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Abstract
Deep Image Representations for Instance Search

Eva Mohedano

We address the problem of visual instance search, which consists to retrieve all

the images within an dataset that contain a particular visual example provided to

the system. The traditional approach of processing the image content for this task

relied on extracting local low-level information within images that was “manually

engineered” to be invariant to di↵erent image conditions. One of the most popular

approaches uses the Bag of Visual Words (BoW) model on the local features to

aggregate the local information into a single representation. Usually, a final re-

ranking stage is included in the pipeline to refine the search results. Since the

emergence of deep learning as the dominant technique in computer vision in 2012,

much research attention has been focused on deriving image representations from

Convolutional Neural Networks (CNN) models for the task of instance search as a

“data driven” approach to designing image representations. However, one of the main

challenges in the instance search task is the lack of annotated datasets to fit CNN

models parameters.

This work explores the capabilities of descriptors derived from pre-trained CNN

models for image classification to address the task of instance retrieval. First, we

conduct an investigation of the traditional bag of visual words encoding on local

CNN features to produce a scalable image retrieval framework that generalizes well

across di↵erent retrieval domains. Second, we propose to improve the capacity of the

obtained representations by exploring an unsupervised fine-tuning strategy that allow

us to obtain better performing representations at the price of losing the generalization

of the representations. Finally, we propose using visual attention models to weight

the contribution of the relevant parts of an image to obtain a very powerful image

representation for instance retrieval without requiring the construction of a large

and suitable training dataset for fine-tuning CNN architectures.



Chapter 1

Introduction

With the proliferation of mobile devices, millions of images and thousands hours of

video content are uploaded every day to the internet without explicit annotation of

their content. Content based image retrieval (CBIR) systems make use of image

representations, which are a numerical representation of the image content, to address

this task. The challenge is to design algorithms that discriminatingly represent the

image content while keeping a low memory requirement and fast retrieval times.

The purpose of this chapter is to provide an introduction to content based image

retrieval and the instance search problem. We present motivations for the thesis and

the hypotheses and research questions that we address during this work.

1.1 Content based image retrieval (CBIR)

Before the emergence of content based image retrieval (CBIR) [117] as a research field

in the early ’90s, the task of searching images within an image database consisted

of creating text annotations that described the content of the images. The images

themselves were not really part of the database; they were only referred to by text

strings or pointers. The user could then search for a particular image by entering a

text description or tags, to retrieve all images annotated with the same description.

Some representative text-based image retrieval systems and surveys can be found
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Figure 1.1: Illustration of the subjectivity of the human textual annotation. A
variety of textual tags that can be associated to a particular image. The subjectivity
on the textual annotations may cause unrecoverable mismatches in later retrieval in
text-based image retrieval systems.

in [19, 21, 20, 122].

This approach presented two major issues. The first is that it involves the manual

annotation of the image dataset, a labourious and tedious task, which nowadays with

the volume of digital media created becomes impractical. Just to give an idea, more

than 20,000 photos are shared every second in Snapchat, it would take about 10 years

to view all the photos shared in the last hour 1. 196 million images are uploaded

every day to Facebook, 80 million photos are uploaded per day to Instagram and

about 220 hours of video are uploaded per hour to Youtube 2. This is just considering

some of the most popular social-media websites: surveillance cameras, pictures or

videos capturing by drones, or personal photo collections are not taken into account

in those statistics. Given the volume of images generated nowadays it is impractical

to manually and exhaustively generate an accurate annotation of the image content.

The second major and even more important issue of a text-based image retrieval

system is that it relies solely on a textual annotation of an image. A single image

1https://www.omnicoreagency.com/snapchat-statistics/
2http://www.smartinsights.com/internet-marketing-statistics/happens-online-60-seconds/
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Figure 1.2: Di↵erent ways of sorting a dataset items based on the relevance to a
particular query. (best view in color)

can be described in multiple ways due to the subjectivity of human perception. For

example, the image in the Figure 1.1 can be associated to the tag tree, but also we

could have provided a more accurate tag of oak tree. Instead of focusing on the tree,

we could have described the image as a sunset or we could have provided a more

abstract peaceful view or beautiful view tag regarding the kind of sentiments that

the image invokes. We could have just described it as field or nature or, if we are

lucky and we have a house with those views, we could have associated the tag my

garden or a combination of some of the mentioned tags. This subjectivity of textual

annotations may cause unrecoverable mismatches in later retrieval processes.

While textual annotation might change depending on the person generating the

descriptions, the content of the image (pixels) represent a more objective description

of the image content. CBIR aims then at organizing and structuring datasets of

images based on their content rather than the associated metadata. The images are

described using computer vision algorithms that “summarize” the content of the

image, capturing information about the colours, shapes and/or textures derived from

the pixels in the form of a numerical vector, also called an image representation.
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The user’s request is given in the form of a query image and the system produces

a list of images that are relevant to the query, ordered by a similarity score. The

notion of similarity is application dependent. Figure 1.2 illustrates this idea: given a

query image (represented with a blue plain circle), the images in the database can

be sorted based on the colour, the texture, or the shape. There is no “correct” way

of sorting the images in a database, and thus the notion of similarity depends on the

final application. One CBIR system can be focused on comparing low-level image

characteristics between images such as colours or di↵erent textures, while another

might focus on retrieving images semantically similar to the query example, taking

into account of the meaning of the actions and objects contained in the images [68].

1.2 Instance search

CBIR has been tackled mostly as the problem of instance-level image retrieval [96,

56, 54, 9, 39]. The notion of an “instance” specifically limits the search to “one”

instance of a semantic class (i.e to retrieve instances of one specific object, person or

location as in [6]). This contrasts with less specific retrieval pipelines in which any

instance of any member of a class will satisfy the search. For example an instance

search system would focus on retrieving the specific instance of the the fictional TV

show character Lassie dog instead of retrieving instances of dogs in general.

One of the main challenges of the instance search task is the lack of annotated

data to fit models to recognize a particular query example. Since the query image is

unknown, images should be described and indexed in a way such that, for example,

it is possible to perform a search of a particular building but also of a particular

person, logo, or item of clothing. This is particularly useful in real world scenarios

such as image search engines on the web, where the query instance is unknown, or

for organization of personal photo collections.

The method of processing the image content for image retrieval applications that

dominated during the years 2003 to 2012 [144] relied on extracting local low-level
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information within the images, specifically designed to be invariant to image scale

and rotation as well as to be robust to a�ne/perpective distortions, viewpoints

change, noise, illumination changes, background clutter or occlusions. So, a particular

instance could be recognized within an image and retrieved irrespective of all these

possible variations. Local descriptors were usually aggregated into a high dimensional

and sparse representation, allowing the construction of inverted files structures for fast

retrieval. A second step verifying the geometric consistency between matched images

was performed to further improve the performance of the results [114, 96, 3, 27, 6].

Since the emergence of deep learning as the dominant technique in computer

vision, particularly the use of Convolutional Neural Networks models [64], several

works have proposed using representations derived from CNN models pre-trained

for classification with a large dataset of images [9, 8, 125]. Many of these works use

a pre-trained CNN as a local feature extractor, from which features are typically

aggregated by direct sum/max pooling within convolutional layers [8? , 125] to

generate compact image representations. Some other recent works re-train the CNN

models optimizing for a task more related to the instance search, achieving a new

state-of-the art in di↵erent retrieval benchmarks [39, 100].

However, most of the approaches evaluate their performance in relatively “simple”

retrieval scenarios, mostly landmark or scene related, where the diversity in the

query domain as well as the relative position and sizes of the query instances are

limited.

1.3 Motivation

While several di↵erent works have shown the capability of CNN representations for

the task of instance retrieval, it is still unclear whether the performance of these

systems generalizes well in more realistic and generic scenarios. The purpose of this

thesis is to explore CNN models to construct an image representation suitable for the

instance search task that is not subject to any particular domain or type of instance,
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providing an e�cient system that is scalable to large and diverse datasets.

1.4 Hypotheses

The hypotheses of this work can be stated as follows:

H1) When building a global image representation from local CNN image

descriptors for retrieval, the aggregation of those descriptors into

a high dimensional sparse representations is “better” (in terms of

performance and e�ciency of the representation) than aggregating

them within the original local feature space.

We expect that the high dimensionality of global representation reduces the

chances that local features interfere during the aggregation step (in contrast to

performing direct pooling on the original local feature space [8? ]). Also, the

sparsity allows the construction of inverted file structures making the search

more e�cient. This scheme implemented with bag of visual words encoding

of hand-crafted local features has been widely explored and has represented

the core of many image retrieval systems since it was first proposed for image

retrieval by Sivic and Zisserman [114].

H2) Re-training a pre-trained CNN for the task of instance retrieval

is an appropriate procedure to build specialized but not generic

instance search systems. When a training dataset is available, recent works

have shown that fine-tuning CNN models for the retrieval task generates

feature representations that outperform the ones extracted from a pre-trained

classification model [9, 1, 39, 100]. However, their performance in more realistic

and generic databases remains unclear.

H3) Visual attention models are useful for the task of generic instance

retrieval.

Spatial weighting schemes on local convolutional features have been shown to
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be e↵ective and beneficial in some retrieval benchmarks [8? ]. Also, generating

a set of region CNN representations has been shown to be beneficial for the

instance search task, as a mechanism for detecting the most relevant parts of

the image to facilitate the search of a particular instance [110, 125, 39].

Visual attention models [13] mimic the capability of humans to focus cognitive

processing onto a subset of the environment. We hypothesize that attention

models can be useful and beneficial in the the construction of CNN visual

representations for retrieval.

1.4.1 Research questions

To address the first hypothesis, regarding the aggregation of local CNN features into a

high-dimensional sparse representation, we propose the following research questions:

H1-Q1 Is it possible to use the traditional BoW encoding on o↵-the-shelf local

representations to generate high dimensional and sparse representations

from local CNN representations to address the task of instance search?

H1-Q2 Is BoW-CNN better (in terms of performance and e�ciency) than direct

pooling techniques as used in the literature on local CNN descriptors?

H1-Q3 Is BoW-CNN a solution that generalizes well across di↵erent retrieval

benchmarks?

To address the second hypothesis, regarding improving o↵-the-shelf CNN networks

for the task of retrieval, we propose the following research questions:

H2-Q4 ) Is it possible to perform similarity learning in a particular dataset without

requiring additional data and expensive manual annotations?

H2-Q5 ) How does a fine-tuned model trained in a particular domain perform in a

di↵erent (domain related or not) dataset?

Finally, regarding the third hypothesis of using visual attention models to improve

CNN image representations for retrieval, we propose the following research question:
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H3-Q6 Are saliency models a good mechanism to weight the contribution of the

visual words/features derived from local CNN networks for the task of

instance search?

1.5 Thesis outline

The remainder of this thesis is structured as follows. Chapter 2 provides the technical

background for the thesis. We explain traditional approaches to generate image

representations. We introduce the concept of deep learning, describing convolutional

neural network models. We define the metric used for evaluating retrieval performance.

Lastly, we introduce commonly used retrieval benchmarks, mostly domain dependent,

and two specifically designed for generic instance retrieval as explored in this thesis.

Chapter 3 provides an exhaustive analysis of the existing work using CNN repre-

sentations for the instance search task. We start by describing the first approaches

that use the very top layers from a CNN as a global representation moving on to the

most recent approaches exploring the local information contained in convolutional

layers. We describe di↵erent ways to aggregate, weight and derive region or patch

level descriptors from convolutional layers. We also discuss di↵erent works that

specifically train a CNN architecture for the task of retrieval, and di↵erent approaches

for constructing the training dataset.

Chapter 4 revisits the traditional bag-of-visual-words (BoW) encoding as a new

aggregation method for local CNN representations. This aggregation method benefits

from high dimensionality and sparse representations to generate more discriminative

features that outperform other methods in challenging retrieval benchmarks. We

also apply spatial re-ranking techniques, taking benefit of the compact assignment

maps obtained to boost performance of the baseline system.

Since the proposed aggregation step based on BoW is an independent step when

building the final image representation, in Chapter 5 we develop a fine-tuning strategy

to adapt the features and encoding for the retrieval task. For this, we propose a
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method to perform fine-tuning within a dataset without requiring any additional

labeled images. We investigate the e↵ect of fine-tuning in di↵erent domains, finding

that fine-tuned CNN models for similarity learning is a good strategy for performing

instance search in a particular image domain, at the price of losing the generality of

the original o↵-the-shelf representations.

With the goal of finding a pipeline that generalizes in di↵erent instance search

domains, Chapter 6 investigates saliency models in combination with o↵-the-shelf

CNN representations to weight the contribution of each local CNN representation.

We obtain a system that achieves state-of-the-art performance regardless of the

domain of the instances to be retrieved, or specifically when we apply BoW for

aggregating the local representations. Finally, Chapter 7 presents the conclusions as

well as opportunities for future research.
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Background

2.1 Introduction

The aim of this chapter is to provide the technical background for the research

reported in this thesis. In particular, Section 2.2 describes traditional approaches,

where we describe scale-invariance image transforms and di↵erent aggregation tech-

niques for local image descriptors. Section 2.3 describes deep learning models, in

particular the convolutional neural networks used in this thesis. Section 2.4 describes

di↵erent similarity measurements that can be used to compare image representations

to generate a ranked list of images given an query image. Section 2.5 explains how

to measure the performance of a retrieval system. Finally, Section 2.6 describes

commonly used CBIR datasets. The fundamental concepts and methods described

here are used throughout the remainder of this thesis.

2.2 Engineered approaches to image representations

The traditional procedure for extracting relevant information from an image consists

of analyzing local patches over several interest keypoints, then aggregating local

information (vectors associated with the patches) into a single image representation.
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2.2.1 Scale-invariant feature transform

An image descriptor is a numerical representation of the image content (it can

encode information about the colour, the shapes, textures etc.). One of the most

popular descriptors in computer vision is the scale-invariant feature transform (SIFT)

developed by Lowe in 2004 [79]. It was specifically designed to be invariant to

di↵erent scales and rotations of the image. The “transform” term is applied because

the algorithm transforms the image data into scale-invariant coordinates relative to

the local features. It generates a large number of local descriptors that cover the

image over the full range of scales and locations, which facilitates recognizing small

objects in cluttered backgrounds or identifying partially occluded objects.

The algorithm consists of two main steps: keypoint localization, and keypoint

description. The following describes each of these steps in more detail.

2.2.1.1 Keypoint localization

SIFT employs the scale-space theory [75] to find the relevant keypoints using a set

of Gaussian kernels to represent the image at multiple scales. The idea is simple: if

there is no way to a-priori know what is the relevant scale to analyze an image, then

simultaneously consider multiple scales.

A particular scaled version of an image L(x, y,�) is realized by convolving the

original image with a Gaussian kernel:

G(x, y,�) =
1

2⇡�2
exp�(x2+y2)/2�2

, (2.1)

where G(x, y,�) is the Gaussian kernel characterized by the variance parameter �2.

The � represents the scale factor, and it controls the smoothness of the filtered

version of the original image. Figure 2.1 shows an example of a scale space for

one particular image. In this example, four di↵erent filtered versions (Ln(x, y,�n),

n 2 [1, 4]) of the original image are generated.

Once the image is represented at multiple scales, the di↵erence-of-Gaussian
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Figure 2.1: Examples of the multi-scale representation. Each filtered image
(L(x, y,�)) is obtained by convolving the original image with di↵erent four Gaussian
kernels.

(DOG) operator is used to locate stable keypoints. It is computed from the di↵erence

of two nearby scales separated by a constant multiplicative factor k:

D(x, y,�) = (G(x, y,�)�G(x, y, k�)) ? I(x, y)

= L(x, y,�)� L(x, y, k�).
(2.2)

In practice, an image is divided into “octaves”. In each octave N , the image is

set to a fixed resolution (H/2N�1,W/2N�1) that is filtered by a set of Gaussians.

The number of octaves and scales are hyperparameters. In particular, Lowe uses

4 octaves and 5 Gaussian kernels. Figure 2.2 shows an example of the space scale

generated for each octave, and how DOG are generated.

To detect the relevant keypoints, the local maxima and minima within a D(x, y,�)

are identified. If a pixel has the highest or minimum value when compared with

its eight neighbours and the nine neighbours in the scale above and below (See

Figure 2.3), then the location of the pixel taken as a candidate keypoint.

The obtained keypoints are further filtered to get more accurate results. Points

with low contrast are more sensitive to illumination changes. If these points are

not filtered, the same picture might have di↵erent keypoints under di↵erent lighting

conditions. To detect these points, the Taylor series expansion of the D(x, y,�) is

used to locate the real extrema within a region. If the intensity at this extema is
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Figure 2.2: The initial image is incrementally convolved with a Gaussian to produce
images separated by a constant factor k in scale space (column in the left). Adjacent
images are subtracted to produce the di↵erence-of-Gaussian images (column on the
right). Once a complete octave has been processed, Gaussian images are resampled
to have twice the initial value of � (reducing the spatial resolution by half). Image
source [79]

less than a threshold value (0.003 in the [79]), the keypoint is rejected.

D(x, y,�) have high responses to edges, which are not distinctive locations.

Similar to the Harris keypoint detector [42], the trace and the determinant of the

local Hessian matrix are used to identify and reject those keypoints associated with

edges.

2.2.1.2 Descriptor generation

The first step in feature construction is orientation assignment. Using the scale of

the point (L(x, y,�)), the gradient magnitude m(x, y) is computing following the

next expression:
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Figure 2.3: Maxima and minima of the di↵erence-of-Gaussian images are detected by
comparing a pixel (marked as X) to its 26 neighbours in 3⇥ 3 regions at the current
and adjacent scales (marked with circles). Image source [79]

m(x, y,�) =
p
(L(x+ 1, y,�)� L(x� 1, y,�))2 + (L(x, y + 1,�)� L(x, y � 1,�))2,

(2.3)

and the orientation of the image gradient ✓(x, y) is given by

✓(x, y,�) = tan�1

✓
(L(x, y + 1,�)� L(x, y � 1,�))

(L(x+ 1, y,�)� L(x� 1, y,�))

◆
. (2.4)

A region surrounding a keypoint is considered. The maximum orientation is

computed by generating a histogram of 36 bins where the orientation of each pixel is

weighted by the magnitude of the gradient and a Gaussian window centered on the

keypoint (with a � parameter set to 1.5 times the scale of the keypoint). Figure 2.4

shows an example of a 8⇥ 8 pixel window where each pixel is associated to an arrow

vector whose orientation and magnitude represents the orientation and magnitudes

of the gradient of L(x, y,�). On the left, an illustration of an 8-bin histogram of

orientations is displayed characterizing the whole window. Any point within 80% of

the highest orientation peak is used to create a new keypoint with the same main

orientation.

Each point is then described by location, scale, magnitude, and orientation (main
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Figure 2.4: 8-bin histogram based in the gradient orientations that characterizes a
particular keypoint. Image source [79]

Figure 2.5: SIFT visual: The first step consists of rotating the local coordinates
around a keypoint according to the main gradient orientation (left). Then, the 16⇥16
window is divided into 4⇥ 4 blocks, which are weighted by a Gaussian kernel. For
each block, an 8 bin histogram of orientation is created, generating a final descriptor
of 128 dimensions. Image source [79]

orientation of the region). To generate the final feature descriptor, the 16⇥ 16 region

is rotated according to the computed main orientation of the keypoint. Then, the

gradient region is further divided into 4 blocks (of 4⇥ 4 pixels each). A Gaussian

weighting around the center is again applied to weight the gradient magnitudes (with

� set to 0.5 times the scale of the keypoint). Finally, each block is described by

an 8 bin orientation histogram, where the contribution of the pixel is weighted by

the gradient magnitude, generating a representation of 4⇥ 4⇥ 8 = 128 dimensions.

The whole pipeline to generate the local descriptor of a keypoint is illustrated in

Figure 2.5.

Scale invariance is achieved by the Gaussian weighting around the interest

point, which determines the area of interest around the keypoint according to its

associated scale. Rotation invariance is achieved by rotating the local coordinates
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to the peak gradient orientation.

The final descriptor is further normalized to unit length to achieve illumination

invariance. In this way, the weighted entries in the histogram will be invariant

under local a�ne transformations of the image intensities around the interest point,

which improves the robustness of the image descriptors under illumination variations.

2.2.1.3 Matching of local image descriptors

Given a set of SIFT descriptors extracted for two images, the most straightforward

way to compare how similar the images are is to check the number of local matches

that they share. Each local descriptor of one image is compared against all the local

descriptors of the second image using the Euclidean distance, and the ones with

distances below a prescribed threshold are considered as a match. Unfortunately,

this strategy generates a large number of false positive matches.

A better criteria is to consider the distance between the closest match and the

second nearest match. This approach is known in the literature as the Nearest

Neighbour distance ratio (NNDR [79]): For a particular descriptor in the reference

image, all local features in the target image are sorted by their Euclidean distance.

The nearest neighbour descriptor is taken as a match only if the ratio between its

distance and the second nearest neighbour is less than 0.8. In Lowe’s experiments,

this procedure removed around 90% of false matches while discarding less than 5%

of the correct matches.

The SIFT algorithm generates hundreds to thousands of local descriptors per

image. Computing the nearest neighbour matching (NN) of all local descriptors in

a large dataset is highly computational demanding since it requires computing as

many distances as there are local descriptors in the dataset for every local descriptor

in the query image. Approximate methods, such as k-d trees [34], are often used to

speed-up the processing time over exhaustive search. In particular, the Best-Bin-First

(BBF) algorithm [10] is used in Lowe’s work [79] to approximate the search of local

matches by returning the closest neighbour with high probability.
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It is common to apply methods to ensure the geometric consistency among

matches, techniques such RANSAC [33, 96] are usually applied to improve retrieval

performance. This will be furthered discussed in Section 3.2.

2.2.2 Aggregation techniques

Aggregation methods “summarize” the local representations extracted from an image

into a fixed-length representation, reducing both memory storage and query search

time, since only a single representation is used per image. The following describes

three widely used aggregation methods for image retrieval: bag of visual words

(BoW), vector of locally aggregated descriptors (VLAD), and Fisher vectors (FV).

2.2.2.1 Bag of visual words

The most widely-used approach for CBIR is the bag of visual words (BoW), where

local features are extracted from each image and mapped to discrete visual words [76].

The presence of a certain image feature is treated like the presence of a word in a

text document. This approach can benefit from the construction of inverted files that

significantly speed up the retrieval time and storage requirements. An inverted index

is an index data structure storing a mapping from content (i.e visual words) to their

location in a database file (i.e the images in which those words occur). Figure 2.6

illustrates the main idea of an inverted file: an image is considered as relevant if it

shares some visual words with the query. This computation can be performed very

e�ciently by a matrix vector product using sparse matrix representations.

BoW encoding consists of two main steps: the visual codebook generation and

the encoding of the local features based on the obtained visual words.

The visual codebook (vocabulary) in the BoW model consists of partitioning

the local feature space into k non-overlapping regions, called Voronoi cells. The

centroids of these cells define the words of the codebook . k-means [77] is typically

used in this step. It is an unsupervised clustering algorithm that iteratively refines

the centroids, such that the average distance from a point to the center of its
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Figure 2.6: Main idea of an inverted file index for images represented by visual words.
Image source http://www.cs.utexas.edu/

~

grauman/courses/fall2009/papers/

bag_of_visual_words.pdf.

cluster is approximately minimized. Its objective can be described with the following

expression:

argmin
S

kX

i=1

X

x2S
i

||x� µi||22, (2.5)

where S = {S1, S2, ..., Sk} is the set of non-overlapping cluster assignments, Si is the

set of all points in cluster i and µi 2 Rd (d is the dimension of the local features,

i.e 128 for SIFT) is the centroid of the cluster i (mean of all the points in Si). The

objective function for k-means is non-convex and exact minimization is NP-hard.

Lloyd’s algorithm [77] finds a locally optimal solution. It proceeds as follows:

Given an initial set of (randomly initialized) centroidsK = {µi}, i 2 {1, ..., k}, the

objective function in Equation (2.5) can be approximately minimized by iteratively

following two main steps:

1. assign each descriptor in the dataset X = {x1, ....,xN} to the nearest neighbour

cluster a(xn) = argmin
i

||xn � µi||22.

2. re-compute the centroids µi =
1

|S
i

|
P

x2S
i

x based on the new assignment set S,

where |Si| denotes the cardinality of Si.

44

http://www.cs.utexas.edu/~grauman/courses/fall2009/papers/bag_of_visual_words.pdf
http://www.cs.utexas.edu/~grauman/courses/fall2009/papers/bag_of_visual_words.pdf


Chapter 2. Background

Convergence is achieved when assignments do not change or the change in the

position of the clusters {µi} is insignificant, finding a locally optimal partition of the

feature space. The method is highly sensitive to the initial placement of the clusters.

Typically, the initial centers are chosen randomly from the data points. However, a

better initialization of the centroids is given by the k-means++ algorithm [5]. The

main idea of the algorithm consists of selecting centroids that are far away from

each other. For this, the algorithm starts by randomly selecting an initial cluster

from the data points. Then, the next cluster is selected given the probability of a

data point being chosen as a centroid, which is proportional to the square of the

distance between a data point and the initial centroid. This strategy leads to a better

partitioning of the feature space and faster convergence of the k-means algorithm,

since the initial set of centers are closer to the optimal solution than a random

initialization.

The main bottleneck of the k-means method appears when dealing with large

datasets and vocabularies. At each iteration, k-means needs to compute the Euclidean

distance between all the training descriptors and the clusters centers.

In practice, BoW uses vocabularies composed of a large number of visual words

(500K - 16M visual words). High dimensional BoW representations obtained from

such vocabularies are much more discriminative than those obtained with a reduced

number of clusters. To scale-up k-means to high dimensional visual vocabularies, a

method such as hierarchical k-means (HKM) [89] or approximate k-means can be

used [96]. HKM consists of using a tree structure to apply k-means with a reduced

number of clusters on each level of the tree. AKM, on the other hand, replaces

the exact nearest neighbour calculation by an approximate nearest neighbour using

randomized k-trees [79], which have been shown to work better than HKM in object

retrieval scenarios [96].

In the BoW encoding, a set of N d-dimensional local descriptors {xi} of an image

are aggregated into a single representation hBOW = (h1, ..., hh), where hk =
PN

i=1 qik

represents the count of how many local descriptors are assigned to a particular visual
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word k of a trained vocabulary. The hard assignment of the features associates each

local feature of the image xi to its nearest neighbour visual word in the vocabulary,

and can be expressed as

qik =

8
>><

>>:

1 if k = argmin
m

kxi � µmk22

0 otherwise.

(2.6)

As in text retrieval approaches, it is common to apply a weighting to the

component of this vector [114]. The standard weighting is know as “term frequency-

inverse document frequency,” tf-idf. Each word in the final histogram, instead of

contributing equally to the histogram (Equation 2.6), contributes with a weight

defined as:

wk =
nki

ni
log

N

nk
, (2.7)

where nki is the number of occurrences of word k in i-th document (image), ni is the

total number of words in the i-th image, nk is the number of images containing the

word k and N the total number of images in the dataset. This way, words occurring

often within an image are up-weighted, while the most frequent words (the most

common) across the whole dataset are down-weighted, providing an estimation of

how relevant a particular visual word is in an image considering the whole image

dataset.

The hard assignment of the features to the closest visual word generates what

it is known as “word uncertainty,” related to quantization error. Figure 2.7 shows

the division of the local feature space into di↵erent non-overlapping Voronoi cells.

Two local features associated with the same visual word contribute equally to the

construction of the histogram regardless of their location with respect the centroid.

Moreover, the hard assignment completely ignores nearby clusters and treats them

as completely unrelated when they are likely to encode similar patches.

Soft assignment [22, 36] is an improvement over the bag of words representation

that considers simultaneously more than one visual word per local descriptor.
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Figure 2.7: Visual representations of the visual vocabulary. On the left, hard
assignment is used, which means the BoW representation consists of directly counting
the local features falling in a each particular cell. A descriptor far from the cluster
center contributes equally to a descriptor located near the cluster (blue point on the
left diagram). Also, a descriptor close to the border region is only assigned to one
visual word, without considering near-by words (the green point in the left diagram
is assigned to cluster h, although it is very close to cluster i too). These e↵ects
are mitigated by using soft assignment, where the location within a cell and nearby
centroids are taken into account when constructing the final representation. Image
source [36] .

Gemert et al. [36] proposed to use a kernel codebook scheme to encode each local

feature proportionally by measuring their similarities with all visual words as

qik =
K�(kxi � µkk)PM
k=1K�(kxi � µkk)

(2.8)

where M represents the total number of centroids, K�(·) is the kernel function defined

as K�(x) = e�
(x�µ)2

2�2 , where � is the corresponding smoothing hyperparameter. With

the soft assignment each feature is assigned to multiple words (
PK

k=1 qik = 1).

Gemert et al. Compared with hard assignments, explicitly modeling of visual word

ambiguity with soft assignment helps to improve the image representation’s power

at the price of losing the sparsity of the histograms, and therefore the e�cient usage

of inverted files for retrieval.
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2.2.2.2 Vector of locally aggregated descriptors

The vector of locally aggregated descriptors (VLAD) [54] is another popular technique

to aggregate locally invariant descriptors from an image. Similar to BoW, it is based

on the construction of a visual vocabulary and uses hard-assignments to associate

each local descriptor to the closest visual word. The main di↵erence between VLAD

and BoW is that, instead of directly encoding the word frequencies, it accumulates

the residual of each descriptor with respect to its assigned cluster, as illustrated in

Figure 2.8, adding more information in the encoding and generating a more powerful

representation.

The final vector fVLAD = (uT
1 , ...,u

T
K)T is the concatenation of residual vectors

uk =
PN

i=1 qik(xi � µk), uk

2 Rd, where qik denotes the hard assignment (Equa-

tion 2.6) of the descriptor xi to the centroid µk. The final representation is a dense

matrix of dimensions d⇥K.

Several normalization techniques have been proposed for VLAD encoding: direct

L2-normalization [54] and signed square rooting [50] of fVLAD, both are known

Figure 2.8: VLAD vector construction: The relative position of the local descriptors
within a Voronoi cell directly encoded in this aggregation. For each cluster, illustrated
with di↵erent colours, a residual vector is created by computing the distance between
xi and the centroid µk. The final vector is the concatenation of all the residuals.
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to assign too much weight to some of the vector components a↵ecting the final

similarity measure (Euclidean distance). Intra-normalization [4] alleviates this by

individually L2-normalizing the residual vectors u
k

and then applying signed square

root normalization followed by a final L2-normalization of the final vector.

Although the number of visual words required for this encoding is significantly

less than the large vocabularies used in BoW (the typical value for VLAD is 64 to

256 clusters), the vector obtained is very high dimensional and dense. For instance, a

codebook of 64 visual words would generate a vector of 8,192 dimensions using SIFT

descriptors; 256 clusters generates a 32,768 dimensional vector. It is necessary to

apply dimensionality reduction to reduce the memory footprint of the representations

to scale the usage of VLAD to large image datasets [54, 50].

The strategy of encoding residuals makes VLAD a more robust representation for

retrieval in comparison with BoW. However, this is only true when the vocabulary

size of BoW is moderate (from 20k to 200k centroids). For instance, BoW achieves a

mean Average Precision (mAP) 1 of 0.35 in the Oxford dataset 2 with a vocabulary

of 20k centroids while VLAD achieves 0.38 with a vocabulary of 64 centroids (8,192

dimensional vector) according to [28]. The usage of large vocabularies for BoW

allows to represent more diverse visual patterns that compares favorably with the

VLAD aggregation, that only utilizes a small number of centroids. In particular, 1M

vocabulary for BoW achieves 0.618 mAP in the Oxford [3].

It is unclear whether one representation is better than the other, because the

di↵erence in performance is related to the kind of retrieval scenario targeted. In

general, on datasets where the instances to retrieve occupy the entire image, such as

Holidays dataset or UKB, VLAD tends to outperform BoW using a a more compact

representation as shown in [54]. However, in more challenging scenarios, where

the instances appear with di↵erent sizes or partially occluded (Oxford, Paris, or

TRECVID), BoW with large vocabularies are usually the approach used [3, 88, 141,

148, 149].

1See Section 2.5 for more details of this metric.
2See Section 2.6 for a summary of retrieval datasets.
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2.2.2.3 Fisher vectors

The Fisher vector encoding (FV) [95] captures the average first and second order

di↵erences between the local image descriptors and the centers of a Gaussian Mixture

Model (GMM). Intuitively, FV represents how the parameters of the GMM should

be modified to better fit a set of local features that describe a particular image. The

main di↵erence between BoW and FV is the construction of a “soft vocabulary”

via GMM. With this model, the feature samples are described by the following

probability distribution:

p(x|✓) =
KX

k=1

p(x|µk,⌃k)⇡k, (2.9)

where p(x|µk,⌃k) represents the probability that a feature vector x is described

by the kth Gaussian distribution, defined by the parameters µk 2 Rd, ⌃k 2 Rd⇥d

representing the mean and covariance matrix (which is typically taken to be diagonal

to reduce the number of training parameters) respectively. The contribution of each

Gaussian in the final probability is weighted by ⇡k (⇡k � 0 and
PK

k=1 ⇡k = 1). The

parameters are calculated using expectation maximization (EM) [82].

Analogous to the codebook kernel [36] used for the soft-assignment in BoW, the

GMM defines a soft-assignment data-to-cluster assignment following

qik =
p(xi|µk,⌃k)⇡kPK
j=1 p(xi|µj ,⌃j)⇡j

. (2.10)

The main idea of FV representation is to characterize an image (described by

a sample of local features) by its deviation from the GMM distribution. For that,

a fixed length representation is constructed by calculating the partial derivatives

of the log-likelihood with respect its parameters [49]. The final representation

ffisher =
⇥
uT
1 ,v

T
1 , ...,u

T
K ,vT

K

⇤T
, is the concatenation of the partial derivatives obtained

for the log-likelihood of the GMM, described by:
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uk =
1

N
p
⇡k

NX

i=1

qik
�
⌃�1
k (xi � µk

�
) (2.11)

vk =
1

N
p
2⇡k

diag

 
NX

i=1

qik
h
⌃�1/2
k (xi � µk)(xi � µk)

T⌃�1/2
k � I

i!
. (2.12)

The descriptor obtained contains 2dK dimensions assuming a diagonal covariance

matrix (d being the dimension of the local feature space). Similarly to VLAD,

the number of clusters (Gaussians for the GMM) is less than in BoW, since the

encoding already contains first and second order statistics of the distribution of the

data which generates a much richer representation. However, FV are dense (like

VLAD) and more computational costly than VLAD and BoW. The final vector is

intra-normalized [4] and dimensionality reduction is usually necessary to scale the

representation to large datasets [95].

Similarly to VLAD aggregation, FV representations tend to outperform BoW

and VLAD in relatively simple image retrieval scenarios such as in the Holidays or

the UKB datasets with extremely compact image representations (only 64 or 32

dimensions) [55], making FV especially suitable when it is required a very compact

image representation (while compromising the retrieval performance). In practice,

as discussed in the previous subsection, BoW with large vocabularies followed by

spatial re-ranking and query expansion steps [3] is the dominating approach in the

literature for visual instance retrieval.

2.3 Deep learning based image representations

Deep learning is a sub-field of artificial intelligence that aims to model high level

abstraction from raw data by using model architectures composed of multiple non-

linear transformations of the input data. Architectures such as multi-layer perceptron,

convolutional deep neural networks, deep belief networks and recurrent neural

networks have been applied in fields like computer vision, speech recognition, natural

language processing or bioinformatics‘ [30].
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2.3.1 The single neuron model

A single neuron (or perceptron) has a number I of inputs xi and one output y. The

inputs generally correspond to raw features of a single training example. A weight wi

(i = 1, ..., I) is associated to each input. Usually, an additional input x0 permanently

set to 1, is associated to a weight w0, called the “bias” term. The activation of the

neuron is computed by adding its weighted inputs a =
PI

i=1wixi. Then, the final

output y is set as a function of the activation.

Figure 2.9: Single neuron.

The activation function (g) makes the neuron “fire” or not given a certain input

and it is often a non-linear function. Figure 2.10 shows the behaviour of three popular

activation functions: Sigmoid, Tanh and Rectified Linear Unit (ReLU). A neuron can

then be seen as a linear regression or as a linear decision boundary classifier. Given

a particular set of training data (xi, yi)Ni�1 with each x 2 R(I) and yi 2 {�1, 1}, and

a loss function to evaluate the error between the prediction ŷ and the real value y; it

is possible to tune the parameters of the neuron to fit the data. 3

Multi-class classification or regression problems can be addressed by considering

simultaneously multiple neurons. In the case of classification, it is common to apply

the softmax as the activation for the neurons . The softmax is defined as:

fi =
eaiP
j e

a
j

(2.13)

3In the case of regression y 2 R, and for logistic regression y1 2 {0, 1}.
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Figure 2.10: Three activation functions commonly used in the neurons.

where ai is the weighted sum of the inputs for the node i. This function is used to

normalize the outputs so that they are a categorical probability distribution over

the possible outcomes.

Linear decision boundary classifiers are suitable when the data is likely to be

linearly separable, with the advantage that they are fast to compute (mainly a

dot product between weights and inputs), and are easy to interpret: the weights

directly represent the strength of the influence of each input on the final classification.

However, real-world data (images, videos, EEG, a Audio, etc.), without any further

pre-processing, contain complex patterns and are usually not linearly separable.

2.3.2 Neural networks

Neural networks are composed of one input layer, one output layer and one or more

hidden layers. Each layer is composed of neurons, each one connected to all the

inputs of the previous layer (also called multi-layer perceptron or fully connected

networks).

The neurons within a layer can be seen as a collection of binary classifiers that

“fire” when they detect a particular pattern on its inputs. As we add more layers,

the network has the ability to represent increasingly more complicated non-linear

functions that are more suitable to solve the final task. For instance, in a classification

network, the input to the final layer gives a representation of the original data that

is more likely to be linearly separable.

The number of hidden layers and neurons per layer are hyperparameters that
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Figure 2.11: A Neural Network with an input layer, an output layer and two hidden
layers.

need to be carefully selected. Usually, the more layers added the more capacity the

network has to detect complex patterns. However, the amount of parameters to

estimate grows very quickly with the number of layers and neurons4, which may lead

to a model that fits the training data extremely well but has very poor generalization

on new data (this is termed overfitting).

2.3.3 Gradient descent

Gradient descent (GD) is a simple first-order iterative optimization algorithm often

used to find a (local) minimum of a function. This is particularly useful when dealing

with non-convex optimization problems such as those addressed with CNN models.

Given a cost function5 associated with a model L(y, ŷ), the algorithm consists of

updating the parameters in the direction opposite to the gradient of the cost. If ŷ is

4The number of parameters of the ith layer can be computed from the number of neurons at the
previous layer (N i

input

), the number of neurons within the layer (N i

output

) and the bias terms, which
are equal to the number of nodes on the layer being N i

total

= N i

input

⇥N i

outputs

+N i

outputs

.
5Note that cost and loss functions refer to slightly di↵erent concepts. The loss function is a

function defined on a data point (hinge loss, square loss, etc.), whereas the cost function is usually a
more general object, such as the the sum of loss functions over the full training plus some complexity
penalty.
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Figure 2.12: Visualization of one step of gradient descent optimization on a one
dimensional function.

the output of a NN composed of K hidden layers, the update to the weights on a

neuron in layer l can be described as:

W (l)  W (l) � ↵rW (l)L(y, ŷ), (2.14)

where ↵ is the learning rate, which is an hyperparameter defining the size of the step

towards the minimum of the loss. Figure 2.12 illustrates the idea of GD considering

one dimensional weights for visualization.

Gradient descent requires calculating the loss and the gradients for all the training

set to perform one single parameter update, which usually is very computationally

demanding and slow. In practice, mini-batch Stochastic Gradient Descent (SGD)

is used. For this, the training dataset is shu✏ed, and a batch of N samples is

taken to compute a stochastic estimate of the gradient of the cost and update W (l)

parameters.

For optimizing deep neural networks, SGD is usually combined with the back-
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Figure 2.13: AlexNet architecture. This consists of five convolutional layers, each
one followed by a max-pooling layer followed by three fully connected layers. ReLUs
are used as the activation function in all layers except the last layer, where outputs
are normalized with a softmax activation function. Image source [64].

propagation algorithm [105], which combines the calculus chain rule and dynamic

programming techniques to keep the computations involving the parameter updates

tractable.

2.3.4 Convolutional neural networks

Convolutional Neural Networks (CNN) have been considered as the dominant ap-

proach to producing image representations for many computer vision task since the

pioneering work carried out by Krizhevsky et al. [64] in the 2012 ImageNet challenge.

The main di↵erence between CNNs and the fully connected Neural Networks are

the convolutional and pooling layers, which make CNNs particularly suitable for

processing spatially structured data such as images.

A convolutional layer outputs a volume of neurons. The depth of the volume

is defined by a set of kernels or filters. The layer is characterized by its local

connections: in contrast to fully connected layers, each neuron in a convolutional

layer is connected with a local region of its input. In particular, given an input layer

of dimensions H ⇥W ⇥ C, one neuron within a convolutional layer is connected

to a window volume of size C ⇥ K ⇥ K of the input, where K is the kernel size.

The output of the neuron corresponds to the response of its activation function to

the summation of the C ⇥K2 weighted inputs. Figure 2.14 shows an example of a
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Figure 2.14: Visualization of the local connection of one neuron within a convolutional
layer. In the example, the input depth C = 1 and the kernel size is 1⇥3⇥3. Usually, C
has a larger value. For instance, most CNN models process RGB images, which means
that the input layer has to have C = 3. The kernel is slid over the spatial dimensions
H ⇥W keeping the same weights across all the di↵erent locations. The output is
a 2D map, also called the activation map or feature map. Within a convolutional
layer, N di↵erent kernel filters are considered, each one with independent parameters,
generating a volume of neurons composed by N activation maps

1⇥ 3⇥ 3 kernel.

Conceptually, the kernels (filters) are “moved’ across the spatial dimensions of

the input in a sliding window manner, changing its position by S neurons (stride)

each step. Their weights are shared or fixed across the spatial positions of the

input’s layer, with the assumption that if a particular visual pattern is relevant in

one position of the image, it will also be relevant in another position.

The pooling layers are used to reduce the spatial dimension of the the convolutional

volumes. They operate spatially over a convolution volume. Usually max pooling is

applied between consecutive layers to reduce the dimensionality of the representations

and achieve some translation invariance. Figure 2.15 illustrates an example of spatial

max-pooling using a kernel of 2⇥ 2 with stride 2.

The AlexNet proposed by Krizhevsky [64] in 2012 has five convolutional layers

and three fully connected, containing 60 milion parameters. The model was trained

using SGD with momentum [98] on 1.2 million labeled images from the ImageNet
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Figure 2.15: Spatial max pooling with 2⇥ 2 kernel and stride 2 applied on a single
activation map of a convolutional layer.

dataset [29]. Figure 2.13 shows the architecture of the model. This architecture

achieved the best result in the ILSVRC-2012 image classification task.

Three main factors that lead to success of this method were having access to

a huge number of labeled images, e↵ective use of GPUs for fast computation of

convolutional operations, and the usage of non-saturating activation functions (ReLU)

to speed-up training and lesser gradient vanishing.

Since then, several works have appeared in the literature including networks

trained for object detection [102], semantic segmentation of images [78], visual

attention and saliency [7, 67] and image captioning [62, 31]. Representations derived

from CNN models have also been considered for image retrieval (see Chapter 3),

mostly by using representations from networks pre-trained for classification as a

substitute for traditional hand-crafted descriptors such as SIFT.

2.3.4.1 Widely used pre-trained CNN models

Models trained on ImageNet [29] have achieved astounding performance on the image

classification task. The architecture proposed by Krizhevsky [64], also known as

AlexNet, is composed of five convolutional layers, each one followed by a max-pooling

layer, and three fully connected layers, as shown in Figure 2.13.

Recently, other architectures have been proposed in the literature achieving
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Figure 2.16: VGG16 architecture. The network is divided into 5 convolutional blocks.
Each one is composed by a stack of convolutional layers of the same kernel size (2
convolutional layers in blocks 1 and 2; and 3 convolutional layers in blocks 3, 4, and
5). After each block, a max-pooling layer is applied, reducing the spatial dimensions
of the convolutional feature maps to a half. The last block is composed by three
fully connected layers. Image source http://book.paddlepaddle.org/03.image_
classification/image/vgg16.png.

better classification performance. Simonyan and Zisserman proposed a very deep

convolutional network [113] where the authors proposed increasing the number of

convolutional layers and using very small (3⇥ 3) convolutional filters, pushing the

depth to 16 and 19 layers (VGG16 and VGG19). Figure 2.16 shows the VGG16

architecture. The number 16 refers to the number of convolutional and fully connected

layers, without taking into account max-pooling layers. Each convolutional layer

have a ReLU as activation function, with exception of the last fully connected layer,

that uses a softmax for the final classification prediction. In this thesis we use the

VGG16 architecture, extracting feature from the fifth convolutional block. We refer

to the layers of this block as conv5 X, being X = 1, 2, 3 identifying the first, second,

and third convolutional layers within the block. pool5 layer to the output after

applying max-pooling on conv5 3.

It was shown that the deeper the network the better results achieved. However,

He et al. [43] observed that very deep networks had higher training error. For

instance, a 56-layer network had higher training error than a 20-layer network. The

authors reformulate the layers as learning residual functions with reference to the

layer inputs, instead of learning unreferenced functions. With these skip connections

it was possible to train very deep architectures of 50 or 101 layers. In particular the
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152-layer architecture proposed in [43] achieved 3.75% top-5 error on the test set of

ImageNet and the submission won the ILSVRC 2015 classification challenge. The

proposed model was named “ResNet”, usually referred as ResNet-N where N refers

to the number of layers of the network, typically 50 or 101.

2.3.4.2 Fine-tuning a CNN model

Since it is unlikely to have 1.2 million annotated images (as in the ImageNet

dataset [29]) available for an arbitrary computer vision task, it is common practice to

re-use an already trained architecture for a di↵erent task. The process of fine-tuning

is a type of transfer learning [110, 137], fine-tuning consists of modifying some

of the top layers of an already trained model to optimize the weights for the new

task, instead of training from randomly initialized weights. Using the obtained pre-

trained weights instead of setting them to random values allows a fast convergence

of the models and training of the networks when it is not possible to access to a

large collection of annotated images. We exploit this process for image retrieval in

Chapter 5.

2.4 Image similarity

Similarity measurement is an important component in a CBIR system. Once the

image representations have been generated for the image dataset and a query, it is

necessary to compute the similarity between the query image representation and

the database images, which can be calculated using di↵erent distance metrics. The

smaller the distance the more similar the two images.

We introduce some of the common metrics and measures used in CBIR: p-norm

induced metrics, cosine similarity (which is the one used in this thesis), and histogram

oriented metrics.
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2.4.1 p-norm induced metrics

The generalized Minkowski metric is a distance defined in the Lp-norm space:

Dp(x,y) =

 
dX

i=1

|xi � yi| p

! 1
p

, (2.15)

where p � 1 and x = (x1, ..., xd)
T , y = (y1, ..., yd)

T represent two image representa-

tions in the N dimensional space. Three important cases are:

• p = 1, then the distance is known as the L1-distance or city block or Manhattan

distance, and is defined as:

D1(x,y) = kx� yk1 =
NX

i=1

|xi � yi|. (2.16)

• p = 2, then the distance is known as the L2-distance or Euclidean distance,

and is defined as:

D2(x,y) = kx� yk2 =

vuut
NX

i=1

(xi � yi)2. (2.17)

• p =1, then the distance is known as the L1-distance or Chebyshev distance,

and is defined as:

D1(x,y) = kx� yk1 = max |xi � yi|. (2.18)

2.4.2 Cosine similarity

This metric depends on the angle ✓ between two feature vectors. It is defined as:

cos ✓ =
xTy

kxkkyk . (2.19)

If descriptors are normalized (kxk = kyk = 1), then the cosine distance (Dcos(x,y) =
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� x

T

y

kxkkyk) and the rankings produced by the Euclidean distances are equivalent.

Considering normalized descriptors, we can expand the Euclidean distance with the

following expression:

kx� yk22 = xTx+ yTy � 2xTy = 2� 2xTy, (2.20)

which gives the same rankings as �xTy. So for L2-norm vectors it is unnecessary to

investigate Euclidean distance and cosine similarities since they are equivalent.

The main advantage of using cosine similarity is that it is fast to compute if the

vectors are normalized. The ranking generation can be e�ciently done with matrix

multiplication. For instance, for a dataset of m images described by vectors in Rd,

X 2 Rm⇥d, and query q 2 Rd, all similarities can be computed using d = Xq, which

is a computation that is fast in modern CPU/GPUs using optimized linear algebra

software (BLAS, LAPACK, cuBLAS, etc.). Often X is sparse (i.e BoW encoding),

so that d = Xq can be evaluated in O(k), with k being the number of non-zero

entries in X, using sparse matrix multiplication. This is equivalent to an inverted

file lookup.

2.4.3 Histogram-oriented metrics

While the distances described in the previous section can be applied to any vector

representation of the image content, one of the most popular image representation

for CBIR is the BoW histogram of SIFT features, described in Section 2.2.2. It

has been shown in the literature that specifically designed metrics for histogram

representations can outperform traditional L2-distance, as shown in [135]. In this

thesis we only use the cosine similarity on L2-norm vectors, due to its simplicity

and fast computation. However, in this section we introduce three popular metrics

to compare histograms: Histogram intersection, �2-distance, and the earth mover’s

distance; that can potentially be applied on the histogram representations based on

CNN local features proposed in Chapter 4 to improve the overall system performance.
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2.4.3.1 Histogram intersection

The histogram intersection was first proposed for colour histogram representa-

tions [120]. This distance is especially suitable for partial matching between images.

In the case of BoW histogram, only the local features in common between two images

are taken into account. The distance is robust to occlusions and clutter [23]. Suppose

x and y are two histogram vectors of d bins describing two di↵erent images, the

histogram intersection distance is defined as:

DH(x,y) =
dX

i=1

min {xi, yi}. (2.21)

2.4.3.2 �2-squared distance

The �2-distance between x and y is given by the formula:

D�2(x,y) =
1

2

dX

i=1

(xi � yi)2

xi + yi
. (2.22)

This distance takes into account that the di↵erence between large bins may be

less important than the di↵erence between small bins by directly reducing the e↵ect

of the large bins. It can be derived by taking the Taylor series expansion of the

Jensen-Shannon divergence between categorical probability distributions xi and yi

and approximating using only the first term. Even though it can provide better

results than the commonly used Euclidean metrics [63], it is slower to compute and

presents issues when xi + yi = 0.

2.4.3.3 The earth mover’s distance

The earth mover’s distance (EMD [104]) (aka the Wasserstein metric), in contrast to

the other introduced distances, takes into account the cross-bin relationships. It is

defined as the minimal cost that must be paid to transform one histogram x into the

other y. Generally, it is too computationally demanding for practical use in CBIR
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systems.

2.5 Measuring retrieval performance

The quality of a retrieval system can be estimated by inspecting the first retrieved

images for a particular query, which is always a good practice to check whether the

system is properly functioning. However, a quantitative evaluation is necessary to

e↵ectively determine the performance of a system, and to allow comparison with other

methods. Usually, measures such as precision, recall, and mean Average Precision are

computed to evaluate the performance of a retrieval system on a particular dataset.

Precision is defined as the fraction of the documents retrieved that are relevant to a

particular query

precision =
#(relevant items retrieved)

#(retrieved items)
. (2.23)

Recall is defined as the fraction of relevant documents successfully retrieved by the

system

recall =
#(relevant items retrieved)

#(relevant items)
. (2.24)

These measures are computed on a fixed set of relevant/non-relevant values.

Average Precision (AP) is commonly computed to estimate the quality of an ordered

list. This measure computes the average under the precision-recall curve, generated

by computing a set of precision recall values at di↵erent rank positions. Practically,

it is computed by the following expression:

AP =
nX

i=1

p(i)�r(i), (2.25)

where p(i) is the precision at i-location of the rank, and �r(i) the increment in the

recall between positions i and i� 1, and n the number of retrieved elements.

An ideal retrieval system would return all relevant images at the top positions
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Figure 2.17: Precision-recall curves associated to two di↵erent ranked list. The list
contains a binary label indicating whether a retrieved image is relevant (1) or not
(0) for a particular query. For the same amount of relevant information, the first list
achieves higher AP than the second list since relevant information is located in the
top ranked positions.

having AP = 1. However, precision tends to drop with the number of retrieved

elements. Figure 2.17 shows how the AP measure favors systems that rank relevant

results at the top positions, allowing the comparison of di↵erent retrieval methods.

On a particular dataset with N queries, the performance is measured with mean

Average Precision (mAP), which averages all the AP related to the dataset queries.

Metrics such as memory or time required to conduct the search are also important

factors to take into account for most real-world problems. A system that achieves

AP = 1 becomes useless in practice if it requires an infinite amount of time to

generate its results. Similarly, a system will not be useful in practice if it requires a

large amount of computational resources or memory to store dataset representations.

2.6 Image retrieval benchmarks

Most of the existing work on image retrieval evaluates approaches on publicly available

benchmarks to allow development of the field based by objective comparison of

techniques. Popular retrieval benchmarks are Oxford Buildings [96], Paris dataset [97],
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Figure 2.18: Visual examples of di↵erent classes in four retrieval benchmarks Oxford,
Paris, Holidays, Flickr Logos32 and Sculptures.

Table 2.1: Overview of Retrieval Benchmarks

Name
Number
of images

Number
of instances

Number
of relevant

images/instance
Domain

Oxford5k 5063 11 7-220 Buildings
Paris6k 6392 11 87-782 Buildings
Holidays 1491 500 1-12 Landmarks/Objects
Sculptures6k 6340 10 Sculptures
Flickr Logos 32 2240 32 70 Logos

Sculptures [2], INRIA Holidays [51], and Flickr Logos32 [103]. Each dataset is

designed such that one specific class defines a particular instance. For example, the

“ashmolean” class in the Oxford dataset contains images depicting the Ashmoleam

museum under di↵erent lighting conditons, camera positions and scales. Figure 2.18

contains some visual examples of di↵erent classes for these datasets.

Collecting an adequate dataset for image retrieval is a challenge that usually

requires manual annotation to validate the quality of the retrieval system. Due to

this fact, the size of the dataset, as well as the amount of accurate annotations

tends to be limited. To alleviate the limitation of working with a reduced amount of

images, a common practice is to augment the source dataset with a set of distractor
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images such as Flickr 100K 6 or Flickr 1M [47] that contain images unrelated to

the original target queries [96]. This procedure allows researchers to evaluate the

scalability of the method as well as the sensitivity to distractors.

We select Oxford and Paris datasets to evaluate and compare our system perfor-

mance with other approaches:

• Oxford Buildings [96] contains 5,063 still images, including 55 query images

of 11 di↵erent buildings in Oxford. A bounding box surrounding the target

object is provided for query images. An additional 100,000 distractor images

are also available for the dataset. We refer to the original and extended versions

of the dataset as Oxford 5k and Oxford 105k, respectively.

• Paris Buildings [97] contains 6,412 still images collected from Flickr including

query images of 12 di↵erent Paris landmarks with associated bounding box

annotations. A set of 100,000 images is added to the original dataset (Paris

6k) to form its extended version (Paris 106k).

2.6.1 Generic instance search benchmarks

Most of the available datasets target a specific domain (buildings, sculptures, logos),

which can bias retrieval methods towards a particular visual pattern. A common

approach consists of evaluating the same pipeline over di↵erent domains, which adds

additional complexity to the evaluation because di↵erent datasets contain di↵erent

configurations (ground truth annotations provided in di↵erent formats, di↵erent

image resolutions, di↵erent folder organization; which requires extra preprocessing

to adapt the data to the main retrieval pipeline). A generic instance search system

should be able to find objects of an unknown category that may appear at any

position within the images.

In this thesis we evaluate our system in two generic datasets, TRECVID Subset

(Chapter 4), and INSTRE dataset (Chapters 5 and 6), Table 2.2 shows a numeric

overview of this two datasets.
6http://www.robots.ox.ac.uk/ vgg/data/oxbuildings/
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Figure 2.19: Query examples for TRECVID Instance search task. Instance queries
(represented by the bounding box) are diverse: they can be logos, objects, buildings
or people. The location and scale of the instances is also diverse.

TRECVID [116] is an international benchmarking activity that encourages re-

search in video information retrieval by providing a large data collection and a

uniform scoring procedure for evaluation. The Instance Search task at TRECVID

consists of finding 30 particular instances within 464 hours of video (a total of 224

video files, 300GB). A common procedure to deal with videos is to perform keyframe

extraction, representing the videos a a set of static images to apply on them CBIR

techniques. For example, in our 2014 participation [81], the image dataset contained

647,628 image frames (66GB) by extracting 0.25 frames/second of the videos. One

of the limitations of this dataset is that it is not exhaustively annotated. For this

reason, in our 2014 TRECVID participation [81], as well as in the Chapter 4 of this

thesis, we worked with an annotated subset using the ground-truth annotations of

TRECVID 2013. We called this dataset “TRECVID Subset” is used in Chapter 4:

TRECVID Subset includes 30 queries and provides 4 still images for each of

them, including a binary mask of the object location. Figure 2.19 shows examples

of queries for an instance search dataset. We use a subset of TRECVID dataset

(keyframes were extracted at 0.25 frames/second), containing only the keyframes

that are relevant to the queries. In total it is composed by 23,614 images.
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Table 2.2: Overview of Instance Search Benchmarks

Name
Number
of images

Number
of instances

Number
of relevant

images/instance
Domain

TRECVID Subset 23,614 30 840 - 3,100 Objects/People/Places
INSTRE 23,070 200 ⇠ 100 Architectures/Objects

The TRECVID Subset was developed to test the performance of a CBIR system

in a more generic and realistic scenario than Oxford or Paris datasets, which are

specific to landmarks. However, it is a custom and non-public dataset, which makes

it hard to compare our proposed CBIR approach with other existing work. For this

reason, in Chapers 5 and 6 we consider the recently proposed INSTRE dataset [133].

INSTRE is a public dataset specifically designed for generic instance retrieval,

allowing easy comparison with other recent CBIR systems. The dataset consists of

23,070 manually annotated images, with bounding boxes depicting the location of

the instances. It consists of 200 di↵erent classes organized into three main categories:

architectures (buildings and sculptures), planar objects (designs, paintings and planar

surfaces), and di↵erent objects (toys and irregularly-shaped instances). Each category

contains approximately 100 images, ensuring high intra-class variation within all

Figure 2.20: 5 di↵erent instance-classes in the INSTRE dataset. The dataset provides
high intra-class variability in terms of scales and relative position of the objects, as
well as backgrounds and occlusions. The dataset domain covers a range of concepts
from sculptures, buildings to di↵erent kind of objects.

69



Chapter 2. Background

Figure 2.21: Visualization of the intra-class variability. Each image contains an aver-
age of up to 200 randomly selected images depicting the same instance. Landmark
datasets located in the left (Oxford first row, Paris second row) tend to generate
averaged images with relatively clear contours, which denotes limited intra-class vari-
ability. General instance dataset, located in the right, generate a more homogeneous
averaged images, which shows higher variability of position, background, scales and
light conditions of the query instances. (best viewed in colour).

relevant images associated to a query. Figure 2.20 contains some examples of classes,

as well as some of their visual variations within a class.

Compared to earlier introduced retrieval benchmarks (e.g. [96, 97, 2, 51, 103]),

these two datasets present a more realistic and challenging instance search scenario,

where query instances belong to di↵erent domains appearing in a wide range of

positions, sizes and backgrounds. Figure 2.21 shows the comparison of the intra-

class variability for the landmarks datasets and a general instance search dataset.

This visualization technique is introduced by Wang and Jiang [133] to show the

high instra-class variability of the INSTRE dataset. In the case of INSTRE and

TRECVID, the mean image per class is roughly a homogeneous field that cannot be

easily recognized by humans. However, in the landmark datasets (Oxford and Paris),

it is possible to distinguish relatively clear contours in the averaged images, since

the query instance tends to appear in the centre, surrounded by similar patterns.
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2.7 Summary

In this chapter we have reviewed “hand crafted” and “deep learning” models to

generate image representations. Most of the “hand crafted” traditional approaches

are based on SIFT, a local descriptor specifically designed to be robust to scale

rotation and lighting variations. While SIFT generates many descriptors associated

with interest regions of an image, it is necessary to compress the local information

into a global representation to reduce both dataset storage and retrieval time in

retrieval scenarios.

The three main approaches were described to encode the local information: BoW,

VLAD and FV. All of them are based on generating a visual vocabulary, with the

main di↵erence that VLAD and FV encode first and second order statistics, while

BoW encodes a histogram with a number of assigned features per cluster, making

VLAD and FV a more powerful representation at the price of losing the sparsity

obtained in BoW.

We have described the composition of deep learning models, focusing specifically

on convolutional neural network (CNN) models, as explored in this thesis. The

models are structured in a hierarchical composition of non-linear features that are

learned in a supervised fashion to solve a particular task (such as image classification

or regression). In these models, the feature learning and feature aggregation steps are

simultaneously optimized. This contrasts with the “hand-crafted approach,” where

these steps are independent: local feature descriptor generation is an engineered

process (such as SIFT) and the aggregation step is an unsupervised method (such as

BoW, VLAD or FV).

We have introduced some commonly used similarity metrics/measures to compare

image representations. This allows us to generate a ranked list with all the relevant

images from the dataset for a particular image query.

Additionally, we have described the main metric used to evaluate a retrieval

system (mean Average Precision), highlighting the importance of also considering

71



Chapter 2. Background

factors such as query time and memory requirements in the design of a retrieval

pipeline.

Lastly, we have introduced common retrieval datasets (Oxford, Paris, Holidays,

Sculptures, Flickr Logos) used in the literature, which are oriented over one specific

domain, and two more challenging datasets (TRECVID and INSTRE) specifically

designed for the task of generic instance retrieval.

2.8 Conclusions

E↵ectively capturing local structure in images is a key step in the construction of an

image representation. SIFT does this by means of an approximation of the Laplacian

kernel and finding the local extremas. Then, it encodes statistics regarding the

orientations within a particular region and scale. Similarly, the convolutional layers

of the CNN models act as dense local feature extractors. In comparison, SIFT can be

seen as a shallow convolutional network composed of a single layer of convolutional

filters with fixed weights that operates at multiple image scales and a local “pooling”

operator that computes a histogram of responses over local patches. However, the

filters of a CNN model are trainable so they can automatically adapt to a particular

task. In addition, the CNN hierarchical structure of using multiple layers with

non-linearities allows it to capture a progressively more semantic representation of

the images than only using a shallow one layer structure.

In this thesis we will explore the information from convolutional layers from

a CNN to evaluate whether derived local descriptors can benefit from the high

dimensional and sparse representation obtained from a BoW encoding, widely used

when using SIFT local image descriptors.

Although sophisticated similarity measures have been proposed in the literature,

in this thesis we focus in the cosine similarity due to its simplicity and e�cient

computation and, thus, applicability for large scale image retrieval.

Finally, and as discussed in Chapter 3, whilst CNN methods that have been
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explored in di↵erent retrieval benchmarks achieve remarkable results [39, 100], it is

unclear how those methods generalize to more challenging scenarios. In this thesis we

focus in developing a general instance retrieval system. Then, we target evaluating

its performance in common retrieval benchmarks as well as those specifically designed

for instance search task such as the TRECVID or INSTRE datasets.
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Literature Review

3.1 Introduction

Content-based image retrieval (CBIR) has been a long standing research topic in the

computer vision community since early 1990. In Chapter 2 we introduced the first

approaches for CBIR based on global image representations, generating visual cues

based on texture, colour, or shape features [119, 91, 59]. We discussed that almost a

decade later, with the emergence of local invariant features such as SIFT [79] and

the borrowing of the bag-of-words (BoW) from the text community, the dominant

approach consisted of the aggregation of several local features via BoW followed with

spatial verification steps to further filter the retrieved results [114, 96]. However,

since the introduction of AlexNet for image classification in 2012 [64], deep learning

based methods have dominated in many computer vision tasks. Now, the trend is to

directly learn the suitable image representations from data for the end task.

In this chapter we provide the reader with a review of di↵erent techniques to

build image representations from existing CNN architectures for image retrieval.

We describe from the first approaches based on using o↵-the-shelf CNN models

trained for classification and extend this to the latest models specifically tuned for

retrieval. Figure 3.1 summarizes the performance in the Oxford dataset (described

in Section 2.6) of some of the works discussed in this chapter, organized in the four
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Figure 3.1: Performance comparison (mAP) of di↵erent CBIR methods on the Oxford
dataset.

main blocs:

• Traditional SIFT-based approaches. In particular, in Figure 3.1 we only show the

best performing approach for Oxford. Section 3.2 provides a brief summary of the

approaches introduced in Chapter 2.

• The first CNN approaches, discussed Section 3.3, where spatial search greatly con-

tributes in boosting the system performance.

• Works exploiting convolutional features, discussed in Section 3.4, where a variety

of aggregation methods, weighting schemes, or region encoding approaches can be

applied.

• Lastly, some of the most recent works performing fine-tuning of the CNN model for

the end task of retrieval, discussed in Section 3.5.

The remained of the chapter contains the summary in Section 3.6, and conclusions

in Section 3.7 drawn from the di↵erent work presented and analyzed during this

chapter.

75



Chapter 3. Literature Review

3.2 Traditional SIFT-based approaches

In this section we provide a brief summary of di↵erent handcrafted methods for the

task of CBIR. A more detailed explanation of SIFT, and the di↵erent aggregation

techniques (BoW, VLAD, and FV) is provided in Chapter 2.

Most retrieval systems are based on the aggregation of local invariant features

to produce global image representations. Typically, a keypoint detector such as

Hessian A�ne detector [85] provides the relevant location within an image from

where local descriptors (SIFT [79], RootSIFT [3]) are computed. Local features are

aggregated into a fixed-length representation using bag-of-features encoding with large

vocabularies [96]. Rankings are generated using term frequency inverse document

frequency (tf-idf) scores computed e�ciently via an inverted index [114, 90, 96].

Since information might be lost in the quantization process, some works focused

on improving the BoW representation. Philib and Chum [97] proposed a soft version

of BoW encoding, where local descriptors could be assigned to more than one visual

word. Hamming Embedding was proposed in [51] where the visual word associated

with each local feature is complemented with a binary code indicating the approximate

location of the local descriptor in its Voronoi cell. Other popular aggregation methods

such as VLAD [54] or Fisher Vectors [95] have been proposed, where second-order

information about the quantization space of local descriptors have been exploited

to generate more informative descriptors. However, those methods generate high-

dimensional dense representations that are often required to be combined with

compression methods [? 95, 53] to produce a compact representation at the cost of

reduced accuracy.

In practice, state-of-the-art retrieval solutions [27, 3, 26] rely on an initial stage

that consists of the results returned by a BoW-based system, followed by a second

stage of spatial verification. This second stage, which is computationally more

demanding, is typically used to filter retrieved images whose visual words are not

spatially consistent with the words in the query image. The common procedure
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consists in estimating an a�ne transformation between the query image and result

image via RANSAC scoring [33, 96]. Then, candidate images are re-ranked by the

total number of inliers, which are the matching points between images that fit the

predicted transformation. This procedure helps to improve the precision of the

retrieved results. To improve recall, query expansion methods are used to issue

new queries based on the the representations of the top retrieved results [3, 27, 26].

When query expansion is used to obtain a better representation for the image queries,

database-side augmentation consists in obtaining better representations for the

database images, using features from other images of the same object. Arandjeković

and Zisserman [3] achieve a top performance of 0.929 and 0.910 mAP in Oxford

and Paris datasets by adding di↵erent post-processing steps (re-ranking, QE, and

database side augmentation) on top of the initial search. This system achieves the

current state-of-the-art in these two datasets as shown in Table 3.4. However, their

approach has the downside of being highly a computationally demanding solution (it

requires the construction of a similarity graph for the full dataset). It is unclear how

the approach can be generalized to non landmark focused datasets.

3.3 First CNN approaches for retrieval

Activations from the last fully connected layers from the AlexNet network proposed

by Krizhevsky et al. can be used as generic image representations with potential

applications for image retrieval. For more details of the AlexNet architecture, see

Section 2.3.4.1.

It was observed in [64, 32, 137] that similar images generate similar activation

vectors in the Euclidean space. This finding motivated early works in studing

the capability of CNN models for retrieval, mostly focused in the analysis of fully

connected layers extracted from a pre-trained CNN clasification model AlexNet [9,

110, 38].
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3.3.1 Fully connected layers

Fully connected layers are those where each neuron in the layer is connected to all

the neurons of the previous layer. The activations of a fully connected layer are given

by:

xli = g

0

@
NX

j=1

w(l)
ji x

l�1
j + b(l)i

1

A , (3.1)

where xli represents a neuron in the layer l, g is activation function (eg. sigmoid,

ReLU, or softmax), and wji the weight associated to connect the neuron i in the

layer l to the neuron j in the layer l � 1, bi the associated bias, and N the number

of neurons in the previous layer.

Fully connected layers contain the majority of the parameters in the network.

For instance, in the AlexNet architecture represented in Figure 3.3.2, the output

layer of 1000 dimensions is a fully connected layer connected a layer 7, with 4096

dimensions. This means that each neuron in the output is a linear combination

of the 4096 neurons of the previous layer, which then goes though a non-linearity

function (softmax). So the total number of parameters can be computed considering

the total number of weights and biases: 1000⇥ 4096 + 1000 = 4097000 parameters

for the output layer 1.

3.3.2 Neural codes

Babenko et al. [9] conducted the first quantitative study of using the outputs of the

fully connected layers for retrieval. The authors evaluated the top-3 layers from their

own implementation of AlexNet (layers 7, 6, and 5 illustrated in Figure 3.2) as a

global image representation, which they named neural codes. Euclidean distance on

L2-normalized neural codes was used as a metric function to rank the images. This

metric is equivalent to cosine similarity on the L2-normalized representations, which

can benefit from fast and parallel (e.g. GPU) matrix multiplication methods. Two

1Even more parameters are required for a layer below this (Layer 7 with 40962 +4096), and more
again for the first fully connected layer 6 connected to a convolutional layer.
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Figure 3.2: Krizhesvsky’s architecture model used in Babenko [10]. The model
consists of five convolutional layers, each one followed by max-pooling layer and
non-linearity layer ReLu; two fully connected layers each one followed by a ReLu
and a last Softmax layer with the classification output. In their study they consider
the output of the last two fully connected layers L7, L6 (both with dimension 4096)
and the last convolutional layer L5, flattened into a 9216-dimensional vector. Input
image was fixed to 224⇥ 224. Image source [9].

versions of the AlexNet model were considered: the first was pre-trained on ImageNet

and the second was a fine-tuned version of the first, using a custom classification

dataset that consists of popular landmarks. This second model was considered for

learning more suitable neural codes by means of domain adaptation [137], since

the landmark dataset images were semantically more similar to some of the target

retrieval dataset than the original ImageNet dataset.

The neural codes generated were a high-dimensional dense vector. In particular,

4096 dimensions for layers 7, 6 layers, and 9216 in layer 5. Storing such a high

dimensional and dense vector is memory demanding, and represents a limitation in

terms of computation and memory requirements at query time when the size of the

dataset is large. To alleviate this challenge, the authors investigate two approaches

to perform dimensionality reduction: they used principal component analysis (PCA),

which is an unsupervised technique that finds a new orthogonal space in which the

direction of greatest variance of the dataset lies on the first axis of the new space,

the second greatest in the second axis, and so on; and a supervised method from

discriminative metric learning for large-margin dimensionality reduction [112]. In

this second method, a projection matrix W is discriminatively learned by using
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triplets of images. As a result, W is learned such that neural codes are projected

into a lower dimensional space where distances between matching and non-matching

pairs are preserved.

They found experimentally found that the lower fully connected layer 6 was the

best performing across di↵erent retrieval benchmarks. Contrary to latest findings in

the literature [125? , 8, 101], descriptors from the lowest layer considered, layer 5

(corresponding to the activations of the last convolutional layer), did not perform

as well as the fully connected layer 6. The image representation derived from

the convolutional layer 5 was constructed by directly flattening the activations of

the tensor volume into a single representation. Since each neuron contains local

information of the original image, as described later in Section 3.4.1, this procedure

is not well suited to constructing the final representations because the representation

is location sensitive.

It was also found that performance of compact CNN codes was almost una↵ected

until the dimension was reduced to 128-256, while dimensionality reduction methods

drastically a↵ect the performance of hand-crafted features. At low dimensions,

CNN descriptors outperformed hand-crafted ones. Large-margin dimensionality

reduction performed better than the unsupervised PCA, with the drawback of

requiring annotated data with matching and non-matching image pairs. Interestingly,

they found supervised dimensionality reduction applied to fine-tuned neural codes

did not generate any gain. Presumably this is because the network re-training and

the discriminative reduction were learned using overlapping training data, making

the information learned from the two di↵erent methods redundant.

Domain adaptation did generate descriptors more suitable for retrieval in Oxford

and its extended version Oxford105k [96] (this last dataset adds 100,000 distractor

images from Flirckr to the original Oxford dataset, as described in Section 2.6).

However, the gain in performance was not as significant as in the Holidays dataset [51],

where the dataset depicts a set of vacation photographs based on scenes and objects.

The approach did not improve performance in UKB benchmark [90], where the
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domain is significantly di↵erent to landmarks, containing indoor photographs of

di↵erent objects. In that case, the ImageNet original training data is more suitable.

If training data relevant to the target image retrieval domain is available, it

is possible to learn better image representations by fine-tuning the pre-trained

model. However, this strategy assumes two things: first, the existence of such

relevant training data and, second, the existence of class image labels for it, which

is not usually true and represents a challenge. Discarding the fine-tuning approach

(discussed in Section 3.5), another way to improve performance of pre-trained CNN

representations is by directly addressing some of their limitations.

3.3.3 Spatial search

Razavian et al. [110] explored the usage of fc activations for retrieval including a

spatial search strategy in their pipeline: a multi-scale sliding window approach to

extract multiple descriptors per query and target image. In their approach, each

image crop was resized to 221⇥ 221 and described by its associated 4096 dimensional

vector from the first fully connected layer of the Overfeat network [109] pre-trained on

ImageNet. Features were post-processed using L2-normalization, followed by a PCA-

whitening to reduce the dimensions to 500 and a second round of L2-normalization.

Cosine similarity was used as a ranking score. The final score per image considered

the cross-matching similarities between all regions at di↵erent scales.

By processing the images at multiple regions and scales they significantly improve

the performance of the original o↵-the-shelf CNN representations, without any

further training or fine-tuning, on multiple retrieval benchmarks: while the neural

codes proposed by Babenko [9] achieved 0.435 mAP in Oxford dataset (0.545 mAP

after network fine-tuning), the spatial search strategy boosts the performance up to

0.680 mAP. However, generating several descriptors for each image makes dataset

storage many times more expensive, as well as compromising query time, making

the approach less scalable to large datasets.
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Table 3.1: Performance comparison of first CNN approaches in the Oxford5k dataset.
Performance of the pre-trained fully connected layers fc can be enhanced by fine-
tuning the CNN network and/or including spatial search strategy.

Method Description Dim Oxford5k

Neural Codes [9] pre-trained fc 128 0.433
Neural Codes [9] fine-tuned fc 128 0.557

CNNastounding [110]
pre-trained fc

+ spatial search
4-15k 0.680

3.3.4 Aggregation of region features

Still addressing the limitation of the lack of local information of the fully connected

layer, a more scalable approach to deal with local information was proposed by Gong

et al. in [38] where they proposed a Multi-Scale Orderless Pooling (MOP-CNN)

of region-based CNN representations. In their approach, images were processed

at 3 di↵erent levels, extracting a series of regions or patches per level. At each

scale, the regions were extracted using a fixed grid of locations. Each patch was

then represented with its fc7 feature (the output of the first fully connected layer

from the AlexNet model implemented in Ca↵e [57]), obtained after resizing the

patch to 256 ⇥ 256 and forwarding it to the network. For each scale considered,

Figure 3.3: Overview of multi-scale orderless pooling for CNN activations (MOP-
CNN) [38].
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descriptors from di↵erent regions were pooled via VLAD encoding [54]. Figure 3.3

shows the multi-scale encoding followed for an image. Without further dimensionality

reduction, this method would generate extremely large representations consisting in

the concatenation of the three considered scales: the first one of 4096 dimensions,

and the next two of 50,000 after applying VLAD encoding, which results in a 54,096

dimensional dense vector. A second round of PCA dimensionality reduction was

applied to generate the final representations of 2048 dimensions. Reported results

push the performance on the Holidays dataset from 0.701 mAP using 4096 dimensional

vector at global scale to 0.802 mAP using the multi-scale global representation of

2048 dimensionality.

3.4 Convolutional features for retrieval

Descriptors from fully connected layers of a pre-trained CNN network in ImageNet

achieve competitive performance in comparison with hand-crafted descriptors at low

dimensions [9] or directly addressing the lack of invariance of CNN representation

by extracting multiple representations in a sliding window manner at multiple

resolutions [110, 38]. However, local characteristics of objects at the instance level

are not well preserved at those layers, since the information in them is biased towards

the final classification task and spatial information is completely lost (each neuron

in a fully connected layer is connected to all neurons of the previous layer). Recent

works show that spatial max and sum pooling [101, 125, 8? ] of feature maps output

by intermediate convolutional layers is an e↵ective representation, and that higher

performance can be achieved compared to using the fc layers.

3.4.1 Convolutional volumes as local image descriptors

Each neuron in a convolutional layer responds to a specific region in the original

image. The size of this region is known as the aperture size or a receptive field, and

its size depends on the kernel sizes and strides from previous layers. The theoretical
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receptive field of a neuron in a particular layer Al 2 R can be computed following

the recursive formula:

Al = Al�1 + (Kl � 1)
lY

j=1

sj , (3.2)

where Al�1 is the receptive field of a neuron in the previous layer and sj is the stride

used at the layer l. Al increases with l, generating for some architectures (VGG16,

GoogleNet, ResNet) theoretical receptive fields that can cover the full extend of the

image. However, the practical receptive field of a neuron in a convolutional layer is

much smaller as shown in [80, 145].

Since each neuron in a convolutional layer responds to a particular area of the

image, the output of an activation of a convolutional layer of dimension H ⇥W ⇥D)

can be re-interpreted as a collection of N local or region descriptors of dimension D,

where N = H ⇥W associated to an original image (illustrated in Figure 3.4), and

each of the dimensions of the local descriptor encodes a particular visual pattern.

Figure 3.4: Re-interpretation of activation tensor into local descriptors

In this context, fc layers can be seen as an aggregation step of the local features

contained in a convolutional layer into a fixed length descriptor. The weights of the

fc layer for o↵-the-shelf networks are tuned to aggregate this local information to

generate representations suitable for its final task (i.e. image classification).

Figure 3.5 represents the taxonomy of the di↵erent methods based on convo-

lutional features, where some works explore di↵erent aggregation strategies, some

others apply a di↵erent weighting schemes on the volume of convolutions, and/or
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Figure 3.5: An image is represented by a set of local convolution descriptors. De-
scriptors can be aggregated, they can be weighted prior to aggregation, or region
descriptors can be derived and then encoded into a single representation.

some other works perform a region analysis derived from the convolutional layer

selected. We describe the most relevant works in the following subsections.

3.4.2 Local feature aggregation

One of the simplest approaches to aggregate the local CNN descriptors of a convolu-

tional layer consists of max or sum pooling all the activations along the feature maps.

With this procedure it is possible to aggregate all the information contained in the

volume of H ⇥W ⇥D) into a single representation of dimension D. This approach

was first proposed by Babenko [8], which boosted performance in the Oxford dataset

from 0.433 mAP (obtained from their earlier proposed neural codes) to 0.589 mAP.

In the Holidays dataset, this sum-pooling of convolutional features achieved 0.802

mAP, which is the same result as obtained with MOP [38], consisting of multi-

scale processing, VLAD encoding and multiple PCA dimensionality reduction steps;

showing the e↵ectiveness as well as simplicity of the method.
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In their work they evaluated di↵erent strategies to aggregate descriptors from the

last convolutional layer from VGG19 (pool5 ). For the aggregation step, as part of

the evaluation of direct sum/max pooling, they tested more sophisticated methods

such as Fisher vector encoding [95] and T-embedding [56]. They found that the best

pooling strategy was sumpooling in combination with a simple post-processing step

on the pooled features, consisting of L2-normalization, applying PCA and whitening,

and L2-normalization again. This simple setting performed surprisingly well and

improved performance for compact global descriptors on di↵erent standard datasets.

They claimed that encoding steps such as FV or T-embedding used in SIFT features

were not necessary in the local CNN descriptors due to their high discriminative

ability and di↵erent distribution properties.

However, this claim is not necessarily true. Yue-Hei [138] applied VLAD encoding

to deep local features achieving slightly better results than Babenko’s [8] (0.59 mAP

and 0.82 mAP in Oxford and Holidays dataset using descriptors of size 128). One of

the main di↵erences from [8], apart from the aggregation method used, was to study

the performance of several convolutional layers: they found that mAP increased

when they extracted descriptors from lower and less semantic layers. They also

found that the convolutional filters behave di↵erently according to the input size

considered: for a particular layer, larger input sizes capture more textual and fine-

grained information. In their approach, instead of extracting descriptors from the

last convolutional layer as in [8], they experimentally found that the best performing

descriptors for VLAD encoding corresponded to the conv5 1 layer of VGG16. VLAD

was used to encode descriptors of that layer at two di↵erent image resolutions. The

final representation, compacted to 128D via PCA, obtained state-of-the-art results

with even lower dimensionality than sumpooled descriptors [8], at the cost of being a

more computational demanding solution (i.e codebook computation, multi-resolution

processing of queries and target dataset images).
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3.4.3 Region-based descriptors

Razavian et al. [101] reported a boost in performance in four retrieval benchmarks

by using the last convolutional layer (pool5 from VGG16) in combination with an

spatial search strategy, achieving 0.843, 0.879, and 0.896 mAP in Oxford, Paris, and

Holidays datasets respectively. They explore the spatial information contained in

a convolutional volume to generate a set of region descriptors per image, similar

to the Fast R-CNN network for object detection [37]. A particular region in the

original image was mapped to the convolutional feature maps. Direct max-pooling

was applied to pool all activations contained within a particular region to generate a

pooled vector of the same dimensions as filters contained in the convolutional map

(i.e pool5 from VGG16 generates a descriptor of 512D). As an example, Figure 3.6

illustrates the direct spatial pooling on the full convolutional volume and in four

di↵erent regions.

Figure 3.6: Spatial max-pooling. On the left, max-pooling at one global region
generate a single 512D representation. On the right, pooling at 4 di↵erent regions
generate 4 ⇥ 512D region-CNN representation. Image source [101].

This pipeline is much more e�cient that the one proposed in [110] due to the

fact that multiple regions can be generated in a single forward pass of the image

through the network. Images are processed at multiple scales, from which multiple

region-CNN representations are computed. Region CNN descriptors are not pooled,

which allows an exhaustive search of the query at the cost of increasing the memory

storage and query time. Since each image is processed at multiple scales (for target

and query images), the final distance (computed via cosine similarity) is computed
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Figure 3.7: Faster R-CNN [102] used for instance retrieval. The base module follows
the VGG16 structure where all layers above conv5 3 have been replaced by a second
module. The second module is composed of two branches, one RPN that generates
the candidate regions, and a second classification network composed of three fully
connected layers that take a descriptor associated with each region of interest (spatial
max-pooling of a region in conv5 3 ) and predicts a classification score for di↵erent
object classes. Image source from [106].

as follows: for each scale, the minimum distance between query sub-patch and target

image sub-patch is computed. Then, the final distance is computed by taking the

minimum of all scale distances obtained.

Focused on exploring the advantage of processing di↵erent regions of the image

independently, Salvador et al. [106] propose to use a fine-tuned version of an object

detection network. In particular, they use the Faster R-CNN [102] which is a

network composed of a base module, which is a fully convolutional CNN (i.e VGG16

architecture), and a top module composed of two branches: one branch is a Region

Proposal Network that learns a set of window locations, and the second one is a

classifier (composed of three fully connected layers) that learns to label each window

as one of the classes in the training set.

A baseline ranking is produced by performing spatial sum-pooling on the last

convolutional layer of the base model (identified as image-wise Pooling of Activations

in Figure 3.7). Then, for the top-100 images, the tuned Fast R-CNN network

generates a set of candidate regions per image with a probability score associated for

all queries in a dataset. The re-ranking is done for a particular query by taking the

region with maximal probability associated with it and re-sorting the list.

With this approach they achieved very competitive performance of 0.710 and
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0.798 mAP for the Oxford and Paris datasets (0.786 and 0.842 mAP when doing

query expansion [27, 3]). However, the main limitation of this approach is that it

assumes that all queries are known and fixed for a particular dataset, which is not a

realistic solution for practical applications.

3.4.4 Regional maximum activation of convolutions (R-MAC)

Tolias et al. [125] extended Razavian’s pipeline [101] by sum-pooling the L2-normalized

region descriptors, called regional maximum activations of convolutions (R-MAC)

into a single representation. Their baseline system was further improved by re-

ranking [96] and query expansion [27, 3], which provided a boost in performance

and also allowed them to localize the target instance within the images. Region

descriptors were computed at di↵erent scales in a fixed grid of locations. Similar

to [8, 101], descriptors were post-processed via L2-normalization, PCA-whitening and

L2-normalization, and then pooled via sum-pooling into a compact representation.

The authors claim that cosine similarity on R-MAC descriptors can be seen as a

simple kernel that cross matches all possible regions, including across di↵erent scales.

With this approach, the performance obtained on the Oxford and Paris datasets

was 0.669 and 0.83 mAP (0.773 and 0.865 mAP after re-ranking and query expansion).

The overall performance in these two datasets is very similar to that achieved in

Salvador’s work [106], with the advantage of being more flexible to di↵erent types

of queries. Reported results for R-MAC, however, are slightly worse than the

performance achieved by Razavian [101], although the approach is significantly more

e�cient: one unique representation (based on pooling individual regions) is required

per image; the explicit comparison of an individual region is only considered in the

re-ranking step.

3.4.5 Spatial weighting

For image retrieval, and especially for instance search, not all parts of the image

are equally important. For instance, in the Oxford and Paris datasets the target
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Figure 3.8: CroW spatial weights (center) and center prior (right).

instances are buildings that are usually located in the center of the image. Babenko [8]

proposed a simple center prior weighting to provide more importance to the features

located in the center of the image. They equally weight each of the dimensions

of a particular local convolutional feature using a scalar provided by a Gaussian

weighting (see image in the right in Figure 3.8). This simple approach, increased

mAP performance from 0.589 to 0.657 mAP in the Oxford dataset, however it did not

perform as well in the Holidays dataset where the unweighted sum-pooling achieved

0.802 mAP in contrast to 0.784 mAP after applying the Gaussian weighting. The

fact that the weights were fixed regardless of the image content, made the strategy

unlikely to generalize well to datasets where the target instances are not located in

the center of the image [134].

To provide a more customized weighting, Kalantidis et al [? ] proposed a

parameter free weighting scheme based on the activations of the last convolutional

layer (CroW). The weighting was composed based on two factors: one based on

the “strength” of each local feature, measured by the L2-norm of each feature; and

a second one derived from the channel sparsity. They showed that the sparsity

of the feature maps in a convolutional layer contained discriminative information

beneficial for retrieval. The weighting derived for the sparsity was applied following

the same concept of inverse document frequency as traditional BoW [96] to boost the

contribution of rare features. Sum-pooling with the proposed weighting (represented

in the central image of Figure 3.8) improved performance with respect to their

unweighted features (uCroW), especially on PCA reduced descriptors, achieving

0.682, and 0.797 mAPs in the Oxford and Paris datasets (0.718 and 0.815 mAP after
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Figure 3.9: Pipeline for generating CAM-weighted representations. Region descriptors
used in R-MAC are substituted by a class descriptors, each one built by spatial
weighting the activations of a convolutional layer by the corresponding weighting
schemes obtained for one particular class. The class-vectors are L2-normalized, PCA-
whitened, and L2-normalized again. The final vector is constructed by sum-pooling
all the class-vectors into a single representation. Image source [60].

query expansion).

Recently, Jimenez et al. [60] proposed a technique that can be seen as a com-

bination of the ideas introduced in CroW [? ] and R-MAC [125]. They propose

using Class Activation Maps (CAMs) [146], which is a technique that can be ap-

plied to most of the the state-of-the-art CNN networks for classification to create

a spatial map highlighting the contribution of the areas within an image that are

more relevant for the network to classify an image as one particular class. This way,

several weighting schemes can be generated for each of the classes for which the

original pre-trained network was trained (typically the 1000 classes of ImageNet [29]).

Each of the weighting schemes can be used in the same way as in CroW to generate

di↵erent vectors per class. All the obtained class-vectors are then sum-pooled to get

a final compact representation, just as in the R-MAC approach. Figure 3.9 shows

the schematic for the construction of the final compact vector. With this method,

it is possible to achieve very competitive performance of 0.736 and 0.855 mAP on

the Oxford and Paris datasets (0.811 and 0.874 after re-reranking of the top 1000

images and query expansion).
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Table 3.2: Performance of works exploiting convolutional features. In the case where
the method generates multiple region vectors per image, “Global Aggegation” refers
to the method applied to the aggregation of the region vectors (with the exception of
[85], where it applies directly on the convolutional features). The performance of the
methods including re-ranking and query expansion stages are included in parenthesis.

Method
Multiple
Regions

Region
Aggregation

Weighting
scheme

Global
Aggregation

Dim Oxford5k Paris6k

SPoC [8] No - Yes sum-pool 256 0.589 -
Ng et al. [138] No - No VLAD 128 0.593 0.590
Razavian [101] Yes max-pool No No 32k 0.843 0.879
R-MAC [125] Yes max-pool No sum-pool 512 0.669(0.773) 0.830(0.865)
CAMs [60] Yes* sum-pool Yes sum-pool 512 0.712(0.801) 0.805(0.855)
CroW [? ]† No - Yes sum-pool 512 0.708(0.749) 0.797(0.848)
Faster-RCNN [106]** Yes max-pool No sum-pool 512 0.710(0.786) 0.798(0.842)

* One weighting scheme per class (the top N most probable per image). Each region vector is generated by weighting the
original convolutional features with N di↵erent spatial weights.

† The method does not include re-ranking, only query expansion in the post-processing step.
** Network is fine-tuned using the query images.

3.4.6 Discussion

Table 3.2 summarizes the performance and the main features of the discussed works

exploring the applications of convolutional layers of pre-trained CNN models for

retrieval. The best performing approach is based on generating multiple region

vectors per image without including any final aggregation [101], which means the

pipeline is not scalable for large-scale datasets. However, it is possible to leverage the

benefit of region-based representations by aggregating them into a compact descriptor

via sum-pooling [125, 60] and then including a spatial search on the top-N results

(performing a re-ranking and query expansion) to significantly improve performance.

It is notable that CroW [? ] does not use a re-ranking stage (the method

does not generate multiple region-representations) and still achieves nearly the same

performance as the methods based on multiple regions vectors. This provides evidence

for the importance of exploring better weighting schemes over the convolutional

features to better exploit the spatial information encoded in the convolutional layers.

Region-based methods such [101, 125] use a fixed grid of location to generate the

region representations. Instead, using an object proposal algorithm would generate

more precise regions. In this spirit, Faster-RCNN is explored in [106]. However, the

obtained regions from the RPN are only used as the re-ranking step, and they are
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not aggregated into a global representation, which seems to enhance the performance

of the global representation with respect to directly aggregating the original local

CNN representations [125]. It is also notable that the region-based methods do not

include any weighting scheme (with the exception of [60], where every region is a

weighted sum-pooled vector of the original convolutional features).

Lastly we note that, where VLAD encoding has been explored to aggregate local

representations derived from a convolutional layer [138], it would be interesting to

see whether more sophisticated aggregation methods (BoW, VLAD, FV) can be

applied to the region-based CNN descriptions instead of applying direct pooling.

3.5 Feature learning for retrieval

Deep learning is a proven mechanism for successfully learning useful semantic repre-

sentations from data. However, most of the work discussed uses o↵-the-shelf CNN

representations for the task of retrieval, where representations have been implicitly

learned as part of a classification task on the ImageNet dataset.

These approaches contain two main drawbacks. The first is the source dataset

ImageNet from where features are learned. While ImageNet is a large-scale dataset

for classification, covering a diverse set of 1000 classes (from airplanes, landmarks

to general objects), and allowing models to learn good generic features, it has

been explicitly designed to contain high intra-class invariance which is usually not a

desirable property for retrieval. The second is in the loss function used. Categorical

cross entropy evaluates the classification prediction without explicitly taking into

account the representational similarity between di↵erent instances, which may be

desirable in several retrieval scenarios.

3.5.1 Fine-tuning with a classification loss

One simple but e↵ective solution to improve the e↵ectiveness of the CNN features

consists of learning representations that are more suitable to the test retrieval dataset
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by fine-tuning the CNN network to perform classification in a new domain.

Babenko [9] improved the performance of o↵-the-shelf CNN representations by

using a pre-trained CNN network on a dataset semantically closer to the Holidays

and Oxford retrieval benchmarks. For that, they generated the Landmark dataset2,

by crawling images related to a predefined image queries (top-10,000 most visited

landmarks in Wikipedia) followed by manual annotation. The final dataset contains

672 classes and a total of 213,678 images.

The last softmax layer from a pre-trained AlexNet model was replaced by a new

softmax layer which mapped the last fully connected layer to a 672 dimensional space

where each dimension represented the di↵erent class probabilities. The categorical

cross entropy loss was used as the loss function and SGD was used to update the

weights of the model.

Despite improving performance, the final metric and the layers were di↵erent to

the ones actually optimized during training. This suggests that the improvements

obtained are due to the domain adaptation of the network. Directly optimizing

the final image representations for similarity learning leads to better performing

descriptors for image retrieval as will be explained in the following sections.

3.5.2 Similarity learning

Following the informal definition provided in Kulis et al. [66], similarity learning (also

known as metric learning) can be stated as: given an input distance function D(x, y)

between two objects x and y (eg. the Euclidean distance), along with supervised

information regarding an ideal distance, the objective is to construct a new distance

function D̂(x, y) = d(f(x), f(y)) which is “better” than the original distance function.

In the image retrieval context, x and y are the raw images. The mapping function f

can be formulated as a CNN model. The whole fine-tuning process of the CNN can

be cast as a metric learning problem, which is more suitable for retrieval than using

a classification loss.
2http://sites.skoltech.ru/compvision/projects/neuralcodes/
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3.5.2.1 Siamese networks

First introduced in 1994 for signature verification [15], siamese networks have been

applied for dimensionality reduction [41], learning image descriptors [18, 111, 139],

and face verification [24, 121].

Siamese networks [24, 41, 121] are architectures composed of two branches (each

one based on convolutional, ReLU, and max-pooling layers) that share exactly the

same weights across each layer. They are trained on paired data consisting of an

image pair (x
i

,x
j

), where x represents the representation obtained from a CNN, and

Yi,j 2 {0, 1} represents the binary label indicating if the images belong to the same

category or not. The network optimizes the contrastive loss function defined for each

pair as:

L(x
i

,x
j

) =
1

2
(Yi,jD(x

i

,x
j

) + (1� Yi,j)max(0,↵�D(x
i

,x
j

))) , (3.3)

where D(x
i

,x
j

) = kx
i

� x
j

k2.

Figure 3.10 shows the behaviour of the loss. Given a particular anchor or

reference image, a positive example is pushed closer to the anchor in the feature

space. For a negative example, if its distance to the anchor is less than a certain

margin, then the negative is pushed so that the distance is larger than that margin.

We display multiple examples as illustration of the loss. However, only one pair of

images at a time is considered during training.

3.5.2.2 Triplet networks

Triplet networks are an extension of the siamese networks where the loss function

minimizes relative similarities (illustrated in Figure 3.11). Each training triplet is

composed of an anchor or image of reference, a positive example of the same class

as the anchor, and a negative example of a di↵erent class to the anchor. The loss

function can be defined as:
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Figure 3.10: Contrastive loss (Equation 3.3). The loss is an equally weighted
combination of the e↵ect of the negative and positive pairs. The negative pairs
contribute to the final loss with the hinge loss: if the distance between negative pairs
is less than certain margin ↵ (in the plot ↵ = 0.5) then, the pair contributes with
the value of their distance, otherwise the e↵ect to the loss is 0 since the negative
pair already satisfies the margin condition. The positive pairs directly contribute to
the loss with the value of their distance.

L(x
a

,x
p

,x
n

) =
1

2
max(0, D(x

a

,x
p

)�D(x
a

,x
n

) + ↵), (3.4)

where D(x
a

,x
p

) is the Euclidean distance between the anchor and a positive example,

D(x
a

,x
n

) is the Euclidean distance between the anchor and a negative example, and

↵ is a margin hyperparameter.

Figure 3.10 illustrates the loss behaviour, which ensures that given an anchor

image, the distance between the anchor and a negative image is larger than the

distance between the anchor and a positive image by a certain margin ↵.

The main di↵erence between siamese and triplet architectures is that the first

optimized separately positive and negative pairs, whereas the second optimized

relative distances with a reference image or anchor. This usually results in better

performance, as shown in [44, 108].
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Figure 3.11: Visualization of the triplet loss. Relative distance refers to D(x
a

,x
n

)�
D(x

a

,x
n

) On the left are the values of the loss (Equation 5.1) based on the relative
distance between positive and negative pairs. On the right, the visualization before
and after the the optimization of the triplet loss: In the example, the distance
between the anchor and a positive image D(x

a

,x
p

), and between anchor and negative
D(x

a

,x
n

), has been reduced and enlarged simultaneously such that D(x
a

,x
p

)+↵ <
D(x

a

,x
n

) .

3.5.3 Training data for similarity learning

Generating training data for similarity learning is not a trivial task. The procedure

for collecting a new image dataset is usually divided into two steps:

• Web crawling: Given a list of pre-defined text queries depicting di↵erent

categories, query for them using a popular image search engine (Google Image

Search, Bing, Flick) to download a noisy set of labeled images.

• Data cleaning: Images retrieved by available search engines usually contain

noisy results such as near-duplicates or unrelated images, high intra-class

image variations such as interior or exterior images of a particular building

(Figure 3.12), or high diversity in the image resolution. Two approaches are

followed after web crawling:

– Manual data cleaning: exhaustively inspecting all images for dataset of

moderate or small sizes [8, 96, 97, 51] or by making use of crowd sourcing

services such as Amazon Mechanical Turk for large scale datasets [29, 147,

11].
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Figure 3.12: Example of the intra-class diversity between two classes of Landmarks
dataset “Leeds Castle” and “Kiev Pechersk Lavra” . The two first rows correspond
to one class, where the same building is visible in all the instances. The third and
fourth rows correspond to the second class, where interior and exterior images are
mixed and spatial geometry is not well preserved. Image source [8].

– Automatic data cleaning: in this approach, metadata associated with

the images is exploited as an additional filtering step such as geo-tagged

datasets [130, 1] and/or the usage of image representations to estimate

similarity and geometric consistency between images, a process that

usually relies on hand-crafted local invariant features [39, 100, 132].

Depending on the source data used for optimizing the CNN model for similarity

learning, we can divide the di↵erent retrieval works into three main categories: works

using existing annotated datasets [131], those exploring GPS-annotated datasets [1],

and those that construct their own image training set [132, 11, 39, 100] .

3.5.3.1 Existing annotated datasets

The most direct solution for generating training data to optimize a model for image

similarity is using the annotations provided in retrieval benchmarks. This approach

was followed by Wan et al. [131], where they used the Oxford, Paris, and the Holiday
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dataset ground-truth labels for fine-tuning. fc7 from the AlexNet model pre-trained

on ImageNet was used as the image representation. The model was fine-tuned by

optimizing the triplet hinge loss of Equation 5.1. Training triplets were sampled based

on the relevant query annotations: a positive pair (anchor and relevant images) was

randomly sampled from the same landmark query, and the associated negative image

was randomly sampled from all the non-relevant images to the anchor landmark. The

obtained models significantly outperform representations derived from o↵-the-shelf

classification models. However, the query images are unknown in real-world retrieval

scenarios and it is unrealistic to assume that annotations relative to a query will

be available. Also, it is unclear how the fine-tuned model would generalize when

retrieving di↵erent instances in di↵erent domains.

While the method significantly improved performance of o↵-the-shelf CNN repre-

sentations, using ground truth annotations in a real-world image retrieval problem is

not a realistic solution: first, it is unlikely to have ground-truth annotations; and

second, since the amount of images (as well as diversity on the kind of instances of

the considered dataset) are limited, it is unclear how the fine-tuned model would

generalize in other datasets and/or image domains.

3.5.3.2 GPS-annotated dataset

Tasks such as image geo-localization [130], landmark classification [72], and place

recognition [1] can benefit from GPS-annotated datasets. In particular, Arandjelović

et al [1] explored using the Google Street View Time Machine to query multiple

street-level panoramic images taken at di↵erent times at close-by spatial locations.

In their approach, a triplet CNN network based on the pre-trained VGG16

network was fine-tuned. Representations from the last convolutional layer were

aggregated via the VLAD encoding, similar to the approach followed in [138]. One

of their main contributions was reformulating VLAD using soft assignments, so

the whole encoding operation was di↵erentiable. This way, feature learning and

descriptor encoding could be optimized at the same time using a similarity objective
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function.

Triplets were sampled so that given an anchor image a, a set of potential positive

{pi} (those images within 10 metres di↵erence with respect the anchor) and definite

negatives {nj} (random images separated more than 20 metres) are considered. The

triplet loss is modified to a weakly supervised ranking loss:

L(x
a

,x
p

,x
n

) =
X

x

�2N
a

✓
max(0, min

x

+2P
a

(D(x
a
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,x�) + ↵)

◆
. (3.5)

For a particular anchor a, the loss takes into account its most similar image (the one

with smaller Euclidean distance D) and a set of negative candidates according to the

associated GPS information. While the triplet loss (Equation 5.1) only compares

the anchor with one positive and negative example at the time, the proposed loss

adds multiple negative examples at every step. This is known to lead to faster

convergence and to learning more discriminative representations of the data than

the one obtained with the original triplet loss [118].

3.5.3.3 Manually cleaned datasets

Bell et al. [11] recursively browsed pages on Houzz.com downloading each photo and

its metadata. Duplicates and near duplicates were detected using fc7 descriptors

from pre-trained AlexNet. A crowd sourcing mechanism was used for further filtering

and annotation of the spatial extent of the object of interest. AlexNet and GoogleNet

architectures were fine-tuned on the new data, removing the last softmax layer and

using the last fully connected layer as image representation as in [9, 101].

A similar procedure was followed by Wan et al. [132]. The authors fine-tuned

AlexNet for the task of fine-grained image recognition optimizing a triplet loss. In

this case, Google Image Search was used to query 100,000 predefined text queries.

The top 140 retrieved images were kept per query. After that, a semi-automatic

cleaning approach was employed to generate the relevance dataset, where a golden
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feature was used to compute the relevance score between image pairs ri,j within the

same category. Images from di↵erent queries were set ri,j = 0. The golden feature

consisted of a weighted linear combination of several hand-crafted image features

including features learned through human annotated data. The relevance score was

used to sample the training triplets, where positive pairs shared the same class and

high relevance score, and negatives were uniformly sampled from di↵erent random

categories and those sharing low relevance scores from the same class.

Although these methods use image representations to clean and improve the

quality of matching image pairs, both approaches [11, 132] rely heavily on human-

annotated data. Generalization performance across di↵erent datasets is unclear since

retrieval performance is evaluated only on the generated datasets.

3.5.3.4 Automatically cleaned datasets

Recent approaches [39, 100] have used automated methods to generate the training

image set and to evaluate the performance of the fine-tuned models on di↵erent

retrieval benchmarks. Both methods rely on hand-crafted invariant local features.

Gordo et al. [39] used the Landmark dataset [9] to produce a set of clean training

data. For this, they run a strong image matching baseline within images of each

landmark classes. Hessian-A�ne keypoints detectors and SIFT were used to extract

local discriminative features. For each image pair within a class, keypoints were

matched using first-to-second neighbor ratio rule, and further verified with an a�ne

transformation model [96]. An image graph was built for each class where each node

represented the images and edges the pairwise matches, as illustrated in Figure 3.13.

Low scored edges were removed and only the largest connected components were

kept. Predicted a�ne transformations were further used to estimate bounding boxes.

Similarly, Radenović et al. [100] used a large unlabeled image collection down-

loaded from Flickr (using keywords of famous landmarks, cities, countries, and

architectural sites). Images are initially described using a SIFT-BoW representa-

tion [96], and then clustered via min-hash and spatial verification [25]. A 3D model
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Figure 3.13: Random images “St Paul’s Cathedral’ from the uncleaned Landmark
dataset [9]. Green, gray and red border resp. denote prototypical, non-prototypical,
and incorrect images. Right: two largest connected component of the pairwise
matching graph. Image source [39].

based on Structure-from-Motion [99] is used to build a similarity graph for each

cluster.

Both methods estimate similarity graphs for di↵erent landmarks (related to initial

labeled data [39] or automatically discovered data [100]). Triplets can be sampled

by selecting positive matching pairs from the same image cluster and negative image

pairs from di↵erent clusters.

3.5.4 Hard negative mining

During learning, networks are typically optimized via mini-batch stochastic gradient

descent (SGD). Sampling pairs or triplets at random is an ine�cient strategy because

many of them may already satisfy the margin criteria of Equations 3.3 and 5.1. That

means that no error is generated and no gradients are backpropagated, so the weights

of the CNN model are not updated and no learning occurs.

To sample positive pairs, a common procedure consists of sampling images that

belong to the same class [39], 3D point or cluster [111, 100]. Some approaches select

positive pairs with minimal distance within the initial embedding space [54]. In

order to avoid sampling very similar images, Radenović et al. [100] make use of the

strong matching pipeline with 3D reconstruction to select only positives that share

the minimum amount of local matches, so matching images depict the same object

but also ensure variability of viewpoints.
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For the negative pairs a common procedure consists of iterating over non-matching

images that are “hard” negatives, those being close in the descriptor space and that

incur a high loss. For that, the loss is computed over a set of negative pairs and

only a subset with higher loss is selected for training. This procedure is repeated

every N iterations of SGD so “hard” examples are picked throughout the learning

process [111, 39]. Variability in the sampling is ensured in [100] by selecting the

negative pairs from di↵erent clusters or 3D points. Selecting negative pairs based on

the loss generally results in multiple and very similar instances of the same object.

3.5.5 Architectures for retrieval

Recent end-to-end networks proposed for retrieval are based on state-of-the-art

architectures for image classification. Final retrieval representations are build from

convolutional layers. Proposed architectures start from a pre-trained CNN model (i.e

AlexNet [64], VGG16 [113], ResNet101 [43]), which di↵er mainly in the top layers

designed to aggregate the local convolutional features as illustrated in Figure 3.14.
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Figure 3.14: End-to-end CNN architectures. The final representations are always L2-
normalized and siamese or triplet loss is used as loss functions. The approaches mainly
di↵er in how they build the final image representation from the convolution layer:
They can be aggregated with fully connected layers (A); they can be aggregated via
direct spatial pooling and adding a post processing layer (PCA linear transformation)
(B); local descriptors can be locally pooled to generate a set of region vectors. For this,
an additional layer for region pooling is added followed by a region-post-processing
and sum-pooling (C); the method can use a custom aggregation strategy such as the
one proposed in NetVLAD (D).

Some of the approaches directly fine-tune the original classification network [131,

11, 132]. For instance, the full AlexNet architecture is used in [11] (identified as line

A) in Figure 3.14), where the authors explore multi-task learning by optimizing the

model for similarity learning along with a classification loss for product identification

and search. To switch between classification and similarity comparison, the softmax

operation at the end of the network is replaced with an inner product layer with

a L2-normalized output. The full architecture of AlexNet is also used in [132]. In

this case two additional channels containing a shallow CNN are used to process two

low-resolution versions of the original image. The full AlexNet is also fine-tuned

in [131], where performance is evaluated on Oxford and Paris showing a substantial

improvement over pre-trained fully connected layers (see Table 3.3).

Recent works base their architectures on VGG16 exploiting the capabilities of

convolutional layers [100, 39, 1]. Gordo et al. [39] proposed a fine-tuned version of R-

MAC (introduced in Section 3.4.4), where a region proposal network [102] is learned
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Table 3.3: End-to-end retrieval approaches reporting results in Oxford and Paris
datasets. In parenthesis, the performance of the method when applying re-ranking
and/or query expansion. The two best-performing systems are highlighted.

Pre-trained ImageNet Fine-tuned

Dim Oxford5k Paris6k Oxford5k Paris6k
Neural Codes [9] 128 0.433 0.557
Wan [131] 4096 0.417 0.580 0.783 0.947
Faster-RCNN [106]* 512 0.588(0.647) 0.657(0.732) 0.798(0.786) 0.798(0.842)
NetVLAD [1] 512 0.590 0.702 0.676 0.749
MAC [100] 512 0.583 0.726 0.800(0.854) 0.829(0.870)
R-MAC [39] 512 0.654 0.813 0.834(0.894) 0.871(0.912)
R-MAC (ResNet101) [39] 2048 0.729 0.866 0.852(0.944) 0.940(0.966)

* Model was pre-trained for object detection in Microsoft COCO [74].

as a replacement of the fixed grid originally proposed in [125]. Coordinates predicted

by the RPN are mapped on the convolutional layer and activations are max-pooled

to generate a fixed length vector that is L2-normalized. Region descriptors are

post-processed with PCA whitening, which is implemented with a shifting and a

fully connected layer. Region vectors are then L2-normalized again and pooled into

the final global descriptor via sum-pooling (line C) in Figure 3.14). This approach

achieves the current state-of-the-art in Oxford and Paris using CNN representations.

When using a deeper network architecture (ResNet101 [43]) combined with database

side augmention, [3] achieves 0.947 and 0.966 mAP in Oxford and Paris dataset,

which is the best performance reported for those benchmarks to date.

Randenović [100] follow the same architecture as in [39] but directly pooling all

descriptors generated by the convolutional layer (MAC), without learning a RPN

(line B) in Figure 3.14). A discriminative dimensionality reduction transformation is

learned via linear discriminant projections proposed by Mikolajczyk and Matas [84]

using the annotated training data. Arangjelović [1] propose a more sophisticated

encoding by implementing a VLAD layer on top of the convolutional features using

soft-assignments to be able to tune the parameters via backpropagation (line D) in

Figure 3.14). Similarly, a Fisher-Vector layer has been proposed in [92].
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Table 3.4: Performance of discussed CNN approaches in di↵erent image retrieval
benchmarks. Performance of approaches with post-processing steps such as re-ranking
and/or query expansion are given in parenthesis.

Method Dim Oxford5k Oxford105k Paris6k Paris106k Holidays

O↵-the-shelf
Fully connected

Neural Codes [9] 128 0.433 0.386
CNNastounding [110] 4-15k 0.68 0.79
MOP [38] 2048 0.802

O↵-the-shelf
Convolutional

SPoC [8] 256 0.589 0.578 0.802
Ng et al [138] 128 0.593 0.590 0.816
Razavian [101] 32k 0.843 0.879 0.896
R-MAC [125] 512 0.669(0.773) 0.616(0.732) 0.830(0.865) 0.757(0.798)
CAM [60] 512 0.712(0.801) 0.672(0.769) 0.805(0.855) 0.733(0.800)
CroW [? ] 512 0.708(0.749) 0.653(0.706) 0.797(0.848) 0.722(0.794) 0.851

End-to-End
Training

Neural Codes [9] 128 0.557 0.523
Wan [131] 4096 0.783 0.947
Faster-RCNN [106] 512 0.710(0.786) 0.798(0.842)
NetVLAD [1] 256 0.635 0.735 0.843
MAC [100] 512 0.800(0.854) 0.751(0.823) 0.829(0.870) 0.753(0.796) 0.795
R-MAC [39] 512 0.831(0.894) 0.786(0.873) 0.871(0.912) 0.797(0.868) 0.891
R-MAC (ResNet101) [39] 2048 0.845(0.890) 0.816(0.878) 0.912(0.938) 0.863(0.906) 0.960

Hand-crafted
methods

BoW(1M)+QE [26] 0.827 0.767 0.805 0.710
Arandjelović [3] 0.929 0.891 0.910

3.6 Summary

Early works (Section 3.3) focused on the use of fully connected layers as a global

image representation. Descriptors were ranked according to their L2-normalized

Euclidean distance. It was shown that PCA dimensionality reduction and whitening

are common post-processing steps that help to improve the performance of o↵-the-

shelf CNN representations. However, CNN descriptors only outperform traditional

approaches at low dimensions. Some works propose to apply spatial search to generate

a set of multiple region descriptors per image, along with data augmentation, to

obtain a significant boost in performance at the price of memory and computational

requirements. To overcome that limitation, it was shown that traditional aggregation

methods (such as VLAD) could potentially be used on CNN region descriptors to

generate a richer global image representation.

A second generation of works explored convolutional layers (Section 3.4). De-

scriptors derived from convolutional layers have the advantage of containing more

general information, preserving the spatial layout of the image and, also, they allow

processing of images at full resolution, while keeping the original aspect ratios.
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Di↵erent aggregation approaches have been applied on local descriptors derived from

convolutional layers, direct max-pooling being one of the most popular due to its

simplicity. Constructing region descriptors from these layers is also more e�cient

than using fully connected layers. Moreover, di↵erent spatial weighting schemes can

be applied to weight the contribution of di↵erent areas within an image.

It was shown that fine-tuning the network with images more semantically related

to the final task does help to create better image representations. However, using

similarity learning objectives to directly optimize the descriptor is a more suitable

strategy for retrieval than using a classification loss. In Section 3.5 we discussed a

series of works where authors perform end-to-end learning of a CNN for the task of

image retrieval. For that, siamese and triplet architectures are commonly used. One

of the challenges that still remains is generating suitable training data to optimize

such models, including the dataset annotation (manual or automatic) and negative

mining of the pairs or triplets.

Table 3.4 shows the performance of the discussed works in well-known retrieval

benchmarks reported in the original papers. End-to-end approaches based on direct

pooling (MAC) and pooling region vectors (R-MAC) are currently the state-of-the

art CNN-based representations. Performance of the method has improved further

by query expansion, achieving similar results to SIFT-BoW systems with spatial

verification and query expansion stages [3, 26].

3.7 Conclusions

End-to-end CNN models achieve a new state of the art performance in some popular

retrieval benchmarks. However, the generalization of those models in other retrieval

domains remains unclear and needs to be furthered explored. Additionally, the

best performing approaches involve the generation of a large manually and/or

automatically processed dataset of images for network training; which have been

selected allows the model to recognize instances of a particular domain.
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With the purpose of developing a general instance search system, in Chapter 4 we

propose to use bag of words encoding (BoW) as a direct aggregation of pre-trained

convolutional features. While BoW has been one of the most popular approaches in

the traditional pipelines based in hand-crafted features such SIFT, it has yet not

being explored as an aggregation method for local convolutional representations. The

BoW representation has the advantage of generating high-dimensional and sparse

representations, that can benefit from inverted files structures to e�ciently store and

retrieve information.

Additionally, mapping each CNN local feature into one visual word of a high

dimensional vocabulary allows the inclusion of weighting schemes in our pipeline

(weighting the contribution of each word prior to aggregation) and region encoding

(by aggregating only the words of a particular image region).

As highlighted in this chapter, one of the main challenges to train a CNN for

similarity learning is the generation of a suitable training set. For this reason

in Chapter 5 we investigate an unsupervised approach to fine-tune a CNN based

in combining a SIFT-based and a CNN-based BoW systems. SIFT and CNN

local features contain complementary information allowing the generation of highly

accurate ranked lists. Training images can be sampled from the obtained ranks to

train a simpler and more e�cient retrieval system.

Lastly, some of the discussed works have applied weighting schemes on convolu-

tional features to weight the contribution of di↵erent local regions of images. Some

other works, alternatively, perform region analyis by extracting a set of region vectors

per image, typically in a fixed pre-defined grid of locations. In Chapter 6 we provide

a re-interpretation of the region analysis as a kind of weighting (when regions are

sumpooled into a compact representation), and we propose to use attention models

as a more sophisticated weighting scheme.

We observe in Chapter 4 that BoW can be successfully applied to o↵-the-shelf,

and to fine-tuned CNN models in Chapter 5, obtaining an e�cient retrieval system

that can greatly improve performance by applying an attention mechanism to weight
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the contribution of the most relevant areas within the images, as we do in Chapter 6.
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Chapter 4

Bags of Local Convolutional

Features

4.1 Introduction

Representations based on convolutional neural networks (CNNs) have been demon-

strated to outperform the state-of-the-art in many computer vision tasks. CNNs

trained on large amounts of labeled data produce global representations that e↵ec-

tively capture the semantics in images. Features drawn from such networks have

been successfully used in various image retrieval benchmarks [9, 110, 8? , 101, 125]

improving upon the state-of-the-art compact image representations for image re-

trieval.

Despite CNN-based descriptors performing remarkably well in retrieval bench-

marks like Oxford and Paris Buldings, state-of-the-art solutions for more challenging

datasets such as TRECVID Instance Search (INS) have not yet adopted pipelines

that depend solely on CNN features. Current INS systems [88, 141, 148, 149] are

still based on aggregating local hand-crafted features (like SIFT) using bag of words

encoding [115] to produce very high-dimensional sparse image representations. Such

high-dimensional sparse representations have several benefits over their dense counter-

parts. High-dimensionality means they are more likely to be linearly separable, which
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means that if we consider each instance as a class, it is possible to find an hyperplane

that separates the di↵erent instances in the feature space. Also, the sparsity allows

having relatively few non-zero elements, making the representations e�cient both in

terms of storage (only non-zero elements need to be stored), and computation (only

non-zero elements need to be visited). Sparse representations can handle varying

information content, and are less likely to interfere with one another when pooled.

From an information retrieval perspective, sparse representations can be stored in

inverted indices, which facilitates e�cient selection of images that share features

with a query. Furthermore, there is considerable evidence that biological systems

make extensive use of sparse representations for sensory information [71, 129].

Many successful image retrieval engines combine an initial highly-scalable ranking

mechanism on the full image database with a more computational demanding yet

higher-precision re-ranking mechanism applied to the top retrieved items. This

re-ranking mechanism often takes the form of geometric verification and spatial

analysis [52, 142, 83, 141], after which the best matching results can be used for

query expansion (pseudo-relevance feedback) [3, 26].

In this chapter, inspired by advances in CNN-based descriptors for image retrieval

discussed in Chapter 3, yet still focusing on instance search, we revisit the Bag of

Words encoding scheme using local features from convolutional layers of a CNN.

This work presents three contributions:

• We propose a sparse visual descriptor based on a Bag of Local Convolutional

Features (BLCF), which allows fast image retrieval by means of an inverted

index.

• We introduce the assignment map as a new compact representation of the

image, which maps pixels in the image to their corresponding visual words. The

assignment map allows fast composition of a BoW descriptor for any region of

the image.

• We take advantage of the scalability properties of the assignment map to
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perform a local analysis of multiple regions of the image for reranking, followed

by a query expansion stage using the obtained object localizations.

Using this approach, we present an image retrieval system that achieves state-of-

the-art performance in CBIR benchmarks and outperforms current state-of-the-art

CNN based descriptors for the task of instance search.

The remainder of the chapter is organized as follows: in Section 4.2 we first

provide a description of the bag of words frameworks, then in Section 4.3 we describe

the full retrieval system composed of an initial search and a re-ranking strategy.

In Section 4.4 we describe the experimental setup: datasets considered as well as

preliminary experiments. Sections 4.4.3 and 4.4.4 describe the results obtained

by adding query expansion and a re-ranking strategy to the pipeline. Lastly, we

compare and discuss the obtained results with other state-of-the-art approaches in

Section 4.5. We evaluate the advantage of using high-dimensional representation

over direct sum-pooling on the challenging TRECVID instance search benchmark

in Section 4.6. Sections 4.7 and 4.8 contain the discussion and conclusions for the

overall chapter.

4.2 Bag of words framework

The proposed pipeline for feature extraction uses the activations at di↵erent locations

of a convolutional layer in a pre-trained CNN as local features. A CNN trained for a

classification task is typically composed of a series of convolutional layers, followed by

some fully connected layers, connected to a softmax layer that produces the inferred

class probabilities. To obtain a fixed-sized output, the input image to a CNN is

usually resized to be square. However, several authors using CNNs for retrieval [125?

] have reported performance gains by retaining the aspect ratio of the original images.

We therefore discard the softmax and fully connected layers of the architecture and

extract CNN features maintaining the original image aspect ratio.

Each convolutional layer in the network has D di↵erent N ⇥M feature maps,
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which can be viewed as N ⇥M descriptors of dimension D. Each of these descriptors

contains the activations of all neurons in the convolutional layer sharing the same

receptive field. This way, theseD-dimensional features can be seen as local descriptors

computed over the region corresponding to the receptive field of an array of neurons.

With this interpretation, we can treat the CNN as a local feature extractor and use

any existing aggregation technique to build a single image representation.

We propose to use the Bag of Words model to encode the local convolutional

features of an image into a single vector. Although more elaborate aggregation

strategies to outperform BoW-based approaches for some tasks in the literature [54,

95], Bag of Words encodings produce sparse high-dimensional codes that can be

stored in inverted indices, which are beneficial for fast retrieval. Moreover, BoW-

based representations are faster to compute, easier to interpret, more compact,

and provide all the benefits of sparse high-dimensional representations previously

mentioned.

Bag of words models require constructing a visual codebook to map vectors to

their nearest centroid. We use k-means on local CNN features to build this codebook.

Each local CNN feature in the convolutional layer is then assigned its closest visual

word in the learned codebook. This procedure generates the assignment map, i.e. a

2D array of size N ⇥M that relates each local CNN feature with a visual word. The

assignment map is therefore a compact representation of the image which relates

each pixel of the original image with its visual word with a precision of
�
W
N , H

M

�

pixels, where W and H are the width and height of the original image. This property

allows us to quickly generate the BoW vectors of not only the full image, but also

its parts.

Figure 4.1 shows the pipeline of the proposed approach. The Bag of Local

Convolutional Features (BLCF) encodes the image into a sparse high dimensional

descriptor which will be used as the image representation for retrieval.
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Figure 4.1: The Bag of Local Convolutional Features pipeline (BLCF).

Figure 4.2: Selection of Local CNN features to construct the BoW query descriptor
for the Local Search (LS).

4.3 Image retrieval

This section describes the image retrieval pipeline, which consists of an initial ranking

stage, followed by a spatial re-ranking, and query expansion.

(a) Initial search: The initial ranking is computed using the cosine similarity

between the BoW vector of the query image and the BoW vectors of the full images

in the database. We use a sparse matrix based inverted index and GPU-based sparse

matrix multiplications to allow fast retrieval. The image list is then sorted based on

the cosine similarity of its elements to the query. We use two types of image search

based on the query information that is used:

• Global search (GS): The BoW vector of the query is built with the visual words

of all the local CNN features in the convolutional layer extracted for the query

image.

• Local search (LS): The BoW vector of the query contains only the visual words

of the local CNN features that fall inside the query bounding box.
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Figure 4.3: Windows sorted according with scorew for four di↵erent query aspect
ratio. Highlighted, the window aspect ratios selected given a threshold th.

(b) Local re-ranking (R): After the initial search, the top T images in

the ranking are locally analyzed and re-ranked based on a localization score. We

choose windows of all possible combinations of width w 2 {W, W2 , W4 } and height

h 2 {H, H2 ,
H
4 }, where W and H are the width and height of the assignment map.

We use a sliding window strategy directly on the assignment map with 50% overlap

in both directions.

Since analyzing all the window is computational demanding, we perform a simple

filtering strategy to discard those windows whose aspect ratio is too di↵erent to

the aspect ratio of the query. Let the aspect ratio of the query bounding box be

Arq =
W

q

H
q

and Arw = W
w

H
w

be the aspect ratio of the window. The score for window w

is defined as scorew = min(Ar
w

,Ar
q

)
max(Ar

w

,Ar
q

) . Figure 4.3 shows a set of candidate windows for

four di↵erent query aspect ratios. The target windows are sorted by the normalized

proposed score. For a non-square target image, a set of 8 di↵erent window resolutions

are generated, we discard all the resolutions with a score higher than a threshold th.

For each of the remaining windows, we construct the BoW vector representation

and compare it with the query representation using cosine similarity. The window

with the highest cosine similarity is taken as the new score for the image (score max

pooling).

We also enhance the BoW window representation with spatial pyramid match-
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Figure 4.4: Spatial Pyramid matching on window locations.

ing [70]. A BoW representation is constructed for the full resolution and each of the

subregions, as shown in Figure 4.4. Then, their contribution to the similarity score

is weighted with inverse proportion to the resolution level lr of the region (lr = 1 for

the full image, and lr = 2 for the subregions). The cosine similarity of a sub region r

to the corresponding query sub region is therefore weighted by wr =
1

2(L�l

r

) , where

L = 2 indicates the total number of resolutions.

With this procedure, the top T elements of the ranking are sorted based on the

cosine similarity, which is a weighted combination of the cosine similarity of the

di↵erent subregions. This procedure also provides the region with the highest score

as a rough localization of the object.

(c) Query expansion We investigate two query expansion strategies [27] based

on global and local BoW descriptors:

• Global query expansion (GQE): The BoW vectors of the N images at the top

of the ranking are averaged together with the BoW of the query to form the

new representation for the query. GQE can be applied either before or after

the local reranking stage.

• Local query expansion (LQE): Locations obtained in the local reranking step

are used to mask out the background and build the BoW descriptor of only

the region of interest of the N images at the top of the ranking. These BoW

vectors are averaged together with the BoW of the query bounding box. The
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Figure 4.5: Query examples from the three di↵erent datasets. Top: Paris buildings
(1-3) and Oxford buildings (4-6); bottom: TRECVID Subset.

resulting BoW vector is used to perform a second search.

4.4 Experiments

4.4.1 Datasets

We used two domain specific datesets Oxford [96] and Paris [97] buildings, and the

more generic TRECVID Subset [116] dataset, to evaluated the proposed BLCF. For

detailed detail of the datasets see Section 2.6. Figure 4.5 includes three examples of

query objects from the three datasets.

4.4.2 Preliminary experiments

We extracted features from the last three convolutional layers (conv5 1, conv5 2 and

conv5 3) and compared their performance on the Oxford 5k dataset. We experimented

with di↵erent image input sizes: 1/3 and 2/3 of the original image. Following several

other authors [8? , 125] as discussed in Chapter 3, we L2-normalize all local features,

followed by PCA, whitening, and a second round of L2-normalization. The PCA

models were fit on the same dataset as the test data in all cases.

Unless stated otherwise, all experiments used a visual codebook of 25,000 centroids

fit using the (L2-PCA-L2 transformed) local CNN features of all images in the same

dataset (1.7M and 2.15M for Oxford 5k and Paris 6k, respectively). We tested three
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Table 4.1: Mean average precision (mAP) on Oxford 5k using di↵erent convolutional
layers of VGG16, comparing the performance of di↵erent feature map resolutions
(both raw and interpolated). The size of the codebook is 25,000 in all experiments.
N ⇥M denotes the spatial resolution of the input image.

conv5 1 conv5 2 conv5 3

N ⇥M raw 0.641 0.626 0.498
2N ⇥ 2M interpolated 0.653 0.638 0.536
2N ⇥ 2M raw 0.620 0.660 0.540

di↵erent codebook sizes (25,000, 50,000, and 100,000) on the Oxford 5k dataset, and

chose the 25,000 centroids one because of its higher performance.

Inspired by the boost in performance of the Gaussian centre prior in SPoC

features [8], we apply a weighting scheme on the visual words of an image to provide

more importance to those belonging to the central part of the image. The weighting

scheme w(i, j) is described as:

w(i, j) =
1p

(i� c1)2 + (j � c2)2
, (4.1)

where (i, j) represents the position of a visual word within the assignment map and

(c1, c2) corresponds to the centre of the assignment map. The weights w(i, j) are

min-max normalized to provide scores between 0 and 1. Table 4.1 shows the mean

average precision on Oxford 5k for the three di↵erent layers and image sizes. All

results are obtained using this weighting criteria; for conv5 1 in Oxford 5k, this

increases mAP from 0.626 to 0.653. The combination of the layers by concatenation

did not provide any gain.

4.4.3 Query augmentation

Previous works [3, 126] have demonstrated how simple data augmentation strategies

can improve the performance of an instance search system. Data augmentation

consists in generating di↵erent versions of an image (by typically applying rotations,

translations, and/or variations in the scale) with the purpose of obtaining a more

robust image representation. Some of these apply augmentation strategies at the
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database side, which can be prohibitively costly for large datasets. For this reason,

we use data augmentation on the query side only. We explore two di↵erent strategies

to enrich the query before visual search: a horizontal flip (or mirroring) and a zoomed

central crop (ZCC) on an image enlarged by 50%.

Figure 4.6 shows an example of the transformations, which give rise to 4 di↵erent

versions of the query image. The feature vectors they produce are added together to

form a single BoW descriptor by encoding their corresponding visual words into a

single representation. Table 4.2 shows the impact of incrementally augmenting the

query with each one of these transformations.

Figure 4.6: The four query images after augmentation.

Table 4.2: mAP on Oxford 5k for the two di↵erent types of query augmentation: the
flip and the zoomed central crop (ZCC). 2⇥ interpolated conv5 1 features are used
in all cases.

Query + Flip + ZCC
+ Flip
+ ZCC

Global Search (GS) 0.653 0.662 0.695 0.697
Weighted Search (WS) 0.706 0.717 0.735 0.743

Local Search (LS) 0.738 0.746 0.758 0.758

4.4.4 Re-ranking and query expansion

We apply the local re-ranking (R) stage on the top-100 images in the initial ranking,

using the sliding window approach described in Section 4.3.

We scan di↵erent aspect ratio score thresholds th and evaluate the precision at

the first 10 images (P@10) on the top-10 retrieved images. P@10 does not change for

most of the thresholds, but the selected windows sometimes do and a lower threshold
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Table 4.3: mAP on Oxford 5k and Paris 5k for the di↵erent stages in the pipeline
introduced in Section 4.3. The Qaug additional columns indicate the results when
the query is augmented with the transformations introduced in Section 4.4.3.

Oxford 5k Paris 6k
+Qaug +Qaug

GS 0.653 0.697 0.699 0.754
LS 0.738 0.758 0.820 0.832

GS + R 0.701 0.713 0.719 0.752
LS + R 0.734 0.760 0.815 0.828

GS + GQE 0.702 0.730 0.774 0.792
LS + GQE 0.773 0.780 0.814 0.832

GS + R + GQE 0.771 0.772 0.801 0.798
LS + R + GQE 0.769 0.793 0.807 0.828
GS + R + LQE 0.782 0.757 0.835 0.795
LS + R + LQE 0.788 0.786 0.848 0.833

value means faster computation (more candidate windows are discarded). We set

th = 0.4 since it provides a small improvement from 0.80 to 0.84 in P@10 for the

Oxford 5k dataset.

Query expansion is later applied considering the top-10 images of the resulting

ranking. This section evaluates the impact in performance of both re-ranking and

query expansion stages. Table 4.3 contains the results for the di↵erent stages in the

pipeline for both simple and augmented queries (referred to as Qaug in the table).

The results indicate that the local re-ranking is only beneficial when applied

to a ranking obtained from a search using the global BoW descriptor of the query

image (GS). This is consistent with the work by Tolias et al. [125], who also apply a

spatial re-ranking followed by query expansion to a ranking obtained with a search

using descriptors of full images. They achieve a mAP of 0.66 in Oxford 5k, which is

increased to 0.77 after spatial re-ranking and query expansion, while we reach similar

results (e.g. from 0.652 to 0.769). However, our results indicate that a ranking

originating from a local search (LS) does not benefit from local re-ranking. Since

the BoW representation allows us to e↵ectively perform a local search (LS) in a

database of full indexed images, we find the local re-ranking stage applied to LS to
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Figure 4.7: Examples of the top-ranked images and localizations based on local CNN
features encoded with BoW. Top row: Christ Church from the Oxford Buildings
dataset; middle row: Sacre Coeur from Paris Buildings; bottom row: query 9098 (a
parking sign) from TRECVID INS 2013.

be redundant in terms of the achieved quality of the ranking. However, the local

re-ranking stage does provide a rough localization of the object in the images of

the ranking, as depicted in Figure 4.7. We use this information to perform query

expansion based on local features (LQE).

Results indicate that query expansion stages greatly improve performance in

Oxford 5k. We do not observe significant gains after re-ranking and QE in the Paris

6k dataset, although we achieve our best result with LS + R + LQE.

In the case of augmented queries (+Qaug), we find query expansion to be less

helpful in all cases, which suggests that the information gained with query aug-

mentation and the one obtained by means of query expansion strategies are not

complementary.

4.5 Comparison with the state-of-the-art

We compare our approach with other CNN-based representations using pre-trained

networks that make use of features from convolutional layers on the Oxford and
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Table 4.4: Comparison to state-of-the-art CNN representations (mAP). Results in
the lower section consider re-ranking and/or query expansion.

Oxford Paris
5k 105k 6k 106k

Ng et al. [138] 0.649 - 0.694 -
Razavian et al. [101] 0.844 - 0.853 -
SPoC [8] 0.657 0.642 - -
R-MAC [125] 0.668 0.616 0.830 0.757
CroW [? ] 0.682 0.632 0.796 0.710
uCroW [? ] 0.666 0.629 0.767 0.695
GS 0.652 0.510 0.698 0.421
LS 0.739 0.593 0.820 0.648
LS + Qaug 0.758 0.622 0.832 0.673
CroW + GQE [? ] 0.722 0.678 0.855 0.797
R-MAC + R + GQE [125] 0.770 0.726 0.877 0.817
LS + GQE 0.773 0.602 0.814 0.632
LS + R + LQE 0.788 0.651 0.848 0.641
LS + R + GQE + Qaug 0.793 0.666 0.828 0.683

Paris datasets. Table 4.4 includes the best result for each approach in the literature.

Our performance using global search (GS) is comparable to that of Ng et al. [138],

the most similar to our approach. However, they achieve this result using raw VLAD

features, which are more expensive to compute and, being a dense high-dimensional

representation, do not scale as well to larger datasets. Similarly, Razavian et al. [101]

achieve the highest performance of all approaches on both the Oxford and Paris

benchmarks by applying a spatial search at di↵erent scales for all images in the

database. Such an approach is prohibitively costly when dealing with larger datasets,

especially for real-time search scenarios. Our BoW-based representation is highly

sparse, allowing for fast retrieval in large datasets using inverted indices, and achieves

consistently high mAP in all tested datasets.

We also compare our local re-ranking and query expansion results with similar

approaches in the state-of-the-art. The authors of R-MAC [125] apply a spatial search

for re-ranking, followed by a query expansion stage, while the authors of CroW [?

] only apply query expansion after the initial search. Our proposed approach also

achieves competitive results in this section, achieving the best result for Oxford 5k.
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4.6 Experiments on TRECVID INS

In this section, we compare the Bag of Local Convolutional Features (BLCF) with

the sum pooled convolutional features proposed in several works in the literature. We

use our own implementation of the unweighted CroW representation[? ], uCroW, and

compare it with BLCF for the TRECVID INS subset. For the sake of comparison,

we test our implementation of sum pooling using both our chosen CNN layer and

input size (conv5 1 and 1/3 image size), and the ones reported in [? ] (pool5 and

full image resolution). For the BoW representation, we train a visual codebook of

25,000 centroids using 3M local CNN features chosen randomly from the INS subset.

Since the nature of the TRECVID INS dataset di↵ers significantly from that of

the other ones used so far (see Figure 4.5), we do not apply centre priors to the

features, to avoid down weighting local features from image areas where the objects

might appear. Table 4.5 compares sum pooling with BoW on Oxford, Paris, and

TRECVID subset datasets. As stated in earlier sections, sum pooling and BoW have

similar performance in Oxford and Paris datasets. For the TRECVID INS subset,

however, Bag of Words significantly outperforms sum pooling, which demonstrates its

suitability for challenging instance search datasets, in which queries are not centered

and have variable size and appearance. We also observe a di↵erent behaviour when

using the provided query object locations (LS) to search, which was highly beneficial

in Oxford and Paris datasets, but does not provide any gain in TRECVID INS. We

hypothesize that the fact that the size of the instances is much smaller in TRECVID

than in Paris and Oxford datasets causes this drop in performance. Global search

(GS) achieves better results on TRECVID INS, which suggests that query instances

are in many cases correctly retrieved due to their context.
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Figure 4.8: Appearances of the same object in di↵erent frames of TRECVID Instance
Search.

Figure 4.9: Top 5 rankings for queries 9072 (top) and 9081 (bottom) of the TRECVID
INS 2013 dataset.
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Table 4.5: mAP of sum pooling and BoW aggregation techniques in Oxford, Paris
and TRECVID INS subset.

Oxford 5k Paris 6k INS 23k

Ours
GS 0.650 0.608 0.323
LS 0.739 0.819 0.295

Sum pool
(as ours)

GS 0.621 0.712 0.156
LS 0.583 0.742 0.097

Sum pool
(as in [? ])

GS 0.672 0.774 0.139
LS 0.683 0.763 0.120

4.7 Discussion

The proposed BLCF representations benefit from the sparsity of BoW encoding.

However, the strategy of interpolating the target features to generate higher resolution

feature maps directly a↵ects the e�ciency of our representation. For instance, an

image of resolution (340, 256) would generate feature maps in conv5 1 of dimensions

(21, 16, 512) which, after the interpolation has (42, 32, 512) dimensional feature maps.

This results in obtaining a maximum number of visual words of 1344/image, in

contrast to the 336/image of the non-interpolated feature maps.

We chose to interpolate only the feature maps of the query images. This produces a

small drop in performance as shown in Table 4.6. However, the memory requirements

are reduced by a factor of 4. For this reason, in the remainder of this thesis, we only

interpolate the query features.

In comparison with sum/max-pooling approaches that generate a 512-dimensional

vector per image [? 125, 60, 106, 8], the memory required for loading BLCF

Table 4.6: Performance of BLCF in Oxford 5k and Paris 5k when interpolating the
feature maps of all the images within a dataset and interpolating only the query
images.

Oxford 5k Paris 6k

GS LS GS LS
Interpolating all 0.653 0.738 0.699 0.820

Interpolating queries 0.628 0.722 0.642 0.798
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Table 4.7: Memory (MB) of the indexed dataset, and query time search (s) per
image using BLCF representations. We also report the average number of non-zero
elements in the BoW histogram. The time refers to the time required to perform an
initial search. The re-ranking of the top 100 images increases the query time to 8.5s.

Oxford Paris TRECVID

memory (MB) 3.47 4.11 31.47
words/image 171 160 285
query/time (s) 0.002 0.003 0.02

representation is much smaller. For instance, the amount of memory required

for loading all images of Oxford 5k dataset is 3,47MB. A dense 512-dimensional

representations would require 10.37MB. In the case of TRECVID, BLCF requires

31.47MB of RAM where the dense approach needs 48.63MB. Table 4.7 shows the

memory required to load di↵erent datasets and the query time required to retrieve

one query in an indexed dataset (using an Intel(R) Core(TM) i7-4790K CPU @

4.00GHz with 30GB of RAM). While the retrieval time for a query is very e�cient,

the larger bottleneck is due to the re-ranking stages, which increases the query time

to 8.5s.

The time required for the re-ranking stage could potentially be reduced by

parallelizing the computations conducted in each image. However, in this thesis we

focus on exploring di↵erent ways to improve the underlying BoW representation

to keep the search time e�cient (only considering an initial search with a simple

post-processing step, such as average query expansion). In Chapter 5 we explore

a fine-tuning strategy to improve the CNN local features, and in Chapter 6 we

propose a better weighting scheme for aggregating the visual words into a BLCF.

With these methods, we obtain high performance rankings without including any

computationally demanding step at query time.

4.8 Conclusions

We proposed an aggregation strategy based on Bag of Words to encode features

from convolutional neural networks into a sparse representations for instance search.
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We use the assignment maps of the image to conduct spatial search to re-rank and

improve precision of the retrieved images. This re-ranking is followed by average

query expansion, which benefits from the previous re-ranking stage to provide

more informative queries. We demonstrate the suitability of these bags of local

convolutional features by achieving competitive performance with respect to other

CNN-based representations in Oxford and Paris benchmarks, while being more

scalable in terms of index size, cost of indexing, and search time. We also compared

our BoW encoding scheme with sum pooling of CNN features for instance search

in the far more complex and challenging TRECVID instance search task, and

demonstrated that our method consistently performs significantly better.

This encouraging result suggests that BoW encoding, by virtue of being high

dimensional and sparse, is more robust to scenarios where only a small number of

features in the target images are relevant to the query. Our method does, however,

appear to be more sensitive to large numbers of distractor images than methods

based on sum and max pooling (SPoC, R-MAC, and CroW). We speculate that this

may be because the distractor images are drawn from a di↵erent distribution to the

original dataset, and may therefore require a larger codebook to better represent the

diversity in the visual words. Future work will investigate this further.

In the next chapter, we explore the combination of the proposed system with

a traditional SIFT-BoW system with spatial verification to further improve the

obtained results. With the improved retrieval pipeline we sample images for fine-

tuning a similarity model in an end-to-end manner with the aim of obtaining better

CNN representations than those extracted from the pre-trained classification models.
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Fine-tuning CNN models for

Instance Search

5.1 Introduction

In the previous chapter we proposed BLCF as an e�cient pipeline to perform instance

search. In this chapter, we explore a fine-tuning strategy to improve the local CNN

representations and generate a more powerful BLCF representation.

Descriptors extracted from o↵-the-shelf CNN classification models trained on

millions of labeled images have been proven to encode in their middle layers “general

purpose” image information useful for a diverse range of computer vision prob-

lems [110]. However, the target task of these models is substantially di↵erent to

instance search task. While classification is concerned with distinguishing between

di↵erent classes, learning representations invariant to the possible intra-class vari-

ability (i.e the di↵erent appearances of an object), instance search is concerned with

identifying concrete instances of a particular class.

For this problem, deep models tend to perform worse than conventional methods

that rely on high dimensional handcrafted features with high discriminative power

followed by geometric verification of local descriptors between a matched image pair

and query expansion [96, 3, 86, 124].
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Recently, di↵erent authors have proposed to explicitly learn the weights of a CNN

model for the retrieval task [1, 100, 39], instead of using o↵-the-shelf models, showing

a substantial improvement over o↵-the-shelf CNN representations and achieving a

new state-of-the-art in the Oxford, Paris, and Holidays benchmarks. However, the

proposed approaches require generation and annotation of a suitable training image

set for similarity learning that, in the case of the best performing CNN-retrieval

models [100, 39], is domain specific to landmarks and buildings.

In this chapter, we first explore a method to generate high quality ranks in a

particular dataset by combining on o↵-the-shelf CNN retrieval system and SIFT-

based system. Then, we use the merged system to generate a set of triplets to perform

similarity learning of a simpler CNN model. We evaluate the e↵ect of performing

fine-tuning in di↵erent domains, finding that fine-tuning a CNN model for similarity

learning is a good strategy to perform instance search in a particular image domain,

but not to generate good general-purpose retrieval representations.

The remainder of this Chapter is organized as follows: Section 5.2 describes the

two SIFT and CNN based systems used to obtain a high quality retrieval pipeline,

Section 5.3 describes the network architectures considered as well as the loss function

and training sample strategy to optimize a CNN for similarity learning. Section 5.4

presents the experiments and results obtained using di↵erent datasets for network

optimization, and lastly Sections 5.6 and 5.7 present the summary and conclusions

drawn from the experiments conducted.

5.2 Combining SIFT and CNN-based systems

Descriptors from pre-trained classification networks encode high-level information

of the image but are highly invariant to intra class variability. On the other hand,

invariant local descriptors, encode low-level image information robust to geometric

transformation but they do not encode image semantics. In this subsection we

propose to use the best of the two approaches by combining the rank scores obtained
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from our proposed BLCF system (Chapter 4) with the ones obtained from a SIFT-

BoW system. The purpose is to generate a high-quality ranked list of images from

which to sample training examples for similarity learning.

5.2.1 SIFT-BoW system

We use a retrieval system based on invariant hand-crafted features. More specifically,

we use a�ne-Hessian interest points [85] from which we extract RootSIFT [3] local

representations for each image. We learn a visual vocabulary of 500,000 centroids

using approximate k-means and spatial re-ranking on the top-1000 retrieved results.

BoW representations were built using tf-idf weighting [114]. For this, we use the

Matlab implementation from Andrea Vedaldi [128]. We test the system on Oxford [96],

Paris [97], and INSTRE [133] benchmarks. To evaluate the performance on INSTRE,

we randomly sample 5 images from the 250 di↵erent object classes in the dataset

generating a total of 1250 image queries. We use mean average precision as the

evaluation metric, following the same procedure as in [48].

5.2.2 BLCF system

We use the same system proposed in Chapter 4 using the bounding box to represent

the query and with global average query expansion of the top-10 ranked results.

We replace the re-ranking strategy by saliency weighting (explained in detail in

Chapter 6), which represents a more general solution in contrast to the Gaussian

weighting, and allows us to achieve similar results without explicitly analyzing the

images at a local level generating multiple window descriptors.

The procedure consists of first extracting local features from the pre-trained

VGG16 network, working at one third of the original image resolution. Features

are L2-normalized, PCA-whitened and L2-normalized again. A visual vocabulary of

25,000 clusters is learned, and the final BoW descriptor was built applying saliency

weighting on the visual words for the BoW construction. In both SIFT (Section 5.2.1)

and CNN based systems, the query bounding box is used to encode only the visual
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words within the relevant area to generate the query BoW representation.

5.2.3 Combined system

We evaluate the performance of a merged system by directly averaging the similarity

scores obtained by SIFT and CNN methods. Table 5.1 shows how performance of

the combined system consistently outperforms the individual pipelines obtaining

nearly state-of-the-art performance in Oxford and Paris, and improving results in

the INSTRE dataset. 1

Table 5.1: Performance of merged SIFT and CNN BoW systems across di↵erent
datasets.

Oxford Paris INSTRE

BLCF 0.795 0.843 0.737
SIFT-BoW 0.865 0.803 0.382
merged 0.904 0.914 0.739

5.2.4 Quantitative comparison

The SIFT-BoW system achieves high performance in the landmark related datasets

Oxford and Paris, obtaining 0.865 and 0.803 mAP respectively and drops its per-

formance in INSTRE obtaining 0.382 mAP. BLCF obtains good performance on

the landmark-related datasets, obtaining 0.795 and 0.843 mAP in Oxford and Paris.

Similarly to the SIFT-based system, BLCF also experiences a drop on performance

in the INSTRE dataset. However it is far less severe, obtaining 0.737 mAP.

This evaluation leads us to two conclusions. The first is that instance search

methods that obtain high-performance in datasets such as Oxford and Paris do not

generalize well for real world photo collections, where the background and context in

1The current state of the art in Oxford and Paris datasets is 0.947, and 0.966 mAP respectively.
These results are reported [39], where the authors use a fine-tuned version of R-MAC (using
ResNet [43] architecture), trained for similarity learning on landmark images (more details are
provided in sections3.5.3.4 and section 3.5.5), including a database side augmentation and query
expansion as post-processing steps [3]. The current state-of-the-art in INSTRE is 0.896 mAP, where
a di↵usion strategy on the similarity scores is used to re-fine the results from the fine-tuned R-MAC
representations [39].
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which the instance may appear are more diverse, and instances are not restricted

to a particular domain or specific visual patterns. The second is that CNN-based

descriptors encode information in such a way that they outperform low-level SIFT

representations in this kind of scenario. As such, this suggests that the approaches

are complementary and performance will often improve if they are combined.

In the case of INSTRE, images returned by the merge system are more or less

unchanged in most of the cases, and SIFT system only seem to add insignificant

noise to the meaningful results returned by the CNN system. However, for some of

the queries, CNN fails in returning significant results. In those cases SIFT system

helps to improve the performance of the BLCF system.

5.2.5 Qualitative comparison

Whilst both methods present generally high-performance in buildings and landmark

related queries, a more exhaustive analysis of INSTRE allows us to compare the

kinds of scenarios in which one outperforms the other. We observe that SIFT is

superior in planar and textured instances such as logos as shown in Figure 5.1. In

the two examples, it is possible to observe how the semantics captured in the CNN

representations make the system fail to identify the two particular logos.

On the other hand, Figure 5.2 contains two examples where BLCF outperforms

SIFT-BoW. We observe that 3D objects with textureless and/or reflective surfaces

or instances where colour can be one of the most discriminative features are cases

where CNN outperforms SIFT-based system (first example of Figure 5.2). We also

observe how the lack of semantics of SIFT-BoW causes some failures. Particularly, in

the case of retrieving instances of the Mount Rushmore, SIFT-BoW system mistakes

the instance of the mountain with other pictures with a rocky background.

Instead of considering both systems independently, the qualitative analysis sug-

gests that the information encoded by the di↵erent representations can be com-

plementary, since for some of the instances one method clearly outperforms the

other.
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Figure 5.1: Two visual examples containing instance of logos where SIFT outperforms
the CNN system. For each example, the top-5 results are displayed (first row SIFT,
the second CNN). The first example, the Einstein Bros logo achieves 0.946 Average
Precision (AP) with SIFT whereas CNN achieves 0.159 AP, where the system retrieves
logos but fails in identifying the specific instance. Similarly, the Seven Eleven logo
achieves 0.927 in SIFT and 0.048 AP in CNN, where the system retrieves buildings
with a logo at the top but fails in identifying the specific instance.

5.3 Fine-tuning a CNN model for similarity learning

Inspired by the discussion of fine-tuning in Chapter 4, we note that the combination

of CNN and SIFT features provides high quality ranks that we can use to sample

triplets for similarity learning (described in Chapter 3). The aim is to fine-tune

a “simpler” CNN model to behave like the complex and expensive merged system

without the need for crawling and annotating additional data.

5.3.1 Network architecture

We start from a pre-trained VGG16 model [113] without the fully-connected layers.

Local descriptors are encoded with the following configurations:
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Figure 5.2: Two visual examples containing instances where CNN outperforms the
SIFT system. For each instance the top-5 ranked results are displayed (first row for
SIFT descriptors, and second row for CNN). The first example contains an instance
of a whale toy. In this case, one of the most discriminative features is the colour of
the object, which is the reason why the system achieves low performance using SIFT
descriptors 0.133 AP, but very high performance using the CNN representation 0.964
AP. In the second example, we observe how the lack of semantics of the SIFT-based
system produces a ranked list with similar textured images, but fails in identifying
the instance achieving only 0.033 AP whereas the CNN system achieves 0.984 AP.

1. (Network A) Direct sum-pooling : Descriptors from the pool5 layer are sum-

pooled generating a single representation per image of 512 dimensions, that is

further L2-normalized.

2. (Network B) Direct sum-pooling in a high dimensional space: We add a new

convolutional layer on top of pool5 with 4096 filters of size (1 ⇥ 1 ⇥ 512)

to project the local descriptors into a higher dimensional space. Descriptors

are sum-pooled generating a single representation of 4096 dimensions that is

L2-normalized.

5.3.2 Loss function

We use the triplet loss function introduced in Chapter 3:
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) is cosine distance between the anchor and a negative example and

↵ is the margin. The non-zero margin value can be chosen arbitrarily since the CNN

can learn to globally scale the embedding proportional to ↵. The only important

factor is the relative scale of the margin and the embedding at initialization [11]. We

set ↵ = 0.5 without experiencing any divergence problem during training.

5.3.3 Triplet sampling

We explore the similarity scores obtained from the SIFT-CNN merged system to

sample training triplets from a dataset: for a particular rank, high-scored images are

associated with images containing the same instance whereas low ranked correspond

to unrelated images.

We query all the images within a dataset using the combined SIFT and CNN

system to generate a ranked list, which corresponds to the average of the similarity

scores of both systems. We randomly sample one of the images (or generated ranked

lists) to sample a triplet for training. For each ranked list, the similarity scores2

larger than one are associated with those images that had been spatially verified with

RANSAC on the SIFT local representations. We select a positive pair (anchor and

positive image) randomly, selecting two images with score larger than 15 (sharing

more than 15 local SIFT matches) to ensure that the positive pair was geometrically

verified and shares a large amount of SIFT local matches. The negative pair is

selected from all images within a ranked list with score between 0.5 and 1, where 1 is

the maximum similarity score achieved by images that have not been spatially verified

with the SIFT pipeline. Additionally, we conduct negative mining by computing

2For the CNN system, the similarity scores are the cosine similarity between image representations.
For the SIFT system, the similarity score consists in the cosine similarity of the BoW representation
in addition to the number of SIFT matches obtained by RANSAC, being a number larger than one
for the spatially verified images.
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the loss associated with random triplets and sampling those with higher value for

training.

5.4 Experiments and results

Training images were processed by taking a squared random crop of dimensions

equal to the smaller image side. The crop was resized to 224 ⇥ 224 dimensions.

Due to memory restrictions, we only consider fine-tuning the weights from the

last convolutional layers (conv5 1, conv5 2, and conv5 3 ). We tested di↵erent

optimization methods (SGD, Adaboots, and RMSProp), selecting RMSProp [123]

since it was the only which we achieved loss convergence. We used RMSprop with

learning rate set to 0.01, with epochs of 5,000 triplets for training and 3,000 for

validation. For testing the performance of the fine-tuned representations, images

were resized keeping their original aspect ratio and setting their maximum dimension

to 340 pixels.

5.4.1 Fine-tuning using Oxford query ranks

In this first experiment, we sample images from rankings related to the Oxford

queries, similarly to the training strategy followed in [131], where the authors directly

use the ground-truth labels to sample the triplets. We trained Network A for 60

epochs, doing negative mining every 15 epochs with a batch size of 100 triplets.

Performance of the baseline network was substantially improved on the Oxford

dataset. The baseline system of L2-normalized sum-pooled pool5 descriptors from

pre-trained VGG16 generated 0.480 mAP on Oxford, which was improved by the

fine-tuned network to 0.733 mAP.

However, sampling triplets only from query rankings made the network highly

overfit to the Oxford queries as shown in Table 5.2. Even when evaluating the

performance of the learned representations in a domain related dataset, such as the

Paris dataset, the descriptors showed very poor performance in comparison to the

136



Chapter 5. Fine-tuning CNN models for Instance Search

pre-trained descriptors.

Table 5.2: Performance (mAP) of fine-tuned models using ranks related to the Oxford
queries. Network A refers to direct sum-pooling configuration. The baseline is the
performance of the o↵-the-shelf features.

Oxford Paris

Baseline 0.480 0.698
Network A 0.733 0.247

5.4.2 Fine-tuning using ranks from all Oxford dataset

In this experiment, we follow the same experimental setup described as the previous

subsection, but instead of restricting the training data to the Oxford queries, which

only represents 11 di↵erent landmarks, we sample triplets from the full dataset. In

this case the learned representation presents less overfitting to the Oxford dataset,

but also less improvements: Network A only achieved 0.575 mAP on Oxford.

With the same setup, we also fit an additional set of weights to project local

representations to a higher space (Network B): Local information is less likely to

interfere when pooling the descriptors via sum-pooling in this higher dimensional

space. In this case the batch size for training is reduced to 20 images due to memory

restrictions. However, the gains obtained after training this configuration are equal

to the ones provided by adding a set of random weights (Baseline B), which suggests

that even though the network decreases its loss during training, the weights of this

layer are not capturing any useful information.

It is interesting to see how the extra layer added in Network B represents an

increase in performance by itself, even with randomly initialized weights. This

behaviour has been observed in [107], where the authors notice that certain feature

learning architectures can yield useful features for object recognition tasks even

with untrained random weights. Random projections are also exploited in Extreme

Learning Machines (EKM [46]), which are supervised learning architectures consisting

of one hidden layer where the projections between the input and the hidden neurons
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Table 5.3: Performance (mAP) of fine-tuned models using all ranks generated in the
Oxford dataset. Network A refers to direct sum-pooling configuration. Network B
refers to adding an extra high-dimensional layer. Baselines are the performance of
o↵-the-shelf (Network A) and o↵-the-shelf with randomly initialized weights (network
B) in the additional layer.

Oxford Paris

Baseline A 0.480 0.698
(F)Network A 0.575 0.302
Baseline B 0.503 0.716
(F)Network B 0.502 0.715

are randomly set and the only parameters updated during training are the weights

connecting the hidden layer with the output layer.

Results show that using all the dataset images in the Oxford dataset is a way to

reduce the substantial over-fitting that occurred in the previous section. However,

the information learned in Network A is still not useful in the Paris dataset. One of

the reasons may be that most of the images are references to one of the 11 queries,

and the rest of the images are completely unrelated images. The low diversity of

the instance classes justifies the drop in performance in the Paris dataset, despite

representing a similar domain. Also, the limited size of the dataset makes it infeasible

to fit the large number of weights introduced in the additional last layer of Network

B.

5.4.3 Fine-tuning using INSTRE class labels

In this section we use the instance classes provided in the INSTRE dataset to perform

fine-tuning of the two proposed architectures: Two random images are sampled

from a particular class (anchor and positive examples) and the negative is randomly

sampled from another class. We do not use the unsupervised sampling strategy

described in Subsection 5.3.3 to avoid sampling noisy triplets in this first experiment.

Additionally we add an extra configuration by including a classification loss to

predict the class of the anchor image during training. For this we add a dense

layer with a softmax activation function on top of the sum-pooled 4096 dimensional
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feature. The new dense layer has 250 dimensions, which correspond to the 250

di↵erent instance classes of the dataset. This architecture is identified as “(F+cl)

Network B” in the results of Table 5.4. The final loss is an equally weighted

combination of the similarity loss defined in Equation ( 5.1) and the categorical cross

entropy.

Table 5.4: Performance (mAP) of fine-tuned models using INSTRE images for
training. Network A refers to the direct sum-pooling configuration. Network B
refers to adding an extra high dimensional layer. Baselines are the performance of
o↵-the-shelf (Network A) and o↵-the-shelf with randomly initialized weights (Network
B). (F) refers to fine-tuning for similarity learning. (F+cl) refers to fine-tuning for
classification and similarity learning simultaneously.

Oxford Paris INSTRE

Baseline A 0.480 0.698 0.275
(F)Network A 0.071 0.147 0.257
Baseline B 0.503 0.716 0.268
(F)Network B 0.498 0.712 0.268
(F+cl)Network B 0.246 0.242 0.587

We observe that similarity learning in all cases but one does not improve mAP in

the INSTRE dataset, even when using the image labels to generate “clean” triplets:

The more diverse setup presented in the INSTRE dataset makes it challenging even

to over-fit the training set for instance search. Only when we combine similarity

learning with classification loss can we observe substantial gains in the INSTRE

dataset. However, the learned descriptors only become useful in the INSTRE dataset

as they do not generalize well to other domains, as shown in Table 5.4 with the

(F+cl) Network B configuration.

5.5 Discussion

Even-though the fine-tuned descriptors show a strong over-fitting to the dataset from

where we generate the training data, we nonetheless test the performance of BLCF

encoding on the derived local CNN features. We use the Network A (subsection 5.4.1),

which achieves 0.733 mAP performance with sum-pooled features on pool5 in Oxford.
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Table 3.3 shows the results using the descriptors from conv5 1 of VGG16. BLCF

on pool5 obtains lower performance compared with sum-pooling aggregation (0.660

mAP vs 0.773), which is not surprising since the network has been tuned to aggregate

pool5 features with sum-pooling. However, we observe that BLCF on the lower layer

conv5 1 benefits from the improved CNN representations, and their performance can

be furthered improved by applying a weighting scheme on the obtained assignment

maps.

Future work will investigate a way to formulate a soft version of BoW so that

it can be included as a layer in the CNN architecture, as proposed with VLAD

encoding in [1]. However, the high dimensionality of the BoW vocabularies represents

a challenge for formulating a soft version of BoW as an additional layer for the

CNN. For instance, using 25,000 centroids and implementing the encoding as a

fully connected layer followed with a softmax means that it would be necessary to

tune 12,800,512 parameters. This proposed layer would contain more parameters

than the full VGG16 network (8,313,3344 parameters), which is an unrealistic

solution for practical reasons (this amount of parameters might not fit in memory at

training/testing time), and the large amount of data required to conduct the training.

Techniques used in natural language processing for training large vocabularies [40]

could be applied for fitting the vocabulary layer. Methods such as hierarchical

softmax [87] use tree structures to make the softmax computation more e�cient.

Table 5.5: Performance of BLCF on conv5 1 encoding using using di↵erent weightings
in the Oxford 5k dataset. GS refers to global search (encoding all the visual words
of an image), LS refers to encoding only the visual words within the query bounding
box. “None” uses equal weights on the visual words for constructing the histogram,
“Gaussian” assigns more weight to the visual words located in the center of the
image (Chapter 4), “Saliency” uses the weights obtained from a Saliency model [143],
proposed in chapter 6)).

None Gaussian Saliency

GS LS GS LS GS LS
o↵-the-shelf 0.628 0.722 0.666 0.728 0.670 0.746
fine-tuned 0.669 0.739 0.708 0.736 0.731 0.750
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Also, importance sampling [12] can be applied to allow e�cient training of the high

dimensional layer. We plan to explore these avenues in future work.

In this chapter we have observed that larger training datasets are crucial to achieve

generalization and better performance. Recent works show that with a suitable

dataset, o↵-the-shelf classification models can be improved for retrieval [39, 100].

In the remainder of this thesis we investigate how designing better weighting

schemes can substantially improve the performance of BLCF based on o↵-the-shelf

CNN features, representing an approach that generalizes well on di↵erent retrieval

domains without requiring the collection of a suitable training dataset.

5.6 Summary

In this chapter we have explored a similarity learning strategy to fine-tune a CNN

network for instance search, evaluating its generalization across di↵erent domains. We

focused on exploring existing datasets to sample triplets without requiring additional

images and manual annotations.

We first proposed the combination of CNN and SIFT-BoW models to build

an accurate retrieval system that takes the best from both representations. We

justify this by showing that both methods are complementary and their combination

improves results over individual pipelines.

We explored di↵erent fine-tuning strategies, mainly di↵ering in the training

samples used:

• The first strategy consisted of sampling triplets from rankings belonging to the

query images within the Oxford dataset. The approach provided substantial

gains in the Oxford dataset at the cost of over-fitting to the query images,

which makes the learned model e↵ectively useless for retrieving di↵erent queries,

even domain related ones.

• The second strategy consisted of using rankings related to all Oxford images

instead of only the rankings of the image queries. We found that this approach

141



Chapter 5. Fine-tuning CNN models for Instance Search

still overfits the Oxford dataset images. We speculate that this is due to the

low diversity of the instance classes (related mainly to the 11 buildings) for

fine-tuning.

• The third strategy consisted of sampling triplets from the general-purpose

instance retrieval dataset INSTRE. We found that training a network for

similarity learning in this setup did not generate image representations that

produced any gains in the performance of instance search. In this case, the

high diversity on the query domains makes the similarity learning task very

challenging. Only when we add a classification loss did we observe gains in the

INSTRE dataset. However, this was at the cost of overfitting the dataset.

5.7 Conclusions

Exploring existing retrieval benchmarks to perform fine-tuning of a CNN for similarity

learning was also explored in Want et al. [131], where the authors use the ground-

truth labels to generate the training images, reporting substantial gains with respect

to the performance of the baseline system based on pre-trained features. We follow

a similar approach, proposing a merged SIFT-CNN BoW system to generate a set

of rankings from which to sample images in an unsupervised manner. However,

using datasets such as Oxford or Paris for similarity learning is likely to generate

models that highly overfit the training set, due to the low diversity of the landmark

instances.

In contrast, using images from the INSTRE dataset, which is much more diverse

in the domain of the queries, results in making the task of learning a good general

image representation for instance search task very challenging. We speculate that to

successfully fine-tune a CNN model for similarity learning it is necessary to have a

large diversity in the instances but also to restrict those instances to be of a specific

domain such as in [1, 100, 39]. This also suggests that many similarity learning

approaches that rely on fine-tuning either overfit the dataset or overfit the particular

142



Chapter 5. Fine-tuning CNN models for Instance Search

type of task being evaluated (i.e landmarks, buildings), making them less likely

to generalize well to more general instance search scenarios. We could possibly

improve the performance of the proposed CNN networks by working with a larger

and more suitable training set of images, by collecting a new set of images specific

to a particular domain from which to generate a set of ranked lists for sampling the

triplets.

However, pre-trained CNN models already generate good “general purpose”

features, that we could further explore for the task of instance search, without

restricting them to any particular domain. Therefore, in the remainder of this thesis,

we will focus on improving the performance of instance search system using only

pre-trained representations. Specifically, in the next chapter we propose to explore

saliency models to weight the contribution of convolutional features.
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Saliency Weighted

Convolutional Features

6.1 Introduction

In this chapter we evaluate di↵erent weighting schemes in an attempt to improve

BLCF representations. As a result, we obtain a high performance and e�cient

retrieval pipeline that does not require any additional re-ranking step involving the

individual processing of di↵erent regions of the image. The approach also does not

require the construction of a suitable training dataset for fine-tuning.

One common factor that seems to improve performance of a CNN model (fine-

tuned or not) used in a retrieval pipeline is to individually analyze di↵erent regions

of the images. This can be performed by pooling small regions within a convolution

layer or by aggregating the visual words associated to a particular image region.

In particular, R-MAC has become a popular architecture for image retrieval [39,

100, 73, 17, 69]. Originally proposed by Tolias et al. [125], R-MAC is specifically

designed for the instance search task. The main feature of their approach consists

of building a compact image representation by sum-pooling features of di↵erent

regions of the image. They follow a sliding window approach to building the region

features, considering di↵erent window sizes. In contrast to Razavian et al. [101], their
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method maps the window coordinates within the last convolutional layer (similar to

FastRCNN [37]), so only a single image has to be forwarded through the network to

generate all the region descriptors via max-pooling. All the regions are post-processed

with am L2-normalization, PCA whitening, and a second round of L2-normalization.

The final representation is constructed by sum-pooling all the region descriptors

followed by a L2-normalization.

Intuitively, one can see that pooling descriptors from di↵erent regions and then

subsequently pooling all of the resulting regions together is similar to applying a

weight to the original convolutional features, since region descriptors and globally

pooled descriptors are built from the same set of local features. In this chapter we

first investigate whether R-MAC can be re-interpreted as a non-parametric weighting

scheme on the convolutional features. Second, we evaluate di↵erent ways to weight

the convolutional features for the task of instance search, finding saliency weighting

an especially beneficial approach on di↵erent datasets. Finally, we show that our

proposed bags of convolutional features can benefit more from saliency weighting

than direct pooling approaches, achieving comparable results to models that have

been explicitly tuned for the image retrieval task.

The chapter is organized as follows: Section 6.2 provides a brief overview of

the taxonomies for weighting schemes for convolutional activations. Section 6.3

motivates the use of sum-pooling as a direct pooling mechanism over max-pooling.

Then, Section 6.4 provides a re-interpretation of R-MAC as a weighting scheme,

which allows us to re-interpret the object proposal algorithms as a kind of weighting

as shown in Section 6.5. Section 6.6 provides a brief overview about saliency models.

Section 6.7 describes the experiments conducted. Sections 6.8 and 6.10 present the

quantitative and qualitative results obtained. Section 6.9 compares the our system

with the state-of-the-art. And finally, Sections 6.11 Sections 6.12 and 6.13 conclude

the chapter with a summary and conclusions for this study.
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6.2 Taxonomy of weighting schemes

The major advantage of using convolutional layers over fully-connected ones is that

they retain the spatial information of the local image patterns. A convolutional

layer generates a tensor of activations X in RH⇥W⇥D, where (H,W ) is the spatial

dimension of the feature maps and D the total number of feature maps. Xi,j,k refers to

an activation located in the spatial location (i, j) in the feature map k. As discussed

in Section 3.4.1, the volume of activations can be reinterpreted as N = H ⇥W local

descriptors f(i, j) 2 RD arranged in a 2D space. Before aggregating the activations

into a single representation, it is possible to apply a weighting scheme wi,j,k to weight

the contribution of each activation, so that weighted activations X 0
i,j,k are computed

by X 0
i,j,k = wi,j,kXi,j,k.

6.2.1 Types of weighting

We can distinguish three types of weighting: weights applied across feature maps of

dimension D, weights across the spatial dimension (H,W ) of the feature maps, or

hybrid approaches.

6.2.1.1 Feature weighting �k

Each dimension of a local descriptor f(i, j) represents the response associated with

a particular feature detector. Di↵erent weights can be applied to the features of the

local vectors, so that the weighting is uniform across the spatial dimensions of the

feature maps wi,j,k = �k. For instance in [? ], �k is a weighting scheme that weights

the contribution of each dimension according to the sparsity associated with their

global feature map k in X . The proposed scheme up-weights the contribution of

rare-features (dimensions corresponding to feature maps with higher sparsity levels)

before aggregation. This procedure is similar to the traditional tf-idf weighting

scheme [114], that also boosts the importance of the most distinctive and rare visual

words within an image in BoW encoding.

146



Chapter 6. Saliency Weighted Convolutional Features

6.2.1.2 Spatial weighting ↵i,j

In this approach di↵erent weights are applied to f(i, j) depending on its spatial

location. In this case the final weighting is uniform across di↵erent feature maps

wi,j,k = ↵i,j . For instance, ↵i,j is defined using a Gaussian weighting scheme in [8]

and, similarly, in [? ] each local feature is weighted with its associated L2 norm.

6.2.1.3 Hybrid weighting wi,j,k

In this approach activations are weighted by combining �k and ↵i,j schemes. An

example of this is the Cross-Dimensional Weighting scheme (CroW) [? ] where the

weighting is defined as wi,j,k = ↵i,j�k. The weight assigned to a particular activation

is a combination of the weights derived from the channel sparsity and the weights

associated to the strength (L2-norm) of each local descriptor.

More specifically, subsections (6.2.1.2) and (6.2.1.1) describe a weighting types

can be seen as a particular case of the hybrid weighting CroW, where ↵i,j = 1 in the

case of feature weighting and �k = 1 for the spatial weighting types.

6.2.2 Spatial weighting schemes

Spatial weighting ↵i,j weights the contribution of each local feature f(i, j) before

the aggregation stage. We can further classify four di↵erent schemes for this type of

weighting: fixed, image-dependent, query-dependent, and hybrid weighting schemes.

6.2.2.1 Fixed weighting schemes

In this approach, the weighting is a function that does not depend on the image

content (or local descriptors). Examples include global sum-pooling of unweighted

activations (↵i,j = 1) or global sum-pooling with spatial weighting following a

Gaussian centre-prior is defined by:

↵i,j = exp�
 
(i� H

2 )
2 + (j � W

2 )2

2�2

!
. (6.1)
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These schemes do not depend on the image content (as can be seen from Equa-

tion 6.1): the weighting only depends on the image resolution.

6.2.2.2 Image-dependent weighting schemes

Here weights are a function of the image content. Schemes can be classified into two

main categories:

1. Non-parametric image-dependent weighting where weights do not depend on

any learned parameters. For instance, in global sum-pooling of features spatially

weighted with the contribution of the local L2-norms [? ], weights are defined

as

↵i,j = kf(i, j)k2 (6.2)

where ↵i,j is a non-parametric function that depends on the local descriptor.

Similarly, in the same spirit as R-MAC [125], local sum-pooling of di↵erent

regions followed by L2 region normalization and global pooling is also an

example of this scheme, where each region is inversely weighted according to

its associated L2-norm (as will be shown in Section 6.4.2).

2. Parametric image-dependent weighting where the weighting function is para-

metric and fit using supervised learning. One example is the local sum-pooling

of regions obtained from a learned region proposal algorithm followed by L2 re-

gion normalization and global pooling, as in the fine-tuned R-MAC version [39].

Another example is the saliency weighting of convolutional activations. This

scheme is particularly interesting because saliency models are trained to directly

up-weight parts of the image that humans consider important. The saliency

weighting scheme is furthered discussed in Section 6.6.

The above categorization ignores PCA whitening for the sake of simplicity. PCA

whitening performs an additional linear transformation of the weights that equalizes

the expected covariance of the features. PCA is not a weighting scheme, as such,
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but rather a projection of the features onto an alternative basis. It can be added to

any of the above approaches as a post-processing step, either after local pooling or

global pooling.

6.2.2.3 Query-dependent weighting schemes

In this case the spatial weighting is a function of the query image (or its repre-

sentation). As with the image-dependent weighting schemes, the weighting can be

non-parametric or parametric.

An example of this weighting is described in [17], where the authors propose a

query-adaptive image search re-ranking where convolutional activations are locally

pooled within di↵erent regions similarly to [125]. However, instead of directly pooling

all the regions via sum-pooling into a final representation, a soft merging function

of the set of regions is optimized for each query. The function up-weights the

contribution of the regions that are more related to the query. Due to the fact that

the total amount of dataset regions can be prohibitively large for the optimization

algorithm, the method is only applied as a re-ranking step, considering the regions

from the top retrieved images obtained from an initial search.

Although this weighting scheme represents a potentially interesting avenue of

research, its main drawback is that it needs to be optimized at query time, adding a

significant computational computational load as well as memory demand, since all

region descriptors need to be stored, making the system less scalable.

6.2.2.4 Hybrid schemes

This type of scheme involves both image-dependent and query-dependent weighting.

Although this is theoretically possible, the scheme would su↵er from the same

drawbacks as the query-dependent schemes. Again, it could be an interesting avenue

of future research.
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6.3 Sum/Max-pooling

While sum-pooling seems to outperform max-pooled features when whitening is

applied as a post processing step [8? , 125], R-MAC is based on max-pooling

activations within the di↵erent regions. Here we investigate if one of these two

pooling strategies out-performs the other. We find that there is no clear evidence

favoring one pooling strategy over the other, since hyperparameters such as image

resolution, feature post-processing (applying PCA whitening or not), the layer of

the network considered, weighting scheme (SPoC, CroW, etc.), or even the testing

dataset in which we evaluate the retrieval pipeline can play a role in deciding whether

max-pooling outperforms sum-pooling.

As an example, we describe a small experiment to evaluate the performance of

max and sum-pooling. We represent the images by spatially pooling all the activation

within the last convolutional layer of a pre-trained VGG16. As a preprocessing step

the image is rescaled so that the larger dimension is 340 pixels (maintaining the

original aspect ratio). The two-sided test is calculated to evaluate whether the null

hypothesis is true or false. In this case, the null hypothesis is that the mAP obtained

by max and sum-pooling are equal. P-values larger than 0.05 indicate that the null

hypothesis cannot be rejected.

Table 6.1 shows that there is no statistically significant di↵erence between choosing

one form of pooling over the other. When PCA whitening is used, sum pooling

becomes significantly better than max-pooling.

Table 6.1: mAP comparison using max and sum-pooling over regions on the Oxford,
Paris, and INSTRE datasets. Images processed at 340 pixels (larger size). The
features are extracted from the pool5 layer of the VGG16 network. Results are
reported with and without PCA-whitening post-processing.

Oxford Paris INSTRE

Max Sum p-value Max Sum p-value Max Sum p-value
w/o PCAw 0.548 0.528 0.762 0.744 0.745 0.890 0.375 0.374 2.9e-22
w PCAw 0.551 0.591 0.001 0.750 0.773 0.016 0.274 0.279 0.008
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Table 6.2: mAP comparison of R-MAC and R-SUM on Oxford, Paris, and INSTRE.
Descriptors are post-processed with L2 normalization and PCA whitening (L2-norm
+ PCAw + L2-norm). Images are processed at 1040 (larger size). The features are
extracted from the pool5 layer of the VGG16 network.

Oxford Paris INSTRE

R-MAC R-SUM R-MAC R-SUM R-MAC R-SUM
0.710 0.704 0.834 0.803 0.352 0.296

We also report results with the default configuration of R-MAC in Table 6.2,

testing both encodings (we identify R-MAC as R-SUM when sum-pooling is per-

formed to build the region features). Even though this configuration was specifically

optimized for max-pooling, R-SUM still provides similar performance in almost all

the datasets tested.

In general, sum pooling is simpler to analyze than max pooling. As both provide

similar performance, we focus on sum-pooling in the remainder of this chapter.

6.4 Region pooling as a weighting scheme

Let X be the tensor of activations of a convolutional layer, with dimension (H,W,D)

where D is the number of convolutional filters, and (H,W ) are the spatial dimension

of the feature maps. Global sum-pooling the activations within that particular layer

can be expressed as F =
PW

i=1

PH
i=1 f(i, j), where f(i, j) is a vector in RD. Pooling

over regions (using sum-pooling), followed by global sum-pooling of the region vector

(R-SUM), can be expressed as:

F =
WX

i=1

HX

i=1

↵(i, j)� f(i, j), (6.3)

where the ↵ is a D-dimensional vector that weights the contribution of a particular

local convolutional feature f(i, j), and � is the elementwise multiplication. This

weight is a non-parametric image-dependent spatial scheme composed of two factors:

the first depends on thewindow location (how many times a particular local feature

is considered for the final pooling) and the second on the region post processing

151



Chapter 6. Saliency Weighted Convolutional Features

Figure 6.1: Sample regions extracted at 3 di↵erent scales (l = 1...3), source [19].

(typically L2-normalization followed by PCA whitening and L2-normalization again).

6.4.1 Window location factor

If we do not take into account the post-processing applied to each region, we can

express the final global descriptors directly with Equation 6.3, where ↵(i, j) is the

weighting factor that explicitly depends on the region proposal strategy applied.

R-MAC follows a multi-scale sliding window approach defined as follows. Let

(H,W ) be the dimensions of a feature map. The size of the window w is defined

as w = 2min(H,W )/(l + 1), where l = 1, . . . , L defines the scale of the window.

The stride of the window S is set to S = 0.4w (forcing a 40% of overlap between

windows). Figure 6.1 illustrates three di↵erent scales and window locations of the

described R-MAC multi-scale sliding window strategy. Scale l = 1 contains only two

sub-windows of square shape equal to the smaller dimension of the original image

w1 = W/2, l = 2 contains 6 windows with dimension w1 = 2W/3, and l = 3 contains

12 sub-windows of w1 = 2W/4.

Figure 6.2 shows the weight maps ↵(i, j) for descriptors from pool5 of VGG16.

Working at full image resolution, the feature maps at that layer have dimension

(21, 32, 512). The number of windows per scale l considered depends on the resolution

of the feature maps. For instance, when only one scale is considered (L = 1), only

two square windows of (21, 21) are generating, when L = 2, a total of 8 windows are

generated: 6 windows of size (14, 14) (l = 2), and 2 of (21, 21) (l = 1). When L = 3,
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a total of 20 windows are generated, being 12 of size (10, 10) and l = 3, and the rest

from the larger resolutions. This sample strategy provides more importance to the

central region of the image, independently of the image content.

Figure 6.2: Weighted maps ↵(i, j) obtained from the sliding-window strategy applied
in R-MAC at three di↵erent scales L.

6.4.2 Region post-processing factor

In R-MAC, all region pooling is followed by a post-processing scheme which includes

L2-normalization followed by PCA whitening followed by L2-normalization again.

For simplicity we just analyze the contribution of the first L2-normalization. Pooling

all the di↵erent region vectors after L2-normalization can be expressed by:

F =

Pw
i=1

Pw
j=1 f(i, j)

k
Pw

i=1

Pw
j=1 f(i, j)k2

+

Pw+S
i=S

Pw
j=1 f(i, j)

k
Pw+S

i=S

Pw
j=1 f(i, j)k2

+ . . .+

PH
i=mS

PW
j=nS f(i, j)

k
PH

i=mS

PW
j=nS f(i, j)k2

(6.4)

The regions considered are the same as the ones described in the previous

subsection, but now each region contributes with a weight inversely proportional

to its L2-norm. Figure 6.3 provides the visualization of this weighting. In contrast

to the window factor, this generates a weighting that is dependent on the image

content that tends to upweight non-salient regions. This weighting seems to balance

the contribution of the most active descriptors (those with higher L2-norms) also

taking into account how many times that a particular region is visited.
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Figure 6.3: Weighted maps ↵(i, j) obtained from the sliding-window strategy applied
in R-MAC (top row) and from the L2-norms (bottom row) at four di↵erent scales L.
On the left the original image and its L2-norm map visualization. Weighting from
post-processing factor with L2 normalization appear to upweight non-salient regions.

6.4.3 Limitations of the fixed region sampling

Two factors contribute to the final weighting produced by aggregating descriptors

from di↵erent regions: one depends on the considered locations and the other on

the content of the images. As such we can think of R-MAC as a non-parametric

weighting scheme, similar to CroW [? ].

One of the main limitations of this approach is the fixed-grid used for sampling

the regions. As illustrated in Figure 6.3, a fixed grid means more importance is

placed on the centre of the image. This strategy, might be suitable in datasets

such as Oxford and Paris where the main target instance is usually located in the

centre [8]. However, it is not necessarily a good strategy in more challenging scenarios

with more variability in terms of scale, location, or occlusion of the target instances.

Such scenarios are more common in challenging benchmark datasets like INSTRE or

TRECVID instance search.

Although the weighting obtained from the post-processing derives a component

that depends on the image content, the contribution is directly linked to the window
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sampling. This weighting is somehow not intuitive, since it down-samples relevant

parts of the image instead of boosting them.

In the approach proposed in this chapter, we discard the idea of individually

processing di↵erent regions of the image. Instead, we globally apply an image-

dependent spatial weighting scheme that allows us to control the influence of the

relevant regions.

6.5 Object proposal weighting

One possible solution to overcome the limitation of using a fixed grid is to use

an object proposal algorithm [45] to generate the candidate regions. Selective

Search [127] is one of the most popular algorithms that merges superpixels based on

engineered low-level features to generate a set of candidate regions.

More recently, Region Proposal Networks (RPN) [102] appeared as a data-driven

object proposal method. RPN operate on top of a convolutional layer and is optimized

to learn an “objectness” score for a particular region. At test time, the network

predicts a set of N regions and corresponding bounding box coordinates that are

more likely to contain an object. One of the main advantages of this network over

algorithms like Selective Search is the possibility of optimizing the proposals for

the final target task. As an example, Faster-RCNN [102] uses a RPN that shares

parameters with the object detection network, so the model can be trained end-to-

end for the final object detection task. In the scope of retrieval, Gordo et al. [39]

optimized a RPN on landmarks images. Here, the RPN shares parameters with a

retrieval network (trained using triplet loss and R-MAC encoding) as an alternative to

using a fixed-grid to generate the proposals. As such the RPN is not only optimized

to generate proposals, but also to learn those regions that are most informative for

the final task, albeit with the drawback of requiring annotated data.

Following the same procedure described in Section 6.4.1, we use an object pro-

posal algorithm to plot the contribution of each region instead of using a fixed
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Figure 6.4: Weighted maps ↵(i, j) obtained from the object proposal algorithms.
Each image is followed by the weights obtained by Faster R-CNN (middle) and
Selective Search (right). Both methods provide a rough estimation of the relevant
parts of the image.
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grid. Figure 6.4 contains the weighting scheme obtained for the window location

factor from Faster-RCNN trained on PASCAL VOC2007 (model and implementa-

tion from [35]) and from the Selective Search algorithm for four di↵erent images

(the L2 normalization factor is not included in the visualization). The RPN from

Faster-RCNN generates 300 proposals (in the plot we represent up to 6000 regions

corresponding to the bounding box regression of the 21 classes of PASCAL) while

Selective Search results in 2000 proposals per image approximately. In contrast

to the fixed grid approach, higher weights are applied to the most salient regions,

obtaining a coarse localization of the most salient parts of the image.

Region proposal algorithms represent a smarter approach to pool region descrip-

tors instead of using a fixed grid like in R-MAC. However, when local descriptors

are sum-pooled into a single representation, the factor derived from the window

sampling strategy can only provide a rough estimation of the relevant parts of the

image. Motivated by this fact, in the next section we introduce saliency weighting

as a more accurate image dependent weighting strategy that we will use to directly

weight the contribution of the local convolutional features, instead of generating

multiple regions.

6.6 Saliency weighting

One of the main features of the human vision system its capacity to actively focus

on the most salient regions and movements. Visual saliency is a process that detects

regions di↵erent from their surroundings, producing feature maps that contain the

most prominent regions within an image.

Saliency prediction has been a problem traditionally addressed with hand-crafted

features inspired by neurology studies. With the emergence of challenges such

as the MIT saliency benchmark [16] and the Large-Scale Scene Understanding

Challenge [143] (LSUN), and the appearance of large-scale public annotated datasets

such as iSUN [136], SALICON [58], MIT300 [16], or CAT2000 [14], data-driven
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Figure 6.5: Weighted maps ↵(i, j) obtained for four images obtained by: fixed
sliding window from R-MAC [125], Gaussian-centre prior [8], L2-norms [61], saliency
prediction from deep SalNet [94] and RPN [102].

approaches based on CNN models trained end-to-end have become the dominant

approach to address this problem, generating more accurate models every year to

predict human fixations [67, 58, 65, 93, 94].

While there has to date been a clear research focus on developing more accurate

saliency models to improve performance on the MIT and LSUN benchmarks, less

focus has been given to applying existing saliency models in other computer vision

tasks. In particular, state-of-the-art saliency models could be applied to weight the

contribution of local convolutional features as an alternative of using a fixed-grid

region weighting as used in R-MAC. Figure 6.5 shows di↵erent weighting approaches

for local CNN features. R-MAC fixed-grid and centre prior only depend on the image

resolution, which it is a limitation in retrieval scenarios where the target instances

are not centered located. L2-norms, saliency, and RPN depend on the image content.

However, saliency weighting provides a more accurate location of the relevant parts of

the images. Instead, L2-norm generates a noisy saliency map, when the background

is highlighted in most of the cases, and RPN generates a low resolution saliency of

the relevant objects due to that the algorithm generates thousands of bounding box

instead of accurate pixel level saliency.
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6.7 Experimental setup

In this subsection we describe the di↵erent spatial weighting schemes considered for

the instance search task. We consider two aggregation methods: global sum-pooling

and BoW of the weighted convolutional features. The method is evaluated in general

retrieval benchmarks (Oxford and Paris) as well as in the challenging instance search

benchmark INSTRE.

6.7.1 Deep Salnet

We generate saliency maps using the Deep Salnet network proposed in [94]. This

network is a fully convolutional network consisting of ten layers: one input layer,

eight convolution and one “deconvolution” layer [140] 1. The ReLU is used as

an activation function and pooling layers follow the first two convolutional layers,

e↵ectively reducing the width and height of the feature maps in the intermediate layers

by a factor of four. The final deconvolution generates the final prediction, up-sampling

the resolution to the original input size. A transfer learning strategy is applied on

this network by re-using and adapting the weights from the three convolutional layers

from a pre-trained VGG architecture [113]. This acts as a regularizer and improves

the final network result. The loss function used during training is the mean squared

error computed pixel-wise between the saliency prediction and the ground truth

map.

6.7.2 Weighted sum-pooling

We use the pre-trained VGG16 model for image classification [113] for extracting

the local features. The images are processed at full resolution (1024 for the larger

dimension in Oxford and Paris and 1000 for INSTRE) and we encode pool5 features

as they are the best performing features for direct sum-pooling aggregation [61].

1Also called “transposed convolutions”. The purpose of this layer is to go in the opposite direction
to convolution (i.e if a convolution compresses a 3 ⇥ 3 activation window in a single neuron, a
deconvolution generates a 3⇥ 3 neurons from a single activation). It can be seen as an up-sampling
layer with learnable parameters.
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Images are pre-processed with mean subtraction prior to being forwarded to the

network. We apply five di↵erent spatial weighting schemes following Equation 6.3:

fixed R-MAC, Gaussian centre prior, L2-norm, saliency, and RPN (Figure 6.5). All

weights are normalized to have scale between 0 and 1. All weighted descriptors are

aggregated via sum-pooling into a compact descriptor of 512 dimensions. Standard

post-processing of the features is performed: L2 normalization, PCA whitening

(512 dimension), and a second L2 normalization. We follow the standard procedure

in [125, 8? ] and fit the PCA transform on the Paris dataset when testing on the

Oxford dataset and on the Oxford dataset when testing on Paris. In INSTRE, we

fit the PCA transform on the same dataset, since the image domain in Oxford and

Paris is significantly di↵erent. Mean Average Precision (mAP) is used for all the

datasets as the evaluation metric.

6.7.3 Weighted BLCF

We investigate applying the proposed five di↵erent weighting schemes to the visual

words in the BLCF scheme. In this case, images are resized to have a maximum size

of 340 pixels (1/3 of the original resolution) before performing mean subtraction

prior to being forwarded to the pre-trained VGG16 network. Features from conv5 1

are L2-normalized, PCA whitened (512D), and L2-normalized again before being

clustered. Clustering is performed using k-means with k = 25000 words, following

the pipeline described in Section 4.2. As with sum pooling, the PCA transform

and visual vocabulary in INSTRE are fit on the the same dataset. Images are not

interpolated, meaning that the maximum number of words required to store is equal

to the number of local features (⇡340).

6.7.4 Query Processing

The queries are processed in two ways: using the bounding box of the object (Local),

and pooling all the features (Global). For the Local approach, we map the coordinates

of the bounding box on the pool5 layer (in the case of direct sum-pooling) and in
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the assignment map (in the case of BLCF) and encode the features/visual words

contained within the region. In the case of BLCF, features are interpolated to

generate larger convolutional maps (as in Chapter 4).

6.8 Quantitative results

We present the results testing di↵erent weighting approaches with direct sum-pooling

in Table 6.3 and Bags of Convolutional features in Table 6.4. Results show that:

Table 6.3: Evaluation of di↵erent weighting schemes on direct sum-pooling.

Oxford Paris INSTRE

Weighting Global Local Global Local Global Local
None 0.680 0.686 0.779 0.765 0.261 0.406
R-MACw 0.683 0.691 0.794 0.787 0.297 0.459
Gaussian 0.684 0.688 0.795 0.793 0.318 0.484
L2-norm 0.671 0.676 0.782 0.782 0.321 0.466
Saliency 0.668 0.681 0.776 0.778 0.352 0.519

Table 6.4: Evaluation of di↵erent weighting schemes on direct BLCF.

Oxford Paris INSTRE

Weighting Global Local Global Local Global Local
None 0.628 0.722 0.642 0.798 0.350 0.526
R-MACw 0.650 0.731 0.677 0.806 0.403 0.568
Gaussian 0.666 0.728 0.701 0.809 0.447 0.591
L2-norm 0.666 0.740 0.711 0.817 0.468 0.612
Saliency 0.670 0.746 0.726 0.814 0.547 0.654

• Centre-bias weights (R-MACw, Gaussian) are in general beneficial in all

datasets, which suggests that objects tend to be located in the center in

all cases. Although, in Oxford and Paris the improvement with respect to

applying no weighting is again less significant than in the INSTRE dataset.

• BLCF aggregation specially benefits from content-dependent weighting schemes.

Encoding local features into a high dimensional sparse space helps to ensure

that the information is more likely to be linearly separable in comparison with
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dense pooling, as shown in Chapter 4. In this scenario, fine-grained detail

provided by saliency is shown to be more beneficial than center-bias approaches.

• Performance on the INSTRE dataset particularly benefits from the content-

dependent approaches. Specifically, saliency weighting increases performance

0.1 mAP points in the case of Local search in sum-pooled features. In the case

of BLCF, the increase is nearly 0.13 mAP points.

• In comparison with sum-pooling, BLCF produces a high-dimensional and sparse

representation that benefits more from the di↵erent weightings. It is notable to

remark that even though the BoW dimension is 25k, it is very sparse: only a

maximum of 320 dimensions (corresponding to the total local features encoded)

need to be stored. This makes this approach even more computationally and

memory e�cient that direct pooling, which results in dense 512D vectors.

6.9 Comparison with the state-of-the-art

In this section we compare our best performing configuration (BLCF with saliency

weighting) with state-of-the art approaches on the Oxford, Paris, and INSTRE

datasets. Results are compared with R-MAC, which can be re-interpreted as another

weighting version of local convolutional features, and its fine-tuned version for image

retrieval [100, 39]. We also include results with average query expansion (QE) [3],

where we take the top 10 (as in [61, 125]) retrieved images and generate a new query

vector by aggregating their assignments with the ones belonging to the original query.

A new ranked list is created by issuing this new query.

We observe that in comparison with R-MAC our approach performs similarly in

the Oxford and Paris datasets in, but clearly outperforms R-MAC in the INSTRE

dataset. The weighting scheme obtained by the R-MAC approach is restricted by the

fixed window locations (centre-bias) and the post processing applied to the features

(image dependent factor). While this strategy generates good results in domain

specific datasets such as Oxford and Paris, its performance is limited in the instance
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Table 6.5: Comparison of saliency weighting BLCF and state-of-the-art on Oxford,
Paris and INSTRE. In parenthesis we include the results when combining BLCF
with SIFT-BoW rankings (Chapter 5).

Local Search Local Search+QE

Oxford Paris INSTRE Oxford Paris INSTRE
ours 0.746 0.814 0.654 0.795(0.904) 0.843(0.914) 0.737(0.739)
R-MAC [125] 0.669 0.830 0.352* - - -
(f)R-MAC [100] 0.770 0.841 0.470 0.854† 0.884† 0.573†

(f)ResNet101 [39] 0.861 0.945 0.626† 0.896† 0.953† 0.705†

* Result generated with our own implementation.
† Results from Iscen et al. [48].

search datasets such INSTRE, where saliency weighting is a better approach.

Regarding the fine-tuned versions (f)R-MAC [100] and (f)R-MAC ResNet101 [39],

results indicate that fine-tuning for retrieval (even when using landmark images

for training) is always beneficial. However, this approach has the extra cost of

finding the adequate training data with its ground truth annotations. Our method

exploits o↵-the-shelf models from image classification and saliency prediction, which

generalize well in di↵erent datasets and achieves similar or superior performance to

models fine-tuned on landmarks.

As seen in the previous chapter, BLCF and Saliency weighting can be applied to

the finetuned features. This could potentially improve the performance as well as

the e�ciency of the obtained CNN representations.

6.10 Qualitative results

Instance search aims to locate general and diverse instances within a dataset of

images. Oxford and Paris datasets have the limitation of being restricted to the

particular domain of landmark buildings. In this domain, the original unweighted

CNN features or a simple centre-prior weighting may su�ce, since instances tend

to occupy a large part of the image and usually the background contains useful

information. We found that queries related to landmark buildings in INSTRE dataset

tend to generate higher average precision (AP) using this strategy. For instance,
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Figure 6.6: The top-10 ranked results for query 766 of the INSTRE dataset. Sum-
pooling aggregation is used as feature encoding. The first row contains of unweighted
features (AP = 0.805); the second, Gaussian weighted features (AP = 0.774); the
third, L2-norm weighted features (AP = 0.806); and last saliency weighted features
(AP = 0.744).

Figure 6.6 contains ranked results for a building query, where relevant images contain

the query building centred and usually with a similar size.

Saliency weighting turns out to be particularly beneficial for instances like faces,

logos, and small objects. As an example, Figure 6.7 contains the top-10 ranked

images for a picture of a face. Non-content dependent weightings perform poorly

because of the high diversity of locations and backgrounds where the instance can

appear. Saliency, which provides maps biased to boost the importance of regions

containing human faces, since it is trained with real human fixations, significantly

improves performance over all other approaches. L2-norm weights, in contrast, result

in much noisier maps that are less informative in finding the target instance.

Figure 6.8 contains another example where the query is a small salient object.

Gaussian weighting improves with respect the baseline but it still retrieves non-

relevant results with similar properties (a salient object centred in the middle of

the image). L2-norms generate noisy saliency masks such that results are still

dependent on the background. In this case, saliency weights clearly locate the

relevant instance and we retrieve results of the instance located in a much larger

diversity of backgrounds.
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Figure 6.7: Top-10 ranked results query 722 of the INSTRE dataset. Sum-pooling
aggregation is used as the feature encoding. The first row contains for the unweighted
features (AP = 0.152). The second row, Gaussian weighted features (AP = 0.184).
The third row L2-norm weighted features (AP = 0.110) and last row saliency weighted
features (AP = 0.353). Additionally we add visualization of saliency masks (row 5)
and L2-norm masks (row 6) related to the saliency results.

Figure 6.8: Top-10 ranked results query 842 of the INSTRE dataset. Sum-pooling
aggregation is used as the feature encoding. The first row contains results for
unweighted features (AP = 0.332). The second row, Gaussian weighted features
(AP=0.600). The third row L2-norm weighted features (AP = 0.654) and last
row saliency weighted features (AP = 0.811). Additionally we add visualization of
saliency masks (row 5) and L2-norm masks (row 6) related to the saliency results.
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6.11 Discussion

Saliency models substantially improve the performance of CNN features, especially

in BLCF encoding. Visual saliency modeling is an active research topic where

every year more sophisticated models are proposed improving the state-of-the in

benchmarks such as the MIT saliency benchmark [16] or the Large-Scale Scene

Understanding [143] benchmark. Future work investigate whether more accurate

saliency models will improve out retrieval system.

We also evaluated the performance on the TRECVID subset. We observe that

saliency weighting improves results over centre-prior weighting but does not improve

over the baseline of applying no weighting. We speculate that since the images are

keyframes extracted from videos, the nature of the data is substantially di↵erent

from a collection of pictures. In an image collection the object of interest tends to be

centred. Even in the very diverse INSTRE dataset, center prior weighting schemes

are shown to be beneficial.

In the case of TRECVID, some of the instances are objects that always tend to

appear in the same room. Taking into account the background for those instances is

very beneficial. However, other instances related to people or logos tend to appear

in di↵erent scenarios. Figure 6.9 contains visual examples of this behaviour. With

this motivation, future work will explore adapting the saliency weighting approach

to allow it to take into account more or less background depending on the query

instance. This could be used as a re-ranking approach that would increase the query

time but that could represent a solution for achieving accurate rankings in these

kinds of scenarios.

6.12 Summary

In this chapter we have provided another view of the popular R-MAC encoding. We

have re-interpreted region pooling as a non-parametric image dependent weighting
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scheme that relies on two factors: the window sampling strategy and the post-

processing applied to each region. This approach has the limitation of working

with fixed grid of locations that provides a centre-bias to the final weighting. The

post-processing step adds weights directly related to the image content. However,

this weighting is directly a↵ected by the window sampling strategy.

We have explored di↵erent weighting alternatives such as using the spatial weights

obtained from region proposal algorithms such as a substitution of the fixed grid

utilized in R-MAC. Those algorithms, en essence, provide a rough localization of the

relevant parts of the image, a fact that lead us to directly consider state-of-the-art

saliency models to weight the contribution of local convolutional features prior the

aggregation step.

Figure 6.9: Examples of query instances of TRECVID. The first column contains the
query instance, the following three rows contain visual examples of relevant images.
Most of the instances in TRECVID are highly related to its context (first two rows).
Instances where using the query bounding box is beneficial are logos or people, which
are more likely to appear in di↵erent scenarios.
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We have presented a quantitative evaluation of di↵erent weighting schemes: non-

image dependent schemes such as the centre-bias Gaussian weighting, non-parametric

image dependent schemes such as L2-norms of convolutional features and parametric

image dependent schemes such as saliency weighting. We target two well known

retrieval benchmarks, Oxford and Paris, and a specific instance search designed

dataset: INSTRE.

Results indicate that saliency weighting outperforms other weighting schemes

such as R-MAC in INSTRE. Moreover, o↵-the-shelf convolutional features with our

proposed BLCF encoding outperform even the state-of-the art fine-tuned version of

R-MAC, with more e�cient representations (only non zero elements are stored, which

leads to storing a maximum of 300 integer numbers as opposed to the 2048 float

numbers required to store the dense representation from the fine-tuned R-MAC).

6.13 Conclusions

We have proposed a method for instance search that relies on a BoW encoding

of local convolutional features. For this, we have used a pre-trained o↵-the-shelf

classification model and a state-of-the art saliency model. Visual words derived

from the convolutional features are weighted with saliency weights providing a

scalable and general instance search pipeline. Our framework achieves state-of-the-

art results on the challenging INSTRE dataset, outperforming methods that have

been specifically trained for retrieval and furthermore we provide a rationalization

for the generalization of the proposed pipeline to generic instance retrieval.

As shown in the previous chapter, the performance of the proposed system could

benefit even further from the complementary information of SIFT-BoW pipelines.

When we combine both systems, we achieve state-of-the-art results at the cost of

increasing the processing time and memory requirements. However, the proposed

pipeline does not over-fit any particular domain, and it is demonstrated to be a good

generic instance search solution without requiring fine-tuning for similarity learning.
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Conclusions

The traditional bag-of-visual-words (BoW) encoding has been widely used to aggre-

gate hand-crafted local descriptors such as SIFT. Typically BoW represents an initial

filtering stage followed by a spatial analysis step to improve the retrieval results at

the cost of increasing query time.

In this thesis, we have studied the adaptability of BoW to local CNN repre-

sentations derived from o↵-the-shelf classification networks (BLCF) achieving very

competitive performance with respect to other CNN o↵-the-shelf methods. Similar

to traditional approaches, the achieved performance can be further improved by

including a spatial verification step, albeit compromising the query time.

We have investigated two methods for generating better CNN representations

as an alternative to expensive re-ranking strategies. The first is a unsupervised

fine-tuning strategy, which improves the underlying CNN representation at the cost of

losing the generalizability of the CNN representations. The second explores the usage

of attention mechanisms, in particular saliency models, that significantly improve the

performance of CNN representations. We discovered an e�cient representation that

achieves very competitive performance across di↵erent retrieval benchmarks. Spatial

re-ranking and query-adaptive methods could further improve the performance of

the proposed system at the cost of increasing the query time.

In this chapter, Section 7.1 summarizes the main contributions of this work.
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Section 7.2 reviews the hypotheses and research questions introduced in Chapter 1

based on the knowledge gained during this research. Section 7.3 concludes the work

with recommendations and directions for future research.

7.1 Research contributions

The key contributions of this thesis are the following:

• We conduct an investigation of the traditional bag of visual words encoding

on local CNN features to produce a scalable image retrieval framework that

generalizes well across di↵erent retrieval domains.

• We explore a fine-tuning strategy for similarity learning without requiring

additional annotated labels to improve descriptors of a pre-trained network for

a particular retrieval benchmark. The obtained results suggest that the perfor-

mance improvement is at the cost of losing generalization of the representations

on di↵erent kinds of instances.

• We propose a general solution that achieves state-of-the-art performance in

di↵erent benchmarks by exploring CNN saliency models, which have the

advantage of not requiring additional training data or over-fitting to a particular

image domain.

7.2 Hypotheses and research questions

In this section we review the hypotheses and research questions of this work (stated

in Section 1.4) based on the investigations conducted:

H1) When building a global image representation from local CNN image

descriptors for retrieval, the aggregation of those descriptors into

a high-dimensional sparse representations is “better” (in terms of

performance and e�ciency of the representation) than aggregating

them within the original local feature space.
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Experiments conducted in Chaper 4 suggest that the high dimensionality of

BCLF allows us to better preserve the local information within the images.

Using the visual words corresponding to the instance within the query image

produces a boost in performance over direct encoding of all the visual content

within the image. Tables 4.3, 4.4 and 6.4 show this e↵ect, where Local

Search (LS) clearly outperforms Global Search (GS), with the exception of the

TRECVID dataset in Table 4.5, due to the fact that some of the instances are

highly related to the background. One benefit of better preserving the local

information is it allows better advantage of more sophisticated spatial weighting

schemes. In Section 6.8 we observe how BLCF achieves more competitive

performance than direct pooling strategies [8? ] after applying di↵erent

weighting strategies. Despite the high dimensionality of BLCF, the aggregation

method represents the image in a maximum of 300 non-zero elements as

indicated in Table 4.7, which leads in a very e�cient representation of the

image content.

With the experiments conducted we can conclude that it is indeed possible to

use traditional BoW encoding on o↵-the-shelf local representations to address

the task of image retireval (H1-Q1 ).

The method achieves competitive performance compared to other state-of-the-

art methods in popular retrieval datasets such as the Oxford and Paris datasets

(in terms of quality of the generated rankings). BLCF outperforms other o↵-the-

shelf CNN methods [125, 8? ] in the more challenging TRECVID and INSTRE

datasets, while requiring less memory to store the image representations (H1-

Q2 ).

Finally, we showed how the same method can be successfully applied to diverse

datasets without requiring training data, yielding good results and showing

the generalization of the BLCF (H1-Q3 ).

H2) Re-training a pre-trained CNN for the task of instance retrieval is an
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appropriate procedure to build specialized but not generic instance

search systems.

With the experiments conducted on the Oxford, Paris, and INSTRE datasets

in Chapter 5, we can conclude that limiting the training data to these datasets

“can” lead to a CNN network highly over-fit to the training domain. This

suggests that other methods such as [131, 106] achieve a performance improve-

ment at the cost of losing generalization in the representations. Our method,

however, considers an unsupervised approach to generate training samples

exploiting a combined SIFT-CNN system. Recent works [39, 100] suggest

that the generation of a much large training may prevent overfitting. This

improvement is at the cost of requiring the construction of a suitable training

set, which is computationally demanding. For this reason, we cannot conclude

that “in general” re-training a pre-trained CNN for the task of instance retrieval

always yields a specialized instance search systems, because the performance

of the obtained CNN model depends heavily on the training data used.

Based on the experiments performed, we can conclude that it is indeed possible

to perform similarity learning in a particular dataset without requiring manual

annotations (H2-Q4 ) in the case of the Oxford/Paris datasets. However, in the

INSTRE dataset, we found it necessary to use classification labels to achieve a

good performing model due to the high diversity of the instances within the

dataset.

Limiting the training data to those datasets results in very poor generalization

of the CNN models (H2-Q5 ).

H3) Visual attention models are useful for the task of generic instance

retrieval.

Experiments performed in Chapter 6 indicate how saliency models can be

used to improve performance of o↵-the-shelf CNN representations (H3-Q6 ).

Visual attention models help to construct a more powerful representation for
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instance retrieval, either using direct pooling strategies such as sum-pooling

or the proposed BLCF framework (Section 6.8). In the case of BLCF, the

proposed saliency weighting scheme represents an alternative for e�cient

retrieval without having to apply expensive re-ranking stages, where individual

regions are encoded and compared to a query. However, spatial re-ranking

(Section 4.4.4) can be complementary to an initial search based on saliency

weighting, possibly boosting the achieved performance at the cost of increasing

the query time.

7.3 Recommendations and future work

While most related work has focused on comparing the performance of CNN de-

scriptors with traditional methods based on hand-crafted local features, our results

provide evidence that both representations can be complementary. Future work

could explore more sophisticated strategies to fuse both representations.

Fine-tuning a CNN model for instance retrieval is still a challenging task. One

challenging factor is collecting a suitable training set, that is generally domain specific,

since the notion of similarity is application dependent. Future work will explore

larger and more suitable datasets for similarity learning [1, 100, 39] to include BLCF

aggregation as a layer of a CNN network.

Also, while most of the discussed state-of-the-art used the VGG16 architecture,

recent works show how deeper CNN architectures, such as ResNet101, generate image

representations that achieve better performance. Future research will investigate

how BLCF and attention models adapt to these deeper models.

Attention mechanisms based on saliency prediction were found to be useful in

weighting di↵erent parts of an image during the encoding of an image representation

for instance retrieval. It would be very interesting to see how more sophisticated

saliency models perform in the instance search task. Whilst there has been much

research focused on developing better saliency models, it is unclear how crucial high
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accuracy is in practical applications such as instance retrieval. Future research will

investigate this further.

Finally, a scalable query-adaptive approach can be further investigated. Methods

that customize the spatial weighting schemes to minimize the distance between query

and target image, as in [17], or methods exploiting the image manifolds within the

feature space using di↵usion mechanisms to propagate the similarity with a particular

query [48], demonstrate a boost in performance. In particular, it would be very

interesting to investigate a query-adaptive approach based on saliency weighting,

where it is possible to weight the contribution of the background depending on

the query. In the case of the TRECVID dataset, where some instances present

high dependency with the background and some do not, this method could allow a

significant performance improvement.

7.4 Closing remarks

Content-based image retrieval, like many other computer vision tasks, has been

transformed by deep learning methods in recent years. Deep representations have

been proven to be very e↵ective for the task of instance search, especially when a

suitable training dataset is available [39, 100].

In this thesis we showed how deep representations can benefit from traditional

techniques. We have seen that SIFT and CNN representations contain complementary

information that can be combined to produce more e↵ective representations. In

practical scenarios where memory is not a restriction, SIFT and CNN retrieval

systems can be combined to generate more accurate ranked lists. Here we only

investigated a very simple SIFT/CNN fusion scheme; more sophisticated approaches

have the potential to provide further improvements in future.

In this vein, we have seen that learning from “what was done before” (pre-deep

learning era) can be very beneficial in image retrieval but also in other computer

vision tasks. In particular, the usage of the traditional bag of visual words encoding
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(BoW) allowed us to generate more e�cient and accurate retrieval systems than

other state-of-the-art approaches. The encoding does not require any additional

training data and can be applied to any CNN model. In future we plan to investigate

how this method performs in more powerful models than VGG16, such as ResNet,

as well how to formulate BoW as a di↵erentiable layer for a CNN.

One exciting finding of this work has been the usage of attention models for

the instance search task. During recent years, with the creation of large annotated

datasets, much research has focused on developing more accurate saliency models,

while less attention has been given to practical usages of state-of-the-art saliency

models. We believe that more focus should be given to study how image retrieval

and other computer tasks can benefit from state-of-the-art visual attention models.
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