bilinear storey shear-drift behaviour curves, Fi(Di), 
and variable damping curves at storey, ξi(Di), or 
global level, ξGlobal(DGlobal). Set storey masses, mi. 

 
3rd step: define design performance objective 

(design seismic demand, Sa(T, ξ0), and inter-storey 
drift limit, Di

max, for each storey-level), based on 
commonly accepted values for exceedance 
probabilities, as for example the given by ATC-40 
(1996) or VISON-2000 (SEAOC 1995). 

 
4th step: choose a starting point {x0} and let the 

iteration index k = 0. 
 
5th step: given an iteration point {xk} calculate 

the first order derivatives of the objective and 
constraint functions with respect to the design 
variables. 

 
6th step: generate the approximated sub-problems 

using one of the approximation methods available 
in CASTEM. Then the convex optimization 
problem is formulated and solved iteratively. 

 
7th step: get optimum design variables for the 

limit-state considered: ∆Fy for additional yielding 
strength, ∆Ky for additional yielding stiffness, or 
Fy

dev for K-bracing with dissipator device 
intervention. 

 
8th step: with the obtained optimal design point 

{x*}, the convergence is verified. If the solution 
does not converge, this solution is used as the next 
iteration point. The iteration index k is increased by 
one and the iterative process continues (go to step 
5). 

 
9th step: with converged solution (which 

minimizes the strengthening costs for a specific 
limit-state requirement), graphical output of the 
solution is prepared. 

 
For the numerical optimization problem, the 

value of the objective function and of the 
restrictions as well as the respective first order 
derivatives at the starting point {x0} are computed 

and given to start the optimization algorithm. At 
any design point, the implemented algorithm 
calculates the first order derivative information to 
formulate the approximation. The points chosen to 
calculate the derivatives in the vicinity of the 
current design point have to give a good 
approximation of the functions in the vicinity of 
the design point. 

5.5 Illustrative example: existing structure 

A numerical example is herein presented in order 
to illustrate the proposed optimal retrofit design 
methodology. 

From the experimental tests performed on the 
original bare frame, it were calculated the envelope 
curves of storey shear versus inter-storey drift and 
approximate for the best-fit idealized bi-linear 
curves. The original storey shear-drift curves were 
approximate for the idealized bi-linear curves, 
maintaining the dissipated energy and the 
maximum shear load. The adopted storey shear-
drift curves are plotted in Figure 8 and are used in 
the optimization analyses. 
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Figure 8. Storey shear-drift curves adopted from the 
experimental tests 

5.6 Optimum redesign of the existing structure 

The example of an optimization problem presented 
in this section assumes as control variables the 
additional storey strength. The structure under 
analysis is the four-storey RC building non-
seismically designed. The objective function to be 
minimised is the total structural additional strength, 
i.e. the sum of the storeys additional strength. It is 
intended to find the optimal distribution of 
strengthening in the building, whilst satisfying the 
restrictions in terms of maximum storey 
strengthening and maximum allowable inter-storey 



drift. The problem can be mathematically described 
as in the follows 

Find 

{ }; ; ;,1 ,2 ,3 ,4F F F Fy y y yyF ∆ ∆ ∆ ∆∆ =  (4) 

Minimise 
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The start design point for each storey consisted 

on storey strength 1.4 times higher than the initial 
yielding strength in the existing structure. 

The constraint conditions for this structural 
optimization problem are: a) maximum admissible 
drift of 3.0 cm (1.1%), for every storey; and, b) 
upper limit of 500 kN for each storey additional 
strength, that do not restraint the solution, and 
minimum zero (not additional strength). 

The pre-yielding stiffness is assumed to be 
constant, i.e. the strengthened storey has higher 
strength, but the same pre-yielding stiffness. The 
pos-yielding stiffness is assumed constant. 

The optimization problem converges after 12 
iterations. In Figure 9 are represented the storey 
strength profiles of the original structure and of the 
optimum strengthening, to accomplish with a 
performance objective corresponding to an 
earthquake of 975-yrp and a drift limit of 3.0 cm. 
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Figure 9. Storey yielding strength of the existing structure and 
optimum strengthening distribution 

5.7 Multiple optimum strengthening design 

To illustrate the methodology proposed, a series of 
retrofitting design examples based on the non-
seismic designed existing structure under analysis 
are presented here. The strength is the control 
variable used (Problem I). In this problem it was 
considered constant yielding displacement and 
constant pos-yielding stiffness. Regarding the 
damping, the curve storey damping-drift, presented 
in Figure 3 was used. Additionally, it was 
considered that the storey damping functions do 
not change with the strengthening. 

The optimal retrofit was calculated for a vast 
series of performance objectives (multiple 
performance objectives). Particularly, for the input 
motion, it were considered the seismic hazard 
levels corresponding to return periods of 73, 475, 
975 and 2500 years (corresponding to the 
'Serviceability Earthquake', SE, 'Design 
Earthquake', DE, 'Maximum Earthquake', ME, and, 
'Maximum Considered Earthquake', MCE, as 
recommended in the ATC-40 (1996). For the inter-
storey drift limit (limit-states) it were considered 
several values. In this analysis, no upper limits 
were imposed for the strengthening. 

In Figure 10 are represented for each redesign 
performance objective the results in terms of total 
strengthening. For all redesign performance 
objectives, the obtained optimum strengthening 
distribution does not involve strengthening at the 
4th storey level. 
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Figure 10. Total additional strength 

6 FINAL REMARKS 

The proposed optimization methodology involves 
reduced computational costs. As observed in the 
studied strengthening structural optimization 
problems, this methodology leads to fast 
convergence. 



The methodology can be a useful design tool, as 
a preliminary step, in the global structural 
strengthening decision, generating the optimum 
strengthening (strength, stiffness or damping) 
storey distribution, for one or multiple performance 
objectives. 

With this optimization procedure, it is possible to 
define optimum strengthening needs for different 
limit-states ('Fully Operational', 'Operational', 'Life 
Safe' and 'Collapse Prevention') as well as to 
achieve probabilistic sensitivity functions for 
specific limit-states, in terms of the basic design 
variables (storey strength, storey stiffness or 
additional damping). This procedure leads to a 
retrofit design, for each limit-state considered, 
which requires further considerations and possibly 
recourse to life-cycle cost analyses to identify the 
optimum design (see for example, the procedure 
proposed by Pinto 1998). 
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