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Abstract

Nonnegative Matrix Factorization (NMF) has proven to be a useful tool for the
analysis of nonnegative multivariate data. However, it is known not to lead to unique
results when applied to Blind Source Separation (BSS) problems. In this paper
we present an extension of NMF capable of solving the BSS problem when the
underlying sources are sufficiently sparse. In contrast to most well-established BSS
methods, the devised algorithm is capable of solving the BSS problem in cases
where the underlying sources are not independent or uncorrelated. As the proposed
fitness function is discontinuous and possesses many local minima, we use a genetic
algorithm for its minimization. Finally, we apply the devised algorithm to real world
microarray data.
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1 Introduction

Environmental stimuli cause the induction or repression of genes in living
cells via a corresponding up- or down-regulation of the amount of messenger
RNA (mRNA). Different experimental conditions may thus result in differ-
ent characteristic expression patterns. The expression of each gene thereby
relies on the specific processing of a number of regulatory inputs. Recently,
high throughput methods like microarrays have become available and allow
to measure whole genome wide gene expression profiles [2]. Intelligent data
analysis tools are needed to unveil the information hidden in those microarray
data sets [32].

Besides traditional supervised approaches, matrix factorization techniques like
principal component analysis (PCA), independent component analysis (ICA),
sparse component analysis (SCA) [17], [7] or non-negative matrix factorization
(NMF) [20] might be useful to go beyond simple clustering and decompose
such data sets into component profiles which might be indicative of underlying
biological processes [21], [34], [5]. Without any hypothesis, such unsupervised
approaches might be able to discover novel biological mechanisms and reveal
genetic regulatory networks in large data sets when little a priori knowledge
is available.

Unsupervised analysis methods for microarray data analysis can be divided
into three categories:

Clustering approaches
They group genes with similar behavior under similar experimental conditions
making it possible to analyze data within each group separately. It is supposed
that genes within a cluster are functionally related. In general no attempt is
made to model the underlying biology. Note that clusters are disjoint but genes
may participate in several biological processes.

Model-based approaches
They generate a model explaining the interactions among the biological en-
tities participating in gene regulatory networks. Parameters of the model are
trained on expression data sets. With complex models not enough data may be
available to estimate the parameters. Also algorithms are often of prohibitive
complexity and computational load.

Matrix decomposition methods
They decompose any given data matrix into a product of two matrices with
desired properties. The latter are imposed as constraints on the matrix de-
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composition procedure. These techniques can equivalently be regarded as ex-
panding the given data vectors into a basis of desired property. Famous among
such projection methods are the following:

• PCA projects data into a space spanned by mutually orthogonal princi-
pal components (PCs). Each principal component captures the maximum
information, i.e. variance, that is not already present in the previous compo-
nents. PCA can be used for data compression as well and it is the optimal
dimension-reduction technique in the sum-of-squared-error sense. Dimen-
sion reduction of expression data can be used for visualization, filtering of
noise or simplifying subsequent computations. With microarray data, the
principal components are called eigenarrays.

• ICA decomposes the data into statistically independent components (ICs).
A common application of ICA is in blind source separation (BSS) problems,
for example of EEG [27], [14], MEG [41] and fMRI [42], [19] data. ICA can
also be used to reduce noise [40], [35], [12] or artifacts [36, 37] if generated
from independent sources. Usually a linear superposition of the underlying
unknown source signals is assumed but nonlinear ICA algorithms also ex-
ist. With microarray data, ICA extracts expression modes, the ICs, each
of which represents a linear influence of a hidden cellular variable. Each
retrieved IC is considered to be indicative of a putative biological process,
which can be characterized by the functional annotations of genes that are
predominant within the independent component. Each component thus de-
fines corresponding groups of induced and repressed genes. Samples and
genes can be visualized by projecting them to particular expression modes
or to their influences, respectively. A projection to expression modes helps
to highlight particular biological functions, to reduce noise, and to compress
the data in a biologically sensible way.

• NMF has been suggested by [20] to provide a decomposition of images into
parts which are amenable to a more intuitive interpretation. It decomposes
a given data matrix into a product of two strictly non-negative matrices.
When applied to microarrays this constraint seems natural as the raw fluo-
rescence intensities measured can have only non-negative values, of course.
Thus this technique alleviates some of the problems which arise with PCA
and ICA both of which yield negative entries in their component expression
profiles. The latter have no obvious interpretation. In most applications so
far this fact is gently ignored and the negative entries are turned positive
by simply considering only the absolute values of the entries to the compo-
nent profiles. In the following we give a more detailed account of the NMF
method.
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2 Matrix Factorization and Blind Source Separation

In the field of modern data analysis mathematical transforms of the observed
data are often used to unveil hidden causes. Especially in situations where
different observations of the same process are available matrix factorization
techniques have proven useful [22]. Thereby, the M ×T observation matrix X
is decomposed into a M × N matrix W and a N × T matrix H

X = WH. (1)

Here, it is assumed that M observations, consisting of T samples, constitute
the rows of X and that M ≤ N . Obviously, the decomposition is highly non-
unique and can only be solved uniquely if additional conditions constraining
the row vectors of H or the column vectors of W are given.

One application of matrix factorization is linear blind source separation (BSS),
where the observed signals X can be considered a weighted superposition of
N underlying source signals. If the source signals form the rows of the N × T
matrix S, then each element aij of the mixing matrix A represents the weight
with which the j-th source signal contributes to the i-th observed signal. Thus
the matrix X of observed signals can be decomposed as

X = AS. (2)

In BSS now, given only the matrix X, a matrix factorization as in (1) is sought
such that A and S are essentially equal to W and H for any given constraints,
i.e. they are identical up to inherent scaling and permutation indeterminacies.

Note that in the sequel we will confine ourselves to the symmetric BSS problem
where the number of source signals to be recovered equals the number of
observed signals, i.e. we will present an algorithm for the case M = N .

3 Sparse Nonnegative Blind Source Separation

3.1 Nonnegative matrix factorization

A natural constraint to many real world problems is reflected in nonnegative
matrix factorization (NMF) where the source matrix S, the mixing matrix A
as well as the observation matrix X are assumed to be strictly nonnegative.
Although NMF has been shown to yield quite intuitive data decompositions
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in the field of image and text analysis [20], it cannot solve the BSS prob-
lem uniquely up to scaling and permutation indeterminacies, hence additional
constraints are needed.

With microarrays a naturally arising additional constraint seems to be the
assumption that the source signals are sparsely represented, i.e. the signal
vectors sn, which form the rows of the source signal matrix S, have many close-
to-zero entries. Such sparse coding concepts have since long been discussed in
the vision community [33], [29], [18], [23] and have already been exploited
successfully in NMF based image analysis methods [15] as well as in other
BSS algorithms [24]. Considering gene expression profiles, it may be expected
that only a small number of genes are highly up- or down-regulated within
a single process if underlying source signals should be indicative of ongoing
biological processes in cells.

An extension to standard NMF is thus presented in this paper. It is only
assumed that the row vectors of S contain several close-to-zero components,
while their exact sparseness need not be known. The proposed algorithm,
called sparse NMF (sNMF), tries to find a nonnegative matrix factorization of
the data matrix, for which the source matrix S has the largest number of close-
to-zero components. As will be shown in several simulations, this approach is
capable of solving the BSS problem uniquely up to the usual scaling and
permutation indeterminacies inherent in BSS.

The basic idea is to estimate the original source matrix S and mixing matrix A,
respectively, by determining two estimates Â, Ŝ, of the nonnegative matrices
A and S such that

(1) Â and Ŝ are both nonnegative
(2) the rows of the matrix Ŝ are as sparsely encoded as possible, i.e. contain

as many close-to-zero components as possible
(3) the reconstruction error F (Â, Ŝ) = ||X − ÂŜ||2 of the estimated obser-

vations is as small as possible.

Fig. 1 illustrates this approach. Fig. 1 a) shows the scatter plot of two random
nonnegative sparse sources which constitute the rows of the matrix S. Obvi-
ously, all points in the scatterplot lie in the first quadrant of the coordinate
system or, in other words, reside within a conic hull with cone lines defined by
those columns of S which contain at least one null entry. By left multiplying S
by a nonnegative mixing matrix A, the mixture matrix X is obtained whose
scatterplot is depicted in Fig. 1 b). The points in this scatterplot are now
contained in a conic hull whose cone lines are defined by the images of those
points which were lying on the axis of the coordinate system in Fig. 1 a).

The mixture matrix X can now be decomposed into two nonnegative matrices
W and H by means of NMF. However, this decomposition is not unique, i.e.

5



Acc
ep

te
d m

an
usc

rip
t 

a)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

s1

s 2

Sources
b)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

x1

x 2

Mixtures

c)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

sNMF,1

s N
M

F
,2

NMF
d)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

xnoise,1

x no
is

e,
2

Noisy Mixtures

e)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

snoise,1

s no
is

e,
2

Noisy Sources

Fig. 1. Illustration of NMF and sNMF. a) Scatterplot of two random nonnegative
sources used to constitute the rows of the matrix S. b) Scatterplot of the mixtures
X obtained by multiplying S by a nonnegative 2 × 2 mixing matrix A. Note that
all data points remain in the first quadrant. c) One of the infinitely many possible
NMF factorizations of X. Requiring only nonnegativity of A and S is insufficient
to solve the BSS problem uniquely up to scaling and permutation indeterminacies.
d) Scatterplot of noisy mixtures Xnoise which were generated by adding random
Gaussian noise to X. e) Scatterplot of noisy sources Snoise = A−1Xnoise. The Gaus-
sian noise added to X leads to negative entries in Snoise even if the original mixing
matrix can be recovered and generally exacerbates the detection of nil-entries.
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apart from the original mixing and source matrix an infinite number of matrix
pairs W and H exists. They are also nonnegative and perfectly factorize X
but which do not equal the original source and mixing matrix due to scaling
and permutation indeterminacies. As illustrated in Fig. 1 c) the conic hulls of
such matrices H also reside in the first quadrant but their cone lines do not
coincide with the axes of the coordinate system.

Hence, our approach to recover the original mixing and source matrix (except
for scaling and permutation indeterminacies) is to select among all possible
nonnegative factorizations of X, the one for which the cone lines of H coincide
with the axes of the coordinate system or for which H contains as many null
entries as possible.

However, data from real life experiments is always corrupted by noise. Hence,
only an approximate factorization of X is usually feasible. Furthermore, ad-
ditional noise also blurs the null entries in the sources (see Fig. 1d) and e))
such that they may even contain small negative elements. To cope with this
problem, close-to-zero elements have to be set to zero when the sparseness of
the estimated sources is determined.

To solve the sNMF problem algorithmically, we propose to estimate two non-
negative matrices Â and Ŝ which minimize the following cost function E(Â, Ŝ)

E(Â, Ŝ) =
1

2M
||n(X) − n(ÂŜ)||2 − λ

M

M∑
m=1

στ (̂sm), (3)

where the function n(..) is used to normalize the row vectors of X and ÂŜ,
i.e.

n(X) = X̂ such that x̂ij =
xij√∑T
k=1 x2

ik

(4)

Thus it holds that

0 ≤ 1

2M
‖n(X) − n(ÂŜ)‖2 ≤ 1 (5)

In these equations στ denotes an appropriate sparseness measure given below,
λ > 0 represents a Lagrange weighting factor, and ŝm denotes the m-th row
of the matrix Ŝ.

Recall that we assume A to be a full rank square matrix throughout this
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paper. Hence, Ŝ can be determined straightforwardly as

Ŝ = Â−1X (6)

once a good estimate Â of the original mixing matrix A has been obtained.
Eventually, this means that the above optimization problem depends only on
Â.

3.2 Sparseness Measure

For the sparse nonnegative BSS problem at hand, we define the sparseness στ

of a row vector s as the ratio of the number of its zero elements and the total
number of components. However, measurements in real world experiments
are always corrupted by noise. Thus small nonzero entries of a measurement
vector should be set to zero as well. Hence, a nonnegative threshold is used to
define the minimum value which avoids any component of sn being zero. This
threshold is defined as a fraction τ ∈ [0, 1] of the maximal component smax

n of
sn. Formally this leads to the following sparseness measure στ :

0 ≤ στ (sm) =
number of elements of sm ≤ τ · smax

m

number of elements of sm
≤ 1, (7)

where smax
m is the maximum value of sm and τ ∈ [0, 1]. Thus, the regularizing

sparseness term, i.e. the second summand in the above given cost function,
has values also in the range [0, 1] only. The Lagrange parameter λ is used to
balance the factorization of the data matrix with the sparseness requirement.
As both terms in the cost function are normalized, results should be robust
against varying sizes of X and S as soon as an appropriate λ has been obtained.

In the literature various measures σ(s) have been proposed to estimate the
sparseness of a signal without counting its nil entries explicitly. These measures
are usually based on Ln norm considerations and are computationally less
demanding than the sparseness measure in (7).

A prominent example of such a measure is the normalized ratio of the L1 and
L2 norm of an T -dimensional vector s [15] according to

σ(s) =

√
T −∑T

i=1 |si|/
√∑T

i=1 s2
i√

T − 1
, (8)

where si is the i-th component of s. As will be shown in the following, however,
such estimates of the sparseness of a signal are inadequate for the BSS task
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at hand. To illustrate this point, consider the nonnegative BSS model

X = AS X,S ∈ R
M×T ,A ∈ R

M×M (9)

in which A, S and X are all nonnegative and the rows of S contain many
close-to-zero components. In sNMF, given only X, the matrices A and S need
to be recovered by searching for two nonnegative matrices Â and Ŝ such
that X = ÂD−1P−1PDŜ and the rows of Ŝ are encoded as sparse as possible.
Thereby the matrices P and D represent a permutation matrix and a diagonal
scaling matrix, respectively. Obviously, such an approach can only succeed if
among all the possible nonnegative factorizations of X, i.e.

{(Â, Ŝ), Â ∈ R
M×M , Ŝ ∈ R

M×T , Â, Ŝ nonnegative | Â Ŝ = X}, (10)

no pair of matrices (Â, Ŝ) �= (A,S) exists with the rows of Ŝ being more
sparse than the rows of S.

But this seems to happen occasionally if the sparseness of the matrix Ŝ is only
estimated by the sparseness measure σ instead of being determined precisely
by means of στ . To provide an illustrative example, two nonnegative random
sources s1 and s2 consisting of 1000 data points were generated with 90 % of
the components of the first source signal and 80 % of the components of the
second source signal being equal to zero. These two sources were normalized
and then used to constitute the rows of the source matrix S (cf. Fig. 2).
The matrix of observations X was obtained by mixing the sources with the
following mixing matrix

A =

⎡
⎢⎣ 5 1

6 1

⎤
⎥⎦ (11)

Note that the first source signal is dominating in both mixtures according to

x1,i = a11s1,i + a12s2,i

x2,i = a21s1,i + a22s2,i (12)

Thus the following alternative factorization of the observation matrix X is
feasible. First, the original mixing matrix A can be replaced by the pseudo
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Fig. 2. Top: The original source signals s1 and s2. Bottom: The pseudo source signals
spseu
1 and spseu

2 . Even if the number of zero elements in spseu
2 is lower than in the

original source s2, the sparseness measure σ assigns to it a higher value than to the
original source.

mixing matrix

Apseu =

⎡
⎢⎣ 0 1

1 1

⎤
⎥⎦ . (13)
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σ(s) στ (s)

s1 0.76 0.90

s2 0.62 0.80

spseu
1 0.76 0.90

spseu
2 0.69 0.72

Table 1
The sparsenesses σ and στ (τ = 0) of the original and the pseudo sources. Note
that contradicting the fact that the number of zero elements of the pseudo source
signal spseu

2 is lower than that of the original source signal s2, the sparseness reaches
a higher value for the second pseudo source than for the second original source.

Correspondingly, the original source matrix S then has to be replaced by the
matrix Spseu, the row vectors of which constitute the following pseudo source
signals (see Fig. 2)

spseu
1 = s1,

spseu
2 = 5s1 + s2. (14)

Obviously, these matrices also factorize X, i.e. X = ApseuSpseu still holds. But
despite the fact that the number of zero elements in the second pseudo source
signal spseu

2 is about 8% lower than that of the original source signal s2, its
sparseness estimate σ(spseu

2 ) is higher than that of the original source σ(s2)
(cf. Tab. 1).

Hence, a smaller value of the cost function is obtained with the matrices A
and S than with the matrices Apseu and Spseu if the sparseness measure στ is
used in (7). Accordingly, the matrices A and S would be recovered correctly
up to the usual scaling and pertmutation indeterminacies inherent in the BSS
model.

In contrast, the higher sparseness estimate σ(spseu
2 ) of the second pseudo source

signal compared to the original source signal s2 leads to a smaller value of the
cost function with the matrices Apseu and Spseu than with the matrices A and
S. Accordingly, a sparse BSS algorithm which only estimates the sparseness by
means of σ would fail to recover the original source signal matrix S and mixing
matrix A, respectively, except for scaling and pertmutation indeterminacies.
Note that the same conclusion holds with other Ln - norm based sparsity
criteria.
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4 Genetic Algorithm based Optimization

4.1 Fitness function

As mentioned above, the cost or fitness function defined in Eq. (3) is dis-
continuous such that it cannot by optimized by techniques based on gradient
descent. Furthermore, it possesses many local minima which suggests to use
a Genetic Algorithm (GA) [28], [6] for its minimization.

GAs are stochastic global search and optimization methods inspired by natural
biological evolution. The core of a GA is a population of potential solutions,
named individuals, to a given optimization problem as well as a set of oper-
ators borrowed from natural genetics. At each generation of a GA, a new set
of approximations is created by the process of selecting individuals according
to their level of fitness in the problem domain. Their reproduction is guided
by the genetically motivated operators. This process leads to the evolution of
individuals within the population which better solve the optimization prob-
lem than the individuals from which they were created. Finally, this process
should lead to an optimal solution of the optimization problem even if many
suboptimal solutions exist, i.e. if the target function to be optimized has many
local minima.

For the minimization of the fitness function in Eq. (3) the M2 elements of
the solution matrix Â have to be determined. Taking advantage of the scaling
indeterminacy inherent in the linear mixture model (2) we may assume that
the columns of the original mixing matrix A are normalized such that the
diagonal elements of A are aii = 1 ∀ i = 1, . . . , M . Accordingly, the Nind

individuals used in the GA to minimize (3) consists M2 − M parameters.
However, these parameters (also called genes in the context of GAs) were
not stored directly as real valued numbers but were transformed to binary
strings of length b using Gray coding [11]. Hence, each individual consisted of
b(M2 − M) binary numbers.

As the original mixing matrix is known to have only nonnegative entries, it
seems self-evident to confine the genes to be nonnegative, too. However, we
allow the genes to be negative throughout the optimization procedure as we
have observed in our experiments that otherwise the GA often fails to find the
global minimum of the fitness function.

In every generation of the GA, the fitness of each individual for the optimiza-
tion task has to be computed in order to determine the number of offsprings
that will be allowed to produce. These function values are not used directly
as fitness values as otherwise the fittest individuals often produce too many
offsprings such that the needed diversity in the population is lost and the
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algorithm converges prematurely to a suboptimal solution. Hence, we use a
linear scaling procedure to transform fitness function values to fitness values.

In order to compute the fitness function values for every individual, a matrix
Â− is generated with its off elements consisting of the genes as stored in
the individual and with unit diagonal elements. As during the evaluation of
the target function these matrices have to be inverted, the matrices which are
singular to machine precision are replaced by nonsingular nonnegative random
matrices (also with ones on their diagonal). Accordingly, the corresponding
individuals in the population are adjusted.

Next, the matrices Â = {amn}1≤m≤M,1≤n≤M and Ŝ = {smt}1≤m≤M,1≤t≤T are
needed in order to evaluate the fitness function (3). For this purpose, the
inverse Ŵ− of Â− is computed and the matrices Ŝ and Â are then obtained
by setting the negative elements of the matrices Ŝ− = {smt,−}1≤m≤M,1≤t≤T ,

Ŝ− = Ŵ−X and Â− = {amn,−}1≤m≤M,1≤n≤M , respectively, to zero:

âmn = H(âmn,−)amn,−
ŝmt = H(ŝmt,−)smt,− (15)

Here, H denotes the Heaviside step function [1]

H(x) =

⎧⎪⎨
⎪⎩

0 x < 0

1 x ≥ 0
. (16)

After inserting the matrices Ŝ and Â into (3) the resulting fitness function
value is assigned to the corresponding individual. The individuals are then
arranged in an ascending order according to their fitness function values and
their fitness values F (p(i)), i = 1, . . . , Nind, are determined by

F (p(i)) = 2 − μ + 2(μ − 1)
p(i) − 1

Nind − 1
, (17)

where p(i) is the position of individual i in the ordered population. The scalar
parameter μ, which is usually chosen to be between 1.1 and 2.0, denotes the
selective pressure towards the fittest individuals.

13



Acc
ep

te
d m

an
usc

rip
t 

4.2 Genetic operators

Stochastic Universal Sampling (SUS) [28] is used to determine the absolute
number of offsprings an individual may produce. Thereby, an arc Ri of length
F (p(i)) is assigned to the i-th individual, i = 1, . . . , Nind, on a circle of cir-
cumference C =

∑Nind
i=1 F (x(i)). Starting from a randomly selected position,

2Noff marker points are allocated on the circle, whereas the distance between
two consecutive marker points is C/2Noff and Noff is the total number of off-
springs to be created. The i-th individual may then produce as many offsprings
as there are marker points in its corresponding arc Ri on the circle.

The offsprings are created in a two step procedure. In the first step, two
individuals, which are eligible for reproduction according to the SUS criterion,
are chosen at random and are used to create a new individual by uniform
crossover, i.e. each bit of the new individual is created by copying, each time
with a probability of 50 %, the corresponding bit of the first or the second
parent individual.

In the second step, called mutation, the actual offsprings are obtained by
flipping with a low probability pmut each bit of the new individuals. The role
of mutation is often seen as providing a guarantee that the probability of
searching any given parameter set will never be zero and acting as a safety
net to recover good genetic material that may be lost through the action of
selection and crossover.

The last step of the GA applied to each generation is the replacement of the
parent individuals by their offsprings. We use an elitist reinsertion scheme
meaning that a fixed number Nelitist of the fittest individuals is determinis-
tically allowed to propagate through successive generations. Hence, only the
Nind − Nelitist less fittest parent individuals are replaced by their fittest off-
springs which ensures that the best solution found so far remains in the pop-
ulation.

In order to keep the algorithm from converging prematurely we make use of
the concept of multiple populations. Thereby, a number Npop of populations,
each consisting of Nsubsize individuals, are evolving independently in parallel
and are only allowed to exchange their fittest individuals after every Tmig-th
generation. Hence, as long as not all populations have converged to the same
solution they will regain some diversity after every Tmig-th iteration step.
We use the complete net structure scheme for the exchange of individuals
which means that every population is exchanging a fraction μmig of its fittest
individuals with all other populations.
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4.3 Parallelization

Fig. 3. Flowchart of the regional parallelization scheme used in the GA of sNMF.
The actions of the individual slave processes are highlighted in gray, those of the
master process in white.

A general problem of the proposed sNMF-GA algorithm is its tendency to
converge prematurely to suboptimal solutions. This problem can be overcome
to a large extent, however, if the regional parallelization model is used, i.e.
if instead of one large population several smaller subpopulations are used; it
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only exchanges individuals from time to time.

Another reason to parallelize the GA in sNMF-GA is that the evaluation of
the fitness function may become very time consuming. The problem arises
as in every evaluation of the fitness function the sparseness of the provided
matrix Ŝ has to be determined. This is done by comparing each entry of Ŝ
with a small, user defined threshold (cf. (7)), i.e. if Ŝ is an M × T matrix,
MT “if” statements have to be evaluated. As modern microarray chips are
capable of detecting the expression of 50000 genes in parallel several hundreds
of thousands of “if” comparisons need to be carried out per individual in real
life applications.

Hence, the implementation of the sNMF-GA algorithm is designed such that
it can be run on several computers in parallel. As the implementation of the
sNMF-GA algorithm is fully written in the C programming language, the rou-
tines of the MPICH2 [16] implementation of the Message Passing Interface
standard [43] for the communication between computers can be used advan-
tageously.

As mentioned above, the regional scheme (see Fig. 3) is used for the paralleliza-
tion of the GA. In order to determine the emigrants of each subpopulation,
stochastic universal sampling is used for ranking, i.e. fitter emigrants have a
higher chance to participate in the migration process than poorly performing
ones. For the migration process the complete net structure scheme is used and
the immigrants are reinserted into the individual subpopulation by replacing
randomly selected individuals.

As the migrants contain only M2−M (Gray encoded) numbers corresponding
to the number of off-elements of the mixing matrix, the time needed for the
data transfer between the master and the slave processes is negligible com-
pared with the time the individual slaves need for the Tmig generations of their
GAs. Hence, the execution time of the GA can be reduced by a factor close
to 1/Nnod if a cluster consisting of Nnod nodes is available.

4.4 Algorithm repetitions

Despite the use of the mutation operator and multiple populations, the al-
gorithm failed in many experiments to recover the source and mixing matrix
after its first run. In order to keep the computational load of the algorithm
bearable, this problem could not be overcome by simply increasing the num-
ber Nind of individuals and Npop of populations to arbitrarily large values. But
satisfying results could still be obtained by applying the algorithm repeatedly.
This approach reflects recent efforts towards more robust NMF algorithms
using multilayer techniques [8].
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The algorithm is normally provided with the observation matrix X in its first
run which is then decomposed into first estimates of the source matrix Ŝ(1)

and the mixing matrix Â(1), i.e. X ≈ Â(1)Ŝ(1). In order to make use of the
suboptimal results already achieved, during the next run the matrix Ŝ(1) is
provided to the algorithm instead of the matrix X. The matrix Ŝ(1) is then
factorized into the matrices Â(2) and Ŝ(2), which means that the matrix X can
now be factorized as X ≈ Â(1)Â(2)Ŝ(2). This procedure is repeated Nrep times
until the newly determined mixing matrix A(Nrep) differs only marginally from
the identity matrix. With this procedure the final estimates of the mixing
matrix Â and of the source matrix Ŝ are determined as

Â =
Nrep∏
j=1

Â(j) (18)

and

Ŝ = Ŝ(Nrep), (19)

respectively, as the matrix X can be factorized as X =
∏Nrep

j=1 Â(j)Ŝ(Nrep).

5 sNMF Simulation Studies using Toy Data

5.1 Robustness to noise

The data obtained from microarray experiments is often corrupted by noise.
Hence, the sensitivity to noise of the proposed sNMF algorithm is investigated
in this section. Furthermore, the results are compared with those obtained
by fastICA as this algorithm is most often used when microarray data are
analyzed by means of BSS.

For the investigation three nonnegative random sources sn with sparsenesses
στ=0 of 0.9, 0.8 and 0.7, respectively were generated and were used to constitute
the source matrix S. In order to generate a matrix X of observations, this
matrix of source signals was multiplied by the following mixing matrix

A =

⎡
⎢⎢⎢⎢⎢⎣

0.253490 0.706450 0.518140

0.644120 0.442550 0.227250

0.074437 0.267830 0.878450

⎤
⎥⎥⎥⎥⎥⎦ (20)
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Additionally, the matrix N ∈ R3×1000 was created whose elements were ran-
domly selected from a normal distribution. By means of this matrix 4 noisy
versions X

{i}
noise,− of X were generated as follows

X
{i}
noise,− = X + η{i}N, i = 1, . . . , 4 (21)

whereas the weighting factors η{i} were given by

η{i} = 0.01i. (22)

As the data obtained from microarray experiments are strictly nonnegative,
the matrices X

{i}
noise were generated from the matrices X

{i}
noise,− by multiplying

the negative entries of X
{i}
noise,− by −1, (see Fig. 4 and Fig. 5). The average

signal to noise ratios (SNR
{i}

) between the rows of the noisy matrices X
{i}
noise

and the original matrix X of observations are collected in Tab. 2.
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Fig. 4. The scatterplots of the original observation matrix (upper left) as well as of
the noisy matrices X{i}

noise, i = 1, 2, 3, for which sNMF can recover the sources.

These observations X
{i}
noise were fed into the sNMF algorithm whereas the pa-

rameters as shown in Tab. 3 were used. The majority of these parameters are
universal in the sense that they need not be adapted when the sNMF algorithm
is applied to different data sets. An exception is the number of subpopulations
Npop which depends on the number of elements M2 of the mixing matrix A
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Table 2
The SNR

{i} between the matrix X and the matrices X{i}
noise.

SNR
{1}

SNR
{2}

SNR
{3}

SNR
{4}

28.4 dB 22.3 dB 18.9 dB 16.2dB
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1
First Noise Free Mixture
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0

0.2

0.4

0.6
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1
First Mixture corrupted by noise

Fig. 5. The first row of the matrix X (top) and X{3}
noise (bottom).

to be recovered. As a rule of thumb we suggest the following choice of Npop

Npop(M) =

⎧⎪⎨
⎪⎩

1 for M = 2


8
9
M2� for M > 2

(23)

whereas 
x� denotes the ceiling of x. Here the factor 8/9 originates from our
observation that if A contains M2 = 9 elements at least 8 subpopulations are
needed to find the global minimum of the target function (3) reliably. Fur-
thermore, both the number of migrations Nmig and the number of repetitions
Nrep need to be adjusted according to the data set to be analyzed. Here, Nmig

should be chosen sufficiently large such at the end of a single sNMF run all
subpopulations are dominated by the same fittest individual. On the other
hand Nrep should be set such that at least during the last three runs of the
sNMF algorithm no new best solution is found.
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Table 3
Parameters used by sNMF when applied to data sets X{i}

noise, i = 1, . . . , 4

Parameter Value

weighting factor λ 0.01

Parameter defining noise threshold τ cf. Tab. 4

Number of bits in Gray coding b 60

Number of individuals of overall population Nind 400

Number of subpopulations Npop 8

Number of individuals per subpopulation Nsubsize 50

Selection pressure μ 1.1

Number of offsprings Noff 50

Mutation probability pmut 0.001

Generations between migrations Tmig 100

Total number of migrations Nmig 20

Fraction of individuals (per subpop.) allowed to migrate μmig 0.2

Number of elitist individuals Nelitist 1

Number of sNMF repetitions Nrep 5

Table 4
The values τ{i} as used when the observations X{i}

noise were analyzed by sNMF.

τ {1} τ {2} τ {3} τ {4}

0.08 0.19 0.2 0.33

Eventually, the threshold τ in the sparseness measure στ has to be chosen.
For the simulation at hand different values τ {i}, i = 1, 2, . . . , 4, were used
depending on the noise level with which the data sets X{i} were corrupted.
These τ {i}’s were determined as follows: first, the matrices Ŝ{i}, i = 1, . . . , 4,
were computed by multiplying the inverse of the original mixing matrix A by
the matrices X

{i}
noise, i.e.

Ŝ{i} = A−1X
{i}
noise (24)

Next, the difference ΔS{i} between the original source matrix and Ŝ{i} was
computed:

ΔS{i} = Ŝ{i} − S. (25)
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This matrix ΔS{i} contains the noise which appears in the sources if the
noisy mixture X

{i}
noise is fed into sNMF instead of the original mixture X.

Furthermore, the maximum element Δs{i}max of ΔS{i} was determined. If this
element was found in the q-th row of ΔS{i} the parameter τ {i} was set to

τ {i} =
Δs{i}max

ŝ
{i}
q,max

(26)

where ŝ{i}q,max is the maximum value of the q-th row of Ŝ{i}. Thus, τ {i} should be

sufficiently large such that the entries in Ŝ{i} which correspond to null entries
in S are correctly detected by the sparseness measure στ{i} .

After the τ {i}’s were determined the matrices X
{i}
noise were fed into sNMF and

the source matrix Ŝ{i} as well as the mixing matrix Â{i} were estimated. The
quality of these estimates was evaluated using the following criteria:

(1) The cross talking error (CTE) between the original and the estimated
mixing matrix was determined (cf. Fig. 7) according to [38]

CTE =
n∑

i=1

⎛
⎝ n∑

j=1

‖pij‖
maxk‖pik‖ − 1

⎞
⎠+

n∑
j=1

(
n∑

i=1

‖pij‖
maxk‖pkj‖ − 1

)
(27)

where P = (pij) = Â−1A and Â the calculated estimate of A.

(2) The correlation coefficients CC1 between the rows of the matrix Ŝ{i} and
the original source matrix S were computed (cf. second row in Tab. 5 and
Fig. 7).

(3) In sNMF, elements of the k-th row, k = 1, 2, 3, of the estimated source

matrix Ŝ{i} which are smaller than τ {i}s{i}k,max are treated as null elements

(here s
{i}
k,max denotes the maximum value of the k-th row of the matrix

Ŝ{i}). Hence, these elements were set to zero in Ŝ{i} and the correlation
coefficients CC2 between the so-obtained and the original source matrix
S were determined (cf. third row in Tab. 5 and Fig. 7).

(4) For comparison, the data sets X
{i}
noise were also analyzed by fastICA.

As before the results were evaluated by computing the cross-talk error
(CTEfastICA) between the original and the estimated mixing matrix. Fur-
thermore, the correlation coefficients (CCfastICA) between the original
and the estimated source matrix have been determined (last row of Tab.
5, see also Fig. 7 ).

As can be seen in Fig. 7 the original mixing matrix A was well recovered
by sNMF if the observation matrix was corrupted by low levels of noise (e.g.

for data sets X
{1}
noise and X

{2}
noise). For higher levels, however, A could hardly

be recovered. This is in contrast to fastICA, which even recovered A well if

21



Acc
ep

te
d m

an
usc

rip
t 

0 100 200 300 400 500 600 700 800 900 1000
0

0.2

0.4

0.6

Noisy Recovered Source 1

0 100 200 300 400 500 600 700 800 900 1000
0

0.2

0.4

0.6

Noisy Recovered Source 2

0 100 200 300 400 500 600 700 800 900 1000
0

0.5

1
Noisy Recovered Source 3

0 100 200 300 400 500 600 700 800 900 1000
0

0.2

0.4

0.6

Denoised Recovered Source 1

0 100 200 300 400 500 600 700 800 900 1000
0

0.2

0.4

0.6

Denoised Recovered Source 2

0 100 200 300 400 500 600 700 800 900 1000
0

0.5

1
Denoised Recovered Source 3

0 100 200 300 400 500 600 700 800 900 1000
0

0.2
0.4
0.6
0.8

 s
1

0 100 200 300 400 500 600 700 800 900 1000
0

0.2
0.4
0.6
0.8

 s
2

0 100 200 300 400 500 600 700 800 900 1000
0

0.2
0.4
0.6
0.8

 s
3

Fig. 6. Top: the noisy recovered sources Ŝ{3} as used in the computation of CC1.
Middle: the denoised sources Ŝ{3} as used in the computation of CC2. Bottom: the
original sources.
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Table 5
Correlation coefficients CC1, CC2 and CCfastICA between the original and the
estimated sources.

X
{1}
noise

s1 s2 s3

CC1 1.00 1.00 1.00

CC2 1.00 1.00 1.00

CCfastICA 1.00 1.00 1.00

X
{2}
noise

s1 s2 s3

CC1 0.95 0.98 0.99

CC2 0.98 0.99 0.99

CCfastICA 0.96 0.98 0.99

X
{3}
noise

s1 s2 s3

CC1 0.91 0.95 0.98

CC2 0.95 0.97 0.98

CCfastICA 0.96 0.94 0.99

X
{4}
noise

s1 s2 s3

CC1 0.75 0.87 0.97

CC2 0.78 0.90 0.97

CCfastICA 0.89 0.98 0.93

higher levels of noise were present.

Still, sNMF lead to better estimates of the recovered sources than fastICA
if it was applied to the data sets X

{i}
noise, i = 1, 2, 3 (see third row of Tab. 5

and Fig. 6). At first glance, this may seem surprising as the recovery of the
sources by both sNMF and fastICA is solely based on the estimated mixing
matrix. Hence, a poorer estimation of A by sNMF should also lead to poorer
recoveries of the sources. However, recall that in sNMF any negative entries
of the estimated sources are deliberately set to zero (cf. (15)). Furthermore
note, that such negative entries only appear if the original mixing matrix Â
was not recovered perfectly since the original sources are nonnegative. Thus,
setting the negative entries in Ŝ− to zero compensates (at least to some extent)
the deficiencies of the estimation of A and leads to the comparatively better
recovered sources.

For data set X
{4}
noise both sNMF and fastICA have problems in recovering the

source s1.

In summary these simulations show that sNMF is capable of recovering the
original sources and to some extent also the original mixing matrices if the
observations are corrupted by noise of moderate level. For such noise levels,
sNMF better recovers the sources than the fastICA. This is impressive as
sNMF is partly based on counting null entries which easily get blurred in the
presence of noise.
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Fig. 7. Top: CTEs between original and estimated mixing matrix for the different
noise levels of the observations. Bottom: the average correlation coefficients between
the original and the recovered sources for both sNMF and fastICA. For SNRs larger
than 18 dB sNMF leads to better results than fastICA. For smaller SNRs fastICA
is superior but also fails to recover source s1 (cf. Tab. 5).

5.2 Recovery of correlated sources

In this section it is shown that the proposed method is capable of solving the
BSS problem even if the underlying sources are correlated. This case is partic-
ularly interesting as the overwhelming majority of BSS algorithms only work
if the underlying sources are uncorrelated or even statistically independent.

For the simulation, three sources si, i = 1, 2, 3 were generated as follows. The
first and the second source were generated as nonnegative random vectors
where 90% and 80%, respectively, of the elements were randomly set to zero.
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The third source was generated from the second source by adding a linear
function, i.e.

s3(n) = s2(n) + 0.001(n − 1), (28)

where si(n) denotes the n-th element of the source si and n = 1, . . . , 1000 .
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Fig. 8. Top: The original sources si. Note that s3 was obtained from s2 by adding
a linear function. Bottom: The rows xi of the mixture matrix X as provided to the
algorithms.

This procedure lead to a non-vanishing correlation coefficient of c = 0.65
between the second and the third source, while the sources s1 and s2 as well
as s1 and s3 were uncorrelated. As before, these sources were used to constitute
the source matrix S.
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The observation matrix X was generated by multiplying the source matrix S
with the following mixing matrix

A =

⎡
⎢⎢⎢⎢⎢⎣

0.4554 0.5833 0.3739

0.8916 0.3988 0.8736

0.9042 0.0604 0.1326

⎤
⎥⎥⎥⎥⎥⎦ . (29)
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Fig. 9. Top: The estimates ssparse
i of the sources as obtained by sNMF. Bottom:

The estimates sfICA
i of the sources as obtained by the fastICA algorithm. Note

that fastICA fails to recover the third source.
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Table 6
Results obtained by sNMF and fastICA algorithm. Displayed are the correlation
coefficients ci between the i-th original source and its corresponding estimate as
well as the cross-talking error (CTE) between the estimated and the original mixing
matrix.

c1 c2 c3 CTE

sNMF 1.00 1.00 1.00 0.39

fastICA 1.00 1.00 0.75 5.19

With sNMF the mixing matrix as as well as the sources were recovered almost
perfectly as can be seen in Tab. 6 and Fig. 9.

In contrast, such a perfect recovery seems to be impossible by ICA based BSS.
To show this, fastICA was used again to recover the sources si, i = 1, 2, 3, and
the mixing matrix A. This algorithm also succeeded in recovering the sources
s1 and s2 almost perfectly, but it failed to recover the third source s3 (cf. Fig.
9). Accordingly, the cross-talking error between the estimated and the original
mixing matrix is more than five times higher than the CTE achieved with the
sparse nonnegative BSS approach (cf. Tab. 6).

To see how easily fastICA fails if the underlying sources are correlated a second
simulation was carried out. For this simulation three nonnegative random
sources with sparsenesses στ=0 of 0.9, 0.8 and 0.7, respectively, were generated.
In order to achieve correlation a certain number of randomly chosen elements
of the second source were replaced by the corresponding elements of the first
source. By means of this procedure nine variants s

{i}
2 , i = 1, . . . , 9, of the

second source were generated which had correlation coefficients with the first
source of

CC{i}(s1, s
{i}
2 ) = 0.1 · (i − 1), i = 1, . . . , 9. (30)

Each of these source matrices was multiplied by the mixing matrix

A =

⎡
⎢⎢⎢⎢⎢⎣

0.2535 0.7064 0.5181

0.6441 0.4426 0.2273

0.0744 0.2678 0.8785

⎤
⎥⎥⎥⎥⎥⎦ (31)

such that nine observation matrices X{i} were created.

As shown in Fig. 10 fastICA fails to recover the source and the mixing matrix
satisfactorily if the correlation coefficient between the first and the second
original source is larger than 0.3. For correlation coefficients larger than 0.7
the second source is not estimated at all, i.e. all three estimated sources are
higher correlated with the first and the third original source than with the
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Fig. 10. Results obtained from fastICA. Top: CTEs between the original mixing
matrix and the estimated mixing matrices. Bottom: correlation coefficients between
the original sources and the estimated sources. fastICA leads to unsatisfying re-
coveries of the sources and the mixing matrix (i.e. correlation coefficient between
2nd original and recovered source < 0.95, CTE > 1) if the correlation coefficient
between the first and the second original source is larger than 0.3.

second original source.

In contrast, sNMF successfully recovered the source matrices S{i} and the
mixing matrix A regardless of the correlation between the first and the sec-
ond original source. The correlation coefficients between the original and the
estimated sources were always close to 1.00 and the CTE between the original
and estimated mixing matrix was about 0.04.

Hence, sNMF is capable of solving BSS problems in cases where other well
established BSS methods like fastICA principally fail.
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5.3 Comparison with geometric methods

In the literature a multitude of different algorithms can be found which try
to solve the BSS problem by exploring the geometry of the space of observa-
tions [10]. Most of these methods are based on uncorrelatedness or indepen-
dence assumptions on the sources [30] and often require that the probability
function p of the sources is symmetrical, i.e. p(y) = p(−y) for y in R [31], [39].
Obviously, the latter condition can never be met with NMF resulting in a
failure of these algorithms in this context. Furthermore, as shown in Sec. 5.2
sNMF can also solve the BSS problem if the underlying sources are correlated.

An intuitive approach to solve the nonnegative BSS problem geometrically is
the following. First, note that as A and S are nonnegative all observations
lie within a cone in the scatterplot of X whose cone lines are defined by the
columns of A. If furthermore S contains M columns q1, . . . , qM consisting of
the unit vectors (or scalar multiples of them) spanning R

M then the corre-
sponding columns of X lie on the cone lines, or, in other words, contain scalar
multiples of the columns of A (see Fig. 11 top).

Hence, A can be recovered if the columns q1, . . . , qM of X can be detected.
This detection is achieved by projecting X onto the standard simplex where
the columns q1, . . . , qM of X constitute the edges of the resulting polytope.
These edges can be determined automatically by computing the convex hull
of projected data by means of, e.g., the QHull algorithm [3] [44] (see Fig. 11
bottom).

Once the estimate Â of the mixing matrix has been determined the corre-
sponding source matrix Ŝ can easily be computed as

Ŝ = Â−1X. (32)

However, problems arise when the data are corrupted by noise as in this case
the convex hull is defined by more than just M edges and the original edges are
blurred. To cope with this problem, Gruber et al. suggest to use Grassmann
clustering [13] to determine the correct convex hull. In this approach, several
subsets of the observations are formed at random and for each of these sets the
convex hull is computed. The obtained facets of these convex hulls are then
clustered in a projective space by an algorithm similar to k-means clustering
[26]. Finally, the intersection points of the resulting centeroids are determined
and are then used to estimate the mixing matrix A.

Obviously, further difficulties appear if the columns of the source matrix S
do not contain the M unit vectors or any vectors close to them. In such a
case, the columns of X do not fully occupy the cone defined by A in the
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Fig. 11. Illustration of geometric NMF. Three random nonnegative sources, each
consisting of 1000 datapoints, were generated and mixed by a random nonnegative
3 × 3 mixing matrix. The source matrix contained scalar multitudes of the 3 unit
vectors of R

3. Top: scatter plot of the mixtures (gray dots). The black lines indicate
the cone spanned by the columns of the mixing matrix A. The black points are
the mixtures projected onto the standard simplex. Bottom: the observations X
projected onto the standard simplex (i.e. the black dots of the top figure seen under
a different angle). The edges of the obtained polytope (encircled by black diamonds)
are those points of X which contain scalar multitudes of the columns of the mixing
matrix A. They can easily be detected by convex hull algorithms like Qhull [4, 44].

scatter plot of the observations. In particular, the areas close to the edges of
the cone are not filled with any data points such that the polytope, which is
observed after projection onto the standard simplex, does no longer contain
the edges related with the columns of the mixing matrix A (points G, H and
I in Fig. 12). Accordingly, convex hull algorithms like Qhull can no longer be
used to recover the mixing matrix A. Grassmann clustering based NMF may
help in such scenarios, however, reasonable results can only be expected if the
polytope on the simplex does at least to some extent adumbrate the edges
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Fig. 12. Scatterplot and polytope obtained if S does not contain M unit vectors
spanning R

M and if all nonzero elements of S are larger than 0.65. Top: scatterplot
of the observations X (gray dots) and their projections onto the standard simplex
(black dots). Bottom: blow-up of the datapoints projected onto the standard simplex
(i.e. the black points in the figure at the top). The triangular GHI corresponds to the
projection of the cone defined by the columns of A onto the standard simplex. The
edges of this triangle are empty as no nonzero datapoints smaller than 0.65 appeared
in the columns of S and only maximally one element per column was zero. Hence,
all datapoints reside within the polytope ABCDEF and the data could not only
be confined by the cone defined by the columns of the original mixing matrix A,
but also by another matrix with columns related with the points JKL. Grassmann
clustering based NMF spuriously detects the latter matrix while sNMF correctly
identifies the original mixing matrix A.

related with the columns of A (i.e. the points G, H and I in Fig. 12).

In other cases, the sparsity of the sources can be exploited to recover the
mixing matrix A. To demonstrate this, three nonnegative random sources
consisting of 1290 data points were generated which had sparsenesses of 0.107
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0.109 and 0.114, respectively. The sources were used to constitute the rows
of the source matrix S. The sources were created such that in each column
of S only one null entry appeared. Furthermore, all nonvanishing elements
of S were in the range [0.65, 1.00]. These sources were mixed by the random
nonnegative mixing matrix

A =

⎡
⎢⎢⎢⎢⎢⎣

0.6109 0.7904 0.1368

0.4038 0.1487 0.8514

0.8587 0.5075 0.7062

⎤
⎥⎥⎥⎥⎥⎦ . (33)

The scatterplot of the resulting mixtures X as well as the polytope obtained
after projecting onto the standard simplex are depicted in Fig. 12.

As can be seen, the edges G, H and I corresponding to the columns of A
are clearly cut off and all projected data points reside within the polytope
ABCDEF . Inspection of this polytope without any knowledge about the orig-
inal source and mixing matrix allows two conclusions: first, the points G, H ,
and I correspond to the original mixing matrix but the edges of the trian-
gle GHI do not contain any data points because of the limitted range of the
sources. Second, the points J , K, L also seem to be related with the columns
of the original mixing matrix and the edges of the triangle JKL are again cut
off because of the particular structure of the sources.

As the line segments [DE], [CB] and [FA], which lie on the triangle GHI
are shorter than the line segments [AB], [CD] and [EF ] on JKL, Grassmann
clustering erroneously identifies the points J , K and L as those points which
belong to the original source matrix.

In contrast, sNMF manages to recover the original mixing matrix by taking
advantage of the sparseness of the sources. Again, all parameters are chosen
as given in Tab. 3 except the Lagrange parameter which has to be set to
λ = 0.0002. Most notably, both matrices, the one defined by the points J ,
K, and L as well as the other defined by the points G, H and I, lead to
a nonnegative factorization of X, but if the points G, H and I are used to
reconstruct A the corresponding sources are more sparse. Hence, sNMF leads
to a perfect recovery of the sources and the mixing matrix while the estimates
obtained by Grassmann clustering hardly resemble the original data (see Tab.
7)
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Table 7
Correlation coefficients Ci between the i−th estimated and the corresponding origi-
nal source as well as the CTE between the original and the estimated mixing matrix
for both Grassmann clustering based NMF and sNMF. While sNMF perfectly re-
covers the sources and the mixing matrix Grassmann clustering based NMF fails to
solve the given BSS problem.

C1 C2 C3 CTE

Grassmann NMF 0.70 -0.40 0.71 8.24

sNMF 1.00 1.00 1.00 0.62

6 sNMF Simulation Studies using Microarray Data

So far the performance of sNMF has only been investigated by means of artifi-
cial data. In contrast, this section deals with the sNMF analysis of microarray
data. As before, the results will be compared with those achieved by fastICA.

The data sets to be analyzed were recorded during an investigation of Pseudo-
Xanthoma Elasticum (PXE), an inherited connective tissue disorder charac-
terized by progressive calcification and fragmentation of elastic fibers in the
skin, the retina, and the cardiovascular system.

During the investigations M = 8 microarray experiments have been carried
out. In the first and the second experiment the PXE fibroblasts were incubated
in Bovine Serum Albumin (BSA) whereas the incubation time was three hours
in the first and 24 hours in the second experiment. In the third experiment
the PXE fibroblasts were incubated for three hours in an environment with a
high concentration of the Transcription Growth Factor beta and in the fourth
experiment the cells were incubated for 24 hours in an environment which was
rich in Interleukin 1 beta. The same experiments were then repeated with a
control group of normal fibroblasts.

In order to detect the the expression of the individual genes an Affymetrix
HG-U133 plus 2.0 microarray chip was used. This in-situ chip is capable of
detecting 54675 genes in parallel and makes use of the probe pair strategy.
Hence, each measured expression value was accompanied by a detection call.
If in all experiments the detection call of a particular gene was “absent” the
gene was removed from all data sets. After this procedure only 10530 genes
remained (see Fig. 13 and Fig. 14) in each data set.

These data sets were used to constitute the 8 × 10530 observation matrix
X which was then decomposed into the matrices Â and Ŝ by the proposed
sNMF algorithm. For the genetic algorithm the number of sub-populations was
increased to Npop = 56 (thus the overall number of individuals Nind increased
to 2800), the total number of migrations to Nmig = 25 and the number of
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Fig. 13. The first four of the eight PXE data sets. Abscissa: genes. Ordinate: mea-
sured mRNA levels in arbitrary units.
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Fig. 14. The second four of the eight PXE data sets. Abscissa: genes. Ordinate:
measured mRNA levels in arbitrary units.
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algorithm repetitions to Nrep = 8. This number of repetitions seemed to be
sufficient as it was observed that after the 5th of the Nrep = 8 repetitions

of the algorithm the resulting matrices Â and Ŝ did not change any further.
For the sparseness measure στ several values τ have been tried and it turned
out that the best results were obtained if this parameter was set to 0.30. The
values of the remaining parameters of the GA remained as listed in Tab. 3
above. Note that as the overall number of individuals was large (Nind = 2800)
the algorithm was run in parallel on a cluster of 28 computers and took 5
hours of computation time.

After the 8 repetitions the following estimate of the mixing matrix Â was
obtained:

Ã =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.9879 1.5171 1.6557 6.2249 0.8153 0.5777 2.1567 0.4715

2.0143 1.7504 0.9985 4.1203 1.0451 0.6593 1.5290 0.9634

3.5696 0.5377 1.0782 3.4697 0.2301 0.1243 1.0611 0.2914

1.9490 1.4348 0.8186 4.0773 0.5377 0.4795 0.9305 0.4145

0.7278 0.6451 0.5221 2.4486 1.3107 0.3698 0.4669 0.1856

0.9855 0.9942 0.6677 2.9247 1.1428 1.1557 0.6835 0.4150

2.5548 0.9079 2.1846 4.2192 1.0214 0.2973 1.3055 0.6379

1.9814 1.0337 0.8580 3.7670 0.5493 0.7602 0.6348 1.2538

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(34)

Table 8
Sparsenesses στ=0 of the estimated sources.

Source 1 2 3 4 5 6 7 8

στ=0 0.996 0.971 0.983 0.995 0.984 0.954 0.989 0.985

The corresponding sources are depicted in Fig. 15 and Fig. 16. As the value
of τ used by sNMF is rather large the obtained sources are very sparse as can
be seen in Tab. 6. Hence, the sNMF algorithm uses only the expressions of a
small portion of genes to reconstruct the mixing matrix X. Here, it is assumed
that these genes are the most important representatives of their corresponding
cellular processes. This coincides with the notion often found in genetics which
says that the most highly expressed genes are the most typical for a specific
cellular process [21]. Thus, the high value of τ was not only used to deal with
noise, but it was also used deliberately to obtain sources with only a few
nonzero entries, i.e. only few active genes.

After the sparse NMF analysis each row of the matrix S should ideally con-
sist of an expression pattern indicative of a specific biological process. It must
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Fig. 15. The first four sources as obtained from sNMF. Abscissa: genes. Ordinate:
mRNA levels in arbitrary units.
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Fig. 16. The second four sources as obtained from sNMF. Abscissa: genes. Ordinate:
mRNA levels in arbitrary units.
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be noted, however, that at least one hundred of such processes are occurring
simultaneously in a biological cell while the number of available observations
and hence the number of estimated sources was only eight. Hence, each esti-
mated source is expected to contain signatures from various cellular processes.

But despite these highly overcomplete settings the algorithm succeeded in
grouping the majority of genes which are related with calcium ion binding (344
in total) and hence with the disease picture of PXE into the sixth estimated
source (see Tab. 9). Furthermore, the calcium ion binding related genes in the
sixth source seem to be specific for only one biological process as maximally
14 % of them could be found in any of the remaining sources. Note that for the
assignment of genes to molecular functions the Gene Ontology database [9]
was queried.

Table 9
Number of genes related with calcium ion binding (#(cib)) for each of the eight
estimated sources obtained by sNMF. Only genes which are rated exclusively as
having a calcium ion binding molecular function in the Gene Ontology [9] database
were considered. Most genes related with calcium ion binding are clustered into
source 6.

Source 1 2 3 4 5 6 7 8

#(cib) 0 13 7 0 4 35 9 6

In [25] the same PXE data set was analyzed by means of the fastICA algo-
rithm. In this analysis the following procedure was carried out: first the data
matrix X was fed into fastICA whereas the Gaussian nonlinearity was used.
As can be seen in Fig. 17 and Fig. 18 the independent components extracted
had both positive and negative entries. Note that this actually means that the
cellular processes would need to produce negative amounts of mRNA. Fur-
thermore, there are no null entries in the sources which would mean that all
genes participate at all processes. Hence, in [25] a further postprocessing step
was necessary. In this step two clusters were formed for each source. For this
purpose the maximum (smax) and the minimum expression level (smin) found
in the source was determined. The first cluster then consisted of all those genes
which had expression levels higher than 0.26smax while the second consisted
of the genes with expression levels lower than 0.26smin. Finally, the molecular
function of the genes in each cluster was determined by means of the Gene
Ontology [9] database.

In this case, at most 22 genes related with calcium ion binding could be
grouped into one cluster as can be seen in Tab. 10. Furthermore, other clusters
(e.g. clusters 1, 2 and 13) also contained significant amounts of genes related
with calcium ion binding. sNMF thus achieved a better grouping of calcium
ion binding genes than fastICA. These results are rather preliminary, though.
Further cooperation with biologists is necessary to investigate if the calcium
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Fig. 17. The first four sources obtained when fastICA was applied to the PXE data.
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Fig. 18. The second four sources obtained when fastICA was applied to the PXE
data.
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Table 10
Number of genes related with calcium ion binding (#(cib)) for each of the 16 clusters
formed during the analysis of the PXE data by fastICA. Only genes which are
rated exclusively as having a calcium ion binding molecular function in the Gene
Ontology [9] database were considered. Most genes related with calcium ion binding
are clustered into source 10.

cluster 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

#(cib) 9 8 3 2 5 1 0 4 1 22 2 4 12 3 0 1

ion binding genes appearing in the sixth source as obtained by sNMF are
indeed related with PXE.

7 Conclusions

In this paper we have presented a new approach to solve the BSS problem
which is based on a nonnegativity constraint for the observations, the mixing
matrix and the sources with an additional sparseness constraint concerning
the encoding of the source signals. As the cost function considered has many
local minima we have used a GA for its minimization. Further, we have dis-
cussed which sparseness measure is eligible for our approach and compared the
devised algorithm to ICA and geometric BSS methods. In these comparisons
we have demonstrated that our approach is also able to solve the BSS problem
when the underlying sources are statistically dependent or correlated. Finally,
we have applied the proposed algorithm to analyze real world microarray data.
The obtained results suggest that our approach is better suited to analyze mi-
croarray data than ICA, however, further investigations in cooperation with
biologists are necessary to confirm these preliminary results.
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