
Flexible Bus Media Redundancy

Valter Filipe Silva
ESTGA-University of Aveiro

vfs@ua.pt

Joaquim Ferreira
EST - Polytechnic Institute of Castelo Branco

jjf@est.ipcb.pt

José Alberto Fonseca
DETI - University of Aveiro

jaf@ua.pt

Abstract

This paper proposes a flexible approach to bus media
redundancy in Controller Area Network (CAN) fieldbuses,
both to improve the bandwidth by transmitting different
traffic in different channels or to promote redundancy by
transmitting the same message in more than one channel.
Specifically the proposed solution is discussed in the con-
text of Flexible Time-Triggered protocol over CAN (FTT-
CAN) and inherits the online scheduling flexibility of FTT-
CAN, enabling on-the-fly modifications of the traffic con-
veyed in the replicated buses. Flexible bus media redun-
dancy is useful to fulfill application requirements in terms
of additional bandwidth or to react to bus failures leading
the system to a degraded operational mode, without com-
promising safety. The arguments for and against flexible
bus media redundancy in the context of FTT-CAN are also
discussed in detail.

1 FTT-CAN With Multiple Buses Basis

FTT-CAN (Flexible Time-Triggered communication
protocol on CAN) [1] has been developed with the main
purpose of combining a high level of operational flexibil-
ity with timeliness guarantees. It uses the dual-phase ele-
mentary cycle concept to isolated time and event-triggered
communication. The time-triggered traffic is scheduled
online in a particular node called a master, facilitating
online admission control of requests, thus being man-
aged in a flexible way, under guaranteed timeliness. The
protocol relies on a relaxed master-slave medium access
control in which the same master message triggers the
transmission of messages in several slaves simultaneously
(master/multi-slave). Eventual collisions between slave
messages are handled by the native distributed arbitration
of CAN.

FTT-CAN slots the bus time in consecutive Elementary
Cycles (ECs) with fixed duration. All nodes are synchro-
nized at the start of each EC by the reception of a par-
ticular message known as an EC Trigger Message (TM),

which is sent by the master node. Within each EC the
protocol defines two consecutive windows, asynchronous
(law in Figure 1 stands for length of asynchronous win-
dow) in and synchronous (lsw in Figure 1 stands for
length of synchronous window), that correspond to two
separate phases (see Figure 1). The first is used to con-
vey event-triggered traffic (AM in Figure 1 stands for
Asynchronous Messages) and the second is used to con-
vey time-triggered traffic (SM in Figure 1 stands for Syn-
chronous Messages). Between these two windows there
is a guardian time to guarantee the temporal isolation (α

in Figure 1). The synchronous window of then
th EC has

a duration that is set according to the traffic scheduled for
it. The schedule for each EC is conveyed by the respective
EC trigger message (see Figure 2). Since this window is
placed at the end of the EC, its starting instant is variable
and it is also encoded in the respective EC trigger mes-
sage.

Figure 1. The Elementary Cycle

The communication requirements are held in a
database located in the master node [1], the System Re-
quirements Database (SRDB). This database holds sev-
eral components, one of which is the Synchronous Re-
quirements Table (SRT), that contains the description of
the periodic message streams. Based on the SRT, an on-
line scheduler builds the synchronous schedules for each
EC. These schedules are then inserted in the data area of
the appropriate trigger message (see Figure 2) and broad
casted with it. Due to the online nature of the schedul-
ing function, changes performed in the SRT at run time
will be reflected in the bus traffic within a bounded delay,

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório Institucional da Universidade de Aveiro

https://core.ac.uk/display/15566677?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Figure 2. master/multi-slave access control
and EC schedule coding scheme

resulting in a flexible behavior.
One recent improvement on the FTT-CAN is the use

of the master to control more than one buses in the sys-
tem [18][19]. Using more than one CAN bus improves
both the fault tolerance of the system and the available
bandwidth, since messages can be transmitted on different
buses. This solution provides additional bandwidth and
overcomes the single point of failure of a non replicated
CAN bus [18]. In this way, multiple buses can be used
either to improve the bandwidth by transmitting different
traffic in different channels or to promote redundancy by
transmitting the same message in more than one channel.
This architecture (see Figure 3) inherits the dispatching
flexibility of FTT-CAN, enabling online changes on the
traffic conveyed in the channels. This is useful to fulfill
application requirements in terms of additional bandwidth
or to react to bus failures leading the system to a degraded
operational state, without compromising safety.

Figure 3. FTT-CAN using multiple buses

Notice that slaves can be connected to just one CAN
bus or to a set of buses, depending on the tasks that a spe-
cific slave has to perform, on the dependability level and
on the bandwidth requirements.

Similarly to the single bus system case, all the buses
must convey a synchronized Trigger Message, with the
same Elementary Cycle in all of them. That is, the Trig-
ger Messages are issued to all the buses at the same time,
dividing the bus time in all buses in the same way. Figure
4 presents an example with two buses.

In the small example of Figure 4 synchronous message
1 is replicated in both buses improving its dependability.

Figure 4. Bus timing with two buses

In contrast, synchronous messages 2 and 3 do not require
redundancy and, thus, are not transmitted in both buses.
In fact, as it can be seen in Figure 3, the proposed sys-
tem also includes replicated masters, adopting a leader-
follower behavior. The system only has a single active
master at each time, being all the others backup masters.
In case of an error in the active master, one backup mas-
ter will become active since the previous active will be
stopped (fail silent) . The master nodes are located at
the end of the buses and the number of backup masters
at one end of the buses equals the number of backup mas-
ters at the opposite end. This facilitates the bus error de-
tection since, one Trigger Message omission can be eas-
ily detected by the master located in the opposite end of
the bus. In this way, if a Trigger Message is omitted the
backup master located at the opposite end of the bus will
inform the active master of the error. The active master, if
not crashed, could then re-schedule the traffic to the non-
faulty buses.

2 Pros and Cons of Flexible Bus Media Re-
dundancy

This section presents the arguments for and against
flexible bus media redundancy in the context of FTT-
CAN. A multiple bus FTT-CAN architecture inherits most
of the good properties of FTT-CAN, and adds some oth-
ers, namely:

• Increased bandwidth

• Increased resilience to bus failures

• Increased flexibility

• Scalability of replicated buses

• Master replication is still feasible

Despite these advantages, there are also some drawbacks
and limitations:

• Increased complexity and price of the master node

• Increased complexity of the slave nodes, in some
cases

• Inflexibility in terms of spacial location of the mas-
ters nodes

2



• The overall architecture complexity is higher

These aspects discussed in detail in the following sections.

2.1 Increased bandwidth
The widespread use of CAN networks in applications

with increasingly higher bandwidth requirements, calls
for innovative solutions able to provide some extra band-
width. For example, in the automotive domain, where
the infotainmentdata is currently not conveyed in the
CAN network due to bandwidth restrictions. MOST [4]
or FlexRay [3] are used instead. Also some CAN based
networks use more than one CAN bus, but do not improve
the overall available bandwidth, example of such networks
are TTCAN [12] networks and also the ones based on the
Columbus Eggidea [16].

Since the FTT-CAN is based on the CAN protocol, the
bandwidth available in the CAN bus cannot be exceeded.
The throughput of a CAN bus is affected by the protocol
overhead and depends on the bit rate and on the number
of stuff bits. The CAN overhead varies from 42% to 88%
[14]. The minimum value for overhead is obtained with
a frame of 8 data bytes and the higher value (88%) is ob-
tained with a frame of 1 data byte and the maximum num-
ber of stuff bits. This means that for a bit rate of 1 Mbps,
the maximum throughput available for the data transmis-
sion is 420 kBps.

Moreover, the FTT-CAN uses the Trigger Message
to control purposes, increasing thus the global overhead.
This overheads depends on the bit rate, the Elementary
Cycle length (LEC in Figure 4) and the number of data
bytes of the Trigger Message (proportional to the number
of the synchronous messages in the system). The number
of stuff bits of the Trigger Message also play an important
role in the overhead of the Trigger Message. The overhead
of the Trigger Message varies from 2.7% to 28.4% [14].
Using more than one CAN bus it is possible to partially
improve this scenario, since the additional buses can be
used to transmit both replicated and non-replicated data.
The improvement of the available bandwidth is propor-
tional to the number of replicated buses. In this way, the
total available bandwidth in the system could double with
two buses, if different message streams are transmitted in
each bus.

2.2 Increased resilience to bus failures
CAN already provides some fault tolerance mecha-

nisms. Examples of such mechanisms, at the physical
level, are the use of a differential voltage and the network
operation with just one wire.

Some mechanism at the data link layer are implement
in order to detect and signaling errors. This mechanisms
are: Cyclic Redundancy Check (CRC), to account for
message corruption; Frame Check, to detect message for-
mat violations; Acknowledge errors, to allow a node to
detect if it is isolate from the network; Transmission mon-
itoring, to allow distinguishing global errors from errorsin

the transmitter only; and bit stuffing, to prevent synchro-
nization loss due to several consecutive bits of the same
polarity.

In the recent years, several solutions adopting star
topologies instead of traditional bus topologies, were pro-
posed. Star topologies use one CAN link per each node,
and can isolate (in case of an active star) any faulty seg-
ment of the system. However, the use of star topologies
goes against one of the initial design requirements of the
fieldbuses: reduce the wiring harness [20].

Using a FTT-CAN architecture with more than one bus,
means that, at an application level, the data can be trans-
mitted in more than one bus, improving the resilience to
bus failures.

2.3 Increased Flexibility
The two advantages presented before can be combined

together, i.e., transmitting the same data in different buses
can be combined with the transmission of different data
in different buses. This results in an important flexibility
improvment, since the master node can schedule a specific
message transmission to a specific bus or to several buses,
depending on the criticality of the message. Notice that
the master node holds a global and centralized knowledge
of the system state, thus it can easily change a message
stream from a bus to another.

In case of an error in one bus, the master can sched-
ule the messages assigned to the faulty bus to other buses.
This is done online without any interference in the service
provided. This means that the master has one more de-
gree of flexibility to schedule the data in each Elementary
Cycle.

Moreover there is also an improvement on the flexibil-
ity of the topology of the architecture, as it can be seen in
Figure 3, where the slaves can be connected to one bus or
a set of buses. This improves the flexibility of the system
and also enables the use of legacy slave nodes.

2.4 Scalability of replicated buses
In FlexRay the same message can be transmitted in all

available channels, or in just one channel, i.e., FlexRay
also uses multiple buses, in this case only two, both to
improve the bandwidth and fault tolerance. On the other
hand, TTP/C allow replicated channels, but it is only pos-
sible to use two channels (channels: bus or star) [9]. This
is also true for TTCAN, where the same restriction is im-
posed. Both in TTP/C and TTCAN, the additional buses
cannot be used to improve the bandwidth of the system.

In the FTT-CAN architecture with multiple buses the
number of buses is only limited by the number of CAN
controllers available at the master nodes. Nowadays is
possible to find microcontrollers with 6 CAN controllers
[13]. This leads to an important scalability of the proposed
architecture.

The flexibility of adding more buses and to use the ad-
ditional bandwidth in a efficient way, together with the
scalability makes FTT-CAN with multiple buses a unique

3



solution in terms of fieldbuses.

2.5 Master replication is still feasible
The master node is the central point of the FTT-CAN

protocol and its main tasks are the scheduling of the syn-
chronous messages and to set all the bus timing. The mas-
ter node needs some modifications to deal with multiple
buses, these changes are described in detail in [20].

The master node is a single point of failure, so a repli-
cation protocol for an FTT-CAN architecture with just one
bus has already been presented [6]. The replication of the
master node is still possible for the case of multiple buses.
In case of a master node failure, the active master is re-
place by a backup master without any interruption of the
system operation. This replacement is done online, and
slave nodes do not notice any change in the global sys-
tem. In [17] the replication mechanisms for the multiple
bus FTT-CAN architecture are explained in detail. This
mechanism can also be used to detect permanent errors on
the buses.

2.6 Increased complexity and price of the master
node

The master node was changed to accommodate multi-
ple buses [20]. This modification adds extra (low) com-
plexity to the master node architecture. Specifically, two
new modules were added to the master: The bus error
detection module and the multi-bus handler. It was also
necessary to add extra fields to the table where the syn-
chronous messages properties are stored (called SRT -
Synchronous Requirement Table) to include the proper-
ties related to the allocation of the messages to a bus.

At the implementation level, the increase on the re-
quired RAM memory is 23%, since all the message prop-
erties are now 13 bytes long. At a first glance this value
seems to be high, but it only depends on the number of
messages stored in the SRT. For a typical application [10]
with 16 synchronous messages, the increase will be 48
bytes only. This value is negligible regarding the avail-
able RAM of most microcontrollers. The increasing in
the code size is less than 5% when comparing with the
master with just one bus.

The master node must have more than one CAN con-
troller, either built-in or external. In the first case the mi-
crocontroller will be more complex and thus it’s price will
increase. In the second case, one needs to add external
CAN controllers, that will also increase the price of the
master node. Moreover, each bus must have a bus driver,
such as [15] or [11], which also will also increase the cost
of the node. Notice, however, that more powerful micro-
controllers with more features (possible additions CAN
controllers) are expect appear on the market, thus, the
pricing impact will tend to be lower.

In what concerns the power consumption, it will in-
crease with the complexity. Nodes will have higher com-
putational load [20] and also has more hardware compo-
nents. This issue is not negligible for battery powered

FTT-CAN applications, e.g. [21].

2.7 Increased complexity of the slaves nodes
The slaves nodes used on the FTT-CAN architecture

with multiple buses can be the same as the ones applied
to FTT-CAN with just one CAN bus. This legacy nodes
can only be connected to just one bus. In contrast, if the
slaves are connected to more than one bus, there is the
need to implement the necessary software and hardware
adjustments. This software, only needs to be able to re-
ceive and transmit messages through the additional buses,
thus slave nodes only need the software drivers for the ad-
ditional buses and some adjustments to the FTT code.

2.8 Inflexibility in terms of spacial location of the
masters nodes

In the FTT-CAN with just one CAN bus, the master
node and its replicas can be located in any part of the
bus. However in FTT-CAN with more than one CAN bus
a master node and its replica must be located at both ends
of the buses to provide effective bus error detection [20].
This results in less flexibility in terms of spacial localiza-
tion of the master nodes.

2.9 The overall architecture complexity is higher
When a system becomes more complex the probabil-

ity of an error increases due to the increasing number of
components (hardware and software) [5]. In FTT-CAN
with multiple bus, the number of hardware components is
higher and the complexity of the software, measured in
lines of code, is also higher. The higher probability of
errors is a price to pay to have more flexibility in the sys-
tem. For this reason, the FTT-CAN with multiple buses
incorporates mechanisms to detect permanent errors on
the buses. In the literature there are some example of de-
pendability assessment based on modeling [5][8][7]. This
dependability analysis can be done using modeling tools
such as möbius [2]. We plan to use this tool to assess if
the dependability of the FTT-CAN with multiple buses is
kept at an acceptable level.

3 Conclusions

This paper presented a multiple bus FTT-CAN archi-
tecture and discussed its pros and cons when compared
with the single bus FTT-CAN architecture. Flexibility,
which is one of the cornerstones of the Flexible Time-
Triggered paradigm, is not compromised by the multiple
bus FTT-CAN architecture. In fact, it is improved, since
additional buses can be used to improve the bandwidth or
to transmit the same data in different buses. Other advan-
tages are the number of buses that are only dependent on
hardware resources and the master node replication that is
still feasible.

However some drawbacks of using multiple buses
arise. The complexity of the nodes (master and slaves)

4



increases, but in a limited way. The architecture also im-
poses that master nodes should be located at both ends
of the buses. Moreover, a dependability analysis using a
modeling tool needs to be performed in order to evaluate
the new architecture.

Acknowledgments

This work was supported byFundação para a Ciên-
cia e Tecnologiaunder grant PRODEP 2001 -Formação
Avançada de Docentes do Ensino Superior Nº 200.019
and by ARTIST2, NoE on Embedded Systems Design,
(EC-IST - IST-004527).

References

[1] L. Almeida, P. Pedreiras, and J. A. Fonseca. The FTT-
CAN Protocol: Why and How.IEEE Transactions on In-
dustrial Electronics, 49(6):1189–1201, December 2002.

[2] G. Clark, T. Courtney, D. Daly, D. Deavours, S. Derisavi,
J. M. Doyle, W. H. Sanders, and P. Webster. The möbius
modeling tool. InPNPM ’01: Proceedings of the 9th inter-
national Workshop on Petri Nets and Performance Mod-
els (PNPM’01), pages 241–250, Washington, DC, USA,
2001. IEEE Computer Society.

[3] F. Consortium. FlexRay Communications System - Proto-
col Specification, v2.0. Technical report, FlexRay Consor-
tium, 2004.

[4] M. Corperation. Media Oriented System Transport, Mul-
timedia and Control Networking Technology, November
2002.

[5] F. Di Giandomenico, S. Porcarelli, D. Viva, A. Bondavalli,
and P. Lollini. Model-based Evaluation for Dependability
Assessment of CAUTION++ Instances. InVenue ’04 (in-
formal proceedings), Athens, Greece, May 27-28 2004.

[6] J. Ferreira, P. Pedreiras, L. Almeida, and J. Fonseca. The
FTT-CAN protocol: improving flexibility in safety-critical
systems.IEEE Micro (special issue on Critical Embedded
Automotive Networks), 22(4):46–55, 2002.

[7] Q. Gan and B. Helvik. Dependability modelling and anal-
ysis of networks as taking routing and traffic into account.
In Proceedings of the2nd Conference on Next Generation
Internet Design and Engineering, April 2006.

[8] R. Ghostine, J.-M. Thiriet, and J.-F. Aubry. Dependability
evaluation of networked control systems under transmis-
sion faults. In6

th IFAC Symposium on Fault Detection,
Supervision and Safety of Technical Processes, Safepro-
cess 2006, Beijing - China, 2006.

[9] G. B. Hermann Kopetz. The Time-Triggered Architecture.
In Proceedings of the IEEE, volume 91, January 2003.

[10] R. Marau, L. Almeida, J. Fonseca, J. Ferreira, and V. Silva.
Assessment of FTT-CAN master replication mechanisms
for safety-critical applications. InProceedings of the SAE
2006 World Congress & Exhibition, 2006. Paper Number:
06AE-278.

[11] Microchip. Mcp2551 data sheet, 2003. DS21667D ver-
sion.

[12] B. Müller, T. Führer, F. Hartwich, R. Hugel, and H. Weiler.
Fault tolerant ttcan networks. InProceedings of8th In-
ternational CAN Conference. CAN in Automation GmbH,
Oct 2002.

[13] NEC Electronics Corporation.µPD70F3430 Data Sheet,
November 2005.

[14] T. Nolte, H. Hansson, C. Norström, and S. Punnekkat.
Using bit-stuffing distributions in can analysis. In S. L.
Iain Bate, editor,Proceedings of the IEEE/IEE Real-Time
Embedded Systems Workshop in conjunction with the 22nd
IEEE Real-Time Systems Symposium (RTSS’01), London,
UK, December 2001. Department of Computer Science,
University of York.

[15] Philips Semiconductors. PCA82C250 Data Sheet, January
2000.

[16] J. Rufino, P. Veríssimo, and G. Arroz. A Columbus’ egg
idea for CAN media redundancy. InDigest of Papers, The
29th International Symposium on Fault-Tolerant Comput-
ing Systems, pages 286–293, Madison, Wisconsin, USA,
June 1999. IEEE.

[17] V. Silva, J. Ferreira, and J. Fonseca. Master Replica-
tion and Bus Error Detection in FTT-CAN with Multi-
ple Buses. InProceedings of the 12th IEEE Conference
on Emerging Technologies and Factory Automation (ETFA
2007), Patras, Greece, 2007.

[18] V. Silva and J. Fonseca. Using FTT-CAN to Combine Re-
dundancy with Increased Bandwidth. InProceedings of
the 2006 IEEE International Workshop on Factory Com-
munication Systems, pages 54–62, June 2006.

[19] V. Silva, J. Fonseca, and J. Ferreira. Using FTT-CAN to
the Flexible Control of Bus Redundancy and Bandwidth
Usage. InProceedings of the 11th International CAN Con-
ference iCC 2006, pages 5.9 – 5.15, Sweden, September
2006.

[20] V. Silva, J. Fonseca, and J. Ferreira. Adapting the FTT-
CAN Master for Multiple-bus Operation. InProceedings
of the5

th IEEE International Conference on Industrial In-
formatics, Vienna, Austria, July 2007.

[21] V. Silva, R. Marau, L. Almeida, J. Ferreira, M. Calha,
P. Pedreiras, and J. Fonseca. Implementing a distributed
sensing and actuation system: The CAMBADA robots
case study. InProceedings of the 10th IEEE Conference
on Emerging Technologies and Factory Automation, 2005.
ETFA 2005, volume 2, pages 781–788, September 2005.

5


