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Abstract. Retroreflectors are optical devices that reverse the direction of inci-
dent beams of light. Here we present a collection of billiard type retroreflectors
consisting of four objects; three of them are asymptotically perfect retrore-
flectors, and the fourth one is a retroreflector which is very close to perfect.
Three objects of the collection have recently been discovered and published or
submitted for publication. The fourth object — notched angle — is a new one;
a proof of its retroreflectivity is given.

1. Introduction. In everyday life, optical devices that reverse the direction of all
(or a significant part of) incident beams of light are called retroreflectors. They are
widely used, for example, in road safety. Some artificial satellites in Earth orbit also
carry retroreflectors. We are mostly interested here in perfect retroreflectors that
reverse the direction of any incident beam of light to exactly opposite. An example
of perfect retroreflector based on light refraction is the Eaton lens, a transparent
ball with varying radially symmetric refractive index [4].

The most commonly used retroreflector based solely on light reflection is the so-
called cube corner (its two-dimensional analogue, square corner, is shown in figure
1). Both cube and square corners are not perfect, however: a part of incoming light
is reflected in a wrong direction. This is clearly seen in fig. 1 for the square corner.

2

1

Figure 1. Square corner: a retroreflector based on light reflection.
Two incident light rays are shown: the ray 1 is retroreflected, while
the ray 2 is not.

In what follows, only retroreflectors based on light reflection (or billiard retrore-
flectors) will be considered. To the best of our knowledge, no perfect billiard retrore-
flectors are known. However, as will be shown below, there exist retroreflectors
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which are almost perfect; more precisely, there exists a family of bodies Bε, ε > 0
(which will be called an asymptotically perfect retroreflector) such that the portion
of light reflected by Bε in wrong directions goes to zero as ε → 0.

The main aim of this paper is twofold. First, bring together billiard type retrore-
flectors known by now. They form a small collection of four objects; the first, the
second and the fourth one are asymptotically perfect retroreflectors, and the third
one is a retroreflector which is very close to perfect. The first three objects — mush-

room, tube and helmet — have already been published or submitted for publication
[12, 1, 6]. Note that the proof of retroreflectivity for the tube reduces to a quite
nontrivial ergodic problem considered in [1]. The helmet has been discovered and
studied numerically [5, 6]. The fourth object — notched angle — is the new one.
The second aim of the paper is to describe this shape and provide a proof of its
retroreflectivity.

In section 2 we define basic mathematical notions that are used in the following
sections 3 and 4. The notions of perfect and asymptotically perfect retroreflectors
are introduced, and a quantity characterizing retroreflecting properties of a given
body is determined. Also, in the two-dimensional case we introduce the notion of a
hollow on the body boundary and describe billiard scattering in a hollow. In section
3 we present the collection of billiard retroreflectors and discuss and compare their
properties. Finally, section 4 is devoted to the proof of retroreflectivity of notched
angle, the fourth object in the collection.

2. Mathematical preliminaries. Here we introduce basic notions and provide
necessary information that will be used in the following sections.

Consider a connected set B ⊂ R
d with piecewise smooth boundary (in what

follows such a set will be called a body), and consider the billiard in Rd \B. We shall
denote by x(t) the coordinate of a billiard particle at the moment t, by v(t) = x′(t)
its velocity, and by v and v+ the limits v = limt→−∞ v(t), v+ = limt→+∞ v(t), if
they exist.

We say that a billiard particle is incident on B, if it moves freely prior to a
moment t1 and collides with B at this moment. That is, the part of the trajectory
x(t), t < t1 is a half-line contained in Rd \ B̄ and x(t1) ∈ ∂B.

Definition 2.1. A body B is called a perfect retroreflector, if for almost all incident
particles the asymptotic velocity at t → +∞ exists and is opposite to the asymptotic
velocity at t → −∞; that is, v+ = −v.

Remark 1. Notice that the trajectory of some particles cannot be extended beyond
a certain moment of time. This happens when the particle gets into a singular point
of the boundary ∂B or makes infinitely many reflections in a finite time. However,
the set of such “pathological” particles has zero measure (see, e.g., [14]) and will be
excluded from our consideration.

2.1. Unbounded bodies. The case of unbounded bodies is quite simple. Here we
provide several examples of unbounded perfect retroreflectors.

Example 1. B = BP is the exterior of a parabola in R2. There exists a unique
velocity of incidence, which is parallel to the parabola axis. The initial and final
velocities of any incident particle are mutually opposite, and the segment of the tra-
jectory between the two consecutive reflections passes through the focus, as shown
in figure 2.
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b

R2 \BP

Figure 2. Exterior of a parabola: an example of unbounded
retroreflector with a unique velocity of incidence.

Remark 2. If B is the exterior of a parabola perturbed within a bounded set
(that is, B = BP M K, with K bounded), then B is again a perfect retroreflector.
Indeed, any segment (or the extension of a segment) of a billiard trajectory within
the parabola touches a confocal parabola with the same axis. The branches of
this confocal parabola are co-directional or counter-directional with respect to the
original parabola. This implies that the segments of an incident trajectory, when
going away to the infinity, are becoming “straightened”, that is, more and more
parallel to the parabola axis, and therefore v+ = −v.

There also exist unbounded retroreflectors that admit a continuum of incidence
velocities.

Example 2. Let Rd \ B be determined by the relations x1 > 0, . . . , xd > 0 in an
orthonormal reference system x1, . . . , xd; then B is a perfect retroreflector.

Consider one more example.

Example 3. Let the set C \ B in the complex plane C ∼ R2 be given by the

relations Re(e
iπk
2m z) > ak, k = 0, 1, . . . , 2m−1, with m ∈ N and arbitrary constants

ak; then B is a perfect retroreflector; see figure 3 for the case m = 2.

2.2. Bounded bodies. In what follows we restrict ourselves to the case of bounded
bodies, which is more interesting both from mathematical viewpoint and for appli-
cations.

At present, no bounded perfect retroreflectors are known. On the other hand,
there exist families of bounded retroreflectors which are asymptotically perfect. The
next two sections are devoted to description of and studying such families. Let us
give exact definitions.

Consider a particle incident on B that initially (prior to collisions with B) moves
freely according to x(t) = ξ + vt, and denote by v+B(ξ, v) its final velocity. The

function v+B is defined for all values (ξ, v) such that the straight line ξ + vt, t ∈ R

has nonzero intersection with B, except possibly for a set of zero measure.
Consider a convex body C containing B and define the measure µC on ∂C×Sd−1

according to dµC(ξ, v) = 〈n(ξ), v〉− dξ dv, where n(ξ) is the outer normal to ∂C at
ξ ∈ ∂C, dξ and dv are Lebesgue (d − 1)-dimensional measures on ∂C and Sd−1,
respectively, 〈· , ·〉 means scalar product, and z− = max{0, −z} is the negative part
of the real number z.
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R2 \B

Figure 3. The two-dimensional unbounded retroreflector shown
here is a convex polygon contained in an angle of size π/4, with all
angles at its vertices being multiples of π/4. Two billiard trajecto-
ries in R2 \B are shown.

The mapping T = TB,C : (ξ, v) 7→ (v, v+B(ξ, v)) induces the push-forward measure

νB,C = T#µC on (Sd−1)2. One easily verifies (see [13]) that νB,C does not depend
on the ambient body C, and therefore one can just write νB, omitting the subscript
C. This measure admits a natural interpretation: it determines the (normalized)
number of particles with initial and final velocities v, v+ that have interacted with
B during a unit time interval.

Definition 2.2. We say that ν is a retroreflector measure, if spt ν is contained
in the subspace {v+ = −v}. A family of bounded bodies Bε, ε > 0 is called
an asymptotically perfect retroreflector, if the measure νBε weakly converges to a
retroreflector measure as ε → 0.

Remark 3. From definition 2.1 it follows that a bounded body is a perfect retrore-
flector iff νB is a retroreflector measure.

In the two-dimensional case one easily calculates the full measure νB((S
1)2).

Take C = ConvB; then, introducing the natural parameter ξ ∈ [0, |∂C|] on ∂C and
denoting by ϕ ∈ [−π/2, π/2] the angle (counted counterclockwise) from −n(ξ) to
v, one gets

νB((S
1)2) = µC(∂C × S1) =

∫ |∂C|

0

dξ

∫ π/2

−π/2

cosϕdϕ = 2|∂C|.

2.3. Resistance. Here we introduce a functional on the set of bounded bodies
that indicates how close the billiard scattering by the body is to the retroreflector
scattering. This functional is called normalized resistance, a quantity that has
mechanical interpretation going back to Newton’s problem of minimal resistance
[9]. We believe that it serves as a natural measure of “retroreflectivity”.
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The force of resistance of the body B to a parallel flow of particles at the velocity
v equals

R(B, v) =

∫

v⊥

(v − v+B(ξ, v)) dξ, (1)

where v⊥ is the orthogonal complement to the one-dimensional subspace {v}. (We
suppose that the flow has unit density.) The expression (1) is defined for almost
all v ∈ Sd−1. The component of the resistance force along the flow direction equals
〈R(B, v), v〉.

Suppose that the velocity of the flow v is taken at random and uniformly in
Sd−1; then the mathematical expectation of the resistance along the flow equals
E〈R(B, v), v〉 = cR(B), where c = 1/|Sd−1| and

R(B) =

∫

Sd−1

〈R(B, v), v〉 dv. (2)

Let C be a convex body containing B. Taking into account the invariance of v+B
relative to translations along v, v+B(ξ, v) = v+B(ξ + vt, v) and making a change of
variables, the integral R(B) can be transformed to the form

R(B) =

∫

∂C×Sd−1

〈v − v+B(ξ, v), v〉〈v, n(ξ)〉− dξ dv

=

∫

∂C×Sd−1

〈v − v+B(ξ, v), v〉 dµC(ξ, v). (3)

Using the definition of νB and making one more change of variables, one gets

R(B) =

∫

(Sd−1)2

(

1− 〈v, v+〉
)

dνB(v, v
+). (4)

Remark 4. Let us mention another mechanical interpretation of the quantity
R(B). Suppose that the body B translates through a medium of resting parti-
cles and at the same time slowly and chaotically rotates (somersaults), so that in a
reference system connected with the body the vector of translational velocity runs
Sd−1 chaotically and uniformly. Then the mean value of resistance during a long
period of time approaches R(B) when the length of the period goes to infinity.

Let us additionally define the mean resistance of the body under the so-called
diffuse scattering, where each incident particle, after hitting the body, completely
loses its initial velocity and remains near ∂B forever. The formula for the diffuse
resistance, D(B), is similar to the above formula (4) for the elastic resistance. The
difference is that the normalized momentum transmitted by a particle to the body
is always equal to 1, and therefore, the integrand 1 − 〈v, v+〉 in (4) should be
substituted with 1. The resulting formula is

D(B) =

∫

(Sd−1)2
dνB(v, v

+) = νB((S
d−1)2). (5)

Notice that the following inequality always holds

R(B) ≤ 2D(B);

besides, if B is a hypothetical retroreflector, this inequality turns into the equality
R(B) = 2D(B).
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Remark 5. The notion of diffuse scattering has a strong physical motivation origi-
nating, in particular, from space aerodynamics. The interaction of artificial satellites
on low Earth orbits with the rarefied atmosphere is considered to be mainly diffuse
by some researches (see, e.g., [8]). Some others ([15, 7, 2]) prefer to use Maxwellian
representation of interaction as a linear combination of elastic scattering and diffuse
one. In the latter case the resistance equals αD(B) + (1 − α)R(B), where α is the
so-called accommodation coefficient.

Let us calculate R(B) and D(B) in the case where B is convex. Using (3) and
taking into account the formula of elastic scattering v+ = v − 2〈v, n〉n, one gets

1

|∂B|
R(B) =

1

|∂B|

∫

∂B×Sd−1

2〈v, n(ξ)〉2〈v, n(ξ)〉− dξ dv =

∫

Sd−1

2〈v, n〉3− dv =

= |Sd−2|

∫ π/2

0

2 cos3 ϕ sind−2 ϕdϕ =
4

d+ 1

π
d−1

2

Γ(d+1
2 )

,

where n is an arbitrary unit vector, and similarly,

1

|∂B|
D(B) =

∫

Sd−1

〈v, n〉− dv = |Sd−2|

∫ π/2

0

cosϕ sind−2 ϕdϕ =
π

d−1

2

Γ(d+1
2 )

.

Therefore one has

R(B)

D(B)
=

4

d+ 1
.

In particular, in the three-dimensional case one gets the equality R(B) = D(B);
that is, the elastic resistance of convex bodies is equal to the diffuse one.

Define the normalized mean resistance of the body as follows:

r(B) =
R(B)

2D(B)
. (6)

It has the following useful properties.

1. 0 ≤ r(B) ≤ 1.
2. If B is convex then r(B) = 2/(d+ 1); in particular, r(B) = 2/3 for d = 2 and

r(B) = 1/2 for d = 3.
3. supB r(B) = 1 in any dimension.
4. The infimum of r depends on the dimension d.

In the case d = 2, infB r(B) = 0.6585... (see [11]).
In the case d ≥ 3 only estimates are known. In particular, if d = 3 then
infB r(B) < 0.4848 (see [13]).

5. If Bε is an asymptotically perfect retroreflector then limε→0 r(Bε) = 1.

The property 3 is a consequence of existence, in any dimension, of asymptotically
perfect retroreflectors (see subsection 3.1).

Remark 6. The value r(B) is proportional to the (elastic) resistance of B divided
by the number of particles that have interacted with B during a unit time interval.
It can also be interpreted as the mathematical expectation of the longitudinal com-
ponent of the momentum transmitted to the body by a randomly chosen incident
particle of mass 1/2, that is, r(B) = 1

2 E〈v − v+, v〉.
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2.4. Hollow. Here we consider the two-dimensional case, d = 2. Take a bounded
body B and represent each of the sets ConvB \B and ∂(ConvB) \ ∂B as the union
of its connected components,

ConvB \B = ∪i6=0Ωi, ∂(ConvB) \ ∂B = ∪i6=0Ii;

in both cases the set of indices i is finite or countable, and each set Ii is an interval
contained in Ωi; see fig. 4. (Notice that B is not necessarily simply connected,
and so, there may exist sets Ωi that are entirely contained in B and therefore do
not contain any interval Ij .) Denote by I0 the convex part of the boundary ∂B,
I0 = ∂(ConvB) ∩ ∂B; thus, one has

∂(ConvB) = ∪iIi.

B
Ω1

Ω2

Ω3

Ω4

I1

I2

I3

I0

I0

I0

Figure 4. A body B and the corresponding hollows.

Definition 2.3. Any pair of sets (Ωi, Ii) that appears in the above construction
applied to a bounded body B is called a hollow. The interval Ii is called the opening
of the hollow.

Any hollow (Ω, I) has the following properties.

(i) Ω is a bounded simply connected set with piecewise smooth boundary.
(ii) I is an interval contained in ∂Ω.
(iii) Ω is situated on one side of the straight line containing I.
(iv) The intersection of Ω with this line coincides with I.

Inversely, any pair (Ω, I) satisfying the conditions (i)–(iv) is a hollow.

Definition 2.4. A hollow (Ω, I) is called convenient, if the orthogonal projection
of Ω on the line containing I coincides with I. Otherwise, it is called inconvenient.
See figures 5a and 5b for examples of convenient and inconvenient hollows.
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(a) (b)

Figure 5. (a) A convenient hollow. (b) An inconvenient hollow.

An incident particle may hit the body in the convex part of its boundary and
then go away. Otherwise, it gets into a hollow through its opening, makes there
several reflections, and then escapes the hollow through the opening and goes away.
It is helpful to define the measures generated by hollows and the measure generated
by the convex part of the boundary, and then represent νB as a weighted sum of
these measures.

Consider a hollow (Ωi, Ii), denote by ni the outer normal to Ωi at an arbitrary
point of Ii, and introduce a uniform coordinate ξ ∈ [0, 1] on Ii varying from 0 at
one endpoint of Ii to 1 at the other one. For a particle that gets into the hollow at
the velocity v, makes there several (maybe one) reflections, and then gets out at the
velocity v+, fix the coordinate ξ of the first intersection with Ii (when the particle
gets “in”), denote by ϕ the angle between the vectors ni and −v, and denote by
ϕ+ = ϕ+

Ωi,Ii
(ξ, ϕ) the angle between the vectors ni and v+; see fig. 6. The angles

b b

v
ϕ ϕ+ v+

nini

ξ ξ+
Ii

Ωi

Figure 6. Billiard scattering in a hollow. Here one has ϕ > 0 and
ϕ+ < 0.

are counted counterclockwise from ±ni to v or v+; both angles belong to [−π/2, π/2]
mod 2π. Define the probability measure µ on [0, 1]× [−π/2, π/2] by

dµ(ξ, ϕ) =
1

2
cosϕdξ dϕ,

where both dξ and dϕ denote one-dimensional Lebesgue measure.
The mapping Ti : (ξ, ϕ) 7→ (ϕ, ϕ+

Ωi,Ii
(ξ, ϕ)) induces the push-forward measure

ηΩi,Ii := T #
i µ on the square � := [−π/2, π/2]× [−π/2, π/2]. Thus, one has

ηΩi,Ii(A) = µ
({

(ξ, ϕ) : (ϕ, ϕ+
Ωi,Ii

(ξ, ϕ)) ∈ A
})

for any Borel set A ⊂ �.
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The probability measure ηΩi,Ii is called the measure generated by the hollow

(Ωi, Ii).
Notice that geometrically similar hollows generate identical measures.
Next, define the measure ηI0 on � × I0 with the density 1

2|I0| cosϕ δ(ϕ + ϕ+),

which will be called the measure generated by the convex part of the boundary, and
the measure η0 on � with the density 1

2 cosϕ δ(ϕ+ ϕ+).
Let vn(ϕ) be the vector obtained by rotating the vector n counterclockwise by

the angle ϕ, and let n(ξ) be the outer normal to B at ξ ∈ ∂B. The mapping
σi : (ϕ, ϕ+) 7→ (v−ni(ϕ), vni(ϕ

+)) induces the push-forward probability measure

νΩi,Ii = σ#
i ηΩi,Ii on (S1)2 = T2, and the mapping σ0 : (ϕ, ϕ+, ξ) 7→ (v−n(ξ)(ϕ),

vn(ξ)(ϕ
+)) induces the push-forward probability measure νI0 = σ#

0 ηI0 on T2. The
measures νΩi,Ii and νI0 will also be called the measures generated by the hollows
and the measure generated by the convex part of the boundary, respectively.

Remark 7. Consider the probability measure η? on� with the density 1
2 cosϕ δ(ϕ−

ϕ+). Its push-forward measure σ#
i η?, for any i, is a retroreflector measure on T2.

For this reason, η? will also be called a retroreflector measure.

Definition 2.5. A family of hollows (Ωε, Iε) is called asymptotically retroreflecting,
if ηΩε,Iε weakly converges to η?.

The measure νB can be represented as

νB = |I0| νI0 +
∑

i6=0

|Ii| νΩi,Ii ,

and the functionals R(B) and D(B) then take the form

R(B) = |I0|

∫∫

T2

(1− 〈v, v+〉) dνI0 (v, v
+) +

∑

i6=0

|Ii|

∫∫

T2

(1− 〈v, v+〉) dνΩi,Ii(v, v
+),

(7)

D(B) = νB(T
2) = |I0|+

∑

i6=0

|Ii| = |∂(ConvB)|. (8)

Using (7) and the relation between the measures ηΩi,Ii , η0 and the measures νΩi,Ii ,
ν0, and taking into account that 〈v, v+〉 = − cos(ϕ− ϕ+), one gets

R(B) = |I0|

∫∫

�

(1+cos(ϕ−ϕ+)) dη0(ϕ, ϕ
+)+

+
∑

i6=0

|Ii|

∫∫

�

(1+cos(ϕ−ϕ+)) dηΩi,Ii(ϕ, ϕ
+). (9)

Denote ci = |Ii|/|∂(ConvB)|,
∑

ci = 1 and define the functional

F(η) =
1

2

∫∫

�

(1 + cos(ϕ− ϕ+)) dη(ϕ, ϕ+).

One easily calculates that F(η0) = 2/3 and F(η?) = 1. Then, using (6), (9) and
(8), one obtains

r(B) =
2

3
c0 +

∑

i6=0

ciF(ηΩi,Ii). (10)

The formula (10) suggests a strategy of constructing asymptotically perfect
retroreflectors. First, find an asymptotically retroreflecting family of hollows (Ωε, Iε);
that is, limε→0 F(ηΩε,Iε) = 1. Then find a family of bodies Bε with all hollows on
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their boundary similar to (Ωε, Iε) and such that the relative length of the convex
part of ∂Bε goes to zero, limε→0 c

ε
0 = 0, and the sequence of convex hulls ConvBε

converges to a fixed convex body as ε → 0. In this case one has

lim
ε→0

r(Bε) = lim
ε→0

(

2

3
cε0 + (1− cε0)F(ηΩε,Iε)

)

= 1,

and therefore, the family Bε is an asymptotically perfect retroreflector.
If all the hollows are convenient (see fig. 5a), then one can find bodies Bε with

identical hollows. If the hollows are not convenient (see fig. 5b), then each body
Bε must contain, on its boundary, a hierarchy of hollows of different sizes.

2.5. Semi-retroreflecting hollows. Let us mention two special kinds of hollows,
a rectangle and a triangle, as shown in figure 7. The ratio of the width to the height
of the rectangle equals ε. The triangle is isosceles, and the angle at the apex equals
ε. Denote by νεt and νε∨ the measures generated by the rectangle and the triangle,

ε

1

(a)

ε

(b)

Figure 7. A rectangular hollow (a) and a triangular hollow (b).

respectively.

Proposition 1. Both νεt and νε∨ weakly converge to 1
2 (η0 + η?) as ε → 0.

The proof of this proposition is not difficult, but a little bit lengthy, and therefore
is put in the appendix. The proposition implies that both functionals, F(νεt) and
F(νε∨), converge to 5/6. Note also that the measures νεt and νε∨ do not converge in
norm.

Both the shapes are, so to say, semi-retroreflecting: nearly one half of the particles
is reflected according to the elastic law ϕ+ = −ϕ, and the other half, according to
the retroreflector one ϕ+ = ϕ. However, these shapes served as starting points for
developing true retroreflectors: rectangular tube (subsection 3.2) and notched angle
(subsection 3.4 and section 4).

3. Collection of retroreflectors. For each of the asymptotically perfect retrore-
flectors proposed below, we first define the generating hollow (Ωε, Iε), and then
construct the body Bε formed by copies of this hollow.

3.1. Mushroom. The mushroom is the union of the upper semi-ellipse
x2

1

1+ε2 +x2
2 =

1, x2 ≥ 0 and the rectangle −ε ≤ x1 ≤ ε, −ε2 ≤ x2 ≤ 0 (see fig. 8). Its opening is
the base of the mushroom stem, that is, the interval [−ε, ε]× {−ε2}. The foci F1

and F2 of the ellipse are vertices of the rectangle, the width of the rectangle equals
the focal distance |F1F2| = 2ε, and the heights, ε2.

Recall a remarkable property of the billiard in an ellipse. Any particle emanated
from a focus, makes a reflection from the ellipse and then gets into the other focus.
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This implies that any particle that intersects the segment F1F2 in the direction “up”,
after a reflection from the upper semi-ellipse will intersect this segment again, this
time in the direction “down”. Therefore, all particles getting into the mushroom
through the opening, except for a portion O(ε), will make exactly one reflection and
then get out, without hitting the mushroom stem. (The billiard trajectory depicted
in figure 8 hits the stem, and therefore is exceptional.) For the non-exceptional
particles the difference between the initial and final angle equals ϕ − ϕ+ = O(ε).
This simple observation leads to the following theorem.

Theorem 3.1. The measure generated by mushroom weakly converges to η? as

ε → 0.

This theorem means that the mushroom is an asymptotically retroreflecting hol-
low. The mushroom and mushroom “seedlings” are discussed in [12] in more detail.

Remark 8. Notice that the mushroom was first introduced in billiard theory by
Bunimovich as an example of dynamical system with divided phase space [3].

Let us describe some properties of the mushroom.

1. The mushroom is an inconvenient hollow. Therefore the resulting body
(asymptotically perfect retroreflector) contains a hierarchy of mushrooms of dif-
ferent sizes; see fig. 14(a).

2. The difference ϕ − ϕ+ is always nonzero; this means that the mushroom
measure converges to η? weakly, but not in norm.

3. If the semi-ellipse is substituted with a semicircle then the resulting hollow
(which is also called mushroom) will also be asymptotically retroreflecting. This
modified construction can be generalized to any dimension; that is, there exist mul-
tidimensional asymptotically perfect retroreflectors with mushroom-shaped hollows
(for a more detailed description, see [10]).

4. Most incident particles make exactly one reflection. This means that the
portion of incident particles making one reflection tends to 1 as ε → 0.

3.2. Tube. The tube is a rectangle of width a and height 1 with two rows of rect-
angles of smaller size δ × ε taken away (see fig. 9). The lower and upper rows
of rectangles are adjacent to the lower and upper sides of the tube, respectively.
The distance between neighbor rectangles of each row equals 1. The opening of the
tube is the left vertical side of the large rectangle. Denote by ηε,δ,a the measure
generated by the tube.

b b

F1 F2

Ωε

Figure 8. Mushroom.
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a

δ
1

1

ε

Figure 9. A tube.

For any particle incident in the tube, with ϕ and ϕ+ being the angles of getting in
and getting out, only two cases may happen: ϕ+ = ϕ or ϕ+ = −ϕ. Letting a → ∞
and δ → 0 (with ε fixed), we get the semi-infinite tube where small rectangles are
substituted with vertical segments of length ε (see fig. 10). Studying the dynamics
in this tube amounts to the following ergodic problem.

b b b b b b

b b b b b b

Figure 10. A semi-infinite tube.

Consider the iterated rotation of the circle by a fixed angle α, ξn = ξ+αn mod 1,
n = 1, 2, . . . and mark the successive moments n = n1, n1 + n2, n1 + n2 + n3, . . .,
when ξn ∈ [−ε, ε] mod 1. Denote by l = lε(ξ, α) the smallest value such that
n1 − n2 + . . . + n2l−1 − n2l ≤ 0. Let P be a probability measure on [0, 1] × [0, 1]
absolutely continuous with respect to Lebesgue measure. Then there exists the
limiting distribution pk = limε→0 P({(ξ, α) : lε(ξ, α) = k}), with

∑∞
k=1 pk = 1.

In [1] this statement is proved and is then used to show that that the semi-infinite
tube is an asymptotically retroreflecting “hollow” (it is not a true hollow, since it
is unbounded and its boundary is not piecewise smooth). This means in this case
that µ(ϕ+ = ϕ) goes to 1 as ε → 0.

Let us show that there exists a family of true tube-shaped hollows which is
asymptotically retroreflecting. To this end, define the function H(ξ, ϕ, ε, δ, a) which
is equal to 0, if the billiard particle with the initial data (ξ, ϕ) satisfies the equality
ϕ+ = ϕ, and to 1, if ϕ+ = −ϕ (there are no other possibilities). For the semi-infinite
tube this function takes the form H(ξ, ϕ, ε, 0,+∞) =: H(ξ, ϕ, ε). The asymptotical
retroreflectivity of the semi-infinite tube means that

lim
ε→0

∫∫

[0, 1]×[−π/2, π/2]

H(ξ, ϕ, ε) dξ dϕ = 0.

Note that for fixed ξ, ϕ and for 1/a and δ small enough the corresponding particle
makes the same sequence of reflections (and therefore has the same output velocity)
as in the limiting case δ = 0, a = +∞. This implies that H(ξ, ϕ, ε, δ, a) pointwise
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converges (stabilizes) to H(ξ, ϕ, ε) as δ → 0, a → +∞, and therefore,

lim
δ→0, a→+∞

∫∫

[0, 1]×[−π/2, π/2]

H(ξ, ϕ, ε, δ, a) dξ dϕ =

∫∫

[0, 1]×[−π/2, π/2]

H(ξ, ϕ, ε) dξ dϕ.

Then, using the diagonal method, one selects δ = δ(ε) and a = a(ε) such that
limε→0 a(ε) = ∞, limε→0 δ(ε) = 0 and

lim
ε→0

∫∫

[0, 1]×[−π/2, π/2]

H(ξ, ϕ, ε, δ(ε), a(ε)) dξ dϕ = 0.

Thus, the corresponding family of tubes is asymptotically retroreflecting.
The obtained result can be formulated as follows.

Theorem 3.2. η? is a limit point of the set of measures generated by tubes, {ηε,δ,a},
equipped with the norm topology.

The tube has the following properties.
1. The tube is a convenient hollow. This property makes it possible to construct

an asymptotically perfect retroreflector with identical tube-shaped hollows; see fig.
14(b).

2. The measure generated by the tube (with properly chosen δ = δ(ε) and
a = a(ε)) converges in norm to the retroreflector measure. In other words, the
portion of retroreflected particles (that is, particles reflected in the exactly opposite
direction) tends to 1.

3. We believe this construction admits a generalization to higher dimensions,
but we could not prove it yet.

4. The average number of reflections in the tube is of the order of 1/ε, and
therefore, goes to infinity as ε → 0.

3.3. Helmet. Another remarkable hollow called helmet was discovered and studied
by P Gouveia in [5] (see also [6]). It is a curvilinear triangle, with the opening being
the base of the triangle. Its lateral sides are arcs of parabolas, where the vertex of
each parabola coincides with the focus of the other one (and also coincides with a
vertex of the triangle at its base). The base is a segment contained in the common
axis of the parabolas; see fig. 11.

Figure 11. Helmet.
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The helmet is a nearly perfect retroreflector; the measure η generated by this
hollow satisfies F(η ) = 0.9977; this value is only 0.23% smaller than the maximal
value of F . A body bounded by helmets is shown in figure 14(c).

The helmet has the following properties.
1. It is a convenient hollow.
2. There always exists a small discrepancy between the initial and final direc-

tions, which is maximal for perpendicular incidence and vanishes for nearly tangent
incidence. See figure 12, where the support of η is shown. The figure is obtained
numerically, by calculating the pairs (ϕ, ϕ+) for 10 000 values of ϕ chosen at ran-
dom. This means that, when illuminated, the contour of the retroreflector is seen
best of all, which is useful for visual reconstruction of its shape.

−80 −60 −40 −20 0 20 40 60 80

−80

−60

−40

−20

0

20

40

60

80

ϕ

ϕ
+

Figure 12. The support of the measure generated by helmet is
shown. It is obtained numerically by calculating 10 000 randomly
chosen pairs (ϕ, ϕ+).

3. We do not know if there exist multidimensional generalizations of this shape.
By now, the greatest value of the parameter F attained by numerical simulation in
three dimensions equals 0.9.

4. For most particles, the number of successive reflections equals 3, although 4,
5, etc. (up to infinity) reflections are also possible. When the number of reflection
increases, the number of corresponding particles rapidly decreases.

5. The boundary of helmet is the graph of a function. This means that this
shape may be easy for manufacturing.

3.4. Notched angle. This shape is depicted in figure 13, and the corresponding
body, in figure 14(d). Here we point out its properties.

1. Notched angle is a convenient hollow.
2. The corresponding measure converges in norm to the retroreflector measure

η?.
3. We are unaware of multidimensional generalizations of this shape.
4. The mean number of reflections in notched angle goes to infinity as α tends

to zero.
5. The boundary of the notched angle is the graph of a function.
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α

α+ β

Ā B̄Ā′ B̄′

Ō

Ω

I

C D

Figure 13. Notched angle.

The rigorous definition of this shape and the proof of its retroreflectivity are
given in the next section 4.

3.5. Comparison table for retroreflectors. Here we put together the billiard
retroreflectors. For convenience, their properties are tabulated below. The limiting
values of r are equal to 1 in all shapes, except for the helmet. In figure 14, four
bodies with boundaries formed by corresponding retroreflecting hollows are shown.

As concerns possible applications of these shapes, each of them seems to have
some advantages and disadvantages. Tube and notched angle ensure exact direction
reversal, while in mushroom and helmet a small discrepancy between initial and
final directions is always present, which can make them inefficient at very large
distances. On the other hand, the number of reflections for the most part of particles
in mushroom and helmet equals 1 and 3, respectively, while the mean number of
reflections goes to infinity for sequences of bodies representing tube and notched
angle, which may imply need for high quality of reflecting boundary.

4. Notched angle. Consider two isosceles triangles, ĀŌB̄ and Ā′ŌB̄′, with the
common vertex Ō and require that the base of one of them is contained in the base
of the other one, ĀB̄ ⊂ Ā′B̄′. The segment ĀB̄ is horizontal in figure 13. Denote
]ĀŌB̄ = α and ]Ā′ŌB̄′ = α + β. Draw two broken lines with horizontal and
vertical segments with the origin at Ā and B̄, respectively, and require that the
vertices of the first line belong to the segments ŌĀ and ŌĀ′, and the vertices of
the second line, to the segments ŌB̄ and ŌB̄′; see figure 13. The endpoint of both
broken lines is Ō; both lines have infinitely many segments and finite length. We
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hollow convenient
convergence

in norm

admits a

generalization

to higher

dimensions

mean

number of

reflections

graph of

a function
r

Mushroom

− − + 1 − 1

Tube

+ + ? ∞ − 1

Double

parabola

+ − ? 3 + 0.9977

Notched

angle

+ + ? ∞ + 1
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Figure 14. Bodies with boundaries formed by retroreflecting hol-
lows: (a) mushroom; (b) tube; (c) helmet; (d) notched angle.

will consider the “hollow” (Ω, I) with the opening I = Iα = ĀB̄ and with the set
Ω = Ωα,β bounded by ĀB̄ and the two broken lines. This “hollow” will be called
a notched angle with the size (α, β), or just an (α, β)-angle. The boundary ∂Ω is
not piecewise smooth (Ō is a limit point for singular points of ∂Ω), therefore the
word hollow is put in quotes; however, the measure generated by this “hollow” is
defined in the standard way. This measure depends only on α and β and is denoted
by ηα,β .

Theorem 4.1. There exists a function β = β(α), limα→0(β/α) = 0 such that ηα,β
converges in norm to the retroreflector measure η? as α → 0.

Remark 9. Using this theorem, one easily constructs a family of true hollows for
which convergence in norm to η? takes place. Namely, draw a straight line CD
parallel to ĀB̄ at a small distance δ from Ō; the true hollow is the part of the
original “hollow” situated between ĀB̄ and CD, with the same opening (see fig.
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13). The measure generated by this hollow tends to η? as α → 0, with properly
chosen β = β(α) and δ = δ(α) vanishing when α → 0.

Proof. For any initial data ξ, ϕ the angle of getting away ϕ+ = ϕ+
α,β(ξ, ϕ) satisfies

either ϕ+ = ϕ, or ϕ+ = −ϕ. To prove the theorem, it suffices to check that the
measure µ of the set of initial data ξ, ϕ satisfying ϕ+

α,β(ξ, ϕ) = −ϕ and |ϕ| > α

tends to 0 as α → 0, β = β(α).
Make a uniform extension along the horizontal axis in such a way that the result-

ing angle ĀŌB̄ becomes right. Then the angle Ā′ŌB̄′ becomes equal to π/2 + γ,
γ = γ(α, β) (see fig. 15), besides the conditions α → 0, β/α → 0 imply that
γ → 0. This extension takes the (α, β)-angle to a (π/2, δ)-angle, takes each billiard
trajectory to another billiard trajectory, and takes the measure 1

2 cosϕdϕdξ to a
measure absolutely continuous with respect to it.

The vertices of the resulting notched angle will be denoted by O, A, B, A′, B′,
without overline, in order to distinguish them from the previous notation.

Without loss of generality we assume that |OA| = |OB| = 1. Introduce the
uniform parameter ξ on the segment AB, where A corresponds to the value ξ = 0
and B, to the value ξ = 1. Extend the trajectory of an incident particle with initial
data ξ, ϕ < −π/41 until the intersection with the extension of OA. Denote by x̃0

the distance from O to the point of intersection; see fig. 15. (In what follows, a point
on the ray OA or OB will be identified with the distance from the vertex O to this
point.) In the new representation, the particle starts the motion at a point x̃0 and
intersects the segment AB at a point ξ and at an angle ϕ. Continuing the straight-
line motion, it intersects the side OB at a point x1 (0 < x1 < 1), then makes
one or two reflections from the broken line and intersects OB again at a point x̃1.
Denote x1/x̃0 = λ; obviously one has 0 < λ < 1. The value λ is the tangent of the
angle of trajectory inclination relative to OA; thus, one has ϕ = −π/4− arctanλ.
It is convenient to change the variables in the space of particles getting into the
hollow at an angle ϕ < −π/4. Namely, we pass from the parameters ξ ∈ [0, 1],
ϕ ∈ [−π/2, −π/4] to the parameters λ ∈ [0, 1], x̃0 ∈ [1, 1/λ]. This change of
variables can be written as ξ = λ

1−λ (x̃0 − 1), ϕ = π/4+ arctanλ; it transforms the

measure 1
2 cosϕdϕdξ into the measure λ

2
√
2(1+λ2)3/2

dλ dx̃0.

By considering successive alternating reflections of the particle from the broken
lines resting on the sides OB and OA, we define the sequence of values x1, x̃1, . . . ,
xm−1, x̃m−1. Obviously, all these values are smaller than 1. Then the particle gets
out of the hollow and intersects the extension of the side OA or OB at a point
xm > 1. If m is even, then the intersection with OA takes place, and ϕ+ = ϕ. If m
is odd, then intersection with OB takes place, with ϕ+ = −ϕ. Clearly, m depends
on the initial data x̃0, λ and on the parameter γ, m = mγ(x̃0, λ).

Proposition 2. For any λ, the measure of the set of values x̃0 such that mγ(x̃0, λ)
is odd, goes to 0 as γ → 0.

Let us derive the theorem from this proposition. Indeed, let fγ(λ) be the measure
of the set indicated in the proposition, fγ(λ) = |{x̃0 : mγ(x̃0, λ) is odd }|. Intro-

duce the measure η on the segment [0, 1] according to dη(λ) = λ dλ
2
√
2(1+λ2)3/2

; then
∫ 1

0 fγ(λ) dη(λ) is the measure of the set of initial values (λ, x̃0) such that mγ(x̃0, λ)

1Recall that the angle ϕ is measured counterclockwise from the vertical vector (0, 1) to the
velocity of the incident particle, so one has ϕ < 0 in figure 15.
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Figure 15. The reduced notched angle.

is odd. The value fγ(λ) does not exceed the full Lebesgue measure of the segment
[1, λ−1],

fγ(λ) ≤ λ−1 − 1, (11)

and the function λ−1 − 1 is integrable relative to η,
∫ 1

0 (λ
−1 − 1) dη(λ) =

√
2−1
2
√
2
.

According to proposition 2, for any λ holds

lim
γ→0

fγ(λ) = 0. (12)

Taking into account (11) and (12) and applying Lebesgue’s dominated convergence
theorem, one gets

lim
γ→0

∫ 1

0

fγ(λ) dη(λ) = 0.

This means that the measure of the set of values (ξ, ϕ), ϕ ≤ −π/4 for which the
equality ϕ+

π/2,γ(ξ, ϕ) = −ϕ is valid, tends to 0 as γ → 0. The same statement, due

to the axial symmetry of the billiard, is also valid for ϕ ≥ π/4.
Nowmake a uniform contraction along the abscissa axis transforming the (π/2, γ)-

angle into an (α, β)-angle (where β depends on γ and α). Taking into account that
the measures generated by these angles are mutually absolutely continuous, we get
that the measure µ({(ξ, ϕ) : |ϕ| ≥ α and ϕ+

α,β(ξ, ϕ) = −ϕ}) goes to 0 at fixed α
and β → 0.

Finally, choose a diagonal family of parameters α, β(α), limα→0(β(α)/α) = 0
such that the measure

µ({(ξ, ϕ) : |ϕ| ≥ α and ϕ+
α,β(α)(ξ, ϕ) = −ϕ}) → 0 as α → 0.

It remains to notice that µ(ϕ+
α,β(α) = −ϕ) ≤ µ(|ϕ| ≥ α and ϕ+

α,β(α) = −ϕ)+µ(|ϕ| <

α) and µ(|ϕ| < α) → 0 as α → 0. This finishes the proof of theorem 4.1.
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Proof of proposition 2. Note that the broken lines intersect with the sides OA
and OB at the points x = e−nδ, n = 0, 1, 2, . . ., where δ is defined by the relation
tanh δ = sin γ. Consider an arbitrary pair of values xk, x̃k; they belong to a segment
bounded by a pair of points x = e−nδ and e−(n+1)δ. Consider also the right triangle,
with the hypotenuse being this segment and with the legs being segments of the
broken line.

Two cases may happen: either (I) xk/x̃k−1 = λ or (II) xk/x̃k−1 = λ−1, the
first case corresponding to the “forward” motion in the direction of the point O,
and the second, to the “backward” motion. Introduce the local variable ζ on the
hypotenuse according to x = e−nδ[1 + ζ(e−δ − 1)] (see fig. 16). Thus, the value
ζ = 0 corresponds to the point x = e−nδ, and ζ = 1, to the point x = e−(n+1)δ.
The sequences xk, x̃k generate two sequences ζk, ζ̃k ∈ (0, 1) and an integer-valued
sequence nk. Consider the two cases separately.

(I) xk/x̃k−1 = λ.

(a) If 0 < ζk < λ, then ζ̃k = λ−1ζk and the particle, after leaving the triangle,
continues the forward motion, that is, xk+1/x̃k = λ.

(b) If λ < ζk < 1, then ζ̃k = 1 + λ − ζk and the particle, after leaving the
triangle, proceeds to the backward motion, xk+1/x̃k = λ−1.

(II) xk/x̃k−1 = λ−1. In this case one has ζ̃k = λζk and the backward motion
continues, xk+1/x̃k = λ−1.

ζ = 0

ζ = 1b

b

b

b

b

ζ = λ

1 + λ− ζ

λ−1ζ

Figure 16. Dynamics in a small right triangle.

Introduce the logarithmic scale z = − 1
δ lnx; then one gets a sequence of values

z̃0, z1, z̃1, . . . , zm−1, z̃m−1, zm. The first and the last term in this sequence are
negative, and the rest of the terms are positive. One has − 1

δ ln
1
λ < z̃0 < 0. The

following equations establish the connection between zk, z̃k and ζk, ζ̃k.

zk = nk −
1

δ
ln[1 + ζk(e

−δ − 1)], (13)

z̃k = nk −
1

δ
ln[1 + ζ̃k(e

−δ − 1)]. (14)

As δ → 0, one gets zk = nk + ζk +O(δ), z̃k = nk + ζ̃k +O(δ), where the estimates

O(δ) are uniform over all k and all initial data; thus, ζk and ζ̃k are approximately
equal to the fractional parts of zk and z̃k, respectively.
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For several initial values k = 1, 2, . . . , kδ−1 corresponding to the forward motion
of the particle, according to (Ia) one has

zk = z̃k−1 +
1

δ
ln

1

λ
; 0 < ζk < λ, ζ̃k = λ−1ζk; zk+1 = z̃k +

1

δ
ln

1

λ
.

(15)
Here and in the following formulas (16),(17), ζk is determined by zk and z̃k is

determined by ζ̃k, according to (13) and (14). For the value k = kδ corresponding
to the transition from the forward motion to the backward one, according to (Ib)
one has

zkδ
= z̃kδ−1 +

1

δ
ln

1

λ
; λ < ζkδ

< 1, ζ̃kδ
= 1 + λ− ζkδ

; zkδ+1 = z̃kδ
−

1

δ
ln

1

λ
.

(16)
Finally, for the values k = kδ +1, . . . ,m− 1 corresponding to the backward motion,
according to (II) one has

zk = z̃k−1 −
1

δ
ln

1

λ
; ζ̃k = λζk; zk+1 = z̃k −

1

δ
ln

1

λ
. (17)

Notice that in figure 15 one has kδ = 2.
The formulas (13)–(17) define iterations of the pairs of mappings

z̃k−1 7→ zk 7→ z̃k (18)

with positive integer time k. These mappings commute with the shift z 7→ z + 1.
The initial value z̃0 satisfies z̃0 ∈ (− 1

δ ln
1
λ , 0), and the relation zm ∈ (− 1

δ ln
1
λ , 0)

defines the time m when the corresponding value leaves the positive semi-axis z ≥ 0
and the process stops.2

During the forward motion, the first mapping in (18) increases the value of z
by 1

δ ln
1
λ , and the second one changes it by a value smaller than 1. During the

backward motion, the first mapping decreases z by 1
δ ln

1
λ , and the second mapping

changes it again by a value smaller than 1. Therefore, if the initial value satisfies
z̃0 ∈ (− 1

δ ln
1
λ + 2k, −2k) with k > kδ, then z2kδ

∈ (− 1
δ ln

1
λ , 0), and so, m = 2kδ.

This means that m is always even, except for a small portion 4k/(1δ ln
1
λ ) of the

initial values. Thus, to complete the proof of proposition 2, we only need a result
stating that the transition time kδ remains bounded when δ → 0.

Due to invariance with respect to integer shifts, the formulas (13)–(17) determine
iterated maps on the unit circumference with the coordinate z mod 1. The value
kδ = kδ(z̃0 mod 1) is a Borel measurable function; it can be interpreted as a random
variable, where the random event is represented by the variable z̃0 mod 1 on the
circumference with Lebesgue measure.

Proposition 3. The limiting distribution of kδ as δ → 0 equals Pλ(k) = λk−1(1−
λ), k = 1, 2, . . ..

Let us derive proposition 2 using proposition 3. Indeed, one has 1 − Pλ(1) −
. . . − Pλ(k) = λk. Take an arbitrary ε > 0 and choose k such that λk < ε. Then,
using proposition 3, choose δ0 > 0 such that P(kδ > k) < ε for any δ < δ0. This
implies that the inequality |z̃0− z2kδ

| < 2k holds with the probability at least 1− ε.
Therefore, if δ satisfies δ < δ0 and 4k/(1δ ln

1
λ ) < ε, the relative Lebesgue measure

of the set of points z̃0 ∈ (− 1
δ ln

1
λ , 0) producing the value m = 2kδ is greater than

2Notice that m depends on δ and z̃0; thus, strictly speaking, one should write m = mδ(z̃0).
Then the equality holds mδ(z̃0) = mγ(x̃0, λ), where sinγ = tanh δ and x̃0 = e−δz̃0 ; recall that the

parameter λ is fixed.
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1− 2ε. Passing from the variable z̃0 to the variable x̃0 = e−δz̃0 , one concludes that
Lebesgue measure of the set of values of x̃0 corresponding to odd m tends to 0 as
δ → 0. This completes the proof of proposition 2. �

Proof of proposition 3. For convenience write down iterations of the pair of mappings
until the transition time kδ in the form

zk = z̃k−1 +
1

δ
ln

1

λ
mod 1, z̃k = f−1

δ (zk) (1 ≤ k < kδ), (19)

where the function fδ is given by relations (13), (14) and (15); one easily derives
that fδ(z̃) = ζ−1(λ ζ(z̃)), with ζ(z) = (1 − e−δz)/(1 − e−δ). The function fδ is
monotone and injectively maps the circumference R/Z with the coordinate z mod 1
into itself, and is discontinuous at 0 mod 1. In the limit δ → 0, fδ(z̃) uniformly
converges to λz̃ and the derivative f ′

δ uniformly converges to λ; the last means that

lim
δ→0

inf f ′
δ = lim

δ→0
sup f ′

δ = λ. (20)

The iterations (19) are defined while zk ∈ Range(fδ); the first moment when zk 6∈
Range(fδ) is k = kδ.

Denote by Aδ(k) = {z̃0 mod 1 : kδ(z̃0 mod 1) > k} the set of initial values z̃0
mod 1 ∈ R/Z for which the inequality kδ > k holds true. Then one has P(kδ >
k) = |Aδ(k)|, where | · | means Lebesgue measure on R/Z. The following inductive
formulas are valid: Aδ(0) = R/Z and Aδ(k + 1) = fδ(Aδ(k)) −

1
δ ln

1
λ mod 1. They

imply that |Aδ(0)| = 1 and

inf
z
f ′
δ(z) ≤

|Aδ(k + 1)|

|Aδ(k)|
≤ sup

z
f ′
δ(z). (21)

Formulas (20) and (21) imply that limδ→0 |Aδ(k)| = λk; therefore limδ→0 P(kδ =
k) = limδ→0(Aδ(k − 1))−Aδ(k))) = λk−1(1 − λ). Proposition 3 is proved. �

5. Appendix.

5.1. Convergence of measures generated by rectangular hollows. Both the
measures ηεt and the limiting measure 1

2 (η0 + η?) have a cross-shaped support, as
shown in figure 17. Therefore, the density of ηεt can be written down as

ϕ

ϕ+

Figure 17. The support of the semi-retroreflecting measure.

ρε(ϕ) δ(ϕ − ϕ+) +
(1

2
cosϕ− ρε(ϕ)

)

δ(ϕ+ ϕ+),
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and the density of 1
2 (η0 + η?) equals

1

4
cosϕ (δ(ϕ − ϕ+) + δ(ϕ+ ϕ+)).

Define the function fε(ξ, ϕ) =

{

1, if ϕ+(ξ, ϕ) = ϕ
−1, if ϕ+(ξ, ϕ) = −ϕ

; then one has

ρε(ϕ) −
(1

2
cosϕ− ρε(ϕ)

)

= cosϕ ·

∫ 1

0

fε(ξ, ϕ) dξ.

The value of fε is determined from the parity of the number of reflections in the tube
and can be easily found by unfolding of the billiard trajectory (see fig. 18). One

Figure 18. The unfolded billiard trajectory in the tube.

easily sees that f(ξ, ϕ) = 1, if bξ+ 2
ε tanϕc is odd and f(ξ, ϕ) = −1, if bξ+ 2

ε tanϕc
is even, where b. . .c means the integer part of a real number.

To prove the weak convergence, it suffices to check that for any −π/2 < Φ1 <
Φ2 < π/2,

lim
ε→0

∫ 1

0

∫ Φ2

Φ1

fε(ξ, ϕ) cosϕdϕdξ = 0. (22)

Fix ξ and denote ϕm = arctan( ε2 (m− ξ)). One has fε(ξ, ϕ) = 1, if ϕ2n−1 < ϕ <
ϕ2n and fε(ξ, ϕ) = −1, if ϕ2n < ϕ < ϕ2n+1. One easily deduces from this that the

integral
∫ Φ2

Φ1

fε(ξ, ϕ) cosϕdϕ converges to zero as ε → 0 (and is obviously bounded,

|
∫ Φ2

Φ1

fε(ξ, ϕ) cosϕdϕ| < 2), and therefore, the convergence in (22) takes place.

5.2. Convergence of measures generated by triangular hollows. The images
of the triangular hollow AOB obtained by the unfolding procedure form a polygon
inscribed in a circle (see figure 19). Introduce the angular coordinate x mod 2π
(measured clockwise from the point B) on the circumference. Given an incident
particle, denote by x and x+ the two points of intersection of the unfolded trajectory
with the circumference. We are given ]AOB = ε; therefore x ∈ [0, ε].

Denote by φ the angle between the direction vector of the unfolded trajectory
and the radius at the first point of intersection; then the angle at the second point
of intersection will be −φ. Both angles are measured counterclockwise from the
corresponding radius to the velocity; so, for example, φ > 0 in figure 19.

One has x+ = x+π−2φ. The number of intersections of the unfolded trajectory
with the images of the radii OA and OB coincides with the number of reflections
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A B

b

b

b
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Figure 19. The unfolded billiard trajectory in the triangle.

of the true billiard trajectory and is equal to n = nε(x, φ) = bx+π−2φ
ε c. In figure

19, n = 3.
Denote by ϕ and ϕ+, respectively, the angles formed by the velocity of the true

billiard trajectory with the outer normal to AB at the moments of the first and
second intersection with the opening AB. One easily sees that

|ϕ− φ| ≤ ε/2 and |ϕ+ − (−1)n+1φ| ≤ ε/2. (23)

The mapping (x, φ) 7→ (ϕ, ϕ+) defines a measure preserving one-to-one corre-
spondence between a subspace of the space [0, ε] × [−π/2, π/2] with the measure

1
2 sin(ε/2)dx · 1

2 cosφdφ and the space � = [−π/2, π/2]2 with the measure ηε∨. Con-

sider also the mapping

(x, φ) 7→ (φ, (−1)nε(x,φ)+1φ)

and the measure η̃ε∨ induced on � by this mapping. One easily deduces from the
inequalities (23) that the difference ηε∨ − η̃ε∨ weakly converges to zero as ε → 0;
therefore it is sufficient to prove the weak convergence

η̃ε∨ →
1

2
(η0 + η?) as ε → 0. (24)

Introduce the function

gε(x, φ) =

{

1, if nε(x, φ) is odd
−1, if nε(x, φ) is even

.

Similarly to the previous subsection 5.1, it suffices to prove that for any −π/2 <
Φ1 < Φ2 < π/2,

lim
ε→0

1

ε

∫ ε

0

∫ Φ2

Φ1

gε(x, φ) cosφdφdx = 0. (25)

Fix x ∈ [0, ε] and put φm = 1
2 (x + π − mε). One has gε(x, φ) = 1, if φ2n−1 <

φ < φ2n and gε(x, φ) = −1, if φ2n < φ < φ2n+1. We easily get that the integral
∫ Φ2

Φ1

gε(x, φ) cosφdφ uniformly converges to zero as ε → 0 (actually, it is less than

2ε), and therefore, the convergence in (25) also takes place.
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