
Context Storage Using NoSQL
Nuno Santos

Instituto de Telecomunicações
Campus Universitário de Santiago

3810-193 Aveiro - Portugal
Email: nfvs@ua.pt

Oscar M. Pereira
Instituto de Telecomunicações

Campus Universitário de Santiago
3810-193 Aveiro - Portugal

Email: omp@ua.pt

Diogo Gomes
Instituto de Telecomunicações

Campus Universitário de Santiago
3810-193 Aveiro - Portugal

Email: dgomes@ua.pt

Abstract—With the ubiquity and pervasiveness of mobile com-
puting, together with the increasing number of social networks,
end-users have learned to live and share all kinds of information
about themselves. As an example, Facebook reports that it has
currently 500 million active users, 200 million of which access its
services on mobile systems; moreover, users that access Facebook
through mobile applications are twice as active as non-mobile
users, and it is used by 200 mobile operators in 60 countries [1].
More specific mobile platforms such as Foursquare, which unlike
Facebook only collects location information, reports 6.5 million
users worldwide, and also has a mobile presence (both with a
web application and iPhone / Android applications) [2]. Context-
aware architectures intend to explore this increasing number of
context information sources and provide richer, targeted services
to end-users, while also taking into account arising privacy issues.

While multiple context management platform architectures
have been devised [3], this paper focuses primarily on Context-
Broker-based architectures, such as the ones proposed in the
projects Mobilife [4] and C-Cast [5]. More specifically, it focuses
on the context management platform XCoA [6]. This platform
uses XMPP for its main communication protocol, and publishes
context information in a Context-Broker. This context informa-
tion is provided by Context-Agents, such as mobile terminals,
sensor networks and social networks. Due to the nature of the
XMPP protocol, the context information is provided in XML
form.

This paper proposes the usage of a NoSQL storage system
for the purpose of context information storage and retrieval
in an XMPP broker-based context platform such as XCoA,
together with a full-text searching engine. Through a comparison
made through prototypes, the paper clearly demonstrates the
advantages of NoSQL storage systems applied to the area of
Context Management.

Index Terms—Context Management, Knowledge Management,
Data Management, NoSQL

I. INTRODUCTION

Mobile computing is becoming ever more ubiquitous, which
ultimately has led to an increase in the amount of data related
to users and their devices that can be collected to provide
better targeted services. This data is referred to as Context
Information [7] and consists of all information about a subject
(a user, a device, a room, an application, a service) that can
be collected and used to provide better services for the same
subject or other users. For example, a user’s location can
be crucial in delivering targeted restaurant recommendations,
as well as his personal preferences and restaurant history.
This requires a mechanism to properly store, request, manage
and analyze context information. In this paper we present

a centralized solution built around a component responsible
for the distribution and management of context information,
commonly referred to as Context Broker (CB). All context in-
formation collected or consumed in the Context Management
network crosses this component, which has the ability to re-
route the information and store a log of all context collected
and consumed.

This paper focuses specifically on XCoA [6], an XMPP-
based context architecture, which uses the XMPP Publish-
Subscribe protocol to handle all context publishing and no-
tification facilities. Context is published to the Context Broker
(CB), and Context Consumers (CC) subscribe to specific types
of context information and can be notified whenever new
context is published. Although the XCoA platform is based on
the XMPP Publish-Subscribe protocol, which does not require
that all information that passes through it be stored, the ability
to store this information provides an important advantage, and
enables the creation of a complete context history repository
for further analysis.

Current broker-based context management platforms opted
for relational databases to handle the storage of context
information. Although this has many advantages, as most
context management architectures map well to the relational
model, the sheer amount of published context information may
quickly exhaust a traditional relational database’s capacity to
respond effectively.

This calls for a storage system that is able to store and han-
dle large quantities of context data efficiently, while still taking
into account the relational model of the context management
architecture. In this paper we will address the state of the art in
Broker based Context Management platforms and in NoSQL
storage solutions in section II, followed by a description of the
XCoA platform in section III. Next we describe what are the
advantages of the usage of a NoSQL solution in the XCoA
platform in section IV, and describe how this integration was
possible, together with possible deployment architectures and
an evaluation of its performance in section V. We end this
paper with some final remarks and future directions of the
field VI.

II. STATE-OF-THE-ART

A. Context Management Platforms

While context acquisition, processing and distribution can
follow either a centralized or distributed paradigm, this paper

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório Institucional da Universidade de Aveiro

https://core.ac.uk/display/15566578?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


focuses solely on centralized architectures. This type of ar-
chitectures have a centralized piece, usually called a Context
Broker (CB), which is responsible for handling the relationship
between context sources and actuators. Several projects have
implemented different architectures for Broker-based context
platforms. The Mobilife project [4] was an EU project which
implemented such a Broker-based context architecture, where
the CB assumed a passive role, being more of a registration
and lookup directory. In this platform no context information
was persistently stored, as that was assumed to be ”almost the
same as caching all the data that is routed over a server in
the Internet” [4]. No history of past context data was kept,
so actuators would only be able to reason about up-to-date
context information.

The C-Cast project [5] was built on top of the Mobilife
architecture, and provided a way to persistently keep a history
of published context information. The CB in this architecture
assumed a more active role, managing the relationship between
context sources and context consumers and storing context
information in a relational database. However, context types
were each stored in a different database table, so with every
new context type a new database table would have to be
created and the data accommodated to it. All communication
between the platform entities was handled through XML
messaging, and context was stored in a XML-based format
called ContextML

B. NoSQL

NoSQL storage systems are a relatively new breed of
storage systems that differ significantly from the traditional
relational databases. They exchange complex data models and
rich query functionalities usually found in relational databases
for simpler models, which translates in better performance
and distributability, which is key to horizontal scalability.
Horizontal scalability is the ability to add more machines
to cope with increased data loads, as opposed to vertical
scalability which consists in adding more resources to a single
machine.

Currently a myriad of NoSQL storage systems exist, dis-
tributed across different types and with different goals and
features. Within all these different types and goals, one feature
seems to be shared among virtually all of them: the ”lack
of relations” [8]. Virtually among all of them because some
NoSQL platforms do provide some primitive mechanisms
that allow the existence of relationships between data items.
However, this is not their primary goal.

The first so-called NoSQL storage systems arose primar-
ily out of scalability concerns. Google’s BigTable [9] and
Amazon’s Dynamo [10], which are seen as the fore-runners
in the development of NoSQL storage systems and seem to
inspire many of today’s NoSQL applications [8], all handle
large, ever-growing amounts of data. These NoSQL storage
systems sacrifice features usually found in traditional relational
databases, such as ACID properties (Atomicity, Consistency,
Isolation, Durability), strong consistency and rich data-query

model, in favor of higher scalability, availability and perfor-
mance.

Most NoSQL storage systems are also schemaless, or
schema-free, where no schema is configured or enforced when
using the database. Data items with different structures can be
mixed and stored, which significantly reduces the complexity
of these systems, especially from the point of view of an
application developer, as when a data item with a new structure
needs to be stored, no changes to the data model are needed.

There are three types of NoSQL storage systems, further
discussed in detail: Key/Value Store, Wide Column Store or
Column-Oriented, and Document-Oriented storage systems.

C. Key/Value Store
Key-Value Store storage systems are very simple systems,

similar to Hash Tables, that store any type of data indexed
by a key. Due to its low complexity they are generally very
highly performant, but not very flexible. In such system’s all
data accesses must be made using the given key and there is
no way to query data items using any of the contents of the
data (unless they are the key).

Amazon Dynamo was one of the first NoSQL storage
systems, developed by Amazon only for internal use. It focuses
on high reliability and scalability, two crucial requirements at
Amazon [10]. Redis is another example of a Key/Value Store;
Redis is an open-source Key/Value Store, that typically holds
data items in memory, although it can also persist them to disk
[11].

D. Wide Column Store
Column-Store, or Column-Oriented, is the name given to

storage systems that store information grouped by columns,
unlike traditional relational databases which store information
grouped by rows. By grouping data by columns instead of
rows, all similar data items are physically close to each other.
This has benefits when making operations with small sets
of columns, but large sets of rows. In traditional relational
databases, when updating or accessing a specific column on
several rows, this could mean several disk-seeks would need
to be performed to find the right columns in each row; with
a Column-Oriented database, a single disk-read / write could
be sufficient.

These storage systems may not be completely schema-
free; there is usually a fixed number of special columns,
named Column-Families or Supercolumns, which can then
contain several simple columns inside. For example, Cas-
sandra, a decentralized, eventually-consistent Column-Store
database developed by Facebook, uses this type of structure,
where there is a fixed number of Supercolumns (although they
can be changed offline), and each Supercolumn has an infinite
number of columns associated with them [12].

E. Document-Oriented
Document-Oriented storage systems are an evolution of

Key/Value Store systems; they also store data items indexed
by a key, but usually the data items stored are structured doc-
uments, more commonly JSON (JavaScript Object Notation)



documents. This allows them to offer a richer set of features
on top of those offered by simple Key/Value Store systems.
CouchDB an open-source cross-platform document-oriented
storage system and a flagship NoSQL solution, stores JSON
documents indexed by a Key. In addition CouchDB supports
views, transformations of the data items through Map/Reduce
functions, that allow any field of a document to become key,
therefore enabling document searching by fields other than the
initially defined keys [13] [14].

These solutions have an emphasis on distributability, high
availability and performance, sacrificing features such as
strong consistency for weaker types of consistency. CouchDB,
for example, uses Multi-Version Concurrency Control, where
documents are never updated; instead, a new version of the
document is created, where concurrent read operations can
retrieve different versions of a document, although eventually
all instances of the database will be in a consistent state.

III. XCOA - XMPP CONTEXT ARCHITECTURE

XCoA is a Broker-based Context Architecture proposal,
by D. Gomes et al. [6], built around the XMPP [15] pro-
tocol, more specifically XMPP Publish-Subscribe [16]. It
built on top of the results of C-Cast, but using the XMPP
Publish-Subscribe protocol for communication instead of Web-
Services.

Fig. 1. XCoA Architecture [6]

In this architecture, context information is first collected
by Context Agents (CA) such as mobile terminals, social
networks, or wireless sensor networks, and aggregated by
CPs dealing with specific context scopes such as Location,
or Social Preferences. Each CP is responsible to publish the
aggregated context information on a CB Publish/Subscribe
service which stores this information (History), and sends
it to CCs as requested using the PubSub model. All the
context information between the CPs, the CB and the CCs
is exchanged in XMPP Publish-Subscribe messages. CCs can
subscribe to specific Context data, such as Location, and
receive notifications when the Providers publish information
in the Broker.

Due to the nature of the XMPP protocol, all context
information is published in XML form, inside XMPP PubSub
Items [16]. CPs can be organized as PubSub Nodes, and
context information is published in the respective nodes [6].

CCs can then subscribe specific nodes, for specific context
types, receiving only the desired information. Most XMPP
servers use a relational databases for persistent storage, and
as such store Items as an XML string in the database. Such
was also the case with XCoA platform, which used Openfire
as an XMPP server and PostgreSQL as a database.

IV. CONTEXT STORAGE USING NOSQL

Although in a Publish-Subscribe system it is not necessary
to store every published item, in a Context Management
Platform it becomes advantageous to do so. Storing every piece
of context information provides a comprehensive history of a
user’s context data, which allows for very powerful features
such as context-aware advertising, actuation and environment
adaptation according to the user’s preferences.

With the need to store every user’s full context history
comes the problem of handling very large quantities of data.
This is a very active research problem, with several proposed
solutions such as the so-called NoSQL storage systems, some
of which already mentioned in section II.

The information to be published, as previously mentioned,
is in XML format. This information can have any structure,
and the Platform should be able to efficiently handle context
information with any XML structure.

The type of queries used in a Publish-Subscribe system are
simple listings of context information, grouped by published
Node (E.g. the last 10 Items published on node X) and sorted
by publishing date. It should also be possible to retrieve
published Items by ID.

This paper, then, proposes the usage of a NoSQL storage
system for storing context information with the following main
goals in mind: better performance when handling massive
ammounts of data, horizontal scalability and availability, and
integration with a full-text searching engine. We begin by
looking at performance advantages.

A. Performance Advantages

As seen in section III, the XMPP Publish-Subscribe protocol
is a good fit for centralized context management platform.
CP’s, which receive context information from CA’s, can pub-
lish the context information in the CB, through XMPP PubSub
Items. CCs, which subscribe certain context types (through
XMPP PubSub Nodes), receive notifications with the context
information, as published by the CPs.

Besides real-time notifications from context publication,
CCs can ask the CB for published context data. Due to
the organization of the context data through XMPP PubSub
Nodes, it can retrieve, for example, the last Location Item
published, or the last 10 Social Preferences Items.

This makes for two distinct operations, with regards to
context publishing. One will be a real-time notification to all
the subscribed entities of a context type (PubSub Node), while
the other corresponds to a request of context information.

For the first operation, context information storage is largely
irrelevant for the completion of the notification procedure. It is
theoretically possible, for example, to first notify all subscribed



entities, and postpone the context data persistence to disk (due
to the second operation, it may not be desirable).

For the second operation, however, context data will be
retrieved from storage. Due to the nature of the context
information, it may be acceptable for the information retrieved
to miss one context item that’s being published in the exact
moment the retrieve operation is executed. E.g. when publish-
ing GPS coordinates every 10 seconds, it may be acceptable
to, when retrieving the last published GPS coordinates, return
the outdated GPS context data (although it will only be, at
most, 10 seconds old; hardly meaningfully outdated).

This relaxed persistency constrains allows the tradeoff of
strong-consistency features, as present in relational databases,
for weaker forms of consistency, when accompanied by per-
formance, reliability and availability gains. A NoSQL storage
system will do such a trade.

B. Horizontal Scalability and Availability

Horizontal scalability refers to the ability of scaling a
database by adding more machines or nodes, as opposed to
vertical scalability which means scaling a database by adding
more resources to a single node. One important feature of
NoSQL solutions is distributability, which translates in the
ability to distribute the database through several nodes, thus
scaling the database cluster horizontally.

Together with distributability and horizontal scalability
comes increased availability and reliability. Distributing a
database through several nodes increases availability and reli-
ability, depending on the distribution approach. Several distri-
bution approaches are possible, such as partitioning data and
storing every partition only once, which does not guarantee
increased data reliability; however, distributing every partition
through two or mode nodes increases data reliability and
availability.

C. Full-Text Searching Capabilities

One disadvantage of most NoSQL solutions over relational
databases is the inexistence of searching capabilities. Although
some NoSQL solutions offer this, most are mostly focused on
efficient storage of data and simple retrievals of documents by
key.

However, to plug this gap several external full-text searching
engines were developed, which can then be integrated into
these NoSQL solutions. This provides an important advantage
of being able to focus entirely on the NoSQL solution without
regards to efficient searching capabilities, and being able to
externally plug a searching engine, which usually has the focus
on efficient searching. This separation means we can replace
one searching engine for a more efficient one, without switch-
ing the NoSQL storage system, provided that the searching
engine provides integration with the storage system.

With an external searching engine, it would index con-
text information asynchronously, in a passive way, without
compromising the correct functioning of the XMPP PubSub
protocol. Through replications, one storage node could be in
charge of all store/update functionalities, while a replicated

node could be in charge of context information indexing and
searching. It should be noted that existing relational databases
such as PostgreSQL already provide full-text searching capa-
bilities natively, and do not need external components to do
it. It is, however, tightly interated inside PostgreSQL, so it is
not possible to switch it for a more efficient one, or even to
separate it completely.

Using an external searching engine also provides additional
scalability benefits, as most of them allow distributability and
may be deployed as a cluster, separately from the NoSQL
storage cluster, so different scalability requirements for search
should not affect the scalability requirements of the storage
system, and both can be thought of being deployed indepen-
dently.

V. IMPLEMENTATION AND RESULTS

In order to study the feasibility of storing Context In-
formation in a PubSub XMPP Component, a prototype was
implemented.

It was decided to use an external XMPP PubSub component
that integrated with an existing XMPP server and offered
XMPP PubSub capabilities.

For the selection of a NoSQL solution, both performance
advantages, scalability, reliability and indexing / searching
capabilities were kept in mind.

CouchDB is a document-oriented database with many im-
portant features such as replication capabilities, distributability,
allows for horizontal scalability, as well as integration with
external document indexing / searching. It is open-source,
widely deployed and mature. Other NoSQL solutions such
as document-oriented MongoDB were also kept in mind.
MongoDB, however, does not offer data durability guarantees
in single-node deployments. Wide-column store Cassandra and
HBase offer data durability, but their complex data model
was deemed incompatible with the XML nature of context
information, as it would fit better in a document-oriented
database.

The two most popular full-text searching engines are
Apache Lucene, mature and widely used [17] and Elastic-
Search. In addition, there are already several integrations with
NoSQL solutions, such as Cassandra and CouchDB. Since
separate indexing of content from a Cassandra dataset is not
possible, CouchDB proved to be a good choice.

For the implementation of the external XMPP PubSub
component, an existing one was chosen: Idavoll 1. It is
implemented in Python and uses the Twisted Framework, an
event-driven networking framework. Although most of the
protocol was already implemented, some features had to be
implemented, such as XMPP XEP-0248: PubSub Collection-
Nodes, which supports node hierarchy [18], support for con-
figuring node and subscription options and a Hybrid Post-
greSQL/CouchDB storage engine. It was chosen to store only
the Items in CouchDB, instead of all the data, because XMPP
PubSub Items are not related to other data (its information,

1http://github.com/nfvs/idavoll



such as the Node to which it’s published, is static, so there’s
no need for relations between the data). The remaining data
(Nodes, Subscriptions, Entities) fits well in a relational model,
and is then stored in PostgreSQL.

The context information, contained in PubSub Items in
XML form, is stored in CouchDB as a JSON document
field, as an XML string. Storing this information inline in
the documents, converting it from XML to JSON, was a
possibility, but a one-to-one conversion between the two is
not possible.

The structure of the documents stored in CouchDB, repre-
senting Items, is as follows:
{
"doc_type": "item",
"item_id": <item_id>,
"node": <identifier of the node>,
"publisher": <JabberID of the publishing entity>,
"date": <Date and time of item publishing>,
"data": <Item XML String>

}

Storing hierarchical information in SQL, as needed by
XMPP XEP-0248: PubSub Collection Nodes, provided an
additional challenge. In this spec, nodes can be one of two
types; either leaf nodes, on which items are published; or
collection nodes, which can either contain more collection
nodes, or leaf nodes. Subscribers can then subscribe to a single
collection node, and receive notifications from all contained
leaf-nodes.

Implementing the Nodes tree in SQL can be done in one of
two ways: either using Nested-Sets, or Adjacency List [19].
Nested-Sets is a complex model, where each node is numbered
according to the order of tree traversal, visiting each node
twice and can be implemented without recursion. Adjacency
List, on the other hand, is simpler, where each node has a
connection to its parent node and although simpler, queries
use recursion, which can prove impossible in certain SQL
solutions. However, as the database used was PostgreSQL 8.4,
which already supports recursive queries [20], the Adjacency
List model was chosen.

CouchDB integration with Apache Lucene is then made
through couchdb-lucene 2, a java application which indexes
CouchDB documents and attachments (including XML attach-
ments).

A. Performance Tests

Performance tests were executed to assess CouchDB’s per-
formance against PostgreSQL for the most important opera-
tions of the XMPP Publish-Subscribe protocol: Item insertion,
which happens every time there is a new published item; Item
retrieval, which retrieves a single or multiple Items from the
database either by its key or according to other criteria (e.g.
the last 5 items published to node X); and Item search, which
matches a search string against the full context information
contents.

Database insertion of Item publications is not a high
performance-demanding operation, as the notification of sub-

2https://github.com/rnewson/couchdb-lucene

scribed entities is not dependent on the Items database. When
an Item is published, notifications are issued immediately, and
the operation of storing this published Item in the database
can even be delayed without impacting the XMPP PubSub
protocol. The most important operations are then Item retrieval
and Item searching.

These tests were performed within a single node, with the
XMPP server, PubSub component, PostgreSQL and CouchDB
databases in the same node. The hardware used was a single
VMWare virtual machine with an Intel Core 2 Duo CPU @
2.66Ghz, 512MB of memory and 20GB of disk space. The
databases used were PostgreSQL 8.4.1 and CouchDB 1.0.1.

Performance tests were made for Item retrieval by a field
other than the key (E.g. by node) and Item searching for
datasets of 10K, 50K, 100K, 200K, 500K and 1Million items,
both for PostgreSQL and CouchDB. Although in a context
management platform the number of publications inserted in
the database is always increasing, these datasets already show
performance tendencies of both solutions. After hitting the
performance limits of the storage system, data partitioning
together with new cluster nodes can help mitigate this problem.

It should be noted that CouchDB does not have native sup-
port for full-text search queries, which is why Apache Lucene
is used in integration with CouchDB. There is currently no
supported integration between Lucene and PostgreSQL, so
the comparision was made between CouchDB with Lucene
and PostgreSQL, Openfire and thus XCoA platform’s default
database.

Results for Item retrieval and Iteam search are shown in
figures 2 and 3.

Fig. 2. PostgreSQL vs CouchDB: Item retrieval

Graph 2 shows the performance degradation of Item re-
trieval when the database increases in the number of Items. Re-
trieving an Item in PostgreSQL on a 1,000,000-Item database
takes on average over 1 second, while in CouchDB takes less
than 80 ms. PostgreSQL shows a 98% performance degrada-
tion between datasets of 10K and 1M Items, against the 24%
degradation observed in CouchDB. Graph 3 shows the per-
formance degradation of Item searching. With the increase of
database Items, the performance advantages of the CouchDB



Fig. 3. PostgreSQL vs CouchDB / Lucene: Item searching

/ Lucene system become apparent. PostgreSQL shows 98%
performance degradation between 10K (about 2ms) and 1M
Items (about 181ms), against CouchDB / Lucene’s 66% (4ms
for 10K, 12ms for 1M Items).

Besides separate retrieval and search query tests, dynamic
tests were also made to measure the degradation of each
storage system when handling simultaneous insertions and
retrievals. For each storage system the Item retrieval time was
measured while simultaneously inserting Items every 25ms,
50ms, 250ms and 500ms. The simulation ran for approxi-
mately 15m for each database, and for each Insertion rate.
The results are shown in 4 and 5.

Fig. 4. PostgreSQL: Item retrieval with simultaneous Item insertions

These results show that PostgreSQL’s performance degrades
linearly with the increase in the number of published Items,
while CouchDB’s performance remains relatively constant.
However, with an insertion rate of one Item every 25ms,
CouchDB is initially outperformed by PostgreSQL, although
extrapolating from these results we can assume that Post-
greSQL’s performance will eventually be outperformed by
CouchDB. CouchDB also shows very good performance for
insertion rates of one Item every 500ms, 250ms and 50ms,
with a slight increase in retrieval time for 25ms; however,

Fig. 5. CouchDB: Item retrieval with simultaneous Item insertions

with a cluster of several CouchDB nodes, it is very unlikely
that an insertion rate of one Item every 25ms is ever observed
in any single node.

The performance advantages of CouchDB vs. PostgreSQL
can be explained by their different approaches; CouchDB
focuses on performance, distributability and horizontal scal-
ability, and offers fewer consistency guarantees; PostgreSQL
on the other hand offers a richer data model and richer queries,
as well as stronger consistency guarantees, while focusing
more on vertical scalability and not so much on distributable
deployments. These two solutions, with their different focuses,
have very different approaches to storing and retrieving data.

VI. CONCLUSION

The usage of a NoSQL storage system in an XMPP-based
Context Architecture provides important performance advan-
tages, and allows for higher availability and reliability, while
also scaling horizontally. A NoSQL solution, using CouchDB
in particular, proved to be a very good fit for handling large
sets of data, such as Context Information. The possibility of
integration with the Apache Lucene engine, further allowed
searching operations outside the XMPP Publish-Subscribe
protocol.

The NoSQL ecosystem, unlike relational databases, is
headed towards specialization, so different solutions are
headed in different directions, leaving the door open for new
players to emerge, and making the ecosystem an exciting and
ever-evolving field. In this paper, we addressed the impact
and improvements a NoSQL solution can have on a Context
Management Platform.

Further work will focus on a fully distributed XMPP
Publish-Susbcribe platform, distributing not only the
CouchDB nodes but also the PostgreSQL database and the
XMPP PubSub component. As in a context management
platform the number of context publications always keeps
rising, further data partitioning schemes will also be
researched, to better handle the always-increasing data load.



REFERENCES

[1] Facebook. Facebook Press Room: Statistics. http://www.facebook.com/
press/info.php?statistics.

[2] Foursquare. Foursquare: About. http://foursquare.com/about.
[3] Terry Winograd. Architectures for Context. Human-Computer Interac-

tion, 16(2):401–419, 2001.
[4] P Floreen, M Przybilski, P Nurmi, J Koolwaaij, A Tarlano, M Wagner,

M Luther, F Bataille, M Boussard, B Mrohs, and Sianlun Lau. Towards
a Context Management Framework for MobiLife. Management, pages
120–131, 2005.

[5] M Zafar, N Baker, B Moltchanov, J M Gonçalves, S Liaquat, and
M Knappmeyer. Context Management Architecture for Future Internet
Services. Applied Sciences, 2009.

[6] Diogo Gomes, João Gonçalves, Ricardo Santos, and Rui L Aguiar.
XMPP based Context Management Architecture. In IEEE Globecom,
2010.

[7] Anind K Dey and Gregory D Abowd. Towards a Better Understanding
of Context and. In Proceedings of the 1st international symposium on
Handheld and Ubiquitous Computing, pages 304 – 307. Springer-Verlag
London, UK, 1999.

[8] Neal Leavitt. Will NoSQL Databases Live Up to Their Promise?
Computer, 43(2):12–14, 2010.

[9] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C Hsieh, Deb-
orah A Wallach, Mike Burrows, Tushar Chandra, Andrew Fikes, and
Robert E Gruber. Bigtable : A Distributed Storage System for Structured
Data. Sports Illustrated, 26(2):205–218, 2006.

[10] G Decandia, D Hastorun, M Jampani, G Kakulapati, A Lakshman,
A Pilchin, S Sivasubramanian, P Vosshall, and W Vogels. Dynamo:
Amazon’s Highly Available Key-value Store. ACM SIGOPS Operating
Systems Review, 41(6):205–220, 2007.

[11] Citrusbyte. Redis: an open source, BSD licensed, advanced key-value
store. http://redis.io.

[12] Avinash Lakshman and Prashant Malik. Cassandra - A Decentralized
Structured Storage System. ACM SIGOPS Operating Systems Review,
44(2):35–40, 2010.

[13] The Apache Software Foundation. CouchDB Documentation: Overview.
http://couchdb.apache.org/docs/overview.html.

[14] The Apache Software Foundation. CouchDB Wiki: Introduction
to CouchDB Views. http://wiki.apache.org/couchdb/Introduction to
CouchDB views.

[15] The XMPP Standards Foundation. XMPP. http://xmpp.org/.
[16] Peter Millard, Peter Saint-Andre, and Ralph Meijer. XMPP XEP-0060:

Publish-Subscribe. http://xmpp.org/extensions/xep-0060.html.
[17] The Apache Software Foundation. Apache Lucene: Powered By. http:

//wiki.apache.org/lucene-java/PoweredBy.
[18] Peter Saint-Andre, Ralph Meijer, and Brian Cully. XMPP XEP-0248:

PubSub Collection Nodes. http://xmpp.org/extensions/xep-0248.html.
[19] Joe Celko. Trees and Hierarchies in SQL for Smarties. Morgan

Kaufmann, 2004.
[20] PostgreSQL Global Development Group. PostgreSQL 8.4: Release

Notes. http://www.postgresql.org/docs/8.4/static/release-8-4.html.
[21] Meebo.com. couchdb-lounge. http://tilgovi.github.com/

couchdb-lounge/.

http://www.facebook.com/press/info.php?statistics
http://www.facebook.com/press/info.php?statistics
http://foursquare.com/about
http://redis.io
http://couchdb.apache.org/docs/overview.html
http://wiki.apache.org/couchdb/Introduction_to_CouchDB_views
http://wiki.apache.org/couchdb/Introduction_to_CouchDB_views
http://xmpp.org/
http://xmpp.org/extensions/xep-0060.html
http://wiki.apache.org/lucene-java/PoweredBy
http://wiki.apache.org/lucene-java/PoweredBy
http://xmpp.org/extensions/xep-0248.html
http://www.postgresql.org/docs/8.4/static/release-8-4.html
http://tilgovi.github.com/couchdb-lounge/
http://tilgovi.github.com/couchdb-lounge/

	Introduction
	State-of-the-Art
	Context Management Platforms
	NoSQL
	Key/Value Store
	Wide Column Store
	Document-Oriented

	XCoA - XMPP Context Architecture
	Context Storage using NoSQL
	Performance Advantages
	Horizontal Scalability and Availability
	Full-Text Searching Capabilities

	Implementation and Results
	Performance Tests

	Conclusion
	References

