
1569233317 1

Abstract

CIM-SPL is a declarative policy specification language

proposed inside DMTF. SPL policies allow the specification

of rules to govern the behavior of a system using a PBM

approach. However, SPL requires thorough knowledge of the

language syntax as well as full understanding of the

management scenario and its available management features.

This paper describes a graphical CIM-SPL editor application

and the supporting policy edition metaphor. A graphical

composition process of SPL policies is proposed, based on the

use of drag and drop operations of the policy component items

in a graphical interface. The editor includes policy creation

wizards that guide the user in the policy specification process,

in order to alleviate network administrators from the

difficulties associated with the intricacies of SPL language.

Additionally, a text-based SPL edition tool is provided as a

complement for experienced SPL language operators.

1 INTRODUCTION

OLICY Based Management (PBM) [1] is a management

paradigm that consists of the definition of rules that

determine system behavior. Policies have long been known,

with the first literature references occurring in the 60s. PBM

separates the rules that define the behavior of a system from its

functionality: rules determine the changes in system behavior

according to the system internal state. Policies were proposed

for many different areas, such as admission control, security

and network management control. During the last decades, we

have seen proposals for new PBM management technologies

[2, 3], new data models for PBM information representation

[4] and new policy languages [5-8] for its specification. More

recently, PBM has been identified as the most appropriate

approach to complex network management challenges, such as

those appearing in Next Generation Network (NGN). NGN

architectures include a framework developed by the 3GPP

consortium [9] named IP Multimedia Subsystem [10] to

deliver multimedia services in IP networks. PBNM

methodology formed the base of the design of the IMS

resource managing platform named Policy and Charging

Control [9].

One of the most recently proposed policy languages is CIM

(Common Information Model) Simple Policy Language (CIM-

SPL) [11]. CIM-SPL is a policy specification language defined

by Distributed Management Task Force (DMTF) that complies

with the CIM Policy Data model and allows policy

specification in a if(condition) then (action) model. Although

appropriate for the majority of scenarios, CIM-SPL requires

high technical expertise from the manager, since he has to

know the correct syntax and semantics in order to be able to

write the correct management rules.

The current paper proposes a graphical composition process

of SPL policies, based on the use of drag and drop operations

of the policy component items in a graphical interface. The

editor is composed of several wizards and a graphical tool for

the policy composition that supports human ruling of policy

specification, alleviating the strain of the CIM-SPL learning

curve. This graphical composition process liberates the

manager from the semantic and syntactical details of policy

specification language and consequently decreases the

mistakes introduced by textual policy specification.

Section 2 discusses the state-of-art in policy languages and

available policy editors. Section 3 presents our management

architecture and describes the management technologies and

the PBM data models used in current work. Section 4 presents

our policy specification metaphor and describes the policy

editor. Thereafter we present some examples of policies that

can be defined with the help of the proposed editor and we

analyze the developed application. Finally a conclusion and

intended future work closes the paper.

2 Policy languages and editors

During the last decade policy-based management has raised

interest as a powerful paradigm to tackle the challenges

coming from the growing complexity of communication

networks and services. In [12] Boutaba et al trace the history

of policy-based management initiatives in very different areas

(e.g. admission control, security, network management). This

section describes some generic proposals and in particular

A graphical user interface for policy

composition in CIM-SPL

Pedro Gonçalves
1
, Carlos Figueira

1
, Ricardo Azevedo

2
, Rui Aguiar

1
, José Luís Oliveira

1

1
 Universidade de Aveiro, DETI/IT,

2
 Portugal Telecom Inovação, Applied Research and Knowledge Dissemination,

3810 Aveiro, Portugal
{pasg, cjcfigueira, ruilaa, jlo}@ua.pt, ricardo-a-pereira@ptinovacao.pt

P

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório Institucional da Universidade de Aveiro

https://core.ac.uk/display/15566406?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1569233317 2

describes the available policy editor applications.

2.1 Policy Languages

Ponder is a policy management framework developed at

Imperial College London, which includes a policy

specification language [5], a general architecture and policy

deployment model. The framework also includes a policy

editor and a domain browser tool. Ponder includes security

policies (role-based access control) and management policies

(management obligations), and supports object-oriented

features like policy inheritance. There are four primitive policy

types: authorizations, obligations, refrains and delegation.

Groups, roles, relationships and management structures also

support the creation of composite policies. In contrast to what

happens with CIM, Ponder supports the definition of events

that trigger policy evaluation. Each policy rule contains the

target and subjects to which the policy is to be applied, and it

supports the definition of domains – a dynamic grouping

scheme of managed objects.

XACML is a XML specification for expressing policies

defined by OASIS [8]. The language permits access control

rules to be defined for securely browsing XML documents and

uses a XML schema to validate the defined policy

components. XACML is used to specify a subject-target-

action-condition oriented policy. The subject comprises

identities, groups, and roles and the granularity of target

objects is as fine as single elements within the document. It

includes conditional authorization policies, as well as policies

with external post-conditions to specify actions that must be

executed prior to permitting access. The main advantage of

XACML has to do with XML encoding, a widely adopted

standard that eases policy specification and client development

while still allowing human readability. The work on XACML

includes an architecture for enforcing policies which extends

the IETF policy architecture.

CIM-SPL is a policy specification language proposed by

Agrawal et al. [6] inside DMTF. A CIM-SPL rule follows the

schema represented in Figure 1. The import statement includes

an object named as the anchor class, typically with the purpose

of providing the policy action methods.

import <MOF Name>::<CIM Class Name>:<Object>

strategy <execution strategy>

policy{

 declaration { <constants and macros> }

 condition {<boolean expression>}

 decision {<action workflow>}

}:<priority>;

Figure 1 - SPL rule structure

The declaration section is optional and defines macros and

constants for the sake of simplifying the remaining rule edition

due to the typically long name of the CIM classes. The

condition section contains a boolean expression allowing

operators as the standard AND, OR and NOT, as well as

arithmetic operators. SPL allows conditions to be composed of

a set of sub-conditions, as long as the overall conditions can be

evaluated as a boolean. Actions in the decision section are

mostly the invocation of anchor class methods. CIM-SPL

allows the composition of basic actions into more complex

actions – basic actions can be executed in a serial execution or

in a concurrent execution manner. The decision section allows

execution of a policy decision action in a process as a cascade

set of policies.

SPL implements CIM policy aggregation as Policy groups,

with a syntax illustrated in Figure 2. Policy groups can contain

policies and other groups in a nested group style and they

import private anchor class. Each group has a priority

implemented as an integer number that should be unique in the

group scope. Groups of policies allow hierarchical

organization of policies, grouping policies according to their

functionality, importance, priority or just their scope.

Expressions in SPL can include all CIM data types, arrays, a

set of built-in operators (logical and basic mathematical

operators) as well as a set of built-in functions (e.g. max, ln,

stringlength). Additionally SPL supports operations over

arrays, referred to as collection operations. Collections,

implemented through collect operator, create arrays of CIM

data types or arrays of references to CIM instances. They

allow, among other things, transverse of references of the CIM

classes, from the CIM class imported as the policy anchor to

reach the remaining classes, by means of CIM association

classes that should be accessed in order to specify the policy

rule.

import <MOF Name>::<CIM Class Name>:<Condition>

strategy <Execution Strategy>

declaration{...}

policy{...}:<Priority>

policy{...}:<Priority>

policyGroup: <Association Class>(<Property One>,

<Property Two>)

{...}:<Priority>

policyGroup: <Association Class>(<Property One>,

<Property Two>)

{...}:<Priority>

Figure 2 - Policy group syntax

2.2 Policy editors

The edition of policy rules has been mostly made through

text files with direct use of the language semantics. Graphical

edition tools are minimally explored and usually as simple

property edition tools of the policy component items.

The Ponder toolkit [13], for instance, includes a console

tool and a domain browser. The console tool is a graphical

application that allows policy edition and parsing. The domain

browser is a graphical application that provides a friendlier

interface for the domain server.

Apache Imperius is an open-source implementation of a

SPL-based management platform that uses Java binding and

includes a SPL policy editor [14]. Imperius SPL Policy editor

1569233317 3

was developed as an Eclipse plug-in and includes the features

usually available in an integrated development environment

(IDE). The editor simplifies policy edition with the use of

policy templates, it performs statement auto-completion, error

location indication, allows easy import and export of policies,

syntax highlighting, policy compiler, policy execution and

other features normally included in an IDE application.

However, to have these features we must rely on a

programming framework (Eclipse), which is not a suitable user

interface for management. Furthermore our management

architecture required policies to be executed in the

management server, and not in the client interface, as happens

in the eclipse platform. As such, we have developed a CIM-

SPL editor that aims to create a better user interface to

simplify the task of policy specification.

3 Management platform

Policies are rules that define the behavior of a system.

Despite several policy notations, each rule usually includes at

least two components: a condition and an action component.

Implementations exist that include an event component in the

policy rule in an event-condition-action policy format [15].

PBM platforms usually include a central policy server that

receives policies through a user interface application. This

interface is, in general, the single contact point between the

human operator and the management platform.

This section describes our PBM management platform, as

well as enabling technologies such as the communication

protocol used in the entity communication, and the data model

for management information.

3.1 Overview of the management solution

Our management solution consists of a policy server, a

policy manager, several instrumentation providers and a policy

repository, following traditional PBM systems.

The policy server is the central element of the management

platform and was developed based on a WBEM open-source

CIMOM [16]. WBEM [2] is a DMTF standard for system and

network management. It relies on CIM to represent its

information model and makes use of widely available web

technologies for information encoding (XML) and information

transport (HTTP). Several WBEM prototype and commercial

implementations exist (e.g. [17]). WBEM solutions usually

include four components: i) A CIM Object Manager

(CIMOM), as the central element of the management scenario,

ii) the human-computer interface, iii) instrumentation

providers that connect the CIMOM to the management

entities, and iv) a policy repository.

The providers adapt the policy rule format according to the

managed elements they represent. The policy manager

provides the user interface of the management platform, and

implements several features associated with the configuration

and visualization of services, topologies, events and policies.

Since it is based on XML technologies, WBEM can be a rather

resource-consuming solution in some management scenarios,

when compared to binary protocols, like COPS or Diameter

[18].

3.2 Data model for policy representation

The Common Information Model (CIM) is a standard

developed inside DMTF for the representation of management

information. CIM is an object-oriented model that tries to

address all the IT components and includes expressions for

common elements that must be presented to management

applications (for example, object classes, properties, methods

and associations). The elements of the model are Schemas,

Classes, Properties and Methods. The model also supports

Indications and Associations as Class types and References as

Property types. Several management technologies reused the

CIM information model [19-21], or were roughly based on the

CIM information model [7].

The Policy Core Information Model (PCIM) [7] was a joint

effort developed by IETF policy working group and DMTF for

policy information representation. It is an object oriented

policy information model that extends CIM to represent

policy-related information. Another joint effort from the

DMTF and the IETF Policy Framework Work Group is the

CIM Policy model. In the CIM Policy data model, policies are

represented as instances of the CIM Policy model classes in a

if(condition) then (action) form. Policy components can be

represented as instances of CIM_PolicyCondition and

CIM_PolicyAction. Policies, conditions and actions can be

aggregated and both conditions and actions can be associated

with a policy through the use of association classes.

In current work, several extensions have been created over

the CIM Policy model for the representation of policy

information. Policies are represented as CIM_PolicyRule

instances and policy components as instances of the classes

derived from CIM_PolicyCondition and CIM_PolicyAction.

Definition of the managed entities affected by each policy is

specified in CIM by means of a PolicyAppliesToElement

association class, and time / period policy component is

specified as an instance of PolicyTimePeriodCondition.

4 The CIM-SPL editor

Although usable for the vast majority of management

scenarios, CIM-SPL requires the operator to know the correct

syntax and policy semantics in order to be able to write the

management rules. Graphical policy editors are the best

approach to reduce the policy language learning curve and

configuration errors, since they avoid syntactical errors and

help the policy specification person with the platform

management details.

Our policy definition metaphor was based on [22] where

Lopes et al. propose a policy composition process based on

graphical operations over policy component items. We present

a policy graphical editor composed of policy specification

1569233317 4

wizards, a graphical policy composition tool, a policy browser

and a text-based SPL specification component. Graphical

composition methods consist of the drag and drop operations

of policy components present in the surrounding areas of the

editor to the control present in the central area of the policy

specification window where the policy component is

represented.

The editor allows change in the edition method when the

operator wishes: experienced users would prefer to use the

SPL text edition methods; non- experienced users would prefer

to finish the policy specification in the graphical composition

window.

The graphical components of the policy editor enable a dual

policy specification process:

i) The operator starts by creating a new blank policy,

and then has to complete the suitable policy

component, or

ii) He can just use a graphical wizard to guide him

filling in the policy components.

The next sub-sections describe both the graphical edition

features and the SPL edition features of the editor.

4.1 Wizards for policy specification

The new policy wizard process is made up of a set of dialog

windows that ask for the policy component information,

typically organized according to SPL policy components: the

first step requests the general policy information (e.g. name, its

ancestor name, implementation strategy and priority); the

second step requests the condition component information, the

third step requests the action component information, and the

fourth step requests the managed elements the policy applies

to. Once the policy definition wizard is finished, the policy

components data is inserted in the CIMOM to be available for

additional policy edition.

The new policy group is simpler than the new policy wizard:

it is composed of a single step where the user is requested to

define the group name, its ancestor group name,

implementation strategy and priority. Since CIM-SPL does not

allow empty policy groups, after successful group creation its

information is temporarily stored in the memory until some

descendent is created, and then it is created in the CIMOM

repository.

4.2 Graphical policy composition

The graphical composition window, illustrated in Figure 3,

is composed of several graphical components present in the

central area of the window that represent each particular aspect

of the policy rule.

The policy components include: the policy execution

strategy represented by a radio button; the condition

component containing a radio button where it can be defined

how to compose the policy conditions (e.g. ORed or ANDed)

and a list of simple conditions where condition usage can be

suspended in the check box; the action component

representing the actions executed by the policy in the form of a

list control; the time period component specified in a set of

common control windows representing the time validity of the

policy assuming the policy’s validity is periodical; and the

elements from the management scenario affected by the policy

rule.

Figure 3 - Graphical editor view

The surrounding areas present the items that can be used to

compose the policy rules by means of dragging policy items to

the policy representation area. Tree view controls represent

elements hierarchically: policy groups, existing policies,

CIMOM repository and their components (e.g. policy

conditions and policy actions); the managed elements

instantiated in the CIM server; and the policy condition

components inside their policy condition. A list of policy

actions the management platform is able to execute is also

presented in the surrounding area.

The specification of each aspect of the policies consists of

dragging each element to the corresponding component of the

policy present in the central area of the window. Interaction

with the editor application follows the graphical applications

metaphor with respect to the keyboard shortcuts and control

behavior. Item enablement is allowed all over the application

by use of check box controls: disabled elements (e.g. condition

or action items, the managed elements the policy applies to, or

the time period component elements) are inserted in the

CIMOM repository, but disregarded during CIMOM

operation.

4.3 The policy browser

The policy browser, illustrated in Figure 4, hierarchically

lists all the policies, policy groups and policy components that

exist in the management server, in the tree control present in

the left hand window. In the right side window the browser

lists all the policies that descend from the selected node in the

tree control allowing the user to check and uncheck policies or

groups, activating and deactivating the policy rule.

If a simple policy node is selected in the tree control, a

panel listing all the components of the selected policy is shown

(Figure 3). The policy browser, as well as the policy

1569233317 5

composition tool, allows a policy or a group to be dragged

from one group to another, changing its ancestor property.

Since the policy list could include a large number of

policies, the policy browser includes policy search facilities.

Policy search process is allowed by one of three criteria: by

the policy name, by the group the policy descends from and by

the elements the policy manages. Search results are presented

in the policy list control.

Figure 4 - Policy browser

4.4 SPL policy editor

Although very useful for non-expert users, the graphical

edition methodology tends to require some time to fill in all

the policy components. Experienced users would prefer to

perform policy specification through SPL sentence writing

methods, especially because it makes reuse of policy sentences

easier. The editor application includes a SPL specification

window, as illustrated in Figure 5. It is a text window that

allows policy specification using SPL language. The editor

includes copy-paste features, as well as allowing policy

serialization to, and from, a text file. Policies can be exported

and imported to SPL files. These features can be used in

several scenarios: policies can be exported for backup or just

for transport between different policy servers. They can also

be exported to a text format in order to make use of script

functionalities, to help distribution of policy rules in more

complex management scenarios.

SPL editor window includes compile and run options

available in the deploy menu. Compile action performs a

policy syntax check with a policy compiler based on the

Apache Imperius parser [14]. Correct policies can be stored in

the CIMOM repository by means of the run option; otherwise

syntactical errors are reported to the user. On the contrary to

what happens with Imperius implementation, policies are not

executed by the policy editor, but by the CIMOM. In our

implementation, once the policy is transferred, the CIMOM

starts to translate it to the managed elements through the

appropriate providers. That difference in the implementation

architecture made us restrict the policy components to CIM

objects, avoiding the java-based properties and methods

available in the Imperius policy platform.

Figure 5 - CIM-SPL editor

Besides the graphical appearance of the SPL editor, Figure

5 also illustrates the SPL sentence obtained from the

conference server policy. Import statement imports our anchor

class responsible for CIMOM communication. The strategy

statement defines that all policy actions should be executed.

Our policy consists of three different sections: the declaration,

condition and decision parts. The declaration section was used

to create an alias for the complete IPv6 address. In the policy

condition section the destination address is defined for the

network packets that should be affected by the policy. The

decision section defines the policy name and defines to which

packets the “Drop” action should be applied.

5 Implemented policies and results evaluation

The set of policies that can be specified by this management

platform is very broad. The examples present in the current

paper are limited to QoS management issues, but the

management solution could easily be extended to other areas.

Policy components are supplied by the CIMOM, so addition of

new policies to the management platform consists of the

definition of a new CIM extension and development of the

corresponding support in the CIMOM provider, without any

change in the editor. Table 1 enumerates a few policies that

were developed.

The first policy example consists of the definition of a

traffic differentiation rule for a user. The user is identified by

its IP address and its traffic packets are reshaped and

forwarded in the network routers. In the second example a rule

for traffic blocking is defined. The blocked addresses could

represent a specific machine or an entire network. The third

rule blocks access to a specific service. The service is

identified through the transport protocols and port numbers.

The last example consists of a rule for creating traffic

degradation of a service after the user credit is exceeded.

1569233317 6

After a successful compilation process, policies are

translated to CIM-SPL and transferred into the CIMOM.

Table 1 - Policy examples summary.

Policy Description
Policy Name

Purpose Conditions Actions

Gold service
Define better

service to a user
SrcAddress

Shape

Forward

Block destinat.
Block access to

destination
DestAddress Drop

Block service
Prohibit access to a

service

Port

Numbers

Protocol

Drop

Credit control

Degrade service

after credit is

exceeded

Credit value
Mark

Route

The editor application makes extensive usage of the

graphical controls in the policy creation wizards, in the

graphical composition window and in the policy browser.

Those components create a policy composition process that is

much more user-friendly: the list controls represent items in a

style that eases the reasoning of the policy component items;

the combo box controls limit the values inserted by the user in

the options offered by the CIMOM repository, thus creating

semantic constraints for the policy items; the drag and drop

support makes use of some well-known methods present in the

graphical applications metaphor. Besides, since the graphical

application components fill the SPL policy elements,

syntactical errors are avoided and that is the reason why a

policy compiler for the graphically specified policies is not

needed.

Although the application presented in the current study

allows a dual policy specification methodology, it does not

implement direct translation of SPL sentences to graphical

representation. Graphically specified policies are inserted in

the CIMOM, or translated to SPL policy sentences. SPL policy

sentences are syntactically verified and compiled (a process

that ends with a CIMOM insertion), but they are not directly

transposed to the graphical editor. Instead, they are imported

in the graphical interface making use of a trick: the graphical

interface window is refreshed after any change in the SPL

policy interface, and thus it receives policy information from

the CIMOM.

CIM-SPL does not fully comply with the CIM Policy data

model: CIM_Policy_Rule inherits a property named “Enabled”

from CIM_PolicySet that allows the existence of disabled

policy rules in the CIM server, but CIM-SPL does not provide

a means to specify disabled policies. Our choice was to not

translate disabled policies to SPL language, but to allow the

disabling of those policies in the policy browser.

Another known issue detected in the application and not yet

resolved has to do with the cascade policy groups. Neither the

CIM Policy data model nor SPL language allows the existence

of empty policy groups; groups need to have subgroups or

policies. Graphically created groups with no content other than

disabled policies, if translated to SPL interface, cannot be

created in the CIM server.

6 Conclusion

In this paper we have proposed a new policy edition

metaphor that uses graphical tools to alleviate the CIM-SPL

language learning curve. The editor also includes SPL text

editor features for expert users and allows policy file

serialization.

The graphical application includes policy definition

assistants that create the policies, and policy groups, a policy

browser and a policy composition tool. We propose a

graphical composition method that makes use of graphical

processes to compose policy elements. To illustrate the editor

functionalities, several management rules were presented for

QoS management.

The advantages of adopting graphical tools for management

are dual: it releases the user from handling directly the

language syntax and it reduces considerably the amount of

errors due to mistyped rules.

In future work we plan to include network topology

configuration support as well as service configuration features

in our editor, in order to allow integrated configuration of the

QoS issues of a real network operator.

References

[1]. D.C. Robinson, and M.S. Sloman, “Domains: a new approach to

distributed system management,” Distributed Computing Systems in the

1990s, 1988. Proceedings., Workshop on the Future Trends of, pp. 154-163.

[2]. J.P. Thompson, “Web-based enterprise management architecture,”

Communications Magazine, IEEE, vol. 36, no. 3, 1998, pp. 80-86.

[3]. G.C.M. Moura, G. Silvestrin, R.N. Sanchez, L.P. Gaspary, and L.Z.

Granville, “On the Performance of Web Services Management Standards - An

Evaluation of MUWS and WS-Management for Network Management,” 10th

IFIP/IEEE International Symposium on Integrated Network Management

(IM 2007) pp. 459-468.

[4]. DMTF, Common Information Model (CIM) Specification - Version

2.9, 2005.

[5]. D. Nicodemos, D. Naranker, L. Emil, and S. Morris, “The Ponder

Policy Specification Language,” Proceedings of the International Workshop

on Policies for Distributed Systems and Networks, Springer-Verlag, pp. 18 -

38.

[6]. D. Agrawal, S. Calo, L. Kang-Won, and J. Lobo, “Issues in Designing a

Policy Language for Distributed Management of IT Infrastructures,”

Integrated Network Management, 2007. IM '07. 10th IFIP/IEEE

International Symposium on, pp. 30-39.

[7]. B. Moore, RFC 3460 - Policy Core Information Model (PCIM)

Extensions.

[8]. OASIS, eXtensible Access Control Markup Language 3 (XACML)

Version 2.0, 2005.

[9]. J.J.P. Balbas, S. Rommer, and J. Stenfelt, “Policy and charging control

in the evolved packet system,” Communications Magazine, IEEE, vol. 47,

no. 2, 2009, pp. 68-74.

[10]. 3GPP, IP Multimedia Subsystem (IMS) Stage 2, 2008.

[11]. DMTF, CIM Simplified Policy Language (CIM-SPL), 2007.

[12]. R. Boutaba, and I. Aib, “Policy Based Management: A Histotical

Perspective,” Journal of Network and Systems Management, vol. 15, no. 4,

2007, pp. 447-480.

[13]. A. Pilz, “"Policy-Maker": a toolkit for policy-based security

management,” Network Operations and Management Symposium, 2004.

NOMS 2004. IEEE/IFIP, pp. 263-276 Vol.261.

1569233317 7

[14]. A. incubator, “Apache Imperius”,

http://incubator.apache.org/imperius/, 2008-02-12.

[15]. S. Chetan Shiva, R. Anand, and R. Campbell, “An ECA-P policy-based

framework for managing ubiquitous computing environments,” Mobile and

Ubiquitous Systems: Networking and Services - MobiQuitous 2005.,2005.

[16]. “OpenWBEM project”, www.openwbem.org, 2006-04-05.

[17]. P. Goncalves, J.L. Oliveira, and R.L. Aguiar, “A WBEM based solution

for a 4G network integrated management,” Joint International Conference on

Autonomic and Autonomous Systems and International Conference on

Networking and Services - AICT2005,2005.

[18]. P. Gonçalves, J.L. Oliveira, and R.L. Aguiar, “An evaluation of

network management protocols,” 11th IFIP/IEEE International Symposium

on Integrated Network Management (IM 2009), IEEE.

[19]. DMTF, “Web-Based Enterprise Management (WBEM) Initiative”,

http://www.dmtf.org/standards/wbem/, 2008-12-14.

[20]. DMTF, Web Services for Management (WS-Management), 2005.

[21]. S. Omari, R. Boutaba, and O. Cherkaoui, “Enterprise directory support

for future SNMPv3 network management applications,” Global

Telecommunications Conference, 1999. GLOBECOM '99, pp. 2010-2014

vol.2013.

[22]. R. Lopes, N. Raimundo, M. Varanda, J. Oliveira, and V. Roque,

“Executable Graphics for PBNM ” 5th IEEE International Workshop on IP

Operations and Management - IPOM 2005, Springer, 2005, pp. 108-117.

