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Abstract

The paper deals with convex Semi-Infinite Programming (SIP) problems. A new
concept of immobility order is introduced and an algorithm of determination of the
immobility orders (DIO algorithm) and so called immobile points is suggested. It is
shown that in the presence of the immobile points SIP problems do not satisfy the
Slater condition. Given convex SIP problem, we determine all its immobile points
and use them to formulate a Nonlinear Programming (NLP) problem in a special
form. It is proved that optimality conditions for the (infinite) SIP problem can be
formulated in terms of the analogous conditions for the corresponding (finite) NLP
problem. The main result of the paper is the Implicit Optimality Criterion that
permits to obtain new efficient optimality conditions for the convex SIP problems
(even not satisfying the Slater condition) using the known results of the optimality
theory of NLP.

Key words: semi-infinite programming, nonlinear programming, the Slater condi-

tion, optimality criterion

1 Introduction

Semi-Infinite Programming (SIP) models appear in mathematics, engineering, physics,

social and other sciences when some processes or systems depend on a finite dimensional

variable and are described with the help of an infinite number of constraints. In the

last decades, semi-infinite optimization has become a topic of a special interest due to a

number of practical applications and the relationship with other mathematical fields (for

the references see [4], [11], [12]).
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In general, a SIP problem searches for a minimum of some function c(x) (objective func-

tion) subject to an infinite system of constraints expressed as f(x, t) ≤ 0 for all t ∈ T ,

where T is some set. Sometimes a solution of the SIP problem is found using discretiza-

tion approach when the set T is replaced by some finite subset of its points (grid) and

the initial infinite problem is reduced to a finitely constrained problem (or a sequence of

such problems) where only the constraints corresponding to the points of the grid (or a

sequence of grids respectively) are considered. Another approach is so called reduction

approach when the infinite set of constraints of the initial problem is replaced by a finite

set of constraints in the form f(x, tl(x)) ≤ 0, l = 1, . . . , p, p ∈ N, where tl(x), l = 1, . . . , p,

are some functions on x. As a result one gets a so called reduced problem. Under cer-

tain assumptions the reduced problem is locally equivalent to the initial SIP problem. In

both, discretization and reduction approaches, optimality conditions for SIP problems are

formulated in terms of optimality conditions for the finite problems constructed and SIP

problems are solved using the solutions of these finite problems. For the references see

the survey paper [4].

The present paper deals with convex SIP problems where the objective function and the

constraint function are convex w.r.t. x and the set T ⊂ R is compact. All the functions

are assumed to be sufficiently smooth in their domains. The main purpose of the paper is

to introduce a new approach to optimality conditions for the convex SIP problems that,

in general, do not satisfy the Slater condition. For the first time the similar approach

was described in [9] for linear SIP problems. The new concepts of immobility order1

and of immobile point make it possible to formulate necessary and sufficient optimality

conditions for some convex SIP problem in terms of optimality conditions for a certain

finite nonlinear programming (NLP) problem. In general, the approach suggested in

the paper differs from the discretization and reduction approaches (see [10]) and can be

applied to the convex SIP problems without additional assumptions such as, for example,

the Slater condition. Authors believe that the results obtained are useful for further

investigations in the theory of infinite problems as well as for development of new SIP

algorithms.

The paper is organized as follows. In Section 2 we formulate the problem and introduce

the definitions of immobility order and immobile point. In Section 3 an algorithm (we

call it DIO algorithm) of determination of the immobile points and the immobility orders

is described and justified; the example of its application is provided. Theorem 3.1 is of

a special interest as it shows how one can construct the feasible solution satisfying the

definition of immobility order for all points of the set T simultaneously. Remark 3.2

indicates that in the presence of the immobile points the SIP problem does not satisfy

the Slater condition. The Implicit Optimality Criterion based on the concept of immobile

points is formulated and proved in Section 4. Example 4.1 illustrates the application of

1In [8] this term is translated from Russian as motionless degree.
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çã
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the Implicit Optimality Criterion to the convex SIP problems not satisfying the Slater

condition. The final Section 5 contains conclusions.

2 Immobility orders and immobile points

Consider a Semi-Infinite Programming (SIP) problem

c(x) −→ min,

s.t. f(x, t) ≤ 0, t ∈ T = [t∗, t∗], t∗, t∗ ∈ R,
(2.1)

where x ∈ Rn. Suppose that the functions c(x) and f(x, t) in (2.1) are analytically defined,

sufficiently smooth in Rn and Rn × T respectively. We also assume that c(x) and f(x, t)

are convex w.r.t. x, i.e. for each x1, x2 ∈ Rn and for all α ∈ [0, 1] the inequalities

c(αx1 + (1− α)x2) ≤ αc(x1) + (1− α)c(x2),

f(αx1 + (1− α)x2, t) ≤ αf(x1, t) + (1− α)f(x2, t), t ∈ T,

are satisfied.

Denote by X ⊂ Rn the feasible set of problem (2.1)

X = {x ∈ Rn : f(x, t) ≤ 0, t ∈ T}. (2.2)

Assumption 2.1 Suppose, X 6= ∅ and there exists x̄ ∈ X such that f(x̄, t) 6≡ 0, t ∈ T.

For any x ∈ X, we denote by Ta(x) = {t ∈ T : f(x, t) = 0} the corresponding set of the

active points of T. Taking into account Assumption 2.1 and the sufficient smoothness of

the function f(x, t) in Rn × T , we can conclude that there exists x̄ ∈ X such that |Ta(x̄)|
is finite.

In the sequel we will use the following notations

f (0)(x, t) = f(x, t), f (s)(x, t) = ∂sf(x, t)/∂ts, s ∈ N;

N(q) = ∅, if q < 0, N(q) = {0, 1, . . . , q} if q ≥ 0, q ∈ Z.

Given t ∈ T, x ∈ X, let ρ = ρ(x, t) ∈ {−1, 0, 1, . . . } be a number such that

f (s)(x, t) = 0, s ∈ N(ρ), f (ρ+1)(x, t) 6= 0. (2.3)

Definition 2.1 Let t ∈ T . A number q(t) ∈ {−1, 0, 1, . . . } is called the order of immo-

bility (immobility order) of t in SIP problem (2.1) if

1. for each x ∈ X it is satisfied

f (r)(x, t) = 0, r ∈ N(q(t)), (2.4)
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2. there exists x(t) ∈ X such that

f (q(t)+1)(x(t), t) 6= 0. (2.5)

From the definition above and from the constraints of problem (2.1) it follows that

1. if t ∈ int T , then q(t) + 1 is even and f (q(t)+1)(x(t), t) < 0;

2. q(t∗) ∈ {−1, 0, 1, . . . } and f (q(t∗)+1)(x(t∗), t∗) < 0 for the correspondent x(t∗) ∈ X;

3. q(t∗) ∈ {−1, 0, 1, . . . } and for the correspondent x(t∗) ∈ X we have

3.a) f (q(t∗)+1)(x(t∗), t∗) < 0 whenever q(t∗) + 1 is even;

3.b) f (q(t∗)+1)(x(t∗), t∗) > 0 whenever q(t∗) + 1 is odd.

Definition 2.2 A point t ∈ T is called the immobile point of problem (2.1), if q(t) > −1.

To simplify the further laying out we make the following assumption.

Assumption 2.2 Suppose that q(t∗) = q(t∗) = −1.

In the present paper, we claim that the concept of the immobility order is an important

characteristic of the constraints of SIP problem (2.1) that makes it possible to formulate

optimality conditions for this problem (with an infinite number of constraints) in terms

of optimality conditions for a certain NLP problem (with a finite number of constraints).

3 An algorithm of determination of the immobile

points and their immobility orders

Consider the convex SIP problem in the form (2.1) with the feasible set X. Suppose that

Assumptions 2.1 and 2.2 are satisfied for this problem. Choose any x̄ ∈ X with a finite

set of active points Ta(x̄) = {ti, i ∈ I}, I = I(x̄) = {1, 2, . . . , p̄}, p̄ = p(x̄) < ∞.

The algorithm described below constructs the mapping q : T → {−1, 1, 3, . . . }.

DIO ALGORITHM

(Determination of Immobility Orders)

Suppose, k = 0 and q
(0)
i = −1, ∀i ∈ I.

The k-th iteration starts with a set of numbers q
(k)
i , i ∈ I, constructed on the previ-

ous iteration of the algorithm. (It will be shown later that for any i ∈ I either q
(k)
i is odd

or q
(k)
i = −1).
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Introduce the sets

X
(k)
i = {z ∈ Rn : f (s)(z, ti) = 0, s ∈ N(q

(k)
i ), f (q

(k)
i +1)(z, ti) ≤ 0}, i ∈ I; (3.1)

X(k) =
⋂
i∈I

X
(k)
i . (3.2)

For each i ∈ I, solve the nonlinear programming problem

f
(k)
i (z) = f (q

(k)
i +1)(z, ti) −→ min

z
, s.t. z ∈ X(k). (3.3)

It will be proved later (Lemma 3.1) that x̄ ∈ X(k). Therefore, X(k) 6= ∅ and either problem

(3.3) admits an optimal solution, or its objective function f
(k)
i (z) is not limited from below

in the feasible set X(k).

Denote by x(i) the optimal solution of problem (3.3), in the case such the solution exists.

Otherwise, denote by x(i) any feasible solution of problem (3.3) that satisfies the inequal-

ity f
(k)
i (x(i)) < 0.

Consider the set I(k) := {i ∈ I : f
(k)
i (x(i)) = 0}.

If I(k) = ∅, then algorithm stops resulting with the following values of q(t), t ∈ T :

q(ti) = q
(k)
i , i ∈ I; q(t) = −1, t ∈ T\Ta(x̄). (3.4)

If I(k) 6= ∅, then set:

q
(k+1)
i = q

(k)
i + 2, i ∈ I(k); q

(k+1)
i = q

(k)
i , i ∈ I\I(k), (3.5)

and pass to the next iteration with k := k + 1.

The algorithm is described. ¤

Note that DIO algorithm is finite. Indeed, if denote by k∗ ∈ N, the number of its itera-

tions, it is easy to verify that the following estimation is true: k∗ ≤
∑
i∈I

ρ(x̄,ti)+1
2

.

In the reminder of this section, we will demonstrate that the mapping q(t), t ∈ T, con-

structed by DIO algorithm, determines the immobility orders of all the points of the set

T correctly.

Since k∗ introduced above can be considered as a number of the last iteration of the algo-

rithm (i.e., the number of the iteration where the algorithm has stopped), we obtain by

(3.4):

qi = q(ti) = q
(k∗)
i for i ∈ I,

q(t) = −1 for t ∈ T\Ta(x̄).
(3.6)
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Lemma 3.1 On iterations of DIO algorithm the following inclusions are satisfied:

X ⊂ X(v) =
⋂
i∈I

X
(v)
i , (3.7)

where v = 0, . . . , k∗.

Proof (by induction on v). Due to (2.2), (3.1) we have X ⊂ X
(0)
i for any i ∈ I. Then

inclusion (3.7) is valid for v = 0.

Assume that (3.7) is satisfied for v = k ≥ 0, k < k∗, i.e.

X ⊂ X
(k)
i , i ∈ I. (3.8)

Let us prove (3.7) for v = k + 1. From (3.5) it follows that q
(k+1)
i = q

(k)
i , i ∈ I\I(k). Then

(3.1) and (3.8) yield the following enclosure:

X ⊂ X
(k+1)
i = X

(k)
i , i ∈ I\I(k). (3.9)

Now, suppose that for some i∗ ∈ I(k), there exists x∗ ∈ X such that f (q
(k)
i∗ +1)(x∗, ti∗) 6= 0.

Then, evidently, f (q
(k)
i∗ +1)(x∗, ti∗) < 0 and, taking into consideration (3.8), we obtain

x∗ ∈ X ⊂ X(k), f
(k)
i∗ (x∗) = f (q

(k)
i∗ +1)(x∗, ti∗) < 0. (3.10)

Since i∗ ∈ I(k), we have f
(k)
i∗ (x(i∗)) = 0 for the feasible solution x(i∗) found on k-th iteration

of the algorithm. Therefore x(i∗) is the optimal solution of problem (3.3). The optimality

of x(i∗) contradicts with the existence of x∗ satisfying (3.10) and thus we conclude that

f (q
(k)
i +1)(z, ti) = 0, ∀z ∈ X, ∀i ∈ I(k). (3.11)

Recall that, by construction, all the values q
(k)
i +1 are even. Then, due to the constraints

of SIP problem (2.1) and to Assumption 2.2, we have

f (q
(k)
i +2)(z, ti) = 0, f (q

(k)
i +3)(z, ti) ≤ 0 ∀z ∈ X, ∀i ∈ I(k). (3.12)

From (3.1), (3.5), (3.11) and (3.12) it follows

X ⊂ X
(k+1)
i , i ∈ I(k). (3.13)

From (3.9) and (3.13) we have X ⊂ X
(k+1)
i for all i ∈ I. Thus (3.7) is satisfied for v = k+1

and the proof of lemma is complete. ¤

Note that DIO algorithm is constructed in such a way that it is satisfied

f (s)(x(j), ti) = 0, s ∈ N(qi), f (qi+1)(x(j), ti) ≤ 0, i, j ∈ I;

f (qi+1)(x(i), ti) < 0, i ∈ I,
(3.14)

6
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where ti, i ∈ I, are the immobile points of the convex SIP problem (2.1) and the corre-

sponding immobility orders complied with (3.6). Here and further we denote by x(i), i ∈ I,

the feasible solutions of problem (3.3) obtained on the last iteration of DIO algorithm.

Let us prove now that relations (3.14) are valid also for convex combinations of x(i), i ∈ I,

i.e. for any vector

y =
∑
i∈I

ᾱi x(i) (3.15)

such that

ᾱi > 0, i ∈ I,
∑
i∈I

ᾱi = 1. (3.16)

Lemma 3.2 Let y satisfy (3.15), (3.16). Then

f (s)(y, ti) = 0, s ∈ N(qi), f (qi+1)(y, ti) < 0, i ∈ I, (3.17)

where qi, i ∈ I, are determined by (3.6).

Proof. Let ρi := ρ(y, ti), i ∈ I, where ρ(y, t) is defined as in (2.3). Then

f (s)(y, ti) = 0, s ∈ N(ρi), f (ρi+1)(y, ti) 6= 0, i ∈ I, (3.18)

and the statement of the lemma will be proved if we show that for any i ∈ I it is satisfied

ρi = qi.

1) Let us prove, first, that

ρi ≤ qi, i ∈ I. (3.19)

Arguing by contradiction, suppose that there exists i0 ∈ I, such that ρi0 > qi0 . Then from

(3.18) we have

f (s)(y, ti0) = 0, s ∈ N(qi0 + 1). (3.20)

Since f(x, t) is convex w.r.t. x, then for any ∆t such that ti + ∆t ∈ T , we can write

f(y, ti + ∆t) ≤
∑
j∈I

ᾱj f(x(j), ti + ∆t), ∀i ∈ I, (3.21)

where y and ᾱj, j ∈ I, satisfy (3.15) and (3.16). It is evident that for any z ∈ X and any

i ∈ I, Taylor’s expansion of f(z, t) in the neighborhood of ti of the order l, l ∈ N, can be

written in the form

f(z, ti + ∆t) = f(z, ti) + f (1)(z, ti)∆t +
1

2!
f (2)(z, ti)∆t2 + . . .

+
1

l!
f (l)(z, ti)∆tl +

1

(l + 1)!
f (l+1)(z, ti)∆tl+1 + o(∆tl+1).

7
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Given i ∈ I, applying Taylor’s expansion of the order qi to the corresponding inequality

in (3.21), we get

f(y, ti) + f (1)(y, ti)∆t + · · ·+ 1

(qi + 1)!
f (qi+1)(y, ti)∆tqi+1 + o(∆tqi+1) ≤

∑
j∈I

ᾱj

(
f(x(j), ti) + f (1)(x(j), ti)∆t + · · ·+ 1

(qi + 1)!
f (qi+1)(x(j), ti)∆tqi+1+

o(∆tqi+1)
)
.

(3.22)

Consider (3.22) with i = i0 and substitute into its right-hand side formulae (3.14) and

into the left-hand side the values from (3.20), obtaining

o(∆tqi0
+1) ≤

∑
j∈I

ᾱj(f
(qi0

+1)(x(j), ti0)∆tqi0
+1 + o(∆tqi0

+1)). (3.23)

Since qi0 + 1 is even, then we have ∆tqi0
+1 > 0. Divide (3.23) by ∆tqi0

+1 and let ∆t → 0.

Then, taking into account (3.14), we get a contradictory system of inequalities

0 ≤
∑
j∈I

ᾱjf
(qi0

+1)(x(j), ti0) ≤ ᾱi0f
(qi0

+1)(x(i0), ti0) < 0 (3.24)

that proves (3.19).

2) Now, let us strengthen (3.19) and show that

ρi = qi, ∀i ∈ I. (3.25)

Suppose, I∗ := {i ∈ I : ρi < qi} 6= ∅. To obtain a contradiction, it suffices to demonstrate

that no one of the following hypotheses is true:

a) ∃ i0 ∈ I∗, such that ρi0 is even; b) ρi is odd, ∀ i ∈ I∗ 6= ∅.

First of all, let us substitute each functions in (3.21) by its Taylor’s expansion in the

neighborhood of ti of the order ρi + 1. With respect to (3.14), (3.18), and (3.19), we have

f (ρi+1)(y, ti)∆tρi+1 + o(∆tρi+1) ≤ 0, ∀i ∈ I. (3.26)

Let us consider now hypothesis a). Suppose, i = i0 in (3.26). Divide the inequality

obtained by ∆tρi0
+1 and let, first, ∆t → +0 and after, ∆t → −0. Since ∆tρi0

+1 > 0

whenever ∆t > 0 and ∆tρi0
+1 < 0 whenever ∆t < 0, then the values of the limits

obtained can be estimated as follows:

lim
∆t→+0

f (ρi0
+1)(y, ti0)∆tρi0

+1 + o(∆tρi0
+1)

∆tρi0
+1 ≤ 0,

lim
∆t→−0

f (ρi0
+1)(y, ti0)∆tρi0

+1 + o(∆tρi0
+1)

∆tρi0
+1 ≥ 0,

8
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wherefrom lim
∆t→+0

f (ρi0
+1)(y, ti0) ≤ 0, lim

∆t→−0
f (ρi0

+1)(y, ti0) ≥ 0. The last two inequali-

ties can be satisfied simultaneously only if f (ρi0
+1)(y, ti0) = 0, which contradicts (3.18).

Therefore, hypothesis a) is false.

Now, consider hypothesis b). From (3.26), taking into account inequalities ∆tρi+1 > 0, i ∈
I∗, we get f (ρi+1)(y, ti) ≤ 0, i ∈ I∗, wherefrom with respect to the inequality in (3.18) we

obtain

f (ρi+1)(y, ti) < 0, i ∈ I∗. (3.27)

It was assumed above that ρi is odd and ρi < qi for ∀i ∈ I∗ 6= ∅. Given i ∈ I∗, let

ki ∈ {0, 1, . . . , k∗ − 1}, be the index such that i ∈ I(ki), q
(ki)
i = ρi. Denote:

k0 := min
i∈I∗

ki = ki∗ . (3.28)

On the k0-th iteration of DIO algorithm problem (3.3) takes the form

f
(k0)
i∗ (z) = f (ρi∗+1)(z, ti∗) −→ min, s.t. z ∈ X(k0). (3.29)

As i∗ ∈ I(k0), we can conclude that the problem above has an optimal solution x∗ satisfying

f
(k0)
i∗ (x∗) = f (ρi∗+1)(x∗, ti∗) = 0. (3.30)

From (3.28) it follows q
(k0)
i ≤ ρi, i ∈ I. Then, with respect to (3.18), we obtain

f (s)(y, ti) = 0, s ∈ N(q
(k0)
i ), i ∈ I. (3.31)

Finally, let us show that

y ∈ X(k0). (3.32)

According to (3.1) and (3.31), it is sufficient to prove that the following inequalities

f (q
(k0)
i +1)(y, ti) ≤ 0, i ∈ I, (3.33)

are valid. By DIO algorithm, for all i ∈ I, it is satisfied q
(k0)
i ≤ ρi ≤ qi. Then for any

i ∈ I, substituting q
(k0)
i instead of qi in (3.22) and, taking into account (3.31), we obtain

f (q
(k0)
i +1)(y, ti)∆tq

(k0)
i +1 + o(∆tq

(k0)
i +1) ≤

∑
j∈I

ᾱj

(
f (q

(k0)
i +1)(x(j), ti)∆tq

(k0)
i +1 + o(∆tq

(k0)
i +1)

)
.

Note that q
(k0)
i is odd here. Dividing the inequality above by ∆tq

(k0)
i +1 > 0 and taking the

limit as ∆t → 0, we obtain

f (q
(k0)
i +1)(y, ti) ≤

∑
j∈I

ᾱjf
(q

(k0)
i +1)(x(j), ti) (3.34)

9
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that, together with the last two groups of inequalities in (3.14), implies (3.33) and, con-

sequently, (3.32).

From (3.27), (3.28) we have f (ρi∗+1)(y, ti∗) < 0 that, taking into account (3.32) and (3.30),

contradicts the optimality of x∗ in (3.29). Thus hypothesis b) is false too. ¤

Corollary 3.1 Let y satisfy (3.15), (3.16). Then there exists ε > 0 such that the follow-

ing inequalities are valid

f(y, t) ≤ 0, t ∈ [ti − ε, ti + ε], ∀i ∈ I. (3.35)

Proof. Lemma 3.2 states that (3.17) is valid for the given y. Then f(y, ti) < 0 for all

i ∈ I, such that qi = −1. Taking into account the sufficient smoothness of the function

f(y, t), we can extend this result to some neighborhood of ti:

for ∀i ∈ I with qi = −1, ∃εi > 0 : f(y, t) < 0, t ∈ [ti − εi, ti + εi]. (3.36)

If qi > −1 for some i ∈ I, then qi is odd, evidently. From (3.17) it follows that the corre-

spondent ti is the local maximizer of the continuous function f(y, t) and that f(y, ti) = 0.

Therefore, we can state that

for ∀i ∈ I with qi > −1, ∃εi > 0 : f(y, t) ≤ 0, t ∈ [ti − εi, ti + εi] (3.37)

and (3.35) follows immediately from (3.36) and (3.37) if suppose ε := min
i∈I

εi. ¤

Theorem 3.1 Given t ∈ T , the value q(t) constructed by DIO algorithm satisfies Defin-

ition 2.1.

Proof. Consider any t ∈ T . Let us prove, first, that q(t) satisfies (2.4). If q(t) = −1,

then N(q(t)) = ∅ and it is nothing to prove.

Suppose q(t) > −1. Then, by the algorithm, there exists i ∈ I such that t = ti. According

to (2.3), for any i ∈ I and any z ∈ X we denote by ρ = ρ(z, ti) ∈ {−1, 0, 1, . . . } a number

such that

f (s)(z, ti) = 0, s ∈ N(ρ), f (ρ+1)(z, ti) 6= 0. (3.38)

Let us show, first, that

ρ(z, ti) ≥ qi, ∀z ∈ X, ∀i ∈ I, (3.39)

where qi = q(ti).

10
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Arguing by contradiction, suppose ρ̄ = ρ(z̄, ti1) < qi1 for some i1 ∈ I and some z̄ ∈ X.

Denote by k̄, 0 ≤ k̄ < k∗, the number of the iteration where q
(k̄)
i1

= ρ̄, q
(k̄+1)
i1

= ρ̄ + 2. By

DIO algorithm, there exists x(i1) ∈ X k̄ such that

0 = f
(k̄)
i1

(x(i1)) = f (ρ̄+1)(x(i1), ti1) = min
x∈X(k̄)

f (ρ̄+1)(x, ti1). (3.40)

From the other hand, as z̄ ∈ X, from Assumption 2.2 we conclude that ρ̄ is odd. Then

from (3.38) it follows f (ρ̄+1)(z̄, ti1) < 0. By Lemma 3.1, z̄ ∈ X ⊂ X(k̄). However, the

relations obtained

f (ρ̄+1)(z̄, ti1) < 0, z̄ ∈ X(k̄)

contradict (3.40). Therefore, (3.39) is valid and together with (3.38) it yields (2.4).

Let us now show that there exists x̃ = x̃(t) satisfying (2.5). Recall that DIO algorithm

starts with the index set I in the form I = I(x̄) for some x̄ ∈ X. For any y given by

(3.15), (3.16) and any α ∈ [0, 1], we consider

x(α) = αx̄ + (1− α)y. (3.41)

From the convexity of the function f(x, t) w.r.t. x we have

f(x(α), t) ≤ αf(x̄, t) + (1− α)f(y, t) = f(y, t) + α(f(x̄, t)− f(y, t)), ∀t ∈ T.

Let α(t) be a function defined in T as follows:

α(t) =





0, if f(y, t) ≤ 0,
f(y, t)

f(y, t)− f(x̄, t)
, if f(y, t) > 0.

(3.42)

Let us prove that α(t) < 1, ∀t ∈ T. Indeed, from Corollary 3.1 it follows

∃ ε > 0 : α(t) = 0, t ∈ [ti − ε, ti + ε], ∀i ∈ I. (3.43)

Let T∗ := T\ ⋃
i∈I

[ti − ε, ti + ε]. By construction, f(x̄, t) < 0, t ∈ T∗. Then

f(x̄, t) ≤ −δ, ∀t ∈ T∗, (3.44)

for δ := min
t∈T∗

|f(x̄, t)| > 0.

Consider the subset T∗∗ ⊆ T∗ defined as follows: T∗∗ = {t ∈ T∗ : f(y, t) > 0}. If T∗∗ = ∅,
then α(t) = 0, ∀t ∈ T, and the statement is proved.

Now, suppose T∗∗ 6= ∅. By construction, for any t ∈ T \ T∗∗ we have α(t) = 0. Denote

δ0 := max
t∈T∗∗

f(y, t) < +∞. Evidently, δ0 > 0, min
t∈T∗∗

|f(x̄, t)| ≥ δ > 0. Then, taking into

consideration (3.44), we obtain for t ∈ T∗∗:

α(t) =
f(y, t)

f(y, t)− f(x̄, t)
=

1

1− f(x̄,t)
f(y,t)

≤ 1

1 + δ/δ0

< 1.

11
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Let θ∗ be the maximal value of the function α(t) constructed above:

θ∗ := max
t∈T

α(t). (3.45)

Obviously, 0 ≤ θ∗ < 1. Choose some fixed parameter α0 from the interval ]θ∗, 1[ and set

x̃ := x(α0) where x(α0) is calculated by (3.41). Now by the same method that was used

in the proof of Lemma 3.2, we can show that x̃ ∈ X and f (q(t)+1)(x̃, t) < 0,∀t ∈ T . Here

we just have to suppose I := {1, 2}, x(1) := x̄, x(2) := y, ᾱ1 := α0, ᾱ2 := 1 − α0 and

consider relations (3.17) and

f (s)(x̄, ti) = 0, s ∈ N(qi), f (qi+1)(x̄, ti) ≤ 0, i ∈ I;

f(x̄, t) < 0, t ∈ T\Ta(x̄),
(3.46)

instead of (3.14). This will complete the proof of the theorem. ¤

Remark 3.1 Theorem 3.1 states also that there always exists a vector x̃ that satisfies

(2.4) and (2.5) for all t ∈ T simultaneously. Therefore, in Definition 2.1 we can always

suppose x(t) ≡ x̃, ∀t ∈ T.

Remark 3.2 It follows from Definition 2.1 and Remark 3.1 that the constraints of prob-

lem (2.1) satisfy the Slater condition if and only if q(t) = −1,∀t ∈ T .

Example 3.1. Let us use DIO algorithm to determine the immobility orders of all points

of the interval T in problem (2.1), where

f(x, t) = 18 · [(t− 0.14)6(t− 0.6)2(t− 0.94)4(x2
1 + (x2 + 1

3
)2 + x2

3 + (x4 − 4)2 − 1)+

+(t− 0.14)4(1− cos(t− 0.6)) sin4(t− 0.94)((x1 + x2 + x3 + 1
2
)2 − 1)+

+ sin4(t− 0.14)(t− 0.94)2 sin2(t− 0.94)((x2 + x4 − 3)4 + 4x2
1x

2
3 − 1)],

T = [0, 1], x ∈ R4.

Consider the feasible solution x̄ = (0, 0.5, 0, 3.5)′. Then

f(x̄, t) = −(t− 0.14)6(t− 0.6)2(t− 0.94)4, t ∈ [0, 1],

and, according to the notations used above, we have

Ta(x̄) = {0.14, 0.6, 0.94} = {ti, i ∈ I},
I = {1, 2, 3}, t1 = 0.14, t2 = 0.6, t3 = 0.94,

ρ(x̄, 0.14) = 5, ρ(x̄, 0.6) = 1, ρ(x̄, 0.94) = 3.

12
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The results of the proceeding of DIO algorithm are presented in the following table

k q
(k)
1 f (q

(k)
1 +1)(x(1), t1) q

(k)
2 f (q

(k)
2 +1)(x(2), t2) q

(k)
3 f (q

(k)
3 +1)(x(3), t3) I(k)

0 −1 0 −1 −0.009 −1 0 {1, 3}
1 1 0 −1 −0.009 1 0 {1, 3}
2 3 −154.1681 −1 −0.009 3 −136.043 ∅

The feasible solutions x(i), i ∈ I, obtained at the last iteration are

x(1) = (−0.0056, −0.4888, −0.0056, 3.4832)′, x(2) = (0, 0, 0, 3)′,

x(3) = (0.0131, −0.5431, 0.0131, 3.7769)′.

The immobility orders of the points ti, i ∈ I, are equal to the values q
(k∗)
i , i ∈ I, from

the last iteration of the algorithm. In our case k∗ = 2 and

q1 = q(0.14) = q
(2)
1 = 3, q2 = q(0.6) = q

(2)
2 = −1, q3 = q(0.94) = q

(2)
3 = 3.

Thus the algorithm results in the function q(t), t ∈ [0, 1], such that

q(t) = −1, t ∈ [0, 0.14) ∪ (0.14, 0.94) ∪ (0.94, 1]; q(0.14) = q(0.94) = 3.

Let us now find x̃ that satisfies Definition 2.1. According to the proceeding described in

Theorem 3.1, we have to construct, first, some vector y in the form (3.15), (3.16). If, for

example, we assume that ᾱi = 1/3, i ∈ I, then (approximately)

y =
∑
i∈I

1

3
x(i) = (0.0025, −0.344, 0.0025, 3.42)′.

The functions f(x̄, t) (see Fig. 1) and f(y, t) (see Fig. 2) are not positive in T = [0, 1]

and, consequently, the value θ∗, defined in (3.45), is zero.

13
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According to Theorem 3.1 we have to choose, now, some α0 from the interval ]θ∗, 1[=]0, 1[.

Suppose, for example, that α0 = 0.5. Then

x̃ = x̄(α0) = x̄(0.5) = (0.00125, 0.078, 0.00125, 3.46)′.

Fig. 3 shows (in two different scales) the graphic of the function f(x̃, t), t ∈ [0, 1]. Here

f(x̃, t) < 0, t ∈ [0, 1] \ {0.14, 0.94},
f (s)(x̃, ti) = 0, s ∈ N(qi), i ∈ {1, 3}, t1 = 0.14, t3 = 0.94,

f (4)(x̃, 0.14) = −138.2412275,

f (4)(x̃, 0.94) = −118.5898889,

f(x̃, 0.6) = f (0)(x̃, 0.6) = −0.008236

and, evidently, conditions (2.4) and (2.5) are satisfied in x̃ for all t ∈ T. Thus we have

confirmed that DIO Algorithm has correctly determined two immobile points t1 = 0.14,

t3 = 0.94 and their immobility orders q1 = q3 = 3.

Note that the point t2 = 0.6 is not immobile, nevertheless f(x̄, t2) = 0.
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4 Implicit Optimality Criterion

In this section, we consider optimality conditions for the convex SIP problem (2.1). Sup-

pose that Assumptions 2.1 and 2.2 are satisfied. Let x0 ∈ X, X being the feasible

set in (2.1). Consider the corresponding set of active points Ta(x
0) and suppose that

p := |Ta(x
0)| < ∞. Then the set Ta(x

0) can be written in the form

Ta(x
0) = {t0j , j = 1, . . . , p}. (4.1)

Denote: qj = q(t0j), j = 1, . . . , p. Using the notations above, form the following nonlinear

programming problem (NLP problem):

c(x) −→ min,

s.t. f (s)(x, t0j) = 0, s ∈ N(qj),

f (qj+1)(x, t0j) ≤ 0, j = 1, . . . , p.

(4.2)

Let Y ⊂ Rn be the feasible set of (4.2). It is evident that X ⊂ Y .

Theorem 4.1 [Implicit Optimality Criterion ] The feasible solution x0 ∈ X with |Ta(x
0)| <

∞ is optimal in the convex SIP problem (2.1) if and only if it is optimal in the NLP prob-

lem (4.2).

Proof. ⇐) As X ⊂ Y , we can state that the optimality of the feasible solution x0 ∈ X

in (4.2) immediately implies its optimality of x0 in SIP problem (2.1).

⇒) (By contradiction). Suppose that x0 is optimal for (2.1) but there exists y ∈ Y

such that c(y) < c(x0). It is evident that y /∈ X. Let x̃ ∈ X be the feasible solution of

problem (2.1) constructed in the proof of Theorem 3.1 and, therefore, satisfying (2.5).

Consider the vector

x(α) = α1x̃ + α2y, (4.3)

where α = (α1, α2) such that

αi ≥ 0, i = 1, 2; α1 + α2 = 1. (4.4)

Since c(x) is a convex function, we have

c(x(α)) ≤ α1c(x̃) + α2c(y). (4.5)

By construction, c(x̃) ≥ c(x0) > c(y). Then for α0
2 :=

c(x0)− c(x̃)

c(y)− c(x̃)
it is verified:

0 ≤ α0
2 < 1. Having assumed that α2 defined in (4.4) satisfies, additionally, the inequality

α2 > α0
2, (4.6)

15

http://ria.ua.pt
C

ad
er

n
os

d
e

M
at

em
át

ic
a,

U
n
iv

er
si

d
ad

e
d
e

A
ve

ir
o,

P
or

tu
ga

l
–

S
ér

ie
d
e

In
ve

st
ig

a
çã
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we obtain in (4.5)

c(x(α)) ≤ α1c(x̃) + α2c(y) < c(x0). (4.7)

Since f(x, t) is convex w.r.t. x, we have

f(x(α), t) ≤ α1f(x̃, t) + α2f(y, t). (4.8)

Let us show that there exists ∆ = ∆(α) > 0 such that for α from (4.4) with α1 > 0 and

for any j = 1, . . . , p it is satisfied

f(x(α), t) ≤ 0, t ∈ [t0j −∆, t0j + ∆]. (4.9)

For t = t0j , j = 1, . . . , p, the last formula is evident.

Now consider t ∈ [t0j − ∆, t0j + ∆], t 6= t0j for some j = 1, . . . , p. We can write t in the

form: t = t0j + ∆tj, where 0 < |∆tj| ≤ ∆. Then (4.8) takes the form

f(x(α), t) = f(x(α), t0j + ∆tj) ≤ α1f(x̃, t0j + ∆tj) + α2f(y, t0j + ∆tj). (4.10)

It is easy to verify that

f(x̃, t0j + ∆tj) =
1

(qj + 1)!
f (qj+1)(x̃, t0j)∆t

qj+1
j + o(∆t

qj+1
j ),

f(y, t0j + ∆tj) =
1

(qj + 1)!
f (qj+1)(y, t0j)∆t

qj+1
j + o(∆t

qj+1
j )

where, by construction, ∆t
qj+1
j > 0, f (qj+1)(x̃, t0j) < 0, f (qj+1)(y, t0j) ≤ 0. Therefore, from

(4.10) we conclude that there exists a number ∆ > 0 such that (4.9) is satisfied for α

from (4.4) with α1 > 0.

Consider now vector α∗ = (α∗1, α
∗
2) where

α∗1 + α∗2 = 1, α∗1 > 0, α∗2 > α0
2.

It is easy to verify that x(α∗), calculated by (4.3), satisfies both (4.7) and (4.9) for some

∆∗ = ∆(α∗) > 0, i.e.

c(x(α∗)) < c(x0); f(x(α∗), t) ≤ 0, t ∈ [t0j −∆∗, t0j + ∆∗], j = 1, . . . , p. (4.11)

Let ε = min |f(x0, t)|, t ∈ T\
p⋃

j=1

[t0j −∆∗, t0j + ∆∗]. Evidently, ε > 0 and

f(x0, t) ≤ −ε, t ∈ T\
p⋃

j=1

[t0j −∆∗, t0j + ∆∗]. (4.12)

Consider a convex combination of x0 and x(α∗) in the form

x(λ) = λx0 + (1− λ)x(α∗), 0 ≤ λ ≤ 1.

16
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Then, taking into account convexity of f(x, t) and formulae (4.11), (4.12), it is not difficult

to prove that there exists λ∗ : 0 ≤ λ∗ < 1 such that

f(x(λ∗), t) ≤ 0, t ∈ T. (4.13)

The value of λ∗ can be chosen arbitrary from the interval [λ0, 1[⊆ [0, 1[ where

λ0 =





0, if T+ := {t ∈ T : f(x(α∗), t) > 0} = ∅,
max
t∈T+

f(x(α∗), t)
f(x(α∗), t)− f(x0, t)

< max
t∈T+

f(x(α∗), t)
f(x(α∗), t) + ε

< 1, otherwise.

From (4.13) we conclude that x(λ∗) is feasible for problem (2.1). Taking into account

convexity of c(x) and the first inequality in (4.11), we get

c(x(λ∗)) ≤ λ∗c(x0) + (1− λ∗)c(x(α∗)) < λ∗c(x0) + (1− λ∗)c(x0) = c(x0)

that contradicts with the optimality of x0 in (2.1) and Theorem 4.1 is proved. ¤

The Implicit Optimality Criterion permits to verify optimality conditions for the NLP

problem (4.2) instead of such the conditions for the convex SIP problem (2.1).

Remark 4.1 Note that in the case when the convex SIP problem (2.1) satisfies the Slater

condition, the correspondent NLP problem (4.2) introduced in this paper coincides with the

nonlinear programming problem (SIPD) formulated in [5] and we can replace in Theorem

4.1 the NLP problem (4.2) by (SIPD) problem. In the case when the Slater condition is

not satisfied for (2.1) such the replacement is not possible.

Example 4.1. Consider the following SIP problem

−4x1 + x2 + 3x3 +
x2
1

2
+

x2
2

2
+

x2
3

2
+

x2
4

2
−→ min,

s.t. − t2x1 + tx2 + sin(t)x3 + x2
4 ≤ 0, t ∈ [−1, 2],

(4.14)

where x ∈ R4.

There is a unique immobile point t1 = 0 with q1 = 1 (one can easily check it using

DIO algorithm). As q1 > −1, we can conclude that problem (4.14) does not satisfy the

Slater condition.

Consider the feasible solution x0 = (4, 1,−1, 0)′ of problem (4.14). To verify the optimal-

ity of x0 using the Implicit Optimality Criterion, we have to construct the corresponding

NLP problem in the form (4.2). In our example this problem takes the form

− 4x1 + x2 + 3x3 +
x2

1

2
+

x2
2

2
+

x2
3

2
+

x2
4

2
−→ min,

s.t. x2
4 = 0, x2 + x3 = 0, −2x1 ≤ 0.

(4.15)

17
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One can easily confirm that problem (4.15) is equivalent to some quadratic problem and

that vector x0 is optimal in this quadratic problem. Then, from Theorem 4.1 we can

conclude that vector x0 is optimal in problem (4.14) too.

To illustrate Remark 4.1, let us show that x0 is not optimal in problem (SIPD). Ac-

cording to [5], (SIPD) has the form

c(x) −→ min,

s.t. f(x, t0i ) ≤ 0, i = 1, . . . , p,
(4.16)

where Ta(x
0) = {t0i , i = 1, . . . , p} is the set of active points of T corresponding to x0.

In the case of SIP problem (4.14) with the feasible solution x0 = (4, 1,−1, 0)′, problem

(4.16) has the form

− 4x1 + x2 + 3x3 +
x2

1

2
+

x2
2

2
+

x2
3

2
+

x2
4

2
−→ min,

s.t. x2
4 ≤ 0.

(4.17)

It is evident that vector x0 is feasible but not optimal for (4.17) (this problem has better

feasible solutions, for instance, x∗ = (4,−1,−3, 0)′). Therefore, the statement of Theorem

4.1 will not be true if replace (4.15) with (4.16).

We would like to finish this section with two remarks.

Remark 4.2 The results presented in the paper can be easily reformulated for the case

when problem (2.1) has, additionally, a finite number of inequality constraints gj(x) ≤
0, j = 1, . . . , m, m ∈ N, where functions gj(x), j = 1, . . . , m, are convex w.r.t. x, x ∈ Rn.

Remark 4.3 Theorem 4.1 was formulated for convex SIP problems under the condition

that |Ta(x
0)| < ∞ (Assumption 2.1). Authors believe that it is possible to formulate and

prove the similar theorem without such the assumption and are going to do it in a separate

publication.

5 Conclusion

The main result of the paper is the Implicit Optimality Criterion that can be used for

further investigations in the optimality theory of SIP as well as for constructing the new

SIP algorithms. The Criterion is based on the concepts of immobility points and im-

mobility orders that themselves are the important characteristics of the points of the

index set T . That is why a special attention in the paper is given to description and

substantiation of the algorithm ( DIO algorithm) that determines the immobile points

and their immobility orders in a finite number of iterations. The important properties
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of the Implicit Optimality Criterion are that it works without special assumptions (for

example, the Slater condition has not be necessarily satisfied) and that it reduces opti-

mality conditions for SIP problems to optimality conditions for some NLP problem. The

last property gives the possibility to develop new efficient optimality conditions for SIP

problems. As the matter of fact, each of the known optimality conditions (for example,

from [1], [3] or others) being formulated for NLP problem in the form (4.2), can generate

different (and not known yet) optimality conditions for the convex SIP problem (2.1). A

study of such (explicit) optimality conditions as well as a comparison of these conditions

with the known optimality conditions of SIP (see [2],[5],[8]) is the subject of a separate

investigation [10].
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çã

o
–

10
d
e

F
ev

er
ei

ro
d
e

20
12



[9] Kostyukova O.I. Investigation of the linear extremal problems with continuum con-

straints, Tech.Rep., Institute of Mathematics, Academy of Sciences of BSSR, Minsk,

Belarus, Preprint N. 26 (336), 1988.

[10] Kostyukova O.I., Tchemisova T.V. Convex Semi-Infinite Programming: Explicit Op-

timality Conditions, Tech.Rep., Preprint, 2005.

[11] Polak E. Semi-infinite optimization in engereeng desigh, in Semi-Infinite Program-

ming and Applications, int. Symp., Austin/Tex.1981, Lect. Notes Econ. Math. Syst.,

N 215, (1983), p.236-248.

[12] Weber G.-W. Generalized semi-infinite optimization: theory and applications in opti-

mal control and discrete optimization in special issue ” Optimality conditions, general

convexity and duality in vector optimization”, A.Cambini, L.Martein (eds), J. Sta-

tistic and Management Systems, N. 5, (2002), p.359-388.

20

http://ria.ua.pt
C

ad
er

n
os

d
e

M
at

em
át

ic
a,

U
n
iv

er
si

d
ad

e
d
e

A
ve

ir
o,

P
or

tu
ga

l
–

S
ér

ie
d
e

In
ve

st
ig

a
çã
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