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Abstract 

This paper presents a conceptual model concerning 
automatic creation of coherent eLearning experiences 
through dynamic aggregation of heterogeneous learning 
objects. The model uses detailed user profiles as the main 
key to create customized learning content, tailored to each 
user’s needs, preferences and skills. Aggregation of 
heterogeneous learning objects may result in a very 
incoherent learning sequence. Therefore, the model 
incorporates a method to improve the learning coherence 
of the generated course. The compromise between 
customization and coherence is fully adjustable from 
maximum coherence to maximum customization. 

Keywords: eLearning personalization customization 

1. Introduction 

Typical learning object discovery services such as the 
ARIADNE foundation’s Knowledge Pool [6], EdNA 
Online [7] or MERLOT [13], allow searching of learning 
content by means of keyword based searching or category 
browsing. These systems usually have a simple search 
tool that is able to find content by subject, searching for 
learning objects that have keywords matching the search 
expression. Furthermore, it is also common to find an 
advanced search tool, which allows users to filter the 
results across multidimensional attributes such as idiom, 
difficulty or technical format. Those attributes are 
normally taken from metadata elements that are used to 
describe learning objects. 

These methodologies are content oriented and do not take 
individual learning profiles into consideration. This means 
that different users get exactly the same results for the 
same search expression, even if they have diverse profiles, 
contexts and learning goals. Also, the list of objects that 
match search criteria is often displayed without any 
specific order, forcing the user to browse the entire list in 
order to choose the object that best suits his individual 
learning goal. 

In some cases, search results may be sorted by relevance. 
However, the resulting order reflects the estimated 
importance of each learning object concerning the search 
criteria but not necessarily the relevance for the user, 
regarding his specific profile, context and learning goal. 

Studies have found that individual students have 
significant differences concerning the learning process, 
even in classes of carefully selected students [11]. As a 
result, individually tutored students often outperform 
classroom students by as much as two standard deviations 
[2] and clearly benefit from individually tailored 
instruction [17, 18, 19]. However, individually tailored 
instruction requiring one-on-one attention is often too 
costly to be a feasible option. Fortunately, information 
technologies can also be used to adjust the content, pace, 
sequence, and instruction style to better fit each student’s 
learning habits, goals and interests [10]. As a result, 
introducing personalization features into discovery 
services may improve the overall quality of the service, by 
delivering content tailored to each user’s needs, 
preferences and skills. 

Another limitation of typical discovery services relies on 
its inability to combine independent learning objects to 
form coherent higher units of instruction. In fact, 
searching is oriented to find a particular learning object 
about a specific subject. However, sometimes there are no 
objects that meet the search criteria or the objects that 
meet it are not well suited to the user’s learning 
preferences. In these cases, it would be useful that the 
system could dynamically aggregate independent learning 
objects in order to produce a coherent course about the 
same subject, personalized to the user’s profile. 

This paper presents models for Internet services with the 
ability to customize eLearning experiences by 
dynamically locating, selecting, recombining and reusing 
learning objects, considering individual profiles, learning 
goals and learning context. Figure 1 shows the main 
components involved and the way they are organized. The 
personalization services are supported by a classification 
system for learning objects, which is able to represent 
knowledge as a network of interrelated subjects. Learning 
objects are then associated to these subjects. 
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Figure 1. The main components of the model. 

The personalization model uses individual profiles as the 
key to dynamically generate personalized eLearning 
experiences, customized to each user’s learning needs. 
The paper describes three such personalized services. The 
first service aims to personalize searching, by filtering and 
rating results according with the user’s learning context, 
learning preferences and other profile information. 
Consequently, users with different profiles have different 
search results for the same search expression. This service 
is also able to solve the problem of syntactic ambiguities 
on the search expression. 

The goal of the second service, called ‘personalized 
learning advisor’, is to help users to maximize the 
perception of new concepts, by identifying their specific 
difficulties on topics that should be previously known to 
best understand these concepts. This service uses the 
classification system to build a topic dependency tree and 
then compares this information with the user’s skills 
matrix. The specific difficulties are sequenced on a 
personalized review tree and a learning object is selected 
for each segment, considering the user’s profile. The final 
result is delivered to users as SCORM compliant courses 
that they should enrol in before entering the main course. 

Finally, the third service is able to dynamically build 
courses by aggregation of independent learning objects, 
respecting the learning goal and the user’s learning 

profile. This service starts by using the classification 
system to determine the topic sequence of the desired 
learning goal. The correspondent personalized review tree 
is joined with this sequence to form the complete learning 
sequence that should be delivered to users. 

2. The classification system 

The personalization services are supported by a 
classification service for learning objects, which is able to 
represent knowledge as a network of interrelated subjects. 
The knowledge representation model has been inspired on 
topic maps [12] and semantic Web [1] concepts. Each 
subject is encapsulated within a knowledge segment with 
a conceptual scope defined by metadata. These segments 
may be associated in order to model the relationships, 
affinities and dependencies that exist among their 
subjects. Afterwards, the classification model supports the 
association of learning objects to knowledge segments. 
These associations are stored in the learning object 
registry of Figure 1. 

2.1. Knowledge representation 

Knowledge segments are the foundation of the 
classification system. As a result, its structure has been 
carefully designed in order to meet the system’s 
requirements. Each segment has several attributes, 
represented by a set of metadata elements. Figure 2 
represents its data model, which comprises four main 
categories: 

Identification: this category is used to identify the 
segment, the designation of the portion of knowledge that 
it addresses and the entity that is responsible for managing 
the segment. The entity’s digital certificate can be used 
for authentication purposes. 

Scope: this category describes the block of knowledge 
that the segment covers. This description includes a 
textual explanation of the concept addressed by the 
segment, a set of equivalencies to external classification 
systems and a collection of multilingual keywords and 
expressions that may represent the block of knowledge. 
All weighted terms used in this model are expressed as a 
numerical code in the ‘level’ element that ranges from one 
to five, which means respectively ‘very low’, ‘low’, 
‘medium’, ‘high’ and ‘very high’. Each keyword or 
expression is tagged with an ISO 639 2-letter code to 
identify its idiom, allowing idiom independent searches. 

Compliance: this category may be used to state the 
requirements that learning objects must comply with in 
order to be registered into the segment. They are 
expressed as a set of weighted rules that can be 
conjugated with the logical operator ‘or’ and ‘and’ to 
form unambiguous, simple or complex requirements. 
These rules are useful when a single concept addresses 
several different aspects. For example, a segment about 
gravity could use these rules to state that its learning 
objects should address both the Newton’s law “and” 
Einstein general relativity concept. Each rule may be 



formed by a set of other rules, allowing the representation 
of complex trees of compliance requirements. 
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Figure 2. Data model of segment metadata. 

Relation: this important category is used to establish 
relationships among segments, which can be part of the 
same or external ontologies. These associations are vital 
to represent important features of knowledge from the 
educational perspective, such as “pre-requisite” 
relationships between segments. The relationship 
declaration includes the type of relation, the target 
segment and the relationship importance, expressed in a 
five level scale. 

There is one mandatory type of relationship among all 
segments of an ontology, except the root segment, named 
‘is part of’, which allows the organization of knowledge 

as a hierarchical tree of segments. High-level segments 
(near the root of the tree) represent vast areas of 
knowledge, while low-level segments (near the leafs) 
correspond to atomic knowledge. This relationship is vital 
to convert a set of independent and chaotic segments into 
a coherent knowledge representation. However, other 
types of relationships are not mandatory and do not obey 
to any specific topology. 

There are no rules about how many segment levels should 
be used and each branch can have a variable number of 
levels. The tree structure can be very heterogeneous, 
depending on the specific organization of the knowledge 
that is represented by that ontology. The segment’s 
information can be defined using multiple technologies, 
from XML to database tables. 

2.2. Learning object registration 

The main purpose of the knowledge representation system 
is to allow the association of learning objects to individual 
segments of knowledge. Furthermore, the model also 
allows the evaluation and certification of learning objects. 
Associations are based on records that link one segment to 
one learning object. An object may have multiple 
associations to different segments, using one record for 
each association. 

Figure 3 shows the record’s metadata structure, which has 
four main categories. Category “segment” is used to 
unambiguously identify the segment where the learning 
object is being registered and it must point to a valid 
segment from an existent ontology. Category “Object” 
identifies the object that is being registered into the 
segment of the previous category. The locator element 
points to the location of the object’s LOM metadata. 

Quality evaluation is gaining increasing relevance because 
today the issue is not any more whether or not to use 
eLearning, but how to implement it to offer a high quality 
learning experience [3,15,16]. As a result, this assessment 
may be extremely useful to assure that a specific course or 
learning object is aligned with academic standards [4] and 
has adequate quality levels [8]. 

The “Review” category allows the entity that is 
responsible for managing the segment to state the results 
of the learning object’s evaluation concerning seven 
different aspects, which are partially based in the 
Learning Object Review Instrument [14]. These aspects 
are: 

• Compliance: measures the object’s ability to fulfil 
the requirements expressed in the ‘compliance’ 
category of the segment. It can be used to verify the 
alignment with academic standards; 

• Accuracy: expresses the veracity, accuracy, and level 
of detail of contents concerning the segment’s 
subject; 

• Motivation: assesses the ability to motivate, and 
stimulate the curiosity of the identified population of 
learners associated with the ontology; 



• Interaction: evaluates the ease of navigation, 
predictability of the user interface, and the quality of 
help features; 

• Accessibility: measures the support for learners with 
disabilities and special needs; 

• Reusability: evaluates the ability to port learning 
objects between different courses, learning contexts 
or platforms without modification; 

• Standardization: assesses the compliance of 
learning objects with international standards and 
specifications. 
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Figure 3. Data model of object registration. 

Reviewers may rate quality on each parameter using a 
five-point scale: 1-“very low”, 2- “low”, 3-“medium”, 4-
“high” and 5- “very high”. If the entity is a widely known, 
respected organization, this evaluation can act as a reliable 
quality indicator. 

Finally, the category “Certification” can be used to hold a 
digital signature, assuring that the record has been 
undoubtedly issued by the entity described in the 
‘segment’ category. This guarantees the record’s 
authenticity even when it is used in mobile applications 
outside the classification system without an Internet 
connection. 

2.3. Search strategy 

One of the fundamental services provided by the 
classification system is searching learning objects through 

keywords that try to describe its subject. Unlike typical 
search engines, it does not compare those keywords with 
words and phrases from inside the learning objects or in 
its LOM metadata. Instead, the system tries to match the 
search expression with the keywords associated to 
segments. The main advantage of this approach is its 
complete independence from learning objects 
descriptions, avoiding errors due to biased metadata 
entries or misleading irrelevant words. 

This search strategy makes possible to locate learning 
objects with a keyword that doesn’t even appear in the 
object. One interesting side effect results from its 
multilingual support: as each segment allows the 
definition of multiple keywords tagged with an idiom 
code, it is possible to use a keyword in a specific idiom to 
locate learning objects written in other languages. 

 

Figure 4. Election of the target segment. 

Selecting a target segment from a search expression is not 
just finding the segment that has all the keywords from 
the search expression. This derives from the fact that 
knowledge is divided into several segments and therefore 
the keywords about a specific subject are also distributed 
among various segments. The example in Figure 4 
illustrates this issue. 

The diagram shows a partial view of an ontology that 
represents the knowledge associated with the OSI layer 1 
networking concept. Each block represents a segment, 
with the segment’s name on top and the associated 
keywords on the bottom. The figure shows an example of 
a request to find the target segment with the keywords 
“ring” and “star”. Actually, there’s no segment with both 
keywords but segment “x.ring” has the “ring” keyword 
while segment “x.star” has the “star” keyword. In these 
cases, the system tries to find the segment that includes 
the knowledge of all the segments that have matching 
keywords. 

A virtual line is traced from each of those segments to the 
root of the structure, following the ‘is part of’ relationship 
path. The first segment where all the lines converge is the 
target segment, which incorporates the knowledge of the 
segments with the found keywords. In the given example, 
the target segment for the search keywords “ring” and 
“star” is the “x.topologies” segment. The system always 
converges because all the virtual lines always join. In the 
worst case they will join in the root of the ontology. 



3. Personalized services 

2.1. User profiles 

The personalization services need to know detailed 
information about each user’s preferences, skills, 
difficulties, restrictions, achievements and learning styles. 
These individual attributes are encoded in standard PAPI 
Learner records [9]. Each user record registers the 
following attributes: 

• Idiom: list of preferred languages to use in the 
learning process; 

• Device: list of preferred devices to support the 
learning process; 

• Context: list of preferred contexts, encoded as a 
list of ontology identifiers; 

• Format: list of preferred technical formats for 
the learning objects; 

• Cost: preferences concerning the cost of using 
learning objects; 

• Interactivity: preferences regarding the 
interactivity type of learning objects; 

• Compliance: importance of learning objects’ 
compliance with segment rules; 

• Accuracy: importance of learning objects’ 
scientific and pedagogic accuracy; 

• Motivation: importance of learning objects’ 
ability to motivate users; 

• Interaction: importance of learning objects’ 
interactivity level; 

• Accessibility: importance of learning objects’ 
ability to deal with users with disabilities; 

• Reusability: importance of learning objects’ 
ability for being reused without major 
modifications; 

• Standardization: importance of learning 
objects’ compliance with common eLearning 
standards; 

• Certification: importance of learning objects’ 
certification; 

• Performance: registers the user performance in 
assessment events; 

• History: list of segments that have been used by 
the user. 

The preference level of each attribute is expressed in a 5 
level scale that ranges from “very low” to “very high”. 
Some of these attributes are not supported by PAPI 
Learner, thus, they are encoded using extension 
mechanisms. 

2.2. Personalized searches 

The goal of this service is to rate search results according 
with its estimated relevance to each user. The model uses 
a mathematical function that estimates the relative 
relevance of each result, comparing the user’s profile with 
classification records and learning object’s LOM 
metadata. 
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The function is basically a product of three factors. The 
first factor, named contextualization level, measures the 
semantic proximity of the learning object’s subject with 
user’s typical learning contexts. These learning contexts 
are estimated from the user’s profile ‘context’, ‘history’ 
and ‘performance’ elements. The contextualization level 
ranges from 1 to 100. A contextualization level of 1 
means that the object is totally out of context and 100 
represents maximum contextualization. The function that 
estimates the contextualization level is: 

)2,3,(1
100

321 DDDMin
C

+
=

 
D1 is the minimum semantic distance between the 
learning object’s segment and the list of contexts on the 
user’s profile. D2 is the average of the lowest three 
semantic distances between the object’s segment and the 
list of  segments on the history element of the user’s 
profile. Finally, D3 is the average of the lowest three 
semantic distances between the object’s segment and the 
performance records on the user’s profile. 

The semantic distance between two segments is obtained 
by calculating the cost of the minimum path of 
relationships that interconnects these segments. The 
minimum path is determined by the Dijkstra algorithm 
[5]. The cost of each branch is determined by the 
relationship level and the type of branch: inside the same 
ontology or between different ontologies. The semantic 
distance is the sum of all the costs along the minimum 
path. 

The second factor of the relevance estimation function is 
the product of eliminative parameters. These parameters 
quantify the learning object’s attributes concerning user 
preferences considered essential, namely ‘idiom’, 
‘device’, ‘format’, ‘cost’, ‘interactivity’ and 
‘certification’. If one of these attributes is not compatible 
with the respective preference list on the user’s profile, 
this factor and the total relevance will be null. This is used 
to discard learning objects that fail to comply with a 
fundamental requirement of the user. 

Finally, the third factor estimates the contribution of non-
eliminative parameters to the total relevance. These 
parameters evaluate learning object’s characteristics that 



are not considered fundamental. Thus, a null value on one 
of these parameters does not eliminate the learning object. 
The contribution of each parameter is weighted by an 
associated constant and by the importance that the user 
defines to each parameter in his profile. Table 1 shows the 
list of non-eliminative parameters and respective weights.  

Parameter Weight 
Compliance K1=4 
Accuracy K2=4 
Motivation K3=5 
Interaction K4=3 
Accessibility K5=3 
Reusability K6=2 
Standardization K7=2 

Table 1. List of non-eliminative parameters. 

Personalized searching services can be easily deployed 
using this function to estimate personalized relevance. 
After getting the search results from the classification 
system, these services just need to apply the function to 
each learning object and sort the list by the estimated 
relevance. 

2.3. Dynamic aggregation of learning objects 

The aim of this service is to create customized high level 
courses about a specific subject by aggregating 
independent learning objects of heterogeneous 
granularity. 

The aggregation algorithm comprises several phases, as 
can be seen in Figure 5. It starts by identifying the target 
subject, which maps to a specific knowledge segment of 
the classification system. In the first phase, the algorithm 
obtains the topic tree of the target segment from the 
classification system. The topic tree is a hierarchical 
structure of segments directly or indirectly related to the 
target segment with the ‘is part of’ relationship. This 
structure represents the subject of the target segment as a 
collection of related subtopics. 

In phase II, the algorithm obtains the prerequisite tree of 
the topic tree. The prerequisite tree is a structured 
representation of the previous knowledge that is necessary 
to fully apprehend the concepts of the topic tree. This tree 
is dynamically built by the classification system, through 
analysis of the prerequisite relationships that are initiated 
in the segments of the topic tree. This task is also 
performed by the classification system. 

Phase III marks the beginning of personalization. In this 
phase, the prerequisite tree is compared with the 
performance records of the user profile. Topics of the 
prerequisite tree that have correspondent entries in the 
performance records with a positive grade are simply 
removed from the tree. Their subtopics are also removed, 
except if there is a correspondent entry in the performance 
records with a negative grade. The resulting structure is 
the review tree, which represents the knowledge that the 
user should review before initiating the learning process 
of the main subject. Phases II and III constitute the 

personalized learning advisor service referenced in the 
introduction. 
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Figure 5. Dynamic aggregation diagram. 

In phase IV, the algorithm performs a personalized rating 
on the learning objects of each segment of both the topic 
tree and review tree. Basically, the classification system is 
requested to return the list of learning objects from each 
segment. Then, a relevance estimation function is run on 
each learning object and they are sorted by relevance. 
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The function used to estimate the personalized relevance 
is slightly different from the one used in personalized 
searching. The contextualization level is not used, because 
all the learning objects belong to the same segment. It is 
replaced by the sum of the reusability and standardization 
assessments, two attributes that are strongly related to the 
object’s ability to be aggregated with other objects. 

After this computation, each segment of both the topic 
tree and review tree has a list of learning objects, ordered 
by personalized relevance. In the next step, some of these 
learning objects of each segment are selected to 
participate in the final phases of the process. This 
selection uses a configurable parameter, called 
‘personalization tolerance’, that ranges from 0 to 100. 
Basically, the value of this parameter represents the 
minimum level of relevance required, in terms of 
percentage of relevance of the most relevant object. A 
personalization tolerance of 0 only includes the most 
relevant object, while a tolerance of 100 includes all the 
objects. 

Phase V uses the lists of eligible learning objects from the 
previous step in order to find the most coherent 
combination. In essence, every possible permutation is 
tested against a coherence determination function and the 
most coherent is chosen. The determination of coherence 
uses the following function: 

Number of parameters
Number of segments in the sequence
Assessment of object j in parameter i
Average or prevalent value of parameter i
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The function basically computes the sum of the square 
deviation of each object in every parameter of a parameter 
list, which includes ‘idiom’, ‘device’, ‘format’, ‘cost’, 
‘accessibility’, ‘compliance’ and ‘accuracy’. The 
combination of learning objects with the lowest 
discrepancies across these parameters will be considered 
the most coherent combination. 

Finally, in phase VI the best combination is encoded into 
a SCORM compliant course and delivered to the user. The 
sequence of learning objects is built according with the 
topic tree structure, review tree structures and the 
prerequisite relationships among those segments. 

4. The prototype 

All the models presented in this paper were implemented 
and tested. Two prototype applications have been built, 
one that implements the classification service while the 
other implements the personalization services. They use 
the same technologies: relational databases to manage 
data and PHP to implement the computational parts of the 
models and the service interfaces. Both applications are 
web based and use specific XML encoded messages to 
communicate over HTTP. 
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Figure 6. Main components of the classification system. 

Figure 6 shows the main components of the classification 
system and the way they interact. The most important 
component is the segment metadata database, which holds 
the knowledge representation structures. The learning 
objects’ registry database stores the associations between 
learning objects and segments. It also registers the 
assessments of each learning object concerning the 
attributes of the review category of the record metadata. 
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Figure 7. Main components of the personalization system. 

Figure 7 shows the main components of the 
personalization prototype. The user profiles database 



stores the individual PAPI Learner attributes that are the 
key for all the personalization services. 

5. Results and conclusions 

Several hypothetical scenarios have been created to test 
the personalized models. One of these scenarios involves 
5 different parts of specially crafted ontologies, 
interconnected by prerequisite relationships. These 
ontologies are about basic mathematics, advanced 
mathematics , basic physics, advanced physics and health. 
Each ontology consists of a few segments, which were 
populated with several learning objects with different 
LOM attributes, including ‘idiom’ and ‘format’. 

Three users were created, with slightly different 
preferences. The tests concerning personalized search 
clearly demonstrated that the model works as expected. 
Changes in individual profiles are immediately reflected 
in the relevance of the search results and most of the times 
the top learning objects correspond to the profile that is 
being emulated by the changes in the user’s preferences. 

In order to test the contextualization features of the model, 
three of these ontologies have a segment with the same 
keyword: ‘gravity’. The two physics ontologies have this 
keyword in segments about gravitation and the health 
ontology uses this keyword in a segment about the gravity 
of injuries. The individual profiles were then modified to 
reflect some context information, using the ‘context’, 
‘performance’ and ‘history’ elements. In this scenario, the 
three users obtain completely different results when 
searching learning objects that correspond to the keyword 
‘gravity’, demonstrating that the contextualization feature 
of personalized search works as expected. 

Testing the dynamic aggregation service is very simple, 
because the prototype has an option, called ‘learning on 
demand’, that calls this feature directly. Users only need 
to introduce keywords and the prototype automatically 
generates a tailored course about the subject represented 
by the keywords. 

The tests involved the generation of multiple dynamic 
courses, with different users, different profiles and 
different subjects. All the results were compatible with the 
expectations. The review feature was tested by varying 
the list and values of performance records of each user 
and the results were exactly as predicted. The 
personalization tolerance was also tested and the results 
show that it can effectively modulate the personalization 
and coherence facets of the generated course. 

These specific tests demonstrated that under controlled 
scenarios the models behave properly and the results 
obtained correspond to those expected. However, only 
real applications can truly validate the models. 
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