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Abstract

Let {Xn} be a stationary sequence with marginal distribution in the domain of at-
traction of a max-semistable distribution. This includes all distributions in the domain of
attraction of any max-stable distribution and also other distributions like some integer-
valued distributions with exponential type tails such as the Negative Binomial case. We
consider the effect of missing values on the distribution of the maximum term. The pat-
tern of occurrence of the missing values must be either iid or strongly mixing. We obtain
the expression of the extremal index for the resulting sequence.

The results generalize and extend the ones obtained for the max-stable domain of
attraction.
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1 Introduction

Integer-valued time series have received increasing attention in the probabilistic and statistical
literature over the past two decades because of its applicability in many different areas such
as the natural sciences, the social sciences, international tourism demand and economy. We
refer to Hall and Scotto (2006) for several references on the subject and to McKenzie (2003)
for an overview of the early work in this area.

Within the integer-valued models proposed in the literature, little is known about its
extremal properties. In part, this is due to the fact that many integer-valued distributions do
not belong to the domain of attraction on any extreme-value distribution. Anderson (1970)
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gave an important contribution to this limitation by obtaining upper and lower bounds for
the limiting distribution of the maximum term of independent and identically distributed
(iid) sequences with distributions exhibiting an exponentially decaying tail. He proved that
an integer-valued distribution function F , with infinite right endpoint, satisfies

lim
n→+∞

1− F (n− 1)
1− F (n)

= r, r ∈ ]1, +∞[, (1)

if and only if {
lim supn→∞ Fn(x + bn) ≤ exp(−r−x)
lim infn→∞ Fn(x + bn) ≥ exp(−r−(x−1))

for any real x and bn appropriately chosen. We shall say that a distribution belongs to
Anderson’s class if it satisfies (1). An example of a well known member of this class is the
Negative Binomial distribution.

Based on Anderson’s work several stationary models have been studied with respect to
the extremes and similar limiting bounds were obtained for the limiting distribution of the
maximum term in presence of different dependence structures. For instance McCormick
and Park (1992) considered a first-order autoregressive sequence with Negative Binomial
marginal distribution, Hall (1996) considered a class of integer-valued max-autoregressive
models, Hall (2003) considered a general class of infinite moving average models, and Hall
and Moreira (2006) considered a particular type of moving average models with geometric
marginal distribution introduced by McKenzie (1986).

In an attempt to overcome the presence of limiting bounds instead of a well defined limi-
ting distribution, Temido (2000) proved that (1) is necessary and sufficient for the existence
of a nondecreasing positive integer sequence {kn} satisfying

lim
n→+∞

kn+1

kn
= r, r ∈ ]1, +∞[, (2)

and of a real sequence {un} such that kn(1 − F (un)) → τ > 0, as n → ∞, for some
τ > 0. So, if instead of looking at the maximum term of the first n observations we look
at the maximum term of the first kn observations, where {kn} satisfies (2), we can obtain a
well defined limiting distribution for the maximum term. The limiting distribution is not a
max-stable (MS) distribution but belongs to a larger class of distributions known as max-
semistable (MSS) distributions. This class was introduced by Pancheva (1992) and will be
described below.

Using the MSS class Hall and Temido (2007) have studied the limiting distribution of the
maximum term of several stationary models with margins in Anderson’s class.

Over the last years attention has been given to the effect of sub-sampling on the extremes
of stationary sequences. This is important for the analysis of environmental and financial
processes. We refer to Hall and Scotto (2006) for an overview of the work in this area. Many
of the results consider deterministic sub-sampling of the sequences. However, there are several
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real data applications where sub-sampling is the result of a (random) occurrence of missing
values. One reason for the interest in extremes observed at random sampling rates comes
from the need to compare schemes for monitoring systems with breakdowns or systems with
automatic replacement of devices in case of failures. Examples are encountered, for instance,
in ocean engineering and environmental studies. In these areas, missing observations appear
when the measuring equipment is not working properly or is out of service. The effect of
missing values on the extremes of stationary sequences has been considered by Hall and Hüsler
(2006) and by Hall and Scotto (2008). The former consider models with marginal distribution
in the domain of attraction of any MS distribution and also distributions in Anderson’s class.
The later considers models with marginal distribution in the domain of attraction of a Fréchet
distribution and with a moving average structure. In this work we consider the setup given
in Hall and Hüsler and study the limiting distribution of the maximum term using MSS
distributions.

What happens when a missing value occurs? In the majority of situations, one of two
things may happen: either the observation is replaced by a fixed value (for instance a code),
or the observation is completely lost and the data sample will be sub-sampled resulting in a
smaller (and random) sample size. Occasionally, it may be of interest to avoid the occurrence
of missing values and an automatic replacement of a device or machine may be available. In
this case the resulting sample will be a mixture of two original samples.

In this paper we consider three different models which were motivated by the situations
described above.

Let {Xn} be a strictly stationary sequence of random variables (rv’s) with marginal
distribution function (df) F and Mn = max{X1, . . . , Xn}. Without loss of generality let
the upper endpoint xF of F be positive. Assume that {Un} is another stationary sequence,
independent of {Xn}, having Bernoulli marginal distribution with parameter β, 0 ≤ β ≤ 1.
Based on the sequences {Xn} and {Un} we define the following models:

M1 - Model with missing values: Yn = UnXn. In this case the marginal distribution of
{Yn} is 1 − β + β F for non-negative argument values. Missing values are replaced by
zeros.

M2 - Model with sub-sampling: {Zn}n≥1 with Zn = Xin , where in represents the indices
of the sequence {Xn} for which Un = 1. Let Nn = sup{j : ij ≤ n} =

∑n
j=1 Uj and let

us only consider the first Nn values of {Zn}. The marginal distribution of {Zn} is F .
In this model missing values are lost.

M3 - Model with replaced missing values: Wn = UnXn + (1 − Un)X(1)
n where {X(1)

n }
is an independent replica of {Xn}. In this case the marginal distribution of {Wn} is
also F . Missing values are replaced by a substituting sequence.

In this paper we only consider situations where {Xn} and {Un} are independent.
We will be interested in the limiting distribution of the maximum term of these models.

We define Mn(Y ) = max{Y1, . . . , Yn} and Mn(W ) = max{W1, . . . ,Wn}. For convenience of
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notation we define also Mn(Z) = max{Z1, . . . , ZNn} because for the sequence Zn we are only
interested in the first Nn variables.

The sequences {Un} considered in this paper will be considered stationary and strongly
mixing. Furthermore, we assume that some kind of dependence conditions hold for {Xn}.
We consider an asymptotic independence condition similar to Leadbetter’s D(un) condition
(Leadbetter et al. (1983)). We also consider two types of local dependence conditions similar
to conditions D(2)(un) and D(3)(un) of Chernick et al. (1991). Each of these conditions
will ensure that the clusters of exceedances formed in the stationary sequence {Xn} have
a particular type of pattern. Throughout this work {un} represents a sequence of linearly
normalized levels un = anx + bn, an > 0, bn ∈ IR such that un → xF .

We obtain the expression of the extremal index and hence the limiting distribution of
the maximum term of the transformed sequences (models M1, M2 and M3). The results
generalize and extend the ones obtained for the MS domain of attraction given by Hall and
Hüsler (2006).

2 The MSS class and stationary sequences

If instead of considering n rv’s we consider kn rv’s, where {kn} satisfies

lim
n→+∞

kn+1

kn
= r, with r in [1,+∞[, (3)

then we obtain a larger class of possible limiting distributions for the maxima, known as the
MSS class. This class, introduced by Pancheva (1992), includes the MS distributions and
also non-degenerate limiting df’s for the maxima of iid rv’s with either discrete or multi-
modal continuous df’s which are not max-stable. Following Pancheva (1992) we will say
that a real df G is MSS if there are reals r > 1, a = a(r) > 0 and b = b(r) such that
G(x) = Gr(ax + b), x ∈ IR, or equivalently, if there exist a sequence of iid rv’s with df F
and two real sequences {an > 0} and {bn} for which lim

n→+∞F kn(anx + bn) = G(x), for each

continuity point of G, with {kn} satisfying (3). In this case we will say that F belongs to the
domain of attraction of G.

Note the subtle difference between the definitions of MS and MSS distributions. While in
the definition of the MS distributions, G is MS if for all reals r > 1, there exist a = a(r) > 0
and b = b(r) such that G(x) = Gr(ax + b), x ∈ IR, in the definition of the MSS distribution
the equality may hold only for some values of r > 1. More precisely, if G is MSS but not MS,
the equality holds only for some r and all its integer powers.

Analytically, a df in the class MSS can be written as follows:

Gγ,ν(x) =





exp
{−(1 + γx)−1/γν(log(1 + γx))

}
x ∈ IR, 1 + γx > 0 and γ 6= 0

1I]−∞,0[(γ) x ∈ IR, 1 + γx ≤ 0 and γ 6= 0

exp{−e−xν(x)} x ∈ IR and γ = 0

,
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where ν is a positive, bounded and periodic function with period p = | log a| = |γ| log r, when
γ 6= 0, and p = b = log r, when γ = 0. If the function ν is a suitable constant, we get the
max-stable class.

We recall that for iid sequences with common df F , lim
n→∞ kn(1− F (un)) = τ is equivalent

to lim
n→∞F kn(un) = e−τ . Consequently, in the sequel, we shall deal with levels un := un(τ, kn)

satisfying these limits. In this context we will consider the set

Γ(F, kn) = {τ > 0 : ∃{un} : lim
n→+∞ kn(1− F (un)) = τ},

introduced in Temido (2000), and note that if F is discrete and (3) holds, then Γ(F, kn) is not
necessarily the interval ]0, +∞[. In fact, if for some τ > 0 there exists un(τ, kn), for another
τ ′ > 0 there exists un(τ ′, kn) if and only if τ = rm τ ′, for some integer m. This enables us to
conclude that if any discrete df belongs to the domain of attraction of G, with {kn} satisfying
(2), then G must be discrete.

Temido (2002) proved that if F is an integer-valued df, with upper endpoint xF = +∞,
and there exist sequences {kn} satisfying (2), {an > 0} and {bn} such that F kn(anx + bn) →
G(x), n → +∞, then G(x) = exp(−ηr−[x]), x ∈ IR, for some η > 0, if and only if (1) holds (for
any real x, [x] denotes the greatest integer not exceeding x). In this case, with k′n = [kn/η]
we get

lim
n→+∞F k′n(anx + bn) = exp(−r−[x]), x ∈ IR\ZZ.

Temido and Canto e Castro (2003) consider stationary sequences {Xn}, satisfying a de-
pendence restriction, Dkn(un), which extends Leadbetter’s D(un) condition (Leadbetter et
al. (1983)).

Definition 2.1 (Temido and Canto e Castro, 2003) Let {kn} be a nondecreasing se-
quence of positive integers. The sequence of rv’s {Xn} satisfies condition Dkn(un) if for
any integers 1 ≤ i1 < ... < ip < j1 < ... < jq ≤ kn, for which j1 − ip > `n, we have

∣∣P ( p⋂

s=1

{Xis ≤ un},
q⋂

m=1

{Xjm ≤ un}
)−P

( p⋂

s=1

{Xis ≤ un}
)
P

( q⋂

m=1

{Xjm ≤ un}
)∣∣ ≤ αn,`n ,

where lim
n→+∞αn,`n = 0 for some sequence `n = on(kn).

Considering stationary sequences {Xn} satisfying this long range condition, Dkn(un),
Temido and Canto e Castro (2003) prove that the limiting distribution of Mkn is max-
semistable, whenever it exists. Namely, if there is {kn} as above and {an > 0} and {bn} such
that condition D(anx + bn) holds for the stationary sequence {Xn}, the sequence {kn(1 −
F (anx + bn)} is bounded, and P (an(Mkn − bn) ≤ x) converges to G(x), for each continuity
point of the nondegenerate df G, then G is a max-semistable df. Furthermore, following the
same authors we present the definition of extremal index.
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Definition 2.2 (Temido and Canto e Castro, 2003) We shall say that {Xn} has an ex-
tremal index θ, with θ in [0, 1], if there exists a nondecreasing positive integer sequence
{kn} satisfying (3) such that, for all τ ∈ Γ(F, kn) and all corresponding un(τ, kn), we have
lim

n→+∞P (Mkn ≤ un(τ, kn)) = e−θτ .

In Hall and Hüsler (2006) an important lemma is introduced. Indeed, the authors prove
that if {Un} is a Bernoulli strongly mixing stationary sequence and the long range condition
D(un) holds for {Xn}, then it also holds for {Yn} in Model M1. For the sequel and mutatis
mutandis we have the following result.

Lemma 2.1 Let {kn} be a positive integer and non decreasing sequence and suppose that
{Un} is a Bernoulli strongly mixing stationary sequence. If condition Dkn(un) holds for
{Xn} then it also holds for {Yn}.

3 Independent missing values

Proposition 3.1 Let {Un} be an iid Bernoulli(β) sequence, and {Xn} a stationary sequence
with extremal index θ in the sense of definition (2.2) and cluster size distribution π. Define

θ∗ = θ(1−Π(1− β))/β and τ∗ = τβ
θ∗∗ = θ(1−Π(1− β) + 1−Π(β))

where Π(h) =
∑∞

i=1 π(i)hi.
If P{Mkn ≤ un(τ)} −→

n→∞ e−θτ , τ ∈ Γ(F, kn), then,

P{Mkn(V ) ≤ un(τ)} −→
n→∞ e−θV τV

where θV = θ∗, τV = τ∗ for the sequences {Yn} and {Zn}, and θV = θ∗∗, τV = τ for the
sequence {Wn}.

Proof: Let {sn} be a sequence of positive integers satisfying

lim
n→∞ s−1

n = lim
n→∞

sn`n

kn
= lim

n→∞ snαn,`n = 0. (4)

The idea for this proof is to divide the first kn elements of the sequence {Yn} into blocks
of size rn := [kn/sn], calculate the probability of no exceedances in those blocks and then use
Lemma 4 from Temido and Canto e Castro (2003).

Let us consider the first rn elements of the sequences {Xn} and {Yn}. Assuming un > 0,
then,

P{Mrn(Y ) ≤ un} = P{{Y1, . . . , Yrn} contains no exceedances of un}

= P{Mrn ≤ un}+
rn∑

j=1

P{{X1, . . . , Xrn} contains j exceedances all withdrawn}
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From the definition of extremal index we get P{Mkn ≤ un} − e−knP{X1>un}θ −→
n→∞ 0. On the

other hand, from Lemma 4 from Temido and Canto e Castro (2003) we have

P{Mkn ≤ un} − P sn{Mrn ≤ un} −→
n→∞ 0.

Combining both results we obtain

P{Mrn ≤ un} = 1− kn

sn
θP{X1 > un}+ o

(
1
sn

)
,

as long as limn→∞ knP{X1 > un} 6= ∞.

Since knP{X1 > un} −→
n→∞ τ > 0 we have

P{Mrn(Y ) ≤ un} = 1− θτ

sn
(1−

rn∑

j=1

sn

θτ
P{{X1, . . . , Xrn} contains j

exceedances all withdrawn}) + o

(
1
sn

)
.

But, with χn,i(·) := 1I{Xi>un}(·), we also have

P{{X1, . . . , Xrn} contains j exceedances all withdrawn}

=
∑

i1<i2<...<ij

P

{
j⋂

m=1

{Xim > un}, all other Xi ≤ un,

j⋂

m=1

{Uim = 0}
}

=
∑

i1<i2<...<ij

P

{
j⋂

m=1

{Xim > un}, all other Xi ≤ un

}
P (U1 = 0)j

= P

(
rn∑

i=1

χn,i = j

)
(1− β)j

Now, using the above arguments again,

P

(
rn∑

i=1

χn,i = j

)
= π(j)P

(
rn∑

i=1

χn,i > 0

)
(1 + o(1))

= π(j)(1− P

(
rn∑

i=1

χn,i = 0

)
)(1 + o(1))

= π(j)(1 + o(1)) θτ
sn

.
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Therefore

P{Mrn(Y ) ≤ un} = 1− θτ

sn


1−

rn∑

j=1

π(j)(1− β)j(1 + o(1))


 + o

(
1
sn

)
.

Considering Lemma 2.1 and Lemma 4 from Temido and Canto e Castro (2003), we use
dominated convergence to obtain

P{Mkn(Y ) ≤ un} −→
n→∞ e−θτ(1−Π(1−β)),

where Π(s) =
∞∑

j=1

π(j)sj represents the probability generating function of the cluster size

distribution.
As for the sequences {Zn} and {Wn} it suffices to notice that P{Mkn(Z) ≤ un} =

P{Mkn(Y ) ≤ un} and that P{Mkn(W ) ≤ un} = P{Mkn(Y ) ≤ un}P{Mkn(Ȳ ) ≤ un} where
{Ȳn} is a sequence defined by Ȳn = (1− Un)Xn. tu

4 The effect of missing values under condition D
(2)
kn

(un)

We now consider a stationary sequence {Xn} satisfying a local dependence condition, D
(2)
kn

(un),
and with marginal df F in the domain of attraction of some max-semistable df.

The natural extension of the local dependence condition D(2)(un) of Chernick et al.
(1991)), which is similar to the condition D′′(un) (defined in Leadbetter and Nandagopalan
(1989), in this new context is given in the following definition.

Definition 4.1 (Temido (2000)) Let {kn} be a nondecreasing positive integer sequence
such that limn→∞ kn = +∞. The stationary sequence {Xn} satisfies the condition D

(2)
kn

(un)
if Dkn(un) holds and, for some positive integer-valued sequence {sn} satisfying (4), we have

lim
n→∞ knP{X1 > un ≥ X2,M3,rn > un} = 0, (5)

where rn = [kn
sn

] and Mij = max{Xk, k = i, ..., j}.
Clearly, (5) is implied by the condition

lim
n→+∞ kn

rn∑

j=3

P{X1 > un, Xj−1 ≤ un < Xj} = 0,

which in some situations is easier to check.
Recall that under condition D(2)(un) the clusters of exeedances form groups of consecutive

observations. Once the sequence falls below the high threshold un the probability of a new
upcrossing in the near future is negligible.

Under D
(2)
kn

(un) we can compute the extremal index applying the following result.
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Proposition 4.1 (Temido (2000)) Let {kn} be a non decreasing positive integer sequence
satisfying (1) and {Xn} a stationary sequence under condition D

(2)
kn

(un(τ, kn)), for all τ in
Γ(F, kn) and all corresponding un(τ, kn). Then {Xn} has extremal index θ if and only if

lim
n→+∞P (X2 ≤ un(τ, kn) |X1 > un(τ, kn)) = θ.

The following proposition, our main result of this section, is a generalization of Theorem
4 in Hall and Hüsler (2006) concerning normalized levels un(τ, kn). We use {Vn} to denote
any of the sequences {Yn} {Zn} and {Wn} and recall that in the model M2 we consider the
maximum of the first Nkn rv’s.

Proposition 4.2 Let {Xn} be a stationary sequence with df F and {Un} be a Bernoulli
B(β) strongly mixing stationary sequence independent of {Xn}. Let {kn} be a nondecreasing
positive integer sequence satisfying (3). Suppose that {Xn} satisfies D

(2)
kn

(un(τ, kn)), for all
τ ∈ Γ(F, kn) and all corresponding un(τ, kn). In addition suppose that {Xn} has extremal
index θ > 0 associated with a limiting cluster size distribution π. For i ≥ 1, take

∇(i) = P{U1 = 0, U2 = 0, ..., Ui = 0}, ∇̄(i) = P{U1 = 1, U2 = 1, . . . , Ui = 1},

θ∗ = θ


1−

∞∑

j=1

π(j)∇(j)


 /β and θ∗∗ = βθ∗ + θ


1−

∞∑

j=1

π(j)∇̄(j)


 .

Then
lim

n→∞P (Mkn(V ) ≤ un(τ, kn)) = e−θV τV

where θV = θ∗, τV = τβ for the sequences {Yn} and {Zn}, and θV = θ∗∗, τV = τ for the
sequence {Wn}, for all τ ∈ Γ(F, kn).

The proof of this proposition follows the arguments used in Theorem 4 of Hall and Hüsler
(2006) where, for F integer-valued, e−θτ(x−1) ≤ lim inf

n→∞ P{Mn ≤ un} ≤ lim sup
n→∞

P{Mn ≤ un} ≤
e−θτ(x) is replaced by lim

n→∞P{Mkn ≤ un(τ, kn)} = e−θτ(x). Observe that, as a consequence of

what was said before, if F is an integer-valued df satisfying (1) and un(τ, kn) = anx + bn, for
some an > 0 and bn, then, there exist {kn} satisfying (2) such that lim

n→+∞P (Mkn ≤ un(τ, kn))

= exp(−θr−[x]), x ∈ IR\ZZ.

5 The effect of missing values under condition D
(3)
kn

(un)

In this section we consider that the stationary sequence {Xn} satisfies an extension of the
local dependence condition D(3)(un) of Chernick et al. (1991) defined by Temido (2000).
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Definition 5.1 Let {kn} be a nondecreasing positive integer sequence such that limn→∞ kn =
+∞. The stationary sequence {Xn} satisfies the condition D

(3)
kn

(un) if Dkn(un) holds and,
for some positive integer-valued sequence {sn} satisfying (4), we have

lim
n→+∞ knP (X1 > un ≥ M2,3,M4,rn > un) = 0, (6)

where rn = [kn
sn

] and Mij = max{Xk, k = i, ..., j}.

As in the previous paragraph, (6) is implied by the condition

lim
n→+∞ kn

rn∑

i=4

P (X1 > un,Mi−2,i−1 ≤ un < Xi) = 0

which in some situations is easier to deal with.
We also suppose that

lim
n→∞ knP (X1 > un, X2 > un) = 0, (7)

which together with the previous condition implies that the clusters have an alternating
pattern above and below the threshold un.

As mentioned before, under condition D
(2)
kn

(un) the clusters of exceedances are formed by

runs of consecutive observations over un. However, under D
(3)
kn

(un) the clusters may exhibit
a wide variety of patterns which have in common the following property: within a cluster,
the sequence does not stay below un for more than one time instance. One particular pattern
which may occur under D

(3)
kn

(un) is the purely oscillating pattern which is characteristic of
several time series models such as first-order autoregressive models with negative coefficient.
We shall only consider such type of patterns and for that we must impose the additional
condition (7).

Following Chernick et al. (1991) and O’Brien (1987), Temido (2000) proved that under
condition D

(3)
kn

(un), lim
n→∞P (Mkn ≤ un) − exp (−knP (X1 > un, X2 ≤ un, X3 ≤ un)) = 0 and

that the extremal index is obtained as

θ = lim
n→∞P (X2 ≤ un(τ, kn), X3 ≤ un(τ, kn)|X1 > un(τ, kn)) .

However, considering in addition condition (7) we can compute the extremal index in a
different way. Indeed, like in the case when D

(2)
kn

(un) holds, a bivariate tail distribution
suffices to determine the extremal index.

Lemma 5.1 Let {kn} be a nondecreasing positive integer sequence satisfying (3) and {Xn} a
stationary sequence satisfying Dkn(un), for some real sequence {un} such that lim sup kn(1−
F (un)) < +∞.
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1. If {Xn} satisfies D
(3)
kn

(un) and (7) then

lim
n→∞P (Mkn ≤ un)− exp (−knP (X1 > un, X3 ≤ un)) = 0. (8)

2. If {Xn} satisfies D
(3)
kn

(un(τ, kn)) and limn→∞ knP (X1 > un(τ, kn), X2 > un(τ, kn)) =
0, for all τ ∈ Γ(F, kn) and all corresponding un(τ, kn), then {Xn} has extremal index θ
if and only if

lim
n→∞P (X3 ≤ un(τ, kn)|X1 > un(τ, kn)) = θ. (9)

Proof: 1. Using the arguments of O’Brien (1987) we prove that, under Dkn(un),

P (Mkn ≤ un)− exp (−knP (X1 > un,M2,rn ≤ un)) → 0, n →∞.

But, under the assumptions of the lemma, we have

P (X1 > un, M2,rn ≤ un) = P (X1 > un ≥ M2,3,M4,rn ≤ un)

= P (X1 > un ≥ M2,3)− P (X1 > un ≥ M2,3,M4,rn > un)

= P (X1 > un)− P (X1 > un, X2 > un)− P (X1 > un, X3 > un)

+ P (X1 > un, X2 > un, X3 > un) + on

(
1
kn

)

= P (X1 > un)− P (X1 > un, X3 > un) + on

(
1
kn

)

= P (X1 > un, X3 ≤ un) + on

(
1
kn

)

and thus (8) holds.
2. If {Xn} has extremal index θ we have

lim
n→∞P (Mkn ≤ un(τ, kn)) = exp(−θτ), (10)

for all τ ∈ Γ(F, kn). Hence, by the first part of the lemma we get

lim
n→∞knP (X1 > un(τ, kn), X3 ≤ un(τ, kn)) = θτ,

or, equivalently, the limit (9) occurs.
The proof of the converse is similar. tu
After this result we can establish the limit in distribution of Mkn(V ) for all the models

considered in this work.
In what follows we write A

(n)
t,h := {Xt > un, Xt+1 ≤ un < Xt+2, · · · , Xh−1 ≤ un < Xh}

and B
(n)
t,h := {Xt > un, Xt+2 > un, · · · , Xh−2 > un, Xh > un} where h = t + 2m for some

nonnegative integer m. We also consider Ml,k = −∞ if k < l.
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Proposition 5.1 Let {Xn} be a stationary sequence with df F and {Un} be a Bernoulli
B(β) strongly mixing stationary sequence independent of {Xn}. Let {kn} be a nondecreas-
ing positive integer sequence satisfying (3). Suppose that {Xn} satisfies D

(3)
kn

(un(τ, kn)) and
limn→∞ knP (X1 > un(τ, kn), X2 > un(τ, kn)) = 0, for all τ ∈ Γ(F, kn) and all corresponding
un(τ, kn). In addition suppose that {Xn} has extremal index θ > 0 associated with a limiting
cluster size distribution π. For i ≥ 1, take

∇even(i) = P{U2 = 0, U4 = 0, ..., U2i = 0}, ∇̄even(i) = P{U2 = 1, U4 = 1, . . . , U2i = 1},

θ∗ = θ


1−

∞∑

j=1

π(j)∇even(j)


 /β and θ∗∗ = βθ∗ + θ


1−

∞∑

j=1

π(j)∇̄even(j)


 .

Then
lim

n→∞P (Mkn(V ) ≤ un(τ, kn)) = e−θV τV ,

where θV = θ∗, τV = τβ for the sequences {Yn} and {Zn}, and θV = θ∗∗, τV = τ for the
sequence {Wn}, for all τ ∈ Γ(F, kn).

Proof: Consider the first rn elements of the sequences {Xn} and {Yn}. Take un := un(τ, kn) >
0.

As in the proof of proposition 3.1 we obtain

P{Mrn(Y ) ≤ un} = 1− θτ

sn

(
1−

rn∑

j=1

sn

θτ
P{{X1, . . . , Xrn} contains j

exceedances all withdrawn}) + o

(
1
sn

)
.

12



But,

P{{X1, . . . , Xrn} contains j exceedances all withdrawn}

= P{A(n)
1,2j−1,M2j,rn ≤ un}P

{ j⋂

i=1

{U2i = 0}}

+P{X1 > un, A
(n)
2,2j−2,M2j−1,rn ≤ un}P

{
U1 = 0,

j−1⋂

i=1

{U2i = 0}}

+P{M1,rn−2j+1 ≤ un, A
(n)
rn−2j+2,rn

}P{ j⋂

i=1

{U2i = 0}}

+P{M1,rn−2j+2 ≤ un, A
(n)
rn−2j+3,rn−1, Xrn > un}P{

j−1⋂

i=1

{U2i−1 = 0}, U2j−2 = 0}

+
rn−2j−1∑

i=2

P{M1,i ≤ un, A
(n)
i+1,i+2j−1,Mi+2j,rn ≤ un}P

{ j⋂

i=1

{U2i = 0}}

+
∑

remaining
terms

P{{X1, . . . , Xrn} contains j exceedances all withdrawn} ×

×P{U1, . . . , Urn equals zero where the exceedances occur}.

The first and third terms of the right-hand side of the equality are clearly o (1/sn) and the
second and fourth are o(1/kn) by (7). The last term is bounded by

∑

remaining
terms

P{{X1, . . . , Xrn} contains j exceedances all withdrawn}

≤ rnP (X1 > un, X2 > un) + rnP (X1 > un ≥ M2,3,M4,rn > un)

= o

(
1
sn

)
,

by condition D
(3)
kn

(un) and (7). On the other hand, by the same condition,

rn−2j−1∑

i=2

P{M1,i ≤ un, A
(n)
i+1,i+2j−1,Mi+2j,rn ≤ un} = π(j)(1 + o(1))

θτ

sn
.

Therefore

sn

θτ
P{{X1, . . . , Xrn} contains j exceedances all withdrawn} =

13



= ∇even(j)π(j)(1 + o(1))

and

P{Mrn(Y ) ≤ un} = 1− θτ

sn


1−

rn∑

j=1

π(j)∇even(j)(1 + o(1))


 + o

(
1
sn

)
.

Since the sequence {Yn} satisfies condition Dkn(un), once again by Lemma 4 of Temido and
Canto e Castro (2003) and dominated convergence we obtain

P{Mkn(Y ) ≤ un} −→
n→∞ e−θτ(1−∑∞

j=1 π(j)∇even(j)).

As for the sequences {Zn} and {Wn} it suffices to notice that P{Mkn(Z) ≤ un} =
P{Mkn(Y ) ≤ un} and that P{Mkn(W ) ≤ un} = P{Mkn(Y ) ≤ un}P{Mkn(Ȳ ) ≤ un} where
{Ȳn} is a sequence defined by Ȳn = (1− Un)Xn. tu

We now establish a result which enables us to compute the limiting cluster size distribution
π(·) for stationary sequences satisfying (7) and D

(3)
kn

(un).

Lemma 5.2 Let {Xn} be a stationary sequence that satisfies condition D
(3)
kn

(un(τ, kn)) and
limn→∞ knP (X1 > un(τ, kn), X2 > un(τ, kn)) = 0, for all τ ∈ Γ(F, kn) and all corresponding
un(τ, kn). In addition suppose that {Xn} has extremal index θ > 0 associated with a limiting
cluster size distribution π. Then, for j ≥ 1,

π(j) =
limn→∞ knP (X1 ≤ un, X3 > un, X5 > un, · · · , X2j+1 > un, X2j+3 ≤ un)

θτ
.

Proof: Observe first that

πn(j) = P

(
rn∑

i=1

χn,i = j|
rn∑

i=1

χn,i > 0

)
=

P

(
rn∑

i=1

χn,i = j

)

P (Mrn > un)
.

Thus, attending to the proof of proposition 5.1 we have

πn(j) =

P

(
rn∑

i=1

χn,i = j

)

θτ /sn + o(1/sn)

=

rn−2j−1∑

i=2

P
(
M1,i ≤ un, A

(n)
i+1,i+2j−1,Mi+2j,rn ≤ un

)
+ o(1/sn)

θτ /sn + o(1/sn)
.
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If i ≥ 3 we have

P (Xi−1 ≤ un, Xi ≤ un, A
(n)
i+1,i+2j−1,Mi+2j,rn ≤ un)

− P (M1,i−2 ≤ un, Xi−1 ≤ un, Xi ≤ un, A
(n)
i+1,i+2j−1,Mi+2j,rn ≤ un)

≤
i−2∑

l=1

P (Xl > un, Xi−1 ≤ un, Xi ≤ un, A
(n)
i+1,i+2j−1) = o(1/kn),

by condition D
(3)
kn

(un) and stationarity. Moreover, for i ≥ 2, we get

P (Xi−1 ≤ un, A
(n)
i+1,i+2j−1,Mi+2j,rn ≤ un)

− P (Xi−1 ≤ un, Xi ≤ un, A
(n)
i+1,i+2j−1, Mi+2j,rn ≤ un)

≤ P (Xi−1 ≤ un, Xi > un, Xi+1 > un) = o(1/kn),

by (7). Then, for i ≥ 2,

P (M1,i−2 ≤ un, Xi−1 ≤ un, Xi ≤ un, A
(n)
i+1,i+2j−1,Mi+2j,rn ≤ un)

= P (Xi−1 ≤ un, A
(n)
i+1,i+2j−1, Mi+2j,rn ≤ un) + o(1/kn).

On the other hand, for i ≤ rn − 2j − 2, we have

P (Xi−1 ≤ un, A
(n)
i+1,i+2j−1, Xi+2j ≤ un, Xi+2j+1 ≤ un)

− P (Xi−1 ≤ un, A
(n)
i+1,i+2j−1, Xi+2j ≤ un, Xi+2j+1 ≤ un, Mi+2j+2,rn ≤ un)

≤
rn∑

l=i+2j+2

P (Xi−1 ≤ un, A
(n)
i+1,i+2j−1, Xi+2j ≤ un, Xi+2j+1 ≤ un, Xl > un)

= o(1/kn),

once again by D
(3)
kn

(un) and stationarity. In the same way we deduce

P (Xi−1 ≤ un, A
(n)
i+1,i+2j−1, Xi+2j ≤ un, Xi+2j+1 ≤ un)

= P (Xi−1 ≤ un, A
(n)
i+1,i+2j−1, Xi+2j+1 ≤ un) + o(1/kn)

and
P (Xi−1 ≤ un, B

(n)
i+1,i+2j−1, Xi+2j+1 ≤ un)

= P (Xi−1 ≤ un, A
(n)
i+1,i+2j−1, Xi+2j+1 ≤ un) + o(1/kn).

15



Thus, the stationarity of the process enables us to conclude that

πn(j) =

rn−2j−1∑

i=2

(
P

(
Xi−1 ≤ un, B

(n)
i+1,i+2j−1, Xi+2j+1 ≤ un

)
+ o(1/kn)

)
+ o(1/sn)

θτ/sn + o(1/sn)

=
(rn − 2j − 2)

(
P

(
X1 ≤ un, B

(n)
3,2j+1, X2j+3 ≤ un

)
+ o(1/kn)

)
+ o(1/sn)

θτ/sn + o(1/sn)

→
limn→∞ kn P

(
X1 ≤ un, B

(n)
3,2j+1, X2j+3 ≤ un

)

θτ
:= π(j).

tu

6 Examples

In this section we give several examples of application of the the results of the previous
sections. We shall consider five types of stationary sequences with extremal index θ < 1. For
the first two examples condition D

(2)
kn

(un) holds, while for the last three condition D
(2)
kn

(un)

fails but condition D
(3)
kn

(un) holds.
We consider two particular types of sequences {Un}.
1. The first is the simplest case where {Un} is iid with P (Un = 1) = β, β ∈ ]0, 1[.

2. The second case is a homogeneous Markov chain with one-step transition probabilities
{

P{Un = 1|Un−1 = 1} = η

P{Un = 1|Un−1 = 0} = µ

In this model {Un} defines a sequence where the probability of failure (Un = 0) depends
only on whether a failure has just occurred. {Un} forms geometric blocks of consecutive
zeros followed by geometric blocks of consecutive ones. In order to have a stationary
chain the initial distribution is such that P{U0 = 1} = 1−η

1−η+µ .

Hence, given any values of η, µ ∈ [0, 1]

β =
µ

1− η + µ
. (11)

Hall and Hüsler (2006) proved that {Un} is strongly mixing.
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For the {Un} Markov chain Hall and Hüsler (2006) have determined the expressions for
∇(j) and ∇̄(j):

∇(j) =
(1− µ)j−1(1− η)

1− η + µ
, j ≥ 1,

∇̄(j) = P{U1 = 1, . . . , Uj = 1} =
µηj−1

1− η + µ
, j ≥ 1.

Using the properties of homogeneous Markov chains we obtain

∇even(j) = (1− µ(1− µ + η))j−1 1− η

1− η + µ
, j ≥ 1

∇̄even(j) = (η2 + µ(1− η))j−1 µ

1− η + µ
, j ≥ 1.

We now consider different types of stationary sequences and compute the limiting dis-
tribution of the maximum term of models M1, M2 and M3, whenever these sequences are
transformed through any of the sequences {Un} described above.

6.1 First order max-autoregressive model (multiplicative)

We first consider a multiplicative max-autoregressive model

Xn = k max{Xn−1, εn}, n ≥ 1,

where {εn} is a sequence of iid rv’s with df F , k ∈ ]0, 1[ and X0 is independent of {εn}.
Alpuim (1988) has proved that {Xn} is strong mixing and has stationary df H if and only
if wF > 0 and, for some x0 > 0, F (x0/k) > 0 and

∑+∞
j=1 − lnF (x0/kj) < +∞. In this case

H(x) =
∏+∞

j=1 F (x/kj). Considering {εn} with a max-semistable df

F (x) = exp{−x−αν(log x)}, α > 0, x > 0,

and r = k−α/m, where m is a positive integer, Temido and Canto e Castro (2003) proved that
{Xn} has extremal index θ = 1 − r−m and H(x) = F γ(x), with γ = r−m/(1 − r−m), which
is again max-semistable. Due to H [rn](rn/αx) → H(x), n → +∞, we get

P (M[rn] ≤ rn/αx) → H1−r−m
(x), n → +∞.

Moreover, since

P (X1 > un, Xj−1 ≤ un < Xj) ≤ P (X1 > un, Xj−1 ≤ un, εj > un/k)

≤ (1−H(un))(1− F (un/k))

condition D
(2)
kn

(rn/αx)) holds. Following Alpuim (1988) the cluster size distribution is geo-
metric given by π(j) = (1− r−m)(r−m)j−1, j ≥ 1.

Considering the two different types of sequences {Un} described in the beginning of the
section we obtain the following results:
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1. IID missing values

Applying proposition 3.1 we obtain

θ∗ =
1− r−m

1− (1− β)r−m and θ∗∗ = (1− r−m)
1− r−m(1− 2β(1− β))

(1− r−m(1− β))(1− r−mβ)
.

2. Missing values through a Markov chain

Since {Xn} satisfies condition D
(2)
kn

(un) we may apply proposition 4.2 and obtain

θ∗ = (1− r−m) (1− r−m(η − µ))
1− r−m(1− µ)

θ∗∗ = (1− r−m) (1− r−m(η − µ))
1− η + µ

(
µ

1− r−m(1− µ)
+ 1− η

1− r−mη

)
.

In either case
lim

n→∞P (M[rn](V ) ≤ rn/αx) = e−θV τV

where θV = θ∗, τV = τβ for the sequences {Yn} and {Zn}, and θV = θ∗∗, τV = τ for the
sequence {Wn}, τ = x−αγν(log x).

6.2 First order max-autoregressive model (additive)

Now suppose that {Xn} is an integer-valued stationary additive max-autoregressive sequence
with marginal df H satisfying (1) (Anderson’s class). More precisely,

Xn = max{Xn−1, εn} − c, n ≥ 1,

where c ∈ IN, {εn} is an iid sequence with df F and X0 is independent of {εn}. Hall (1996)
proved that {Xn} is strong mixing and has stationary df H(x) =

∏+∞
j=1 F (x + jc). She also

proved that condition D(2)(un) holds for {Xn}. Thus D
(2)
kn

(un(τ, kn)) also holds. Moreover,
with the arguments of Hall (1996), we prove that {Xn} has extremal index θ = 1 − r−c. It
is also known, due to Alpuim (1988), that the cluster size distribution is geometric, π(j) =
(1− r−c)r−(j−1)c, j ≥ 1.

For instance, if H is the df of the Negative Binomial NB(m, p) distribution, we have

P (M[p−n] ≤ x + bn) → exp(−(1− pc)p[x]), n → +∞, x ∈ IR \ ZZ,

with bn = n− 1− 1
log p{(m− 1) log n + log( (1−p)m−1

(m−1)! )} and π(j) = (1− pc)p(j−1)c, j ≥ 1.

Again, considering the two different types of sequences {Un} described in the beginning
of the section we obtain the following results:
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1. IID missing values

Applying proposition 3.1 we obtain

θ∗ =
(1− r−c)

1− (1− β)r−c and θ∗∗ = (1− r−c)
1− r−c(1− 2β(1− β))

(1− r−c(1− β))(1− r−cβ)
.

2. Missing values through a Markov chain

Since {Xn} satisfies condition D
(2)
kn

(un) we may apply proposition 4.2 and obtain

θ∗ = (1− r−c) (1− r−c(η − µ))
(1− r−c(1− µ))

θ∗∗ = (1− r−c) (1− r−c(η − µ))
1− η + µ

(
µ

1− r−c(1− µ)
+ 1− η

1− r−cη

)
.

In either case

lim
n→∞P (M[rn](V ) ≤ x + bn) = e−θV τV , x ∈ IR \ ZZ,

where θV = θ∗, τV = τβ for the sequences {Yn} and {Zn}, and θV = θ∗∗, τV = τ for
the sequence {Wn}, τ = r−[x] and {bn} is an appropriate sequence of constants satisfying
lim

n→∞ bn = +∞.

6.3 Second order max-autoregressive model (additive)

Now suppose that {Xn} is an integer-valued stationary additive second order max-autoregressive
sequence with marginal df H satisfying (1) (Anderson’s class). More precisely,

Xn = max{Xn−2, εn} − c, n ≥ 2,

where c ∈ IN and {εn} is an iid sequence with df F satisfying 1−F (n−1)
1−F (n) = r, with r in ]1, +∞[.

Assuming that X0, X1 and {εn} are independent Hall (1998) proved that {Xn} is strong
mixing and has a stationary df given by H(x) =

∏+∞
j=1 F (x/kj). Moreover, Hall and Temido

(2007) proved that condition D
(3)
kn

(un) holds and {Xn} has extremal index θ = 1 − r−c.
Consequently

P (M[rn] ≤ x + bn) → exp{−(1− r−c)r−[x]}, n → +∞, x ∈ IR \ ZZ.

Furthermore, since X0 and X1 are independent, condition (7) holds for {Xn}. Then,
applying Lemma 5.2, by induction, we prove that the cluster size distribution is geometric
given by π(j) = (1− r−c)(r−c)j−1, j ≥ 1.

Considering the two different types of sequences {Un} described in the beginning of the
section we obtain the following results:
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1. IID missing values

Applying proposition 3.1 we obtain

θ∗ =
1− r−c

1− (1− β)r−c and θ∗∗ = (1− r−c)
1− r−c(1− 2β(1− β))

(1− r−c(1− β))(1− r−cβ)
.

2. Missing values through a Markov chain

Since {Xn} satisfies condition D
(3)
kn

(un) and (7) we may apply proposition 5.1 and obtain

θ∗ = (1−r−c)
β

(
1− (1−r−c)(1−β)

1−r−c(1−µ(1−µ+η))

)

θ∗∗ = (1− r−c)
(

1− (1−r−c)(1−β)

1−r−c(1−µ(1−µ+η))
+ 1− (1−r−c)β

1−r−c(η2+µ(1−η))

)
,

where β = µ
1−η+µ .

In either case

lim
n→∞P (M[rn](V ) ≤ x + bn) = e−θV τV , x ∈ IR \ ZZ,

where θV = θ∗, τV = τβ for the sequences {Yn} and {Zn}, and θV = θ∗∗, τV = τ for the
sequence {Wn}, τ = r−[x] and {bn} is an appropriate real sequence satisfying lim

n→∞ bn = +∞.

The last two examples consist of sequences with marginal distribution in the domain of
attraction of a max-stable distribution. Hence, it suffices to consider kn = n in these cases.
Although max-semistability is not required to study the effect of missing values on their
extremes, we include them in the present work because the condition D

(2)
kn

(un) does not hold
and the results of Hall and Hüsler (2006) are not enough to obtain the limiting distribution of
the maximum. Due to their alternating nature, conditions D

(3)
kn

(un) and (7) hold, and hence
the present results allow us to obtain the desired MS limiting distributions.

6.4 Negative AR(1) model with uniform margins

This example concerns the negatively correlated uniform AR(1) defined by

Xn = −1
%
Xn−1 + εn, n ≥ 1,

where % > 1, X0 ∼ U(0, 1), {εn} is a sequence of iid rv’s with P (ε1 = j/%) = 1/%, for
j ∈ {1, 2, ..., %} and X0 is independent of {εn}. Asymptotic results for the extremes from
this model were originally obtained in Chernick and Davis (1982). Chernick et al. (1991)
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proved that {Xn} satisfies condition D(3)(1 − x/n) and that the extremal index is given by
θ = 1− 1/%2.

Take un = 1− x/n and observe that τ := τ(x) = x. In view of

nP (X1 > un, X2 > un) = nP
(
X1 > un, ε2 > un

(
1 + 1

%

))

= nP (X1 > un) P
(
ε2 > un

(
1 + 1

%

))
→ 0, n → +∞,

and hence condition (7) holds. Using this result we can compute the extremal index in a
simpler way. Indeed due to (9) and attending that

lim
n→∞P (−1

%
εj + εj+1 > un(1− %2) = P (εj+1 = 1, εj = 1/%) = 1/%2, j ≥ 1,

we deduce

θ = lim
n→∞

P (X1 > un, 1
%2 X1 − 1

%ε2 + ε3 ≤ un)

P (X1 > un)

= lim
n→∞P (−1

%
ε2 + ε3 ≤ un(1− 1/%2))

= 1− 1/%2.

Using the previous results we obtain

P (Mn ≤ 1− x/n) → exp(−(1− %−2)x), n → +∞, x > 0.

Now, in order to compute the limit cluster size π(j) we first prove, by induction, that

P (B(n)
1,2j+1) = (

1
%2

)j x

n
(1 + on(1)), j ≥ 1.

In fact
P (X1 > un, X3 > un) = P (X1 > un)− P (X1 > un, X3 ≤ un)

= x
n(1− θ)(1 + on(1)) = x

n
1
%2 (1 + on(1))

and
P (B(n)

1,2j−1, X2j+1 > un) = P (B(n)
1,2j−1,

1
%2 X2j−1 − 1

%ε2j + ε2j+1 > un)

= P (B(n)
1,2j−1)P (−1

%ε2j + ε2j+1 > un(1− 1
%2 )) = ( 1

%2 )j−1 x
n

1
%2 (1 + on(1)).

Thus, by stationarity we obtain

P (X1 ≤ un, B
(n)
3,2j+1, X2j+3 > un) = P (B(n)

3,2j+1)− 2P (B(n)
1,2j+1) + P (B(n)

1,2j+3)

=
(
( 1

%2 )j−1 x
n − 2( 1

%2 )j x
n + ( 1

%2 )j+2 x
n

)
(1 + on(1))

= x
n( 1

%2 )j−1(1− 1
%2 )2(1 + on(1))
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and so

π(j) =
lim

n→∞
x

n
(

1
%2

)j−1(1− 1
%2

)2(1 + on(1))

x(1− 1
%2 )

= (
1
%2

)j−1(1− 1
%2

), for j ≥ 1,

which corresponds to a geometric distribution.

We now obtain the limiting distribution of the maximum term of models M1, M2 and
M3, whenever the negative uniform AR(1) model is transformed through either the sequences
{Un} described in the beginning of the section.

1. IID missing values Applying proposition 3.1 we obtain

θ∗ =
(1− %−2)

1− (1− β)%−2 and θ∗∗ = (1− %−2)
1− %−2(1− 2β(1− β))

(1− %−2(1− β))(1− %−2β)
.

2. Missing values through a Markov chain

Since {Xn} satisfies condition D
(3)
kn

(un) and (7) we may apply proposition 5.1 and obtain

θ∗ = (1−%−2)
β

(
1− (1−%−2)(1−β)

1−%−2(1−µ(1−µ+η))

)

θ∗∗ = (1− %−2)
(

1− (1−%−2)(1−β)

1−%−2(1−µ(1−µ+η))
+ 1− (1−%−2)β

1−%−2(η2+µ(1−η))

)
,

where β = µ
1−η+µ .

In either case
lim

n→∞P (Mn(V ) ≤ 1− x/n) = e−θV τV ,

where θV = θ∗, τV = τβ for the sequences {Yn} and {Zn}, and θV = θ∗∗, τV = τ for the
sequence {Wn}, with τ = x > 0.

6.5 Negative AR(1) model with regularly varying tails

Our last example concerns again an AR(1) stationary process

Xn = −ψXn−1 + Zn, n ≥ 1,

where ψ ∈ ]0, 1[ and {Zn} is a sequence of iid rv’s independent of X0. Following Scotto et al.
(2003) we consider that the margins of {Zn} possesses regularly varying balanced tails

lim
t→∞

P (|Z1| > tx)
P (|Z1| > t)

= x−α,
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for α > 0 and x > 0, and satisfies the tail balancing conditions

lim
x→∞

P (Z1 > x)
P (|Z1| > x)

= p ∈ [0, 1],

and
lim

x→∞
P (Z1 < −x)
P (|Z1| > x)

= 1− p.

We now prove that this sequence satisfies (7) and D(3)(un(τ, n)). In fact

nP (X1 > un, X2 > un) = nP (X1 > un, Z2 > un + ψX1)

= nP (Z2 > un(1 + ψ))P (X1 > un) → 0, n → +∞,

because ψ > 0. On the other hand

P (X1 > un, Xj−2 ≤ un, Xj−1 ≤ un, Xj > un)

= P
(
X1 > un, Xj−2 ≤ un, Xj−1 ≤ un, ψ2Xj−2 − ψZj−1 + Zj > un

)

= P
(
X1 > un, Xj−2 ≤ un, Xj−1 ≤ un,−ψZj−1 + Zj > un(1− ψ2)

)

≤ P
(
X1 > un, Xj−2 ≤ un, Xj−1 ≤ un, | − ψZj−1 + Zj | > un(1− ψ2)

)

≤ P
(
X1 > un, Xj−2 ≤ un, Xj−1 ≤ un, ψ|Zj−1|+ |Zj | > un(1− ψ2)

)

≤ P
(
X1 > un, Xj−2 ≤ un, Xj−1 ≤ un, 2max{ψ|Zj−1|, |Zj |} > un(1− ψ2)

)

≤ P
(
X1 > un, Xj−2 ≤ un, Xj−1 ≤ un, ψ|Zj−1| > un(1−ψ2)

2

)

+ P
(
X1 > un, Xj−2 ≤ un, Xj−1 ≤ un, |Zj | > un(1−ψ2)

2

)
.

Thus

n

rn∑

j=2

P (X1 > un, Xj−2 ≤ un, Xj−1 ≤ un, Xj > un)

≤ nrnP (X1 > un) P
(
|Z2| > un

1−ψ2

2ψ

)
+ nrnP (X1 > un) P

(
|Z3| > un

(1−ψ2)
2

)

= rnP (X1 > un) nP (|Z2| > un)
P

(
|Z2| > un

1−ψ2

2ψ

)

P (|Z2| > un)

+ rnP (X1 > un) nP (|Z3| > un)
P

(
|Z3| > un

1−ψ2

2

)

P (|Z3| > un)

→ 0× τ × (1−ψ2

2ψ )−α + 0× τ × (1−ψ2

2 )−α = 0, n → +∞.
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The extremal index of {Xn} is given by θ = 1− ψ2α and τ := τ(x) = p+qψα

1−ψ2α x−α (Scotto
et al. (2003)) and

P (Mn ≤ anx) → exp{−(p + qψα)x−α}, n → +∞, x > 0,

with {an} satisfying nP (|Z1| > an) → 1, n → +∞.
Furthermore, with the arguments used in the last example we deduce that

π(j) = ψ2α(j−1)(1− ψ2α), for j ≥ 1.

We observe that this coincides with the result of Scotto et al. (2003) for π1(j), taking into
account the differences of the definitions of π(j) used in this work (given by Leadbetter and
Nandagopalan (1989)) and of π1(j) used by those authors (which is the same as in Embrechts
et al. (1997), pag 273).

We now obtain the limiting distribution of the maximum term of models M1, M2 and M3,
whenever the negative heavy tailed AR(1) model is transformed through either the sequences
{Un} described in the beginning of the section.

1. IID missing values

Applying proposition 3.1 we obtain

θ∗ =
1− ψ2α

1− (1− β)ψ2α and θ∗∗ = (1− ψ2α)
1− ψ2α(1− 2β(1− β))

(1− ψ2α(1− β))(1− ψ2αβ)
.

2. Missing values through a Markov chain

Since {Xn} satisfies condition D
(3)
kn

(un) and (7) we may apply proposition 5.1 and obtain

θ∗ = (1−ψ2α)
β

(
1− (1−ψ2α)(1−β)

1−ψ2α(1−µ(1−µ+η))

)

θ∗∗ = (1− ψ2α)
(

1− (1−ψ2α)(1−β)

1−ψ2α(1−µ(1−µ+η))
+ 1− (1−ψ2α)β

1−ψ2α(η2+µ(1−η))

)
,

where β = µ
1−η+µ .

In either case
lim

n→∞P (Mn(V ) ≤ anx) = e−θV τV , x > 0,

where θV = θ∗, τV = τβ for the sequences {Yn} and {Zn}, and θV = θ∗∗, τV = τ for the
sequence {Wn}, with τ as above.
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Hall, A. and Hüsler, J (2006), Extremes of stationary sequences with failures. Stochastic
Models, 22, 537-557.

Hall, A. and Scotto, M. (2006) Extremes of periodic integer-valued sequences with exponential
type tails, Revstat - Statistical Journal, 4, 249-273.

Hall, A. and Scotto, M. (2008) On the extremes of randomly sub-sampled time series, Revstat
- Statistical Journal, (to appear).

Hall, A. and Temido, M.G. (2007), On the maximum term of MA and Max-AR models with
margins in Anderson’s class, Theory Probab. Appl., 51, 291-304.

Leadbetter, M. R., Lindgren, G. and Rootzén, H. (1983), Extremes and Related Properties
of Random Sequences and Processes (Springer-Verlag, Berlin).

Leadbetter, M. R. and Nandagopalan, S. (1989), On exceedance point processes for sta-
tionary sequences under mild oscillation restriction. In Hüsler, J. and Reiss, R. D., eds.,
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