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Abstract. The notion of a rough two-dimensional (convex) body is introduced, and to each
rough body there is assigned a measure on T

3 describing billiard scattering on the body. The main
result is characterization of the set of measures generated by rough bodies. This result can be used
to solve various problems of least aerodynamical resistance.
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1. Definition of a rough set and statement of main theorem.

1.1. Introductory remarks and review of literature. In this paper the
notion of a rough two-dimensional (convex) body is given and some properties of
rough bodies are established.

Let B ⊂ R
2 be a convex bounded set with nonempty interior, that is, a bounded

convex body. Consider the “set” obtained from B by moving off a set of “very small”
area. Such a (heuristically defined) set is called a rough body: from the “macroscopic”
point of view, it almost coincides with B, and, from the “microscopic” point of view,
it contains some “flaws.” (One can imagine a detail of a mechanism that, after a
period of exploitation, has some defects.) If the removed set adjoins the boundary
∂B, then one can expect that a flow of point particles incident on the rough body is
reflected in another way as compared to reflection from B.

The notion of rough body arises naturally when studying Newton-like problems
of the body of least resistance. The first problem of such kind was considered by
Newton himself [1]. Recently there were several works made concerning the problem
of least resistance in various classes of admissible bodies; see, e.g., [2], [3], [4], [5], [6],
[7], [8], [9], [10], [11], [12], [13], [15]. The solution of a minimization problem for the
case of rotating bodies can be naturally identified with a rough body [14]; see also the
concluding remarks to this paper.

There are many papers on particle scattering by rough bodies (see, e.g., [16],
[17], [18]); they describe bodies and flows of particles that occur in nature. On the
contrary, we assume that a rough structure can be “manufactured,” and our aim is
to describe all possible rough structures.

1.2. Definition of a rough body. It is supposed that the “microscopic struc-
ture” of the boundary of a rough body can be detected from observations of particle
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2156 ALEXANDER PLAKHOV

scattering on the body. From this point of view, two rough bodies are considered equal
if they scatter flows of particles in an identical manner. Having these observations in
mind, we give the definition of a rough body.

Let B be a bounded convex body. Denote by n(ξ) the unit outer normal vector
to ∂B at a regular point ξ ∈ ∂B, and denote by (∂B × S1)+ the set of pairs (ξ, v) ∈
∂B × S1 such that 〈n(ξ), v〉 ≥ 0. Here and in what follows, 〈·, ·〉 means the standard
scalar product in R

2. The set (∂B × S1)+ is equipped with the measure μ which
is defined by dμ(ξ, v) = 〈n(ξ), v〉 dξ dv, where dξ and dv are the one-dimensional
Lebesgue measures on ∂B and S1, respectively.

Q B

�

�

v

ξ

v+

ξ+

Fig. 1. A billiard trajectory in R
2 \ Q.

Let Q be a set with piecewise smooth boundary contained in B; consider the
billiard in R

2 \Q. Note that Q is not necessarily connected. For (ξ, v) ∈ (∂B ×S1)+,
consider a billiard particle starting at the point ξ with the velocity −v. After several
(maybe none) reflections from ∂Q \ ∂B, the particle will intersect ∂B again, at a
point ξ+ = ξ+

Q,B(ξ, v) ∈ ∂B; denote by v+ = v+
Q,B(ξ, v) the velocity at this point (see

Figure 1). It may happen that the initial point ξ belongs to ∂Q; in that case we have
ξ+ = ξ and the vector v+ is symmetric to v with respect to n(ξ). It may also happen
that at some moment the particle either gets into a singular point of ∂Q, or touches
∂Q at a regular point, or stays in B \ Q forever and does not intersect ∂B again, or
makes an infinite number of reflections in finite time. The set of corresponding points
(ξ, v) has zero measure, and the corresponding values ξ+

Q,B(ξ, v) and v+
Q,B(ξ, v) are

not defined.
Thus, there is defined the one-to-one mapping TQ,B : (ξ, v) �→ (ξ+

Q,B(ξ, v),
v+

Q,B(ξ, v)) of a full measure subset of (∂B × S1)+ onto itself. It has the following
properties:

T1. TQ,B preserves the measure μ.
T2. T−1

Q,B = TQ,B.
The mapping TQ,B induces the measure νQ,B on T

3 = S1×S1×S1 in the following
way. Let A ⊂ T

3 be a Borel set; by definition,

νQ,B(A) = μ
(
{(ξ, v) ∈ (∂B × S1)+ : (v, v+

Q,B(ξ, v), n(ξ)) ∈ A}
)

.

In fact, the measure νQ,B contains information about particle scattering on Q. Imag-
ine that an observer has no means to track the trajectory of particles inside B. Instead,
for each incident particle there is registered the triple of vectors: the initial and final
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SCATTERING ON ROUGH SETS 2157

velocities (measured at the points of first and second intersection with ∂B), and the
normal vector to ∂B at the point of first intersection with ∂B. The normal vector at
the second point of intersection is not registered; as will be seen later (Lemma 1), if
the area of B \ Q is small, then the difference between the normal vectors at these
two points is also small. The measure νQ,B describes the distribution of triples.

Definition 1. We say that a sequence of sets {Qm, m = 1, 2, . . .} represents a
rough body if it has the following properties:

M1. Qm ⊂ B and Area(B \ Qm) → 0 as m → ∞.
M2. The sequence of measures νQm,B weakly converges.

Two sequences of such sets are called equivalent if the corresponding limiting measures
coincide. An equivalence class is called a body obtained by roughening B, or simply
rough body, and denoted by B, and the corresponding limiting measure is denoted
by νB.

Note that the sets Qm in this definition are not necessarily connected.
Remark. Since T

3 is compact and the full measure of T
3 satisfies νQ,B(T3) ≤

2π |∂B|, one concludes that the set of measures {νQ,B}, with fixed B, is weakly
precompact. That is, any sequence of measures {νQm,B} contains a weakly converging
subsequence. In this sense one can say that a sequence, satisfying only condition M1,
can represent more than one rough body.

We would also like to mention that, first, two rough bodies obtained one from
another by translation are identified, according to our definition. Second, particle
scattering on B in a small neighborhood of ξ ∈ ∂B can be detected if ξ is an extreme
point of B, and cannot otherwise. Indeed, if ξ is an extreme point of B, then the
scattering is described by the restriction of νB on T

2×Nn(ξ), with Nn(ξ) being a small
neighborhood of n(ξ) in S1. If, otherwise, ξ is not an extreme point of B, that is,
belongs to an open linear segment contained in ∂B, the scattering can be determined
only on the whole segment.

Actually, from the viewpoint of applications to the problems of optimal resistance
in homogeneous and rarefied media (see section 4, containing concluding remarks and
applications), these drawbacks are not so serious. Indeed, resistance of a body is
invariant under translations (due to homogeneity). Besides, if the boundary of a
body contains a linear segment, then one does not need to know scattering at each
point of the segment; it suffices to know it on the whole segment (due to homogeneity
and rarefaction).

The definition of a rough body could be made in a slightly different way, basing
it on measures defined on S1 × S1 × ∂B. In that case the triple (v, v+, ξ) should be
registered, with ξ being the point of first intersection with ∂B. That definition would
allow one to register particle scattering at each point of ∂B and to distinguish between
bodies obtained by translation one from another. However, we prefer to adopt the
former definition, since it seems to us mathematically more transparent and makes
the arguments a bit easier.

1.3. Examples. Sometimes it is convenient to use another representation of the
measure νB. Namely, consider the change of coordinates (v, v+, n) �→ (ϕ, ϕ+, n),
where ϕ = Arg v − Arg n, ϕ+ = Arg v+ − Arg n. Here Arg v is the angle between
a fixed vector and v measured, say, clockwise from this vector to v. If (v, v+, n) ∈
spt νB, then ϕ and ϕ+ belong to [−π/2, π/2] modulo 2π. Introduce the shorthand
notation � := [−π/2, π/2] × [−π/2, π/2] and define the mapping � : � × S1 → T

3

by �(ϕ, ϕ+, n) = (v, v+, n). One has spt νB ⊂ �(� × S1). Denote ν̆B := (�−1)#νB.
Sometimes this measure can be factorized: ν̆B = ηB ⊗ τB , where ηB is defined on �
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2158 ALEXANDER PLAKHOV

and τB is the surface measure on B; so to say, the “roughness” is “homogeneous”
along the body’s boundary. Consider several examples.

Example 1 (“smooth body”). The rough body represented by the sequence
Qm = B is identified with B itself. The corresponding measure is ν̆B = η0 ⊗ τB,
where the measure η0 has the density cosϕ · δ(ϕ + ϕ+); the support of η0 is shown in
Figure 2(b). In Figure 2(a), B is taken to be an ellipse.

Fig. 2. A smooth body (a) and the support of the corresponding measure η0 (b).

Example 2 (roughness formed by triangular hollows). Qm is a 2m-polygon; the
270◦ angles alternate with the angles that are slightly smaller than 90◦. All vertices
corresponding to the angles smaller than 90◦ belong to ∂B. Any two sides that form
a 270◦ angle are equal. The largest side length tends to zero as m → ∞. Thus, the set
Qm is obtained by moving off m “hollows” from its convex hull, each of the hollows
being an isosceles right triangle.

Fig. 3. A rough body with hollows being isosceles right triangles (a) and the support of the
corresponding measure η� (b).

The corresponding measure is ν̆B = η�⊗τB, where the measure η� has the density
cosϕ·[χ[−π/2,−π/4](ϕ) δ(ϕ+ϕ++π

2 )+χ[−π/4,π/4](ϕ) δ(ϕ−ϕ+)+χ[π/4,π/2](ϕ) δ(ϕ+ϕ+−
π
2 )]+ |sin ϕ| · [χ[−π/4,0](ϕ) δ(ϕ+ϕ+ + π

2 )−χ[−π/4,π/4](ϕ) δ(ϕ−ϕ+)+χ[0,π/4](ϕ) δ(ϕ+
ϕ+− π

2 )]. Thus, the support of η� is the union of three segments; see Figure 3(b). The
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middle segment ϕ+ = ϕ corresponds to double reflections, and the lateral segments,
ϕ+ = −ϕ − π/2 and ϕ+ = −ϕ + π/2, correspond to single reflections, from the right
or from the left side of a triangular hollow. In Figure 3(a), B is a circle.

Example 3 (roughness formed by rectangular hollows). The sets Qm are ob-
tained by removing a finite number of “rectangular hollows” from B. In other words,
one has Qm = B \ (∪n Ωm,n), where the removed sets Ωm,n do not mutually inter-
sect and each set ∂Ωm,n \ ∂B is the union of three sides of a rectangle. The ratio
(width)/(depth) of a hollow depends only on m and is denoted by hm. Denote by
lm = |∂B \ ∪n(∂Ωm,n)|/|∂B| the relative length of the part of boundary ∂B not cov-
ered by hollows. We assume that limm→∞ hm = 0 = limm→∞ lm. In Figure 4(a), B
is a square.

(a)

ϕ

ϕ+

(b)

Fig. 4. A rough body where hollows are “thin rectangles” (a); the support of the corresponding
measure η� (b).

The measure ν̆B equals ν̆B = η� ⊗ τB. The density of the measure η� equals
1
2 cosϕ · (δ(ϕ + ϕ+) + δ(ϕ − ϕ+)), and the support is the union of two diagonals,
ϕ+ = ϕ and ϕ+ = −ϕ; see Figure 4(b). The particles with an even (odd) number of
reflections contribute to the first (second) diagonal.

1.4. Main theorem. According to Definition 1, each rough body is identified
with a measure on T

3. The question is, What is the set of these measures? The
following definition and theorem give the answer.

Let us first introduce some notation: πv,n : T
3 → T

2, πn : T
3 → S1, etc., are pro-

jections onto the corresponding subspaces: πv,n(v, v+, n) = (v, n), πn(v, v+, n) = n,
etc.; πd : T

3 → T
3 is the symmetry with respect to the plane v = v+, that is,

πd(v, v+, n) = (v+, v, n); z+ = max{0, z} is the positive part of z ∈ R; and u means
Lebesgue measure on S1. Recall that τB is the surface measure on B and is defined
on S1.

Definition 2. We denote by MB the set of measures ν on T
3 such that the

following properties hold:
A1. The marginal measures π#

v,nν and π#
v+,nν are

π#
v,nν = 〈v, n〉+ · u ⊗ τB , π#

v+,nν = 〈v+, n〉+ · u ⊗ τB .

A2. π#
d ν = ν.

Denote also M = ∪B MB, the union being taken over all bounded convex bodies B.
Taking into account the Alexandrov theorem on characterization of surface mea-

sures, one concludes that M is the set of measures ν on T
3 such that
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(1) the marginal measure π#
n ν =: τ satisfies the conditions

1a.
∫

S1 n dτ(n) = 0;
1b. for any v ∈ S1 it holds that

∫
S1 〈n, v〉2 dτ(n) = 0;

(2) the marginal measures π#
v,nν and π#

v+,nν satisfy the conditions
2a. π#

v,nν = 〈v, n〉+ · u ⊗ τ ;
2b. π#

v+,nν = 〈v+, n〉+ · u ⊗ τ .
Thus, these marginal measures coincide; the only difference is in the notation for

the variables: v, n in case 2a and v+, n in case 2b.
Now we can state the main theorem.
Theorem. The set of measures {νB}, with B being all possible bodies obtained

by roughening B, coincides with MB. Therefore, {νB, B is a rough body} = M.
In section 2, we formulate two auxiliary lemmas and using them prove the theo-

rem. In section 3, the lemmas are proved. Section 4 contains concluding remarks and
applications of the theorem to problems of optimal aerodynamic resistance. Appen-
dices A and B contain proofs of some auxiliary technical results.

2. Statement of auxiliary lemmas and proof of theorem.

2.1. Statement of Lemma 1. Fix a bounded convex body B. Two points
ξ1, ξ2 ∈ ∂B, ξ1 = ξ2, divide the curve ∂B into two arcs. Denote by l(ξ1, ξ2) the length
of the smallest arc and denote

c = cB := inf
ξ1,ξ2∈∂B

ξ1 �=ξ2

|ξ1 − ξ2|
l(ξ1, ξ2)

;

one obviously has 0 < c < 1.
Let Q ⊂ B; denote

|ξ − ξ+|Q,B :=
∫∫

(∂B×S1)+

|ξ − ξ+
Q,B(ξ, v)| dμ(ξ, v)

and

|n − n+|Q,B :=
∫∫

(∂B×S1)+

|n(ξ) − n(ξ+
Q,B(ξ, v))| dμ(ξ, v).

Lemma 1. (a) The following holds true:

|ξ − ξ+|Q,B ≤ 2π · Area(B \ Q).

(b) For sufficiently small Area(B \ Q),1 one has

|n − n+|Q,B ≤ 2π
√

8π√
c

√
Area(B \ Q).

2.2. Statement of Lemma 2. Let us first introduce the notion of a hollow.
Definition 3. Let Ω ⊂ R

2 be a closed bounded set with piecewise smooth bound-
ary and I ⊂ ∂Ω, where the following hold:

(i) I is an interval contained in a straight line 〈x, n〉 = a.
(ii) Ω \ I is contained in the open half-plane 〈x, n〉 < a. Here n is a fixed unit

vector.
Then the pair (Ω, I) is called a hollow oriented by n, or just an n-hollow.

1That is, it is smaller than a positive value depending only on B.
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I

Ω

n

〈x, n〉 = a

Fig. 5. A hollow.

In Figure 5 and in what follows, I is shown by a dashed line, and ∂Ω \ I is shown
by a solid line.

Define the measure μ̃I on I ×S1 by dμ̃I(ξ, v) = 〈n,v〉+
|I| dξ dv, where |I| means the

length of I. Obviously, μ̃I is supported on the set (I × S1)+ := {(ξ, v) ∈ I × S1 :
〈n, v〉 ≥ 0}. Define the one-to-one mapping (ξ, v) �→ (Ξ+

Ω,I(ξ, v), V +
Ω,I(ξ, v)) of a full

measure subset of (I × S1)+ onto itself. Namely, consider the billiard in Ω. Let
(ξ, v) ∈ (I × S1)+; consider the billiard particle starting at the point ξ with the
velocity −v. It makes several reflections from ∂Ω \ I and then reflects from I again,
at a point Ξ+ = Ξ+

Ω,I(ξ, v). The velocity immediately before this reflection is denoted
by V + = V +

Ω,I(ξ, v). The mapping so defined preserves the measure μ̃I and is an
involution, that is, coincides with its inverse.

One can give an equivalent definition based on the mapping ξ+
Q,B(ξ, v), v+

Q,B(ξ, v)
just defined in section 1.2. Take a set Q such that Ω is a connected component of
conv Q\Q and I is a connected component of ∂(conv Q)\∂Q. For (ξ, v) ∈ (I×S1)+, let
by definition (Ξ+

Ω,I(ξ, v), V +
Ω,I (ξ, v)) := (ξ+

Q,conv Q(ξ, v), v+
Q,conv Q(ξ, v)). This definition

does not depend on the choice of Q.
Definition 4. Let (Ω, I) be a hollow. The measure ηΩ,I on T

2 = S1 × S1 is
defined as follows. For a Borel set A ⊂ T

2, put

ηΩ,I(A) := μ̃I({(ξ, v) ∈ (I × S1)+ : (v, V +
Ω,I(ξ, v)) ∈ A}).

We shall say that ηΩ,I is the measure generated by the hollow (Ω, I).
Here we use the notation πv, πv+ : T

2 → S1 for the projections onto the subspaces
{v} and {v+}, respectively; πv(v, v+) = v, πv+(v, v+) = v+. We also denote by πd

the symmetry with respect to the diagonal v = v+; πd(v, v+) = (v+, v).
Definition 5. Denote by Λn the set of measures η on T

2 such that
(i) dπ#

v η(v) = 〈v, n〉+ dv, dπ#
v+η(v+) = 〈v+, n〉+ dv+;

(ii) π#
d η = η.

Any measure ηΩ,I generated by an n-hollow belongs to Λn. Indeed, for any
A ⊂ S1 one has π#

v ηΩ,I(A) = ηΩ,I(A × S1) = μ̃I({(ξ, v) ∈ (I × S1)+ : v ∈ A}) =
1
|I|
∫∫

I×A
〈n, v〉+ dξ dv =

∫
A
〈n, v〉+ dv. This proves the first equality in (i).

Similarly, one has π#
v+ηΩ,I(A) = ηΩ,I(S1×A) = μ̃I({(ξ, v) ∈ (I×S1)+ : V +

Ω,I(ξ, v)
∈ A}). Since the mapping (ξ, v) �→ (Ξ+

Ω,I , V
+
Ω,I) preserves the measure, one gets the
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value μ̃I({(ξ, v) ∈ (I×S1)+ : v ∈ A}), which in turns equals
∫

A
〈n, v〉+ dv. This proves

the second equality in (i). Finally, the relation (ii) for ηΩ,I is a simple consequence of
involutive and measure preserving properties of the mapping (ξ, v) �→ (Ξ+

Ω,I , V
+
Ω,I).

Lemma 2. The set of measures generated by n-hollows is weakly dense in Λn.

2.3. Proof of the direct statement of theorem. Here we prove that for any
body B obtained by roughening B it holds that νB ∈ MB.

Let Q ⊂ B; define the measure ν′
Q,B on T

3 by

ν′
Q,B(A) := μ

(
{(ξ, v) ∈ (∂B × S1)+ : (v, v+

Q,B(ξ, v), n(ξ+
Q,B(ξ, v))) ∈ A}

)
,

where A is an arbitrary Borel subset of T
3. Thus, the definition of both νQ,B and

ν′
Q,B is based on observations of vector triples (v, v+, n) and (v, v+, n+), respectively.

Here n and n+ are the outer normals to ∂B at the points where the particle gets in
B and gets out of B. The measures νQ,B and ν′

Q,B have the following properties:

π#
v,nνQ,B = 〈v, n〉+ · u ⊗ τB,(1)

π#
v+,n+ν′

Q,B = 〈v+, n+〉+ · u ⊗ τB,(2)

π#
d νQ,B = ν′

Q,B.(3)

Consider a sequence {Qm} representing B; let us show that νQm,B−ν′
Qm,B weakly

converges to zero as m → ∞. It is enough to prove that for any continuous function
f on T

3 it holds that

(4)
∫

T3
f(v, v+, n) dνQm,B(v, v+, n) −

∫
T3

f(v, v+, n+) dν′
Qm,B(v, v+, n+) →m→∞ 0.

Taking into account the formulas for a change of variables∫
T3

f(v, v+, n) dνQ,B(v, v+, n) =
∫

(∂B×S1)+

f(v, v+
Q,B(ξ, v), n(ξ)) dμ(ξ, v)

and∫
T3

f(v, v+, n+) dν′
Q,B(v, v+, n+) =

∫
(∂B×S1)+

f(v, v+
Q,B(ξ, v), n(ξ+

Q,B(ξ, v))) dμ(ξ, v),

formula (4) takes the form

lim
m→∞

∫
(∂B×S1)+

(5) [
f(v, v+

Qm,B(ξ, v), n(ξ+
Qm ,B(ξ, v))) − f(v, v+

Qm,B(ξ, v), n(ξ))
]
dμ(ξ, v) = 0.

According to Lemma 1, the difference n(ξ+
Qm,B(ξ, v)) − n(ξ) converges to zero in

mean, and hence it converges to zero in measure; therefore the difference

f(v, v+
Qm,B(ξ, v), n(ξ+

Qm,B(ξ, v))) − f(v, v+
Qm,B(ξ, v), n(ξ))

also converges to zero in measure. It follows that formula (5) is true.
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Thus, both νQm,B and ν′
Qm,B weakly converge to νB. Substituting Q = Qm into

formulas (1)–(3) and passing to limit as m → ∞, one gets

π#
v,nνB = 〈v, n〉+ · u ⊗ τB,

π#
v+,nνB = 〈v+, n〉+ · u ⊗ τB,

π#
d νB = νB,

that is, νB ∈ MB.

2.4. Proof of the inverse statement of theorem. Here it is proved that for
any ν ∈ MB there exists a body B obtained by roughening B such that νB = ν. The
proof is based on two statements.

Statement 1. Let B be a convex polygon. Then for any measure ν ∈ MB there
exists a body B obtained by roughening B such that νB = ν.

Proof. Let us enumerate the sides of the polygon B and denote by ci the length
of the ith side and by ni the outer unit normal to this side. By δn, denote the
probabilistic atomic measure on S1 concentrated at n ∈ S1, that is, δn(n) = 1. The
surface measure of B is τB =

∑
ciδni ; this implies that any measure ν ∈ MB has the

form ν =
∑

ciηi ⊗ δni , where ηi ∈ Λni .
According to Lemma 2, any measure ηi is the weak limit as m → ∞ of measures

ηΩm
i ,Im

i
generated by a sequence of ni-hollows (Ωm

i , Im
i ). Now take a sequence of sets

Qm such that conv Qm = B and each connected component of B\Qm is the image of a
set Ωm

i under the composition of a homothety with positive ratio and a translation; ad-
ditionally, the image of Im

i under this transformation belongs to (ith side of B)\∂Qm.
We also require that Area(B \ Qm) → 0 and |(ith side of B) \ ∂Qm| =: cm

i → ci as
m → ∞. In Appendix A it is shown how to construct such a sequence Qm. The mea-
sure νQm,B = ν̃m +

∑
i νm

i is the sum of the measure ν̃m corresponding to reflections
from ∂B∩∂Qm and the measures νm

i corresponding to particles getting into the “hol-
lows on the ith side.” One has ν̃m =

∑
i (ci−cm

i ) ·η0⊗δni and νm
i = cm

i ·ηΩm
i ,Im

i
⊗δni .

The norm of ν̃m goes to zero and νm
i weakly converges to ci ηi⊗δni for any i; it follows

that νQm,B weakly converges to ν as m → ∞. Therefore, the sequence Qm represents
a body B obtained by roughening B, and νB = ν.

Statement 2. For any measure ν ∈ MB there exist a sequence of convex poly-
gons Bk ⊂ B with Area(B \ Bk) → 0 and a sequence of measures νk ∈ MBk

weakly
converging to ν as k → ∞.

Proof. Consider a partition of the circumference S1 into a finite number of arcs,
S1 = ∪i Si. It induces the partition of ∂B into arcs ∂Bi = {ξ ∈ ∂B : n(ξ) ∈ Si}.
Consider the polygon B̌ inscribed into ∂B whose vertices are separation points of this
partition. Denote by ni the outer normal to the ith side of this polygon. Denote
by sv1,v2 the operator of rotation on S1 that takes v1 to v2, and define the mapping
Υi : T

2 × Si → T
2 by Υi(v, v+, n) = (sn,niv, sn,niv

+). Finally, consider the measure
ν̌ =

∑
i |bi| ηi ⊗ δni , where |bi| is the length of the ith side of the polygon, and the

measure ηi on T
2 is defined by ηi(A) = 1

|∂Bi| ν(Υ−1
i (A)) for arbitrary Borel set A ⊂ T

2.
Here |∂Bi| is the length of the arc ∂Bi. One easily verifies that ν̌ belongs to MB̌.

Now take a sequence of partitions of S1, {Si
k}i, k = 1, 2, . . . , where the maximum

arc length of a partition goes to zero as k → ∞. Denote by {∂Bi
k}i, k = 1, 2, . . . , the

sequence of induced partitions of ∂B, and take the sequence of polygons Bk generated
by these partitions. One clearly has Area(B \ Bk) → 0 and

(6) max
i

|bi
k|

|∂Bi
k|

→ 1 as k → ∞,
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where |bi
k| is the length of the ith side of Bk. In the same way as above, one defines

the mappings Υik : T
2 × Si

k → T
2 and the measures νk =

∑
i |bi

k| ηik ⊗ δnik
∈ MBk

,
where ηik is given by ηik(A) := 1

|∂Bi
k|

ν(Υ−1
ik (A)) and nik is the outer unit normal to

the ith side of Bk.
It remains to show that νk weakly converges to ν. For any continuous function f

on T
3 one has∫∫∫

T3
f(v, v+, n) dνk(v, v+, n) =

∑
i

|bi
k|
∫∫

T2
f(v, v+, nik) dηik(v, v+)

=
∑

i

|bi
k|

|∂Bi
k|

∫∫∫
T2×Si

k

f(Υik(v, v+, n), nik) dν(v, v+, n).(7)

For each k define the mapping from T
3 to T

3 by the relations (v, v+, n) �→ (Υik(v,
v+, n), nik) if n ∈ Si

k. It uniformly converges to the identity mapping as k → ∞;
hence the function f̃k, defined by the relations f̃k(v, v+, n) := f(Υik(v, v+, n), nik) if
n ∈ Si

k, uniformly converges to f as k → ∞. From here and from (6) it follows that
the right-hand side in (7) converges to

∫∫∫
T3 f(v, v+, n) dν(v, v+, n) as k → ∞. Thus,

the convergence
∫

f dνk →
∫

f dν is proved.
The inverse statement of the theorem follows from Statements 1 and 2. Indeed,

let ν ∈ MB. Using Statement 2, find a sequence of convex polygons Bk ⊂ B and a
sequence νk ∈ MBk

weakly converging to ν. According to Statement 1, each measure
νk is generated by a rough body. Consider the sequence of sets Qkl ⊂ Bk, l = 1, 2, . . . ,
representing this body, and then from all of these sequences choose a diagonal sequence
Q̃k = Qklk such that the corresponding sequence of measures νQ̃k,B weakly converges
to ν and Area(B \ Q̃k) goes to zero as k → ∞. The sequence Q̃k represents a body B
obtained by roughening B and νB = ν.

3. Proof of the lemmas.

3.1. Proof of Lemma 1. Consider the billiard in R
2 \ Q. For (ξ, v) ∈ (∂B ×

S1)+, denote by τ(ξ, v) the time the billiard trajectory with the initial data ξ,−v
spends in B \ Q. In particular, if ξ ∈ ∂B ∩ ∂Q, then one has τ(ξ, v) = 0.

Denote by D the set of points (x, w) ∈ (B \ Q) × S1 that are accessible from
(∂B × S1)+; that is, there exists (ξ, v) ∈ (∂B × S1)+ such that the billiard particle
with the data ξ,−v at the zero moment of time at some moment 0 ≤ t ≤ τ(ξ, v) will
pass through x with the velocity w. This description defines the change of coordinates
in D : (ξ, v, t) �→ (x, w); (ξ, v) ∈ (∂B × S1)+, t ∈ [0, τ(ξ, v)], and the element of phase
volume d2xdw in the new coordinates takes the form dμ(ξ, v) dt. Hence, the phase
volume of D equals

∫∫∫
D

d2xdw =
∫∫

(∂B×S1)+
τ(ξ, v) dμ(ξ, v). Taking into account

that D ⊂ (B \Q)×S1 and the phase volume of (B \Q)×S1 equals 2π ·Area(B \Q),
one gets

(8)
∫∫

(∂B×S1)+

τ(ξ, v) dμ(ξ, v) ≤ 2π · Area(B \ Q).

This is in fact a simple modification of the well-known mean free path formula (see,
e.g., [19]).

One has τ(ξ, v) ≥ |ξ − ξ+
Q,B(ξ, v)|: the time the particle spends in B \ Q exceeds

the distance between the initial and final points of the trajectory. This inequality
and (8) imply (a).
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The points ξ and ξ+
Q,B(ξ, v) divide the curve ∂B into two arcs; denote by γ(ξ, v)

the shortest one. One has |γ(ξ, v)| = l(ξ, ξ+
Q,B(ξ, v)), and therefore |ξ − ξ+

Q,B(ξ, v)| ≥
c |γ(ξ, v)|. It follows that
(9)

c

∫∫
(∂B×S1)+

|γ(ξ, v)| dμ(ξ, v) ≤
∫∫

(∂B×S1)+

|ξ−ξ+
Q,B(ξ, v)| dμ(ξ, v) ≤ 2π·Area(B\Q).

Let (y) be a natural parametrization of the curve ∂B,  : [0, |∂B|] → ∂B. By
f(y) denote the measure of the values (ξ, v) such that the interval γ(ξ, v) contains the
point (y); that is, f(y) :=

∫∫
(∂B×S1)+

I((y) ∈ γ(ξ, v)) dμ(ξ, v). Making a change of
variables in the integral in the left-hand side of (9), one gets

∫∫
(∂B×S1)+

|γ(ξ, v)| dμ(ξ, v) =
∫ |∂B|

0

f(y) dy,

and therefore

(10)
∫ |∂B|

0

f(y) dy ≤ 2π

c
Area(B \ Q).

One easily sees that |f(y1) − f(y2)| ≤ 4 |y1 − y2| for any y1 and y2 and f(y) ≥ 0.
From here and from (10) it follows that for sufficiently small Area(B \ Q) (namely,
for Area(B \ Q) ≤ c|∂B|2/(2π)) it holds that f(y) ≤

√
8π/c

√
Area(B \ Q).

Recall that Arg(v) is the angle the vector v = 0 forms with a fixed vector v0;
the angle is measured clockwise from v0 to v and is defined modulo 2π. Introduce
the shorthand notation ξ+ := ξ+

Q,B(ξ, v), and denote by Δ Arg(ξ, v) the smallest in
modulus of the values Arg(n(ξ+))−Arg(n(ξ)). In other words, Δ Arg(ξ, v) equals the
smallest of the values∫

γ(ξ,v)

|d Arg(nξ′)|,
∫

∂B\γ(ξ,v)

|d Arg(nξ′)|.

Taking into account that |n(ξ+) − n(ξ)| ≤ |Δ Arg(ξ, v)|, one gets that

|n(ξ+) − n(ξ)| ≤
∫

γ(ξ,v)

|d Arg(nξ′)|,

and therefore

|n − n+|Q,B ≤
∫∫

(∂B×S1)+

(∫
γ(ξ,v)

|d Arg(nξ′)|
)

dμ(ξ, v).

Making a change of variables in this integral, one obtains

|n − n+|Q,B ≤
∫ |∂B|

0

f(y) |d Arg(n�(y))| ≤ 2π
√

8π/c
√

Area(B \ Q).

Thus, (b) is also proved.
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3.2. Proof of Lemma 2. Fix n ∈ S1 and m ∈ N. Let σ be an involutive
permutation of {1, . . . , m}, that is, σ2 = id. Divide the half-circumference S1

n :=
{v ∈ S1 : 〈v, n〉 ≥ 0} into m arcs S1

n,m = S1
n, . . . , Sm

n,m = Sm
n numbered clockwise

such that, for any i,
∫
Si

n
〈v, n〉 dv = 2/m. For the sake of brevity we omit the subscript

m when no confusion can arise.
Definition 6. A measure η is called a (σ, n)-measure if η ∈ Λn and spt η ⊂

∪m
i=1

(
Si

n × Sσ(i)
n

)
, and therefore, for any i it holds that η

(
Si

n × Sσ(i)
n

)
= 2/m.

Proposition 1. For any measure η ∈ Λn there exists a sequence of involutive
permutations σk on {1, . . . , mk}, k = 1, 2, . . . , such that mk tends to infinity and any
sequence of (σk, n)-measures weakly converges to η as k → ∞.

Proposition 2. Let σ be an involutive permutation on {1, . . . , m}. Then the
distance (in variation) between the set of measures generated by n-hollows and the set
of (σ, n)-measures does not exceed 16/m. In other words, whatever ε > 0, there exist
a (σ, n)-measure η and an n-hollow (Ω, I) such that ‖ηΩ,I − η‖ < 16/m + ε; here the
norm means variation of measure.

This distance actually equals zero, but we need only the (weaker) claim of Propo-
sition 2.

Lemma 2 follows from Propositions 1 and 2. Indeed, let η ∈ Λn. First, choose the
sequence of permutations σk, according to Proposition 1, and then, using Proposi-
tion 2, for every k choose an an n-hollow (Ωk, Ik) such that the distance from ηΩk,Ik

to
the set of (σk, n)-measures does not exceed 17/mk. The sequence of chosen measures
ηΩk,Ik

weakly converges to η.

3.3. Proof of Proposition 1. Introduce on S1
n the angular coordinate ϕ =

Arg v−Arg n; that is, ϕ changes between −π/2 and π/2 and increases clockwise. With
this notation, to the arcs Si

n,m correspond the segments J i
m = [arcsin(−1+2(i−1)/m),

arcsin(−1 + 2i/m)]. Define the measure λ on [−π/2, π/2] by dλ(ϕ) = cosϕdϕ, and
denote by Λ the set of measures η on � := [−π/2, π/2] × [−π/2, π/2] such that
(a) π#

ϕ η = λ = π#
ϕ+η and (b) π#

d η = η. Here πϕ, πϕ+ , and πd are defined by
πϕ(ϕ, ϕ+) = ϕ, πϕ+(ϕ, ϕ+) = ϕ+, and πd(ϕ, ϕ+) = (ϕ+, ϕ). Reformulating Defini-
tion 6, we shall say that η is a σ-measure if η ∈ Λ and spt η ⊂ ∪m

i=1

(
J i

m × J
σ(i)
m

)
.

Notice that in the new notation the objects no longer depend on n: we write Λ instead
of Λn, σ-measure instead of (σ, n)-measure, and hollow instead of n-hollow.

In this notation, Proposition 1 can be reformulated as follows: for any measure
η ∈ Λ there exists a sequence of involutive permutations σk on {1, . . . , mk}, k =
1, 2, . . . , such that mk tends to infinity and any sequence of σk-measures weakly
converges to η as k → ∞.

The idea of the proof is as follows. First, η is approximated by means of a rational
matrix, and then this matrix is approximated by means of a larger matrix generated
by a permutation.

Consider the partition of � into smaller rectangles �
ij
k = J i

k × Jj
k , i, j = 1, . . . , k.

Choose rational nonnegative numbers cij
k such that cij

k = cji
k ,
∑

j cij
k = 2/k for any i,

and
∣∣η(�ij

k )− cij
k

∣∣ ≤ k−3 for any i and j. To do so, it suffices to take positive rational
values cij

k such that η(�ij
k ) − k−4 ≤ cij

k ≤ η(�ij
k ) for i > j and put cij

k = cji
k for i < j

and cii
k = 2/k−

∑
j �=i cij

k for i = j. One has η
(
J i

k×[−π/2, π/2]
)

=
∑k

j=1 η(�ij
k ) = 2/k;

hence cii
k − η(�ii

k ) =
∑

j �=i

(
η(�ij

k ) − cij
k

)
∈ [0, (k − 1) · k−4] ⊂ [0, k−3].

Any sequence of measures ηk satisfying the conditions ηk(�ij
k ) = cij

k , 1 ≤ i, j ≤ k,
weakly converges to η. Indeed, for any continuous function f on � it holds that
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∫
�

f dηk −
∫

�

f dη =
k∑

i,j=1

∫
�

ij
k

f (dηk − dη) ≤ k−1 max f → 0

as k → ∞.
To complete the proof, it suffices to find an integer mk > k and an involutive

permutation σk of {1, . . . , mk} such that any σk-measure, ηk, satisfies the equalities
ηk(�ij

k ) = cij
k , i, j = 1, . . . , k. Choose a positive integer N such that all of the values

aij := N ·cij
k are integer. The obtained matrix A = (aij)k

i,j=1 is symmetric, and for any
i the value

∑k
j=1 aij = 2N/k is a fixed positive integer. In Appendix B it is shown

that there exist square matrices Bij = (bμν
ij )μ,ν of size 2N/k such that BT

ij = Bji,
the sum of elements in any matrix Bij equals aij , and the block matrix D = (Bij)
composed of these matrices has exactly one unit in each row and each column, and
other elements are zeros.

D is a symmetric square matrix of size 2N ; denote its elements by dij . Put
mk = 2N , and define the mapping σk on {1, . . . , 2N} in such a way that diσk(i) = 1
for any i. The so defined mapping σk is a permutation; it is involutive since the
matrix D is symmetric. Moreover, if ηk is a σk-measure, then for any i and j it holds
that ηk(�ij

k ) = N−1
∑

μ,ν bμν
ij = cij

k . The proposition is proved.

3.4. Proof of Proposition 2.
1. Whatever the n-hollow (Ω, I), one introduces the reference system (x1, x2) in

such a way that n coincides with (0,−1), and the interval I belongs to the straight line
x2 = 0 and contains the origin O = (0, 0). Like in the proof of Proposition 1, introduce
the coordinate ϕ = Arg v−Arg n on S1

n. One has v = −(sin ϕ, cosϕ), ϕ ∈ [−π/2, π/2].
The definitions of the segments J i

m = J i, the measure λ, the set of measures Λ, and
the σ-measure are seen in the beginning of the previous subsection. The mapping
(ξ, v) �→ V +

Ω,I(ξ, v) in the new coordinates ξ, ϕ is written as (ξ, ϕ) �→ ϕ+
Ω,I(ξ, ϕ).

Finally, define the measure μI on I × [−π/2, π/2] by dμI(ξ, ϕ) = cos ϕ
|I| dξ dϕ.

Denote �′ =
(
∪m−1

i=2 J i
)
×
(
∪m−1

i=2 J i
)
, �1 = J1 × [−π/2, π/2], �2 = Jm ×

[−π/2, π/2], �3 =
(
∪m−1

i=2 J i
)
× J1, and �4 =

(
∪m−1

i=2 J i
)
× Jm. Thus, one has

� \ �′ = �1 ∪ �2 ∪ �3 ∪ �4; see Figure 6.

�1 �2

�3

�4

�
′

Fig. 6. Partition of the square into rectangles.

It suffices to construct a sequence of hollows (Ωε, Iε), ε > 0, such that
(P) for any i = 1, m, σ(1), σ(m) the measure of the set of values
(ξ, ϕ) ∈ Iε × J i such that ϕ+

Ωε,Iε
(ξ, ϕ) /∈ Jσ(i) goes to zero as ε → 0.

Then, speaking of restrictions of measures on the subset �′, one gets that the distance
from the restrictions of measures ηΩε,Iε to the set of restrictions of σ-measures goes
to zero as ε → 0. On the other hand, for any measure η ∈ Λ one has η(�1) =
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η(�2) = 2/m, η(�3) ≤ 2/m, η(�4) ≤ 2/m, and hence η(� \ �′) ≤ 8/m; therefore
the distance between the restrictions on � \ �′ of any two measures η1 and η2 from
Λ does not exceed 16/m: ‖ η1��\�′ − η2��\�′ ‖ ≤ 16/m. It follows that the upper
limit of distances from ηΩε,Iε to the set of σ-measures does not exceed 16/m, and so
Proposition 2 is proved.

2. The rest of this subsection is dedicated to the detailed description of the
sequence of hollows (Ωε, Iε) and to the proof of property (P) for them.

First, consider an auxiliary construction (see Figure 7). Take two different points
F and F ’ above the line l = {x2 = 0}, with |OF | = 2 = |OF ’|. Denote by Φ and Φ’ the
angles the rays OF and OF ’, respectively, formed with the vector (0, 1). The angles
are counted clockwise from (0, 1). Thus, F = 2(sin Φ, cosΦ) and F ’ = 2(sin Φ’, cosΦ’).
Assume, for further convenience, that F is situated on the left of F ’; thus, one has
−π/2 < Φ < Φ’ < π/2. (The case where F is situated on the right of F ’ is completely
similar.) Select three positive numbers λ, λ’, and δ, and define two ellipses E and E ’
and two parabolas P and P ’. The first ellipse has the foci O and F , the length of its
large semiaxis is

√
1 + λ, of the small semiaxis,

√
λ, and the focal distance equals 2.

The second ellipse has the foci O and F ’, the lengths of its large and small semiaxes
are

√
1 + λ’ and

√
λ’, respectively, and the focal distance is also 2. The parabolas

P and P ’ have the foci F and F ’, respectively, the common axis FF ’, and the same
focal distance δ. Thus, the parabolas are symmetric to each other with respect to the
bisectrix of the triangle OFF ’. The parameter δ is chosen sufficiently small, so that
the point O lies in the exterior of both parabolas.

l

E E

P P

F
F

O

Φ Φ

Fig. 7. Auxiliary construction.

In what follows, we shall distinguish between the billiard and pseudobilliard dy-
namics. The pseudobilliard dynamics is defined as follows. A particle starts at a point
(ξ, 0) ∈ l and moves with a velocity (sin ϕ, cosϕ) until it reflects from the interior side
of E . (Before the reflection it can intersect other curves E ’,P ,P ’, or even intersect E
from the outer side, without changing the velocity.) Then it moves again with con-
stant velocity until it reflects from the interior side of P . Then, in the same way, it
reflects from the interior side of P ’, and then from the interior side of E ’, and, finally,
it intersects l from above to below. Denote by (ξ’, 0) the point of intersection and by
−(sin ϕ’, cosϕ’) the velocity at this point.

Consider the admissible set: the set of 7-tuples (ϕ, ξ, Φ, Φ’, λ, λ’, δ) such that all of
the indicated reflections occur in the prescribed order. This set is open and nonempty.
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Indeed, let δ(Φ, Φ’) be the least of the values δ such that one of the parabolas (in
fact, both of them simultaneously) passes through O. Put ϕ = Φ, ξ = 0, and take
arbitrary values λ > 0, λ’ > 0, −π/2 < Φ < Φ’ < π/2, 0 < δ < δ(Φ, Φ’). The particle
with initial data ϕ = Φ, ξ = 0 first passes along the large semiaxis of E , reflects from
E , returns along the same semiaxis, and reflects from P . Then it moves with the
velocity parallel to FF ’, reflects from P ’, moves the large semiaxis of the ellipse E ’,
reflects from it, and returns to O along the same semiaxis. Thus, the admissible set is
nonempty. Under a small perturbation of the parameters ϕ, ξ, Φ, Φ’, λ, λ’, δ, all of the
reflections are maintained and the order of reflections remains the same. This implies
that the admissible set is open.

This description determines the mapping ϕ’ = ϕ’(ϕ, ξ, Φ, Φ’, λ, λ’, δ), ξ’ = ξ’(ϕ, ξ,
Φ, Φ’, λ, λ’, δ)2 from the admissible set to R

2. This mapping is infinitely differentiable.
For ϕ = Φ and ξ = 0 one has

(11) ϕ’(Φ, 0, Φ, Φ’, λ, λ’, δ) = Φ’.

For ξ = 0 with arbitrary ϕ one has

(12) ξ’(ϕ, 0, Φ, Φ’, λ, λ’, δ) = 0,

and

ϕ’(ϕ, 0, Φ, Φ’, λ, λ’, δ) does not depend on δ.

Indeed, a particle starting at O, after the reflection from E passes through F , after
reflecting from P moves in parallel to FF ’, after the reflection from P ’ passes through
F ’, and, finally, after the reflection from E ’ returns to O (see Figure 8). The initial
and final velocities of the particle are, respectively, (sinϕ, cosϕ) and −(sin ϕ’, cosϕ’).
Denoting by α and α’ the angles the second and fourth segments of the (5-segment)
trajectory form, respectively, with OF and OF ’, one has α = α’. The angle α
is a function of ϕ, and ϕ’ is a function of α’; these functions depend only on the
parameters of the ellipses E and E ’, respectively, and do not depend on the parameter
δ determining the shape of parabolas.

Using properties of ellipses, one derives the formulas connecting ϕ, α, and ϕ’ =
ϕ’(ϕ, 0, Φ, Φ’, λ, λ’, δ):
(13)

sin(ϕ − Φ) =
λ sin α

2 + λ − 2 cosα
√

1 + λ
, sin(ϕ’ − Φ’) = − λ’ sin α

2 + λ’ − 2 cosα
√

1 + λ’
.

It follows that

(14)
∂ϕ’
∂ϕ

⌋
ϕ=Φ
ξ=0

= −
( √

λ’
1 +

√
λ’

1 +
√

λ√
λ

)2

.

With fixed Φ, Φ’, λ, λ’, and δ the mapping ϕ’(ϕ, ξ), ξ’(ϕ, ξ) preserves the measure,
cosϕdϕdξ = cosϕ’ dϕ’ dξ’, and hence

cosϕ = ± cosϕ’

∣∣∣∣∣
∂ϕ’
∂ϕ

∂ϕ’
∂ξ

∂ξ’
∂ϕ

∂ξ’
∂ξ

∣∣∣∣∣ .
2Note that throughout this paper the sign ’ (prime) never means derivation.
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l O

ϕ ϕ’

α
α

Fig. 8. Pseudobilliard dynamics.

Using (12), one gets that ∂ξ’
∂ϕ

⌋
ξ=0

= 0, and hence∣∣∣∣∣
∂ϕ’
∂ϕ

∂ϕ’
∂ξ

∂ξ’
∂ϕ

∂ξ’
∂ξ

∣∣∣∣∣
ξ=0

=
∂ϕ’
∂ϕ

∂ξ’
∂ξ

⌋
ξ=0

;

therefore

(15) cosϕ = ± cosϕ’
∂ϕ’
∂ϕ

∂ξ’
∂ξ

⌋
ξ=0

.

Putting ϕ = Φ and ξ = 0, and taking into account (11), (14), and (15), one gets

(16) cosΦ = ± cosΦ’

( √
λ’

1 +
√

λ’
1 +

√
λ√

λ

)2
∂ξ’
∂ξ

⌋
ϕ=Φ
ξ=0

.

Define the positive continuous functions λ(Φ’) and λ’(Φ) by the relations

(17)

( √
λ

1 +
√

λ

)2

=
1
2

cosΦ’,

( √
λ’

1 +
√

λ’

)2

=
1
2

cosΦ;

then one has

(18)

∣∣∣∣∣ ∂ξ’
∂ξ

⌋
ϕ=Φ; λ=λ(Φ’)
ξ=0; λ’=λ’(Φ)

∣∣∣∣∣ = 1.

Additionally, taking into account (14) and (17), one gets

(19)
cosΦ’
cosΦ

∂ϕ’
∂ϕ

⌋
ϕ=Φ; λ=λ(Φ’)
ξ=0; λ’=λ’(Φ)

= −1.

Recall that ϕ’ = ϕ’(ϕ, 0, Φ, Φ’, λ, λ’); that is, the restriction of the function ϕ’ to
the subspace ξ = 0 does not depend on δ. Hence the function ∂ϕ’

∂ϕ

⌋
ξ=0

and, by for-

mula (15), the function ∂ξ’
∂ξ

⌋
ξ=0

also do not depend on δ. Put Φ0 = arcsin(1 − 2/m),
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so that J1 = [−π/2,−Φ0] and Jm = [Φ0, π/2], and put ΔΦ = 2/m. The set
{(Φ, 0, Φ, Φ’, λ(Φ’), λ’(Φ)) : −Φ0 ≤ Φ, Φ’ ≤ Φ0, Φ’−Φ ≥ ΔΦ} is compact and belongs
to the (open) domain of the function ϕ’. Choose a sufficiently large integer value
k = k(ε), so that for

(20)
|sin ϕ − sin Φ| < 2/(km), ξ = 0, −Φ0 ≤ Φ, Φ’ ≤ Φ0,

Φ’ − Φ ≥ ΔΦ, λ = λ(Φ’), λ’ = λ’(Φ)

it holds true that

(21) −cosΦ’
cosΦ

∂ϕ’
∂ϕ

∈ [(1 + ε)−1, 1 + ε].

Formulas (21) and (11) mean that, under conditions (20), ϕ’ is also close to Φ’.
Increasing k if necessary, ensure (under the same conditions) that

(22)
cosΦ’
cosΦ

cosϕ

cosϕ’
∈ [(1 + ε)−1, 1 + ε].

Taking into account (15), (21), and (22), one obtains that under conditions (20) it
holds true that

(23)
∣∣∣∣∂ξ’
∂ξ

∣∣∣∣ ∈ [(1 + ε)−2, (1 + ε)2].

3. Now we proceed to the description of the hollow (Ωε, Iε).
(a) If 2 ≤ i = σ(i) ≤ m− 1, then divide the interval J i into k subintervals J i,j of

equal measure λ, going in increasing order: J i = ∪k
j=1 J i,j , λ(J i,j) = 2/(km) for any

j = 1, . . . , k. Recall that dλ(ϕ) = cosϕdϕ and the value k = k(ε) is defined above.
Without loss of generality assume that k(ε) → ∞ as ε → 0.

To each pair of intervals, J i,j and Jσ(i),j , we apply the construction described

above; see Figure 9. Namely, draw arcs of ellipses Ei,j =
�

AB, E ’i,j =
�

A’B’ and arcs
of parabolas Pi,j , P ’i,j . Without loss of generality suppose that i < σ(i). The angles
AOB and A’OB’ correspond to the angular intervals J i,j and Jσ(i),j , respectively.
The foci F̄ = Fi,j and F̄ ’ = F ’i,j belong to the intervals OA and OA’, respectively.
The endpoints of the arcs Pi,j and P ’i,j also belong to the intervals OA and OA’,
respectively. The angle corresponding to the ray OA (and therefore to the left end-
point of the interval J i,j) will be denoted by Φ̄ = Φi,j , and the angle corresponding
to the ray OA’ (and therefore to the right endpoint of the interval Jσ(i),j) will be
denoted by Φ̄’ = Φ’i,j . Denote λ̄ = λi,j := λ(Φ̄’) and λ̄’ = λ’i,j := λ’(Φ̄), according
to formula (17). Next, select a value δ̄ = δi,j and draw two curves (lateral reflectors)
in such a way that (i) each of the curves contains an arc of parabola (the first curve
contains Pi,j and the second one P ’i,j), an arc of circumference centered at O, and
three radial segments; (ii) these curves do not intersect the intervals whose endpoints
belong to the set {Fα,β, F ’γ,δ : (α, β) = (i, j), (γ, δ) = (σ(i), j)}: this will guarantee
free passage of particles from one parabola to another; and (iii) the λ-measure of
the angular interval occupied by each lateral reflector does not exceed ε/(km). In
Figure 9, the angular reflectors are the curves joining the points A and C, and the
points A’ and C’.

Notice that −Φ0 ≤ Φ̄, Φ̄’ ≤ Φ0, and Φ̄’ − Φ̄ ≥ ΔΦ. Indeed, Φ̄ and Φ̄’ do not
belong to the intervals J1 = [−π/2,−Φ0] and Jm = [Φ0, π/2]. On the other hand,
one has Φ̄’ − Φ̄ ≥ sin Φ̄’ − sin Φ̄ = λ([Φ̄, Φ̄’]) ≥ 2/m = ΔΦ.
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�

��

O

A’

C’

B’

F̄ ’

A

C

B

F̄

Φ̄ Φ̄’

Fig. 9. Part of the hollow corresponding to the angular intervals Ji,j and Jσ(i),j.

Introduce the shorthand notation ϕ’(ϕ, ξ) = ϕ’(ϕ, ξ, Φi,j , Φ’i,j , λi,j , λ’i,j , δi,j). Ac-
cording to (21) and (23), for ϕ ∈ J i,j it holds true that

(24) −cos Φ̄’
cos Φ̄

∂ϕ’
∂ϕ

(ϕ, 0) ∈ [(1 + ε)−1, 1 + ε]

and

(25)
∣∣∣∣∂ξ’
∂ξ

(ϕ, 0)
∣∣∣∣ ∈ [(1 + ε)−2, (1 + ε)2].

According to (11), one has ϕ’(Φ̄, 0) = Φ̄’; this equality and formula (24) imply that
for ϕ ∈ J i,j and ϕ’ = ϕ’(ϕ, 0) one has

(26) −cos Φ̄’
cos Φ̄

ϕ’ − Φ̄’
ϕ − Φ̄

∈ [(1 + ε)−1, 1 + ε].

On the other hand, one has

cos Φ̄ |J i,j | =
2

km
(1 + o(1)),(27)

cos Φ̄’ |Jσ(i),j | =
2

km
(1 + o(1)),(28)

with o(1) being uniformly small over all i, j as ε → 0, and |J | being the Lebesgue
measure of J . (Recall that the parameters Φ̄, Φ̄’, k and the intervals J i,j implicitly
depend on ε.)

Choose closed intervals J̃ i,j ⊂ J i,j and J̃σ(i),j ⊂ Jσ(i),j satisfying the following
conditions: (i) ϕ’(J̃ i,j × {0}) = J̃σ(i),j ; (ii) some neighborhoods of J̃ i,j and J̃σ(i),j

belong to J i,j and Jσ(i),j , respectively; and (iii) the pseudobilliard trajectory with
the initial data (ϕ, 0), ϕ ∈ J̃ i,j does not intersect the neighbor lateral reflectors (that
is, the lateral reflectors corresponding to the intervals J̃ i,j+1 and J̃σ(i),j−1 if j = 1, k;
if j = 1, then J̃σ(i),j−1 should be replaced with J̃σ(i)−1,k, and if j = k, then J̃ i,j+1

should be replaced with J̃ i+1,1). Note in this regard that the neighbor lateral reflectors
occupy a small part of the angular intervals J i,j and Jσ(i),j (represented in the figure
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by the arcs AB and B’A’). Other lateral reflectors will not be intersected by the
choice of lateral reflectors.

By virtue of (26), (27), (28) and because of smallness of the angular intervals
occupied by the lateral reflectors, J̃ i,j and J̃σ(i),j may be chosen in such a way that
the ratios λ(J̃ i,j)/λ(J i,j) and λ(J̃σ(i),j)/λ(Jσ(i),j) uniformly (with respect to i, j) tend
to 1 as ε → 0. Thus, a billiard particle going from O in a direction ϕ ∈ J̃ i,j makes the
same reflections and in the same order as under the pseudobilliard dynamics: first,
reflection from Ei,j , from Pi,j , from P ’i,j , and from E ’i,j ; finally, the particle goes back
to O in the direction ϕ’(ϕ, 0) ∈ J̃σ(i),j .

Choose ai,j in such a way that the following conditions are fulfilled: if (ξ, ϕ) ∈
[−ai,j , ai,j ]× J̃ i,j , then (i) the corresponding billiard trajectory does not intersect the
lateral reflectors and the indicated order of reflections is preserved; (ii) ϕ’(ϕ, ξ) ∈
Jσ(i),j ; (iii)

∣∣∂ξ’
∂ξ (ϕ, ξ)

∣∣ ∈ [(1 + ε)−3, (1 + ε)3]. Analogously, choose aσ(i),j in such
a way that the conditions are fulfilled: if (ξ, ϕ) ∈ [−aσ(i),j , aσ(i),j ] × J̃σ(i),j , then
(i) the billiard trajectory does not intersect the lateral reflectors and the order of its
reflections is reversed; (ii) ϕ’(ϕ, ξ) ∈ J i,j ; (iii)

∣∣∂ξ’
∂ξ (ϕ, ξ)

∣∣ ∈ [(1 + ε)−3, (1 + ε)3]. Note
that the values ai,j and aσ(i),j implicitly depend on ε.

Select aε ≤ mini,j aij in such a way that aε → 0 as ε → 0, and denote Iε =
(−aε, aε) × {0}, Ĩε = (−aε(1 + ε)−3, aε(1 + ε)−3) × {0}, and J̃ i

ε = J̃ i := ∪j J̃ i,j
ε .

The part of the boundary of Ωε related to the angular intervals J i,j and Jσ(i),j under
consideration is formed by the arcs of ellipses Ei,j , E ’i,j and the corresponding lateral
reflectors. Then a billiard particle with initial conditions (ξ, ϕ) ∈ Ĩε×J̃ i,j after making
four reflections will intersect l at a point (ξ’, 0) ∈ Iε, and the angle at the point of
intersection will be ϕ+

Ωε,Iε
(ξ, ϕ) = ϕ’(ϕ, ξ) ∈ Jσ(i),j ⊂ Jσ(i). Thus, the set of values

(ξ, ϕ) ∈ Iε×J i such that ϕ+
Ωε,Iε

(ξ, ϕ) /∈ Jσ(i) is contained in the set
(
Iε×J i

)
\
(
Ĩε×J̃ i

ε

)
,

whose measure is vanishing as ε → 0.
(b) If 2 ≤ i = σ(i) ≤ m − 1, then the corresponding part of the boundary is the

arc of circumference of radius 2 with the center at O occupying the angular interval
J i, that is, the set {2(sinϕ, cosϕ), ϕ ∈ J i}. Next, we will show that for all values
(ξ, 0) ∈ Iε, ϕ ∈ J i, except for a portion of order o(1), the corresponding billiard
particle makes one reflection from the arc and then goes back to Iε in the direction
ϕ’ ∈ J i.

For all values ϕ ∈ J i, except for the union of two intervals of vanishing length
(each of the intervals is contained in J i, has the length 2 arctan(aε/4), and contains
an endpoint of J i), the particle starting at (ξ, 0) ∈ Iε in the direction ϕ will reflect
from the indicated arc of circumference. Let ψ ∈ J i be the angular coordinate of the
reflection point. By (ξ’, 0) denote the point at which the reflected particle intersects
the straight line l. One easily verifies that

(29)
1
ξ

+
1
ξ’

= cosψ.

One has

(30) |ξ| < aε,

and hence

(31)
1
|ξ’| =

∣∣∣∣cosψ − 1
ξ

∣∣∣∣ >
1
aε

− 1.
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From (29) it follows that |ξ + ξ’|/|ξξ’| = |cosψ| ≤ 1, and, taking into account (30)
and (31), one finds that |ξ + ξ’| < a2

ε/(1 − aε). This implies that for all values
(ξ, 0) ∈ Iε, except for a set of measure O(a2

ε), the second point of intersection of the
billiard trajectory belongs to Iε; moreover, the velocity at this point, ϕ+

Ωε,Iε
(ξ, ϕ),

belongs to N2 arctan(aε/4)(J i), the neighborhood of J i of radius 2 arctan(aε/4). This
finally implies that for all (ξ, ϕ) ∈ Iε×J i, except for a portion of order O(aε), it holds
that ϕ+

Ωε,Iε
(ξ, ϕ) ∈ J i.

(c) The parts of the hollow’s boundary, corresponding to J1 and Jm, are formed
by smooth curves joining the corresponding endpoints of Iε and the points 2(sin Φ0,
− cosΦ0) and 2(sinΦ0, cosΦ0), respectively. The unique condition on these curves is
that they can be parametrized by the monotonically increasing angular coordinate.
For those values σ(1), σ(m) that coincide with neither 1 nor m take just the arcs of
circumference of radius 2 corresponding to the angular intervals Jσ(1), Jσ(m).

Consider the union of all of the elliptic arcs Ei,j , E ’i,j introduced in item (a), all of
the arcs of circumference defined in items (a) and (b), and the two curves introduced
in this item (c). Let us call this union the main element. Each lateral reflector is
a curve; select it in such a way that both its endpoints belong to the main element.
Finally, the curve ∂Ωε \ Iε is the union of all of the lateral reflectors and the part of
the main element visible from O (that is, which is not shielded by the adjacent lateral
reflectors). Thus, the definition of the hollow (Ωε, Iε) is complete.

In Figure 10, there is shown a particular hollow (Ωε, Iε) corresponding to the
permutation σ =

(
1 2 3 4 5
5 4 3 2 1

)
. The angular intervals J1, . . . , J5 are separated

by dotted lines. The family of hollows (Ωε, Iε), with vanishingly small ε, has the
following property: for almost all particles with the initial direction from J2 (resp.
J3, J4), the final direction will belong to J4 (resp. J3, J2). In the figure, there is
shown the trajectory of a particle with the initial direction ϕ ∈ J2 and the final
direction ϕ+ ∈ J4. The particle makes a reflection from an elliptic arc, then two
reflections from (very small) parabolic arcs, and, finally, again from an elliptic arc.
According to our notation, these arcs are E2,2, P2,2, P ’2,2, and E ’2,2.

Iε

Ωε

Fig. 10. A hollow (Ωε, Iε) approximating a σ-measure.
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4. Concluding remarks and applications. Physical bodies in the real world
have atomic structure and therefore are disconnected. This is a reason for using
(generally) disconnected sets Qm in the definition of a rough body. In the future we
intend to turn to propose and study the notion of a three-dimensional rough body,
where the connectivity assumption is absolutely useless; this is another reason. By
removing this assumption, the consideration in two dimensions (namely, the proof of
Lemma 1) is made somewhat more difficult, but at the same time prerequisites for
passing to the three-dimensional case are created.

In fact, the notions of “disconnected” (as everywhere in this paper) and “con-
nected” rough bodies are equivalent. There is a natural one-to-one correspondence
between the equivalence classes in the connected and disconnected cases,3 the former
classes being subclasses of the latter ones under this correspondence.

Let us now consider applications of the main theorem to problems of the body
of minimal or maximal aerodynamic resistance. A two-dimensional convex body B
moves, at constant velocity, through a rarefied homogeneous medium in R

2, and at
the same time it slowly rotates. The rotation is generally nonuniform; we assume
that, during a sufficiently long observation period, in a reference system connected
with the body the body’s velocity is distributed in S1 according to a given density
function ρ, with

∫
S1 ρ(v) dv = 1. The medium particles do not mutually interact, and

collisions of the particles with the body are absolutely elastic. The resistance of the
medium to the motion of the body is a vector-valued function of time. After averaging
it over a sufficiently long period of time, one gets a vector. We are interested in the
projection of this vector onto the direction of motion; for the sake of brevity, it will
be called mean resistance, or just resistance. The problem is as follows: given B,
determine the roughness on it in such a way that the main resistance of the resulting
rough body is minimal or maximal.

A prototype of such a mechanical system is an artificial satellite of the Earth
on relatively low altitudes (100÷ 200 km), with restricted capacity of rotation angle
control. The satellite’s motion is slowing down by the rest of the atmosphere; the
problem is to minimize or maximize the effect of slowing down. The problems of
resistance maximization may also arise when considering solar sail: a spacecraft driven
by the pressure of solar photons.

The initial velocity of an incident particle (in the reference system connected with
the body) is −v, and the final velocity is v+; therefore, the momentum transmitted
by the particle to the body is v + v+. The projection of the transmitted momentum
onto the direction of motion of the body equals 1+ 〈v, v+〉. Averaging this value over
all particles incident on the body within a sufficiently long time interval, one gets the
mean resistance. The averaging amounts to integration over ρ(v) dνB(v, v+, n); that
is, the mean resistance of the rough body equals

R(νB) =
∫∫∫

T3
(1 + 〈v, v+〉) ρ(v) dνB(v, v+, n).

Using the main theorem and Fubini’s theorem, one rewrites this formula in the form

(32) R(νB) =
∫

S1
dτB(n)

∫∫
T2

(1 + 〈v, v+〉) ρ(v) dηB,n(v, v+),

3More precisely, we mean equivalence classes formed by sequences of connected/disconnected
sets.
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where ηB,n ∈ Λn. Thus, the minimization problem for R(νB) reduces to minimization,
for any n, of the functional

∫∫
T2 (1+ 〈v, v+〉) ρ(v) dη(v, v+) over all η ∈ Λn. Using the

notation introduced in section 3.3, one comes to the problem:

(33) inf
η∈Λ

∫∫
�

(1 + cos(ϕ − ϕ+)) (ϕ) dη(ϕ, ϕ+),

where (ϕ) = ρ(v) for ϕ = Arg v − Arg n. This problem, in turn, by symmetrization
of the cost function reduces to a particular Monge–Kantorovich problem:

(34) inf
η∈Λλ,λ

F(η), where F(η) =
∫∫

�

c(ϕ, ϕ+) dη(ϕ, ϕ+),

where c(ϕ, ϕ+) = (1+cos(ϕ−ϕ+)) �(ϕ)+�(ϕ+)
2 and Λλ,λ is the set of measures η on �

having both marginal measures equal to λ: π#
ϕ η = λ = π#

ϕ+η. Recall that λ is defined
by dλ(v) = cosϕdϕ.

Problem (34) can be exactly solved in several particular cases. Consider the case
of uniform motion, where the function ρ, and therefore , is constant, and thus one can
take c(ϕ, ϕ+) = 3

8 (1+cos(ϕ−ϕ+)).4 Note that F(η0) = 1 and therefore resistance of
the smooth body is equal to its perimeter: R(νB) =

∫
S1 dτB(n)F(η0) = |∂B|. (Recall

that the measure η0 belongs to Λ and is supported on the diagonal ϕ+ = −ϕ.) The
minimization problem (34) for constant  was solved in [14]: one has infB R(νB) =
0.9878 . . . · |∂B|, the infimum being taken over all roughenings of B.

Note that the corresponding maximization problem for (34) has the trivial so-
lution, which does not depend on the function : η = η�, the measure η� ∈ Λ
being supported on the diagonal ϕ+ = ϕ. One has supB R(νB) = κ |∂B|, where
κ =

(∫ π/2

−π/2
(ϕ) cosϕdϕ

)/(∫ π/2

−π/2
(ϕ) cos3 ϕdϕ

)
> 1; in the case of uniform rotation

one has κ = 1.5. The maximization problem was studied in more detail in [20].

Appendix A. The construction below is simple (see Figure 11), but its descrip-
tion is a bit cumbersome.

Take a point in the interior of B and connect it by segments with all vertices.
The polygon is thus divided into several triangles; fix i and m and consider the
triangle with the base bi, the ith side of B. Denote by d(Ωm

i ) the diameter of the
orthogonal projection of Ωm

i onto the straight line containing Im
i ; one obviously has

d(Ωm
i ) ≥ |Im

i |. Fix a positive number κ < |Im
i |/d(Ωm

i ).
Take a rectangle Π1 contained in the triangle and such that one side of Π1 belongs

to bi. By δ1 denote the total length of the part of bi which is not occupied by this
side.

For the sake of brevity, the image of a set under the composition of a homothety
with positive ratio and a translation will be called a copy of this set. Take several
copies of Ωm

i (copies of first order) that do not mutually interact, that belong to Π1,
whose corresponding copies of Im

i belong to bi, and whose portion of the side of Π1

occupied by them is more than κ.
Next, take several rectangles that do not mutually intersect and do not intersect

with the chosen copies of Ωm
i , belong to Π1, and have one side contained in bi. Denote

by Π2 the union of these rectangles and by δ2 the total length of the part of the side
of Π1 which is not occupied by the rectangles from Π2 and by the copies of Im

i . Next,

4The normalization constant 3/8 is taken for further convenience.
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Fig. 11. Making hollows on the ith side of a polygon.

for each rectangle from Π2 choose several copies of Ωm
i (copies of second order) in the

way completely similar to the described above (see Figure 11).
Continuing this process, one obtains a sequence Π1, Π2, . . . of unions of rectangles

and collections of copies of Ωm
i of first, second, . . . order. Choose the rectangles in

such a way that δ1 +δ2 + · · · < 1/m and Area(Π1) < 1/m. Finally, choose k such that
the total length of sides of rectangles from Πk+1 contained in bi is less than 1/m, and
take the collection of copies of Ωm

i of order 1, 2, . . . , k (we shall call it full collection).
The total length of the part of bi not occupied by the corresponding copies of Im

i is
less than 2/m, and therefore it goes to zero as m → ∞.

By definition, the desired set Qm is B minus the union of full collections of copies
of Ωm

i over all i.

Appendix B. We prove here slightly more than needed.
Statement 3. Let A = (aij)k

i,j=1 be a symmetric matrix, with aij being non-
negative integers. Denote ni =

∑k
j=1 aij. Then there exist matrices Bij = (bμν

ij )μ,ν

of size ni × nj such that bμν
ij ∈ {0, 1}, BT

ij = Bji, the sum of elements in Bij equals
aij, and the block matrix D = (Bij) contains exactly one unit in each row and each
column.

Note that for some values i = i1, i2, . . . it may happen that ni = 0, that is, aij = 0
for all j = 1, . . . , k. Then the corresponding matrices Bij have the size 0 × nj , that
is, are empty. In this case D coincides with the block matrix D′ = (Bij) having the
rows i1, i2, . . . and columns i1, i2, . . . crossed out.

Proof. The proof is by induction on k. Let the statement be true for k − 1; prove
it for k. Take the matrix Ã = (aij)k

i,j=2; there exists a block matrix B̃ = (B̃ij)k
i,j=2

satisfying the statement. Note that the order of B̃ij is ñi× ñj , where ñi =
∑k

j=2 aij =
ni − ai1. Define the matrices Bij as follows.

(a) Put B11 = diag{1, . . . , 1︸ ︷︷ ︸
a11

, 0, . . . , 0}.

(b) Put ba11+1,1
12 = · · · = ba11+a12,a12

12 = 1; ba11+a12+1,1
13 = · · · = ba11+a12+a13,a13

13 =
1; · · · ; b

a11+···+a1,k−1+1,1
1k = · · · = ba11+···+a1k,a1k

1k = 1; the other elements of the
matrices B1j , j = 2, . . . , k, are zeros. Thus, on the diagonal of B1j starting from the
element at the first column and the (a11 + a12 + · · ·+ a1,j−1 + 1)th row, the first a1j

elements equal 1, and the remaining elements on this diagonal and all of the elements
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off the diagonal are zeros. This defines the matrices B1j , j = 2, . . . , k. The matrices
Bi1, i = 2, . . . , k, are determined by the condition Bi1 = BT

1i.
(c) For i ≥ 2, j ≥ 2 define the matrix Bij as follows. For μ ≤ a1i or ν ≤ a1j ,

put bμν
ij = 0, and for μ ≥ a1i + 1, ν ≥ a1j + 1, put bμν

ij = b̃
μ−a1i,ν−a1j

ij . Thus, in the
obtained matrix Bij , the right lower corner coincides with the matrix B̃ij , and all of
the remaining elements are equal to zero. The number of rows of this matrix equals
a1i + ñi = ni, and the number of columns equals a1j + ñj = nj. One obviously has
BT

ij = Bji.
One easily verifies that

∑
μν bμν

ij = aij and that each row and each column of the
obtained block matrix D = (Bij)k

i,j=1 contains precisely one unit.
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