TÓPICO 4 – Património Histórico

Caracterização experimental do comportamento de elementos estruturais parede-arco do Museu de Santa Joana em Aveiro

Luís Costeira^{1,a}, Arménio Lameiro^{1,b}, Henrique Pereira^{1,c}, Catarina Fernandes^{1,d}, Hugo Rodrigues^{1,e}, Dora Silveira^{1,f}, Humberto Varum^{1,g}, António Arêde^{2,h} e Aníbal Costa^{1,i}

¹Departamento de Engenharia Civil, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal

²Departamento de Engenharia Civil, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal

^al.a.costeira@gmail.com, ^barmeniolameiro@ua.pt, ^chenrique.pereira@ua.pt, ^dcfernandes@ua.pt, ^ehrodrigues@ua.pt, ^fdora.silveira@ua.pt, ^ghvarum@ua.pt, ^haarede@fe.up.pt, ⁱagc@ua.pt

Palavras-chave: Caracterização mecânica; Ensaio *in situ* sobre elementos estruturais; Ensaio de compressão sobre carotes; Modelação numérica

Resumo. Com o objectivo de caracterizar o comportamento de elementos estruturais parede-arco do Museu de Aveiro, foram realizados ensaios laboratoriais e *in situ*, com vista ao desenvolvimento e calibração de um modelo numérico. A partir desse modelo foi possível estudar o comportamento deste tipo de elementos quando solicitado por cargas cíclicas. Foi assim possível aprofundar o conhecimento sobre os materiais usados na construção do Museu. Este artigo documenta os procedimentos adoptados e os resultados obtidos, quer dos ensaios, quer do modelo numérico.

1. Introdução

O Museu de Santa Joana (ver Fig. 1), antigo Convento de Jesus, encontra-se localizado no centro de Aveiro fazendo parte do património histórico da cidade. Ao longo dos seus seis séculos de existência, o Museu sofreu diversas intervenções de ampliação e de reorganização dos espaços anteriores, as quais implicaram a introdução de materiais e técnicas construtivas distintos dos originais.

O facto de o Museu estar a ser alvo de obras de reabilitação surgiu como uma excelente oportunidade de proceder ao levantamento dos materiais empregues na sua construção e das técnicas construtivas utilizadas. Foram assim realizadas inspecções visuais ao local, retiradas amostras de material e extraídas carotes para a caracterização dos materiais.

Com o objectivo de caracterizar o comportamento de elementos estruturais parede-arco do Museu quando solicitado, nomeadamente, por cargas cíclicas, foi realizado um ensaio *in situ* sobre um destes elementos. O ensaio cíclico consistiu em sujeitar o pórtico de alvenaria de pedra a uma solicitação horizontal, medindo a intensidade da força aplicada e os deslocamentos em vários pontos da superfície da parede-arco.

Em laboratório foram realizados ensaios de compressão que permitiram obter um valor aproximado das propriedades mecânicas dos materiais que constituem as paredes. As amostras recolhidas *in situ* e as obtidas a partir de um bloco transportado para o laboratório, correspondente à base da parede-arco que foi demolida, foram submetidas a uma carga aplicada nos topos, medindose simultaneamente a sua deformação axial. Partindo dos diagramas tensão-extensão para cada amostra foi possível estimar o módulo de elasticidade.

Tendo por base os resultados dos ensaios laboratoriais e *in situ*, foi desenvolvido e calibrado um modelo numérico do elemento parede-arco ensaiado, e feita a comparação entre os resultados numéricos e os resultados experimentais.

Figura 1: Museu de Aveiro

2. Descrição dos elementos existentes

Nas inspecções visuais realizadas, verificou-se que os elementos verticais do Museu são de alvenaria e, em certos pontos, eram evidentes intervenções mais recentes que, pelo tipo de materiais usados, presume-se que datem dos anos 30 ou 40 do séc. XX. Como acontece na generalidade das construções antigas, neste edifício as paredes de alvenaria assumem-se como os elementos estruturais de maior importância [1, 2].

Os materiais encontrados, quer nas paredes, quer nos arcos e pilares, são na sua grande maioria pedras naturais. No interior destes elementos existem diversos tipos de pedras das mais variadas dimensões, verificando-se a abundância de granito, basalto e pedra de Eirol, pedras com grande tradição de utilização na zona Norte e Centro do país [3, 4].

No que diz respeito às paredes, estas são constituídas por grandes pedras de granito ligadas entre si com juntas de argamassa [5]. As divisórias mais recentes, que datam do início do séc. XX, são de alvenaria de tijolo furado. Já nos pilares e arcos encontram-se, no seu contorno, ladrilhos cerâmicos de cerca de 3cm de espessura, de aparência similar à do tijolo burro, e o enchimento feito com pedras naturais, mas de dimensões inferiores às usadas nas paredes (ver Fig. 2).

Figura 2: Constituição dos pilares e dos arcos do Museu de Aveiro

3. Ensaio experimental

3.1 Procedimento e esquema de monitorização

Após a selecção do arco a ensaiar (ver Fig. 3), a zona do pilar foi perfurada a uma altura de 2.545 m. Por esse orifício fez-se passar um cabo de aço que, de um lado da parede foi fixado a um barrote de madeira que serviu para distribuir a carga por uma maior área e, do outro lado engatou na célula de carga. A célula de carga, por sua vez, foi fixada a um dispositivo mecânico através do qual era feita a aplicação da força. Na outra extremidade do sistema de aplicação de força fez-se passar um cabo de aço que foi ancorado à parede exterior do compartimento (ver Fig. 4).

Figura 3: Elemento parede-arco em estudo

Figura 4: Sistema de aplicação e medição da força

A monitorização de força e deslocamentos foi realizada com recurso a equipameno do Laboratório de Engenharia Sísmica e Estrutural (LESE) da FEUP. Para o registo dos deslocamentos foram instalados vários transdutores eléctricos do tipo LVDT (Linear Variable Displacement Transformer) no elemento, de acordo com o esquema ilustrado na Fig. 5.

Figura 5: Localização dos deflectómetros (face Nascente)

Com recurso a um sistema de aquisição de dados baseado num equipamento do tipo PXI-SCXI da National Instruments, foi possível fazer a leitura instantânea e contínua dos valores de força e dos deslocamentos induzidos ao longo do ensaio (ver Fig. 6). O ensaio consistiu em três ciclos carga-descarga sem inversão de sinal.

Figura 6: Sistema de aquisição de dados

3.2 Resultados experimentais

Na Fig. 7 é apresentado o gráfico força-deslocamento correspondente ao ponto onde estava instalado o LVDT4 (ver Fig. 5).

Nas Figs. 8 e 9 são representados os deslocamentos horizontais em planta e para um corte da secção do arco segundo a vertical.

Na Fig. 8 representa-se o perfil horizontal de deslocamentos. A observação do diagrama aponta para a ocorrência de alguma torção para uma solicitação de 20kN, o que indica que as paredes perpendiculares aos arcos ainda lhes conferiam alguma resistência. Isto poderá também ser justificado pela heterogeneidade dos elementos.

Na Fig. 9 são representados os deslocamentos horizontais em corte de uma secção do arco segundo a vertical. O diagrama traduz a relação entre a altura a que se encontra cada comparador e os deslocamentos horizontais por eles medidos, para as três séries de carregamentos, 10, 20 e 30 kN.

O módulo de elasticidade do elemento parede-arco pode ser calculado de várias formas.

Para um carregamento de 10 kN, correspondente a uma fase ainda em regime elástico, o cálculo do módulo elasticidade do elemento foi feito considerando o método da unidade fictícia de carga (Teorema de Castigliano), recorrendo ainda ao Método do Prof. Bonfim Barreiros para o cálculo integral de um produto de duas funções, uma delas linear. Desenvolvendo a fórmula dada pelo Método de Castigliano é possível determinar o módulo de elasticidade [6, 7]. Assim:

$$\delta = \frac{F_{10} \times L^3}{3 \times I \times E} \Leftrightarrow E = \frac{F_{10} \times L^3}{3 \times I \times \delta}.$$
(1)

$$E = \frac{F_{10} \times L^3}{3 \times I \times \delta} = \frac{10000 \times 2790^3}{3 \times 2.6 \times 10^{10} \times 1.3} = 2141.77 \ MPa \ . \tag{2}$$

A rigidez do pilar é dada por:

$$K = \frac{3 \times E \times I}{L^3} \,. \tag{3}$$

em que *F* corresponde à força aplicada no cabo de aço (N), *I* é o momento de inércia do pilar (mm⁴), *L* é a altura do comparador LVDT4 ao piso (mm), *K* é a rigidez do pilar; δ é o deslocamento horizontal (mm), e *E* é o módulo de elasticidade (MPa).

Logo:

$$K = \frac{F_{10}}{\delta} = \frac{10000}{1.3} = 7692.3 \, \text{N/mm} \,. \tag{4}$$

No instante em que o elemento entra em regime plástico, o seu momento de inércia começa a diminuir devido à fissuração da secção, o que leva à diminuição da secção e da rigidez da paredearco. Para as forças de 20 e 30 kN a rigidez vai diminuindo, ocorrendo o maior decréscimo na transição do regime elástico para o regime plástico [8].

$$F_{20} = K \times \delta \Longrightarrow K = \frac{F_{20}}{\delta} = \frac{20000}{20.8} = 961.5 \, N/mm \,.$$
 (5)

$$F_{30} = K \times \delta \Longrightarrow K = \frac{F_{30}}{\delta} = \frac{30000}{131.2} = 228.6 \text{ N/mm}.$$
(6)

4. Ensaios de caracterização mecânica da alvenaria

4.1 Extracção, preparação e ensaio de amostras

Para uma melhor compreensão dos materiais encontrados e da forma como estes estão dispostos no interior das paredes, procedeu-se à extracção de carotes. A extracção foi feita *in situ* numa parede (Fig. 10), e também em laboratório num bloco recolhido no local (Fig. 11).

Figura 10: Extracção de carotes in situ

Figura 11: Extracção de carotes na base de um pilar

As carotes extraídas, depois de devidamente identificadas, foram deixadas a secar por algum tempo, às condições normais de temperatura e de humidade (Fig. 12). Após a secagem os topos foram rectificados para a regularização das faces e, já com a forma e dimensão final, procedeu-se à medição da altura, diâmetro e peso das carotes a serem ensaiadas.

Figura 12: Rectificação das carotes

Foram então realizados ensaiados ensaios de compressão axial. Foi utilizado um anel de carga de 250 kN, podendo este ser subdividido em 50 kN e 125 kN. No que diz respeito à velocidade de ensaio, não existindo quaisquer referências, adoptou-se um valor de 0.5 mm/m (Fig. 13) [9,10].

Figura 13: Ensaio de compressão axial das carotes

4.2 Resultados dos ensaios de compressão

A partir do ensaio de compressão axial obtiveram-se gráficos força-deslocamento. Os valores da força aplicada (kN) foram corrigidos tendo em conta as dimensões de cada carote. Os factores de correcção usados foram os dados pela norma ASTM C 42/C 42M - 99 para o betão, uma vez que não há qualquer referência normativa para alvenaria de pedra natural. Segundo a norma, os factores de correcção a usar, em função das dimensões da amostra, são os apresentados na Tabela 1.

Razão L/D	Factor de correcção da força aplicada				
1.75	0.98				
1.50	0.96				
1.25	0.93				
1.00	0.87				

Tabela 1: Factor de correcção da força aplicada [4]

Para uma razão L/D igual a 2.00, ou seja, quando a altura do provete corresponde ao dobro do seu diâmetro, considerou-se que o factor de correcção da força aplicada era igual à unidade. Para valores de L/D inferiores a 1.00, fez-se a extrapolação do factor de correcção.

Através dos diagramas tensão-extensão obtidos, determinou-se o módulo de elasticidade do provete. Na Tabela 2 são apresentados a identificação fotográfica, as dimensões, o valor do peso volúmico, a tensão de rotura e o valor do módulo de elasticidade de algumas das carotes.

Amostra		Diâmetro (m)	Altura (m)	Peso Vol. Aparente (kN/m ³)	Tensão de Rotura (MPa)	Módulo de Elasticidade (MPa)
MABP4A		0.143	0.174	20.519	7.730	88.889
MABP6		0.143	0.301	21.803	5.913	114.286
MABP7		0.143	0.300	19.389	5.168	150.000

Tabela 2: Propriedades mecânicas das carotes

5. Modelação numérica

5.1 Modelo numérico da parede-arco

A fim de melhor compreender o comportamento da parede-arco ensaiado, que por sua vez permite um conhecimento do comportamento geral do edifício, foi desenvolvido um modelo numérico no programa de análise estrutural SAP2000 [11]. Para tal, foram adoptados elementos de área rectangulares e triangulares na realização da malha, o que permitiu uma melhor aproximação à forma real da estrutura.

No que diz respeito à leitura dos deslocamentos, fizeram-se coincidir os vértices dos elementos de área com a localização dos LVDT's, o que facilitou a leitura dos deslocamentos nesses pontos e a comparação com os deslocamentos reais medidos durante o ensaio. O mesmo ocorreu com o ponto onde foi aplicada a força no arco.

O modelo da parede-arco foi encastrado na base para simular a ligação à fundação. Tanto a parede-arco como as paredes laterais foram consideradas como sendo elementos de casca grossa, com a espessura correspondente. Na definição do material recorreu-se ao peso volúmico médio aparente, calculado a partir das carotes.

Figura 14: Modelo numérico

5.2 Calibração do modelo numérico

O processo adoptado para a calibração do modelo numérico consistiu em fazer variar o módulo de elasticidade para que a deformação no ponto do LVDT4 coincidisse com o deslocamento medido no ensaio cíclico, sendo assim possível comparar o módulo de elasticidade médio ajustado através da modelação com o módulo de elasticidade médio calculado através do ensaio à compressão das carotes. Para o cálculo do módulo de elasticidade do modelo, foi considerada a aplicação de uma força de 10.04 kN, que provoca um deslocamento de 2.04 mm do LVDT4. Aplicando ao modelo uma combinação que considerasse o peso próprio e a força de 10.04kN, calculou-se um módulo de elasticidade que correspondesse a um deslocamento no LVDT4 de 2.04 mm. Este processo conduziu assim a uma estimativa do módulo de elasticidade global de 310 MPa. Esta modelação numérica corresponde a um comportamento elástico linear, não sendo o comportamento real da estrutura, uma vez que esta tem um comportamento não linear para deformações superiores. Nas Figs. 15 e 16 é feita a comparação entre os resultados experimentais e os resultados do modelo numérico, para a aplicação de uma força de 10.04 kN.

Figura 15: Representação em planta do deslocamento de vários pontos do elemento

Figura 16: Representação em perfil do deslocamento de vários pontos do elemento

6. Considerações finais

Através de uma análise cuidada dos resultados obtidos, dos vários materiais constituintes da parede e do seu método construtivo, é possível uma modelação mais realista do seu comportamento.

A informação obtida para o modelo à escala real através da realização do ensaio cíclico, permite construir uma boa base de conhecimento no que diz respeito a elementos de características semelhantes, que datem da mesma época, integrem edifícios da mesma região e tenham sido construídos de modo semelhante.

Relativamente aos valores das propriedades dos materiais usados nestas alvenarias tradicionais, verificou-se que o valor de módulo de elasticidade obtido pelo modelo numérico, 310 MPa, é consideravelmente superior ao obtido através do ensaio de compressão das amostras de material (ver Tabela 2). Esta diferença poder-se-á dever à diferença de confinamento do material *in situ* e das amostras ensaiadas, para além do efeito do transporte e recolha das carotes, assim como a dificuldades de leitura de deformações nos ensaios das carotes. Outra possível causa prende-se com o facto de a análise do modelo numérico ter sido do tipo linear elástica. Apesar da heterogeneidade do material, o peso volúmico de cada carote nunca se afastou significativamente do valor médio desta propriedade.

Comparando as curvas de deslocamento do modelo numérico com as do ensaio cíclico, verificou-se que a curva do modelo traduz uma maior simetria de deslocamentos, relativamente ao ponto de aplicação da força. Contrariamente, a curva de deslocamentos do ensaio cíclico chega a evidenciar alguma rotação. Como possíveis causas para essa diferença de comportamento das curvas de deslocamento tem-se a reorganização interna dos materiais constituintes da parede-arco, devido à aplicação da força, mas também o facto de já existirem danos estruturais no elemento antes do ensaio.

Agradecimentos

Este artigo refere investigação realizada com o apoio financeiro da FCT, Fundação para a Ciência e a Tecnologia, Portugal.

Os autores agradecem todo o apoio prestado e informação cedida para a elaboração deste trabalho à Dra. Ana Margarida Ferreira, ao Dr. José António Cristo, aos restantes funcionários do Museu e à construtora ACF por todos os meios disponibilizados.

Referências

- [1] F. Pagaimo: *Caracterização morfológica e mecânica de alvenarias antigas: Caso de estudo da vila histórica de Tentúgal*, Tese de Mestrado, Universidade de Coimbra, Portugal (2004).
- [2] P. Lourenço, F. Pagaimo e E. Júlio: *Caracterização das paredes de alvenaria da vila de Tentúgal*, Revista Portuguesa de Engenharia de Estruturas (RPEE) N.º 51, Portugal (2005).
- [3] J. Roque e P. Lourenço: *Caracterização Mecânica de Paredes Antigas de Alvenaria. Um Caso de Estudo no Centro Histórico de Bragança*, Departamento de Engenharia Civil da Universidade do Minho, Portugal (2003).
- [4] Standard AASHTO: ASTM C 42/C 42M 99 Standard Test Method for Obtaining and Testing Drilled Cores and Sawed Beams of Concrete, AASHTO No.: T2 (1999).
- [5] L. Franco: *Paredes de alvenaria: características e propriedades*, Escola Politécnica da USP PCC 2515 Alvenaria Estrutural.
- [6] A. C. Reis, M. Brazão Farinha e J. S. B. Farinha: Tabelas Técnicas, Edições Técnicas (2005).
- [7] V.D. Silva: *Mecânica e Resistência dos Materiais*, 3^a Edição, Departamento de Engenharia Civil, Universidade de Coimbra, Portugal (2004).
- [8] G. Vasconcelos e P. Lourenço: Análise experimental do comportamento de paredes de alvenaria de pedra não reforçada sob acções cíclicas no plano, SÍSMICA 2004 – 6º Congresso Nacional de Sismologia e Engenharia Sísmica, Guimarães, 14-16 Abril 2004, Portugal (2004).
- [9] IPQ e N. E.: Métodos de ensaio para pedra natural. Determinação da resistência à compressão (2000).
- [10] A. S. Coutinho e A. Gonçalves: Fabrico e Propriedades do Betão, LNEC, Portugal, Vols. I, II e III (1995).
- [11] SAP2000 Nonlinear, Computer and Structures, Inc. (2007).
- [12]L. Costeira e A. Lameiro: *Relatório Final da cadeira de Projecto: Reabilitação do Museu de Santa Joana em Aveiro*, Departamento de Engenharia Civil da Universidade de Aveiro, Portugal (2007).
- [13] J. Roque e P. Lourenço: *Técnicas de intervenção estrutural em paredes antigas de alvenaria*, Construção Magazine (7), pp. 4-10, Portugal (2003).
- [14] M. Quaresma: Museu de Aveiro Um Projecto Sempre em Marcha, AMUSA, Portugal (1991).
- [15] D. Oliveira, P. Lourenço e P. Roca: Comportamento Experimental de Muros de Pedra Sujeitos a Esforços de Compressão e Corte, Encontro Nacional sobre Conservação e Reabilitação de Estruturas, pp. 345-354 (2000)
- [16] *Regulamento de Segurança e Acções para Estruturas de Edifícios e Pontes*, DL 235/83, Porto Editora, Portugal (1983).
- [17] http://www.av.it.pt/aveirocidade/pt/monumentos/monu10.htm
- [18] http://www.av.it.pt/aveirocidade/pt/monumentos/monu10.htm