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[1] In the paper, the self-organizing map (SOM) was employed for the exploratory analysis
of fluorescence excitation-emission data characterizing organic matter removal efficiency
at 16 water treatment works in the UK. Fluorescence spectroscopy was used to assess
organic matter removal efficiency between raw and partially treated (clarified) water to
provide an indication of the potential for disinfection by-products formation. Fluorescence
spectroscopy was utilized to evaluate quantitative and qualitative properties of organic
matter removal. However, the substantial amount of fluorescence data generated impeded
the interpretation process. Therefore a robust SOM technique was used to examine the
fluorescence data and to reveal patterns in data distribution and correlations between organic
matter properties and fluorescence variables. It was found that the SOM provided a
good discrimination between water treatment sites on the base of spectral properties of
organic matter. The distances between the units of the SOM map were indicative of the
similarity of the fluorescence samples and thus demonstrated the relative changes in organic
matter content between raw and clarified water. The higher efficiency of organic matter
removal was demonstrated for the larger distances between raw and clarified samples on the
map. It was also shown that organic matter removal was highly dependent on the raw
water fluorescence properties, with higher efficiencies for higher emission wavelengths
in visible and UV humic-like fluorescence centers.
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1. Introduction

[2] Organic matter is a complex heterogeneous mixture of
chemical compounds ubiquitous in all natural and anthro-
pogenically transformed environments, from marine deep-
water, through estuarial to freshwater ecosystems. The
inherent complexity of organic matter structure and function
determines the substantial number of different physical and
chemical methods used in organic matter characterization.
Recent advances in spectrofluorometric techniques have
concentrated on the development of more accurate, portable
and faster instruments, enhanced optical analysis efficiency
and have stimulated academic and industrial interest in
utilization of intrinsic spectral properties of organic matter
in characterization of its composition and role in a variety
of ecosystems [Mopper and Schultz, 1993; Coble, 1996;
McKnight et al., 2001; Stedmon et al., 2003; Boehme et al.,
2004; Hudson et al., 2007].

[3] In the work presented here, fluorescence spectroscopy
was used for the quantitative and qualitative characterization
of organic matter during water treatment. During the water
treatment process, raw water organic matter should be effec-
tively removed prior to disinfection due to its propensity for
forming toxic and carcinogenic disinfection by-products
(DBPs) as a result of its chemical reaction with chlorine. As
fluorescence measurements are rapid and noninvasive with
the possibility for incorporation into online monitoring sys-
tem, fluorescence spectroscopy can provide an accurate assess-
ment of organic matter removal efficiency during treatment
processes and facilitate online prediction of DBPs formation
potential [Bieroza et al., 2008]. Moreover, organic matter char-
acterization can provide an insight into the dependence of
organic matter removal efficiency on the character of organic
matter, based on the presence, relative importance and spec-
tral properties of particular fluorophores in raw water.
[4] Although the acquisition of fluorescence data with

improved instrumentation has become easier and faster, the
substantial amount of fluorescence data generated impedes
the interpretation process and requires adequately robust
statistical and computational analysis tools. A common
output from fluorescence spectroscopy is the excitation-
emission matrix (EEM), produced by scanning fluorescence
intensity over a range of excitation and emission wavelengths,
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to produce a three-dimensional output comprising of more
than 4000 fluorescence data points (Figure 1).
[5] Fluorescence intensity occurs primarily in the regions

corresponding with spectral location of particular fluoro-
phores (humic-, fulvic- and protein-like fluorescence). The
traditional approach to EEM spectra analysis is for an expert
to read the maximum fluorescence intensity from defined
spectral regions (peaks). This ‘‘peak-picking’’ method sig-
nificantly reduces the amount of fluorescence data to a subset
of excitation-emission pairs with corresponding fluorescence
intensity values. The high dimensionality of the initial fluo-
rescence data set is therefore reduced in a supervised manner
through expert analysis of specific regions of known spectral
composition. Thus, to retrieve fluorescence information on
the variability of organic matter accurately and effectively,
fluorescence EEMs should be analyzed as a whole with the
use of appropriate statistical techniques. The most common
techniques of EEM data analysis include various multi-
way methods, such as Principal Components Analysis
(PCA, unsupervised algorithm) and Parallel Factor Analysis
(PARAFAC, supervised algorithm). Exploratory analysis of
fluorescence spectra has been primarily conducted with the
use of traditional statistical methods of unsupervised data
analysis, such as Principal Components Analysis or Principal
Filter Analysis [Brunsdon and Baker, 2002; Persson and
Wedborg, 2001; Boehme et al., 2004; Spencer et al., 2007].
Those methods of fluorescence data decomposition (PCA,
PARAFAC) have a range of limitations (e.g., poor noise
tolerance) and require a time-consuming interpretation and
validation of resultant components [Bro, 1998; Stedmon et al.,
2003]. Therefore, the development and use of more robust
tools for fluorescence data decomposition and pattern recog-
nition is warranted. In this paper the application of an un-
supervised method of fluorescence data decomposition, the

self-organizing map (SOM), was employed to discern pat-
terns within a fluorescence data set and provide implications
for removal of organic matter in drinking water treatment.
[6] The SOM is an example of an unsupervised classifi-

cation algorithm in which a pattern (if it exists) is assigned to
a category, not specified or not known a priori by the domain-
expert analyzing the fluorescence data. This approach is often
used in data clustering, where the input feature space (here
related to fluorescence EEM data) is explored to discern any
reasonable relationships among the data, often without prior
knowledge or assumptions on the data set given. In a SOM,
the feature extraction from the input domain is performed
with a nonlinear (SOM) transformation of the input data onto
a k-dimensional map (grid). A feature describes an elemen-
tary pattern of information that represents partial aspects or
properties of an item [Kohonen, 1998]. In fluorescence data
analysis with SOM, the extracted features can be referred to
presence of particular fluorophore (or group of fluorophores)
or its specific spectral properties.
[7] The SOM is an example of two-layeredArtificial Neural

Network (ANN), consisting of a number of interconnected
single processing units called neurons or nodes. ANNs can be
considered as parallel interconnected networks of single
computational elements (neurons) organized in hierarchical
way, with structure and functions that imitate the biological
nervous system. ANNs have the ability to learn the pattern
from the input features or the model input-output relationship
based on the training algorithms where weights vectors are
stored in connections between neurons which are adjusted to
minimize the overall error of network prediction. In a SOM
network the connection weights of the size of the input datam
are stored in input neurons and during training are projected
onto k-dimensional output space (Figure 2) [Kohonen, 1998;
Rhee et al., 2005; Garcia et al., 2007].
[8] The aim of this paper is to demonstrate the use of the

SOM technique for exploratory analysis of fluorescence
EEMs characterization of water treatment works (WTW)
performance in terms of organic matter removal. The basic
concepts, application and interpretation of a SOM are pre-
sented to familiarize fluorescence EEM users with this robust
and efficient feature extraction technique.

2. Materials and Methods

2.1. Fluorescence Data

[9] Fluorescence spectroscopy measurements and total
organic carbon (TOC) analyses were carried out on samples
of raw and clarified water from 16 surface WTWs, collected

Figure 1. Excitation-emission spectra for (a) raw and
(b) clarified water (site 1).

Figure 2. Self-organizing map. Black dots denote nodes of
the network.
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monthly between August 2006 and February 2008 [Bieroza
et al., 2008]. The WTWs are located in the Midlands region,
central UK and are owned and operated by Severn Trent
Water Ltd. The WTWs treat a range of raw waters, from
upland sources exhibiting natural organic matter with high
TOC concentrations, to lowland sources reflecting anthro-
pogenically impacted microbial organic matter character
(Table 1). Fluorescence results from conventional peak
picking approaches, and comparison with organic matter
removal in drinking water treatment works, can be found in
the work of Bieroza et al. [2008].
[10] Laboratory analytical methods have been presented

in detail previously [Bieroza et al., 2008]. In summary,
organic matter fluorescence of unfiltered samples was mea-
sured using a Cary Eclipse Fluorescence Spectrophotometer
(Varian, Surrey, UK), by scanning excitation wavelengths
from 200 to 400 nm in 5 nm steps, and detecting the emitted
fluorescence in 2 nm steps between 280 and 500 nm.
Excitation and emission slit widths were set to 5 nm and
photomultiplier tube voltage to 725 V. In order to maintain
the consistency of measurement conditions, blank scans with
a sealed cell containing deionized water and themeasurement
of the intensity of Raman line of water at 348 nm excitation
wavelength, were run systematically following the procedure
presented elsewhere [Baker, 2001]. The mean Raman value
during the study period was 22.3 intensity units, (1 SD = 0.5).
All the fluorescence intensities were corrected and calibrated
to a Raman peak intensity of 20 units at 396 (392–400) nm
emission wavelength.
[11] TOC was measured using a Shimadzu TOC-V-CSH

analyzer with auto-sampler TOC-ASI-V. The nonpurgable
organic carbon (NPOC) determination method was employed
and the result NPOC was calculated as a mean of the three
valid measurements. The typical error of the analyses was
less than 10% indicating sufficient precision of the TOC
measurements.
[12] Examples of typical EEMs for raw and clarified water

are presented in Figure 1. From the fluorescencemeasurements,
EEMs of each sample display the intensity of fluorescence

against wavelengths at which excited organic matter fluoro-
phores emitted the light. Fluorescence regions can be attrib-
uted to both natural fluorescence (humic- and fulvic-like),
defined as peaks A and C [Coble, 1996] and microbial derived
organic matter (tryptophan- and tyrosine-like fluorescence,
defined as peaks T and B) at shorter emission wavelengths
[Coble, 1996; Stedmon et al., 2003]. Peak C (fulvic-like) fluo-
rescence intensity has been shown to exhibit a general corre-
lationwith TOC [Hudson et al., 2007;Cumberland and Baker,
2007]. In a related study, a strong linear correlation was ob-
served between fulvic-like fluorescence intensity reduction
between raw and clarified water and TOC removal measured
independently (R2 = 0.90) [Bieroza et al., 2008].
[13] Prior to SOM analyses, the fluorescence data were

preprocessed with scripts written in Matlab1 7.7 with the
Statistics Toolbox 7.0 and Neural Network Toolbox 6.0.1.
All data analyses were carried out on a 512MBDual Pentium
III PC computer. First, fluorescence spectra were normalized
to the Raman scatter peak (at 348 nm excitation wavelength)
of deionized water by subtracting the Raman signal from the
raw data [Determann et al., 1998; Stedmon et al., 2003]. The
Rayleigh and Raman scatter were removed, assuming that the
position of the Rayleigh scatter occurs at the excitation equal
to the emission wavelength (first-order) or double excitation
(second-order) and the position of Raman line is at constant
energy shift with respect to the first-order Rayleigh scatter
[Bahram et al., 2006]. The fluorescence regions containing
redundant information in areas where excitation wavelengths
are larger than emission wavelengths and of low signal-to-
noise ratio for excitation wavelengths less than 240 nm were
removed from further analysis by replacement with NaN (Not
A Number) [Bro, 1998; Stedmon et al., 2003]. The resultant
EEMs ranged from 240 to 400 nm excitation and from 300 to
500 nm emission wavelengths respectively. Therefore, the
final data set used in the SOM analysis comprised 625
samples of raw and clarified water and 2515 fluorescence
excitation-emission wavelengths.
[14] Finally, fluorescence data scaling (data variance was

normalized to one) and mean centering (by subtracting off

Table 1. Summary of Catchments and Organic Matter Characteristicsa

Site Source
Typical Catchment

Land Use

Mean TOC Hydrophobicity Microbial Fraction

Mean SD Class Mean Peak C Emission SD Class Mean Peak T Intensity SD Class

1 riverb A 26%, U 21% 3.0 1.2 Lv 426 6.4 I 48.2 20.7 Hv
2 riverb P 30%, A 26% 3.0 1.1 Lv 425 6.6 I 22.6 6.1 L
3 riverb A 63%, P 24% 5.0 1.9 I 426 6.0 I 44.8 12.3 Hv
4 riverb A 38%, P 31% 4.1 1.3 I 430 10.7 I 24.9 4.5 I
5 riverb A 63%, P 24% 5.1 2.0 I 425 7 I 44.6 11.5 H
6 river A 65%, P 25% 6.0 1.3 H 423 3.6 I 44.3 5.6 H
7 river P 44%, C 19% 3.3 0.7 I 420 5.3 Hphil 49.5 17 H
8 river A 48%, P 24% 7.0 1.1 H 420 5.1 Hphil 53.8 9 H
9 river A 65%, P 25% 6.8 0.6 H 420 4.4 Hphil 46.9 5.4 H
10 river A 43%, P 30% 4.2 0.7 I 422 7.7 I 34.9 3.5 I
11 river P 55%, C 15%, 4.6 0.9 I 428 8.0 I 34.5 6.7 I
12 river A 38%, P 31%, 5.2 0.9 I 426 7.0 I 39.3 7.6 I
13 river A 55%, I 32%, 6.0 1.4 H 424 8.4 I 56.1 13.7 Hv
14 reservoir P 48%, O 39% 5.6 1.6 Hv 449 7.4 Hphob 15.8 3.1 L
15 reservoir P 45%, A 33% 2.7 0.8 L 441 13.1 Hphob 14.6 2.5 L
16 reservoir P 76%, F 10% 6.7 1.2 H 427 7.5 I 41.7 2.9 H
aTypical catchment land use, selected, types, of the largest percentage in total catchment area: A, nonirrigated arable land; P, pastures; C, other cultivated

areas; U, urban fabric; I, industrial, transport or commercial units; G, green urban areas; F, forests; O, other areas. Mean TOC: >6.0 mg/l indicates high TOC.
Mean TOC < 3.0 mg/l indicates low TOC. Hydrophobicity measured as peak C emission wavelength: >440 nm, hydrophobic (Hphob); <420 nm, hydrophilic
(Hphil). Microbial fraction measured as peak T intensity: >40 au, high microbial; <20 au, lowmicrobial; coefficient of variation measured as a mean coefficient
of organic matter properties: >30%, high variability; <10%, low variability. Classification: L, low; I, intermediate; H, high; v, variable.

bDirect abstraction from river to WTW.
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variable means) was performed to reduce the concentration
effects exhibited by intensity [Boehme et al., 2004].

2.2. Kohonen’s Self-Organizing Map

[15] To understand the mechanism of SOM network train-
ing and its ability for data reduction, some fundamental
concepts of ANNs are summarized below.
[16] ANNs are powerful, nonparametric, parallel compu-

tational tools frequently employed for data classification and
calibration [Bos et al., 1993; Despagne and Massart, 1998;
Basheer and Hajmeer, 2000] due to their ability to model
nonlinearity, and properties such as fault and noise tolerance
(ability of processing noisy, uncertain data), self-modeling,
self-learning (by example) and generalization capabilities
[Basheer and Hajmeer, 2000]. ANN functions are facilitated
by special structure, consisting of the number of processing
units (neurons) arranged in interconnected layers. In a typical
ANN, the input layer neurons are responsible for presenting
the data to the network, whereas the output layer neurons
generate the overall network response to the input data.
Neurons in the hidden and output layers are active and
perform computational transformations by summing up their
input connection weights multiplied by the output of corre-
sponding neurons from the preceding layer and generating
the output that is passed to the successive layer. The iterative
process of adjusting connection weights between neurons of
different layers is called network training.
[17] Kohonen’s self-organizing map comprises two fully

connected layers (Figure 2).
[18] For the purpose of the SOM analysis, fluorescence

three-dimensional EEMs of raw and clarified water for
16 WTWs were deconvoluted to two-dimensional vectors,
where each column corresponds with one emission-excitation
wavelength pair. The neurons in the input layer of the SOM
are connected with each input sample (EEM converted to
vector) and have an associated reference vector that contains
SOMweights. The reference vector (also called the codebook
or weight vector) can be defined as di = [di1 di2 . . . dim], where
m is equal to the dimension of the input vectors (2515 fluo-
rescence excitation-emission pairs).
[19] The reference vector and the location on the map are

the positions of the neuron in input and output space and the
initial high-dimensional matrix of input data can be projected
with the SOM algorithm on a two-dimensional map compris-
ing output neurons (Figure 2) [Kohonen, 1998, 2001].
[20] The SOM training is an iterative process in which for

each input sample comprising unfolded EEM, the neuron
with reference vector weights most similar to the input vector
is first identified (winner or best matching unit, BMU). Thus,
for each input EEM presented to the SOM network, the out-
put neuron with the reference vector most similar to the vec-
tor representation of EEM is selected. Once the best matching
reference vector for each input EEM vector is found, its
weights and the weights of its neighboring neurons are mod-
ified and moved toward the input vector (self-organization
feature of the algorithm) (equation (1)):

wi k þ 1ð Þ ¼ wi kð Þ þ e kð Þhp i; kð Þ xj kð Þ � wi kð Þ
� �

ð1Þ

where wi(k) is the previous weight of neuron, wi(k + 1) is
the new weight of neuron, e(k) is the learning rate, hp(i, k)
describes the neighborhood of the winning neuron, k is the

number of epochs (a finite set of input patterns presented
sequentially) and p is the index of the winning neuron.
The learning rate describes the speed of the training process
(0 < e(k) < 1) and decreasesmonotonically during the training
phase. The topological neighborhood can be described as a
neighborhood set of array points Nc around the given node c.
During the training of the map the radius of the Nc (a size of
the neighborhood set) decreases monotonically to enable the
global ordering of the map. Thus, the projection of the input
data is done in two phases: the main training (largeNc radius)
and fine adjustment of the map (small Nc radius) [Kohonen,
2001].
[21] The trained network activates the appropriate output

neurons of the network according to the input samples
without prior knowledge of the process that produced the
data and its distribution. Consequently, the analysis of the
networks output, provides the basis for extraction of rela-
tionships and regularities from the original data. A complete
description of the SOM algorithm can be found in [Kohonen,
2001].
[22] Fluorescence data decomposition with SOM was

carried out in Matlab1 with the use of the SOM toolbox
version 2 [Kohonen, 1998] providing scripts for algorithm
implementation and validation (testing) and various tools for
visualization and analysis of the obtained results.
[23] The input matrix, comprising 625 samples and 2515

excitation-emission pairs, was presented to the nodes of the
SOM input layer simultaneously (batch mode) and neuron
weights were initialized using linear initialization along the
two greatest eigenvectors of the input matrix [Kohonen,
2001]. The size of the output layer was determined by finding
the ratio of the two greatest eigenvalues of the input matrix.
The final map contained 120 nodes (size 15 � 8).

3. Results

[24] The SOM training is an unsupervised process of
adjusting the connection weights (reference vectors) between
nodes in the input and output (map) layers (Figure 2). The
training is completed once for each input sample its repre-
sentation in the form of the reference vector with the weights
most similar to the input data (best matching unit) is found.
The analysis of the SOM output requires the use of various
visualization and clustering tools, providing substantial in-
formation on the input data distribution and relationships
with the measured variables.
[25] Figure 3 presents some basic SOM visualization

methods, including unified distance matrix algorithm (U
matrix, Figure 3a), samples distribution on the map with
cluster borders determined (Figure 3b) and single hit histo-
grams (Figure 3c). The U matrix [Ultsch, 1993] is the most
common graphical representation of the SOM structure, in
which distances between neighboring map units are calcu-
lated and visualized using gray or color scale on the trained
map [Park et al., 2003]. Compared with the original map size
(15 by 8 neurons), the U matrix comprises additional map
units to visualize the distances between neurons. High values
on the U matrix (light areas) indicate large distances between
neighboring units and hence can be helpful in determining the
cluster borders as clusters typically form uniform areas of low
values (dark areas). From Figure 3a it can be observed that the
cluster structure of the fluorescence data is not well defined as
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the light and dark areas on the U matrix are not easily
partitioned. However, the presence of a few clusters can be
discerned (i.e., in the lower right-hand side corner of the
map). As the Umatrix provides the information on the cluster
structure, the number of valid clusters can be derived from the
k-means algorithm [Jain and Dubes, 1988]. The k-means
clustering algorithm is used for minimizing the sum of
squared Euclidean distances between the input (unfolded
EEMs) and the SOM reference vectors. The best clustering
minimizes the sum of the squared distances (and also the
Davies-Bouldin index) between each input data vector and its
nearest cluster center [Davies and Bouldin, 1979]. Here the
optimum number of ten clusters was determined by running
the k-means algorithm multiple times for different number of
clusters and selecting the solution with the lowest sum of the
squared distances (Figure 3b). To correlate the cluster pattern
on the map with samples distribution, for each map node the
most frequent best matching unit with assigned site number
was found. Each cluster contains sites with similar organic
matter properties measured with excitation-emission spectra
(Figure 3b). Distinctively unique spectral properties of raw
water can be discerned for sites 1 and 6, which are both
reservoir abstractions (raw water is stored in reservoirs prior
to uptake for treatment), whereas the distribution of other
sites is more complex. A good discrimination between raw
and clarified water fluorescence properties occurs for sites
located at the bottom of the map, sites 1, 6, 10, 11, 14. The
opposite is observed for sites clustered at the top of the SOM
map (2, 3, 5), with the raw and clarified water of similar
properties as indicated by the short distances on the map.
Finally, the distribution of samples on the SOM map can be
portrayed with hit histograms (Figure 3c). For each neuron
the hit characteristic is calculated on the basis of the map
response to the input data. The size of the marker indicates

how many times each map unit was the BMU for the data
set. It can be seen that data is uniformly distributed over the
map, with a number of neurons located at the edges of the
map being the most frequent BMUs (neuron 1–16 hits,
neuron 5–15 hits, neuron 9–20 hits, neuron 120–18 hits).
[26] While the U matrix, cluster structure and hit histo-

grams reveal a pattern of samples distribution on the map, the
reference vectors of selected neurons and component planes
exhibit the significance of particular fluorescence variables.
From the hit histogram in Figure 3c it was inferred that some
neurons represent the greatest number of fluorescence sam-
ples. Thus the spectral properties derived from the reference
vectors of those neurons can provide the important infor-
mation on the dominant fluorescence features of the data set.
The EEMs of two neurons located at the left-hand side of the
SOM map (Figures 4a and 4c), indicate the predominance
of the humic-like fluorescence at the lower, UV excitation
wavelengths (250–300 nm). Additionally, a shift toward
higher emission wavelengths (400–450 nm) can be observed
for neuron 9 (Figure 4c). Samples projected onto the upper
SOM neurons demonstrate a substantial contribution of
protein-like fluorescence as the tryptophan-like center lo-
cated at excitation-emission wavelengths of 280/350 nm can
be discerned for both neuron 1 and 109 (Figures 4a and 4b).
The distinctively different fluorescence properties can be
observed in the excitation-emission spectra of neuron 120
with the humic-like fluorescence peak shifted toward higher
excitation and emission wavelengths (Figure 4d). These
results are in accordance with the analysis of the response
of each fluorescence variable (component) in the form of
component planes (Figure 5). The component planes depict
the values of the reference vectors for different fluorescence
variables and allow the correlation between the samples dis-
tribution and particular excitation-emission wavelengths and

Figure 3. Visualization of the SOM map for fluorescence data: (a) U matrix, (b) sample distribution and
clusters, and (c) hit histogram. Notation used, e.g., S1 and S1c, denotes raw and clarified water of site 1.
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hence main fluorophores. Thus, for each excitation-emission
wavelength pair, a corresponding component plane can be
obtained that enables correlation between sample location on
the map and fluorescence properties. In Figure 5 the compo-
nent planes at excitation wavelength of 280 nm were shown
for different emission wavelengths (300, 350, 400, 450 and
500 nm). The high values in the component plane denote a
higher fluorescence intensity. As the emission wavelength
increases, the center of the highest values moves from the top
to the bottom of the map with the relative increase in fluo-
rescence intensities (compare maximum values for each com-
ponent plane). For example, in Figure 5b the component plane
for excitation wavelength of 280 nm and emission wavelength
of 350 nm is presented, the spectral area related to tryptophan-
like fluorescence. The higher values on this component plane
indicate the predominance of highly microbial organic matter
for sites located in the upper part of the map.
[27] In Figure 6 the hit histograms for sites of different

organic matter properties and efficiency of organic matter

removal are shown. The geometric distance between raw and
clarified water samples correlates with the organic matter
removal, with the higher removal for more distant raw and
clarified samples. Thus sites 1 and 8 tend to have better
organic matter removal than sites 5 and 3. The greater the
spread of water samples of particular type on the map, the
greater the variation in spectral properties can be discerned.
Site 1 represents uniform raw water properties, whereas a
greater variation is typical for sites 5, 3 and 8. It can be con-
cluded that site 5 (relatively hydrophilic raw water organic
matter with lower emission wavelength) has poorer removal
compared to site 1, where the hydrophobic character of the
organic matter enhances the efficiency of the treatment
process. As stated above, the location in the upper part of
the SOM (lower emission wavelengths) corresponds to the
increased inputs of the microbial fraction. Thus, distinctive
spectral properties can be attributed to sites 3, 5 and 7, where
microbial fraction related to tryptophan-like fluorescence
has a significant contribution in the raw water fluorescence

Figure 4. Reference vector plots for selected SOM neurons with the highest number of hits. (a) Neuron 1,
(b) neuron 109, (c) neuron 9, and (d) neuron 120.

Figure 5. Component planes for the excitation-emission wavelengths with fixed excitation at 280 nm.
Emission wavelength of (a) 300, (b) 350, (c) 400, (d) 450, and (e) 500 nm.
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signature. The presence of microbial organic matter indicates
that those sites could be more prone to algal outbreaks which
can further deteriorate drinking water quality.

4. Discussion

[28] Fluorescence excitation-emission spectra contain sub-
stantial amount of information on organic matter charac-
teristics, however special computational and statistical
techniques are required to preprocess the data, remove noise
and redundant features like Raman and Rayleigh scatter and
to distinguish patterns of interest from a matrix background.
To identify significant features or patterns from multivariate,
high-dimensional fluorescence space, a dimensionality re-
duction, data projection and feature extraction methods
should be employed.
[29] In the study the unsupervised, nonparametric algo-

rithm of cluster analysis, visualizing and projecting multi-
variate data was applied, the self-organizingmap (SOM). The
approach is commonly used in exploratory data analysis.
However, only few examples of application of SOM to
fluorescence EEM spectra deconvolution could be found in
fluorescence-related literature [Lee et al., 2005; Rhee et al.,
2005]. Here, the SOM results provide a good discrimination
between water treatment sites on the basis of the spectral
properties of raw and partially treated water. The evaluation
of the SOM properties regarding sample distribution and the
importance of fluorescence variables provides significant
information on the relationships between raw and clarified
water organic matter composition. The distribution of the
samples on the map corresponds with the excitation-emission
properties (Figure 5). Horizontal and vertical axes corre-
spond to fluorescence emission and excitation wavelengths,
with increasing values from the top to the bottom and from
the left to the right respectively. Moreover, the diagonal that
joins the upper left with lower right corner of the map is the
line of the greatest changes in variance within the data set and
discriminates the sites of radically different organic matter
spectral properties. The reservoir sites 1 and 6, demonstrate
the most uniform fluorescence properties of raw water,
whereas sites with abstraction from the rivers exhibit more
profound changes in organic matter inputs and thus fluores-
cence signals (site 3, 5, 8, 9, 10, 13) (Figure 3b). The organic
matter removal efficiency derived from the fluorescence
intensity decrease between raw and clarified water stages is

of the primary significance for the formation of disinfection
by-products (DBPs). The distance between nodes of SOM
map indicates the similarity of the fluorescence samples and
thus can demonstrate the relative changes in organic matter
character and quantity between raw and clarified water. It was
found that the distances on the SOM map between raw and
corresponding clarified water samples correlate with the
efficiency of organic matter removal measured as a decrease
in fulvic-like fluorescence intensity. The larger distance
between raw and clarified water samples on the map can
be correlated with higher organic matter removal efficiency,
e.g., sites 1, 6, 12, 14 and 15, whereas the higher degree of
samples clustering can be explained with poorer decrease in
organic matter quantity (sites 5, 8, 10, 16) (Figure 6). It was
shown that the organic matter removal is highly dependent
on the raw water fluorescence properties, with higher effi-
ciencies for higher emission wavelengths in visible and UV
humic-like fluorescence centers. The shift toward higher
emission wavelengths is indicative of the increased content
of more hydrophobic organic matter fraction which is easier
to remove during the treatment process. Hence, the explor-
atory analysis of the fluorescence data with SOM provides a
substantial amount of information pertinent to drinking water
organic matter properties and removal.

5. Conclusions

[30] This paper has introduced a robust unsupervised
algorithm of the SOM applied to fluorescence data analysis.
The technique was employed for the characterization of
fluorescence excitation-emission spectra of organic matter
in surface waters abstracted at 16 surface WTW in the
Midlands region of the UK. Although fluorescence data
contain a substantial amount of information on the organic
matter properties, the high dimensionality of the data gen-
erates difficulties in recognition of meaningful relationships
between sample distribution and spectral properties of or-
ganicmatter. In the paper a novel approach to the analysis and
interpretation of fluorescence data with SOM was presented.
The SOM facilitated pattern recognition of the fluorescence
data and revealed linkages between samples distribution and
the importance of the particular spectral properties. With
reference to the fluorescence differences between raw and
partially treated water, the SOM enabled correlation of the
organic matter removal efficiency with the organic matter

Figure 6. Hit histograms for raw (red) and clarified (green) water. (a) Site 5, (b) site 3, (c) site 8, and
(d) site 1.
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properties derived from the fluorescence excitation-emission
spectra. These results demonstrate that SOM can be a
powerful decomposition tool for fluorescence data analysis
and, with the use of available toolboxes the implementation
and interpretation process can be as straightforward as more
common statistical methods.

[31] Acknowledgments. The authors are grateful for the financial and
logistical support provided by Severn Trent Water Ltd and the University of
Birmingham. The authors also acknowledge the laboratory support provided
by Ian Boomer and Andy Moss.
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