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“A man must travel. By his own, not through stories, pictures, books or TV. He’s got to

travel by himself, with his eyes and feet, to understand what is his. To one day plant his own

trees and value them. Knowing the cold to enjoy the heat. And the opposite. Feel the distance

and absence of shelter to be well under his own roof. A man must travel to places that he does

not know to break this arrogance that makes us see the world as we imagine it, and not simply

as it is or can be. That makes us teachers and doctors of what we have not seen, when we

should be students, and simply go see ”

Amyr Klink
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Abstract

Handshape Recognition using Principal Component Analysis and
Convolutional Neural Networks applied to Sign Language

by Marlon OLIVEIRA

Under the supervision of Dr. Alistair SUTHERLAND
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at the School of Computing, Dublin City University

Handshape recognition is an important problem in computer vision with significant so-

cietal impact. However, it is not an easy task, since hands are naturally deformable objects.

Handshape recognition contains open problems, such as low accuracy or low speed, and de-

spite a large number of proposed approaches, no solution has been found to solve these open

problems. In this thesis, a new image dataset for Irish Sign Language (ISL) recognition is in-

troduced. A deeper study using only 2D images is presented on Principal Component Analysis

(PCA) in two stages. A comparison between approaches that do not need features (known as

end-to-end) and feature-based approaches is carried out.

The dataset was collected by filming six human subjects performing ISL handshapes and

movements. Frames from the videos were extracted. Afterwards the redundant images were

filtered with an iterative image selection process that selects the images which keep the dataset

diverse.

The accuracy of PCA can be improved using blurred images and interpolation. Interpola-

tion is only feasible with a small number of points. For this reason two-stage PCA is proposed.

In other words, PCA is applied to another PCA space. This makes the interpolation possible

and improves the accuracy in recognising a shape at a translation and rotation unknown in the

training stage.

Finally classification is done with two different approaches: (1) End-to-end approaches

and (2) feature-based approaches. For (1) Convolutional Neural Networks (CNNs) and other

classifiers are tested directly over raw pixels, whereas for (2) PCA is mostly used to extract fea-

tures and again different algorithms are tested for classification. Finally, results are presented

showing accuracy and speed for (1) and (2) and how blurring affects the accuracy.
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Chapter 1

Introduction

This chapter introduces the central concept of the research and provides an explanation of the

motivation and approach for the research. In Section 1.1 this field of research is reviewed

briefly. Then, the motivation behind this thesis is presented in Section 1.2. The research

questions are raised in Section 1.3. The significance and contributions presented in this work

are summarised in Section 1.4. Finally, Section 1.5 outlines the thesis contents.

1.1 Research Review

Human Computer Interaction depends strongly on the new developments in Computer Vision

(CV), and handshape recognition is an active research area in this field.

Handshape or gesture recognition is a challenging task, because hands are deformable

objects. This means that depending on many facts, such as rotation, scale, translation and

illumination, every single detail can make a hand look like a different object.

According to Mitra and Acharya (2007) some applications of handshape recognition are

listed as follows:

• developing aids for the hearing impaired
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• enabling very young children to interact with computers

• designing techniques for forensic identification

• recognizing sign language

• medically monitoring patients’ emotional states or stress levels

• lie detection

• navigating and/or manipulating in virtual environments

• communicating in video conferencing

• distance learning/tele-teaching assistance

• monitoring automobile drivers’ alertness/drowsiness levels, etc

This thesis focuses on handshape recognition applied to sign language. CV plays an im-

portant role in this matter by helping people who use sign language with systems for everyday

life problems, e.g. automatic transcription, human-machine interaction and machine transla-

tion.

Irish Sign Language (ISL) is an indigenous language that is used by around 5,000 Deaf

people in the Republic of Ireland and 1,500 in Northern Ireland. In addition, it is known by

50,000 non-Deaf people Leeson and Saeed (2012). ISL is not based on English or Irish, it is a

language in its own right.

ISL contains more than 5,000 signs. Each sign consists of a handshape and a motion in

3D space. There are around 23 basic, most common handshapes in ISL and each of them is

labelled with a different letter of the alphabet. These handshapes can be seen in a wide range

of possible angles in 3D space. The remaining three letters of the alphabet, ’J’, ’X’ and ’Z’ are

used to label gestures involving motion and actually use one of the 23 handshapes.

There are basically two different ways to recognise handshapes, glove-based approaches

and vision-based approaches. Glove-based uses a physical glove (hardware) with sensors at-

tached to the human arm/hand. This kind of method is very precise because they can provide
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precise information about the hand configuration. However, it implies wearing a mostly un-

comfortable device which does not allow a natural interaction. Vision-based approaches pro-

vide a natural interaction since they use only cameras to obtain hand configuration information.

Nonetheless, this kind of approach is more complex and might not be very precise.

Vision-based approaches are highly studied and there are several manners to obtain hand

configuration from cameras/images. Sensors, multiple cameras and depth cameras are exam-

ples of these manners. Nevertheless, this thesis focuses only on a 2D vision-based approach

with a single camera.

1.2 Motivation

A proof of how tough handshape recognition is that it has been researched for years and still

there is not an usable application for this matter. Many different theories have been proposed

and studied. Each of these theories uses a different approach, e.g. gloves, sensors, lasers,

cameras, depth cameras, 3D cameras, or just the most difficult one, a single regular camera.

The idea of using just a regular camera is important because these cameras are inexpen-

sive. Everyone nowadays has easy access to a camera. Thus, if people have these cameras

easily accessible, why not focus on research for this kind of device? In addition, there are

a huge number of videos uploaded every day to the internet, e.g. YouTube, Vimeo. YouKu.

These videos are 2D and contain no depth information.

The key question is how to make computers recognise hands from 2D images? There are

several technologies and approaches to do it. Therefore, all of them use basic steps, i.e. train

a classifier and then classify. The training and testing stages can be either done with features

extracted from images (known as a feature-based approach) or straight from pixels (known as

an end-to-end approach).
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CV provides the technology to assist people who use sign language with tools such as

automatic transcription, human-machine interaction, machine translation, etc. In order to de-

sign such tools, large amounts of data are necessary for training and testing the system. In this

thesis, a new image dataset for ISL recognition is introduced.

Working with a dataset of images of real hands is challenging because the exact pose angle

is unknown. It makes the task of classifying the new object difficult because when working

with more than one shape, each shape can be slightly rotated with respect to the others.

Principal Component Analysis (PCA) is an efficient technique for dimensionality reduc-

tion and feature extraction Han and Liu (2014). It uses the covariance matrix of the data to

create a space called an eigenspace. Each dimension in this space is represented by one eigen-

vector. The number of eigenvectors used to represent the full data is always considerably lower

than the dimensionality of raw data.

Convolutional neural networks (CNNs) specialise in recognising patterns. They are widely

known for robustness to distortion and having minimal or no preprocessing. They have been

used for detection and recognition of different objects, including hands Nagi et al. (2011) and

LeCun et al. (2015).

Some approaches to gesture recognition extract features from images and use these fea-

tures to train the classifier. Several techniques are used to extract features e.g. edge detectors,

contours, corners, Haar-like features, interest points, Fourier transform, PCA and more. These

approaches are called feature-based approaches. In contrast to feature-based, the approaches

that do not use features are called end-to-end approaches.

The final step is always the classification. In order to classify an image either from raw

pixels or from features a classification algorithm has to be applied. Machine Learning is

widely used in this process. Techniques such as CNN, linear discriminant analysis (LDA), sup-

port vector machines (SVM), a multilayer perceptron (MLP), decision trees, and a k-Nearest

Neighbour (k-NN) are examples of classifiers.
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Among the large number of techniques to extract features or/and classify objects, this

thesis focuses mainly on Principal Component Analysis and Convolutional Neural Networks.

In addition, interpolation over PCA manifolds and eigenspaces are proposed.

One big challenge in this work is a considerable quantity of parameters. For PCA: the

level of blurring, the size of each image, the number of eigenvectors in each PCA level, the

number of dimensions used in the interpolation, the quantity of points to be interpolated and

used in the reconstruction. For CNN: the size of the filters, the number of feature maps,

the number of hidden layers, the activation function, etc. Every single parameter affects the

accuracy of the recognition.

1.3 Research Questions

The research proposed in this thesis raises the following main questions:

• RQ1: Is it possible to use two-stage PCA and interpolation to generate artificial data

which can augment a sparse dataset?

• RQ2: Does the use of interpolated data increase the recognition accuracy on a sparse

dataset?

• RQ3: How do parameters such as blurring level, number of eigenvectors or sampling

interval affect the accuracy?

• RQ4: How do feature-based and end-to-end algorithms compare in recognition accu-

racy on a dense dataset?

– RQ4(a): Should features be extracted?

– RQ4(b): Which classifier is the most accurate for the ISL dataset?

– RQ4(c): Which classifier is the fastest?

5
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1.4 Significance and Contributions

In this thesis three different contributions are presented to the field of handshape recognition

applied to Irish Sigh Language (ISL). The first contribution is a new dataset for ISL with

a redundancy filter. The second is the use of interpolation over PCA manifolds and PCA

eigenspaces. The third contribution is a comparative study between feature-based approaches

and end-to-end approaches.

• New Irish Sigh Language alphabet dataset The new ISL dataset contains 468 videos,

filmed from 6 different human subjects, resulting in more than 58,000 frames represent-

ing the 26 alphabet letters. Frames in this dataset were filtered with a proposed redun-

dancy filter resulting in 50,000 images for the 23 static gestures in ISL. This dataset

builds on a previous dataset with only 20 handshapes and a rather smaller number of

images.

• PCA with interpolation PCA is used to represent data in a space with a reduced number

of dimensions. This representation of the data allows us to select subsets and apply PCA

for the second time. Having the dimensionality of the data reduced twice it is possible

to interpolate in order to create synthetic data from the original data. PCA data can be

interpolated by fitting a cubic spline in N-dimensions. This raises the question: Can the

interpolated data be used to improve the recognition of an unknown object in a sparse

dataset?

• Comparison between CNN (and other algorithms) and PCA approaches A deep

study is proposed with end-to-end approaches (mainly CNN) and feature extraction

based (PCA and Kernel PCA), and other different classifiers. The most important ques-

tions are: Should features be extracted? Which classifier is the best for the data avail-

able? Which are the faster? Experiments done in this thesis try to answer these ques-

tions.
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1.5 Thesis Outline

Following on from the above, the thesis is organised as follows:

• Chapter 2 discusses the concepts in different areas related to handshape recognition as

well as the state-of-the-art approaches in this field.

• Chapter 3 presents a new dataset for Irish Sign Language and a filter to remove frames

with high similarity. Finally, it is shown how datasets are split into a sparse dataset and

a dense dataset.

• Chapter 4 discusses two-stage Principal Component Analysis and interpolation by splines,

including the influence of blurring, applied to the sparse dataset.

• Chapter 5 explores mainly Convolutional Neural Networks and Principal Component

Analysis, applied to a dense dataset, including recognition accuracy, speed and influence

of blurring. In addition, other classifiers are tested and results for accuracy and speed

are shown as well.

• Chapter 6 summarises the implications and contributions, and discusses the possibili-

ties for future work

7



Chapter 2

Literature Review

As stated earlier in Chapter 1, handshape recognition is an important topic in computer vision,

which has been discussed for a long time. The importance and popularity of this field of

research, as well as the number of published papers are surveyed in this chapter.

2.1 Introduction

Humans can easily recognize handshapes using their eyes. Size, shape, colour, angle, distance,

and other aspects of the human hand, generally, do not prevent a human matching a hand

gesture. However, for computers it is completely different; every single detail turns a hand

image into a different image. This is the main challenge in this field: how to make hand

gestures be correctly classified by computers?

This chapter presents the state-of-the-art in handshape recognition. There are different

forms of recognition in the field of pattern recognition. Basically they are divided into two

sub-areas: vision and non-vision based approaches.

Non-vision-based approaches include all the techniques that use gloves and/or sensors to

obtain information about the shape of the hand. In these approaches data gloves equipped with

sensors and/or accelerometers are normally used to capture the rotation and movement of the

8
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hand and fingers. These gloves use hardware that usually obtains information about the hand

through electrical signals or electromagnetic interference Naoum et al. (2012). In Section 2.2

in this chapter some non-vision-based methods are described.

Vision-based approaches are those that use cameras to obtain information about the hand.

The Kinect camera, web-cams and time-of-flight cameras are examples of cameras used in this

kind of approach.

A significant quantity of vision-based hand gesture recognition techniques have been in-

troduced in the literature, where images of different kinds and from different numbers of cam-

eras are used to achieve gesture recognition.

Hand gestures can be classified into two main categories: static and dynamic. Dynamic

gesture are those that include movement of the hand, e.g. turning palm up and down. Static

gestures are those that do not need movement to be recognised, e.g. an open hand. Figure 2.1,

from Wolf et al. (2013), shows examples of static gestures 2.1(a), and dynamic gestures 2.1(b).

(a) Static gestures (b) Dynamic gestures

FIGURE 2.1: Examples of static and dynamic hand gestures

Beyond the methods of how images are obtained, most of the researches includes a clas-

sification stage. k-Nearest Neighbour, Support Vector Machines and Deep Learning are some

examples of classifiers used in hand gesture recognition. The following sections explain some

of the theories behind gesture recognition and related works in the field.
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2.2 Non-Vision-based Approaches

Non-Vision-based approaches are those that usually use data-gloves and/or sensors to map

the human hand. In this section some examples of these hardwares and what sort of pattern

recognition algorithms are used to recognise the gestures are presented.

2.2.1 Glove-based Handshape Recognition

Glove-based handshape recognition normally involves the user wearing some device and a

certain quantity of cables to connect this device to a computer. This makes these methods a

difficult and non-natural way to interact with the computer Mitra and Acharya (2007). Data

glove devices use electricity or electromagnetic interference to obtain information about the

hand, which is sufficient to provide a description of a hand gesture Naoum et al. (2012). Re-

searchers refer to data gloves in different ways, e.g. CyberGlove and Accele Glove.

Figure 2.2 shows the location of the sensors in a data glove proposed by Bedregal et al.

(2007). Basically a sequence of frames can represent any movement. Thus, a sequence of

hand configurations represents a hand movement using a data glove. In Bedregal et al. (2007)

a random generated hand configuration was used to simulate the data transfer. Each instant of

the handshape is represented by a tuple of interval angles from each sensor. The recognition

was applied to Brazilian Sign Language (LIBRAS), using Fuzzy logic. As shown in Table

2.2 the accuracy rate and the number of gestures/persons was not provided by Bedregal et al.

(2007).

Another kind of glove to extract gesture features is called the CyberGlove. This method

was applied to American Sign Language (ASL) in Wang et al. (2006) as in Figure 2.3. The Cy-

berglove is a glove equipped with strain gauges for detecting finger bending, abductions1/adductions

and shape. These gloves have been used to obtain the joint values which are then digitised to 8

bits. It has 18 sensors based on a linear, resistive bend sensing technology Sahoo et al. (2014).

1The movement of a finger away from the midline, the opposite of adductions Press (2017).
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FIGURE 2.2: A data glove scheme with sensors

FIGURE 2.3: A Cyberglove with sensors by Wang et al. (2006)

Bui and Nguyen (2007) developed a similar device called the Accele Glove. These gloves

use a microelectronic mechanical system (MEMS) to extract hand configuration. They have

been applied to Vietnamese Sign Language for 23 gestures with Fuzzy logic. As shown in

Table 2.2 the accuracy was divided by handshape, with an overall 98% accuracy. The relative

angles between fingers and the palm is the data obtained from the sensing device. The glove

contains six accelerometers and a BASIC Stamp microcontroller as in Figure 2.4 Sahoo et al.

(2014) and Phil et al. (2015).
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FIGURE 2.4: A sensor glove by Bui and Nguyen (2007)

The Polhemus FASTRAK provides 6 degrees-of-freedom tracking Sahoo et al. (2014) and

it is used to collect a sequence of positional co-ordinates of both hands which are measured

with the magneto metric sensor at 60 samples per second. It has been used to collect data

in Maebatake et al. (2008) for American Sign Language recognition. Polhemus FASTRAK is

highly reliable and has near non-latency, what makes it useful for virtual reality interfacing and

simulators. It converts the obtained data into the most common computer graphics software

format Sahoo et al. (2014).

Abdulla and Manaf (2016) proposed a system for a sign-to-speech/text for deaf people,

applied to Arabic Sign Language. This system includes the design and implementation of a

smart glove. One of the advantages of this glove is that it does not depend on light conditions,

which means it works even in dark environments. These gloves are low cost, low power and

have full mobility as well. Another advantage of these gloves is that they have flex sensors

which have a wireless interface to a microcontroller.

Zhang et al. (2011) have created their own sensor and applied it to Chinese Sign Language

recognition. This sensor uses an accelerometer (ACC) placed at the wrist and electromyogra-

phy (EMG) placed at the forearm (close to the elbow), that provide two potential technologies

for gesture sensing. ACC can measure both dynamic acceleration and static acceleration such

as gravity. EMG measures the electrical potentials generated by muscle cells. Thus, the main

goal was a framework for hand gesture recognition using decision trees and Hidden Markov

Models (HMM) for fusion of the ACC and EMG sensors.
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2.3 Vision-based Gesture Recognition

In this section vision-based approaches are presented. Vision-based approaches use cameras to

obtain information about the hand. The Kinect, web-cams, time-of-flight cameras and stereo-

cameras are examples of cameras used in these kind of approaches.

2.3.1 Example-based Approaches

Example-based methods depend on a large set of examples for which the parameter values are

known Farouk (2015). They deduce the label values for the input example (or image) from the

known values in similar examples. This approach does not need to model the global structure

of the input data, which is just assumed to be sufficient to make such inference. Therefore,

example-based approaches are efficient for parameter estimation problems when the system is

not complex and/or the dimensionality of the input is not high. However, for complex and high-

dimensional problems the number of required examples and the computational complexity

become exhaustively high Shakhnarovich et al. (2003).

As with any other classification technique, example-based applications involve two phases:

training and testing. In the training stage, the user feeds into the system one or more examples

of a specific handshape. For instance in the work of Naoum et al. (2012) the system forms

and stores the corresponding orientation histogram. In the testing stage, the system compares

the orientation histogram of the current image with each of the training images and picks

the category of the best matches. This method can be robust to small information changes

such as difference in the size of the hand. However, it would be sensitive to changes in hand

orientation. Other common metrics systems are Euclidean distance, interest point matching,

moments, Fourier Descriptors, etc.

Some characteristics of example-based learners are as follows:

• They capitalise on the availability of a large set of examples for which the parameter

values are known Shakhnarovich et al. (2003)
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• They compare the observed image with a database of samples Moeslund et al. (2006)

• The set of typically interesting poses is far smaller than the set of anatomically possible

ones, which is good for robustness den Bergh et al. (2009)

• They represent the mapping between image and pose space providing a powerful mech-

anism for directly estimating 3D pose Moeslund et al. (2006)

• They do not involve domain-specific knowledge Mitra and Acharya (2007)

• They can easily be used to locate any object composed of distinct identifiable parts that

are arranged in a well-defined configuration Mohan et al. (2001)

Some classic examples of example-based approaches are k-NN and locally-weighted re-

gression (LWR). These methods are widely used because of their simplicity and the excellent

results provided Shakhnarovich et al. (2003). However, these techniques have a high com-

putational complexity due to the similarity search. When working with large datasets the

high-dimensional spaces can make it infeasible. Shakhnarovich et al. (2003) proposed a new

example-based approach using Locality-Sensitive Hashing (LSH) to overcome this problem.

In this case the training examples are indexed by a number of hash tables.

Figure 2.5 shows handshapes followed by the orientation histograms. This is one example

of how example-based approaches can be used for gesture recognition Freeman et al. (1998).

FIGURE 2.5: Histograms of oriented gradients in an example-based approach
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2.3.2 Model-based Approaches

Model-based methods utilise an explicit 2D or 3D kinematic hand model to detect hands in

images Li and Jain (2011). The 2D or 3D model used has to have enough degrees of freedom

(DoF) in order to adapt to different dimensions of the hand(s) Zabulis et al. (2009). In addition,

Zabulis et al. (2009) states that full 3D methods may allow view-independent detection in

contrast to a 2D model of the hand that only works when the hand is in a certain pose e.g. with

the palm facing the camera.

The feature-model correspondence depends on which features and which type of models

are used. Point and line features are part of the kinematic models to recover the shape of the

hand. Thus, hand gestures are estimated according to the correspondence between the model

and the observed image features Zabulis et al. (2009).

A considerable number of model-based gesture recognition techniques use successive

approximation methods to estimate parameters. Gesture recognition should be invariant to

rotation, and for this reason intrinsic parameters such as joint angles are most utilised Zabulis

et al. (2009). In addition, model-based methods enable tracking whilst maintaining estimates

of model parameters and features not directly observable at a certain moment Rautaray and

Agrawal (2012).

In gesture recognition, a set of gesture patterns composed of sequences is modeled by a

generative or discriminative dynamic probabilistic model, i.e. HMM (Huang and Jeng (2001))

or a Hidden Conditional Random Field. Turk and Hua (2013). Ren and Zhang (2009) proposed

a hand gesture recognition system using SVM combined with minimum enclosing ball (MEB).

Huang and Jeng (2001) state that model-based vision is an efficient approach for locat-

ing and recognizing objects in motion in the real scene with a significant number of spatial-

temporal variations. Erol et al. (2007) concluded that 3D model-based approaches have a high

computational cost and this cost depends on the DoF. In Figure 2.6, Erol et al. (2007) proposed

a block diagram where a search is executed at each frame, in order to set the best parameter to

minimise the error rate.
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FIGURE 2.6: A typical model-based tracking system design

2.3.3 2D Methods

The methods that do not use depth images (3D) are considered 2D methods. They are more

challenging than 3D, because they have less detail in the image. However, they are more

appropriate for real time applications since they are less computationally expensive. Basically

2D methods directly use image pixels or features derived from image pixels Li and Jain (2011).

Chen et al. (2007) proposed one of the first hand gesture recognition systems. Haar-like

features and the AdaBoost learning algorithm were applied over 2D images. This system was

able to recognise only 4 hand gestures, such as two-fingers, palm, fist posture and little finger.

Dataset images were acquired by a low-cost Logitech QuickCam web-camera that provides

video capture with the resolution of 320× 240, 15 frames-per-second. Images at different

scales were used in the training phase. The average accuracy was over 90%.

Cui and Weng (2000) proposed an approach to recognizing hand signs using motion

recognition merged with spatial recognition. Multidimensional discriminant analysis was used

to automatically choose the most discriminant feature of each gesture for classification. Classi-

fication is made by a recursive partition tree approximator. This system was able to recognise

28 hand gestures with 93.2% accuracy. A regular web-cam was used for the input of ASL

handshapes images.
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Mistry et al. (2009) introduced WUW - wear Ur world, a wearable gestural interface. This

system attempts to project information out into the real world. A tiny projector and a camera

attached to a hat or in a pendant are used. WUW can project onto any surface, such as walls

and physical objects, and allows the user to interact with the projected information by natural

hand gestures. WUW is able to recognize gestures such as ”zoom in”, ”zoom out” or ”pan”

in a map application or to flip though documents or images using the movements of the hand

or index finger. In addition, users can draw on any surface using the movement of the index

finger.

Naoum et al. (2012) proposed a new Arabic Sign Language recognition system using k-

Nearest Neighbour. They proposed a system able to recognise 28 Arabic hand gestures. Naked

hand and different colour gloves were tested. The accuracy was 50% for naked hand, 75% for

red glove, 65% for black glove and 80% for white colour glove.

Kim et al. (2017) proposed a dataset for ASL fingerspelling, recorded with 2 cameras.

They tested different approaches for handshape recognition using videos and deep neural

network-based features. Accuracy was about 92% for letters and single-signer and 83% for

letters and multi-signer.

2.3.4 Feature Extraction

Some of the 2D methods for handshape recognition rely on features. Feature extraction is

related to dimensionality reduction, since the idea is to classify an image by a set of features

instead of the entire image (raw pixels). There are several ways to extract features from an

image, e.g. contours, corners, Haar-like features, interest points, Fourier transform and more.

Contours are one way to extract features from images. It consists of selecting salient

edges in an image. It assumes that the contour is the most salient, or maximum gradient edge

in the image Chen et al. (2010). Liu and Kehtarnavaz (2016) used finger spelling contours

using a morphological approach for hand gesture recognition.
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Mokhtarian and Suomela (1998) state that corner detection is important in various com-

puter vision systems. Applications are not limited to motion tracking, object recognition, and

stereo matching. Corner points of an image are defined as points where edges have their max-

ima of absolute curvature. Some corner detector techniques depend on contours and edges.

Haar-like features focus more on the information of a certain area of the image instead

of each pixel. Haar-like feature-based systems are generally faster than a pixel-based system.

In addition, these approaches are robust to noise and lighting changes because the grey level

difference is computed between the sums of the pixel intensities in each adjacent rectangular

region Chen et al. (2007).

Interest points (IPs) have their origin in the notion of corner detection, where authors

were looking for features in order to have a robust, stable and well-defined set of features for

object recognition. However, most of the corner detectors are actually sensitive to local image

regions with a high level of variation. IPs aim to detect a point of interest in the image for later

analysis or classification. The main characteristic of IPs is that they can be selected regardless

of scale, illumination, translation, rotation or noise. Two important techniques to select IPs are

SIFT (Lowe (2004)) and SURF (Bay et al. (2008)), both have demonstrated high precision for

this purpose with many successful applications Lindeberg (2013) and Lindeberg (2015).

Charfi et al. (2017) applied SIFT to handshape and palmprint modalities on two databases:

the Indian Institute of Technology of Delhi (IITD) hand database (1,150 hand images from 230

different subjects, number of handshapes was not informed) and the Bosphorus hand database

(615 subjects, two training images and 1 testing image per subject). The results showed the

method yielded high accuracy (99.57%) compared to other popular bimodal hand biometric

methods.

The Fourier Transform is an image processing technique widely used to decompose an

image into sine and cosine components. The transformation output represents the image in

the Fourier domain, whereas the input image is in the corresponding spatial domain. In the

Fourier domain, each point represents a frequency contained in the spatial domain image Eas-

ton (2010).
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Harding and Ellis (2004) proposed a system to recognise a hand gesture trajectory. Fourier

Descriptors (FD) were used to recognize 5 subjects performing the same sequence of 6 gestures

using neural networks for classification obtaining 90% accuracy. FDs are a manner of encoding

the shape taking the Fourier transform of the boundary and every point is mapped to a complex

number.

Finally, Principal Component Analysis can be considered as a kind of feature extraction.

This is because it reduces the dimensionality and the classification stage is made over the

reduced data instead of the entire image.

2.3.5 Mobile-based Methods

Song et al. (2014) have proposed one of the first gesture recognition systems running on a

mobile device. Song et al. (2014) uses only a RGB unmodified mobile camera to obtain the

shapes for classification. The idea was not to replace the touch screen, instead the idea was to

boost it. Basically this system is able to recognize five hand gestures and no-gesture, such as

pinch, point, gun, splayed hand and flat hand. The classification phase was made in stages, first

the hand is classified into three different coarse depth bins (using depth classification forest),

next the handshape is classified into 6 classes, finally, the fingertip parts are detected by a part

classification forest. Twenty users were used to test the efficacy and the mean accuracy was

98%.

Lahiani et al. (2015) introduced a real time hand gesture recognition system for Android

devices. The system was designed to recognise 10 hand gestures, corresponding to the num-

bers from 0 to 9. The average accuracy reported was 93%. However, it was only tested with

100 images, with 10 images for each gesture. Images were captured from five different people

in different lightning conditions and different backgrounds. The classifier used was SVM.

Several mobile applications for gesture recognition can be found on the internet, e.g.

YouTube. Most of them are apply to Android devices. The majority are unpublished works
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and exploratory, then meaning it was coded by amateurs or even by experiment programmers

just for curiosity. Only a few papers can be found published on this context.

2.3.6 3D Sensors

In this section studies related to 3-dimensions (3D) techniques, applied to handshape recog-

nition, are presented. The 3D methods are those that do not rely in a single camera, rather a

sensor (or more than one) and/or multiple cameras are used.

Taylor et al. (2017) used an Intel SR300 depth camera to detect 24 handshapes of ASL

performed by 10 individuals. They used the publicly available Sphere-Mesh (Tkach et al.

(2016)) hand tracking algorithm to collect and recognize the handshapes. The classifier used

was a simple naı̈ve Bayesian. The classification accuracy reported was in average 69.9%.

2.3.6.1 Infrared Cameras

Some studies have been done in applying hand gesture recognition for cars Althoff et al.

(2005). The BMW group is the pioneer. In Althoff et al. (2005) they use an infrared cam-

era to detect the hand in an interaction area. The main gestures are applied to control a music

player. The system is able to classify 17 different hand gestures using HMM and getting 90%

accuracy, Table 2.3. Althoff et al. (2005) do not mention the brand or the technical specifica-

tion of the camera.

2.3.6.2 Nimble VR

Nimble VR, previously known as 3Gear Systems, is a relatively new vision-based system.

It consists of the Microsoft Kinect sensor and estimates the hand gesture via queries to a

preprocessed database that relates the detected contour of the hand to its 3D shape Arkenbout

et al. (2015). The main goal of Nimble VR was to create a comfortable hand interaction with

virtual reality. However, it focuses only on a few hand poses and gestures, e.g. pinching and
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pointing. Gestures outside of the database might be poorly classified. In addition, Arkenbout

et al. (2015) mixes the use of the Nimble VR, Kinect and data gloves.

Nimble VR was bought by Oculus2, that is now owned by Facebook3.

2.3.6.3 Leap Motion

The Leap Motion controller is a compact device that can be connected to a personal computer

via USB. It can sense hand movements in the space above it, and these movements are recog-

nised and translated into actions for the computer to perform. The Leap Motion controller is

known to be highly sensitive to small movements, and is able to map movements of the full

hand Potter et al. (2013), Figure 2.7 shows a leap motion sensor being used to play Fruit Ninja

game by an individual with stroke Khademi et al. (2014).

Quesada et al. (2017) used Leap Motion and Intel RealSense to recognise fingerspelling

for ASL. Accuracy was reported up to 100% for shape classification, using SVM and data

from 50 individuals.

FIGURE 2.7: A Leap Motion connected to a laptop by Khademi et al. (2014)

2http://nimblevr.com/
3https://www.oculus.com/
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The Leap Motion controller can be classified as optical tracking system based on Stereo

Vision. This is given by the fact that the controller uses three IR (Infrared Light) emitters

and two IR cameras Weichert et al. (2013). The maximum distance from which the controller

can capture the hand is about one metre. It runs at around 200 frames per second with 0.7

millimetres accuracy Weichert et al. (2013).

This controller has been applied to Australian Sign Language (Auslan) in Potter et al.

(2013). An artificial Neural Network was used to classify Auslan shapes. However, some

weaknesses have been discovered as well, e.g. difficulty in recognising a gesture when hands

move into a place that is not seen by the controller. In addition, the detection does not work

when fingers are brought together.

2.3.6.4 Time-of-flight Cameras

Time-of-flight (ToF) cameras produce depth and reflectance images4 at significant frames per

second. These cameras have sensors that compute the distance based on the speed of the light,

by measuring the time of the light signal from the camera until it is received by a CCD/CMOS

chip, for each pixel Droeschel et al. (2011). It is a non-invasive way of obtaining sensory

information about a scene. This kind of camera is more robust than other sensors because it is

not sensitive to illumination Ganapathi et al. (2010).

ToF cameras have been successfully used for real-world applications, e.g. robotics to

identify human pointing gestures Droeschel et al. (2011). In addition, they have shown a good

performance when applied to hand gesture recognition. Oprisescu et al. (2012) were able to

recognise 9 hand gestures with over 93% accuracy. Malawski (2014) used ToF cameras for

3D medical data analysis using a Support Vector Machine (SVM) classifier.

Even before Kinect and Leap Motion come to dominate the market, ToF cameras were

considered a low-cost device and widely used in HCI Cheng et al. (2015).

4reflectance: the portion of light reflected by each point within the scene
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2.3.6.5 SoftKinetic

SoftKinetic is a Sony group company leading in 3D vision technology. SoftKinetic develops

hardware and software for gesture recognition in real-time, e.g. time-of-flight cameras. They

offer DepthSense R© sensors, cameras and modules. In addition, SoftKinetic offer an IISU R©

middleware. This platform tracks full body and hands precisely. IISU is part of DepthSense R©

Libraries Softkinetic (2017).

SoftKinetic is the first company to implement gesture recognition in a car. BMW now

allows drivers to operate some functions using hand movements. Gestures such as ’swiping’ or

’pointing’ are identified in the recognition area above the centre console and trigger functions

such as accepting or rejecting an incoming telephone call. In addition, circular motions of the

index finger can adjust volume, and simple two-finger pointing can be configured for more

functions Softkinetic (2017). Figure 2.8 shows a SoftKinetic camera DS525 and Figure 2.9

shows a SoftKinetic embedded in a BMW car. It is not possible to identify if this system is the

same as the showed in Section 2.3.6.1 because Althoff et al. (2005) do not mention the brand

and specific kind of camera used.

FIGURE 2.8: A SoftKinetic camera DS525

FIGURE 2.9: A SoftKinetic embedded in a BMW car
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A study has been conducted by Safaei and Wu (2015) in order to evaluate 3D hand mo-

tion with SoftKinetic. Hidden Markov Models were used to conduct the classification. The

proposed method uses a framework to capture RGB and depth data from a SoftKinetic camera

and a UV map5 generated to merge the RGB image with the depth image to create a 3D model.

Chaczko and Alenazy (2016) discuss modelling and simulation of gesture recognition

technologies. The initial plan was to use a Kinect camera. However, this plan was changed

to use the SoftKinetic DepthSense 325 camera due to ease of use and compatibility with the

IISU middleware. The goal was the development of a web application that can monitor users,

who are making gestures in front of the camera(s), and that can provide controls for other

possible applications. However, it is not clear what kind of gestures the web application is

able to recognise nor how the process of classification is made.

In video-based techniques one of the problems to be addressed is locating the hands

and segmenting them from the background. Suarez and Murphy (2012) have researched how

depth images can help in solving these problems, specially when there are occlusions, lighting

changes or rapid motion. Some of the hardware available are Microsoft Kinect, ASUS Xtion,

or Mesa SwissRanger, or as an alternative any image taken from stereo video cameras.

One solution for low complexity hand skeleton tracking without calibration has been

proposed by the company called Gestigon6 Coleca et al. (2015). The idea is to apply self-

organizing maps (SOM) for hand and full body tracking. The proposed algorithms proved

efficient and robust with good tracking results. In addition, they can be easily adapted to any

depth image supplied, such as Kinect, since it provides enough accuracy.

2.3.6.6 Stereoscopic Cameras

Stereoscopic or stereo camera systems consist of two or more standard cameras capturing the

images of the same object form different angles at the same time. Image matching methods

5UV mapping is the 3D modelling process of projecting a 2D image onto a 3D model’s surface for texture
mapping

6http://www.gestigon.com
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are used to create the disparity map that approximates per-pixel depth. These cameras need to

be calibrated and produce lower-fidelity depth images than ToF cameras. In addition, this kind

of system requires a computational overhead to solve the image registration problem for each

pair of images. However, it works well in good illumination conditions and it is financially

inexpensive Suarez and Murphy (2012).

Cerlinca and Pentiuc (2011) have used stereo cameras for gesture recognition. When

using a 3D approach an object can be correctly identified even if it shows an uneven distribution

of colour components. The Cerlinca and Pentiuc (2011) idea was to detect the hand and then

grow a 3D region. It showed that the hand could be detected in almost any illumination and

scale condition. However, the accuracy was not mentioned nor were gesture classifications

computed.

Liu and Kehtarnavaz (2016) proposed a robust real-time hand gesture recognition using

stereo images. Stereo cameras were used to increase the robustness of hand detection, because

they are inexpensive and provide a faster detection leading to a real-time application. Merging

the information from the left and the right camera made Liu and Kehtarnavaz (2016) obtain an

average of 93% accuracy for seven motion hand gestures and 92% average for finger spelling.

All images were obtained with real illumination conditions and different backgrounds.

Konda (2012) have created a system for directing robots using stereo images. These stereo

images are used to feed into a Convolutional Neural Network in order to detect the gestures.

The basic gestures that the robot was able to recognise were forward, backwards, right, left,

follow me and stop.

2.3.6.7 Kinect-based Methods

The Microsoft Kinect has two versions. The fist version, Kinect V1, was released in 2010 and

it is composed of a QVGA (320x240) depth camera and a VGA (640x480) video camera, both

cameras capture at 30 frames per second (fps). The depth camera, developed by PrimeSense

(nowadays part of Apple Inc.), is composed of an Infrared (IR) light emitter and works on
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the principle of structured light Suarez and Murphy (2012). The second version, Kinect V2,

was released in 2013 and is composed of a 1920x1080 pixels camera, and a time-of-flight

sensor developed by Microsoft Ahmed et al. (2016). Kinect V1 can detect 20 bones of human

skeleton (1 in the hand). However, Kinect V2 can sense 26 bones including 2 more bones in

each hand (3 in total: hand, hand-tip, thumb).

Since the Kinect has been made available a large amount of research has been done on

gesture recognition using Kinect.

Pedersoli et al. (2014) proposed the first open source package for the Kinect sensor for

hand pose and gesture recognition. American Sign Language was the goal of this work. Clas-

sification was done in two stages: one with a Support Vectors Machine and the other with

Hidden Markov Models. The classifiers come already trained on ASL alphabet and 16 uni-

stroke dynamic gestures. The average accuracy for hand gesture classification was above 70%

for 16 gestures.

Marin et al. (2014) proposed a system that combines the use of Leap Motion with Kinect.

In this work a comparison of the two devices is shown. In addition, accuracy of the combina-

tion of the two devices into the same system is shown. A Support Vector Machine was consid-

ered for classification. Accuracy when using only Leap Motion is around 80% and 89.7% for

only Kinect. However, the accuracy increases to 91.2% when using the combination.

Yao and Fu (2014) have used Kinect to achieve more reliable and accurate tracking under

unconstrained conditions in hand gesture recognition. However, colour gloves for colour-based

motion tracking were used and a hand contour model is used to simplify the gesture matching

process, in order to reduce the computational complexity of gesture matching. The average

accuracy of hand parts classification was 74.65% for four hand gestures.

Ren et al. (2011) created two interesting applications using Kinect V1. The first applica-

tion was the rock-paper-scissors game and the second was the for basic arithmetic computa-

tion (+-*/). Finger-Earth Mover’s Distance (FEMD) was used to distinguish between different

handshapes. The mean accuracy showed was 90.6% for 10 different gestures.
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Biswas and Basu (2011) have used Kinect V1 to detect a human hand from a depth image

and classify eight handshapes. The eight shapes consist of clapping, call someone, greeting

with folded hands, waving hand, shaking head sideways – “NO”, tilting head up and down –

“YES”, clasped behind head and chin resting on hand. The training and classification stages

were done using an SVM. The mean accuracy was 80.87%, the lowest being 54.22% and the

highest 95.56%.

Kinect V2 has been used for gesture recognition in Ahmed et al. (2016). They proposed a

method for converting sign language to speech. The accuracy shown was 84%. Unfortunately

Ahmed et al. (2016) do not describe what kind of gestures the system is able to recognise nor

how many.

Table 2.1 shows a comparison among Kinect V1, Leap Motion and Kinect V2, adapted

from Cheng et al. (2015). In addition, Weichert et al. (2013) stated that Leap Motion has the

best accuracy.

TABLE 2.1: Comparison among devices available for depth images

Sensor Resolution Range Accuracy Description

Kinect V1 320×240 0.8-4.0m 4mm 20 body joints

Leap Motion 640×240 25-600mm 0.01mm 27 hand joints

Kinect V2 1920×1080 0.8-4.5m 1mm 26 body joints

2.4 Considerations about Vision and Non-vision Approaches

Table 2.2 summarises the works cited until here for non-vsion based approaches, including

sensor used, classifier, application, accuracy number of persons and number of gestures. Table

2.3 show the works cited for vision based approaches. It shows a lack of works using only one

regular camera.
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TABLE 2.2: Comparison among non-vision gesture recognition types, SL = Sign Language

Authors Camera/Sensor Classifier Application Accuracy Signers Gestures

Bedregal et al. (2007) Data gloves Fuzzy logic Brazilian SL n/a n/a n/a

Wang et al. (2006) Cyberglove HMM American SL 95% 5 26

Bui and Nguyen (2007) Data glove/MEMS Fuzzy logic Vietnamese SL 98%7 5 23

Maebatake et al. (2008) Polhemus FASTRAK HMM SL 75.6% 4 183

Abdulla and Manaf (2016) Smart glove Arduino Software Arabic SL n/a n/a 28

Zhang et al. (2011) ACC and EMG HMM/Decision tree Chinese SL 95.3% 10 18

TABLE 2.3: Comparison among vision gesture recognition types, SL = Sign Language

Authors Camera/Sensor Classifier Application Accuracy

Althoff et al. (2005) IR camera HMM Gesture recog. 90%

Huang and Jeng (2001) SONY XC7500 PCA/HMM Gesture recog. 92%8

Arkenbout et al. (2015) Nimble/Kinect/DataGlove Kalman filter Hand motion track. n/a

Potter et al. (2013) Leap Motion ANN Australian SL n/a

Droeschel et al. (2011) ToF camera HMM Gesture recog. n/a

Ganapathi et al. (2010) ToF camera Bayesian network Motion capture n/a

Oprisescu et al. (2012) ToF camera Decision tree Gesture recog. 93%

Malawski (2014) ToF camera SVM Gesture recog. 95%

Safaei and Wu (2015) SoftKinetic HMM Motion recog. 86.72%9

Chaczko and Alenazy (2016) SoftKinetic IISU SDK Gesture recog. n/a

Coleca et al. (2015) Kinect SOM Hand/boddy track. n/a

Cerlinca and Pentiuc (2011) Stereo cameras n/a Gesture recog. n/a

Liu and Kehtarnavaz (2016) Stereo cameras Optical flow/HMM Gesture recog. 92%

Konda (2012) Stereo cameras CNN Robotics n/a

Ahmed et al. (2016) Kinect V2 n/a SL 84%

Marin et al. (2014) Kinect/Leap Motion SVM Gesture recog. 91.2%

Yao and Fu (2014) Kinect V1 n/a SL 74.65%

Ren et al. (2011) Kinect V1 FEMD Gesture recog. 90.6%

Biswas and Basu (2011) Kinect V1 SVM Gesture recog. 80.87%

7Overall average, as authors show the accuracy by shape
889% for dynamic gestures
9Average accuracy fro 3 motions and 3 speeds
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Chen et al. (2007) Camera Haar-like/AdaBoost Gesture recog. 90%

Cui and Weng (2000) Webcam Recursive partition American SL 93.2%

Mistry et al. (2009) Projector / camera n/a Gesture recog. n/a

Naoum et al. (2012) Webcam k-NN Arabic SL 50.0%10

Song et al. (2014) Mobile camera Random forests Gesture recog. 98%

Lahiani et al. (2015) Mobile camera SVM Gesture recog. 93%

2.5 Pattern Recognition Techniques

In this section a discussion on techniques related to hand gesture recognition is presented.

2.5.1 Principal Component Analysis

Principal Component Analysis is a technique for dimensionality reduction and feature extrac-

tion, Han and Liu (2014). It uses the covariance matrix of the data to create a space called an

eigenspace. Each dimension in this space is represented by one eigenvector. The number of

eigenvectors used to represent the full data is always lower than the dimensionality of the raw

data.

PCA is sensitive to scale. In other words, different sizes of the same handshape may

produce different projections in the eigenspace. Chomat et al. (2000) stated that the position

of a projected image in the PCA space changes according to the appearance of the image,

translations, variable background and/or illumination. Hence PCA requires object detection,

segmentation and precise normalisation in intensity, size and position.

In the same work, Chomat et al. (2000) proposed some techniques to avoid that sensitivity

to scale, translation and illumination. It was proposed to use local appearance-based methods

10Accuracy for naked hand, this value increase for 80% when wearing a white colour glove
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that describe the appearance of neighbourhoods. The influence of background is minimised

by considering small neighbourhoods. The matter of object position may be solved by map-

ping the locally connected structures into multi-dimensional histograms in a space of local

appearances. Illumination invariance is obtained by energy normalization during the image

projection to the appearance space.

PCA has been widely applied in handshape recognition. In Farouk et al. (2013) PCA was

applied over blurred images to recognise handshapes in Irish Sign Language. In addition, PCA

was successfully used for face recognition where the eigenvectors were called eigenfaces Turk

and Pentland (1991).

PCA will be explained in detail and used in Chapter 4.

2.5.2 Linear Discriminant Analysis

Linear Discriminant Analysis (LDA) is a variation of Fisher’s linear discriminants, used in

pattern recognition and machine learning to find a linear combination of features that charac-

terises or separates two or more classes of objects or events, Aran and Akarun (2010). LDA is

used in this thesis in Chapter 5

Zhao et al. (1998) has concluded that applying LDA over raw data for face recognition did

not respond well. However, combining LDA and PCA improved the performance. Yang et al.

(2000) proposed a new LDA algorithm for face recognition and obtained an accuracy around

90%. Transferring the full rank requirement from Sw to Sb, the algorithm avoided losing the

most discriminant dimensions because of removing the null space of Sw.

Aran and Akarun (2010) had proposed a multiclass classification strategy for Fisher

scores and applied to sign language recognition. Overall, the accuracy obtained by PCA and

LDA was quite similar.
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2.5.3 Multidimensional Scaling

Multidimensional Scaling (MDS) is a type of linear dimensionality reduction. MDS maps the

original high dimensional space to a lower dimensional space, attempting to preserve pairwise

distances. Thus, each object has coordinates assigned in each of the N-dimensions. MDS

addresses the problem of constructing a configuration of t points in Euclidean space by using

information about the distances between the t patterns Ghodsi (2006). A threshold is set to

determine the accuracy of the low-dimensional embedding Saxena and Gupta (2004). MDS

has a different mathematics to PCA. However, they produce similar results Ghodsi (2006).

Additionally, MDS is known as Principal Coordinates Analysis (PCoA), Torgerson Scaling or

Torgerson–Gower scaling Barth et al. (2008).

2.5.4 k-Nearest Neighbour

k-Nearest Neighbour (k-NN) is a method widely used for classification in CV. The input con-

sists of the k closest training examples in the feature space. The output is a class where an item

is classified by a majority vote of its neighbours, k is a positive integer, generally low Naoum

et al. (2012).

The most common distance metric used in k-NN is Euclidean.

d(a,b) =
√

(x1− y1)2 +(x2− y2)2 + · · ·+(xn− yn)2.

Where a and b are two points, x1,x2,x3 . . .xn are the coordinates of a and y1,y2,y3 . . .yn

are the coordinated of b.

2.5.5 Perpendicular Distance

Perpendicular distance is a metric distance used to calculate the distance between a point

and an eigenspace. The point is in a space with a higher number of dimensions than the
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eigenspace. The point and the eigenspace are embedded in the same higher dimensional space.

The shortest perpendicular distance from a projected object to an eigenspace can indicate the

nearest neighbour class where each class is represented by a different eigenspace Coogan

(2007).

dis =
√

∑(p−o)2−∑(p∗ v−o∗ v)2 (2.1)

Where o is the origin (e.g. mean of all projected images at the same angle), v is the set

of eigenvectors and p is the point. Equation 2.1 returns the distance between a new image

and a space. Figure 2.10 shows a diagram of the perpendicular distance from a point p to an

eigenspace v.

FIGURE 2.10: Perpendicular distance from a point p to an eigenspace v with origin o

Perpendicular distance tends to show improved results when the classes are well sepa-

rated. If the classes are curved or overlap, this kind of distance will not separate them.

2.5.6 Manifolds

Manifolds are spaces that locally look like Euclidean space Lee (2012). A curve, a circle and a

parabola are examples of one-dimensional manifolds, whereas spheres, tori, paraboloids, ellip-

soids and hyperboloids are examples of a two-dimensional manifolds Seung and Lee (2000).

Manifold learning is one form of representing data in a lower dimensional space. The

problem with this is to understand how it changes in terms of their basic modes of variability,

32



Chapter 2. Literature Review

i.e., the pose and expression of a human face, or the rotation and scaling of an object. These

problems are common in computer vision and pattern recognition. For instance Weinberger

and Saul (2006) define that an image can be seen as a point in a high dimensional space whose

dimensionality is equal to the number of pixels in the image. In the case that the images are

effectively parameterised by a lower number of dimensions, then they will lie close to a low

dimensional manifold. Manifolds can be associated with structures in ensembles of images,

e.g. clusters or parts of objects.

Elgammal and Lee (2007) state that in human activities, such as gesturing, most of the

gestures are one-dimensional manifolds. These manifolds can be twisted and/or self-intersect

in such a high-dimensional visual space. PCA is widely used in appearance modelling to

discover subspaces for appearance variations, i.e. for face recognition and to model the ap-

pearance manifold and view manifold for 3D object recognition.

Figure 2.11 shows two examples of manifolds. Figure 2.11(a) shows point clouds in

spaces with categorical attributes Baryshnikov and Figure 2.11(b) shows a manifold for hand-

shapes of the ISL in a PCA space. Beyond linear manifold techniques there are others non-

linear. Non-linear manifold learning techniques will be discussed in Section 2.5.19

(a) (b)

FIGURE 2.11: Example of manifolds, (a) point clouds in spaces with categorical attributes,
(b) manifold for handshapes of the ISL projected into a PCA space
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2.5.7 Image Blurring

The process of applying convolution with a Gaussian kernel to the pixels of an image is com-

monly known as Gaussian blur. Gaussian blur has the effect of reducing details from images

and smoothing the edges. Thus, the convolution process is usually used as a low-pass filter

Farouk et al. (2013).

The equation of a Gaussian function in one dimension is shown in the Equation 2.2

G(x) =
1√

2πσ2
e−

x2

2σ2 (2.2)

Considering a 1D image, Figure 2.12, the pixel located in the middle has the highest

weight and the weight of its neighbours decreases as the spatial distance between these and the

centre pixel increases.

FIGURE 2.12: One dimensional curve for Gaussian filter blurring

In two dimensions, it is the product of two Gaussians, shown in the Equation 2.3

G(x,y) =
1

2πσ2 e−
x2+y2

2σ2 (2.3)

Where σ is the standard deviation of the distribution. In 2 dimensions this equation creates

concentric circles with the distribution from the centre point. The values of this distribution are
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used to build a convolution kernel that is applied to the original image Stockman and Shapiro

(2001).

In order to illustrate the Gaussian blur in 2D, an image of a white circle on a black back-

ground can be used. Figure 2.13 shows this image before and after blurring been applied. σ

has been set to 60.

(a) A circle image (b) A circle image blurred

FIGURE 2.13: A circle image and the same image blurred by a Gaussian filter

The same images produce surface plots, as shown in Figure 2.14

(a) A surface plot of the circle image (b) A surface plot of the circle blurred image

FIGURE 2.14: A surface plot of a circle image and the same plot for the blurred image

Farouk et al. (2013) used this kind of blurring in the classification process. The incoming

object and the training samples were blurred by the same Gaussian kernel. The classification

process of a new blurred incoming image is less complicated, because blurred images have

less details.
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In the PCA process blurring helps to reduce the non-linearity in the manifolds within

the eigenspaces. It is more efficient to analyse a flat manifold than a curved one, because

curves tend to overlap. Blurring applied over images shows much less detail. However, it

still has enough quality for recognition, since PCA uses every pixel for computation. Figures

2.15 Farouk et al. (2013) shows an illustration of how manifolds appears before and after

blurring. Note that after blurring manifolds appear more separated and less curved, reducing

overlapping.

(a) PCA manifold for non-blurred images (b) PCA manifold for blurred images

FIGURE 2.15: PCA manifolds for blurred and non-blurred images, note that for blurred
images manifolds are flatter

2.5.8 Data Pyramids

In Farouk (2015), four algorithms using different pattern recognition techniques were pro-

posed. The first algorithm was based on using perpendicular distance to measure the distance

between new patterns and the nearest eigenspace. The second algorithm was based on using

supervised multidimensional grids. The third algorithm used unsupervised multidimensional

grids (MDG) to divide the space into cells containing similar objects, shown in Figure 2.16.

The fourth algorithm was based on training a set of simple architecture multi-layer neural

networks at the different levels of the pyramid to map new patterns to the closest class. The

proposed algorithms were categorized as example-based approaches where a set of computer-

generated images were used to densely sample the space.
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FIGURE 2.16: Multistage Hierarchy Using MDGs proposed by Farouk (2015)

2.5.9 Multi-Dimensional Grids

Farouk et al. (2013) proposed algorithms using a multistage hierarchical strategy for handshape

recognition. The proposed multistage hierarchy analyses new patterns by projecting them into

the different levels of a pyramid. This pyramid consists of different principal component

spaces. Image blurring was used to reduce the non-linearity in manifolds generated by a

set of example images. Flattening the space helps in classifying different handshapes more

accurately.

The experimental results showed that the proposed algorithms are applicable for real time

applications with high accuracy measures. They can achieve frame rates of more than 10

frames per second and accuracy up to 98% in the test data Farouk (2015).

2.5.10 Coarse-to-fine Search

Coarse-to-fine search is an efficient algorithm suitable for implementation in single processor

systems. It uses a number of iterations to reduce the computing and storage requirements of the

standard procedure. In other words, this technique tries to divide a solution into parts instead
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of solve it at once. It finds a coarse solution at the first iteration and then uses that as a starting

point to find a finer solution at the next iteration - and so on.

Coarse-to-fine search was successfully applied in Han (2004) for a hand-based personal

authentication. They created a threshold to check if a testing sample passed or not, if not it has

to be rechecked by a fine-level verification phase.

In Farouk et al. (2009) coarse-to-fine search was used for handshape recognition in the

supervised and unsupervised multidimensional grid algorithms. Basically, a pyramid structure

with different stages was used as a coarse-to-fine search technique to provide an estimate of

the possible location of the target. The search starts at the top level of the pyramid with a

reduced resolution version of the images. The search proceeds through the pyramid levels.

2.5.11 Support Vector Machines

Support vector machines (SVM) are a classification technique that uses machine learning the-

ory to maximise the accuracy of prediction. SVMs use a kernel function that can be either

linear or non-linear. SVMs are used in this thesis in Chapter 5.

SVM classifiers have been used in a significant number of works in gesture recognition.

Biswas and Basu (2011) and Pedersoli et al. (2014) have applied SVM to recognise shapes

using the Kinect sensor. Marin et al. (2014) used this technique for images obtained from

both Kinect and Leap Motion. Malawski (2014) applied SVM for gestures recognition with

ToF camera for 3D medical data analysis. Chan et al. (2015) used SVM for PCANet (Section

2.5.18). Wang et al. (2016) applied SVM to detect human falls in surveillance videos. Wang

et al. (2015) utilised deep learning and SVM to recognize traffic lights. Roberto and Pizzolato

(2013) and De Souza et al. (2013) have used SVM for gesture recognition of Brazilian Sign

Language (LIBRAS).
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2.5.12 Neural Network

It is known that human brains have hundreds of billions of interconnected neurons in order

to process information. Based on this, researchers are trying to demonstrate a similar kind of

intelligence on machines. For example in machine translation and pattern recognition Wang

(2003) and Goodfellow et al. (2016).

A neural network (NN), or artificial neural network (ANN), is composed of an input

layer of artificial neurons, one or more hidden layers of neurons, and finally a layer of output

neurons. Figure 2.17 shows one common scheme for one hidden layer, each connection has a

weight. The output, hi of neuron i in the hidden layer is computed by the Equation 2.4

FIGURE 2.17: Example of neural network architecture with one hidden layer

hi = σ

 N

∑
j=1

Vi jx j +T hid
i

 , (2.4)

where σ is the activation function, N is the number of input neurons, Vi j the weights, x j

the input neurons and T hid
i the threshold terms of the hidden neurons. The activation function

introduces non-linearity into the neural network. The sigmoid function is one example of the

activation function, Equation 2.5, Wang (2003).
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Figure 2.18 shows an example of sigmoid activation function Networks (2013)

FIGURE 2.18: Illustration of a sigmoid activation function

σ(u) =
1

1+ exp(−u)
. (2.5)

A neural network built in this way may approximate any computable function to an ar-

bitrary precision. The input neurons are independent variables. However, the output ones are

dependent variables of the function that is being approximated by the network. Inputs and

outputs of the neural network can have multiple output units, Boolean (1 or 0), or symbols e.g.

colours Wang (2003).

Farouk (2015) has proposed, in his fourth algorithm, a multistage hierarchical technique

for handshape recognition using ANN. A pyramid using a set of neural networks at the dif-

ferent levels was created, where the network was fed with eigenspaces instead of raw images.

The pyramid shown in Figure 2.19 has three stages. It organises different eigenspaces in a

supervised way according to the pose and the shape of the hand. The first stage is used to

map a new image to an estimated rotation angle of the arm. The second stage, is where the

classification of the incoming shape happens. The third and last stage, the translation position

is estimated based on the nearest neighbour.
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FIGURE 2.19: ANN multistage hierarchy proposed by Farouk (2015)

Two hidden layers were used in Farouk (2015). The number of input neurons is equal to

the number of eigenvectors chosen to build the input eigenspace. This number of eigenvec-

tors was chosen by trial and error. Gaussian blur was applied over the images. The average

accuracy was 87.52%.

An artificial neural network was used in order to classify Australian Sign Language (Aus-

lan) shapes by Potter et al. (2013). A Leap Motion controller was used to obtain the hand-

shapes. Each symbol (shape) is trained before use and attempted recognition. The neural

network was able to assess a symbol and output with a range of certainty about a particular

sign between 0% and 100%. This network was trained by data obtained from the Leap Motion

API. The network inputs training data which has no limits or expectations on the data format.

2.5.13 Multilayer Perceptron

Multilayer perceptron (MLP) is a class of feedforward artificial neural network. An MLP con-

sists of layers of nodes. Each node is a neuron that uses a non-linear activation function. The

output of a neuron is scaled by the connecting weight and fed forward to be an input to the
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neuron in the next layer. MLP utilises a supervised learning technique known as backpropa-

gation for training. Its multiple layers and non-linear activation distinguish MLP from a linear

perceptron, what makes MLP able to classify data that is not linear Licciardi et al. (2014).

The most common activation functions are: identity useful to implement linear bottleneck

f (x) = x; logistic sigmoid function f (x) = 1/(1+ exp(−x)); tanh hyperbolic tan function

f (x) = tanh(x) and relu the rectified linear unit function f (x) = max(0,x). MLP can learn

through training, it uses a set of training data that consists of a series of input and output

vectors Gardner and Dorling (1998).

Backpropagation is an algorithm where the weights in the network are initially set to

small random values and then the algorithm calculates the local gradient of the error surface

and changes the weights in the direction of steepest local gradient Gardner and Dorling (1998).

2.5.14 Deep Learning

Deep neural networks (DNNs) have received significant attention recently. DNNs are a set of

techniques that learn features from data of interest. They offer more advanced techniques for

extracting features, than traditional techniques such as PCA. The concept of deep learning is

to discover multiple levels of representation, with the hope that higher-level features represent

more abstract semantics of the data LeCun et al. (2015). This representation tends to provide

more invariance to intra-class variability Chan et al. (2015). Deep Networks are nowadays one

of the main research topics in shape recognition.

2.5.15 Convolutional Neural Network

Convolutional neural networks (CNNs) or ConvNet specialise in recognising patterns. They

are widely known for robustness to distortion and having minimal or no preprocessing. CNNs

are one kind of deep learning with multiple layers and feature maps created by convolving an

input image with a filter. CNN will be explained in detail in Section 5.2.1.2.
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Figure 2.20 shows the architecture used by Nagi et al. (2011). This scheme has 1 input

layer, 3 convolutional layers and 2 pooling layers (6 hidden layers all together) and 20 feature

maps.

Nagi et al. (2011) proposed combining convolution and max pooling (MPCNN) for clas-

sification of human hand gestures by mobile robots. Coloured gloves have been used for colour

segmentation. In total 6 gestures are classified with 96% accuracy.

FIGURE 2.20: CNN architecture with different convolutional layers (c), max pooling layers
(MP), fully-connected and output layers; proposed by Nagi et al. (2011)

One of the first successful applications of Convolutional Networks was LeNet. LeNet has

had different improvements over time, starting from LeNet 1, LeNet 4, LeNet 5 and Boosted

LeNet 4. The LeNet architecture was used to read handwritten zip code digits LeCun et al.

(1995). At that time, days were needed to train a dataset.

After the success of LeNet, AlexNet was introduced into the field. A large convolutional

neural network was proposed to classify the 1.2 million high-resolution images in the Ima-

geNet dataset. ImageNet is composed of over 15 million high-resolution images belonging to

an average of 22 thousand categories Krizhevsky et al. (2012). Images were not preprocessed

apart from resizing to keep all the images the same size.

More recently Szegedy et al. (2014) proposed a new improvement for CNN and won the

ImageNet challenge in 2014. The utilisation of the computing resources inside the network has

been improved. The depth and width of the network was increased and the computational effort

was kept. The decisions were based on the Hebbian principle (neurons that fire together, wire

together). The 22 layers deep network (or 27 layers including pooling) was called GoogLeNet.
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The main contribution of Szegedy et al. (2014) was the development of an Inception

Module that dramatically reduced the number of parameters in the network (4M, compared to

AlexNet with 60M). In addition, it uses average pooling instead of the fully connected layers

at the end of the CNN, eliminating a large amount of parameters that seem less relevant.

2.5.16 Recurrent Neural Network

Recurrent Neural Networks (RNN) are characterised by having feedback connections between

the layers and within the layer. This feedback makes the network have local memory character-

istics that store activity patterns. These patterns are presented to the network more than once.

Thus, at any time, the network output is calculated by propagating the input pattern through

the network, and the recurrent activations are propagated back to the extra layer, known as the

context layer, that copies the activation pattern from the output on the last part Maraqa and

Abu-Zaiter (2008)

LeCun et al. (2015) states that RNNs are often more appropriate for tasks that involve

sequential inputs, such as language and speech recognition.

2.5.17 Long Short Term Memory

Long Short Term Memory (LSTM) is based on the idea of facilitating the storage of the infor-

mation for a longer time with an explicit memory. This seems to be complicated in traditional

RNNs. LSTM networks use special hidden units, with the goal of remembering inputs for a

longer time LeCun et al. (2015).

It has been proved that LSTM is more efficient than the conventional RNN, mainly be-

cause the LSTM have a greater quantity of layers than RNN for each time step LeCun et al.

(2015).
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2.5.18 PCA Network

PCANet, a Deep Neural Network for PCA, was proposed by Chan et al. (2015). This technique

consists of the use of PCA for feature extraction in 2 stages and a hashing and histogram for

indexing and pooling. It has been applied to face recognition obtaining 99.58% accuracy on

the Extended Yale B dataset.

The architecture of the network is shown in Figure 2.21. PCANet is composed of three

stages: the first two stages are PCA and the last stage is hashing and histogram.

In every layer of the first step, the input images are convolved with a filter as in CNN.

The most significant difference between CNN and PCANet is how the filter is trained. PCANet

does not use backpropagation for training and it is replaced with a solved optimization problem

Huang and Yuan (2015) The non-linear layer is the most straightforward quantization which

is considered as hashing.

Assume that there are N training images of size m× n. In each image, a patch of size

k1×k2 is taken around each pixel. Thus, all the patches are collected, vectorised and combined

into a matrix of k1× k2 rows and (m− k1 +1)× (n− k2 +1) columns.

For the ith image Ii, a matrix Xi and the patch mean from each patch is obtained:

X =
[
X1,X2, . . . ,XN

]
∈ Rk1k2×Nc

where c denoting the number of rows of Xi. Thus, the eigenvectors of XXT are obtained

and those corresponding to the L1 largest eigenvalues are saved as the PCA filters, expressed

as:

W 1
l = ql

(
XXT

)
∈ Rk1k2 , l = 1,2, . . . ,L1

The principal eigenvectors capture the highest variation of the training patches.

At the second stage, a similar process to stage 1 is implemented. The input images Il
i of

stage 2 are:
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Il
i = Ii ∗W 1

l , i = 1,2, . . . ,N

the boundary of Ii is zero-padded and Il
i have the same size of Ii. All the patches of Il

i are

collected and the patch mean from each patch is obtained:

Y l =
[
Y l

1 ,Y
l
2 , . . . ,Y

l
N

]
∈ Rk1k2×Nc, l = 1,2, . . .L1

and the Y l is combined together as a matrix:

Y =
[
Y 1,Y 2, . . . ,Y L1

]
∈ Rk1k2×L1Nc

Thus, the eigenvectors of YY T are obtained, storing the corresponding eigenvectors to the

L2 largest eigenvalues as the PCA filters of the second stage

W 2
` = q`

(
YY T

)
∈ Rk1k2 , `= 1,2, . . . ,L2

Finally, the last step, the pooling feature is obtained by the block-wise histograms of

binary codes Chan et al. (2015), Wang et al. (2016):

T l
i =

L2

∑
`=1

2`−1H
(

Il
i ∗W 2

`

)
, l = 1,2, . . .L1

The function H binarizes these outputs. For each of the L1 images T l
i , l = 1,2,3, . . . ,L1

partitioned into B blocks, that size is k1k2×B, and compute the 2L2 ×B histogram matrix

in each block ranging from [0,2L2 − 1], followed by vectorising the matrix into a row vector

Bhist(T l
i ). Finally, concatenate the Bhist(T l

i ) of T l
i , l = 1,2,3, . . . ,L1 as the feature

fi =

[
Bhist

(
T 1

i

)
, . . . ,Bhist

(
T L1

i

)]T

∈ R(2L2)L1B

The model parameters of PCANet include the patch size k1,k2, the filters number L1,L2,

the number of stages and the block size for histograms.

2.5.19 Non-linear Manifold Learning Techniques

In this section non-linear manifold techniques are described. Manifolds created from hand ges-

ture images are not linear, thus a non-linear technique to reduce the dimensionality is needed.
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FIGURE 2.21: Architecture of PCANet with 2 stages of PCA instead of convolution layers,
proposed by Chan et al. (2015)

2.5.19.1 Non-linear Principal Component Analysis

Non-linear Principal Component Analysis (NLPCA) provides a mapping between low and

high dimensional spaces and it is a generalisation of standard Principal Component Analysis

that turns PCA into a non-linear technique for dimensionality reduction. NLPCA extracts

the principal components as curves instead of straight lines. It helps in visualising the non-

linear data as an aspect of data analysis by mapping the data from the original space to a

lower dimensional space using an artificial neural network Barth et al. (2008) and Scholz et al.

(2008).

NLPCA extends PCA by replacing the linear encoder and decoder by non-linear func-

tions, e.g. neural networks. It optimises NN in an autoencoding setup. The goal of the autoen-

coder is to learn a representation for a set of data. The embedded manifold appears just im-

plicitly as the decoded image of the input space Barth et al. (2008). In addition, auto-encoding

is known as autoassociative, replicator network, bottleneck or sandglass type network Scholz

et al. (2008).

The encoder extracts features from the images, and the decoder does the opposite, i.e.

reconstruct the images from the features Gutmann et al. (2008).

The auto-encoding network performs an identity mapping. The output x̂ is equal to the

input x with high accuracy. It is achieved by minimising the squared reconstruction error

shown in Equation 2.6 Scholz et al. (2008).
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E =
1
2

∣∣|x̂− x
∣∣ |2 (2.6)

This is important because there is a bottleneck in the middle: a layer with fewer units than

in the input or output layer. Therefore, the data have to be projected into a lower dimensional

representation Z. The network is composed by two parts: the first, represents the extraction

function, and the second represents the inverse function. The hidden layer in each part enables

the network to fulfil non-linear mapping functions. These hidden layers allow PCA to perform

non-linearity Scholz et al. (2008).

FIGURE 2.22: Auto-encoding Neural Network example

Figure 2.22 shows that the output x̂ and the input x are equal. The architecture shown is

3-4-1-4-3 where a data of three-dimensions are compressed to a component z in the middle.

The second and fourth layers (four non-linear units) enable the network to fulfil non-linear

mappings Scholz et al. (2008).

Licciardi et al. (2014) have applied NLPCA to detect and classify Synthetic Aperture

Radar (SAR) images. They compared NLPCA with other techiniques and NLPCA provides

the best accuracy. The accuracy of recognising water, buildings and vegetation from satellite

images was minimum 86.82% and maximmum 91.67% for different datasets.

2.5.19.2 Kernel Principal Component Analysis

Kernel Principal Component Analysis (Kernel PCA or KPCA) is a non-linear extension of

PCA in the sense that it can carry out PCA in feature spaces of arbitrary large dimension.

KPCA is used in this thesis and it will be discussed in Chapter 5.
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Algorithm 1 Laplacian Eigenmaps

Precondition: Data in high dimensionality

1: constructing the graph, either by choosing points within a radius or computing the k near-
est neighbour

2: choosing the weights of the edges, either by heat kernel or by simple-minded
3: eigenmaps: compute the eigenvalues and eigenvector for the generalised problem

Licciardi et al. (2015) compared NLPCA and KPCA among other techniques for forecast

in ground horizontal irradiance (GHI) from satellite images. As expected, both non-linear

methods (NLPCA and KPCA) provided similar results. They perform better than approaches

such as independent component analysis (ICA) and the classic PCA. The accuracy metric used

was mean square error (MSE) format, and NLPCA and KPCA showed the best results for the

years 2011 and 2012.

2.5.19.3 Laplacian Eigenmaps

Laplacian Eigenmaps are a local approach for non-linear reduction of dimensionality. This

approach tries to preserve the local geometry of the data by approximating each point on the

manifold with a linear combination of its neighbours, and using the same weights to compute

a low-dimensional manifold Saxena and Gupta (2004).

Given k points t1, . . . , tk in n-dimensional space, Laplacian Eigenmaps starts by construct-

ing a weighted graph with k nodes and a set of edges connecting neighbouring points. The first

step is constructing the graph, where the neighbourhood map can be constructed by finding the

k nearest neighbours or by picking points within a fixed radius. The second step is to choose

the weights, either by heat kernel Wi j = e−
‖x1−x j‖2

t or by simple-minded Wi j = 1 if and only if

vertices i and j are connected by an edge. The final step is to build the eigenmap by computing

the eigenvalues and eigenvectors Ly = λDy, where D is the diagonal weight matrix sums of W ,

D ji = ∑ j Wji. L = D−W is the Laplacian matrix Belkin and Niyogi (2001).

Algorithm 1 shows the pseudo-code proposed by Belkin and Niyogi (2001).
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Figure 2.23 shows a comparison between classical PCA (right) and Laplacian Eigenmaps

(middle) for vertical and horizontal bar images(left). Dots (blue) correspond to vertical bars

and + (red) signs correspond to horizontal bars.

FIGURE 2.23: Comparison between PCA and Laplacian Eigenmaps for vertical and horizon-
tal bar images

Wu et al. (2013) applied Laplacian Eigenmaps for visual object recognition. The accuracy

for recognising objects like aeroplanes, bicycles, birds, boats, etc. was 64.1%, slightly above

the other techniques compared for the benchmark datasets.

2.5.19.4 Locally Linear Embedding

Such as in Laplacian Eigenmaps, Locally Linear Embedding (LLE) is a local approach and

is applied to non-linear dimensionality reduction. It maps the high-dimensional data into a

single global coordinate system in a way that preserves the relationships. Algorithm 2 shows

the steps for compute this reduction Teng et al. (2005).

LLE consists of finding a set of nearest neighbours of each point. Thus, computes a set

of weights for each point that best describe the point as a linear combination of its neighbours.

Finally, it uses an eigenvector-based optimisation technique to find the low-dimensional em-

bedding of points, such that each point is still described with the same linear combination of

its neighbours Roweis and Saul (2001).

The input data has D dimensions and the goal of LLE is reducing the dimensionality to d.

The Wi j weights are the same that reconstructs the data points i in the input D. This data point is
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Algorithm 2 LLE algorithm

Precondition: Data in high dimensionality

1: compute the neighbours of each data point
−→
Xi

2: compute the weights Wi j that best reconstruct each data point
−→
Xi from its neighbours,

minimising the cost by constrained linear fits
3: compute the vectors

−→
Yi , best reconstructed by the weights Wi j minimising the quadratic

form by its bottom nonzero eigenvectors

used to reconstruct the same point in the lower d dimensional space. Finally, a neighbourhood

preserving map is created. Each point Xi in the D dimensional space is mapped onto a point Yi

in the d dimensional space, see Algorithm 2 Roweis and Saul (2001).

Figure 2.24 shows an examples of manifolds in 3-dimensions being reduced to 2-dimensions.

The black mark in B and C show the neighbourhood of a single point Roweis and Saul (2001).

FIGURE 2.24: Example of swiss roll manifold with dimensionality redu by LLE

Elgammal and Lee (2007) have applied LLE for synthesis, pose recovery, reconstruction

and tracking moving objects. The accuracy measured for pose recovery was over 5 people

dataset, and it was shown 93.05% accuracy for a single frame and 99.63% when five frames

were used for each person.

Teng et al. (2005) used LLE to extract features and create a hand gesture recognition for

Chinese Sign Language. The system used only a regular webcam and was able to recognise

30 gestures with 92.2% accuracy.
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Algorithm 3 Isomap algorithm

Precondition: Data in high dimensionality

1: determine the neighbours of each point
2: construct a neighbourhood graph
3: compute shortest path between two nodes
4: compute lower-dimensional embedding
5: multidimensional scaling

2.5.19.5 Isometric Feature Mapping

Isometric feature mapping (Isomap) is a global method for non-linear dimensionality reduc-

tion. It is basically an extension of MDS that creates a pairwise geodesic distance matrix DG

from the input data samples
−→
Xi . First a neighbourhood graph G is determined. Thus the short-

est paths in G are computed for all pairs of data points. In other words, Isomap attempts to

preserve the global relations, mapping close points on the manifold to close points, and far

points to far points in the low-dimensional space. It is predicted to find an improved represen-

tation of data’s global structure Raytchev et al. (2004).

Different algorithms can be applied to compute the shortest path, such as Floyd–Warshall’s

algorithm and Dijkstra’s algorithm. k-Nearest Neighbour is the most common used for deter-

mining the neighbour of each point. Algorithm 3 shows an Isomap algorithm proposed in

Saxena and Gupta (2004).

Figure 2.25 shows a dimensionality reduction by Isomap algorithm for a fishbowl dataset

and for a manifold of face images. k refers to the number of nearest neighbours as in k-NN, in

this example it was set to 15 Silva and Tenenbaum (2003).

Raytchev et al. (2004) proposed to apply Isomap for 3D view representation and head

pose estimation. They compared the average angle error of three mehtods: Linear subspace,

Locality Preserving Projections (LPP) and Isomap. Considering only 8 dimensions Isomap

showed the lowest error rate.
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FIGURE 2.25: Example of dimensionality reduction for different manifolds by Isomap

2.5.19.6 Comparison between Non-linear Methods

Ham et al. (2004) states that Isomap, Laplacian eigenmaps and LLE are similar techniques.

All three approaches have common characteristic in the way that they first induce a local

neighbourhood structure on the data, and use this local structure to globally map the manifold

to a lower dimensional space. These are basically extensions of Kernel PCA, with different

kernel matrices. The Dijkstra shortest path distance between the points is used in the kernel

matrix of Isomap approach; commute times for Laplacian eigenmaps kernel; and a specially

constructed graph operator for LLE kernel.

Elgammal and Lee (2007) compared Isomap and LLE and obtained qualitatively similar

results in the manifold embedding.

Figure 2.26 shows a comparison between Isomap (B), Laplacian eigenmaps (C) and LLE

(D) for a set of 600 points (A) sampled from the S-curve manifold. For this example k was set

to 6 for the number of nearest neighbours Ham et al. (2004).

2.5.20 Interpolation

Interpolation is a technique that aims to construct new data points within the range of a set

of known points. There are different methodos for computing an interpolation. The most

common are linear interpolation and spline interpolation. Linear interpolation uses a linear
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FIGURE 2.26: Comparison between Isomap, Laplacian Eigenmaps and LLE dimensionality
reduction

function for each interval, therefore it can only interpolate straight lines. Whereas, splines use

low-degree polynomials in each of the intervals (piece-wise polynomial) Johnson et al. (1993).

(a) Points in red are the original
point data

(b) The blue curve connecting them
is the interpolation

FIGURE 2.27: Illustration of interpolation in 3 dimensions

Figure 2.27 shows an interpolation in 3D using splines. In 2.27(a) red dots are the original

data and in 2.27(b) the blue curve is the interpolation. Interpolation is possible in any number

of dimensions. In D’Errico a Matlab function able to interpolate in any dimension and with

different methods has been launched.

In Elgammal and Lee (2007) radial basis function interpolation has been successfully

used for creating 3D body poses.
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2.6 Discussion of the Literature Review

In this chapter, the literature review and the related work were presented. Hand gesture recog-

nition has improved over the last few years. New technologies have been applied trying to

solve the challenges in the area. However, old theories are still relevant in the recognition

process.

Glove-based approaches seem not to have a high relevance nowadays. Wearing a glove

or any other device does not allow a smooth interaction with computers. However, it is still

on-going research. The advantage of wearing a glove with sensors is the accuracy and the

robustness to illumination changes.

Vision-based techniques are more intuitive for the user. It allows gesture recognition from

images and from videos without the need of a device attached to the arm or hand.

Some of a large number of techniques for vision-based hand gestures recognition have

been explained in this literature review. Most of the vision-based approaches use a depth

sensor, or infrared, or even more than one camera. There are fewer researches in recognition

using only one standard camera.

For instance Farouk (2015) proposed 4 algorithms for handshape recognition applied to

ISL. However, all the algorithms are based on similar ideas and over a small dataset. Most

of the work in Farouk (2015) is done with computer-generated images of 20 handshapes and

in all algorithms only PCA is used with different classification techniques. Farouk (2015)

did not used any kind of interpolation or deep classifier nor any non-linear manifold learning

algorithm.

There is a strong belief that non-linear manifold learning algorithms provide improved

results for handshape recognition. In addition, deep learning is trending nowadays in the CV

field. The efficacy of this method has been proved in a large number of research articles.

However, it is still computationally expensive. In contrast PCA is computationally cheaper.

The question is which is the most appropriate technique for ISL handshape recognition?

55



Chapter 2. Literature Review

The purpose of this thesis is to carry out research on hand gesture recognition using only

one regular camera. Thus, in future it could potentially be used for any kind of image or video,

e.g. taken from the Internet or a recording made by any mobile device, such as smartphones.

Finally, a study and application of PCA, non-linear PCA, deep learning and other techniques

is shown.

56



Chapter 3

Irish Sign Language Dataset

This chapter presents a new dataset for Irish Sign Language (ISL) followed by a frame redun-

dancy filtering.

3.1 Introduction

In this chapter a new dataset for Irish Sign Language (ISL) is introduced. The dataset contains

real hand images for the 23 most common ISL handshapes. Compared to previous works on

ISL, the proposed dataset is larger and contains all handshapes. In addition, a filter is proposed

in order to avoid redundancy and discard frames with high similarity.

Earlier works in this area have used rather smaller datasets. For instance, Farouk (2015)

proposed two ISL datasets. The first dataset is composed of computer-generated images, pro-

duced by the Poser software by SmithMicro; the total number of images is 920. The second

dataset is composed of real hands, and has a total of 1,620 images. Both datasets represent

only 20 ISL handshapes (excluding ’M’, ’N’ and ’Y and the dynamic shapes ’J’, ’X’ and ’Z’),

see Figure 3.1.

The number of real hand images of the dataset proposed in this thesis has been increased

from 1,620 to 52,628 with 6 different human subjects. Three shapes were added to the 20 used
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by Farouk. Finally, an iterative method is designed in order to select the images that keep the

dataset diverse by removing redundant frames.

(a) Computer generated (b) Real hands

FIGURE 3.1: Datasets for ISL created by Farouk (2015) with 20 static gestures

Apart from Irish Sign Language there are other datasets available for sign language recog-

nition. Quesada et al. (2017) state that there are more than 137 different sign languages around

the world. However, this thesis will focus only on ISL.

Zheng et al. (2017) have presented some datasets for Sign Language recognition. Some

examples of datasets available are:

• American Sign Language Lexicon Video Dataset (ASLLVD) with more than 3,000 signs,

from 1 to 6 signers and around 9,800 tokens Neidle et al. (2012)

• MSR Gesture 3D dataset with 12 dynamic shapes for ASL, 10 signers, recorded 2 or 3

times each Wang et al. (2012)

• Auslan Signbank with about 7,797 sign words and 26 finger spellings, each sign is re-

peated 5 times Signbank (2017)

• LTI-Gesture Database was created by the Chair of Technical Computer Science at the

RWTH Aachen, containing 14 dynamic gestures in videos Ney et al. (2005)

• RWTH German Fingerspelling Database with 35 gestures representing the letters of the

alphabet, German umlauts, and the numbers from one to five, 20 different signers and 2

times each, totalizing 1160 images Dreuw et al. (2006)
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• DEVISIGN (Chinese) with 26 letters and 10 numbers performed by 8 different subjects,

4 subjects and 2 times each with a single camera Chai et al. (2014)

• Indian Sign Language dataset, designed for Leap Motion and Kinect sensors, contains

about 7,500 sign gestures, being 50 dynamic sign gestures, done by 10 signers, repeated

up to 15 times each, consists of both single and double hand dynamic sign gestures (28

words single hand and 22 were performed using both hands) Kumar et al. (2017)

Ronchetti et al. (2016) proposed a dataset for handshape recognition of Argentinian Sign

Language (LSA) called LSA16. The LSA16 handshape dataset is freely available. It consists

of 16 different handshapes of the most common in the LSA, with n 10 subject performing 5

different poses of each handshape, with a total of 800 frames. The interpreters wore coloured

gloves to facilitate the segmentation. Quiroga et al. (2017) compared different CNN architec-

tures for the task of handshape recognition for LSA.

Sections 3.2.1 and 5.2.1.2 were developed in collaboration with Dr. Houssem Chatbri,

who is the second author in the paper titled: ”Irish Sign Language Recognition Using Prin-

cipal Component Analysis and Convolutional Neural Networks”, where this work has been

published Oliveira et al. (2017a).

3.2 The Irish Sign Language Handshape (ISL-HS) Dataset

The ISL-HS dataset contains real hand images, unlike synthetic images used in previous works.

ISL-HS is composed of 23 handshapes combined with different motions.

To build the dataset short videos were recorded from six people (3 males and 3 females)

performing the finger spelling ISL handshapes. Each shape was recorded 3 times in front of a

dark background. Videos recorded only the arm and the hand of the subject. The arm is useful

to help to detect the rotation angle. The dark background was chosen to avoid the need for

segmentation, since that is not the focus of this thesis.
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Each of the 23 handshapes was performed by moving the arm in an arc from the vertical

to the horizontal position. This was performed to simulate rotated handshapes that can occur

in real word conversations. For the 3 motion gestures ’J’, ’X’ and ’Z’ there was no rotation,

only the motion indicated in Figure 3.2. All the handshapes in the dataset, apart from the 3

with motion, are rotated in a plane.

The videos were converted into frames. Frames were converted to grayscale and the

background was removed from the frame using a pixel-value threshold. This produced frames

containing only the arm and the hand.

The number of frames for each video depends on the time taken by the human subject to

perform the gesture. Videos were recorded at 30 frames per second (fps) and a resolution of

640× 480 pixels. The device used to record the videos was an Apple iPhone 7. The videos

were saved with .mov extensions. The video format is RGB24.

The illumination sources were a combination of natural and artificial. Therefore, the

important point is that the effect of the illumination (shades) on the appearance of the arm

changes according to the position of the arm. Videos were recorded in a laboratory for post-

graduate computing students. Illumination was different for each person, because they were

recorded at different times of the day and on different days.

In total 468 videos were recorded. From these videos a total of 58,114 frames were

obtained, consisting of 52,688 frames for the rotated shapes and 5,426 for the ’J’, ’X’ and

’Z’. Figure 3.2 shows cropped images of the ISL-HS dataset, and Figure 3.3 shows the class

distribution across the image dataset. The variation observed in Figure 3.3 is due to the speed

variation among the subjects when performing the ISL handshapes and rotating them. Note

that the letter ’X’ has the lowest number of frames because this is a dynamic feature with a

short motion.

The dataset was released online1 and provides both videos and images.

1https://github.com/marlondcu/ISL
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FIGURE 3.2: Cropped images from the new Irish Sign Language handshapes alphabet

FIGURE 3.3: Ocurrence of the different handshapes in the new ISL dataset

3.2.1 Redundant Frame Filtering

Since all frames were extracted from the videos, numerous frames are similar due to the speed

variation of the subjects. For this reason, a method to filter redundant frames was designed

(i.e. frames with insignificant difference). The method works as follows: Each image Iu of
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the original dataset is represented with a compact feature vector
−→
Vu (Section 3.2.1.1). Then, a

diversity score is introduced to express image heterogeneity, and images are iteratively selected

to optimise the diversity score (Section 3.2.1.2). This method of selecting frames was inspired

by Geiger et al. (2012).

3.2.1.1 Feature Extraction

From each image Iu of the original dataset, a feature vector
−→
Vu is extracted by splitting the

image into a K×K grid and calculating the number of foreground pixels in each cell of the

grid after edge detection with a 3×3 Laplacian convolutional kernel Nahar and Ali (2014) as

following: (Figure 3.4):

φ =


−1 −1 −1

−1 +8 −1

−1 −1 −1

 (3.1)

Therefore, the feature vector
−→
Vu for an image Iu is a 2D histogram and it is expressed as

follows:
−→
Vu = (Vi, j),0≤ i, j ≤ K (3.2)

where Vi, j denotes the number of foreground pixels in bin (i, j) divided by the total number of

foreground points.

Thus, computing the dissimilarity between two images Iu and Iv is done by accumulating

the differences between the histogram bins of their feature vectors
−→
Vu and

−→
Vv as follows:

d(
−→
V ,
−→
V A

i ) =
1

K2

K−1

∑
i=0

K−1

∑
j=0

(V u
i, j−V v

i, j)
2 (3.3)

where d is the distance between two feature vectors. The dissimilarities between the

histogram bins is amplified by adding the square distances between every two corresponding
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histogram bins, V u
i, j and V v

i, j. Therefore, small differences in the image details are penalised.

Other distance measures could be used as well (e.g. Earth Mover distance Shu and Wu (2011)).

However, they might be slower to compute, which is important in this step (Section 3.2.1.2).

(a) (b)

FIGURE 3.4: (a) a sample image from the ISL-HS dataset, and (b) the feature extraction grid

3.2.1.2 Iterative Image Selection using the Diversity Score

After extracting a feature vector
−→
Vu from each image Iu in the original dataset, an iterative

selection process is performed to select images based on a diversity score that is defined as

follows:

γ(I,A) =
1

NA

NA−1

∑
i=0

d(
−→
V ,
−→
V A

i ) (3.4)

where A is an image set that contains NA images (originally NA = 0), I is an image from

the original dataset and that not belong to A,
−→
V and

−→
V A

i are the feature vectors of I and IA
i

respectively, γ(I,A) is the diversity score of one image I to images in the set A.

The iterative process is illustrated in Algorithm 4. First, an image is selected randomly

from the original image dataset DBorig and put into the final dataset A. Thus, an iterative

process selects the image from Dorig for all images N that has the largest diversity score (i.e.

the image that is the most different to images of A), where diversity score is calculated with
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Algorithm 4 Diversity-based image selection

Precondition: Original dataset DBorig : containing all N images

1: function DIVERSITYBASEDSELECTION(DBAll)
2: A: final dataset, initially empty
3: I : one frame selected randomly from DBAll
4: A← {I}
5: for i← 1 to N do
6: kmax ← argmax

0≤k≤|DBorig|−1
γ(Ik,A)

7: I ← Ikmax

8: A← {I}
9: Remove I from DBAll

10: end for
11: end function

Equation 3.4. When this process finishes, The curve of image diversity score at each selected

image is shown in Figure 3.5.

In order to perform this process in a reasonable time, it was tweaked by applying the

iterative image selection from a subset of Dorig with a limited size equal to 100 images selected

randomly, instead of the whole Dorig. During the process, it was observed that this does not

lead to a selection bias. However, it makes the process achievable in a reasonable time.

After plotting the curve of Figure 3.5 which shows the plot of the curve of image diversity

score at each selected image, the first 50,000 images are selected (i.e. roughly just before the

sharp decrease in diversity score). Figure 3.6 shows the class distribution in this dataset. The

dataset is available online as well 2.

Table 3.1 shows the distribution of number of frames by person.

3.2.2 Dense Dataset

The dense dataset consists of the 50,000 frames after filtering and contains images for the 23

most common static handshapes for ISL. This dataset is taken as the final dataset used for all

experiments in Chapter 5.

2https://github.com/marlondcu/ISL 50k
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TABLE 3.1: Frame distribution (occurrence) per person

Person No of frames

1 7,958
2 8,284
3 8,530
4 8,180
5 9,134
6 7,914

FIGURE 3.5: The curve of image diversity score, note the steep descent after 50,000 frrames

3.2.2.1 Variations of the Dataset

Two sets of testing and training dataset are proposed. The training Ntrain and testing Ntest

datasets contain 25,000 images each.

The first dataset is created by iterating through the images and assigning every image to

either the training or the testing set in an alternating manner, and it is called DBi; in this dataset

all frames labels are sorted by person, shot and frame number. Then, in a sequential way the

first frame is selected as training, the second frame as testing, the third frame as testing and so

on.

The second set is created by random selection algorithm and it is called DBr. The random

selection algorithm is used to avoid overfitting Scikit. It is common practice when performing

a supervised machine learning experiment to hold out part of the available data as a test set.

The scikit− learn python code is used to create a random split into training and testing.
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FIGURE 3.6: Rate of occurrence by shape, after filtering (50,000 frames)

Each image in the dataset has 640×480 pixels originally. However, in order to manipulate

them in a CPU all images were resized to 160×120 pixels.

3.2.2.2 Blurred Images Dataset

Images were blurred with two-dimensional Gaussian blurring in order to test how the classi-

fiers behave on blurred images. This was motivated by earlier results by Farouk (2015), which

showed that such image filtering is beneficial for PCA accuracy. Therefore, it will be shown

how other approaches respond over blurred images. In this stage, a kernel of different sizes

were used and the standard deviation is computed according to σ = 0.3 ∗ ((ksize− 1) ∗ 0.5−

1)+ 0.8. Kernel sizes were tested as ksize = 5, 15 and 25. These datasets are called DBb.

Figure 3.7 shows a non-blurred image followed by the different kernel sizes used.

3.2.2.3 Different Persons Dataset

Finally, the last variation in the dataset is removing persons from the training set and using

them in the test stage. As the full dataset is composed by 6 persons, three possibilities were

tested. The first was removing one person out of the training set then using five to train and

66



Chapter 3. Irish Sign Language Dataset

(a) Non-blurred image (b) Blurred with Kernel (5×5)

(c) Blurred with Kernel (15×15) (d) Blurred with Kernel (25×25)

FIGURE 3.7: Images of shape A, non-blurred and blurred with Gaussian filters of different
kernel sizes

the test stage was with only one person. For this specific case the training was done with every

third image, because of memory availability and it is called DB1. The second was removing

two persons out of the training, then using 4 to train and 2 to test, this dataset is called DB2.

The third dataset was removing 3 persons out of the training using then 3 to train and 3 to

test, this dataset is called DB3. This leads to different numbers of images for Ntrain and Ntest ,

because the number of frames depends on each person. Section 5.3.4 will show the results for

these experiments and the number of Ntrain and Ntest for each case.

3.2.3 Sparse Dataset

The sparse dataset has certain translations and rotations removed and so can be considered a

sparse dataset. The sparse dataset is used in all experiments in Chapter 4.
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TABLE 3.2: Gaussian filter blurring levels with different kernel sizes

Blur level Kernel size Standard deviation
1 [24,24] 40
2 [36,36] 60
3 [48,48] 80

The entire dataset was recorded from 6 persons and each video was recorded 3 times. The

following steps were taken to select the sparse dataset from the videos of the 23 static shapes

of ISL.

• Select one person (person 3)

• Select the longest video out of 3 for each shape

• Extract the frames

• Count how many frames and select the middle one

• Select 40 frames on each side of the middle and label them

• Convert to greyscale

Finally, a dataset with Nshape = 23 shapes and 80 frames for each shape is ready for

working with PCA. Note that these 80 images are only labeled in order to represent the motion

of the arm over a range of 90 degrees, the label does not represent the exact angle, it is only

illustrative. The middle image was labeled as 40 and the other ones decreasing or increasing,

depending on the side. Figure 3.8 shows cropped images of the dataset.

In order to make the algorithm more robust to translation, each image was translated plus

and minus 5 pixels horizontally and vertically, creating Ntra = 121 images for each handshape.

In total there are Nim images for each rotation angle, where Nim = Nshape×Ntra = 2,783.

In the sparse dataset only 3 levels of blurring were tested, because it was not the focus of

this work, given by the fact it was previously explored by Farouk (2015). The blurring level

are shown in Table 3.2.
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FIGURE 3.8: Cropped images from the Irish Sign Language static handshapes

Each image in the dataset has 480× 640 pixels. In this stage, each of these images are

resized to 80×60 pixels, in order to manipulate these images in a personal computer. Figure

3.9 shows the shape for the letter A in greyscale before and after blurring with different kernel

sizes.

3.2.4 Training Dataset

The training dataset consists of Nim images for each rotation angle. This dataset contains only

the images labelled in the range from 0 to 80 at intervals of d. Thus, 0 is considered the most

vertical image and 80 the most horizontal one. The size of the interval d was chosen to be 6, 8

or 10.

69



Chapter 3. Irish Sign Language Dataset

(a) Non-blurred image (b) Blurred image level 1

(c) Blurred image level 2 (d) Blurred image level 3

FIGURE 3.9: Images of shape A, non-blurred and blurred with different kernel sizes, see
Table 3.2

For d = 6 the selected images were labeled as 0, 6, 12, 18, 24, 30, 36, 42, 48, 54, 60, 66,

72 and 78, resulting in 14 different rotation angles Nang = 14. For d = 8, angles labels are 0,

8, 16, 24, 32, 40, 48, 56, 64, 72 and 80, providing Nang = 11. Finally, for d = 10 angles are

labeled as 0, 10, 20, 30, 40, 50, 60, 70 and 80 giving Nang = 9. The total of images in the

training dataset is given by Ntrain = Nim×Nang, then for d = 6 Ntrain = 2,783× 14 = 38,962,

for d = 8 Ntrain = 2,783× 11 = 30,613 and for the last d = 10 Ntrain = 2,783× 9 = 25,047.

Results for how d influences the accuracy will be shown in Section 4.3.

3.2.5 Testing Dataset

In the testing dataset images of 1 frame apart were selected. The test images are selected from

the original set in between two pairs of consecutive images from the training set. Therefore,

two testing datasets are constructed in order to avoid testing within all the intervals in the
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training dataset (for computational reasons). This means, when d = 6 images of the testing

dataset are selected from the range 7 to 11 and from the range 31 to 35; for d = 8 images are

labeled selected from the range 9 to 15 and from 41 to 47; for d = 10 images are selected from

the range 11 to 19 and from 51 to 59.

The number of images in the testing dataset depends on the value of d, such as Ntest =

d×Nim e.g. for d = 6 Ntest = 6× 2,783 = 16,698, d = 8 Ntest = 8× 2,783 = 22,264, and

finally for d = 10 Ntest = 10×2,783 = 27,830.

Figure 3.10 shows an illustration of the training and testing datasets according to different

values of d. The squares represent the training sets and the testing sets are in two of the

intervals between the squares.

(a) d = 6 (b) d = 8 (c) d = 10

FIGURE 3.10: Illustration of the training and testing datasets according to d, note each d
produces a different number of subsets; two subsets are used for testing for each d
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Chapter 4

PCA for Sign Language Recognition

In this chapter, experiments with Principal Component Analysis are presented. All the ex-

periments are made over a real hands dataset called a sparse dataset, presented in Chapter

3.

4.1 Introduction

As stated in Chapter 1 handshape recognition is a hard task because hands are deformable ob-

jects. Computer Vision (CV) plays an important role in helping Deaf people to communicate.

Sign language is basically a visual language. Thus, CV is exactly the computing area that can

help whose who need assistance to improve their lives.

As shown in Chapter 2 there are different approaches to address this problem. From this

high number of techniques a few of them have been chosen to be applied in this thesis to the

new Irish Sign Language dataset proposed in Chapter 3.

PCA is a widely used technique for dimensionality reduction and feature extraction Jol-

liffe (2014). It means that a huge amount of data can be represented by fewer dimensions of

these data. It makes tasks such as image processing easier, since images have a considerable

amount of data. In addition, PCA allows images to be projected into eigenspaces, creating
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manifolds. Manifolds can be manipulated, and interpolation can be used in order to create

artificial manifolds which might represent projections of data not present in the training set.

Experiments in this chapter are done over the sparse dataset, presented in Chapter 3,

Section 3.2.3.

In this chapter a deeper study on PCA applied to ISL is proposed. PCA is applied over

from the ISL sparse dataset and interpolation is proposed to make this dataset more robust to

missing translations and rotations. Two-stage PCA is used to facilitate the interpolation. At the

second stage, PCA is applied to subsets of the data from the first stage. This helps to reduce

the dimensionality further, the main motivation for using PCA in more than one stage is that

reducing the data dimensionality even more makes the interpolation a faster process since it is

made with fewer data.

If interpolation was tried in the first-stage PCA space, where each point represents a single

image, then interpolation would have to be done over 50,000 points. Whereas, if created a

second stage PCA space, where each point represents a different subset of points in the first-

stage space (e.g. in this case each subset represents all the possible 121 translations of single

handshape) then it dramatically reduce the number of points to be interpolated (in this case

down 431). This produces a great increase in efficiency. There is an additional increase due

to the fact that the second-stage PCA space tends to have even fewer dimensions than the

first-stage space. See Section 4.2.2 and Figure 4.4.

4.2 Principal Component Analysis

A common problem when working with any kind of images is the huge quantity of data.

For that reason it is important to have a technique to reduce its dimensionality. Images are

multidimensional data, where each image is represented by a point in an N-dimensional space

where N is the number of pixels in each image. To analyse and apply recognition over this

enormous amount of data is quite computationally expensive. Principal Component Analysis
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(PCA) can be used for feature extraction and dimensionality reduction Han and Liu (2014);

Jolliffe (2014). In addition, PCA is known as the discrete Karhunen–Loève transform (KLT).

Basically PCA replaces the original set of data with a reduced set of derived data. Fre-

quently it is possible to represent most of the variability in the original data with a smaller

number of variables.

Observe in Figure 4.1 an illustration of the PCA process in 2D. The mean values of the

variables are represented by µx and µy. u1 and u2 present the directions of the greatest variation

in the data. It is very clear that the most variance occurs in u1 direction, and the second in the

y2 direction. The same idea applies for any number of dimensions in space.

FIGURE 4.1: Illustration of an eigenspace showing the direction of 2 eigenvectors

The space created by PCA is called an eigenspace. Each dimension in an eigenspace

is called an eigenvector. Each eigenvector is referred to as a principal component. In the

case of the Figure 4.1 the eigenvectors are represented by u1 and u2. Every eigenvector is

associated with an eigenvalue, which is equal to the variance of the data along the eigenvector.

In Figure 4.1 the eigenvalues are represented by the widths squared of the ellipse along the

two eigenvectors. In addition, the eigenvectors are orthogonal to each other.

The number of these principal components is less than or equal to N. The eigenvectors

are ranked in order of the size of their eigenvalues which tend to zero at some point. This

is particularly the case if images are related to each other, as handshapes are. Figure 4.2

shows a typical plot of the eigenvalues in decreasing order. It is very important to know how
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many eigenvectors to use to obtain a satisfactory representation of the dataset. The goal is to

select a set of eigenvectors that gives a good representation of the data. This set consists of

those eigenvectors whose eigenvalues are significantly greater than zero. Eigenvectors whose

eigenvalues are close to zero carry none or minimal information about the data.

FIGURE 4.2: Eigenvalues in descending order, each eigenvalue represents one eigenvector,
the higher the eigenvalue the higher its significance

In the case where the data are images, the input consists of a set of those images. Each

image is vectorised and then concatenated to create a matrix of images where each row con-

tains one image. In Equation 4.1 x1 represents the first pixel of the image, x2 the second, until

xN which is the last pixel.

X = {x1 x2 x3 . . .xN} (4.1)

Thus, each X represents one image. Since there is more than one image, they can be put

all together creating a matrix such as Equation 4.2, where Nim is the number of images:

Z =



X1

X2

. . .

XNim


(4.2)
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Z is the input to PCA. After PCA has been computed, the output is the original data

represented with respect to the eigenvectors, which are found from the covariance matrix. The

covariance matrix is an N×N matrix computed according to Equation 4.3.

A = ZT Z (4.3)

After computing the covariance matrix, eigenvalues and eigenvectors can be calculated

according to Stockman and Shapiro (2001), Equation 4.4.

Auk = λkuk (4.4)

where uk is the kth eigenvector and λk is the kth eigenvalue. If A is an NxN matrix then

there will be N eigenvectors and N eigenvalues. Each vector uk will have N components. The

eigenvalues λk are scalars. U is a matrix in which each column is an eigenvector uk.

PCA has two separate functions - encoding and decoding - to transform the observed

input to the Principal Component (PC) space and then back to the observed space. PCA per-

forms linear computation over the input data Z to form a representation H that has a lower

dimensionality than the data. This stage is known as linear encoding. The action of transform-

ing a data H in the lower dimensional space back to the input space Z is known as decoding,

which results in a reconstruction Z Kambhatla and Leen (1997). H is a matrix where each row

represents the coordinates of a point in the PC space.

Equation 4.5 shows how to project data Z onto eigenvectors U , the encoding stage.

H = ZU (4.5)

The procedure represented in Equation 4.5 is equivalent to computing the scalar product

of the data with each of the eigenvectors, this process is known as encoding. Figure 4.3 shows

an example of data projected onto 3 dimensions (3 eigenvectors). Each eigenvector represents
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a different mode of variation in the set of data. This will be discussed in detail in this thesis in

the Section 4.2 and the Section 5.2.2.1.

FIGURE 4.3: Example of data projected into a PCA space in 3 dimensions

Equation 4.6 shows how to reconstruct data Z from the reduced dimensional data H and

eigenvectors U , at the decoding stage. In addition, this process is known as ”back projection”

and will be discussed again in Section 4.2.4.

Z = HUT (4.6)

PCA concepts can be used for handshape recognition, where the original data are images

of hands. Thus, the question is, given a new image, which shape from the original dataset is

the closest? The way this is done is by finding the distance between the new image and images

in original dataset. However, instead of being along the original axes, the distance is calculated

along the new axes derived from the PCA.

In this section experiments with Principal Component Analysis (PCA) are shown. PCA

is applied in more than one stage in order to make interpolation feasible.

Algorithm 5 creates a global eigenspace where each image is represented by a point;

Algorithm 6 creates a second eigenspace where each point represents a subset of points from

the first eigenspace; Algorithm 7 interpolates between points in the second eigenspace, in

order to represent missing rotation angles. This algorithm uses back projection in order to

recreate the manifolds of the missing angles in the first stage, it is an important step because
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Algorithm 5 PCA over training dataset

Precondition: Images in the training dataset

1: for each angle do
2: for each handshape do
3: for each translation do
4: [I1]← vectorise image of the training dataset and add to [I1] matrix
5: end for
6: end for
7: end for
8: S1 ← PCA over [I1]
9: P1 ← projection of [I1] into the eigenspace S1 with D1 eigenvectors

the classification is made in the first stage PCA and the second stage is used only in order

to interpolate data; Algorithm 8 creates a subspace for each rotation angle in the training

dataset; Algorithm 9 creates a subspace for each rotation angle and interpolates in between its

manifolds; Algorithm 10 creates a subspace for each rotation angle in the training dataset and

interpolates in between eigenvectors; finally Algorithm 11 interpolates between translations in

order to fill gaps due to missing ones.

4.2.1 First Stage PCA - Global Eigenspace

The first step in this approach is to combine all the images [I1] from the training dataset into

the same matrix and then compute PCA. Since each image has 60×80 pixels when vectorised

it becomes 4800 pixels in a vector. As a result, a 4800×4800 covariance matrix is obtained.

By applying PCA to the covariance matrix an eigenspace S1 with 4800 eigenvectors is created.

By projecting the images [I1] from the training set into the most significant D1 eigenvec-

tors, a D1-dimensional space S1 is obtained, containing Nim points for each rotation angle. Each

point represents an image. Figure 4.4(a) shows 2 dimensions (axes) of these D1 where each

point represents one image of the training dataset. Different values for D1 will be discussed in

Section 4.3. Algorithm 5 shows the steps to compute PCA over the training dataset.
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Algorithm 6 Second stage PCA to represent points in P1

Precondition: The points P1 representing the training images projected into first stage PCA

1: for each angle do
2: for each handshape do
3: [I2] ← concatenation of the Dtra×D1 coordinates into a vector and add to [I2]

matrix
4: end for
5: end for
6: S2← PCA over [I2]
7: P2← projection of [I2] into the eigenspace S2 with D2 eigenvectors

4.2.2 Second Stage PCA - Subsets of the First-stage

At the second stage a new eigenspace S2 is constructed where each point in the space represents

a subset of the points P1 in the first stage PCA. Each subset consists of the set of points for

a particular handshape at a particular rotation angle in the training dataset. In other words,

each point represents the translation manifold for a particular handshape at a particular angle.

These points will then be used in Section 4.2.3 to interpolate between angles.

The members of the input dataset are the translation manifolds in the first stage eigenspace

for each handshape for each rotation angle. The pseudocode is shown in Algorithm 6. Each

shape has Ntra images at each rotation angle. Hence each handshape at each rotation angle is

now represented by [I2] matrix Ntra×D1, where D1 is the number of coordinates. The final

step is to compute the PCA for these new data. As a result a new eigenspace S2, as shown in

Figure 4.4(b), is obtained. Different values for D2 will be discussed in Section 4.3.

In Figure 4.4(b) each point represents the translation manifold of a handshape at a partic-

ular angle. The points fall into clusters, each of which represents the set of handshapes at one

particular angle. Figure 4.4(b) contains the same information as Figure 4.4(a). However, it is

much less cluttered. Points represented as + (green) ∗ (red) and • (blue) highlight 3 differ-

ent angles in the first stage PCA. In Figure 4.4 each axis represents one dimension out of D2

dimensions in each stage.
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(a) Projection of training images I1 into the
first-stage PCA S1

(b) Projection of points I2 into the second-stage
PCA S2

FIGURE 4.4: Projection of training dataset images into the first-stage S1 and second stage-
PCA S2, note that the same data is represented with fewer points when projected into S2

Note that for all the different algorithms presented in this chapter, each only represents 2

levels of PCA. D is used as the number of dimensions (eigenvectors), i.e. D1 is the number

of dimensions in the first stage PCA and D2, D3 and D4 are the number of dimensions in the

second stages of respectively Algorithms 6, 8 and 9. In this thesis D2, D3 and D4 are all set to

the same value.

4.2.3 Interpolating Angles in the Second Stage PCA

In order to interpolate subspaces, a curve in a space of any dimensionality is created by ap-

plying splines. Splines are applied in the second-stage PCA projection P2 in D2 dimensions.

Therefore, the interpolation is done in D2 dimensions. Figure 4.5 shows the original and inter-

polated data in the second stage PCA, in between groups of three neighbours.

Having a spline interpolated between one angle and another it is possible to determine any

angle in between. Note in Figure 4.5, a projection of the eigenspace for the second level PCA,

points represented as • (blue), + (green) and ∗ (red) highlight the three different manifolds in

the first stage PCA and the grey dots are the interpolated points between those angles.

The pseudocode for interpolation is shown in Algorithm 7. Note that the number of points

n determines how many points is going to be interpolated in between training angles Nang. In
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FIGURE 4.5: Missing angles interpolated by splines, red, green and blue symbols represent
the landmark points and grey points the interpolated data, each axis represents one dimension

D2

Algorithm 7 Pseudocode for angle interpolation by splines

Precondition: Points P2 in the second stage PCA

1: for each shape do
2: P2(inter) ← n points interpolated by a spline over the points (angles) representing that

shape
3: P1(back)← back projection of P2(inter) to S1
4: P1(inter)← reshape of P1(back)
5: end for

this case n depends on d, e.g. d = 8 gives Nang = 11, as from labels 0 to 80 there are 80 points,

then n is set to 80; in case of d = 6 n is set to 78, see Figure 3.10.

4.2.4 Back Projection from the Second Stage PCA to the First

From the coordinates of any point in the second stage PCA P2 or P2(inter) it is possible to

reconstruct the corresponding manifold in the first stage PCA. Equation 4.7 shows the back

projection process of computing the dot product of each coordinate of the point P2 or inter-

polated point P2(inter) with the corresponding set of eigenvectors of the second-stage PCA D2.
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Algorithm 8 Second stage PCA for Rotation Subspaces

Precondition: The points representing the training images projected into first stage PCA P1

1: for each angle i do
2: [Ii

3]← subset of Nim points from P1 corresponding to the angle
3: Si

3← PCA over [Ii
3]

4: Pi
3← projection of [Ii

3] into the eigenspace Si
3 with D3 eigenvectors

5: end for

This is an example of the decoding process which was mentioned in Section 4.2 in Equation

4.6.

P1(back) = P2(inter)U
T
2 (4.7)

where UT
2 are eigenvectors of S2. By reshaping P1(back) back to P1 shape, artificial manifolds

of the first stage PCA are obtained as P1(inter). Figure 4.17 shows examples of back projected

manifolds.

Different values of D2 (number of eigenvectors) used in the back projection (reconstruc-

tion) affect the quality of the reconstruction of the manifolds. The quality of the reconstruction

improves as D2 increases. Different values of dimensions D2 will be tested and discussed in

Section 4.3.

4.2.5 Second Stage PCA - Rotation Subspaces

In order to have subspaces for each rotation angle it is necessary to compute PCA separately

for each angle. Algorithm 8 shows the pseudocode for rotation subspaces. Note that at this

stage, one subspace for each group of shapes and translations at the same rotation angle will

be created (Si
3 where i represents the number of the subspace).

Rotation subspaces will be used to compute perpendicular distance from a new image to

the subspaces, in order to find the interval in which the new image lies, see Section 4.3.1. In

addition, rotation subspaces are used to interpolate data and eigenspaces, Section 4.2.7 and

4.2.6 show algorithms for this case.
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Algorithm 9 Pseudocode for rotation sub-manifolds interpolation by splines

Precondition: Projection of points into the second stage PCA Pi
3

1: for each handshape do
2: [I4]← concatenation of Nim×D3 dimensions in a vector and add in [I4] matrix
3: end for
4: S4 ← PCA over [I4]
5: P4 ← projection of [I4] into the eigenspace S4 with D4 eigenvectors
6: for each handshape do
7: P4(inter)← n interpolated points along the spline over the points representing that shape
8: end for
9: for each interpolated point in P4(inter) do

10: P4(back)← back projection of P4(inter) to Si
3

11: P3(inter)i ← reshape of P4(back) to D3×D3 matrix
12: end for

4.2.6 Interpolating Rotation Sub-manifolds

In a similar manner to that shown in Section 4.2.2, it is possible to interpolate new manifolds in

between rotation manifolds of the second stage PCA. These new manifolds consist of artificial

data recreated through interpolation by splines. The number of dimensions in the artificial

manifold depends on D4.

Algorithm 9 shows how manifolds can be interpolated at the second stage. In order to

interpolate between rotation manifolds P3 the first step is to vectorise each of Pi
3 creating one

vector for each set of shapes and translations at each rotation angle and add to a matrix called

[I4]; the second step is to apply PCA over this matrix creating a new space S4; the third step

is project [I4] into S4; the fourth step is to interpolate between points for all D4 eigenvectors

creating P4(inter); the fifth step is to back project this P4(inter) into Si
3 creating P4(back); finally

reshape these back projected vectors back to a D3×D3 matrix called P3(inter).

The number of points n determines how many points are going to be interpolated in be-

tween training angles Nang. In this experiment d = 8 is used, therefore Nang = 11. As from

labels 0 to 80 there are 80 points, n was set to 80.

P3(inter) consist of n new manifolds, one for each rotation angle label, from 0 to 80.
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Algorithm 10 Pseudocode for eigenspace interpolation by splines

Precondition: Eigenvectors of the second stage PCA Si
3

1: for each subspace in Si
3 do

2: S3(mat)i ← vectorise each eigenspace with D3×D3 elements and add to S3(mat)i

3: end for
4: S5 ← PCA over S3(mat)i

5: for each i in S3(mat)i do
6: S5(pro j)← projection of S3(mat)i into S5
7: end for
8: S5(inter) ← n points interpolated along the spline over elements of each eigenvector of

S5(pro j)
9: for each n in S5(inter) do

10: S5(back)← back projection of S5(inter) to Si
3

11: S3(inter)i ← reshape of S5(back) to D3×D3 matrix
12: end for

4.2.7 Interpolating Rotation Sub-eigenspaces

Having Nang rotation subspaces Si
3, it is possible to interpolate new spaces in between. These

spaces consist of artificial eigenspaces recreated through interpolation by splines. The number

of dimensions in the artificial spaces depends on D3.

Algorithm 10 shows how eigenspaces can be interpolated. In order to interpolate between

eigenspaces Si
3 the first step is to vectorise each of Si

3 creating one vector for each and concate-

nating in a matrix, called S3(mat); the second step is to apply PCA over this matrix creating a

new space S5; the third step is to project S3(mat) into S5; the fourth step is to interpolate between

elements for all D5 eigenvectors creating S5(inter); the fifth step is to back project this S5(inter)

to Si
3 creating S5(back); finally reshape these back projected vectors back to a D3×D3 matrix

called S3(inter).

The number of points n determines how many points are going to be interpolated in be-

tween training angles Nang. In this experiment d = 8 is used, therefore Nang = 11. As from

labels 0 to 80 there are 80 points, n was set to 80.

Figure 4.6 shows Ntra real images for the shape A projected into interpolated eigenspace

in blue and projected into the real eigenspace in red.
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FIGURE 4.6: Projection of images into interpolated space (blue) and into real space (red),
note they are very similar

Figure 4.7 shows the projection of 3 elements of the first eigenvector for all spaces. Black

dots represent the landmarks (real spaces) and the green dot represent interpolated eigenspaces.

FIGURE 4.7: Interpolation of 3 elements of the first eigenvector, black dots are the landmarks
and green dots the interpolated points
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4.2.8 Results with Interpolated Rotation Sub-eigenspaces

It is possible to recognise a shape using interpolated eigenspaces S3(inter) and interpolated

rotation data P3(inter). The first step is to find the interval where the new shape fits. Section

4.3 shows how to find the interval of a new image. After finding the interval the goal is to

find the closest interpolated space. In order to do that, perpendicular distance is used to find

the closest interpolated eigenspace in this interval. Them, the new image is projected into the

closest eigenspace and k-NN is used to classify the correct shape within the corresponding

interpolated rotation manifold.

Figure 4.8 shows the average accuracy for shape classification using interpolated spaces

and interpolated data. Different number of eigenvectors and different blurring levels were

tested and the best accuracy is 82.83%, for d = 6, blurring level equal to 2 and D3 and D4 =

17. Note that the minimum number of eigenvectors tested in the second stage is 11 because

according to the test which will be discussed in Section 4.4 the minimum number of eigen-

vectors for a good back projection is 11. The possible reason for this low accuracy is because

perpendicular distance does not seem to work well for extremely close subspaces. Neverthe-

less, blurring level 6 kept the best accuracy. For d = 6 n is set to 78 and for d = 8 n is set to

80.

The average time to recognise a shape with interpolated eigenspaces and interpolated

manifolds is 0.0177 seconds.

4.3 Finding the interval

In this section, for each image in the testing dataset, the closest subspace in the training dataset

is classified. The images in the testing dataset lie within two separate intervals of the training

dataset. This dataset contains images in two intervals (d = 8) out of the total 11. One from 8

to 16 and the other from 40 to 48.
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FIGURE 4.8: Accuracy of shape classification within interpolated spaces and interpolated
manifolds, according to the number of eigenvectors

All experiments in this section are done using Matlab 2014a, running on a personal com-

puter, with 16GB memory RAM, Intel Core i7-2600 CPU @3.4GHz and Microsoft Windows

7 Professional 64 bits.

4.3.1 Perpendicular Distance

In order to compute perpendicular distance, each subspace S3 is used and the origin point is

being used as the mean of all images at the same rotation angle. Section 2.5.5 shows the

equation for perpendicular distance, where v is the subspace, o is the origin image and p is the

image to be classified.

The accuracy of one image being classified into the correct subspace can be measured

taking the shortest perpendicular distances from this image to each sub-eigenspace S2. These

distances are saved in a vector t sorted from 1 to Nang, in this case 11, each element represents

one rotation angle. In this way, when a new image comes in, the closest subspace can be

classified, e.g. angle 0 is element 1, angle 8 is element 2 and so on.
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It is marked as correct if the images from angle 8 to 16 have the shortest distance to the

second or the third sub-eigenspaces and images from angle 40 to 48 to the sixth or seventh

sub-eigenspaces.

4.3.1.1 Influence of the Number of Eigenvectors

Figure 4.9 shows the accuracy rate, as a percentage, in identifying the shortest distance. Each

set of these images is at an intermediate rotation angle and it shows the mean and standard

deviation of the accuracy. The number of images in the test set depends on n. In addition, 2

different intervals were tested, as shown in Section 3.2.5.

This accuracy was measured after computing perpendicular distance of each image against

all Nang 11 sub-eigenspaces (d = 8) and taking the shortest one. In Figure 4.9 each bar repre-

sents different number of eigenvectors used in the first stage PCA (D1), the x-axis represents

the number of eigenvectors used in the second stage and y-axis represents the accuracy as a

percentage. Accuracy is computed out of Nim 2,783 images for each rotation angle.
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FIGURE 4.9: Accuracy according to different number of eigenvectors for the first and the
second-stage PCA

The best accuracy was found with only 4 eigenvectors in the second-stage PCA, e.g.

79.89% for D1 = 15; 79.99% for D1 = 20; 80.88% for D1 = 25 and finally 81.05% for D1 = 30.

This is an interesting result, because the combination of the parameters Di can improve or

decrease the accuracy drastically.
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4.3.1.2 Time for Perpendicular Distance

The time for classification of the correct interval using perpendicular distance is measured.

Figure 4.10 shows the average time to classify one image according to the number of eigen-

vectors in the first stage PCA. Note that time increases according to the number of eigenvectors

in D1. Time was measured according to the number of eigenvectors in the second stage as well.

However, it seems to not have a significant variation. Figure 4.11 shows the average time to

classify one image for D1 = 25 and different values for D3.
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FIGURE 4.10: Average time to classify one image according to the number of eigenvectors
in the first-stage PCA D1

4.3.1.3 Influence of the Interval Size

The size of the interval d affects the accuracy. Accuracy is tested for different values of d (6, 8

and 10). Figure 4.12 shows how accuracy changes according to d. Note that as d increases the

accuracy improves, probably because as the further one subspace is from the other the greater

is the perpendicular distance.
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FIGURE 4.11: Average time to classify one image according to the number of eigenvectors
in the second-stage PCA, given D1 = 25
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FIGURE 4.12: Average accuracy and standard deviation according to the interval size d, the
longer the interval, the higher the accuracy

4.3.1.4 Influence of the Blurring Level

In a similar manner, the level of blurring applied to images influences the accuracy. Figure

4.13 shows how blurring influences the accuracy. Note that a low or a high level seems to not

help considerably. However, a medium level tends to improve the accuracy.
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FIGURE 4.13: Average accuracy according to blurring level, level two showed the highest
accuracy

4.3.2 k-NN

Another manner of classifying the correct interval for a test image is using k-Nearest Neigh-

bour. As shown in Section 2.5.4 this technique consists of computing the distance from a point

to another in any dimension. The most common distance metric used is Euclidean distance.

Therefore in this section Euclidean distance is used. In addition, k is set as 1 because only one

neighbour is needed to classify one subspace as the closest.

In order to classify the closest angle, Euclidean distance is computed from a point (new

image) to a matrix of all other points (P1) and the algorithm returns the same size matrix with

all the distances. For this experiment points in P1 were labeled according to the rotation angle.

The same style as in perpendicular distance method, it is considered correct if the testing image

is classified into one of the 2 neighbouring angles. In other words, the distance from the test

image is computed to all the images in all of the key angles.

4.3.2.1 Influence of the Number of Eigenvectors and the Blurring Level

Figure 4.14 shows a plot with the relation between the number of eigenvectors used to compute

the Euclidean distance and the blurring level. These distances are computed using interval
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d = 8. However, Section 4.3.2.2 shows how different interval sizes influence the accuracy.
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FIGURE 4.14: Accuracy according to the number of eigenvectors and blurring level, using
k-NN, for first-stage PCA

4.3.2.2 Influence of the Interval Size

In order to measure how the size of the interval influences the accuracy, Euclidean distance is

computed with different values for d. Figure 4.15 shows how the interval size d influences the

accuracy of classifying the correct interval. Note that a small value for d gives an improved

accuracy. However, the difference in accuracy is near irrelevant among d = 8 and d = 10.

These distances are measured with D1 = 30 and blurring level equal to 2. Finally, note that the

the standard deviation increases as d increases, due to the fact that the higher the value of d

the further the data in the testing dataset is from the training dataset, specially for the middle

ones.

4.3.2.3 Classification Time for k-NN

Figure 4.16 shows the time in seconds to classify the nearest subspace according to the number

of eigenvectors used for D1. Note that speed does not change dramatically, the difference
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FIGURE 4.15: Average accuracy and standard deviation according to the interval size d,
using k-NN, the variation in accuracy is low, varying more the standard deviation

between 10 and 30 eigenvectors is around 0.003 seconds.
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FIGURE 4.16: Average time to find the correct interval for one image by k-NN according to
the number of eigenvectors

4.3.3 Conclusion of Results in Finding the Interval

In order to classify the closest subspace Si
3, perpendicular distance and k-NN were tested.

Considering time and accuracy, k-NN with Euclidean distance provided improved results for

both. It is probably given by the fact that manifolds are not linear and they overlap each
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other, perpendicular distance is a rough measure and seems to not work well for non-linear

overlapping manifold. The average time to classify one image was slightly longer for k-NN.

4.4 Back Projection

Back projection of one point in the second-stage PCA P2 back to first-stage P1 depends only on

the quantity of eigenvectors considered (S2). Figure 4.17 shows the quality of the back projec-

tion according to the number of eigenvectors used, where the blue dots are real projection and

the red dots are back projection of points in P2 back to first-stage P1. For this experiment only

real data was considered. However, the same process applies to interpolated data. Note that

less than 13 eigenvectors does not provide a good back projection. In this thesis the number

of eigenvectors used was the same as D2, it means different values were tested and accuracy

shown.

FIGURE 4.17: Quality of manifolds back projected according to the number of eigenvectors
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4.5 Handshape Classification with k-Nearest Neighbour

In order to classify the correct shape of an unknown image, the k-Nearest Neighbour (k-NN)

algorithm is used. The distance metric considered is Euclidean. Basically, in order to classify

a new image from the testing dataset, it has to be projected into the training eigenspace S1 and

then the distance from this point (P1) to all the other interpolated points has to be computed.

The shape with the shortest distance is taken as the object shape. Note that in this section

only interpolated data (P1(inter)) has been used, which is different from Section 4.2.8 where

interpolated spaces and interpolated data were used.

4.5.1 Knowing the Correct Interval

In this section it is assumed that the correct interval is known. In other words the interval

classification is not needed. Table 4.1 shows the accuracy of recognising the correct shape

given the correct closest subspaces are known. The accuracy is out of Nim (2,783 images). D1

is set to 30 and different values for D2 are used in the vectorisation and reconstruction process.

As D2 increases, the accuracy increases as well. However, the greater the value of D2 the more

computationally expensive it becomes.

4.5.2 Not Knowing the Correct Interval

In a second experiment, a general classifier is made, assuming that the correct interval is

unknown. In this case the interval can be the one on the right side or the one on the left

side of the subspace classified as the closest. Therefore, the k-NN search is carried out in both

intervals, meaning two intervals at each time, except when the closest subspace is classified as

the first. The case where the search is done in two intervals is more computationally expensive

than when the correct interval is known. Table 4.1 shows the average accuracy and the standard

deviation for shape classification by not knowing the correct interval.
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TABLE 4.1: Average accuracy and standard deviation according to D2 using k-NN when the
correct interval is known and unknown

D2 Known Unknown
Accuracy Stdv. Accuracy Stdv.

3 58.544 2.749 52.279 1.474
5 87.116 2.130 83.099 2.577
7 96.278 1.310 93.812 2.290
8 97.231 1.269 95.593 2.146

11 97.749 1.583 96.066 2.410
13 98.498 1.866 97.285 2.322
15 98.845 1.441 97.631 2.075

TABLE 4.2: Average accuracy and standard deviation according to the interval size d

d Accuracy Stdv.
6 98.264 ± 1.052
8 97.631 ± 1.666

10 95.710 ± 3.154

4.5.3 Classification Time for Known and Unknown Interval

Time is measured for classification when knowing and without knowing the correct interval.

Note that the speed for classifying the interval and shape is slower due to two classifications

being needed. The average time to recognize one shape knowing the correct interval is 0.03458

seconds and without knowing the interval is 0.07379 seconds, which can be considered to be

fast enough to be used in real time.

4.5.4 Influence of the Interval Size

In order to measure how the size of the interval influences the accuracy of the final shape

classification, Euclidean distance is computed with different values for d. Table 4.2 shows

how the interval size d influences the accuracy of classifying the correct shape. Note that a

small value for d gives an improved accuracy, as d increases the accuracy decreases, it is given

by the fact that small intervals have less data in between, being then closer to the training set.

These distances are measured with D1 = 30 and blurring level equal to 3.
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TABLE 4.3: Average accuracy and standard deviation according to the blurring level

Level Accuracy Stdv.
1 93.453 ± 1.463
2 96.838 ± 2.613
3 97.631 ± 1.666

4.5.5 Influence of the Blurring Level

In a similar manner, the level of blurring applied to images influences the accuracy. Table

4.3 shows how blurring influences the accuracy. Note that a high level of blurring improves

the accuracy. Different from perpendicular distance (Section 4.3.1.4) where a high level of

blurring decreases the accuracy, in k-NN it improves, it probably because the more blurred the

images are, the flatter the manifolds.

4.6 Translation Interpolation

In addition to interpolating rotation angles and eigenspaces, it is possible to interpolate in

between translations. In this section certain translations are missing from the training dataset

and reconstructed by splines.

4.6.1 Sub-dataset for Missing Translations

In order to compute and test interpolation of missing translations, a testing dataset with d = 8

and blurring level equal to 3 was chosen. Given the fact that the training dataset has Ntra

translations for each image at each rotation angle, from the Ntra 121 images two sub-datasets

were created, the training dataset and the testing dataset. The training dataset consists of the

images at every third point in a column of the translation array. Each curve has 11 points in

total. Thus, 8 points are training and 3 are testing. In total, for each 121 images, 88 are training

and 33 are testing. Figure 4.18 shows the manifold for one shape at one rotation angle where

the red dots represent the training images and the blue dots represent the testing images.
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FIGURE 4.18: Projection of training (red dots) and testing (blue dots) sub-datasets into PCA
space for translation interpolation

Algorithm 11 Pseudocode for translation interpolation by splines

Precondition: Manifolds of the first stage PCA P1
1: for each shape in Ntra do
2: for each angle in Nang do
3: P(tra)← Points of the 1st, 2nd, 4th, 5th, 7th, 8th, 10th and 11th translations
4: P(tes)← Points of the 3rd, 6th and 9th translations
5: end for
6: end for
7: for each angle in Nang do
8: S2(tra)i ← PCA over P(tra)
9: end for

10: for each manifold in P(tra) do
11: Pt(inter)← n points interpolated along a spline over elements of each P(tra)
12: end for

4.6.2 Interpolating Missing Translations

Algorithm 11 shows the steps to interpolate in between translations of the translation sub-

dataset. Different values of n influence the accuracy of recognising a new shape. Note that

for this experiment each manifold is a set of all translations for each shape at each rotation

angle (Ntra). In this experiment S2(tra)i is not used, the classification is done directly on the

interpolated data Pt(inter).

Figure 4.19 shows one of these manifolds. In this case, P(tra) is a manifold with missing

translations, and P(tes) are the missing translations.
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Figure 4.19 show the anchor points in red and the interpolated points in cyan. In this

figure n = 45 was considered.

FIGURE 4.19: Manifold of the training sub-dataset (red) and interpolated translations (cyan)

4.6.3 Results for Classifying Shapes with Missing Translations

In order to classify the shapes, the first step is to classify the closest subspace. For this purpose

perpendicular distance (distance from the new image to S2(tra)i) and Euclidean distance (dis-

tance from the new image to P(tra)) are used. For each metric, two approaches were considered,

the first is to make a hard decision, i.e. to choose only one subspace and the second one is to

pick the closest distance plus its two neighbours. Figure 4.20 shows the average accuracy for

both cases. Note these measures were out of 3 subspaces only.

Figure 4.21 shows the accuracy of recognising the shape, given that the closest subspace

±1 is known. Note that the accuracy of recognising a shape without any interpolation is quite

low when compared with the interpolated translation. The size of n influences directly the

accuracy as well. As can be seen in Figure 4.21 4 eigenvectors and n equal to 25 is enough to

obtain a considerable high accuracy.
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FIGURE 4.20: Average accuracy for subspace classification using Perpendicular Distance
and K-NN with Euclidean distance according to the number of eigenvectors
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FIGURE 4.21: Shape classification with different values for D2, different values of n and
without interpolation

Figure 4.22 shows the overview of the entire process for d = 10, perpendicular distance

and k-NN. The first step is take a new image from the testing dataset and project it into the

main eigenspace (first-stage); second step is to compute perpendicular distance to find the

closest subspace; third step is to interpolate missing translations within the manifolds of the

closest subspace and its neighbours; the final step is to compute k-NN and match the correct

shape along all interpolated points.
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FIGURE 4.22: Flowchart for the overall process for shape classification with missing trans-
lations, with perpendicular distance followed by k-NN

Finally, the entire process for shape classification with D1 = 15, d = 8 and n = 25 was

tried. The overall average classification accuracy is 96.08% and standard deviation of ± 1.83

for perpendicular distance with D2 = 4, ±1 subspace of freedom and D2 = 7 for k-NN, the

average time for classification is 0.21 seconds. Nevertheless, with hard decision, using per-

pendicular distance the average accuracy is 62.93% with a standard deviation of ± 8.99 and

average time for classification 0.076 seconds. It is clear that a hard decision speeds up the

classification. However, it decreases considerably the accuracy.

4.6.4 Shape Classification in the First-stage

In the first stage PCA it is possible to classify shapes without knowing the angle. Figure 4.23

shows manifolds with different colours for different shapes. Note that they are spread over all

the rotation angles. However, they keep the same layer.

Table 4.4 shows the accuracy for d = 6 and d = 8, using k-NN with projection into 20

eigenvectors, blurring level was set to 3, because it is already known that this level of blurring

provides improved accuracy for k-NN. Note that the closer the testing images are to the training

images, the higher the accuracy.
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FIGURE 4.23: Projection of images into first-stage PCA (manifold) with different colours
for different shapes

TABLE 4.4: Average accuracy according to the interval size, and for each intermediate rota-
tion angle

Test
set

Accuracy
d = 8 d = 6

1 99.28% 88.46%
2 78.11% 82.28%
3 73.73% 76.82%
4 66.00% 75.92%
5 76.32% 95.65%
6 84.87% -
7 93.71% -
Mean 81.72% 83.83%

4.6.5 Subspaces for Shapes

As stated in Section 4.6.4 each shape appears in a curved layer in the first stage PCA manifold.

This leads to the idea of creating one subspace for each shape instead of one subspace for

each rotation angle. Figure 4.24 shows the 23 manifolds projected into the same space. The

manifolds appear in reverse orientation because eigenvectors can have reverse sign, i.e. if an

eigenvector is multiplied by -1 it is still an eigenvector. It is possible to reverse them back
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FIGURE 4.24: Second-stage PCA subspace manifolds with different colours for different
subspace shapes (each colour is the projection into one different space)

again by multiplying by -1 and re-align with the other manifolds. Each colour represents one

shape.

The question that rises from this shape manifolds is how to classify. Perpendicular dis-

tance is tested and the accuracy shown is quite low. Probably because shapes overlap each

other in different rotation angles. Table 4.5 shows the accuracy of recognising the correct

shape using Perpendicular Distance, D1 = 20 and blurring level 3. Note the best accuracy is

achieved with 5 eigenvectors.

4.7 Discussion and Conclusion

This chapter showed mainly how PCA can be applied to sign language recognition, especially

by manipulating manifolds and sub-eigenspaces. Therefore, different manifold manipulation
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TABLE 4.5: Accuracy according to D2 using k-NN for shape subspaces classification

D2 Accuracy %
3 11.385
5 18.207
7 13.921
8 15.025
11 14.296
13 10.082
15 7.659

techniques were proposed in order to increase the accuracy of recognising an unknown sign

language handshape image.

Firstly, it was shown that the interval of an incoming object may be classified by com-

puting the perpendicular distance or by k-NN (Euclidean distance) between this point (new

image) and all subspaces.

Secondly, splines were used to interpolate between manifolds to create artificial data.

This interpolation is important because the illumination changes according to the arm rotation.

Therefore, rotating images by software in order to make the dataset more robust would not be

a solution for a real problem.

Finally k-NN was used to find the nearest point within interpolated manifolds and classify

the correct shape.

Figure 4.25 shows a comparison of accuracy between using only real data and using

interpolated data. The k-NN with k = 1 and Euclidean distance was used in this experiment.

The number of eigenvectors used (horizontal axis) is the D1 used in the k-NN classification

stage. For interpolation D2 was set to 30 and a blurring level 3 was used. Note that by

using interpolated data the accuracy of recognising the correct shape increases from 83.84% to

97.631% for 15 eigenvectors. However, time for classification increases, the average time to

classify one image using real data is 0.0069 seconds and for interpolated data is 0.073 seconds.
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FIGURE 4.25: Comparison of accuracy with only real data (without interpolation) and inter-
polated data, according to the number of eigenvectors

The lower accuracy of the real data is because of the missing data of the sparse dataset

and the interpolation is filling in the missing values and therefore it increases the accuracy.

This answers RQ2, proving that interpolated data increases the accuracy in the sparse dataset.
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Chapter 5

Deep and Shallow Methods

This chapter presents experiments with different classification techniques for the dense dataset

proposed in Chapter 3, Section 3.2.2. In this chapter two sets of approaches are proposed, end-

to-end and feature-based. End-to-end approaches are techniques that do not need to extract any

features from images beforehand. Therefore, classification is made straight from the image

pixels. Feature-based approaches are techniques that require feature extraction to be carried

out on the images before input to the classification technique.

For end-to-end approaches, in this chapter both deep and shallow methods are used. For

feature-based approaches, in this chapter only shallow methods are used.

Deep methods are those, which use many layers of processing before the final classifica-

tion stage, e.g. CNNs. Shallow methods perform classification directly on the input data e.g.

k-NN and SVM.

5.1 Introduction

In this chapter experiments with different classification techniques are tested, mainly with PCA

and CNN.

106



Chapter 5. Deep and Shallow Methods

In contrast to Chapter 4 in this chapter a dense dataset containing all the rotations is used

for experiments, and the goal is to test different techniques applied to this dataset.

PCA was introduced in Chapter 4 and is used in this chapter to extract features for the

feature-based approaches. Different classifiers are presented for the handshape recognition

process, including k-Nearest Neighbour (k-NN), decision trees, multilayer perceptrons (MLP),

support vector machines (SVM), and linear discriminant analysis (LDA). In addition, an ex-

periment with a Kernel PCA (non-linear manifold learning) is presented.

CNNs are multi-layered neural networks specialised in recognising patterns directly from

images. CNNs are widely known for robustness to distortion and having minimal or no pre-

processing. They have been used for detection and recognition of different objects, including

hands Nagi et al. (2011) and LeCun et al. (2015). In addition to CNN, the end-to-end ap-

proaches include decision trees, LDA, SVM, MLP, and k-NN. Furthermore, a comparison of

end-to-end approaches and feature-based approaches on the new dataset of ISL is reported.

5.2 Handshape Classification

In order to classify handshapes two different approaches are compared. The first approach is

end-to-end (Section 5.2.1), and the second approach is based on feature extraction followed by

different classifiers (Section 3.2.1.1). Table 5.1 shows the different methods used.

TABLE 5.1: Recognition techniques for end-to-end and feature-based approaches used in this
chapter

Approach Models
End-to-end Decision Trees; CNN; LDA; MLP; SVM; k-NN
Feature-
based

PCA+k-NN; PCA+SVM; PCA+MLP; PCA+LDA;
PCA+Decision Trees; KPCA+k-NN
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5.2.1 End-to-end Approaches

For this approach different models were used, including a convolutional neural network (CNN),

linear discriminant analysis (LDA), support vector machines (SVM), a multilayer perceptron

(MLP), decision trees, and a k-Nearest Neighbour (k-NN). Inputs of each model are raw image

pixels (blurred or non-blurred).

5.2.1.1 Support Vector Machines

Support vector machines (SVM) are a classification technique that uses machine learning the-

ory to maximise the accuracy of prediction. There are two types of SVM. The first, in which

training data is linearly separable in the input spaces and the second is where training data is

not linearly separable and they map the input space into a high-dimensional feature space to

enhance linear separability in that feature space. Figure 5.1 shows an SVM in the simplest

form. It is a hyperplane that separates the training data by a maximal margin. Vectors lying

on one side of the hyperplane are classified as −1, and all vectors lying on the other side are

classified as 1. The training instances that lie closest to the hyperplane are known as support

vectors Tong and Koller (2001).

In this thesis, the SVMs were set with a one-vs-rest (ovr) decision function and polyno-

mial kernel (degree 3). For instance, radial basis function (rbf) Gaussian kernel, linear and

sigmoid kernel were tested as well.
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FIGURE 5.1: An example of a simple SVM with a linear function

The kernel of an SVM can be either linear, as shown in Tong and Koller (2001) or non-

linear, as in Anguita et al. (2012). In the case of non-binary classification, it uses different

schemes for multiclass problems. Anguita et al. (2012) have used the One-Vs-All (OVA)

method for human activity recognition on smartphones. Sections 5.3.1.1 and 5.3.2.1 show

how SVM were used in this thesis.

5.2.1.2 Convolutional Neural Network

A Convolutional Neural Network is a multistage method specialised on recognizing patterns

straight from images. CNN is well known for robustness to distortion and minimal or no

preprocessing. CNNs have been used for detection and recognition of objects such as faces,

hands, logotypes, text, with a very high accuracy and real-time performance Nagi et al. (2011).

The input and output layers are called feature maps. A typical CNN is composed of one or

more stages followed by a fully connected layer or classification module LeCun et al. (2010).

Each stage is composed of layers such as: convolutional layer and pooling layer.

The convolutional layer has the role of detecting local conjunctions of features from the

previous layer, while the pooling layer merges semantically similar features into one. The

classification layer has one output neuron per class in the classification task Nagi et al. (2011).
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In a CNN each convolutional layer is organised in feature maps. The output of one filter

bank applied to the previous layer is called a feature map, e.g. if the input is a colour image,

each feature map would be a 2D array containing a colour channel (red, green or blue) of the

input image LeCun et al. (2010). Each feature map is connected to local patches in the feature

maps of the previous layer with different weights. The result of this local weighted sum is sent

to an activation function non-linear node, e.g. rectified linear unit (ReLU). Every feature map

in the same layer shares the same kernel size. However, different layers can have different

kernel sizes LeCun et al. (2015).

The filter draws across the entire previous layer, moved one pixel at a time. Each position

results in an activation of the neuron and the output is collected in the feature map. Each filter

detects a particular feature at every location on the input. Hence spatially translating the input

of a feature detection layer translates the output and otherwise leaves it unchanged. In other

words, starting from top-left corner of the input image, each patch is moved from left to right,

one pixel at a time, as shown in Figure 5.2. Once it reaches the top-right corner, the patch is

moved one pixel in the downward direction, and again the patch is moved from the left to the

right, one pixel at a time. This process repeats until the patch reaches the bottom-right corner

of the image Samer et al. (2015).

In this thesis a filter bank is considered to be one set of filters in one layer, the kernel

is the square matrix with the weights used in the convolution and the filter is the process of

scanning the kernel across the image. Note that different authors have different definitions,

some of them consider three things to be all the same: filter, filter bank and kernel.

Figure 5.3 shows one example of one input layer and one convolutional layer of one image

with 32×32 pixels and 32 feature maps (M) Zaccone (2016). Note that the input layer has a

kernel, that is considerably smaller than the image size, and in the convolutional layer there

is a new kernel that can be the same or different size as the previous layer. Therefore, as in

Figure 5.3, a 32×32 image, with a kernel of size 5×5 receptive field across the input image

data with a stride width of 1 results in a feature map of 28×28(32−5+1×32−5+1) output

values or 784 distinct activations per image Samer et al. (2015).
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FIGURE 5.2: Example of an input layer being convolved by a kernel and creating an convo-
lutional layer

FIGURE 5.3: Example of an input layer, convolutional layer and feature maps

Figure 5.4 shows ReLU activation function, which is zero when x < 0 and then linear

with slope 1 when x > 0. ReLu has become very popular in the last few years. It computes

the function f (x) = max(0,x). In other words, the activation is simply thresholded at zero.

Krizhevsky et al. (2012) showed that a CNN with ReLU trains several times faster than other

activation functions. The number of iterations required to reach 25% training error is consid-

erably smaller than for the equivalent activation functions, e.g. tanh or sigmoid.

The number of feature maps, kernel size and size of the maps are the parameters for the

convolutional layer. Each layer has M maps of equal size (Mx,My). The kernel of size (Kx,Ky)
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FIGURE 5.4: ReLu activation function

is scanned over a region of the input image. In Layer Ln each map is connected to all maps in

layer Ln−1. Each map has neurons that share the kernel weights. However, the input fields are

different Nagi et al. (2011).

Pooling is a sample-based discretization process. The objective is to down-sample an

input representation (image, hidden-layer output matrix, etc.), reducing its dimensionality and

allowing for assumptions to be made about features contained in the sub-regions binned. Pool-

ing replaces the sub-sampled layer and can be done by taking the max value or the average

value from a cluster of neurons at the previous layer.

The maximum activation over non-overlapping rectangular regions of size (Kx,Ky) is the

output of the max pooling layer. The objective is to down-sample an input representation,

reducing its dimensionality by a factor of Kx and Ky in each direction, allowing a faster con-

vergence rate and improving generalisation performance Nagi et al. (2011). In summary, for

each of the regions represented by the filter, the max of that region is used to create a new

output matrix, where each element is the max of a region in the original input.

Figure 5.5 shows one example of max pooling layer, where the previous layer is a 4× 4

matrix and after max pooling is turned into a 2×2. Cireşan et al. (2011) have shown that max

pooling can lead to faster convergence.

After several convolutional and max pooling layers, the high-level reasoning in the neural

network is done by the fully connected layer Nagi et al. (2011). All neurons in the previous

layer are now connected to every single neuron. These layers are not spatially located anymore.
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FIGURE 5.5: Example of max pooling layer (4x4) to (2x2)

Thus, there is no convolutional layer after a fully connected layer. The fully connected layer

leads to a classification step (output).

The architecture of the CNN model used in this thesis is inspired by Krizhevsky et al.

(2012). The structure shown in Figure 5.6 is an adaption of the CNN due to Krizhevsky et al.

(2012) where layers have been removed and the high accuracy has been kept. The size of

the frames and filters were adapted according to images in the dense dataset. The architecture

used in this thesis is as follows: It has 4 convolutional layers with ReLU non-linearity, and ends

with 2 fully connected layers with 128 and 23 neurons in each layer, and Relu and Softmax

non-linearity respectively. The first convolutional layer has 32 feature maps of size 114×154

and kernel size 7×7; the second convolutional layer has 64 feature maps of size 53×73 and

kernel size 5×5; the third convolutional layer has 128 feature maps of size 24×34 and kernel

size 3×3 the last (fourth) convolutional layer has 256 feature maps of size 22×32 and kernel

size 3× 3. Each max pooling layer has kernel = 2× 2. Dropout layers are used to prevent

overfitting (Srivastava et al. (2014); Wan et al. (2013)). The third and fourth convolutional

layers are connected to one another without any intervening pooling or normalization layers.

The 23 output neurons are activated correspondingly to the image class. An Adadelta

optimizer Zeiler (2012) is used with a learning rate of 1.0, and a categorical cross entropy is

used as a loss function. The filter size of the convolutional layers decreases throughout the

model because it has been proven to be beneficial Krizhevsky et al. (2012).
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FIGURE 5.6: Architecture of the convolutional neural network used in this thesis, with 1
input layer, 4 convolutional layers, 3 max pooling layers, 1 fully connected layer and 1 output

layer; adapted from Krizhevsky et al. (2012) architecture

5.2.1.3 Linear Discriminant Analysis

Linear Discriminant Analysis (LDA) constructs an optimal linear discriminant function f (x) =

W T x that maps the input into the classification space where the class identification of this

sample is decided based on some kind of metric, i.e. Euclidean distance (simple or weighted).

A typical LDA training stage is done with within and between-class scatter matrices analysis

Zhao et al. (1998). Within and between-class scatter matrices are computed as follows:

Sw =
1
M

M

∑
i=1

Pr(Ci)∑i (5.1)

Sb =
1
M

M

∑
i=1

Pr(Ci)(mi−m)(mi−m)T (5.2)

Where Sw is the within-class scatter matrices and Sb is the between-class scatter matrices.

Pr(Ci) is the prior probability of class Ci; m is the overall mean vector; ∑i is the average scat-

ter of the sample vectors of different classes Ci around their representative mean vector m1.

Different from PCA, the maximum dimensionality that can be achieved with LDA is the num-

ber of classes minus 1 Aran and Akarun (2010). In this thesis a singular value decomposition

solver is used.
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5.2.1.4 Other Classifiers

The other classifiers are configured as follows: The MLP has a first layer area that is connected

to all pixels of the input image, a single hidden layer has 256 neurons, the output layer has 23

neurons to indicate the class of the handshape, and the activation function is ReLu. The k in

k-NN is set to 1 and distance metric to Euclidean.

5.2.2 Feature-based Approaches

For this category of methods, features were extracted via Principal Component Analysis (PCA).

These features were used as input to the classifiers k-NN, LDA, MLP, SVM, and decision trees.

In addition, one experiment is done by Kernel PCA followed by k-NN.

5.2.2.1 PCA-based approach

In order to apply PCA over the training dataset all the images were combined into the same

array and then PCA was computed. After vectorization every image is represented by a vector

with 19,200 (pixels) entries. As a result, an eigenspace with 19,200 dimensions is obtained.

By projecting the images from the training set into the most significant Di eigenvectors,

a Di-dimensional space is obtained containing (Nim) points for each pose angle. Each point in

the space represents an image. In this thesis different number of eigenvectors will be shown

and how they affect the accuracy.

Figure 5.7 shows the 2 dimensions (axes), where each point represents one image in the

training dataset. The dataset used in this picture is the DBi dataset.

In the same way, images from the testing dataset were projected into the eigenspace, in

order to have both in the same space.

Figure 5.8 shows the manifolds for different people. Note that every person has a different

manifold shape.
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FIGURE 5.7: Projection of training dataset (DBi) images into the PCA space in 2D

5.2.2.2 Other approaches

At this point, PCA is applied to the dataset and then used with the aforementioned classifiers

to measure accuracy.

The classifiers are configured as follows: for decision trees the minimum number of sam-

ples required to split an internal node is set to 2 and the minimum number of samples required

to be at a leaf node set to 1. k-NN, LDA and MLP kept the same configuration as the end-to-

end approach, apart from taking PCA feature vectors as the inputs. The SVM classifier was set

with an one-vs-rest (ovr) decision function and different kernels, such as end-to-end approach

with SVM.

5.2.2.3 Outputs of the PCA Approach

PCA allows each eigenvector to be displayed independently as an image. Each eigenvector

represents some features of the set of images. Figure 5.9 represents the 3 first eigenvectors (in

order: first, second and third) of the 25,000 training images of DBi. As can be seen visually all

of them represent variation in rotation. This variation makes it more difficult to identify what

else the eigenvector represents.

In order to make it easier to identify what each eigenvector represents it was considered

only the 9 first images of each person, each shape and each shot, in total 3,304 images were
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(a) Person 1 (b) Person 2

(c) Person 3 (d) Person 4

(e) Person 5 (f) Person 6

FIGURE 5.8: Different manifold shapess of the PCA approach according to the person, graph
(e) shows an outlier probably because one shape was performed in a different position

considered and PCA performed again. This should avoid a significant variation in rotation.

Figure 5.10 show plots representing the 3 first eigenvectors.

The 3,304 non-rotated images in the sub-dataset were projected into the first 3 eigenvec-

tors and are illustrated in Figure 5.11. This includes only the 9 first frames for each person,
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FIGURE 5.9: Visualization of the first 3 eigenvectors for the full training dataset, including
all persons and all rotations

FIGURE 5.10: Visualization of the first 3 eigenvectors for the non-rotated sub-dataset, in-
cluding only the 9 first frames of each person/shape/shot

each shape and each shot. Therefore, there is no (or minimum) rotation included.

Thus, images are selected from each extreme, two extremes for each dimensions (3 di-

mensions), 6 extremes in total. Colours are used to distinguish these image extremes. Note in

Figure 5.11, yellow and green are the extremes of the first dimension; cyan and magenta for

the second, and black and yellow for the third. Finally, images are shown to analyse what the

extremes mean.

Figure 5.12 shows two different images at the extremes of the first eigenvector. The image

in the left is one of the yellow dots of the plot in Figure 5.11 and the right image, the green

dots. In a similar way, images in Figure 5.13 refer to cyan (left image) and magenta (right

image). Finally, Figure 5.14 show the left image corresponding to yellow dots and the right

image corresponds to black dots of the plot in Figure 5.11.

It can be inferred from Figures 5.12, 5.13 and 5.14 that the first eigenvector is concerned

with size of the hand/arm and illumination, the second mostly about translation and the third
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FIGURE 5.11: Plot of the images projected into PCA space (3 first eigenvectors) for the 3,304
images of the 9 first frames of each person/shape/shot

FIGURE 5.12: Visualization of the images corresponding to the variation along the first
eigenvector (see Figure 5.11)

about shape and size.

In order to understand how the manifolds behave according to different shapes and dif-

ferent people the colour have been changed of some points in the plot. Figure 5.15 shows the

manifolds, with different colours for different people. Note that each person forms a unique

manifold at different places in space.

Figure 5.16 shows the manifolds, with different colour for different handshapes, with A
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FIGURE 5.13: Visualization of the images corresponding to the variation along the second
eigenvector (see Figure 5.11)

FIGURE 5.14: Visualization of the images corresponding to the variation along the third
eigenvector (see Figure 5.11)

= yellow, G = red, M = magenta, R = cyan, W = green and Y = black. It is possible to identify

different handshapes falling at different places in space.

5.3 Experimental Results

In this section, results of comparing end-to-end and feature-based approaches applied to Irish

Sign Language dataset is reported. Evaluation is shown in terms of Recognition Accuracy,

which is defined as follows:

Recognition Accuracy =
1

Ntest

Ntest

∑
i=1

(1−|
−−→
yi

true−
−−−−−→
yi

predicted |) (5.3)

where −−→ytrue and −−−−−→ypredicted refer to the ground truth and predicted outputs respectively, and

|−−→ytrue−−−−−−→ypredicted | is the distance between them. For the specific case of CNN with Keras, the
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FIGURE 5.15: Manifolds (PCA projection) with different colours for the 6 different people

FIGURE 5.16: Manifolds with different colours for different shapes (6 shapes only) for all
people

output is a vector of Nshape dimensions containing the probabilities of being the ytrue. In this

thesis the maximum probability was taken as the predicted shape ypredicted .

Experiments in this chapter were made in Python 3.5, scikit-learn 0.19.0, and Keras 2.0.6,

running on Windows 7, on an Intel Core i7 CPU @3.4GHz with 16GB RAM. The CNN was

trained on an Nvidia Titan X GPU with 12GB RAM.
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5.3.1 End-to-end Classification

In the end-to-end approach the images were used without any pre-processing or resizing. For

the CNN approach pixels were divided by 255 for normalization. For the other classifiers

images were only vectorized. Finally, for each approach/classifier the effect of blurring is

tested.

Figure 5.18 illustrates one sample image of the testing dataset. Figures 5.19 show the

responses of the CNN model’s first convolutional layers and Figures 5.20 the feature maps of

the first max pooling layer. It can be seen that the model learns filters that respond to the salient

part of the hand, that is the fingers, which results in brighter pixel values in the heat map.

It can be inferred from Figure 5.19 that each map appears to pick out a different com-

ponent of the hand-shape, e.g. one picks out the right edge of the arm, one picks out the left

edge, another picks out the bottom of the arm and there are several that respond to different

parts of the hand including one or two that respond to the thumb. Some feature maps appear

to respond to global features of the image, e.g. there one or two that respond to the whole

area of the image and there is another that appears to respond to the horizontal translation of

the hand/arm. Figure 5.20 – the first pooling layer – are simply downsampled versions of the

images in Figure 5.19. As the image size gets smaller at each stage it is difficult to visualise

the information in the remaining layers.

Figure 5.17 shows the performance progress of the model during the training with 100

iterations, for the DBi dataset. The model starts to improve in the first few iterations, with

only 3 iterations the testing accuracy exceeds 90% and after 43 iterations the testing accuracy

exceeds 99%.
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FIGURE 5.17: Training and testing curves of the CNN model, with 100 iterations, for the
DBi dataset, recognition accuracy reaches 90% after only 3 iterations

FIGURE 5.18: Sample of image used to show the result of the layers of the CNN approach,
see Figures 5.19 and 5.20

Finally, CNN was tested with blurred images. The kernel size chosen was (15,15) be-

cause for PCA it has shown the optimum accuracy curve (Figure 5.25). It is possible that

CNNs carry out their own blurring on the images. Blurring is a convolution operation and it

showed an insignificant change in testing accuracy for CNN (Tables 5.4 and 5.5), proving that

pre-processing is not important for this technique.
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FIGURE 5.19: Feature maps of the CNN’s first convolutional layer from the image shown in
Figure 5.18
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FIGURE 5.20: Feature maps of the first max pooling layer of the CNN’s model, from the
Figure 5.18
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For CNN and the remaining classifiers, such as decision trees, SVM, MLP, LDA and k-

NN, accuracy is shown in Table 5.4 for DBr and in Table 5.5 for DBi. As can be noted the

highest accuracy is with CNN. However, SVM and k-NN showed very high accuracy as well.

MLP showed the worst accuracy among the classifiers, because this technique mostly depends

on a small number of features instead of raw pixels. Some classifiers showed improved results

for blurred images, i.e. k-NN, LDA and SVM. However, CNN seems to not benefit from

blurring.

Figure 5.21 shows the accuracy for the iterative dataset DBi and for the random dataset

DBr for non-blurred images for the end-to-end approach. Note the iterative method showed

improved accuracy for decision trees, LDA, SVM and k-NN whereas MLP and CNN showed

slightly improved results for random selection.

FIGURE 5.21: Accuracy according to dataset (DBi and DBr) and classifiers for the end-to-end
approaches, note that the best accuracy is given by CNN, followed by SVM and k-NN

Figure 5.22 shows the average time and standard deviation to recognize one image in

seconds. Ten images are used to measure the time and the mean is taking. For CNN and MLP

100 iterations are considered. Time was measured for different end-to-end classifiers. Note

that the shortest classification time is with decision trees followed by LDA, and the classifier

that took the longest was SVM. Taking into account speed and accuracy k-NN provided the

best accuracy with a still short time followed by CNN.
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FIGURE 5.22: Average time to classify one image according to the classifier for end-to-end
approaches, note that the slowest classifier was SVM followed by CNN

TABLE 5.2: SVM classifier for end-to-end approach with different kernel functions for DBr,
the best accuracy is given by polynomial kernel and blurred images

kernel Non-blurred Blurred

Poly 97.86% 99.80%
Linear 84.40% 72.77%
Sigmoid 4.38 % 4.01%

Figure 5.23 shows a projection of the training data over the LDA space. Note that contrary

to PCA, blurring does not help to make the handshapes more separated. However, it makes

them even closer. It explains why the accuracy for LDA decreases for blurred images.

5.3.1.1 SVM Classifier

The SVM classifier was used with different kernels. The first is the polynomial kernel (degree

3); the second is the sigmoid kernel and the third is the linear kernel.

Table 5.2 shows the accuracy according to the kernel functions for DBr. Note that the

best accuracy for the polynomial kernel is 99.80% for blurred images and the lowest is the

sigmoid kernel with 4.01%. Linear kernel showed 84.4% accuracy for non-blurred images and

72.77% for blurred images, proving that non-linear kernel is not the best function for SVM in

this dataset.
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(a) Non-blurred images

(b) Blurred images

FIGURE 5.23: Projection of training data into LDA space, each colour represents one shape,
in this case blurring does not help to separate the classes

5.3.2 Feature-based Classification

As stated in Section 3.2.1.1 PCA is used in order to reduce the dimensionality and extract

features. The highest number of eigenvectors used was 100.

The first classifier tested was the k-NN algorithm, with k = 1 and Euclidean distance.

Each testing image was projected into the training dataset eigenspace and classified according

to the nearest point (shortest distance). This was run on two different datasets, DBi and DBr. In

addition, it will be shown in Section 5.3.2 how different levels of blurring affect the accuracy

in DBb.
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The accuracy in recognising the correct sign strongly depends on the number of the eigen-

vectors (dimensions) considered. For example, in DBi for Di = 15, accuracy is 81.7%. When

using more eigenvectors the accuracy increases as well. e.g. for Di = 60 the accuracy is 91.4%.

Figure 5.24 shows the accuracy according to the number of eigenvectors for DBi and

non-blurred images. It is possible to identify that a plateau starts around the 40th eigenvector

and above. This means that there is no need to consider a large number of eigenvectors in the

recognition process.

FIGURE 5.24: Recognition accuracy according to the number of eigenvectors for DBr, note
that 40 or more eigenvectors give a improved accuracy

Figure 5.25 shows the accuracy according to the number of eigenvectors and according to

the Gaussian blurring kernel size for DBi and DBr testing dataset. It is clear that blurring helps

to reduce the number of eigenvectors needed to obtain a satisfactory accuracy. This finding

is consistent with earlier studies showing the positive effect of image filtering with blurring

on PCA by reducing the non-linearity in the manifolds within the eigenspaces Farouk et al.

(2013). In addition, it is noticeable that there is an optimal result in the blurring with kernel

size (15,15). For that reason, all other experiments from now on will use this kernel size.

Table 5.3 show the accuracy performances using k-NN according to different values of

k on the DBi for feature-based approaches using PCA with 100 eigenvectors. The Gaussian

kernel blurring size was set to (15,15) . It is noticeable that the optimum number of neighbours
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TABLE 5.3: Classifier performances using PCA with 100 eigenvectors and k-NN according
to k in the DBi, k = 1 has the highest accuracy

k Non-blurred Blurred

1 97.60% 98.79%
2 96.21% 98.01%
3 96.92% 98.46%
4 94.47% 96.04%
5 93.08% 94.76%

k is only 1. In addition, different metrics for the k-NN were tested, for the Manhattan distance,

with k = 1 for the same dataset the accuracy was 98.05% for non-blurred images and 99.38%

for blurred images.

Figure 5.26 shows the accuracy for the iterative dataset DBi and for the random dataset

DBr for non-blurred images and feature-based approaches with 100 eigenvectors. Note that

iterative dataset did not show improved accuracy for PCA+SVM, PCA+LDA and KPCA+k-

NN, for PCA+MLP the difference is insignificant.

In addition to k-NN, different classifiers were tested over PCA data, such as decision tree,

LDA, SVM and MLP. Table 5.4 and 5.5 report the accuracy for each classifier, over the DBr

and DBi datasets, for either blurred and non-blurred images.

For this experiment, 100 eigenvectors were used and Gaussian kernel blurring size was

(15,15) for the blurred images. Note that blurring helps all tested classifiers and the best ac-

curacy is obtained with PCA+SVM for the feature-based approach. PCA+LDA showed the

lowest accuracy, probably because a linear classifier is not the best to classify overlapping man-

ifolds, compared to the other techniques (see Table 5.2). Different to what Al-Taie et al. (2017)

believe, in this case LDA showed a lower accuracy compared to PCA. A non-linear manifold

learning technique was tested with Kernel PCA + k-NN which showed lower accuracy than

PCA+k-NN.

Table 5.4 and Table 5.5 show how classifiers behave with blurred and non-blurred images

for DBi and DBr respectively. For this experiment Gaussian kernel blurring size was (15,15)

for blurred images and 100 eigenvectors for PCA. Note that the use of blurring over images
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(a) DBi testing dataset

(b) DBr testing dataset

FIGURE 5.25: Accuracy according to the blurring level and number of eigenvectors for DBi
and DBr using PCA+k-NN

improved the accuracy for decision trees, SVM and k-NN. The classifiers CNN and MLP

depend on the dataset DBi and DBr. However, the difference in accuracy is extremely low. In

all the cases that blurring improved upon the results with blurred images, the improvement was

considerably low. MLP showed the lowest accuracy over all the techniques, probably because

this classifier there are a plethora of parameters to be tuned for use with high dimension data,
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TABLE 5.4: Classifier performances in the DBr, 100 eigenvectors for PCA and kernel blur-
ring size (15,15), polynomial kernel for SVM and 100 iterations for CNN; the best accuracy

is given by CNN and SVM

Model
End-to-end accur Feature-based accur.

Non-blur. Blurred Non-blur. Blurred

CNN 99.80% 99.58% - -
MLP 6.01% 5.61% 98.56% 99.50%
Decision trees 87.21% 88.81% 76.45% 77.36%
k-NN (k=1) 95.50% 96.91% 94.56% 95.90%
LDA 74.41% 53.44% 32.72% 38.82%
SVM 97.86% 99.80% 99.61% 99.87%
KPCA + k-NN - - 91.74% 95.14%

TABLE 5.5: Classifier performances in the DBi, 100 eigenvectors for PCA and blurring size
(15,15), polynomial kernel for SVM and 100 iterations for CNN; the best accuracy is given

by SVM followed by CNN

Model
End-to-end accur Feature-based accur.

Non-blur. Blurred Non-blur. Blurred

CNN 99.28% 99.78% - -
MLP 5.48% 6.00% 98.56% 99.50%
Decision trees 92.05% 93.97% 85.09% 85.56%
k-NN (k=1) 98.80% 99.28% 97.60% 98.79%
LDA 79.79% 56.78% 31.46% 39.56%
SVM 99.88% 99.99% 98.76% 100.00%
KPCA + k-NN - - 87.25% 91.05%

such as these images without any extraction of features. The second lowest accuracy was with

LDA, probably because a linear classifier is not the best for this kind of data with such high

dimensions (see Table 5.2). CNN showed the best accuracy for non-blurred image for DBr, it

reinforces the idea that CNN convolves a input image with a filter such as Gaussian blurring.

Figures 5.27 show the average time and standard deviation to recognize one image in

seconds. Ten images are used to measure the time and take the mean for PCA approach with

100 eigenvectors. Time was measured for feature-based approaches and different classifiers.

Note that the shortest classification time is with for PCA+LDA followed by PCA+decision

trees, and the classifier that took the longest is PCA+SVM. Taking into account speed and

accuracy PCA+MLP provided the best accuracy with a still short time.
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FIGURE 5.26: Accuracy according to dataset (DBi and DBr) and classifiers for feature-based
approaches, 100 eigenvectors for PCA and non-blurred images; the highest accuracy was

with MLP and SVM

FIGURE 5.27: Average time to classify one image according to the classifier for feature-based
approach; the slowest classifier was PCA+SVM followed by k-NN

Considering time (Figure 5.27) and accuracy (Figure 5.26), PCA + MLP has the best

combination of accuracy and speed.

5.3.2.1 PCA+SVM Approach

At this stage three main kernel types were tested for PCA+SVM approach. The first is the

radial basis function kernel or RBF kernel (Gaussian), the second is the sigmoid kernel and
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the third one is the polynomial kernel (degree 3).

Figure 5.28 shows the accuracy according to the value of gamma value for SVM classifier

over eigenvectors with Gaussian kernel for DBr considering 100 eigenvectors. Note that the

best accuracy for Gaussian kernel is 94.89%, still lower than the sigmoid kernel with 99.61%.

FIGURE 5.28: Accuracy for PCA+SVM according to the value of Gamma for Gaussian
kernel

5.3.3 Analogy between PCA and CNN

FIGURE 5.29: Comparison of accuracy, PCA with number of eigenvectors (blurred and non-
blurred images) and CNN iteration number, both for DBi; note the accuracy for CNN reaches
a very high value with just 3 iterations, whereas PCA depends on certain number of eigen-

vector for approximate CNN curve
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While understanding that PCA and CNN are different approaches, it is possible to see

their similarities.

PCA uses eigenvectors and CNN uses feature maps and iterations. Using more eigen-

vectors for PCA results in preserving more information from the original data whereas more

feature maps for CNN results in more information preserved as well. Each eigenvector detects

a feature of the data. That is similar to the convolutional filters in the feature maps in CNN,

note that images displayed in Figure 5.19 are comparable with the images in Figure 5.9 and

Figure 5.10 which show similar responses for different eigenvectors.

Layers in the CNN are comparable to stages in multi-stage PCA. Because a layer in a

CNN operates on the output from the previous layer, in the same way the second-stage PCA

operates on the output from the previous stage.

The manifolds/interpolation in PCA space are similar to the non-linear parts of the CNN,

i.e. the fully-connected layers.

It has been shown that blurring helps PCA accuracy and it is possible that in the similar

way CNN convolves an image with a kernel obtaining a similar effect. In that way the number

of iterations help in adjusting the weights of the filters by backpropagation.

Basically, the difference between PCA and CNNs is that in PCA the human user has to

choose which points to interpolate to create the manifolds, whereas in CNNs the algorithm

does that. Moreover, in creating the second-stage PCA the human user has to select which

subsets of the points in the first stage are going to be used for the second-stage, whereas the

CNN does that itself.

Figure 5.29 shows a comparison of accuracy of PCA and CNN. The y-axis shows the

accuracy in % and the x-axis represents the number of eigenvectors for PCA and iteration

number for CNN. Note that CNN has shown an improved accuracy.

Figure 5.30 shows the time to recognize one image in seconds. A hundred images were

used to measure the time. For PCA it used 100 eigenvectors and k-NN for classification, CNN
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FIGURE 5.30: Comparison of time to recognise 100 images (one at each time) using PCA+k-
NN and CNN, note time for PCA is considerable shorter

was iterated 100 times because this number provided a good accuracy as an empirical result.

Note that the time is shorter for the PCA+k-NN approach.

5.3.4 Results for Missing Persons in the Training Stage

In this section the performance of the PCA and CNN approaches are presented for the missing

persons datasets DB1, DB2 and DB3.

Figure 5.31 shows the accuracy for the CNN approach according to the number of itera-

tions whereas Figure 5.32 shows the accuracy for the PCA+k-NN approach according to the

number of eigenvectors. Note that in both cases the accuracy is quite low. However, CNN

showed improved results for these case scenarios.

The best accuracy for the CNN approach when removing 3 persons from the training

dataset was 34.27%, removing 2 persons 35.80% and removing one person 31.24%. For the

PCA+k-NN approach when removing 3 persons from the training dataset the accuracy was

12.70%, for two persons out 9.55% and for 1 person out 10.28%. The best accuracy for CNN

was for DB2 and for PCA+k-NN for DB3. It is to be expected that the person chosen to be out

of the dataset influences the accuracy. However, only a few of the possible experiments are

tested.
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FIGURE 5.31: Classification accuracy for persons out of the training (DB1, DB2 and DB3)
using CNN approaches, even with low results CNN still performs better than PCA+k-NN

(Figure 5.32)

FIGURE 5.32: Accuracy for persons out of the training dataset (DB1, DB2 and DB3) using
PCA+k-NN approach, note accuracy is lower than CNN (Figure 5.31)

Figure 5.33 shows PCA manifolds for different persons out of the training set DB1. For

this experiment 100 eigenvectors were used, applied over non-blurred images. The classifier

used was k-NN with k = 1. Blue dots represent the training set and the red dots the person

used to test. Note that testing points appear in different position in the space, causing different

accuracy. Table 5.6 shows the accuracy for each person and the number of training and testing

images. In addition, the same table shows accuracy for DB2 and DB3 with different persons

out of the training set.
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(a) Person 1 out (b) Person 2 out (c) Person 3 out

(d) Person 4 out (e) Person 5 out (f) Person 6 out

FIGURE 5.33: PCA manifolds for different persons out of the training set, variations of DB1

TABLE 5.6: Classifier performances in the DB1, DB2 and DB3 according to person(s) out
(PCA with 100 eigenvectors, non-blurred images and PCA+k-NN

Person(s) out Accuracy (%) Ntrain Ntest

1 9.18 21,043 7,914
2 8.45 20,433 9,134
3 12.57 20,910 8,180
4 14.10 20,735 8,530
5 23.76 20,858 8,284
6 11.22 21,021 7,958
1, 3 10.49 33,512 16,488
2, 4 17.52 33,536 16,464
3, 5 11.47 32,336 17,664
4, 6 11.48 33,906 16,094
1, 5, 5 14.32 25,622 24,378
2, 4 ,6 10.12 24,378 25,622

5.3.5 Kernel PCA

Kernel Principal Component Analysis (Kernel PCA or KPCA) is a non-linear extension of

PCA. Generally, Kernel PCA can provide an improved recognition rate compared to classi-

cal PCA. The reasons for this improvement are: Kernel PCA uses an arbitrary number of

non-linear components, whereas classical PCA uses just a limited number of linear principal

components; Kernel PCA has more flexibility than ordinary PCA since it can choose different

kernel functions, e.g. Gaussian kernel and polynomial kernel, for different recognition tasks
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Wu et al. (2015).

The idea of Kernel PCA is to map the input space into a feature space by non-linear map-

ping and compute the principal components in that feature space. In any algorithm that can be

expressed simply in terms of dot products, this kernel method enables the construction of dif-

ferent non-linear versions of the original PCA algorithm. When compared to other non-linear

methods, one advantage of Kernel PCA is that it does not involve non-linear optimisation. It

only requires linear algebra, making it as simple as classical PCA Lee et al. (2004).

Figure 5.34 shows the relation between a linear PCA and a Kernel PCA. The basic idea is

to use a kernel function k instead of a dot product. Thus, kernel PCA is performed in a possibly

high-dimensional space F . The dotted lines are lines of constant feature value. This kernel

function is similar to the kernel function used in SVM Scholkopf et al. (2012). Therefore, in

the case of a polynomial kernel, rather than using the dot product function k(x,y) = (x·y) the

function k(x,y) = (x·y)d is used, where d is the degree of the polynomial kernel, this function

changes according to the chosen kernel.

FIGURE 5.34: Illustration of linear PCA and Kernel PCA

In this section Kernel PCA is applied over the DBr dataset. For this approach three dif-

ferent kernels were tested and the results compared to traditional PCA. The classifier used was

k-NN with k = 1 and Euclidean distance. The first kernel is the polynomial kernel with degree

3, the second kernel is the sigmoid kernel, and the third is the Gaussian kernel.

Figure 5.35 shows manifold for traditional PCA and for the three different kernels in

KPCA. Note that the shape depends completely on the kernel used for the Kernel PCA ap-

proach. Note that traditional PCA and Kernel PCA showed very similar shapes. Blue dots
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represent the training images and the red dots the testing images for DBr and non-blurred

images.

(a) Traditional PCA (b) Kernel PCA with polynomial kernel

(c) Kernel PCA with sigmoid kernel (d) Kernel PCA with Gaussian kernel

FIGURE 5.35: Comparison of manifolds for different dimensional reduction approaches,
PCA and KPCA with different kernel functions

Figure 5.36 shows the accuracy for Gaussian Kernel PCA + k-NN according to gamma

for DBr and non-blurred images. Note that as gamma decreases the accuracy increases until it

reaches a plateau.

Figure 5.37 shows the accuracy for PCA + k-NN approach and Kernel PCA + k-NN with

different kernels for DBr and non-blurred images. Note that the best accuracy is still given by

traditional PCA followed by Gaussian kernel with gamma = 1/100000000.

Table 5.7 shows the accuracy for DBi and DBr using Kernel PCA with polynomial ker-

nel (degree 3) and k-NN classifier with k = 1 and Euclidean distance. Note that accuracy is

improved for the iterative selection of training and testing split dataset DBi, probably because

it tends to have more similar frames. In addition, both datasets show improved accuracy for

blurred images.
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FIGURE 5.36: Accuracy according to the value of gamma for Gaussian kernel in KPCA

FIGURE 5.37: Accuracy according to the kernel function in KPCA and traditional PCA +
k-NN, PCA performed the highest accuracy

TABLE 5.7: Classifier performances for DBi and DBr with KPCA, blurred and non-blurred
images

DB Non-blur. Blurred

DBi 91.74% 95.14%
DBr 87.24% 91.05%

5.4 Conclusions

In this chapter a new dataset for Irish Sign Language (ISL) was introduced. Furthermore, a

filter to select the most distinct frames was proposed. Finally, different techniques were tested
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over this large dataset containing 50,000 images and 23 handshapes for ISL. This paves the

way for more in-depth research in this area that has been hindered by the lack of large public

datasets.

Two manners of separating the testing and the training dataset were proposed as well.

The first was an iterative method where every second image was a test image. The second

method was a totally random selection. It was followed by Gaussian blurring being applied

over images and accuracy tested over non-blurred and blurred cases. Blurring showed im-

proved accuracy in the majority of the cases.

A comparative study of using end-to-end approaches and feature-based approaches in

recognising handshapes were reported. Results showed that, contrary to common belief, hand-

crafted features are still strongly competitive against deep features extracted using convolu-

tional neural networks (CNN).

Mainly, experiments were done using Principal Components Analysis (PCA) and CNNs

for handshape recognition. On the one hand, CNN showed more accurate performances than

PCA/KPCA for non-blurred images in DBr. On the other hand PCA+SVM showed a higher

accuracy for non-blurred images among the feature-based approaches for the same DBr. Al-

though the improvement is slight, it is worth noting that CNN did not need any pre-processing,

while for PCA blurring was needed to improve the accuracy. Furthermore, time for classifi-

cation is considerably shorter for the PCA-based approach than for CNN. In addition, some

outputs of the eigenvectors of the PCA approach were shown and an initial analogy between

PCA and CNN was traced.

The overall best accuracy was shown with PCA+SVM for blurred images in the DBi

dataset. Most probably because this iterative selection method of splitting testing and training

images is vulnerable to overfitting. Still for DBi, the SVM classifier showed the best accuracy

in all cases. However, SVM is the slowest classifier followed by CNN. PCA+MLP showed

99.32% accuracy for DBi and k-NN applied direct over images showed 99.28% with k = 1 for

the iterative selection (DBi). CNN showed extremely high accuracy in all tested cases (all over

99%).
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The worst case scenario was for the end-to-end approach using MLP with accuracy

around 5.5%, which can imply that MLP depends on the kind of features. The second worst

case was for the classifier LDA with or without PCA. Considering time for classification, the

best accuracy and speed was given by PCA approaches especially for PCA+MLP.

One last experiment was done with a non-linear manifold learning technique Kernel PCA.

KPCA was applied over the dataset with polynomial kernel and k-NN to classify. Comparing

to PCA+k-NN, KPCA+k-NN showed a lower accuracy. It proves that non-linear PCA does

not necessarily work better than the traditional linear PCA.
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Conclusions

This chapter concludes this thesis showing a summary of the research, contributions for the

community and conclusions taken after a journey in handshape recognition studies. Finally

directions for future research are presented.

6.1 Summary

This thesis proposed a new dataset for Irish Sigh Language (ISL) extending the previous

dataset proposed by Farouk (2015) from 20 shapes to 23 static shapes plus 3 dynamic shapes.

This new dataset is composed of videos and frames from six different human subjects per-

forming hand gestures in a plane rotation.

Furthermore, a sequence of experiments with PCA was introduced with the use of inter-

polation of manifolds and eigenspaces creating artificial data able to recognise new incoming

objects with an accuracy higher than the original sparse dataset.

Finally, an extensive comparative study was done with different techniques (feature-based

approaches and end-to-end approaches) for hand gesture recognition, using different classi-

fiers; especially comparing PCA with CNN for the dense dataset.
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6.2 Conclusions

In this thesis a new dataset for Irish Sign Language was proposed. Furthermore, a method was

designed to filter the redundant images with an iterative image selection process in order to

select the images which keep the dataset diverse. This dataset contains 468 videos and more

than 58,000 images for the 26 letters of the ISL alphabet and 50,000 images after the filter

been applied to the 23 static handshapes. This paves the way for more in-depth research in this

area that was hindered by the lack of large public datasets.

In Chapter 4 Principal Component Analysis (PCA) was applied in more than one stage,

over a subset of blurred images of the proposed dataset in order to massive reduce the dimen-

sionality. Interpolation was explored for missing rotations and translations in order to make

datasets more robust, able to recognize a shape in any rotation and translation, even if the

translated or rotated image is not contained in the training dataset. Splines were used to in-

terpolate between manifolds and eigenspaces creating artificial data. This interpolation was

important because the illumination changes according to the arm rotation. The results showed

an improved accuracy when compared to the real data, answering Research Questions 1 (Is it

possible to use two-stage PCA and interpolation to generate artificial data which can augment

a sparse dataset? ) and 2 (Does the use of interpolated data increase the recognition accuracy

on a sparse dataset?). In addition, was shown how the number of eigenvectors, blurring level

and interval size influences the accuracy, answering Reserach Question 3 (How do parameters

such as blurring level, number of eigenvectors or sampling interval affect the accuracy?).

In Chapter 5 results of using PCA and Convolutional Neural Networks (CNNs) for hand-

shape recognition were reported. Experiments were made over the handshape images of the

new Irish Sign Language dense dataset, for blurred and non-blurred images. Improved perfor-

mances were obtained with CNNs compared to using PCA. Notwithstanding the fact that the

increase in accuracy is slight, it is important to note that CNN did not need pre-processing.

However, time for classification is considerably shorter for PCA-based approaches than for
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CNN and other end-to-end classifiers. This answered Research Questions 4 (How do feature-

based and end-to-end algorithms compare in recognition accuracy on a dense dataset?).

A comparative study of using end-to-end approaches and feature-based approaches in

recognising handshapes was presented as well. The results showed that, opposed to common

belief, handcrafted features are still strongly competitive against deep features extracted using

CNN. In addition, an experiment with a non-linear Kernel PCA was done showing that it

does not provide necessarily improved separation of the data. Finally, some outputs of the

eigenvectors of the PCA approach were shown and an initial analogy between PCA and CNN

was traced.

6.3 Research Contributions

This thesis proposed three different contributions to the field of handshape recognition applied

to ISL. The first contribution was a new dataset for ISL with a redundancy filter. The second

was the use of interpolation over PCA manifolds and PCA eigenspaces. The third contribution

was a comparative study between end-to-end and PCA-based approaches.

• New Irish Sigh Language Alphabet Dataset A new dataset for ISL was proposed.

The dataset contains 468 videos, filmed from 6 different human subjects (3 males and 3

females), resulting in more than 58,000 frames representing the 26 alphabet letters. A

selection of 50,000 frames for 23 static gestures were made with a proposed redundancy

filtering. This dataset built on previous dataset with only 20 handshapes and a rather

smaller number of images and it is public available online.

• PCA with Interpolation PCA was applied in two-stages over the sparse dataset and

translations were artificially added in order to make the dataset more robust. Splines

were used to interpolate data and eigenspaces in order to create artificial data from the

original one. These data were either the projections of images into the eigenspaces

(manifolds) or the eigenspaces themselves (set of eigenvectors). They were used to
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improve the recognition accuracy over a sparse dataset significantly. In addition, it

was shown how parameters such as blurring level, number of eigenvectors or sampling

interval affected the accuracy.

• Comparison between CNN and PCA A deeper study was proposed with end-to-end

approaches (mainly CNN) and feature-based (PCA, KPCA), and different classifiers.

Probably for the first time a selection of different approaches and classifiers were applied

to one large dataset for ISL, showing the accuracy for each approach and how blurring

can affect the recognition process. All these experiments were done over the dense

dataset. Feature-based approaches are competitive in recognition accuracy with end-to-

end approaches having the advantage of time performance.

6.4 Directions for Future Research

Handshape recognition still has a long way to go in the research path, especially for 2D sys-

tems. This research offers interesting ideas for future research. Some of these possibilities are

described in this section.

• Dynamic Gesture Recognition As this thesis focused only on static hand gesture recog-

nition, one simple step forward is to recognize the dynamic shapes for the ISL (J, X and

Z). The dataset proposed already have videos and frames for these 3 shapes.

• Recognition from Videos Nowadays videos are commonly found on the internet. Actu-

ally, the idea of classifying single frames is a start to classifying frames in videos. This

could be applied in real time systems. Extending the algorithms proposed in this thesis

to video and building an automatic transcript system is an important step forward. For

this purpose, it might be interesting to explore sequential models that take into account

the time dimension, such as recurrent neural networks and hidden Markov models or a

neural architecture combining CNNs and RNNs.
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• Test different techniques for the sparse dataset As was done in Chapter 5 it would

be interesting to see how different techniques behave for a sparse dataset such as the

one used in Chapter 1. Even though it is known that not every technique allows interpo-

lation, at least different classifiers could be tested over the sparse dataset and over the

interpolated data.

• Deeper Comparisons This thesis proposed an initial comparison between PCA and

CNN. Is is clearly possible to research deeper in this comparative evaluation with shal-

low and deep models and a deeper analysis between the outputs of the PCA and CNN

approaches.

• Non-linear Techniques PCA is well known for dimensionality reduction and widely

used in computer vision problems. However, it is known that PCA extracts features lin-

early which may not be the best way to extract features from handshape images/videos.

Therefore, applying non-linear manifold learning techniques such as Isomap, Laplacian

eigenmaps, Multidimensional scaling, Isometric Feature Mapping, Locally Linear Em-

bedding and Non-linear Principal Component Analysis can lead this research to a step

forward for automatic Sign Language recognition. In this thesis a single experiment was

done with Kernel Principal Component Analysis.

• Extending to 3D 3D cameras and sensors are getting more common and less expensive

every day. This kind of sensor can provide much more information about the hand, mak-

ing it possible to create more precise systems for sign language real time recognition.

• Extension of the Dataset Even though that thesis introduces a new dataset with a rather

more frames for Irish Sign Language (Chapter 3), it still does not provide all the possible

movements for ISL. Videos with rotation in 3D, words and expressions are examples of

how this dataset can be extended.
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Althoff, F., Lindl, R., and Walchshäusl, L. (2005). Robust multimodal hand- and head gesture

recognition for controlling automotive infotainment systems. VDI Berichte, (1919):187–

205.

Anguita, D., Ghio, A., Oneto, L., Parra, X., and Reyes-Ortiz, J. (2012). Human Activity

Recognition on Smartphones Using a Multiclass Hardware-Friendly Support Vector Ma-

chine. Ambient Assist. Living Home Care, 7657:216–223.

Aran, O. and Akarun, L. (2010). A multi-class classification strategy for Fisher scores: Ap-

plication to signer independent sign language recognition. Pattern Recognit., 43(5):1776–

1788.

Arkenbout, E. A., de Winter, J. C. F., and Breedveld, P. (2015). Robust hand motion tracking

through data fusion of 5dt data glove and nimble VR kinect camera measurements. Sensors

(Switzerland), 15(12):31644–31671.

149



Bibliography

Barth, T. J., Keyes, D. E., and Roose, D. (2008). Principal Manifolds for Data Visualization

and Dimension Reduction, volume 58.

Baryshnikov, Y. DIMENSIONALITY REDUCTION AND MANIFOLD LEARNING. Avail-

able from: https://faculty.math.illinois.edu/{˜}ymb/nrv/tutorial/part2.

html{#}/1.

Bay, H., Ess, A., Tuytelaars, T., and Van Gool, L. (2008). Speeded-Up Robust Features

(SURF). Comput. Vis. Image Underst., 110(3):346–359.

Bedregal, B., Dimuro, G. P., and Costa, A. C. d. R. (2007). Hand Gesture Recognition in an

Interval Fuzzy Approach. Trends Appl. Comput. Math., 8(1):21–31.

Belkin, M. and Niyogi, P. (2001). Laplacian Eigenmaps and Spectral Techniques for Embed-

ding and Clustering. Nips, 14:585–591.

Biswas, K. K. and Basu, S. K. (2011). Gesture recognition using Microsoft Kinect R©. Autom.

Robot. Appl. (ICARA), 2011 5th Int. Conf., 2:100–103.

Bui, T. D. and Nguyen, L. T. (2007). Recognizing postures in vietnamese sign language with

MEMS accelerometers. IEEE Sens. J., 7(5):707–712.

Cerlinca, T. I. and Pentiuc, S. G. (2011). Robust 3D hand detection for gestures recognition.

Stud. Comput. Intell., 382:259–264.

Chaczko, Z. and Alenazy, W. (2016). Modelling Gesture Recognition Systems Zenon. J.

Softw. Syst. Dev., 2016:11.

Chai, X., Wang, H., and Chen, X. (2014). The devisign large vocabulary of chinese sign

language database and baseline evaluations. Technical report, echnical report VIPL-TR-14-

SLR-001. Key Lab of Intelligent Information Processing of Chinese Academy of Sciences

(CAS), Institute of Computing Technology, CAS.

Chan, T. H., Jia, K., Gao, S., Lu, J., Zeng, Z., and Ma, Y. (2015). PCANet: A Simple Deep

Learning Baseline for Image Classification? IEEE Trans. Image Process., 24(12):5017–

5032.

150

https://faculty.math.illinois.edu/{~}ymb/nrv/tutorial/part2.html{#}/1
https://faculty.math.illinois.edu/{~}ymb/nrv/tutorial/part2.html{#}/1


Bibliography

Charfi, N., Trichili, H., Alimi, A. M., and Solaiman, B. (2017). Bimodal biometric system

for hand shape and palmprint recognition based on SIFT sparse representation. Multimed.

Tools Appl., 76(20):20457–20482.

Chen, Q., Georganas, N. D., and Petriu, E. M. (2007). Real-time Vision-based Hand Gesture

Recognition Using Haar-like Features. 2007 IEEE Instrum. Meas. Technol. Conf. IMTC

2007, pages 1–6.

Chen, Q., Xue, B., Sun, Q., and Xia, D. (2010). Interactive image segmentation based on

object contour feature image. 2010 IEEE Int. Conf. Image Process., pages 3605–3608.

Cheng, H., Yang, L., and Liu, Z. (2015). Survey on 3D Hand Gesture Recognition. IEEE

Trans. Circuits Syst. Video Technol., PP(99):1.

Chomat, O., Colin, V., Hall, D., and Crowley, J. L. (2000). Local scale selection for Gaussian

based description techniques. Eur. Conf. Comput. Vis., pages 117–134.
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