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1. Consider a flow of point particles impinging on a
body spinning around a fixed point. The particles do not
interact with one another, and their collisions with the
body are elastic. The goal is to determine the pressure
force exerted by the flow on the body.

The problem is considered in two dimensions. In the
Euclidean space 

 

�

 

2

 

, we introduce an orthonormal
frame of reference 

 

Ox

 

1

 

x

 

2

 

. The flux density 

 

ρ

 

 is a con-
stant. Initially, the particles move at the identical veloc-

ity 

 

 = (0; –

 

v

 

)

 

T

 

. Here and below, the vectors are repre-
sented as columns. The body is a rough disk, i.e., a set
that differs slightly (in some sense) from a disk. Specif-
ically, the rough disk is understood as follows. Con-
sider a sequence of sets 

 

B

 

n

 

, 

 

n

 

 = 3, 4, …

 

 contained in the
disk 

 

B

 

r

 

(

 

O

 

)

 

 of radius 

 

r

 

 centered at the origin 

 

O

 

. The set

 

B

 

n

 

 is invariant under the rotation about 

 

O

 

 through an

angle of

 

 

 

, and the intersection of its boundary 

 

∂

 

B

 

n

 

with some sector 

 

OA

 

1

 

n

 

A

 

2

 

n

 

 of angular size

 

  

 

is a piece-

wise smooth non-self-intersecting curve 

 

I

 

n

 

 contained in
the triangle 

 

OA

 

1

 

n

 

A

 

2

 

n

 

 with the ends 

 

A

 

1

 

n

 

 and 

 

A

 

2

 

n

 

. Finally,
it is assumed that all the curves 

 

I

 

n

 

 are similar to each
other; i.e., they can be superimposed on one another via
isometry and similarity transformations.

The rough disk 

 

�

 

 (of radius 

 

r

 

 centered at 

 

O

 

) is iden-
tified with this sequence of sets 

 

B

 

n

 

. Thus, the sets 

 

B

 

n

 

 can
be viewed as successive approximations of the rough
disk. They approximate the disk 

 

B

 

r

 

(

 

O

 

)

 

 and have a
boundary with a similar structure.

The body spins counterclockwise about 

 

O

 

 at a con-
stant angular velocity 

 

ω

 

 > 0. The initial position of the

v

2π
n

------

2π
n

------

 

body (at 

 

t

 

 = 0) coincides with the set 

 

B

 

n

 

 (see Fig. 1). The

pressure force exerted by the flow on the body is a -

periodic vector function 

 

(

 

t

 

)

 

. As 

 

n

 

 

 

→ ∞

 

, it tends to

a constant vector 

 

(

 

�

 

, 

 

ω

 

)

 

, which is called the pressure
force exerted on the rough disk. Of course, this quantity
depends not only on 

 

ω

 

 but also on the choice of a rough
body, i.e., on a particular sequence 

 

B

 

n

 

. The problem is

2π
nω
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Fig. 1.

 

 Spinning disk in the flow of particles.
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to derive analytical formulas that, given 

 

ω

 

, yield the set

of all possible vectors 

 

(

 

�

 

, 

 

ω

 

)

 

. Additionally, we con-
struct this set numerically for some values of 

 

ω

 

. The
convergence mentioned above is not proved rigorously.
The passage to the limit in Section 3 is heuristic, i.e.,
the pressure force is calculated for large 

 

n

 

.

2. For a fixed 

 

n

 

, we consider the set 

 

B

 

 = 

 

B

 

n

 

. Let 

 

ξ ∈
∂

 

(conv

 

B

 

)

 

. Let 

 

 ∈ 

 

S

 

1

 

 denote the outward normal to

 

∂

 

(conv

 

B

 

)

 

 at the point 

 

ξ

 

. The angle between  (or 

 

−

 

)
and another vector is measured counterclockwise from

(or 

 

–

 

) to the given vector. Denote by 

 

|∂

 

(conv

 

B

 

)

 

|

 

the length of the curve 

 

∂

 

(conv

 

B

 

)

 

. The probability mea-

sure 

 

µ

 

 on 

 

∂

 

(conv

 

B

 

) × ,  is defined as ∂µ(ξ, ϕ) =

cosϕ dξ dϕ, where dξ and dϕ are the line

elements on ∂(convB) and S1, respectively. Consider a

billiard in �2\B and define the mapping (ξ, ϕ) � ( (ξ,

ϕ), (ξ, ϕ)) as follows. Suppose that a billiard particle
intersects ∂(convB) (from the outside inward) at the
point ξ and its velocity at that moment makes an angle

of ϕ with the vector – . Then, after several reflections
from ∂B, the particle intersects ∂(convB) the second

time (from inside the disk outward) at the point (ξ, ϕ)
and its velocity at that moment makes an angle of

(ξ, ϕ) with . If ξ ∈ ∂(convB) ∩ ∂B, then we set

(ξ, ϕ) = ξ and (ξ, ϕ) = –ϕ.

The mapping (ξ, ϕ) and (ξ, ϕ) is a one-to-one

map of a full-measure subset of ∂(convB) × , 

into itself; moreover, it is involutive and preserves the

measure µ. The probability measure νB on � := ,

 × ,  is defined as νB(A) = µ({(ξ, ϕ): (ϕ, (ξ,

ϕ)) ∈ A}) for any Borel set A ⊂ �. In addition to B, the
measure νB is an important characteristic of billiard
scattering. It describes the joint distribution of the pair
(ϕ, ϕ+) (the angle of incidence and the angle of reflec-
tion) for a randomly chosen particle reflected from B.

By the choice of the sequence Bn,  is independent

of n. Therefore,  =: ν� is well defined. In fact, this

measure defines the law of billiard scattering on the
rough set �.

F
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The measure λ on ,  is defined as dλ(ϕ) =

cosϕdϕ. Let � denote the set of measures ν on �

with coordinates ϕ and ϕ+ such that (a) both projections
of ν onto the ϕ and ϕ+ axes coincide with λ; and (b) ν is
invariant under the mapping (ϕ, ϕ+) � (ϕ+, ϕ).

Theorem. cl{ν�: � is a rough disk of radius r} = �
for any r > 0. Here, cl denotes the closure of the set of
measures in the weak convergence topology.

This theorem is deduced by a small modification of
the proof of Theorem 1 in [3].

3. Consider a particle of the flow that intersects
∂(convB) at some (say, zero) time at a point ξ and the

vector  makes an angle of ϕ = ϕ(ξ) with the vertical

axis:  = (–sinϕ; cosϕ)T, ϕ ∈ , . We pass to the

frame of reference  whose origin is at ξ (and

rotates together with the latter), the  axis is aligned

with the vector  := (cosϕ; sinϕ)T, and the  axis

is aligned with the vector . For vectors issuing from
the point ξ at the zero moment, the coordinates change
according to the following rule. Let the velocity has the

form  = (u1; u2)T in the original frame and  = ( ;

)T in the moving frame. Then  = A–ϕ  + rω  and

 = Aϕ  – rω , where Aϕ = .

For large n and B = Bn, the sojourn time of a particle
in convB is little and we can approximately assume that

the frame  moves rectilinearly and uniformly
over this time. At the first-passage time for ∂(convB) in

the moving frame, the velocity  = (0; –v)T becomes

 = (rω – vsinϕ; –vcosϕ)T = ζ(sinx; –cosx)T, where

(1)

At the second-passage time for ∂(convB) in the moving
frame, the velocity is also equal to ζ in magnitude and

makes an angle of y = (ξ, x) with the normal ; i.e.,

 = ζ(–siny; cosy)T. In the original frame, this veloc-

ity has the form  = (ξ, ϕ) = (–ζsin(ϕ + y) –
rωcosϕ; ζcos(ϕ + y) – rωsinϕ)T.

π
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The pressure force  is calculated by integrating

with respect to ξ ρv(  – )cosϕ:  = (0) =

ρv  – (ξ, ϕ(ξ)))(cosϕ(ξ))+dξ, where z+ =

max{z, 0} is the positive part of z. When ξ rotates

through an angle of , ϕ(ξ) increases by ; i.e.,

ϕ(A2π/nξ) = ϕ(ξ) + . Therefore, passing to the limit

as n → ∞ yields

Finally, making the substitution (ξ, ϕ) � (x, y) and
using formulas (1), after rather cumbersome computa-
tions, we obtain

(2)

The integrand is

F

v v
+

F FB ω,

(v

∂ convB( )
∫ v

+

2π
n

------ 2π
n

------

2π
n

------

F � ω,( )

=  2rρv v v
+ ξ ϕ,( )–( ) µ ξ ϕ,( ).d∫

∂ convB( ) π/2– π/2,[ ]×
∫

F � ω,( ) 8
3
---ρrv 2 R ν�

ωr
v
------,⎝ ⎠

⎛ ⎞ ,⋅=

R ν λ,( ) c x y λ, ,( ) ν x y,( ).d

�

∫∫=

c x y λ, ,( ) 3
2
--- λ xsin ηsin+( )3

ηsin
---------------------------------------=

× x y–
2

-----------
η x y–

2
-----------+⎝ ⎠
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2
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⎛ ⎞sin–

⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

cos

for 0 < λ ≤ 1 and

Here, η = η(x, λ) = , χ denotes the

characteristic function, and x0 = x0(λ) = . Spe-

cifically,

and (x, y, 0+) = (1 + cos(x – y))(0; –1)T. The coeffi-

cients multiplying  are chosen so that (ν0, λ) = (0;

–1)T for the measure ν0 with the density cosϕδ(ϕ +

ϕ+), which corresponds to elastic reflection from a con-
vex body. Accordingly, for the disk Br(O), we have

(Br(O), ω) = ρrv2(0; –1)T, which is supported by

direct computations. Thus, as expected, the pressure
force exerted on the disk is independent of its angular
velocity is parallel to the direction of the flow.

The vector-valued Monge–Kantorovich problem,

which is to find the set �λ = { (ν, λ): ν ∈ �}, was
solved numerically for λ = 0+, 0.3, and 1. The results are
shown in Fig. 2.

Another important characteristic of the interaction is
the moment of the pressure force, which slows down
the rotation. It is equal to

Computations give – ρr2v2 · RM , where
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Fig. 2. Convex sets are shown: the segment  with the end-

points (0, –0.9878…) and (0, –1.5), �0.3 (shaded), and �1.
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The functional RM is nonnegative and reaches its least
value at ν0: RM(ν0) = 0. Thus, for Br(O), the moment is
zero. For 0 < λ ≤ 1, the largest value of the functional is
RM(ν�) = 1.5λ, where ν� is a measure with the density

cosϕδ(ϕ – ϕ+).

4. Now, consider a three-dimensional body spinning
about a fixed axis in a gas flow. If the pressure force is
not parallel to its velocity, then the Magnus effect takes
place. If the transverse force is aligned with the instan-
taneous velocity of the front point (facing the flow) of
the body, then we have the proper Magnus effect. If the
transverse force is opposite to this velocity, then the
reverse Magnus effect occurs.

The Magnus effect has been addressed in numerous
publications. In [4, 2, 1, 5], it is studied in the case of a
gas that is so rarefied that the process can be described
in terms of free molecular flow. It is assumed that the
body is convex and symmetric about the axis of rotation
(a ball or a cylinder was considered more frequently).
The interaction of the gas particles with the body is
assumed to be inelastic. Part of the tangential momen-
tum of the particles is transferred to the body, which
gives rise to a transverse force. The basic conclusion
drawn in [4, 2, 1, 5] is that the reverse Magnus effect is
observed in the given conditions. The formula for the
transverse force derived in [4, 2, 1, 5] for the case when
the velocity flow is perpendicular to the rotation axis
(usually under certain additional assumptions)
becomes

(3)

Here, M is the mass of the gas displaced by the body
and the coefficient α ranges from 0 to 1 and is a mea-
sure of inelasticity in the interactions of the particles
with the body. Additionally, the moment of the pressure
force was calculated in [2].

In our opinion, the reverse Magnus effect is strongly
rarefied media can be caused by the combined effect of
the following two factors: (i) inelastic collisions and (ii)
multiple collisions of particles with the body, which

arise when the surface of the body is not convex but
contains small cavities.

The influence of factor (i) was studied in [4, 2, 1, 5].
We analyzed the effect of factor (ii). Assuming that the
collisions of the particles with the body are elastic, we
excluded factor (i) from consideration. The two-dimen-
sional case was considered in our simplified model. The
internal temperature of the flow was assumed to be
zero. We believe that the approach described can be
extended to the three-dimensional case and media with
a nonzero temperature.

By using (2), the transverse pressure force F1 =
F1(�, ω) in our model can be written as

(4)

Here, λ =  is the relative rotational velocity of the

body, M = πr2ρ is the total mass of the particles dis-

placed by the body, and R1 is the first component of .
Formula (4) resembles formula (3). Specifically,

 is similar to the coefficient α in (3). How-

ever, it is not a constant but depends in a rather compli-
cated manner on the type of roughness of the body. Pre-
liminary numerical experiments for particular rough
disks suggest that this quantity varies weakly. Figure 2
shows that R1 is positive for most solutions. Therefore,
the reverse Magnus effect takes place. Specifically, for
λ = 1, we conclude that 93.6% of the area of the corre-
sponding shape is in the right half-plane R1 > 0.
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