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A. Manuela Gonçalves1, Marco Costa2

1 Department of Mathematics and Applications, University of Minho
CMAT-Center of Mathematics, Portugal
mneves@math.uminho.pt

2 Higher School of Technology and Management of Águeda-University of Aveiro
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Abstract: In this work it is constructed a hydro-meteorological factor to improve
the adjustment of statistical time series models, such as state space models, of
water quality variables by observing hydrological series (recorded in time and
space) in a River basin. The hydro-meteorological factor is incorporated as a
covariate in multivariate state space models fitted to homogeneous groups of
monitoring sites. Additionally, in the modelling process it is considered a latent
variable that allows incorporating a structural component, such as seasonality, in
a dynamic way.
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1 Introdution

Water quality monitoring is an important tool in the management and
assessment of surface water quality. This study focuses on a rather extended
data set relative to the River Ave basin (Portugal) and consists mainly of
monthly measurements of biochemical variables in a network of monitoring
water quality stations.A hydro-meteorological factor is constructed for each
monitoring station based on monthly estimates of precipitation obtained by
means of a rain gauge network. Through stochastic interpolation (Kriging)
it is estimated the mean area rainfall during each month in the area of
influence of each water quality monitoring site. These estimates are based
on rain gauges located in the respective area of influence. In a recent work,
Costa and Gonçalves (2010) show that a set of water quality monitoring
sites can be modelled applying cluster techniques that minimize the number
of models.
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2 Surface water quality variables modelling

2 Data Set Description

The Northern Regional Directory for the Environment and Natural Re-
sources (DRARN) and the National Institute of Water (INAG) has been
collecting various water quality variables (monthly physical-chemical and
microbiological analyses) from 16 quality monitoring sites. The data set
of the 16 water quality monitoring sites, comprising 11 water quality vari-
ables, have been monthly measured between 1988 and 2006. At this time,
this work focuses on Dissolved Oxygen (DO) (mg/l) in water because it is
one of the most important variables in the evaluation on river water qual-
ity. For instance, it is shown the data and the results of one cluster with
five water monitoring sites identified in Costa and Gonçalves (2010) as the
less polluted cluster.

3 Methods

As starting point, it is constructed a hydro-meteorological factor used as
covariate in the modelling process. This covariate will integrate a hydro-
meteorological component that is recognized as crucial in any water quality
modelling process. This factor is constructed through stochastic interpola-
tion (Kriging) based on an udometric network (Figure 1) with 19 meteo-
rological stations. The model of spatial continuity, which is inferred from
monthly precipitation estimates, assumes hypothesis of homogeneity of the
process: the process is stationary of 2nd, i.e., intrinsically stationary and
isotropic. Under this hypothesis, two observations in the same location
but in different times are independent and the spatial variability pattern
remains the same (Kyriakidis and Journel, 1999). The empirical semivari-
ogram is given by
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with N(h|l) = {(i, j) : ‖si − sj‖ − ‖h‖ ≤ l; 1 ≤ i ≤ j ≤ n} and |N(h|l)| =
#N(h|l).
The river basin is discretized in 368 points with 2Km x 2Km (Figure 1)
and at each point s0 the estimate of the monthly mean area precipitation
is given by the Kriging estimator, i.e., by a linear combination of the 19

known points sj , j = 1, ..., 19 and Zt(s0) =

19∑
j=1

λjZt(sj).

3.1 Hydro-meteorological factor

It is constructed one covariate for each water monitoring site based on the
estimate of the monthly mean precipitation of its influence region. In this
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FIGURE 1. Spatial distribution of 19 meteorological monitoring sites in the River
Ave basin and discretization of River Ave basin in 368 points.

context, the influence regions of each water monitoring site were defined by
technicians of the INAG and they are supported on the regions topography
and the lands drainage dynamics.
Firstly, for each water monitoring site, it was computed the monthly mean
area precipitation in its influence region based on the average of point pre-
diction. Naturally, a large influence region tends to have a greater precipi-
tation amount. Indeed, it is clear that the precipitation amount influences
oxygen concentration in water. However, if the goal of this work is to found
a prediction model to DO in a month t, the covariate should not incor-
porate the precipitation amount of the current month, but only the past
information.
Let P

(i)
t be the estimate of the precipitation amount in the influence area of

a water monitoring site i at month t. We considered a covariateH
(i)
t computed

as a weighted average of precipitation amount at months t− 1 and t− 2.

3.2 State space model

For each cluster i with homogenous water monitoring site it is fitted a state
space model to Dissolved Oxygen concentration incorporating two struc-
tural components: the hydro-meteorological factor and a seasonality. In or-
der to simplify, it is considered monthly seasonality assuming 12 known co-
efficients (for each month it is taken the month mean; Costa and Gonçalves,
2010):
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Since normal distribution is not always the best distribution to fit mete-
orological variables in this work, we adopted consistent distribution-free
estimators developed from the original work by Costa and Alpuim (2010).

TABLE 1. Parameters estimates.
µ̂X φ̂ Σ̂V Σ̂µ Sites

1 0.277 −1.045 0.016 −0.005 0.597 0.000 0.000 0.000 0.000 CANT

−0.0003 0.038 0.738 −0.005 0.003 0.000 0.265 0.000 0.000 0.000 GOL

0.000 0.000 0.417 0.000 0.000 FER

0.000 0.000 0.000 0.383 0.000 V SA

0.000 0.000 0.000 0.000 0.737 TAI

The state space model with these parameters estimates associated to the
Kalman filter produces monthly one-step predictions for Dissolved Oxy-
gen concentration at each water monitoring site (Table 1). Figure 2 shows
observed data and predictions in Vizela Santo Adrião (VSA) and Golães
(GOL) monitoring sites.

FIGURE 2. Observed and one-step predictions of Dissolved Oxygen concentration
in Vizela Santo Adrião (VSA) and in Golães (GOL).

4 Conclusions

It is possible to conclude that the hydro-meteorological factor is an impor-
tant component adding information beyond the usual seasonality. More-
over, the adoption of the consistent distribution-free estimators for the
state space models requires a future comparison with gaussian likelihood
estimation, assessing its relative efficiency, and possibly comparing its fore-
casts mean square error. However, distribution-free estimators are an easy
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solution without computed problems, nor iterative procedures and neither
requires initial values. The next step is to analyse the filtered estimates of

states X
(i)
t|t given by the Kalman filter, which allows an interesting analysis

of these latent variables as calibrate factors of the two structural compo-
nents.
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