

The Virtual Token-Passing Ethernet Implementation and Experimental Results

Francisco Carreiro1,2
1DEE/ CEFET-MA – Brazil

Av. Getúlio Vargas N0 04 Monte Castelo
65025-001 São Luís - MA – Brazil

fborges@ieeta.pt

José Alberto Fonseca2
2DET / IEETA – Universidade de Aveiro

Campus Universitário de Santiago
3810-193 Aveiro Portugal jaf@det.ua.pt

Valter Silva3

3Escola Superior de Tecnologia e Gestão de Águeda,
University of Aveiro, Águeda, Portugal

vfs@stga.ua.pt

Francisco Vasques4

4DEMEGI-FEUP - Universidade do Porto
4200-465 Porto, Portugal
vasques@fe.up.pt

Abstract

This paper presents the design and first experimental
results of VTPE (Virtual Token-passing Ethernet). VTPE
is a deterministic protocol for real-time applications
based on shared Ethernet, aimed to be used either in small
processing power processors or in powerful ones. It is
based on implicit token rotation similar to the virtual
token-passing used in the P-NET protocol. The VTPE
implementation leads to reduced program code, thus
fitting in small microcontrollers’ memory and imposing
low communication overhead.

1. Introduction

Ethernet is currently the most widely used local area

network (LAN) technology in the world. However, it
cannot provide a real-time service to the supported
applications as the underlying CSMA/CD access protocol
does not provide a deterministic arbitration mechanism.
Therefore, it cannot guarantee that data delivery deadlines
will be met. In fact, such non-deterministic arbitration
mechanism poses serious challenges concerning the real-
time support of data communications.

Several approaches and techniques have been
developed to provide a real-time behaviour to Ethernet-
supported applications, taking advantage of the low cost
associated to this technology and also of the available
data-rates that are much larger than those of most real-
time fieldbuses available today. Some of these approaches
are based on the modification of the Medium Access
Control [1], the addition of transmission control [2], a
protocol using time-triggered traffic [3], or the use of
switched Ethernet approaches [4].

The objective of this work is to find Ethernet
deterministic solutions, so that it becomes possible to use
it to interconnect sensors, controllers and actuators at the
field level. Such solutions are based on the Virtual Token-
Passing Ethernet-VTPE protocol, proposed in a previous
paper [5]. The major objective of this paper is to present
and discuss the implementation of the VTPE protocol, as
well as the preliminary results obtained.

This paper is organized as follows: Section 2 briefly
presents the VTPE protocol. Section 3 presents the
available implementation of VTPE. Section 4 presents
some results obtained in the implementation and Section 5
presents future work and concludes the paper.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório Institucional da Universidade de Aveiro

https://core.ac.uk/display/15566662?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2. VTPE presentation

The VTPE protocol [5] implements an implicit token
rotation procedure (similar to the virtual token-passing
used in the P-NET fieldbus protocol [6]) upon the
Ethernet MAC layer, guaranteeing the deterministic
medium access. In order to preserve the compatibility with
existing hardware, the virtual token-passing scheme is
implemented using the standard Ethernet’s broadcast
destination address, guaranteeing that all the devices are
able to read each frame dispatched on the bus.

In a VTPE system each producer node is identified by a
node address number (NA) between 1 and the number of
producers expected within a system and has an Access
Counter (AC) that identifies which node can access the
bus in a specific time interval. Whenever a frame is sent to
the bus, an interrupt will be generated in all producer
nodes. After such interrupt, all the producer nodes will
increase their AC counters. The node whose AC value is
equal to its own unique address is allowed to access the
bus. If the actual node doesn’t have anything to transmit
(or indeed it is not present) the bus becomes idle and, after
a certain time, all the access counters are automatically
increased by one (which corresponds to an implicit token
passing). The next producer is then allowed to access the
bus. If, again, it has nothing to transmit, the bus continues
idle and the described procedure is repeated until a
producer effectively uses the bus. When the access
counter exceeds the maximum number of producers, it is
reset to 1 and the implicit token-passing cycle is repeated
again.

To implement the virtual token passing all producers
must have a timer, which can be programmed with time
value t1 or t2. t1 must be long enough to enable the slowest
processor in the system to decode the VTPE frame (read
the frame). t2 is used to guarantee the token passing when
one or more producers don’t have something to transmit.

After the end of a frame transmission all the producers
will re-initialise their timers with the t1 value. After t1
expires each producer node sets its timer with the t2 value,
increases its AC and checks if it is equal to its own node
address. Two possibilities can occur:

• The node whose AC is equal to NA will
immediately start a frame transmission if it
has something to transmit and then it sets the
timer with the t2 value.

• The nodes with NA different from the current
AC value will set their timers with the t2
value.

After the expiration of t2, each producer will check the
Bus Status register of the Ethernet controller to verify if
there is a frame being transmitted. If true, all the
producers will wait for the interrupt that will occur at the

end of the frame and increase the value of their access
counters.

To prevent inactivity in the bus during a long time
interval, which could lead to a significant clock drift
among system nodes, a timeout is considered too. After
the timeout expiration, the node that has the right to access
the bus must send a special message.

2.1 The VTPE original format frame

The VTPE protocol uses the MAC Ethernet frame,
encapsulating a special frame (VTPE frame) inside the
Ethernet data field. This is shown in fig. 1.

Alternating
1s/0s SFD DA SA Type or

length Data Pad FCS

VTPE frame

Preamble
Frame length (min. 64 bytes e

max. 1518 bytes

Fig. 1 Virtual Token-Passing Ethernet MAC frame

The VTPE uses the type field instead of the length. It

represents a reserved constant value, which must be used
by all the VTPE messages on the network. The use of this
field allows supporting the coexistence, in the same
network, of other protocols. Upon a frame reception, each
node will check the type field and will only perform
further processing if the frame is relevant. Nevertheless,
all the nodes producing non-VTPE frames need to
implement the VTPE access control, as frames cannot be
allowed to access the bus outside the authorized time
intervals, that is, whenever the AC is not equal to the
producer NA.

The VTPE frame carries one control field and one or
more messages as it is depicted in the figure 2.

NI,GI R Identif ier Length TTD Data

Control f ield Message f ield

Fig. 2 - VTPE frame format

Since VTPE can send more than one message inside a

single Ethernet frame, more efficient bandwidth utilization
is achieved due to the reduction on padding in the case of
small messages. Like it is shown in figure 2, the VTPE
frame is composed of two parts: the control field and the
message field.

Control field
The control field is two bytes long, being the first byte

divided in two parts. The four less significant bits (NI)
identify the number of messages inside the Ethernet frame
(up to 16 messages). The remaining four bits are the
Group Identifier (GI), which will be used to create
different producer groups, i.e., sub-networks. The GI idea
permits to reduce processing overhead in the nodes by
isolating devices that do not belong to the same group. In
fact, upon the frame reception, the nodes will check the GI
field and only perform further processing if the frame is
relevant. The second byte of the control field (R) is
reserved for future use.

Message field
The message field is composed by the identifier, the

data length, the TTD (Time to Deadline) and the Data
itself. The identifier must be unique and identifies the
VTPE message in the system. It is 2 bytes long and thus
can address 65536 different message streams. The TTD
field is two bytes long and is reserved to indicate the time
remaining to the message’s deadline. The Length field is
two bytes long and indicates the number of bytes in the
VTPE message. The VTPE data field is variable, so it can
be as small as one byte or as long as 1492 bytes. It must
be remarked that the Length field is two-byte long and
theoretically it could indicate a 65536 bytes long frame.
However, the maximum number of data bytes that are
allowed per frame in a VTPE message is 1493 bytes (1500
bytes for the maximum number of data bytes inside a
single Ethernet frame minus 7 bytes for the control field
and the VTPE message’s header).

To minimize the overhead on small processing power
devices, messages from and to these nodes must be
compatible with their processing capacity. The maximum
VTPE message length for these nodes will be fixed
further.

3. VTPE implementation

3.1 The hardware

The block diagram of a VTPE node is shown in figure
3. A VTPE node consists of an eight-bit microcontroller
PIC 18F458 [7] attached to a Packet Whacker Ethernet
board [8] based on the RTL8019AS [9] Ethernet
controller.

At initialization, the RTL8019AS uses the EEDO,
EEDI and EESK lines to find an extern EEPROM and
gets the MAC address. As the hardware does not use an
extern EEPROM, the PIC, besides simulating the
EEPROM presence, also supplies the MAC address. This

approach simplifies the hardware and makes easier the
modification of the MAC address value.

PIC
18F458 Packet Whacker

Data bus
(8 bits)

Address bus
(5 bits)

Control lines
(Read, write, Int0,AEN,RSTDRV)

EEPROM Lines
(EEDO,EEDI,EESK)

Fig. 3 VTPE node block diagram

The developed VTPE system consists of three nodes
interconnected by a hub/switch device, as shown in figure
4.

VTPE Nodes

Hub/Switch

Fig. 4 VTPE system

3.2 The software
Currently the VTPE software is still being developed. It

is written in C using the PICC18 compiler and developed
recurring to the HI-TIDE environment.

Basically the code consists of:

• A function to initialize the Ethernet controller;

• Two functions, one to write data into the
Ethernet controller and other to read data from
the Ethernet controller, and;

• A function to run the VTPE protocol, i.e., to
increase the access counters and to decide if
the node has the right to use the bus.

The program code needed to implement the VTPE
protocol is very small, approximately 3K bytes, just
occupying 9% of the flash memory available in the PIC
18F458.

4. Experimental results

The tests carried on until now are aimed to show the
system working in the virtual token-passing bus
arbitration fashion. For this particular test it was defined
that:

• Each node must transmit a predefined VTPE
frame per time as depicted in figure 2;

• To facilitate visualization in a sniffer screen,
the t1 time was defined as 1 second.

• The Ethernet type field was defined as 0x
abcd.

The Figure 5 shows an Ethereal [10] sniffer screenshot
in which some frames transmitted in the VTPE
demonstrator were captured. There can be observed that
the Ethernet packets were transmitted in the expected
sequence of the nodes addresses, i.e., 1:00:00:00:00:00,
2:00:00:00:00:00 and 3:00:00:00:00. All frames were sent
with broadcast (ff.ff.ff.ff.ff.ff) in the destination address.
This is a basic VTPE characteristic because all nodes must
accept and check each frame sent in the bus. There can
also be noted the Ethernet type field, which for this test,
was defined as 0xabcd. In the lower part of the screen it
can be seen the transmitted message “BRASIL
PORTUGAL”.

Fig. 5- Output of the Ethernet sniffer showing VTPE

operation.

5. Conclusion and future work

The VTPE protocol is a proposal to achieve real-time

behaviour on top of shared Ethernet. This paper presents
the current development state of a demonstration for the
VTPE protocol.

The VTPE code for this implementation is very small.
It occupies approximately 9% of the available flash
memory of the microcontroller used. This is an important
result since VTPE is intended to be used in small
processing power processors. The demonstration system is
also useful to show the operation of VTPE.

To continue the development of VTPE some
improvement will be done, for example:

• To implement a mechanism to facilitate the
system management;

• To develop and validate mechanisms to promote
fault tolerance in real conditions of operation,
namely a solution based on the publication of the
individual access counter values.

References

[1] Jae-Young Lee, Hon-ju Moon, Sang Young Moon,
Wook Hyung Kwon, Sung Woo Lee, and Ik Soo Park.
“Token-Passing bus access method on the IEEE 802.3
physical layer for distributed control networks”.
Distributed Computer Control Systems 1998 (DCCS’98),
Proceedings volume from the 5th IFAC Workshop.
Elsevier Science, Kidlington, UK, pp. 31-36, 1999.
[2] Venkatramani, C., T. Chiueh. Supporting Real-Time
Traffic on Ethernet. IEEE Real-Time Systems Symposium.
San Juan, Puerto Rico, December 1994.
[3] Pedreiras, P., L. Almeida, and P. Gai, “The FTT-
Ethernet protocol: Merging flexibility, timeliness and
efficiency”, Proceedings of the 14th Euromicro
Conference on Real-Time Systems, Viena, Austria, June
19-21, 2001
[4] Choi Baek-Young, Song Sejun, N. Birch, and Huang
Jim. “Probabilistic approach to switched Ethernet for real-
time control applications”. Proceedings of Seventh
International Conference on Real-time Computing
Systems and Applications, pp. 384-388, 2000.
[5] Carreiro, F. Borges, Fonseca, J. Alberto, and Pedreiras,
P, “Virtual Token-Passing Ethernet-VTPE”, FET 2003 5th
IFAC International Conference on Fieldbus Systems and
their Applications, Aveiro, Portugal, July 2003.
[6] EN50170, Volume 1- European Fieldbus Standard
[7] Microchip, “PIC 18Fxx8 Data Sheet”, 2003.

[8] Fred Eady, “Introducing the Packet Whacker Part1
and Part 2” Circuit Cellar online, October 2001

[9] Realtek, “RTL8019AS Specification”, 2001.
[10] The Ethereal packet Sniffer, http://www.ethereal.com

