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Abstract

The paper deals with convex Semi-Infinite Programming (SIP) problems. A new
concept of immobility order is introduced and an algorithm of determination of the
immobility orders (DIO algorithm) and so called immobile points is suggested. It is
shown that in the presence of the immobile points SIP problems do not satisfy the
Slater condition. Given convex SIP problem, we determine all its immobile points
and use them to formulate a Nonlinear Programming (NLP) problem in a special
form. It is proved that optimality conditions for the (infinite) SIP problem can be
formulated in terms of the analogous conditions for the corresponding (finite) NLP
problem. The main result of the paper is the Implicit Optimality Criterion that
permits to obtain new efficient optimality conditions for the convex SIP problems
(even not satisfying the Slater condition) using the known results of the optimality
theory of NLP.

Key words: semi-infinite programming, nonlinear programming, the Slater condi-

tion, optimality criterion

1 Introduction

Semi-Infinite Programming (SIP) models appear in mathematics, engineering, physics,
social and other sciences when some processes or systems depend on a finite dimensional
variable and are described with the help of an infinite number of constraints. In the
last decades, semi-infinite optimization has become a topic of a special interest due to a
number of practical applications and the relationship with other mathematical fields (for
the references see [4], [11], [12]).
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In general, a SIP problem searches for a minimum of some function ¢(x) (objective func-
tion) subject to an infinite system of constraints expressed as f(z,t) < 0 for all t € T,
where 7" is some set. Sometimes a solution of the SIP problem is found using discretiza-
tion approach when the set T is replaced by some finite subset of its points (grid) and
the initial infinite problem is reduced to a finitely constrained problem (or a sequence of
such problems) where only the constraints corresponding to the points of the grid (or a
sequence of grids respectively) are considered. Another approach is so called reduction
approach when the infinite set of constraints of the initial problem is replaced by a finite
set of constraints in the form f(z,t!(z)) <0,l=1,...,p, p € N, where t'(z),l =1,...,p,
are some functions on x. As a result one gets a so called reduced problem. Under cer-
tain assumptions the reduced problem is locally equivalent to the initial SIP problem. In
both, discretization and reduction approaches, optimality conditions for SIP problems are
formulated in terms of optimality conditions for the finite problems constructed and SIP
problems are solved using the solutions of these finite problems. For the references see
the survey paper [4].

The present paper deals with convex SIP problems where the objective function and the
constraint function are convex w.r.t. x and the set 7' C R is compact. All the functions
are assumed to be sufficiently smooth in their domains. The main purpose of the paper is
to introduce a new approach to optimality conditions for the convex SIP problems that,
in general, do not satisfy the Slater condition. For the first time the similar approach
was described in [9] for linear SIP problems. The new concepts of immobility order'
and of tmmobile point make it possible to formulate necessary and sufficient optimality
conditions for some convex SIP problem in terms of optimality conditions for a certain
finite nonlinear programming (NLP) problem. In general, the approach suggested in
the paper differs from the discretization and reduction approaches (see [10]) and can be
applied to the convex SIP problems without additional assumptions such as, for example,
the Slater condition. Authors believe that the results obtained are useful for further
investigations in the theory of infinite problems as well as for development of new SIP
algorithms.

The paper is organized as follows. In Section 2 we formulate the problem and introduce
the definitions of immobility order and immobile point. In Section 3 an algorithm (we
call it DIO algorithm) of determination of the immobile points and the immobility orders
is described and justified; the example of its application is provided. Theorem 3.1 is of
a special interest as it shows how one can construct the feasible solution satisfying the
definition of immobility order for all points of the set T" simultaneously. Remark 3.2
indicates that in the presence of the immobile points the SIP problem does not satisfy
the Slater condition. The Implicit Optimality Criterion based on the concept of immobile

points is formulated and proved in Section 4. Example 4.1 illustrates the application of

n [8] this term is translated from Russian as motionless degree.
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the Implicit Optimality Criterion to the convex SIP problems not satisfying the Slater

condition. The final Section 5 contains conclusions.

2 Immobility orders and immobile points

Consider a Semi-Infinite Programming (SIP) problem

¢(x) — min,

(2.1)
st f(z,t) <0, t €T =[ty,t"], t.,t" € R,

where z € R™. Suppose that the functions ¢(x) and f(z,t) in (2.1) are analytically defined,
sufficiently smooth in R™ and R™ x T respectively. We also assume that ¢(x) and f(x,t)

are convex w.r.t. xz, i.e. for each x1, zo € R™ and for all a € [0, 1] the inequalities
claz; + (1 — @)zr) < ac(xy) + (1 — a)c(zz),

flazy + (1 — a)xe, t) < af(z1,t) + (1 — @) f(x2,t), t €T,

are satisfied.
Denote by X C R™ the feasible set of problem (2.1)

X={zeR": f(x,t) <0,t €T}. (2.2)
Assumption 2.1 Suppose, X # () and there exists T € X such that f(z,t) Z0,t € T.

For any x € X, we denote by T,(z) ={t € T : f(z,t) = 0} the corresponding set of the
active points of T. Taking into account Assumption 2.1 and the sufficient smoothness of
the function f(z,t) in R™ x T', we can conclude that there exists z € X such that |7,(z)|

is finite.

In the sequel we will use the following notations

fOz, t) = fla,t), fO(z, t)=0°f(x,1)/0t°, s €N;
N(q)=10,ifg<0, N(g)=1{0, 1, ..., ¢} if¢>0, g€ Z

Givent €T, z € X, let p = p(x,t) € {—1, 0, 1, ...} be a number such that
FOat) =0, s € N(p),  Fo D (w,1) £0. (23

Definition 2.1 Lett € T. A number q(t) € {—1,0,1,...} is called the order of immo-
bility (immobility order) of t in SIP problem (2.1) if

1. for each x € X it is satisfied

f(z,t) =0, r € N(q(t)), (2.4)
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2. there exists x(t) € X such that
FUOF (2(1), 1) #£ 0. (2.5)

From the definition above and from the constraints of problem (2.1) it follows that
1. if t € int T, then ¢(t) 4+ 1 is even and f@O+V(z(¢),t) < 0;
2. q(t.) € {—1,0,1,...} and f@®)+(x(¢,),t,) < 0 for the correspondent z(t,) € X;
3. q(t*) € {—1,0,1,...} and for the correspondent z(t*) € X we have

3.a) fAFD(z(+*),+*) < 0 whenever ¢(t*) + 1 is even;
3.b) fAE)H) (2(¢4),+*) > 0 whenever ¢(t*) + 1 is odd.

Definition 2.2 A pointt € T is called the immobile point of problem (2.1), if q(t) > —1.

To simplify the further laying out we make the following assumption.
Assumption 2.2 Suppose that q(t.) = q(t*) = —1.

In the present paper, we claim that the concept of the immobility order is an important
characteristic of the constraints of SIP problem (2.1) that makes it possible to formulate
optimality conditions for this problem (with an infinite number of constraints) in terms

of optimality conditions for a certain NLP problem (with a finite number of constraints).

3 An algorithm of determination of the immobile

points and their immobility orders

Consider the convex SIP problem in the form (2.1) with the feasible set X. Suppose that
Assumptions 2.1 and 2.2 are satisfied for this problem. Choose any z € X with a finite
set of active points T,(z) = {t;,i € I}, I = 1(z) ={1,2,...,p}, p=p(T) < c0.
The algorithm described below constructs the mapping ¢ : T'— {—1,1,3,... }.

DIO ALGORITHM

(Determination of Immobility Orders)

Suppose, k =0 and q(o) =—1, Viel

i

(k)

The k-th iteration starts with a set of numbers ¢;"’,7 € I, constructed on the previ-

ous iteration of the algorithm. (It will be shown later that for any ¢ € I either qgk) is odd
(k)
orgq, =-—1).

7
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Introduce the sets

X =z e R O 1) =0, se N, [ () <0}, e ()
XM =M X" (3.2)
el

For each i € I, solve the nonlinear programming problem
B (z) = F9 (2, 1) — min, stz e XO), (3.3)

It will be proved later (Lemma 3.1) that Z € X *). Therefore, X *) # () and either problem
(3.3) admits an optimal solution, or its objective function fi(k) (z) is not limited from below
in the feasible set X *).

Denote by () the optimal solution of problem (3.3), in the case such the solution exists.
Otherwise, denote by () any feasible solution of problem (3.3) that satisfies the inequal-
: (k) (,.(3)

ity f;7(«W) < 0.

Consider the set T®) .= {iel: fi(k) (x(i)) =0}.

If I*) = ), then algorithm stops resulting with the following values of ¢(t),t € T

gt) =q", i€l qt)=—1, t € T\T,(2). (3.4)
If 1) o£ (), then set:
" =g 12, i e 1®; oV =gV ie W, (3.5)

and pass to the next iteration with k£ := k + 1.
The algorithm is described. 0

Note that DIO algorithm is finite. Indeed, if denote by k, € N, the number of its itera-

tions, it is easy to verify that the following estimation is true: k, < > W

i€l
In the reminder of this section, we will demonstrate that the mapping ¢(t),t € T, con-
structed by DIO algorithm, determines the immobility orders of all the points of the set
T correctly.
Since k, introduced above can be considered as a number of the last iteration of the algo-
rithm (i.e., the number of the iteration where the algorithm has stopped), we obtain by
(3.4):

g = q(t;) = qgk*) foriel,

(3.6)
q(t) = —1 for t € T\T,(Z).
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Lemma 3.1 On iterations of DIO algorithm the following inclusions are satisfied:

Xcx®=Nx", (3.7)
iel
where v =0, ..., k.
Proof (by induction on v). Due to (2.2), (3.1) we have X C Xi(o) for any ¢ € I. Then

inclusion (3.7) is valid for v = 0.
Assume that (3.7) is satisfied for v =k > 0, k < k,, i.e.

xXcx® iel (3.8)

Let us prove (3.7) for v = k + 1. From (3.5) it follows that qi(kﬂ) = ql(k), i € INI®), Then
(3.1) and (3.8) yield the following enclosure:

Xcx™MV=x® jeni®. (3.9)

(k)
Now, suppose that for some i, € I¥), there exists z* € X such that f(qif +1)(35*, ti.) #0.
(k)
Then, evidently, f%- +Y(z* ;) < 0 and, taking into consideration (3.8), we obtain

vt e X XB 0y = palH0 g ¢y <0, (3.10)

Tx

Since i, € I®) we have fi(*k)(x(i*)) = 0 for the feasible solution (") found on k-th iteration
of the algorithm. Therefore 2(*) is the optimal solution of problem (3.3). The optimality

of 20+) contradicts with the existence of * satisfying (3.10) and thus we conclude that

SOz, 1) =0, Vze X, VieI®, (3.11)

(%)

Recall that, by construction, all the values g;” + 1 are even. Then, due to the constraints

of SIP problem (2.1) and to Assumption 2.2, we have
Fa D0y =0, FAU ) <0 Vze X, Vie I, (3.12)
From (3.1), (3.5), (3.11) and (3.12) it follows
Xcx®V ier® (3.13)

From (3.9) and (3.13) we have X C Xi(kﬂ) for all ¢ € I. Thus (3.7) is satisfied for v = k+1

and the proof of lemma is complete. O

Note that DIO algorithm is constructed in such a way that it is satisfied

fOEW, 1) =0, s € N(g), fe(z t,)<0,4,j€l;

) 3.14
FOtD (20, 1) <0, i€, (314
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where ¢;, ¢ € I, are the immobile points of the convex SIP problem (2.1) and the corre-
sponding immobility orders complied with (3.6). Here and further we denote by z®, i € I,
the feasible solutions of problem (3.3) obtained on the last iteration of DIO algorithm.

Let us prove now that relations (3.14) are valid also for convex combinations of (), i € I,

i.e. for any vector
iel
such that
a>0,iel, Y a=1 (3.16)

i€l

Lemma 3.2 Let y satisfy (3.15), (3.16). Then
fOy, t:) =0, s € N(g), f%(y, t;,)<0,iel, (3.17)
where q;, 1 € I, are determined by (3.6).

Proof. Let p; := p(y,t;), i € I, where p(y,t) is defined as in (2.3). Then
FOy, t:) =0, s€ N(p;), fOt(y, ;) #0, i€l (3.18)

and the statement of the lemma will be proved if we show that for any ¢ € I it is satisfied
Pi = qi-
1) Let us prove, first, that

Arguing by contradiction, suppose that there exists ig € I, such that p;, > ¢;,. Then from
(3.18) we have

'y, tiy) =0, 5 € N(gi, +1). (3.20)
Since f(x, t) is convex w.r.t. x, then for any At such that ¢; + At € T', we can write
fly, ti+ A <Y faV) 4+ AL, Viel, (3.21)
jer
where y and @;, j € I, satisfy (3.15) and (3.16). It is evident that for any z € X and any

i € I, Taylor’s expansion of f(z,t) in the neighborhood of ¢; of the order [, [ € N, can be

written in the form

fzti + A = f(z,t:) + fY (2, t) At + %f@)(z, t)A 4 ...
1 !

1
O VAR + ——
Tl B WAL

f(l+1)(2’ ti)Atl+1 + O(Atl+1).
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Given ¢ € I, applying Taylor’s expansion of the order ¢; to the corresponding inequality
n (3.21), we get

1
Ft) + FO @ t) A+ -+ ——— FOHD (1) At + oAt <

(gi +1)!
2) ) (] = (@) ) ¢
;a](f( )+ fOED )AL + - e (0 )AL (3.92)
O(Atqiﬂ)).

Consider (3.22) with i = iy and substitute into its right-hand side formulae (3.14) and
into the left-hand side the values from (3.20), obtaining

O(At‘h‘oﬂ) < Zdj(f(‘h’o"rl ( (9) 1 )Ath0+1 + O(At%ﬂ)) (3.23)
jel
Since g;, + 1 is even, then we have At% ™! > (. Divide (3.23) by At% ™! and let At — 0.
Then, taking into account (3.14), we get a contradictory system of inequalities
0< Z djf(qz'oﬂ)(w(j)’ tiy) < aiof(qi0+1)(x(i0), t;,) <0 (3.24)
jEl

that proves (3.19).

2) Now, let us strengthen (3.19) and show that

Suppose, I, :={i € I : p; < ¢;} # 0. To obtain a contradiction, it suffices to demonstrate

that no one of the following hypotheses is true:
a) 3 iy € I, such that p;, is even;  b) p; is odd, Vi € I, # 0.

First of all, let us substitute each functions in (3.21) by its Taylor’s expansion in the
neighborhood of ¢; of the order p; + 1. With respect to (3.14), (3.18), and (3.19), we have

FEFD (g t) AP 4 o( At <0, Vi e I (3.26)

Let us consider now hypothesis a). Suppose, i = ig in (3.26). Divide the inequality
obtained by Atfiot! and let, first, At — +0 and after, At — —0. Since AtPo™ > 0
whenever At > 0 and AtPo™ < 0 whenever At < 0, then the values of the limits

obtained can be estimated as follows:

FOot D (y, ;) AtPiot! 4 o AtPio™)

] <
et AtPiot! =0

Y ot (y, ;) AtPio T 4 o AtPiott) -
At1—>m—0 AtPiotl -7

8
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wherefrom Ahmo fPiot(y t,) <0, Alim0 fPiotD(y ¢, ) > 0. The last two inequali-
t—+ t——

ties can be satisfied simultaneously only if f(o*Y(y, t;,) = 0, which contradicts (3.18).

Therefore, hypothesis a) is false.

Now, consider hypothesis b). From (3.26), taking into account inequalities At*™ > 0,7 €
I,, we get f*(y, t;) < 0,4 € I,, wherefrom with respect to the inequality in (3.18) we

obtain

fet(y ) <0, i€l (3.27)
It was assumed above that p; is odd and p; < ¢; for Vi € I, # 0. Given i € I, let
ki€ {0, 1, ..., k. — 1}, be the index such that i € 1), qi(k") = p;. Denote:

On the ko-th iteration of DIO algorithm problem (3.3) takes the form

fif(@) = f0 Dz, 1) — min, stz € X0, (3.29)

(2

As i, € I%0) we can conclude that the problem above has an optimal solution z* satisfying

FE @) = feet et 1) = 0. (3.30)

(2

From (3.28) it follows qi(kO) < pi, i € 1. Then, with respect to (3.18), we obtain

fOy, t;) =0, s€ N(@™), i el (3.31)

Finally, let us show that
y e X o), (3.32)

According to (3.1) and (3.31), it is sufficient to prove that the following inequalities
(ko)

FET Ty, 6) <0, i€, (3.33)

are valid. By DIO algorithm, for all ¢+ € I, it is satisfied qz(kO) < p; < ¢;. Then for any
(ko)

i € I, substituting ¢; " instead of ¢; in (3.22) and, taking into account (3.31), we obtain

Jc(quO)—&-l)(y7 ti)Atq§k0)+1 + O(AthkO)—H) < Z @ <JL‘(f1§k0)-i-1)(x(j)7 ti>At!I§k°)+1 + O(Atq£k0)+1)) '
jel

Note that qi(ko) is odd here. Dividing the inequality above by N > 0 and taking the

limit as At — 0, we obtain

f(ngko)—&-l)(y’ tz) < Z djf(q5k0>+1)($(j)7 tz) (334)

jel

9
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that, together with the last two groups of inequalities in (3.14), implies (3.33) and, con-
sequently, (3.32).

From (3.27), (3.28) we have f=+U(y, t; ) < 0 that, taking into account (3.32) and (3.30),
contradicts the optimality of 2* in (3.29). Thus hypothesis b) is false too. OJ

Corollary 3.1 Lety satisfy (3.15), (3.16). Then there exists € > 0 such that the follow-

g tnequalities are valid
f(y,t) < 0, t € [tl — &, t; + 5], Vi e I. (335)

Proof. Lemma 3.2 states that (3.17) is valid for the given y. Then f(y, t;) < 0 for all
i € I, such that ¢; = —1. Taking into account the sufficient smoothness of the function

f(y,t), we can extend this result to some neighborhood of ¢;:
for Vi € I with ¢, =—1, 3, >0: f(y,t) <0, te€t;i—ei t;i+ei (3.36)

If g; > —1 for some i € I, then ¢; is odd, evidently. From (3.17) it follows that the corre-
spondent ¢; is the local maximizer of the continuous function f(y,t) and that f(y, t;) = 0.

Therefore, we can state that

for Vi € I with q; > —1, El&fl' >0: f(’y,t) S O, te [tl — &4, tl + 81‘} (337)
and (3.35) follows immediately from (3.36) and (3.37) if suppose ¢ := mi}l Ei- O
1€

Theorem 3.1 Givent € T, the value q(t) constructed by DIO algorithm satisfies Defin-
ition 2.1.

Proof. Consider any ¢ € T. Let us prove, first, that ¢(t) satisfies (2.4). If ¢(t) = —1,
then N(q(t)) = () and it is nothing to prove.

Suppose q(t) > —1. Then, by the algorithm, there exists ¢ € I such that ¢t = ¢;. According
to (2.3), for any i € I and any z € X we denote by p = p(z,t;) € {—1,0,1,...} a number
such that

f(z,t,) =0, s € N(p), fPV(z,;) #0. (3.38)
Let us show, first, that
p(z,t;) > qi, Vz€ X, Viel, (3.39)

where ¢; = q(t;).

10
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Arguing by contradiction, suppose p = p(z,t;,) < g;; for some i; € I and some z € X.

Denote by k, 0 < k < k., the number of the iteration where qz.(f) =7, qgﬁﬂ) =p+2. By
DIO algorithm, there exists () € X* such that
0= @) = oD@, 4,) = min fO(a,t;,). (3.40)

zeX (F)

From the other hand, as z € X, from Assumption 2.2 we conclude that p is odd. Then
from (3.38) it follows f®*V(zt; ) < 0. By Lemma 3.1, z € X ¢ X®_. However, the
relations obtained

FPO(z ) <0, z2e XP

contradict (3.40). Therefore, (3.39) is valid and together with (3.38) it yields (2.4).

Let us now show that there exists & = Z(t) satisfying (2.5). Recall that DIO algorithm
starts with the index set I in the form [ = I(z) for some z € X. For any y given by
(3.15), (3.16) and any « € [0, 1], we consider

z(a) =az + (1 —a)y. (3.41)
From the convexity of the function f(x,t) w.r.t. x we have
fla(e), t) <af(@, )+ (1 —a)f(y, 1) = f(y,t) + alf(z,1) = f(y,1), VieT.

Let a(t) be a function defined in T" as follows:

0, if f(y, t) <0, s 1o
a(t) = t .
U\ iy e 0> o
Let us prove that a(t) < 1, Vt € T. Indeed, from Corollary 3.1 it follows
de>0: at)=0,te(t;—e, ti+e], Viel. (3.43)
Let T, =T\ UI[tl — ¢, t; +¢|. By construction, f(z, t) <0, t € T,. Then
ic
f(z, t) <=9, vVt e T,, (3.44)

for 0 := ?61%} |f(z, t)] > 0.

Consider the subset T, C T, defined as follows: Ty, = {t € T, : f(y,t) > 0}. If T\, = 0,
then a(t) =0, Vt € T, and the statement is proved.

Now, suppose T, # 0. By construction, for any ¢ € T\ T,. we have a(t) = 0. Denote
dg 1= g%)ff(y,t) < +4o00. Evidently, §9 > 0, trélTln |f(z,t)] > § > 0. Then, taking into
consideration (3.44), we obtain for ¢t € T,,:

f(y,t) 1f 1 N

O T IGEn  TE = Ta,

~
=

11
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Let 0, be the maximal value of the function a(t) constructed above:

6. := max a(t). (3.45)

teT

Obviously, 0 < 6, < 1. Choose some fixed parameter «q from the interval ]6,, 1] and set
7 = (o) where z(ayp) is calculated by (3.41). Now by the same method that was used
in the proof of Lemma 3.2, we can show that # € X and f@®+1) (3 t) < 0,Vt € T. Here

2) .

we just have to suppose I := {1,2}, (V) := 2, 2@ =y, @ = ap, ay := 1 — ap and

consider relations (3.17) and

fO@, t:) =0, s€ N(@), fe(z, t;)<0,iel;

f(z, t) <0, t € T\T,(2), (3.46)

instead of (3.14). This will complete the proof of the theorem. O

Remark 3.1 Theorem 3.1 states also that there always exists a vector T that satisfies
(2.4) and (2.5) for all t € T' simultaneously. Therefore, in Definition 2.1 we can always
suppose x(t) =z, Vt € T.

Remark 3.2 It follows from Definition 2.1 and Remark 3.1 that the constraints of prob-
lem (2.1) satisfy the Slater condition if and only if q(t) = —1,Vt € T.

Example 3.1. Let us use DIO algorithm to determine the immobility orders of all points

of the interval T in problem (2.1), where

flx, t) =18 [(t — 0.14)%(t — 0.6)(t — 0.94)* (2] + (22 + 3)* + 23 + (24 — 4)> — 1)+
+(t — 0.14)*(1 — cos(t — 0.6)) sin* (¢ — 0.94) (21 + 22 + 23 + 3)? — 1)+

+sin*(t — 0.14)(t — 0.94)%sin?(t — 0.94)((wq + x4 — 3)* + 42222 — 1)),

T=10,1], xeR%.

Consider the feasible solution z = (0, 0.5, 0, 3.5)". Then
f(z, t) = —(t —0.14)%(t — 0.6)*(t — 0.94)*, ¢ € [0,1],
and, according to the notations used above, we have

T,(z) = {0.14, 0.6, 0.94} = {t;, i € I},
I={1, 2, 3}, t; =0.14, t, = 0.6, t; = 0.94,
p(z, 0.14) =5, p(z, 0.6) =1, p(z, 0.94) = 3.
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The results of the proceeding of DIO algorithm are presented in the following table

k| q® | pa+ 0@ 1) [ ¢ | Fa7 0 0@ 1) | ¢P | p@7 030 1) | 1®
0| -1 0 —1 —0.009 —1 0 {1, 3}
1] 1 0 —1 —0.009 1 0 {1, 3}
21 3 —154.1681 —1 —0.009 3 —136.043 0

The feasible solutions (), i € I, obtained at the last iteration are

(M) = (—0.0056, —0.4888, —0.0056, 3.4832)’,
+® = (0.0131, —0.5431, 0.0131, 3.7769)’.

@ = (0, 0, 0, 3),

(k)

The immobility orders of the points ¢;, 7 € I, are equal to the values ¢; /', ¢ € I, from

the last iteration of the algorithm. In our case k, = 2 and
@ =q(0.14) = ¢{” =3, g2 =q(0.6) = ¢} = —1, g5 =q(0.94) = ¢§” = 3.
Thus the algorithm results in the function ¢(¢), ¢ € [0, 1], such that

q(t) = —1, t €0, 0.14) U (0.14, 0.94) U (0.94, 1]; ¢(0.14) = ¢(0.94) = 3.

Let us now find Z that satisfies Definition 2.1. According to the proceeding described in
Theorem 3.1, we have to construct, first, some vector y in the form (3.15), (3.16). If, for

example, we assume that a; = 1/3, i € I, then (approximately)
1 ..
y=» =2 =(0.0025 —0.344, 0.0025, 3.42)"
— 3
i€l
The functions f(z, t) (see Fig. 1) and f(y, t) (see Fig. 2) are not positive in 7' = [0, 1]

and, consequently, the value 6., defined in (3.45), is zero.

0 02 04 06 0.8 £y 0 02 04 06 08 l,
" a2t
0510
0004
-0°
= = 0006}
5
1510 el
240% =B
Fig. 1 Fig. 2
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According to Theorem 3.1 we have to choose, now, some ag from the interval |6,, 1[=]0, 1].

Suppose, for example, that ag = 0.5. Then
7 = #(ag) = £(0.5) = (0.00125, 0.078, 0.00125, 3.46)".
Fig. 3 shows (in two different scales) the graphic of the function f(Z, t), t € [0, 1]. Here

f(f, t) <0, tel0, 1]\ {0.14, 0.94},
fO(z, t;)) =0, s € N(g), i € {1, 3}, t; = 0.14, t3 = 0.94,
(Z, 0.14) = —138.2412275,
(Z, 0.94) = —118.5898889,
f(x, 0.6) = fO(z, 0.6) = —0.008236

f(4)
4)

and, evidently, conditions (2.4) and (2.5) are satisfied in Z for all ¢ € 7" Thus we have
confirmed that DIO Algorithm has correctly determined two immobile points ¢; = 0.14,
t3 = 0.94 and their immobility orders ¢; = g3 = 3.

-0.002

-0.004

f5(0.5) 4]

-0.006

-0.008

_DD‘] 1 1 1 1 1 1 1 1 1

02400 b .

04407 | ]

f%(0.5) 1)

o510° F .

0a0° .

o bt 02 03 04 085 06 07 08 089 1

Fig. 3

Note that the point ¢t = 0.6 is not immobile, nevertheless f(z,t3) = 0.
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4 Implicit Optimality Criterion

In this section, we consider optimality conditions for the convex SIP problem (2.1). Sup-
pose that Assumptions 2.1 and 2.2 are satisfied. Let 2° € X, X being the feasible
set in (2.1). Consider the corresponding set of active points T,(z") and suppose that
p = |T,(z°)| < co. Then the set T,(z") can be written in the form

T.(x%) ={t),j =1,....p}. (4.1)

Denote: ¢; = q(t?), j=1,...,p. Using the notations above, form the following nonlinear

programming problem (NLP problem):
¢(x) — min,
s.t. f(s)(x,t?) =0, s € N(gy), (4.2)
f(qj+1)($vt2) <0, j=1,...,p

Let Y C R™ be the feasible set of (4.2). It is evident that X C Y.

Theorem 4.1 [Implicit Optimality Criterion | The feasible solution x° € X with |T,(z°)] <
oo is optimal in the convex SIP problem (2.1) if and only if it is optimal in the NLP prob-

lem (4.2).

Proof. <) As X C Y, we can state that the optimality of the feasible solution 2" € X
in (4.2) immediately implies its optimality of 2° in SIP problem (2.1).

=) (By contradiction). Suppose that z° is optimal for (2.1) but there exists y € YV
such that c(y) < c(z%). Tt is evident that y ¢ X. Let & € X be the feasible solution of
problem (2.1) constructed in the proof of Theorem 3.1 and, therefore, satisfying (2.5).
Consider the vector

(@) = 1T + agy, (4.3)

where o = (o, arg) such that
a; >0, i=1,2; a; +as=1. (4.4)

Since ¢(z) is a convex function, we have
c(z(a)) < are(Z) + aze(y). (4.5)
o . o) —cl)

2= ~
c(y) — c(z)
0 < a9 < 1. Having assumed that oy defined in (4.4) satisfies, additionally, the inequality

By construction, ¢(z) > ¢(2°) > ¢(y). Then for « it is verified:

g > o, (4.6)
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we obtain in (4.5)
c(x(a)) < are(F) + aze(y) < e(2°). (4.7)

Since f(x,t) is convex w.r.t. =, we have

f(@(@), 1) < anf(7,1) + azf(y,1). (4.8)

Let us show that there exists A = A(a) > 0 such that for a from (4.4) with a; > 0 and
for any j = 1,...,p it is satisfied

fla(a),t) <0, te[t)— A1)+ Al (4.9)

Fort =1t9,j =1,...,p, the last formula is evident.
Now consider t € [t) — At 4+ A], t # t) for some j = 1,...,p. We can write ¢ in the
form: ¢ =9 + At;, where 0 < |At;] < A. Then (4.8) takes the form

fla(a),t) = fla(a), 6] + Aty) < ar f(Z, 8] + Aly) + az f(y, t] + At;). (4.10)
It is easy to verify that

F(3.8 + Aty) = f(qjﬂ)(i:,t?)At;U“ + O(At‘;j“),

(Qj + 1)!

) j+1 41
Fly, 0+ Aty) = POy )AL+ o( AL

(¢ +1)!
where, by construction, At(;»j+1 >0, f9t(z,19) <0, flot(y,19) <o0.

(4.10) we conclude that there exists a number A > 0 such that (4.9) is satisfied for «
from (4.4) with a; > 0.

Consider now vector a* = (a7, i) where

Therefore, from

aiday=1,af >0, a} > a).

It is easy to verify that z(a*), calculated by (4.3), satisfies both (4.7) and (4.9) for some
A* = Ala*) > 0, ie.

c(z(a*)) < e(a®); flz(a®),t) <0t e[t) — A )+ A, j=1,....p. (4.11)

p
Let ¢ = min |f(z°,¢)|, t € T\ U[t? — A*, 19 + A*]. Evidently, ¢ > 0 and
j=1

p
fa,t) < —e, te T\ [ J[t) — A% 1) + A7), (4.12)
j=1

Consider a convex combination of z° and z(a*) in the form
r(A) =2 + (1 = Nz(a®), 0< A< 1.
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Then, taking into account convexity of f(xz,t) and formulae (4.11), (4.12), it is not difficult
to prove that there exists A* : 0 < A\* < 1 such that

flz(A),t) <0, teT. (4.13)
The value of A* can be chosen arbitrary from the interval [A°, 1[C [0, 1] where

, 0, if TT:={teT: f(z(a*),t) >0} =0,
A= max f(z(a”),?) < max f(z(a®),?) < 1, otherwise.

wert f(z(ar),t) = f(20,1) —tert f(z(ar),t) +¢
From (4.13) we conclude that x(\*) is feasible for problem (2.1). Taking into account

convexity of ¢(z) and the first inequality in (4.11), we get
c(x(N*)) < Ne(x®) + (1 — X)e(z(a*)) < XNe(z®) + (1 — M)e(2?) = e(2?)

that contradicts with the optimality of 2V in (2.1) and Theorem 4.1 is proved. 0

The Implicit Optimality Criterion permits to verify optimality conditions for the NLP
problem (4.2) instead of such the conditions for the convex SIP problem (2.1).

Remark 4.1 Note that in the case when the convex SIP problem (2.1) satisfies the Slater
condition, the correspondent NLP problem (4.2) introduced in this paper coincides with the
nonlinear programming problem (SIPp) formulated in [5] and we can replace in Theorem
4.1 the NLP problem (4.2) by (SIPp) problem. In the case when the Slater condition is
not satisfied for (2.1) such the replacement is not possible.

Example 4.1. Consider the following SIP problem

—day + 2 + 33 + G + + +$4—>m1n

) (4.14)
st. —t7xy +tag + sm(t)xg + x3 S 0, tel-1, 2],

where z € R%.

There is a unique immobile point ¢t; = 0 with ¢; = 1 (one can easily check it using
DIO algorithm). As ¢; > —1, we can conclude that problem (4.14) does not satisfy the
Slater condition.

Consider the feasible solution z° = (4,1, —1,0)" of problem (4.14). To verify the optimal-
ity of 2° using the Implicit Optimality Criterion, we have to construct the corresponding
NLP problem in the form (4.2). In our example this problem takes the form

i
2
s.t. xi =0, zo+x3=0, —2x;

— 4z, + 29 + 323 + — — min,

2 2 g2
Lo | Tz Xy
+ =+ =+ —=
2 2 2 (4.15)
< 0.
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One can easily confirm that problem (4.15) is equivalent to some quadratic problem and

0 is optimal in this quadratic problem. Then, from Theorem 4.1 we can

0

that vector x
conclude that vector 2z is optimal in problem (4.14) too.

To illustrate Remark 4.1, let us show that x° is not optimal in problem (SIPp). Ac-
cording to [5], (SIPp) has the form

¢(x) — min,

(4.16)
st. f(z,t)) <0, i=1,...,p,

where T,(z°%) = {t?, i = 1,...,p} is the set of active points of T corresponding to z°.
In the case of SIP problem (4.14) with the feasible solution z° = (4,1, —1,0), problem
(4.16) has the form

2?22 a2 22
—day o+ 3+ 2+ 2+ 2+ 22— min,
S T R R (4.17)

s.t. :ci < 0.

It is evident that vector 2 is feasible but not optimal for (4.17) (this problem has better
feasible solutions, for instance, * = (4, —1, —3,0)"). Therefore, the statement of Theorem
4.1 will not be true if replace (4.15) with (4.16).

We would like to finish this section with two remarks.

Remark 4.2 The results presented in the paper can be easily reformulated for the case
when problem (2.1) has, additionally, a finite number of inequality constraints g;(x) <

0,7=1,...,m, m € N, where functions g;(z), j =1,...,m, are convex w.r.t. x, x € R".

Remark 4.3 Theorem 4.1 was formulated for convex SIP problems under the condition
that |T,(x°)| < oo (Assumption 2.1). Authors believe that it is possible to formulate and
prove the similar theorem without such the assumption and are going to do it in a separate

publication.

5 Conclusion

The main result of the paper is the Implicit Optimality Criterion that can be used for
further investigations in the optimality theory of SIP as well as for constructing the new
SIP algorithms. The Criterion is based on the concepts of immobility points and im-
mobility orders that themselves are the important characteristics of the points of the
index set T'. That is why a special attention in the paper is given to description and
substantiation of the algorithm ( DIO algorithm) that determines the immobile points

and their immobility orders in a finite number of iterations. The important properties
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of the Implicit Optimality Criterion are that it works without special assumptions (for
example, the Slater condition has not be necessarily satisfied) and that it reduces opti-
mality conditions for SIP problems to optimality conditions for some NLP problem. The
last property gives the possibility to develop new efficient optimality conditions for SIP
problems. As the matter of fact, each of the known optimality conditions (for example,
from [1], [3] or others) being formulated for NLP problem in the form (4.2), can generate
different (and not known yet) optimality conditions for the convex SIP problem (2.1). A
study of such (explicit) optimality conditions as well as a comparison of these conditions
with the known optimality conditions of SIP (see [2],[5],[8]) is the subject of a separate

investigation [10].
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