
JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 16, NO. 4, APRIL 1998 515

Effect of Soliton Interaction on Timing
Jitter in Communication Systems

Armando Nolasco Pinto,Student Member, OSA,Govind P. Agrawal,Fellow, IEEE, Fellow, OSA,
and J. Ferreira da Rocha

Abstract—Timing jitter in soliton communication systems is
studied, taking into account both soliton interaction and amplifier
noise. Deviations from Gordon–Haus jitter for closely spaced
solitons are observed. A new analytical model for the timing
jitter is proposed. The model presented considers interaction in
a random sequence of solitons and the effect of the amplified
spontaneous emission noise added in each amplification stage.
We obtain a good agreement between the new analytical model
and simulation results for practical communication systems.

Index Terms—Communication systems, solitons, timing jitter.

I. INTRODUCTION

I N a long-haul soliton communication system, lumped am-
plifiers are used to compensate for fiber losses. The noise

added to the signal by each amplifier induces an uncertainty in
the soliton arrival time called jitter. Gordon and Haus showed
that the statistics of the jitter due to the spontaneous emission
noise added by lumped amplifiers is Gaussian, with a variance
proportional to the cube of the total distance of the link [1].

Recent experiments have shown significant deviations from
the Gaussian distribution [2]. The study of the physical effects
leading to this deviation has been the subject of considerable
amount of study. It was pointed out that soliton interaction,
acoustic effects, and polarization mode dispersion can lead to
deviations from the Gordon–Haus result [3], [4]. However,
the soliton interaction is likely to have the dominant effect for
high bit rate systems.

In this work we derive a model for the soliton arrival time
statistics considering the soliton interaction and the amplified
spontaneous emission noise. As full Monte Carlo simulations
for arrival time calculation require huge amount of computing
time, this new model can be useful in system design [5],
[6]. We validate this new model with numerical simulations
of practical communication systems, working at 10, 20, and
40 Gb/s. The results show that soliton interaction produces a
considerable change in the jitter statistics.

II. DEVIATION FROM THE GAUSSIAN

STATISTICS (SIMULATION RESULT)

Gordon–Haus jitter due to the spontaneous emission noise
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TABLE I

added in each amplifier is described by a Gaussian probability
density function (pdf) with the standard deviation given by [1]

(1)

where is the spontaneous emission factor, is the
nonlinear parameter of the fiber, is the first-order group-
velocity dispersion factor of the fiber, is Planck’s constant,

is the amplifier gain, is the total length of the link, is
the soliton width, is the effective mode area, is the
amplifier spacing, and is the power-enhancement factor [7].

In communication systems, the solitons are launched close
to each other, in order to achieve high-bit rates, which leads
to mutual interactions. This perturbation of the soliton propa-
gation due to neighbor pulses significantly changes the timing
jitter statistics.

To study the effect of the soliton interaction we have
solved the nonlinear Schrödinger equation (NLSE) for a pseu-
dorandom sequence of solitons. We considered an optical
communication system operating at 20 Gb/s, with the param-
eters shown in Table I.

The separation between amplifiers was kept much less than
the dispersion length, in order to avoid the dispersive waves
that could become another source of timing jitter. We have
solved numerically the NLSE equation for 1600 bits from a
pseudo-random sequence, using 64 sample points for each bit
slot for accurate jitter measurements. Fig. 1 shows the pdf of
the arrival time obtained by simulation and the Gordon–Haus
result.

We clearly see the deviation from the Gordon–Haus result
due to the soliton interaction. The pdf of the arrival time is not
Gaussian and it is broader, so we should expect a degradation
of the system bit error rate due to soliton interaction.

0733–8724/98$10.00 1998 IEEE

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório Institucional da Universidade de Aveiro

https://core.ac.uk/display/15566548?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


516 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 16, NO. 4, APRIL 1998

Fig. 1. Probability density function for the timing jitter of a 20 Gb/s system.
The line is the Gordon–Haus result and the starts are the simulation result.

III. A NALYTICAL MODEL OF SOLITON INTERACTION

When we launch more than one pulse in a fiber, the presence
of neighbor pulses disturbs the soliton, which changes its time
position. If the neighbor solitons are in phase, this interaction
is attractive and solitons move closer.

To study multiple-pulse systems, we start with the NLSE for
the case of two solitons. An approximate solution for the case
of two solitons based on the quasiparticle approach was pre-
sented by Karpman and Solov’ev [8]. Another approximation,
was derived by Gordon directly from the exact two solitons
equation [9]. The expression for a soliton pair has the general
form

sech

sech

(2)

At each point inside the fiber the normalized separation
between the solitons is the amplitudes of the two solitons
are and and the relative phase difference is
For simplicity of notation, we introduce

It can be shown that

(3)

where is the distance of propagation,and are constants
determined by the initial separation, phase difference and its
first derivative. The first and second space derivatives of (3)
combine to yield the equations of motion [8], [9]

(4)

Fig. 2. In the three-soliton system in phase, the interactions of solitons A
and C relative to B are of opposing signs.

(5)

Equations (4) and (5) show that the dynamics of the
soliton pair are entirely due to interaction forces that depend
exponentially on their separation and sinusoidally on their
relative phase. If and are the initial separation and phase
difference respectively, we obtain the followings expressions
for and during the propagation in (6) and (7) shown at
the bottom of the page.

Since a zero phase difference between neighboring solitons
leads to the worst case, we consider this case only. Choosing

in (6), we obtain the following expression for the
separation between the two solitons:

(8)

where
To extend the above results to the three-soliton case, we

note that the force between adjacent solitons depends on their
separation and relative phases. Then in a system of three
solitons where the distance and relative phases between side
solitons (Fig. 2, A and C) and the middle soliton B are the
same, the interaction of solitons A and C relative to B, are of
opposing signs. The middle soliton is fixed because of these
balancing forces.

In the two-soliton case, the separation is equal to
However, in the three-soliton case, because the middle soliton
is fixed, the separation between side solitons and the middle
one is where is the initial separation. If we use this
fact in (4) and (5), we obtain the following pair of equations
for the three-soliton dynamics:

(9)

(10)

where

(6)

(7)
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Fig. 3. Normalized distance between solitons. The solid line is the analytical
solution, the dashed line is obtained by numerical solution of the NLSE.

Fig. 4. In the four-soliton system the middle solitons (B and C) are prac-
tically fixed because each one is surrounded by neighbor pulses exerting
opposing forces.

The solution of (9) and (10), in the case of in-phase pulses
provides:

(11)

Comparing (11) with the corresponding solution (8) for
the two solitons case, we see that despite the square in the
cosine function, in the case of three solitons, the period is
times the period of the two-soliton system. This means that
the soliton interaction is weaker for the case of three-soliton
compared to the case of two-soliton.

To test the validity of our analytical result, we performed
a simulation by numerically solving the NLSE for the case
of two and three-soliton. The results are shown in Fig. 3. As
we can see, the numerical results are in agreement with the
analytical ones.

To generalize our results, we start with the four-soliton
case, in which the two middle solitons (B and C in Fig. 4)
are practically fixed, because each one is surrounded by
neighbor pulses exerting opposing forces. With a good degree
of approximation, we can assume that the two middle solitons
are fixed and the side solitons (A and D) behave in a similar
way to the three-soliton system.

It is obvious that we can extend this approximation to the
case of more than four solitons. In a long sequence of pulses,
the only ones where the interaction forces are important are
the first and the last one of the sequence. So the case of more
than three solitons can be reduced to the three-soliton system.

Fig. 5. To analyze the solitons interaction in a long sequence of pulses we
can divide the sequence in small slices and analyze each slice.

In a lightwave communication system making use of pulse-
code modulation, the pulse sequence is random, containing
long sequences of pulses, but also isolated and pairs of pulses.
To analyze the solitons interaction in a long sequence of pulses,
we can divide the sequence in small slices and reduce each
slice to one of the cases presented above.

In Fig. 5, we have a sequence of 12 bits that we can reduce
to the cases of isolated pulse (H), two-soliton case (A and B,
K, and L) and three-soliton system (D and E and F).

In order to analytically determine the arrival time statistics,
it is enough to consider at most four neighbor solitons because
the interaction forces decrease exponentially with solitons
separation. We consider a random binary sequence with
bits that contains all possible sequences of 5 bits [10].

It can be shown that the statistics of the arrival times
is represented by a bar graph, with 50% weight for zero-
time deviation, 25% corresponding to a deviation equal to
the two-soliton system, and 25% with a deviation equal of
the three-soliton system. Moreover, since the deviation can
be positive or negative the 25% probability of two and three
solitons should be split into two bars of 12.5% on the two
sides. So, we should expect a jitter pdf given by

(12)

Values of and are given by

(13)

(14)

where is the soliton width, the dispersion length,
is the bit period and is the

total length of the optical communication system.
To check the validity of our analytical result, we repeat

the 20 Gb/s system simulation, described in Section II, with
an ideal amplifier and with a total length of nine
dispersion lengths. From Fig. 6 we can see a good agreement
between our analytical deduction and the numerical results.
There are a broadening in the delta function produced by
the finite numerical resolution (resolution 0.78 ps), but the
position of the side bars are exactly the positions predicted
by our model and their relative heights match the prediction
of (12).

IV. EFFECT OFSPONTANEOUS-EMISSION NOISE

In a long-haul soliton communication system, the fiber
losses are compensated by the use of in line lumped amplifiers.
These amplifiers restore the signal power but the amplification
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Fig. 6. Arrival time statistics of a pseudorandom sequence, after the prop-
agation of nine dispersion lengths. The bars were obtained by numerical
simulation. We used expressions (13) and (14) to determine thet2 and t3.
The arrows inside the bars are the delta function obtained by expression (12).

Fig. 7. Probability density function for the 20 Gb/s system. The line is the
Gordon–Haus result, the starts are the simulation result, and the dashed-line
is our model.

process is accompanied by the emission of spontaneous noise
[11]. The noise that is outside the bandwidth of the optical
signal can be removed, using an appropriate optical filter,
although it is not possible to remove in-band noise. This noise
copropagates with the signal.

The copropagation of signal and noise changes the arriving
time statistics presented in expression (12) and also degrades
the signal noise ratio. Expression (12) is not valid any more,
due to the Gordon–Haus effect and because the interaction
forces are phase and amplitude sensitive.

In a soliton communication system, the noise power is much
smaller than the signal, so we can assume that the noise only
produces a small change in the phase and amplitude of each
pulse. Making this assumption, we will expect to have a jitter
pdf related to the one presented in (12). However, instead
of five discrete lines, we should have a five-lobe Gaussian
function, with the center of each Gaussian determined by

(a)

(b)

Fig. 8. Probability density function for (a) a 10-Gb/s system and (b) a
40-Gb/s system. The line is the Gordon–Haus result, the starts are the
simulation result, and the dashed-line is our model.

expressions (13) and (14), and with the variance given by
the Gordon–Haus expression (1). So, we can expect to have
a jitter pdf given by

(15)

where is given by

(16)

the values of and are given by expressions (13) and (14),
respectively, and is given by (1).
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V. COMPARISON BETWEEN THE

ANALYTICAL AND NUMERICAL RESULTS

To validate our model, we apply it firstly to the simulation
results presented in Fig. 1.

As we can see in Fig. 7, the new model gives a good
approximation to the pdf of the arrival time. In particular, the
tails of the pdf are very well approximated by our model. Since
the tails are the main feature determining error rates values in
high quality systems, we can expect improved bit error rates
estimation applying this model to practical communication
systems.

In order to analyze the behavior of the new model for
different bit rates we applied it to systems working at 10
and 40 Gb/s. These are the bit rates of the next generation
of optical communication systems. The results are printed in
Fig. 8 where we can see again good agreement between the
new analytical model and simulation results. Furthermore the
deviation of the jitter pdf from the Gaussian shape, is stronger
as the bit rate increases.

VI. CONCLUSIONS

We have derived a simple analytical expression for the
jitter pdf of soliton systems, taking into account both soliton
interaction and amplified spontaneous emission noise. Monte
Carlo simulation results have shown good agreement with
analytical ones, thus confirming the validity and accuracy of
the new model presented. The soliton interaction produces a
considerable deviation from jitter Gaussian statistics for high
speed systems.
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