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Abstract

Emotion plays an essential role in human cognition, perception and rational decision-
making. In the information age, people spend more time then ever before interacting
with computers, however current technologies such as Artificial Intelligence (AI) and
Human-Computer Interaction (HCI) have largely ignored the implicit information of
a user’s emotional state leading to an often frustrating and cold user experience. To
bridge this gap between human and computer, the field of affective computing has
become a popular research topic. Affective computing is an interdisciplinary field
encompassing computer, social, cognitive, psychology and neural science. This thesis
focuses on human affect recognition, which is one of the most commonly investigated
areas in affective computing. Although from a psychology point of view, emotion
is usually defined differently from affect, for this thesis the terms emotion, affect,
emotional state and affective state are used interchangeably.

Both visual and vocal cues have been used in previous research to recognise a
human’s affective states. For visual cues, information from the face is often used.
Although these systems achieved good performance under laboratory settings, it
has proved a challenging task to translate these to unconstrained environments due
to variations in head pose and lighting conditions. Since a human face is a three-
dimensional (3D) object whose 2D projection is sensitive to the aforementioned
variations, recent trends have shifted towards using 3D facial information to im-
prove the accuracy and robustness of the systems. However these systems are still
focused on recognising deliberately displayed affective states, mainly prototypical
expressions of six basic emotions (happiness, sadness, fear, anger, surprise and dis-
gust). To our best knowledge, no research has been conducted towards continuous
recognition of spontaneous affective states using 3D facial information.

The main goal of this thesis is to investigate the use of 2D (colour) and 3D
(depth) facial information to recognise spontaneous affective states continuously.
Due to a lack of an existing continuous annotated spontaneous data set, which
contains both colour and depth information, such a data set was created. To better
understand the processes in affect recognition and to compare results of the proposed
methods, a baseline system was implemented. Then the use of colour and depth
information for affect recognition were examined separately. For colour information,
an investigation was carried out to explore the performance of various state-of-art 2D
facial features using different publicly available data sets as well as the captured data
set. Experiments were also carried out to study if it is possible to predict a human’s
affective state using 2D features extracted from individual facial parts (E.g. eyes and
mouth). For depth information, a number of histogram based features were used and
their performance was evaluated. Finally a multi-modal affect recognition framework
utilising both colour and depth information is proposed and its performance was
evaluated using the captured data set.
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Chapter 1

Introduction

1.1 Motivation

In most parts of the world digital devices such as computers and mobile phones have

become ubiquitous. We use them in work, communication, shopping and entertain-

ment. This growing ubiquity has led to a focus on human-centred design. One of

the key components of human-centred design is human computer interaction (HCI).

Recent years have witnessed a trend away from traditional HCI such as mouse and

keyboard to a more user-centred design such as the use of hand gestures and voice

commands. However, these designs still ignore the user’s emotional states, which

is a fundamental component of human-to-human communication. As a result, such

interaction not only filters out a large amount of information available in the interac-

tion process, but also means that the interaction experience is frequently perceived

as cold, impersonal and frustrating (Zeng et al., 2009).

In addition to HCI scenarios, systems that can sense people’s emotional states are

also potentially beneficial for customer services, call centres, e-learning, intelligent

autonomous vehicles, games and other entertainment. For example: an autonomous

monitoring system in an e-learning environment could provide live feedback to the

lecturer on the status of the students; an automatic call centre could decide when
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to pass the customer to human operators (Lee and Narayanan, 2005) and an in-

telligent vehicle could monitor the tiredness or mood of the driver to potentially

avoid collisions (Ji et al., 2006). Other important applications of automatic affect

recognition are in more traditional/theoretical affect-related research such as psy-

chology, behavioural science and neuroscience, where such systems could improve

the reliability of measurements in subjective human trials and speed up currently

time-consuming manual processing of human affective behaviour data (Ekman and

Rosenberg, 1997).

Given the practical and theoretical importance of this field, a significant body

of research in the past 40 years has been conducted towards automatic affect recog-

nition. Williams and Stevens (1972) presented the first attempt to identify and

measure parameters from speech signals that reflect a speaker’s emotional states.

Suwa et al. (1978) showed an early attempt to analyse facial expressions automati-

cally by tracking the motion of twenty identified points on the face. With advances

in machine learning, Kobayashi and Hara (1991) proposed to recognise the six basic

emotions (happiness, sadness, fear, disgust, anger and surprise) from face images

using a neural network. The study carried out by Dellaert et al. (1996) compared

multiple pattern recognition techniques to recognise a subset of the basic emotions

(happiness, sadness, anger and fear) from speech. Motivated by the limitations of

using only visual or vocal cues, Chen et al. (1998) demonstrated one of the first

attempts at using both audio and visual modalities for emotion recognition and

showed an improvement in overall recognition accuracy of the six basic emotions.

Traditionally, facial information used in affect recognition has been based on 2D

data (colour pixel information) which is usually limited by head pose and illumi-

nation changes. In order to tackle these problems 3D data can be used. An early

attempt at recognising the six basic emotions from static 3D facial data was carried

out by Wang et al. (2006), where the authors showed improved results compared to

the use of static 2D facial data. More recently, Tsalakanidou and Malassiotis (2009)
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presented a system that uses dynamic 3D facial data for affect recognition.

Although a seminal study by Ambady and Rosenthal (1992) suggested that vi-

sual cues from the face and body are both important for judging people’s emotional

state, the existing literature on automatic affect recognition did not focus on the

information carried by the body until 2004 (Camurri et al., 2004). Since then, a num-

ber of researchers have attempted to combine facial expressions and body gestures

for affect recognition (Gunes and Piccardi, 2007; Karpouzis et al., 2007). Inter-

est in detecting emotions from physiological signals emerged from the well known

work of Picard et al. (2001) where the authors use four physiological sensors includ-

ing electromyogram (EMG), photoplethysmography (PPG), galvanic skin response

(GSR) and respiration sensors to recognise eight emotional states (neutral, anger,

hatred, grief, platonic love, romantic love, joy and reverence). Since then a number

of approaches have also been proposed for other types of sensors such as Electroen-

cephalographic (EEG) (Takahashi, 2004; Nakasone et al., 2005) and thermal infrared

cameras (Tsiamyrtzis et al., 2007).

As can be seen, most of early research on automatic affect recognition has fo-

cused mainly on recognising discrete emotional states, however, a number of re-

searchers have shown that a single label (or small number of discrete classes) may

not reflect the subtle and complex affective states that occur in everyday inter-

actions (Russel, 1980). Hence, the recent trend has shifted towards the use of a

dimensional description of human affect, where an affective state is represented by

a number of latent dimensions (Russel, 1980). Two of the most commonly used

dimensions are valence and arousal, where valence reflects how a person feels, from

positive (e.g. happy and joy) to negative (e.g. anger and fear) and arousal reflects

how likely a person is to take an action, from active to passive. Considering auto-

matic dimensional affect recognition, early attempts usually simplify the problem

to a two-class (positive-negative or active-passive) or a four-class (positive-active,

positive-passive, negative-active, negative-passive) valence-arousal related classifi-
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cation problem (Fragopanagos and Taylor, 2005; Caridakis et al., 2008; Glowinski

et al., 2008; Schuller et al., 2011). Since 2011, a number of researchers have started to

treat the automatic dimensional affect recognition problem as a regression problem.

For instance, Nicolaou et al. (2011) presented one of the first attempts to continu-

ously recognise spontaneous affect in the valance-arousal parameter space using both

visual and vocal cues. The current focus in automatic affect recognition research

is to continuously recognise the spontaneous affective state using multi-modal cues

in this dimensional space (Schuller et al., 2012; Valstar et al., 2013, 2014; Ringeval

et al., 2015b).

While the current approaches in continuous spontaneous affect recognition have

proven to be highly successful using data captured in controlled laboratory settings,

little work have been done on using data from an unconstrained environment (e.g.

with diverse illumination conditions and backgrounds). This forms the motivation

in this thesis for the investigation of different approaches that meet the requirements

of real-world applications.

Firstly, when using descriptors to represent different affective states, these de-

scriptors should be invariant to any change of the captured subject. For example

when a person’s face is only partially visible due to being covered by hair or look-

ing away from the camera, the affect recognition system should still give a correct

prediction of a person’s affective state.

Secondly, due to the variety of environments that might be encountered in prac-

tice, there are situations where a colour image is not clearly visible (e.g. under ex-

treme low-light conditions). The affect recognition system should be able to adapt

to the environment and use additional modalities to provide a correct prediction.

These two requirements motivated the main goal of this thesis, which is to inves-

tigate how visual cues could be used for continuous spontaneous affect recognition.

The visual cues consist of colour information which can be captured by a traditional

camera, and depth information which can be obtained using a depth sensor. This
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thesis focuses on the visual cues from the human face since the face is a crucial

modality in conveying human expressions. Facial expressions could indicate a per-

son’s affective state, intentions and ultimately, elicit other people’s response. For

instance, Segal (2008) suggested that it is possible to infer other people’s affective

state just by looking at the individual’s face, without any complementary informa-

tion such as voice or gesture, indicating that the face could be the most effective

communication tool.

1.2 Research Objectives

There are several research objectives identified in this thesis when using visual cues

for continuous spontaneous affect recognition. The initial research objective is to

thoroughly investigate the performance of popular low-level appearance features for

continuous affect recognition. In particular, this thesis focuses on histogram-based

features since they are one of the most commonly used appearance features for

continuous affect recognition. To accomplish this objective, experiments are carried

out to select the best configurations for different histogram-based features using a

publicly available dataset. Then using the best configurations, different histogram-

based features are extracted and evaluated on other datasets in order to study which

features give the best performance for continuous affect recognition across different

capture settings.

The next research objective is to study if individual facial parts such as mouth,

and eyes could be used to recognise affective state. The motivation behind this

research objective is that most of the existing approaches use features extracted

based on the entire face image. However one limitation of this approach is that it

might not generalise well for situations such as partial occlusions. If it is possible

to recognise affective state from individual facial parts, this should increase the

robustness of the system to partial occlusions.
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Another research objective is to investigate if features extracted from low cost

depth sensors could be used for continuous affect recognition. To accomplish this

objective, a face detection algorithm based on a depth image is first proposed. Then

the histogram-based features are applied to the data captured by the depth sensor

and their performance is evaluated.

The final research objective is to investigate if the use of both colour and depth

features lead to a significant increase in performance in affect recognition. With fea-

tures from different modalities, the issue of fusion is a crucial consideration. In this

context both feature-level fusion and decision-level fusion need to be investigated.

1.3 Research Contributions

The main scientific contributions provided by this thesis are summarised as:

• Designing and developing a novel data capture platform for collecting synchro-

nised video, depth and audio streams.

• To the best of my knowledge, I captured one of the first spontaneous and con-

tinuously annotated multi-modal dataset based on human interaction during

a debate.

• Thoroughly investigating the histogram-based appearance features for contin-

uous affect recognition.

• Proposing automatically generated appearance features from facial parts for

continuous affect recognition.

• Extending the low level appearance features to the depth modality for contin-

uous affect recognition.

• Developing a multi-modal framework for continuous affect recognition using

colour and depth information.
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1.4 Thesis Outline

The remainder of this thesis is structured as follows:

In Chapter 2, the relevant technical background and in particular the limitations

of the current affect recognition systems are reviewed. First, different affect models

used to represent a human’s affective state are introduced. Next, an overview of

the existing datasets used for affect recognition including how these datasets were

captured and annotated are examined. Then different features from video and depth

modalities used for affect recognition are explored before reviewing machine learning

techniques. Finally, the performance evaluation metrics used for affect recognition

are discussed.

In Chapter 3, the steps of designing and developing a multi-modal data capture

platform that could collect synchronised colour, depth and audio streams are first

described. Then a detailed description is given on how this platform can be used

to construct a three-way debate affect dataset. The processes for segmentation and

annotation of the dataset are then presented, and finally a statistical analysis of the

dataset is performed to demonstrate its value as a research tool.

In Chapter 4, a thorough investigation of which histogram based features from

the colour modality give the best affect recognition results is carried out. In par-

ticular, the first set of experiments concentrate on evaluating the performance of

hand-crafted low-level appearance features extracted from an entire face region,

while the second set of experiments focus on automatically generated features from

individual facial parts. These experiments are carried out using different datasets

including two publicly available datasets, along with the dataset captured in the

previous Chapter.

In Chapter 5, a face detector that using depth images is first proposed. Then

the depth face detector is used to extract the face region from the depth data

captured in Chapter 3. The histogram-based features are applied to the depth data,
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and their performance is examined. Various experiments are performed to study

how predictions from the video and depth modalities could be fused. Specifically,

early fusion and late fusion methods are evaluated. Finally, a multi-modal affect

recognition framework which can be used in real world settings is proposed.

In Chapter 6, outcomes of the research work to date are presented and further

work directions are proposed.
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Chapter 2

Related Work and Background

2.1 Introduction

In this chapter an overview of the background literature essential to understanding

the core work carried out in this thesis are given. In section 2.2, various compu-

tational models for human emotional processes are introduced. Their advantages

and disadvantages are discussed. In section 2.3, a review of the currently available

datasets for affect recognition is given. In section 2.4, the current state-of-the-art

techniques used in affect recognition are explored. First, different features used for

2D and 3D signals are examined, followed by a review of the machine learning tech-

niques that will later be employed for the work carried out in this thesis. Finally, the

performance evaluation metrics commonly used in affect recognition are explained.

2.2 Emotion Models

There has been a long debate on the nature and the causal generation of emotion

by psychologists since the latter third of the nineteenth century when psychology

began to form as an independent academic discipline (Calvo et al., 2014). Driven by

the needs for basic emotion and cognition research, various computational emotion
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models have been proposed along with the theories. These computational models

have bridged the gap between psychology and computer science. Currently there are

three commonly used models in affective computing. This section briefly introduces

these models. A more detailed discussion on each of these models can be found in

Fox (2008) and Scherer et al. (2010).

2.2.1 Categorical Model

Influenced by Darwin’s evolutionary view of emotions (Darwin, 1872), the discrete

categorical emotion model suggests that there are a set of basic emotions that drive

the motives of human beings (Tomkins, 1962, 1963). Most of the categorical models

describe emotions using a list of affective-related keywords. By showing subjects

still photographs of acted facial expressions, Ekman (1971) concluded that six ba-

sic emotions can be universally recognised. These emotions are happiness, sadness,

fear, anger, disgust, and surprise (See Figure 2.1 for an example of each emotion).

Sometimes, an additional neutral label is also added resulting in seven basic emo-

tions. Although the number of basic emotions varies from 2 to 18 depending on

different theories (James, 1884; Izard, 1971; Frijda and Swagerman, 1987; Ortony

and Turner, 1990; Wierzbicka, 1992), there has been considerable agreement on

Ekman’s six basic emotion categories.

Figure 2.1: Facial expressions of the six basic emotions - happiness,
sadness, fear, anger, surprise and disgust (Ekman and Friesen, 1976)

However, a number of psychology researchers suggest that it is necessary to go

beyond discrete emotions. For instance, Baron-Cohen et al. (2004) argues that it is

important to include cognitive mental states such as agreement, interest, thinking
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and concentrating in addition to the basic emotions, as they occur more often in ev-

eryday interaction compared to the basic emotions. To date, the discrete categorical

model has been the most commonly adopted approach in automatic affect recogni-

tion research. The advantage of the category representation is that people use these

words in daily life to describe observed emotions, which makes this scheme intuitive

to use and understand. However, there are two main drawbacks of the categorical

model: (a) it can not reflect the change in intensity of people’s affective state contin-

uously, for example people may have different levels of happiness from pleasure, joy

to ecstasy; (b) it fails to express subtle or blended affective states like depression,

contempt and embarrassment that could occur in a natural communication setting.

2.2.2 Dimensional Model

The dimensional model is an alternative approach to the categorical description of

human affect. It is based on the pioneering work of Wundt (1905). They argued that

feelings can be described by the dimensions of strain-relaxation, arousing-inhibition

and pleasantness-unpleasantness. Similarly, the study carried out by Osgood et al.

(1975) on affective meaning suggested that three key dimensions namely evaluation

(good or bad), potency (strong or weak) and activity (active or passive) exist in

almost every language/culture community. The dimensional model assumes that

affective states are not independent from one another; instead, they are related to

one another by the most fundamental affective feelings called core affect (Russell

and Barrett, 1999). Typically, two to four dimensions are usually used to represent

core affect. One of the most widely used dimensional models is the valence-arousal

model proposed by Russel (1980). The model is usually represented by a circular

configuration called Circumplex of Affect where each axis indicates one core affect,

and different emotional labels could be plotted at various positions on the two-

dimensional plane (See Figure 2.2). The valence dimension reflects how people feel,
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from positive (e.g. happy and joy) to negative (e.g. anger and fear). The arousal

dimension reflects how likely a person is to take an action: low arousal indicates less

energy to take an action, high arousal indicates more energy to take an action.

Figure 2.2: A graphical representation of the circumplex model of
affect with the horizontal axis representing the valence dimension
and the vertical axis representing the arousal dimension (Russel,
1980)

As the two-dimensional model cannot easily differentiate some affective states

that share similar values for valence and arousal (e.g. anger and fear, which both

result in high arousal and negative valence), a third dimension called dominance

could be added. The dominance dimension reflects how much a person feels in

control (e.g. anger indicates high dominance and fear indicates low dominance).

This model is usually referred to as the PAD emotion space for pleasure, arousal

and dominance (Mehrabian, 1995) or as emotional primitives (Espinosa et al., 2010).

The study carried out by Fontaine et al. (2007) suggested to also include expectation

(the degree of anticipating) as a fourth dimension to distinguish better emotions

such as surprise from other affective states. Compared to the categorical model,

the dimensional model is able to offer more flexibility when analysing emotions.

However, as pointed out by Russel (1980), the dimensional approach is only useful
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to characterize core affect instead of complete emotions since complete emotions

only fall into certain regions of the space defined by the core affect dimensions. For

example when the valence-arousal dimensional model is used, fear and anger could

share identical core affects. Even when the four-dimensional model is used, it is still

difficult to differentiate emotions such as shame, guilt and embarrassment (Fontaine

et al., 2007). Another challenge of using the dimensional approach is the annotation

delay when continuously annotating data for scientific experiments. This delay is

mainly caused by the reaction time between an annotator perceiving the affective

state, then giving the corresponding evaluation scores. The use of such delayed

ground truth could lower the performance of the affect recognition system.

2.2.3 Appraisal Model

The appraisal models or componential appraisal models are based on the pioneering

work of Arnold (1960) and Lazarus (1966) where emotion is mainly seen as de-

termined by appraisal, and it is generated through continuous, recursive subjective

evaluation of both people’s potential and the status of their environment. For exam-

ple, a farmer who sees an approaching bear will react differently from a hunter (e.g.

fear vs. excitement) based on the evaluation of individual’s potential. The same

farmer who sees a bear in a zoo will also react differently to when he sees the bear

in the wild, based on the evaluation of the environment (e.g. interest vs. fear). One

of the most widely used appraisal models is the OCC model developed by Ortony,

Collins and Clore (1988), which describes the cognitive structure of emotions. The

OCC model proposed a hierarchy that classifies 22 emotions along with three main

branches as shown in Figure 2.3. The three branches are (1) emotions concerning

consequences of events (e.g. pleased and displeased), (2) actions of agents (e.g. ap-

proving and disapproving), and (3) aspects of objects (e.g. liking and disliking).

Each emotion is then treated as a valenced (positive or negative) reaction in terms
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of one of the three main branches as described in Ortony et al. (1988). In addition,

some subsequent branches could combine together to form compound emotions.

Figure 2.3: Structure of the OCC model (Ortony et al., 1988)

The advantage of the appraisal model is that it does not limit affective states

to a fixed number of discrete categories or a set of affect dimensions. In contrast,

it focuses on the variability of affective states as a result of change in all rele-

vant contributing factors including cognition, motivation, physiological reactions,

motor expressions and feelings (Gunes, 2010; Calvo et al., 2014). This makes it

possible to differentiate and model the full-blown emotion space. However, the ap-
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praisal model requires complex, multi-componential and sophisticated measurements

of change. How to use it in automatic affect recognition with such a framework

remains an open research question (Gunes, 2010).

2.2.4 Discussion

While the discrete categorical model has been one of the most widely used ap-

proaches in affective computing, the recent trend has started to shift towards the

use of dimensional models (Schuller et al., 2011, 2012; Valstar et al., 2013; Ringeval

et al., 2015b). As suggested by Schuller et al. (2012), the dimensional model has

shown the ability to encode small differences in affect over time, and to distinguish

better between subtly different affective states compared to the limited categorical

approach, while at the same time providing an easy-to-implement framework com-

pared to the intractable appraisal model. As a result, the dimensional approach

was used for the automatic affect recognition research described in this thesis. In

addition, continuously annotated arousal and valence dimensions are chosen for this

research due to their widespread use in current affect recognition research (Metalli-

nou et al., 2013; Schuller et al., 2011, 2012; Ringeval et al., 2015b).

2.3 Emotion and Affect Datasets

Affect recognition requires rich sets of labelled (Ringeval et al., 2013) and application

specific data (Afzal and Robinson, 2009; Cowie et al., 2010a). Only with such

data is it possible to start to train a computer to recognise affect. This section

briefly introduce various techniques used to construct an affect dataset, including

how affective states can be elicited, what modalities are usually captured and how

data is annotated. Finally a comparison of existing datasets is presented.
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2.3.1 Eliciting Affective State

As Ringeval et al. (2013) suggested, in general, there are three types of interaction

behaviour that have been used to elicit human affect. The first is posed behaviour,

where the participant is asked to perform a certain affective state such as happy and

sad. The second is induced behaviour, where the participant is put in a controlled

environment to elicit a certain affective state. The induced affective behaviours are

usually captured in two scenarios: Human Computer Interaction (HCI) or the use

of a video kiosk. HCI scenarios include Wizard of Oz scenarios (Batliner et al.,

2004; Douglas-Cowie et al., 2007) and computer-based dialogue systems (Lee and

Narayanan, 2005). In particular, the Wizard of Oz scenario captures participants’

reaction while interacting with a computer system that participants believe to be

autonomous, but which is actually being operated by an unseen human being. The

video kiosk scenario recodes participants’ reaction while they are watching emotion-

inducing videos. The third type is spontaneous behaviour, which appears in a

real-life setting through human-human interactions such as face-to-face interviews

(Bartlett et al., 2005), phone conversations (Devillers and Vasilescu, 2004), meetings

(Burger et al., 2002) and debates (Grimm et al., 2008).

Among all three types of interaction scenarios, the posed affect is the easiest to

design and capture. However, it has been proven that the affective states elicited

from a real-life context are more subtle than the posed ones, as in the posed sce-

nario people tend to exaggerate the affective state they are displaying (Gunes and

Schuller, 2013). The induced affective state could provide a natural emotional re-

sponse. However, it is usually not suitable in terms of covering the full range and

complexities of affective states, as the interaction is restricted to a specific context

(McKeown et al., 2012; Ringeval et al., 2013). Finally the spontaneous affective state

is the hardest to capture, as true affective states are relatively rare, short lived, and

filled with subtle context-based changes (Gunes and Schuller, 2013). Furthermore,
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informing a participant that they are being recorded could lead to a change in nat-

ural behaviours. However, not informing participants that they are being recorded

raises potential ethical issues. In order to ethically capture spontaneous affective

state, various techniques have been developed. For example, in Zhang et al. (2013)

the authors use a series of activities such as, listening to a joke or experiencing harsh

insults from the experimenter to try to elicit a target emotional state, while the au-

thors in Ringeval et al. (2013) use survival task techniques where group discussion is

promoted by asking participants to reach a consensus on how to survive in a disaster

scenario.

2.3.2 Modalities and Cues

In affective computing, a modality is usually defined as the single independent com-

munication channel of sensory information between a human and a computer (Kar-

ray et al., 2008). Based on the nature of different modalities, they are usually divided

into three categories: Visual Modality, Audio Modality and Biomedical Modality. An

overview of different types of modalities and cues can be seen in Figure 2.4. Whilst

this thesis focuses on the visual modality, for completeness, we discuss all three

modalities in the following subsections.

2.3.2.1 Visual Modality

The visual modality has been the most widely used modality in the literature for

capturing affective states. Usually two types of cues from visual signals are used for

automatic affect recognition, namely facial expressions and gestures.

Most of the vision-based affect recognition studies have been focused on facial

expression analysis, due to the importance of the face in emotion expression and

perception. A facial expression usually refers to one or more motions or positions

of the muscles under the skin of the face. There are two main trends in the recent
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Figure 2.4: Overview of modalities and cues used in affective com-
puting

research on how facial expressions can be used: i) facial expressions are mapped

directly to selected emotion models, ii) facial actions are detected first, then mapped

to selected emotion models. These two trends are directly derived from the two

main approaches used for facial expression measurement in psychological research:

message and sign judgement (Cohn, 2006). Message judgement is used to interpret

what underlies a displayed facial expression, while sign judgement is used to describe

the actual facial behaviour. For example, a wide-eyed expression can be judged

as surprise in message judgement terms and in sign judgement terms it could be

described as eyebrows raised, eyes widened and mouth open. To label different

facial actions, the Facial Action Coding System (FACS) developed by Ekman and

Friesen (1976) is widely used. The FACS consists of 44 Action Units (AUs) that

in turn represent the movement of individual or groups of facial muscles as shown

in Figure 2.5 and Figure 2.6. Compared to the message judgement approach, the

sign judgement approach is more robust to context-dependent or culture-specific

expressions (Baltrusaitis et al., 2011). However, labelling facial actions requires

experienced annotators and is a time-consuming process.

Gestures such as head and body movements are other visual cues that can be
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Figure 2.5: Left: Relation between muscular anatomy and muscular
action. Right: The AUs of FACS. The small circles represent fixed
points towards which skin is pulled along the line during activation
while the number in the circle represents the AU. Both images come
from Ekman and Friesen (1978)

Figure 2.6: Example of facial AUs and their combinations (Pantic
and Bartlett, 2007)
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used to interpret emotional states. Early research has been focused on mapping

body gestures to discrete emotion categories. For instance, a study carried by Dar-

win (1998) suggested that when people are angry, a number of cues could be observed

including i) whole body trembles, ii) head is erect, iii) chest is well expanded, iv) feet

are firmly on the ground and v) elbows are squared. The work reported by Wallbott

(1998) found that certain distinctive features exist in body movement that can be

used to classify specific emotions. For example, erect body posture is rare when ex-

periencing shame, sadness or boredom, lifting shoulders is typical for elated joy and

anger, and a head moving downward is most typical when expressing disgust. Coul-

son (2004) showed that recognition results from body gestures could be as significant

as the voice modality and facial expression in some cases. Good recognition results

for discrete emotions from body information are also reported by Van den Stock

et al. (2007). Recently, the trend has shifted towards using gestures to interpret

dimensional affective state. By investigating the emotional and communicative sig-

nificance of head gestures in a naturalistic dataset, Cowie et al. (2010b) found that

head nods carry informations on both arousal and valence dimensions, while head

shakes are good indicators on the arousal dimension. Gunes and Pantic (2010) ex-

plored the use of conversational head movement for continuous affect prediction and

suggested that head gestures can be used to predict the arousal, valence, dominance

and expectation dimensions. Nicolaou et al. (2011) on the other hand investigated

the use of shoulder gestures for dimensional and continuous affect recognition and

found shoulder gestures outperformed vocal cues on valence prediction, and achieved

similar performance on the arousal dimension compared to facial cues.

The visual modality is usually captured with a conventional 2D camera. It

works by projecting a 3D scene onto a 2D image plane and the captured image

is usually referred to as a colour image. However, during this process the distance

(range/depth) information is lost. More recently, the trend has shifted to also include

3D cameras to record distance information along with the colour information. The
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image that contains distance information is often referred as the depth image or

range image.

2.3.2.2 Audio Modality

Audio is another commonly used modality in automatic affect recognition research.

There are mainly two types of cues from the audio modality that can be used to

capture different affective states, namely verbal cues and non-verbal cues.

Verbal cues refer to the linguistic content of the speech. Researchers have shown

it is possible to interpret a speaker’s affective state through the words he/she used.

For instance, Whissell (2009) revised the Dictionary of Affect in Language (DAL)

which includes 8,472 words with a 2D rating in the arousal/valence space. Studies

carried out by Wöllmer et al. (2010) suggested words such as again, angry and very

are correlated with the arousal dimension, while good, great and totally are more

correlated with the valence dimension.

Non-verbal cues refer to the non-linguistic part of the communication. Research

in psychology and psycholinguistics has shown that acoustic and prosodic features

can be used to encode the affective states of a speaker. For instance, acoustic

parameters such as mean of the fundamental frequency (F0), mean intensity, speech

range and high-frequency energy are positively correlated with the arousal dimension

(Huttar, 1968; Scherer and Oshinsky, 1977), while prosodic features such as pause

duration, pausing and breathing rate are indicative of excitement (Trouvain and

Barry, 2000). Other non-verbal cues such as sighs and gasps can also convey emotion

information. Sighs usually arise from a negative affective state, such as boredom or

dissatisfaction, or at the end of some negative situation as relief, while gasps could

occur from an emotion of surprise, shock or disgust (Nicolaou, 2009).

Research has shown that non-verbal cues are good at predicting the arousal

dimension, while verbal cues are good at predicting the valence dimension. However,

current research in automatic affect recognition mainly focuses on using non-verbal
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cues, since verbal cues are usually language dependent and it is difficult to anticipate

a person’s word choice for expressing different emotional states.

The audio modality is usually captured with a microphone. When capturing

multi-people interactions, an additional headphone is usually worn by each partici-

pant to prevent the microphone capturing other participants’ voice during conver-

sations.

2.3.2.3 Biomedical Modality

Biomedical signals are multichannel recordings of physiological activities of organ-

isms. A number of studies have shown that biomedical signals could reflect people’s

affective states. For example, Galvanic Skin Response (GSR) provides a measure-

ment of skin conductance (See Figure 2.7). It is positively correlated with a person’s

overall arousal or stress level (Ekman et al., 1983; Levenson, 1992) and it can be

used to distinguish emotional states such as fear and anger (Ax, 1953). Heart rate

sensors measure heart beat per minute, which increases with negative emotions such

as anxiety and fear (Chanel et al., 2007). Respiration rate describes how deep and

fast a person is breathing. Irregular and quick breathing usually indicates more

aroused emotions such as anger or fear (Chanel et al., 2007). Electromyography

(EMG) measures muscle electrical activity when at rest and during contraction (See

Figure 2.8). It is correlated with negatively valenced emotions (Lang, 1995).

Compared to sensors used to capture visual and audio modalities, biomedical

sensors are usually perceived as being inconvenient to set up and wear, since these

sensors usually require multiple wires connected to different parts of human body

and the participant usually cannot move freely during the capture. More recently

such issues have been addressed by developing wearable sensors that are wireless and

miniaturized. For example, Microsoft Band is a wrist worn sensor that can detect

both heart rate, GSR and skin temperature in real time (See Figure 2.9). However,

as suggested by Gunes and Schuller (2013) obtaining accurate measurement from
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biomedical sensors is still affected by human physical activities such as walking and

running.

Figure 2.7: GSR Sensor (EHealth, 2013)

2.3.3 Annotating Affect Data

The process of annotating affect data is usually defined based on two criteria, i) the

emotion model used to represent the data (Section 2.2) and ii) the method used to

elicit emotions (Section 2.3.1). As discussed earlier, since the use of an appraisal

model remains an open research question in automatic affect recognition, this section

only focuses on how to use categorical and dimensional emotion models to annotate

data.

For posed behaviours, a categorical model is commonly used. Usually there is

no additional annotation step involved since posed behaviours are produced by the

subject upon request. For induced and spontaneous behaviours, both categorical

and dimensional emotion models are commonly used.

When using a categorical model approach, discrete emotion categories are used

directly to annotate different emotional states. The six basic emotion categories

developed by Ekman (1971) are the most widely used labels in automatic affect

recognition research. In addition to the basic emotions, some datasets also include
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Figure 2.8: EMG Sensor (EHealth, 2013)

Figure 2.9: The Microsoft Band 2
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labels to indicate people’s cognitive states such as interest, puzzled, bored and frus-

tration (Chen, 2000; Gunes and Piccardi, 2006).

When using a dimensional approach, both discrete and continuous labels can be

used. For discrete labels, researchers have been using different intensity levels: either

a set of words (e.g., negative, positive and neutral), or a ten-point Likert scale (e.g.,

0-9 where 0 means a low value on the selected dimension), or an arbitrary range

(e.g., integer value between -50 and +50). On the other hand, continuous labels

usually use a real number between a predefined range (e.g., -1 to 1) to indicate

various affective states along different dimensions (McKeown et al., 2012; Ringeval

et al., 2013).

There are two possible approaches when it comes to annotating the data, sub-

jective assessment (self assessment) and objective assessment. These methods can

be used independently or used together. Subjective assessment asks participants to

rate their own response to different stimuli through a recall process, while objective

assessment requires external observers (human raters or annotators) to estimate the

emotional state expressed by the subjects. In the affective computing field, recent

research trends have been focused on recognising labels from objective assessment as

shown in (Schuller et al., 2011, 2012; Ringeval et al., 2015b). One of the main chal-

lenges of objective assessment is to obtain high inter-observer agreement when multi-

ple annotators are annotating the same data (Gunes and Schuller, 2013), especially

when the continuous dimensional approach is adopted, since different annotators

can annotate a different intensity for the same emotional state. To date, researchers

have mostly chosen to take the average value among different annotations as the

ground truth. Other methods, that take into account agreement and correlation

measures have also been proposed. For instance, Nicolaou et al. (2011) measured

the inter-observer correlation of each individual annotator and used it to calculate

a weighted average as the final ground truth. Overall, as suggested by Gunes and

Schuller (2013), obtaining reliable ground truth from both discrete and continuous
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dimensional annotations remains a challenging issue in affective computing.

Numerous tools with different functionalities have been developed to ease the an-

notation process. The European distributed corpora project Linguistic ANnotator

(ELAN) (Brugman and Russel, 2004) is an annotation tool that allows users to cre-

ate, edit, visualise and search annotations for video and audio data. It runs on all

major operating system and is available in a number of different interface languages.

In addition, it supports annotation on multiple levels such as word or sentence. The

annotations can be created on multiple layers, called tiers, which can be hierarchi-

cally interconnected. ELAN was originally designed for the analysis of languages,

sign languages, and gestures, but it had been used extensively in affect research

(Valstar and Pantic, 2010).

Figure 2.10: Screenshot of ELAN interface including the menu bar,
the media player control, the tiers, and a number of viewers.

Another widely used video annotation tool is ANnotation of VIdeo and Language
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(ANVIL) which was introduced by Kipp (2001). ANVIL is designed to facilitate an-

notation of audio-visual material. It supports multiple layers of annotation such as

words, dialogue acts, postures shifts and gestures. It enables users to create their

own coding scheme and review the colour-coded multi-layer annotation in a time-

aligned fashion (See Figure 2.11). The tool is constantly updated. The latest ver-

sion, ANVIL 5, now supports additional features such as 3D Motion capture player,

subdivision track type, time point track type, histogram, Kappa coding agreement

analysis, transition diagrams, association analysis and annotation management soft-

ware. For more details the reader is referred to Kipp (2010).

Figure 2.11: ANVIL’s graphical user interface.

The FEELtrace annotation tool was developed to enable annotators to track

affective state via vocal and visual cues over continuous traces in dimensional space

(Cowie et al., 2000). The FEELtrace tool allows the annotator to watch the audio-

visual recording and rate the perceived emotional state by moving the mouse pointer

within the 2-dimensional valence-arousal space (See Figure 2.12). The value of

the affective states has been confined to [-1, 1] where -1 represents very negative
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(valence) or very passive (arousal) and 1 represents very positive (valence) or very

active (arousal). More recently, the General trace (Gtrace) annotation tool has

been introduced to replace the FEELtrace tool with the ability to let people use

their own dimensions and scales (Cowie and Sawey, 2011). The Gtrace tool lets the

user annotate each dimension by moving the mouse cursor from left to right (See

Figure 2.13).

Figure 2.12: Feeltrace graphical user interface. Cursor colour
changes from red/orange at the left hand end of the arc, to yellow be-
side the active/passive axis, to bright green on the negative/positive
axis, to bluegreen at the right hand end of the arc (Cowie et al.,
2000).

Figure 2.13: Gtrace graphical user interface (Cowie and Sawey, 2011)

A web-based annotation tool similar to Gtrace, called ANNEMO, (Figure. 2.14)
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has also been developed to enable remote annotation (Ringeval et al., 2013). The

arousal and valence dimensions are annotated using a slider with values from -1 to

1. An additional five dimensions (agreement, dominance, engagement, performance

and support) can be annotated using a 7-Likert scale. The timestamps from the

local machine are recorded when the slider value changes to avoid data transmission

delays.

Figure 2.14: ANNEMO: web-based annotation of affective and social
behaviours (Ringeval et al., 2013).

2.3.4 Existing Datasets

As discussed in Section 2.2, early research in affective computing field was mainly

focused on using a categorical model with posed behaviours, so that the datasets

captured in the early years only consist of acted affective behaviours. However,

increasing evidence suggests that posed behaviours differ in visual appearance, au-

dio profile and duration of behaviour compared to spontaneous behaviours (Zeng

et al., 2009). For instance, Whissell (1989) suggests that the choice of words and

timing used in spoken language differ in posed and spontaneous behaviours. Cohn

and Schmidt (2004) and Valstar et al. (2007) find that different types of spon-

taneous smiles exhibit smaller amplitude and longer duration compared to posed
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ones. These findings motivated several efforts toward capturing datasets consisting

of spontaneous affective states that could be used for training and testing automatic

affect recognition systems. Table 2.1 lists some representative and publicly available

affect datasets that are reported in the literature. Since this thesis focuses on recog-

nising affective state from the visual modality, only datasets with visual information

are reviewed. For emotional speech datasets the reader is referred to Zeng et al.

(2009), El Ayadi et al. (2011) and Koolagudi and Rao (2012) for more details.

For datasets concerning posed affective behaviours, the following datasets should

be noted. The Cohn-Kanade (CK) dataset (Kanade et al., 2000) is the most widely

used dataset for facial expression recognition. It includes 97 adults across 3 races. In

total, 486 video sequences are captured where each sequence consists of a different

number of frames (from 9 to 60 frames). The dataset was extended by (Lucey et al.,

2010) to include an additional 26 subjects and 107 sequences. All sequences are fully

FACS coded and labelled with categorical emotion labels (angry, contempt, disgust,

fear, happy, sadness and surprise). The MMI dataset (Pantic et al., 2005) is one

of the first on-line accessible and searchable facial expression datasets. Originally,

it only contained posed facial expressions, but was expanded by Valstar and Pantic

(2010) to also include induced facial behaviours. The original MMI dataset consists

of 19 subjects across 3 raters. In total, 600 frontal and 140 dual-view static images

are captured along with 30 profile-view and 750 dual-view video sequences. The

‘dual-view’ capture refers to the capture of frontal and profile views at the same

time. The extended MMI dataset adds an additional 25 subjects, where each subject

was recorded for 5 minutes. All data in the MMI dataset is FACS coded. The six

basic emotions are used to label the posed facial expressions, while only a subset

(happiness, disgust and surprise) is used to label the induced ones. The FABO

dataset developed by Gunes and Piccardi (2006) is one of the first datasets that

contains videos of both facial expressions and body gestures. In total, 23 subjects

were recorded, where each subject was asked to perform a set of pre-defined facial
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Table 2.1: Comparison of datasets for human affect recognition. 2D:
Colour information. 3D: Colour and depth information. A: Audio
information. B: Biomedical information. C:Continuous annotation.
D: Discrete annotation

dataset
Elicitation
Method

Modality Emotion Model Labelling Environment

Cohn-Kanade
(Kanade et al., 2000)

Posed 2D Categorical N/A Controlled

MMI
(Pantic et al., 2005)

Posed
Induced

2D Categorical Objective Controlled

UT Dallas
(O’Toole et al., 2005)

Induced 2D Categorical Objective Controlled

BU-3DFE
(Yin et al., 2006)

Posed 3D Categorical N/A Controlled

FABO
(Gunes and Piccardi, 2006)

Posed 2D Categorical N/A Controlled

SAL
(Douglas-Cowie et al., 2007)

Induced 2D/A Dimensional (C) Objective Controlled

BU-4DFE
(Yin et al., 2008)

Posed 3D Categorical N/A Controlled

Bosphorus
(Savran et al., 2008)

Posed 3D Categorical N/A Controlled

Vera am Mittag
(Grimm et al., 2008)

Spontaneous 2D/A
Categorical
Dimensional (C)

Subjective Controlled

BIWI 3D
(Fanelli et al., 2010)

Posed 3D/A Categorical Subjective Controlled

Cam3D
(Mahmoud et al. (2011)

Induced 3D/A Categorical Objective Controlled

ICT-3DRFE
(Stratou et al., 2012)

Posed 3D Categorical N/A Controlled

SEMAINE
(McKeown et al., 2012)

Induced 2D/A
Categorical
Dimensional (C)

Objective Controlled

MAHNOB-HCI
(Soleymani et al., 2012)

Induced 2D/A/B
Categorical
Dimensional (D)

Subjective Controlled

DEAP
(Koelstra et al., 2012)

Induced 2D/B Dimensional (D) Subjective Controlled

BP4D-Spontaneous
(Zhang et al., 2013)

Induced 3D Categorical Subjective Controlled

AViD
(Valstar et al. (2013)

Induced 2D/A Dimensional (C) Objective Uncontrolled

RECOLA
(Ringeval et al., 2013)

Spontaneous 2D/A/B
Categorical
Dimensional (C)

Subjective
Objective

Controlled
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expressions and body gestures. The labels include six basic emotions and four

non-basic affective states (uncertainty, anxiety, boredom, and neutral). The BU-

3DFE dataset (Yin et al., 2006) is one of the first publicly available facial expression

datasets that contains both colour and depth information. The dataset was captured

using a 3D scanner and was labelled using seven basic categorical (six basic emotions

and neutral) emotions. Each expression includes four different intensity levels (low,

middle, high and highest) except for the neutral expression. The dataset includes

100 subjects and a total of 2,500 3D facial expression models. However, due to

the speed limitation of the 3D scanner used during the capture, the BU-3DFE only

consists of static 3D information. This issue was addressed by the development of

BU-4DFE dataset (Yin et al., 2008) which contains 3D dynamic facial sequences.

The dataset consists of 101 subjects where each subject is asked to perform six

basic expressions, resulting in a total of 606 3D dynamic sequences. Different from

aforementioned 3D datasets, both the Bosphours and the ICT-3DRFE datasets

capture AU related expressions (see Figure 2.6 for some examples) in addition to

the basic emotions. In particular, the Bosphorus 3D face dataset (Savran et al.,

2008) consists of 105 subjects performing 34 facial expressions under various head

poses (13 yaw, pitch and cross rotations) and different face occlusions (hand, hair

and eyeglasses), while the ICT-3DEFE dataset (Stratou et al., 2012) includes 23

subjects and 15 expressions captured under different illumination conditions. The

BIWI 3D (Fanelli et al., 2010) dataset is the first dataset that contains both audio

and 3D facial information captured in an affective communication setting. During

the capture, each participant is asked to first read a sentence from text in neutral

expression, and then repeat the same sentence after watching a clip extracted from

a feature film where the sentence is acted by professional actors. This results in

1109 sentences spoken by 14 native English speakers.

Considering induced affective behaviours, the UT Dallas dataset (O’Toole et al.,

2005) is one of the first publicly available datasets that features induced emotions.
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Different emotional states are elicited by asking participates to watch different video

clips. The data is then labelled using 10 discrete emotion categories (6 basic emo-

tions, puzzlement, laughter, boredom and disbelief). The SAL (Douglas-Cowie et al.,

2007) dataset is the first multi-modal dataset that was annotated continuously us-

ing the dimensional approach (arousal and valence). The SAL data consists of

recordings of human-computer conversations elicited through a Sensitive Artificial

Listener (SAL) interface. The interface is build around four personalities (happy,

gloomy, angry and pragmatic) where each personality is represented by an avatar.

The idea is that each avatar draws the participant into their own emotional state

through a set of predefined responses. In total, 4 subjects and over 4 hours of data

was captured. The SEMAINE dataset (McKeown et al., 2012) also uses the same

SAL induction technique, but differs in recording quality, size and annotation in-

formation. It includes 20 participants and over 6 hours of data was captured. It is

annotated continuously on five dimensions including valence, arousal, dominance,

expectation and intensity, where the intensity is used to indicate “how far the person

is from a state of pure, cool rationality”. In addition it also includes labels on basic

emotions (i.e. fear, anger and happiness), epistemic states (i.e. certain/not certain,

agreeing/not agreeing and interest/not interest), interaction process analysis (i.e.

shows solidarity, shows antagonism and shows tension) and validity (i.e. breakdown

of engagement and anomalous simulation). It has been used for the first and second

Audio/Visual Emotion Challenge (AVEC 2011, 2012) (Schuller et al., 2011, 2012).

The Cam3D dataset Mahmoud et al. (2011) is the first induced dataset that

contains both 3D and audio information. The data is induced through human-

computer and human-human interactions. In total 16 participants were captured

and 108 segments of natural complex mental states were extracted. The segments

were labelled in terms of agreeing, bored, disagreeing, disgusted, excited, happy,

interested, neutral, sad, surprise, thinking and unsure. The MAHNOB-HCI (Soley-

mani et al., 2012) and DEAP (Koelstra et al., 2012) datasets are two of the first
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datasets that contain biomedical information and are annotated using the dimen-

sional approach. The AViD (Audio-Video Depressive) dataset (Valstar et al., 2013)

is the first dataset captured in an uncontrolled environment which includes 340 video

clips of participants performing a HCI task. The data is annotated continuously in

terms of arousal, valence and dominance. In addition, the depression level is also

labelled with a single value per recording using a self-assessed depression question-

naire. It was chosen for the third and fourth AVEC (AVEC 2013, 2014) (Valstar

et al., 2013, 2014). For spontaneous affective state, two of the most widely used

datasets are the Vera am Mittag dataset and the RECOLA dataset. The Vera am

Mittage dataset (Grimm et al., 2008) consists of 12 hours of audio-visual record-

ings of the German TV talk show ‘Vera am Mittag’. The dataset is segmented

into broadcasts, dialogue acts and utterances. It is annotated continuously on va-

lence, arousal and dominance dimensions as well as using six basic emotions. The

RECOLA dataset is the first spontaneous dataset that captures both audio-visual

and biomedical data. The dataset is designed to capture spontaneous interactions

from a remotely performed collaborative task. In total, 3 hours and 50 minutes of

data and 46 participants were captured. Both subjective and objective assessment

are used to annotate the data. The objective assessment is used to continuously

annotate the data along the valence and arousal dimensions, while subjective as-

sessment is used to indicate a participant’s own emotional state at different stages

of the capture. It was used for the fifth AVEC (AVEC 2015) (Ringeval et al., 2015b).

For clarity, the subset of the SEMAINE dataset used in the AVEC 2012 challenge

is referred as the AVEC 2012 dataset and the subset of the RECOLA dataset used

in the AVEC 2015 challenge is referred as the AVEC 2015 dataset. Both AVEC

datasets are divided into training, development and testing partitions.
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2.3.5 Discussion

Various affect datasets have been captured to fullfill the needs of training and test-

ing automatic affect recognition systems. These datasets differ in how the affective

state is elicited, what emotion model is used to represent the affective state and

what modalities are being captured. As suggested by Gunes and Schuller (2013)

the new emerging trend in continuous affect data acquisition is to focus on multi-

modal and multi-speaker interactions rather then human-computer interactions. In

addition, with the recent availability of affordable depth sensors, there has been a

growing interest in collecting multi-modal affect datasets that contain 3D informa-

tion. However, to the best of our knowledge, there still does not exist any dataset

that includes recording of spontaneous behaviours with 3D information that is also

annotated continuously using the dimensional approach. The lack of such a dataset

makes it impossible to study how 3D information could be used for spontaneous

affect recognition. To address these issues, a multi-modal multi-speaker 3D sponta-

neous affect dataset was captured as part of this thesis. More details on how this

dataset was created can be found in Chapter 3. In addition, since this thesis focuses

on continuous affect detection, two of the most widely used datasets, AVEC 2012

and 2015 dataset are also chosen for the experiments carried out in this thesis.

2.4 Affect Recognition

Recognising affective state from different input signals raises a number of research

challenges. These include feature extraction, machine learning and performance

evaluation (See Figure 2.15). In the following sections, each of the aforementioned

challenges are reviewed. Since this research mainly focuses on using the visual

modality to recognise affective states, only visual features will be reviewed. For

features concerning other modalities such as audio and biomedical, the reader is

referred to Zeng et al. (2009), Gunes (2010) and Weninger et al. (2013) for more
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details.

Figure 2.15: Overview of A Typical Affect Recognition System

2.4.1 Feature Extraction

Feature extraction is the process of transforming the input data into a lower di-

mensional space while remaining its representative characteristics. Discriminative

features are usually desired to achieve good recognition results. This means the fea-

tures should have high intra-class variation (features should be different for different

classes) and low inter-class variation (features should be similar for same class). In

this section, features extracted from both 2D and 3D visual signals are discussed.

In addition since the face is the most visible part of the human body that reveals

emotions (Ekman and Rosenberg, 1997) and people constantly read others’ facial

expression in order to understand how others feel (Schmidt and Cohn, 2001) only

facial features are reviewed.

In order to extract features from a face, the location of the face must be first

detected, a process known as face detection. Numerous face detection algorithms

have been proposed for 2D images, and comprehensive details of state-of-the-art
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in face detection can be found in Zhang and Zhang (2010) and Zafeiriou et al.

(2015). Among different face detection algorithms, the work carried out by Viola

and Jones (2004) is one of the most popular ones due to its simple, fast and open

source implementation. Several face detection algorithms have also been proposed

that use depth images. For instance, the aforementioned classic Viola-Jones face

detection algorithm has been extended to depth by Burgin et al. (2011). Mattheij

et al. (2012) employs Haar-like region features on the integral image representation

of depth images for robust and accurate face detection. Li et al. (2013) proposed

another face detection algorithm specifically designed for low resolution 3D sensors

by using the Iterative Closest Point method (ICP) to estimate the location of the

tip of the nose and thus localise the face. After the face is located, the next step is

to extract features from the visual signals.

2.4.1.1 2D Visual Facial Features

In general, facial features from 2D visual signals can be divided into two main

categories: geometric features and appearance features.

Geometric features aim to incorporate knowledge from cognitive science to anal-

ysis facial variations under different affective states. Facial shape and activity can

be represented by a set of points called landmarks as shown in Figure 2.16. The

problem of localising these landmarks is called Face Alignment. For a comprehen-

sive review of this field the reader is referred to Wang et al. (2014) and Jin and Tan

(2016). Geometric features are usually derived from these facial landmarks. The

most frequently used geometric feature representation is to simply concatenate the

x and y coordinates of a number of landmark points. In order to reduce the head

pose variation and identity bias, normalisation is usually applied to the landmarks.

This can be achieved by removing the similarity parameters of the shape model and

by using the landmarks from a neutral face image (Lucey et al., 2007, 2009). In

addition to the landmark coordinates, the distance and angle between certain land-
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marks and parameters from the shape model are also used. For example, Huang

et al. (2010) developed a triangular-based facial features descriptor to calculate the

distance between certain facial landmarks. Nicolle et al. (2012) adopts the shape

model parameters directly as geometric features. Valstar and Pantic (2012) use the

landmark coordinates along with the length and angle of all pairwise points in space,

and the difference between these features with respect to their value in a neutral face.

Similarly, Ringeval et al. (2015b) proposed to use a combination of different sets of

geometric features based on facial landmarks. The first sets include the difference

between the currently aligned landmarks and those from the mean shape, and also

between the aligned landmarks in the previous frame. The second set computes the

Euclidean distance and angle between pairs of points in three different regions. The

third set calculates the distance between the median of stable landmarks and each

aligned landmark in the current frame. A number of studies have shown that the

geometric features are extremely useful at predicting the valence dimension when

compared to appearance and audio features (Ringeval et al., 2015b). Geometric fea-

tures are robust to lighting conditions since the focus is on coordinates of landmarks

rather than the intensity of the pixel. However, they are very sensitive to facial

landmarks registration errors as they are calculated purely based on the landmark

coordinates. In addition, although the geometric features could describe tempo-

ral variations, they may not be able to capture subtle expressions using a limited

number of facial points.

Appearance features aim to measure the motion and change in texture for affect

recognition. There are two main categories for appearance features: filter bank

based features and histogram-based features. Two of the most widely used filter-

bank-based features are Gabor filters and Haar-like filters.

The Gabor representation is obtained by convolving the input image with a set of

Gabor filters of different frequencies and orientations. Typically in the literature this

corresponds to 8 orientations, and a number of frequencies from 3 to 9. It has been
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Figure 2.16: Sample Landmarks (TalkingFaceVideo, 2002)

shown that the frequency and orientation representation of Gabor filters are similar

to the response of simple cortical cells (Marčelja, 1980; Daugman, 1985). A Gabor

filter with a given orientation results in a strong response for a specific location in

the target image that exhibits edges and texture changes in the given direction. This

means that when the filter frequency and direction match the image structure, they

can be sensitive to finer wave-like image structures such as those in facial expressions.

When used in affect recognition, only Gabor magnitudes are commonly used, as they

have been proven to be robust to face misalignment (Stewart et al., 2006; Gritti et al.,

2008; Mahoor et al., 2011). However, the Gabor representation is computationally

costly due to convolution with a large number of filters (e.g., 8 orientations and 3

frequencies implies 24 filters) and the dimensionality of the convolution output is

high.

The Haar-like representation (Papageorgiou et al., 1998) considers adjacent rect-

angular regions at a specific location in a detection window, sums up the pixel inten-

sities in each region and calculates the difference between these sums. The Haar-like

filter responds to coarser image features is robust to shift, scale and rotation vari-
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ation, and is very fast to compute. However, it is not responsive to finer texture

details and as a result it is limited in the ability to detect expressions with more

obvious facial muscle actions.

The general procedure for extracting histogram-based representations consists

of three stages: first local features are extracted and encoded in a transformed im-

age, then the transformed image is divided into uniform regions, and finally the

local histogram is generated by pooling the features in each region. The final fea-

ture vector is formed by concatenating all local histograms together. Some of the

most commonly used histogram-based representations in affect recognition are Lo-

cal Binary Pattern (LBP), Local Phase Quantisation (LPQ), Local Gabor Binary

Patterns (LGBP), Local Binary Patterns on Three Orthogonal Planes (LBP-TOP),

Local Phase Quantisation on Three Orthogonal Planes (LPQ-TOP) and Local Ga-

bor Binary Patterns on Three Orthogonal Planes (LGBP-TOP).

The local binary pattern of a pixel is defined as an 8-bit binary number that

can be obtained by comparing each pixel intensity against the intensity of its neigh-

bouring pixels. The original LBP feature (Ojala et al., 1994) is represented as a

histogram where each bin corresponds to the number of one of the different pos-

sible local binary patterns, resulting in a 256-dimensional feature vector. Various

extensions have been proposed for the original LBP feature, and one of the most

commonly used extensions is called uniform pattern LBP (Ojala et al., 2002). The

extension was inspired by the fact that some binary patterns occur more commonly

in texture images then others. A uniform pattern is defined as the binary pattern

that consists of at most two bitwise transitions from 0 to 1. Eliminating binary

patterns that do not meet the uniformity condition reduces the dimension of the

original LBP feature from 256 to 59. The main advantages of LBP features are

their robustness to lighting conditions and shifts while maintaining computational

simplicity (Shan et al., 2009). However, they are less robust to rotation, and as a

result a normalisation that rotates the face to upright position is usually required
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(Schuller et al., 2011, 2012).

The LPQ feature was originally proposed as a descriptor for texture classification

(Ojansivu and Heikkilä, 2008). The LPQ feature uses phase information computed

locally over a predefined rectangle for every pixel using the short-term Fourier trans-

form (STFT). The local Fourier coefficients are computed at four frequencies and

the phase information in the Fourier coefficients for each frequency is quantised by

keeping the signs of the real and imaginary parts of each component, resulting in a

8-bit binary representation. A histogram is then constructed similar to the LBP fea-

tures where each bin corresponds to one of the specific binary patterns. This forms

a 256-dimensional feature vector. One advantage of LPQ feature is its robustness to

image blurring produced by a point spread function (Mandal et al., 2015, p. 149).

The LPQ feature has been used for both facial action detection (Jiang et al., 2011)

and affect recognition (Valstar et al., 2013)

The LGBP feature was first proposed by Senechal et al. (2012). The computation

of LGBP features is similar to the LBP feature, with the difference that the LGBP

feature approach is to first apply a set of Gabor filters (typically with 3 frequencies

and 6 orientations) to the input image before the local binary pattern is computed.

The LGBP feature exhibits the advantage over Gabor representations of being robust

to illumination changes and misalignments. However, its use in affect recognition is

less common compared to LBP and LPQ features due to its high computation cost

and high dimensionality. For instance, the typical configuration results in 18 Gabor

images, and after concatenating the LBP histogram from each Gabor images, the

final LGBP feature dimension is 18 times bigger than the LBP representation.

The histogram-based representations discussed above are usually robust to spa-

tial illumination variations to a degree and invariant to global illumination, as they

are extracted from small patches. However, one disadvantage is that the aforemen-

tioned features are all static features since they are all calculated based on a single

image, while facial expression is a dynamic event. For instance, someone with a par-
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ticular physiognomy could look like he/she is smiling when in fact there was no facial

action at all (Mandal et al., 2015, p. 149). To overcome this problem, a dynamic ex-

tension of the LBP feature was proposed by Zhao and Pietikainen (2007). To make

the calculation computationally efficient, the LBP features were only computed on

Three Orthogonal Planes (TOP): XY, XT and YT, resulting in the so called LBP-

TOP feature. The basic idea behind TOP is that a video sequence is usually viewed

as a stack of XY planes along the T axis, but can also be treated as a stack of XT

planes in axis Y and YT planes in the X axis, respectively. The XT and YT planes

contain information about the space-time transitions of the textures. The LBP fea-

ture is calculated on each of the three planes and the final feature vector is formed

by concatenating the histogram from each of the planes. The same extension was

later proposed for LPQ features (Jiang et al., 2011) and LGBP features (Almaev

and Valstar, 2013). There are three main drawbacks of the TOP features. Firstly,

the dimensionality of the TOP features are usually much larger than their static

counterparts. Secondly, the computation time is much longer for TOP features,

especially for LPQ-TOP and LGBP-TOP features. Finally, since the TOP features

are computed over a fixed temporal window, the same facial expression produced

at different speeds could result in different feature representations, thus increasing

intra-class variability (Mandal et al., 2015, p. 150).

A number of studies on facial action unit detection have shown that the perfor-

mance of LBP, LPQ and LGBP features have been significantly improved after their

TOP variants were used (Jiang et al., 2011; Almaev and Valstar, 2013). In addition,

the TOP variants are proven to be more robust to rotational misalignments when

compared to their static counterparts (Almaev and Valstar, 2013). When it comes to

continuous affect recognition, researchers have applied different histogram represen-

tations to different datasets, but there is no clear indication which representations

achieved the best result.
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2.4.1.2 3D Visual Features

According to Sandbach et al. (2012), features used in 3D facial expression recognition

systems can usually be divided into distance features, patch features, model features,

and 2D representation features. This section briefly reviews each type of feature.

For a more detailed discussion on these features, the reader is referred to Sandbach

et al. (2012).

The distance features are similar to the geometric features used for 2D images

which are usually calculated based on facial landmarks. For instance, Soyel and

Demirel (2007) use the distance vectors derived from the 3D distribution of facial

landmarks provided by the BU-3DFE dataset to classify facial expressions. Tang

and Huang (2008) calculate the distance and slope between certain pairs of facial

landmarks and use this as a feature set to classify six basic emotions using the BU-

3DFE dataset. Similarly, the work carried out by Li et al. (2010) uses distances,

angle and slope related to the movement of a specific facial part and the shape of

the eyes and mouth to recognise discrete emotions for the BU-3DFE dataset.

The patch features are used to capture the shape of the face over a small region

around either every point in a mesh or around facial landmarks. Wang et al. (2006)

proposed to fit a smooth polynomial patch at each point in the mesh and use the

parameters derived from these patches to differentiate six basic emotions on a custom

dataset. Alternatively, Maalej et al. (2010) uses the shape information of the closed

patch found around each facial landmark to recognise the six basic emotions using

the BU-3DFE dataset.

The aim of model-based features is to fit a 3D face model using the depth in-

formation, and to use the parameters derived from the 3D face model to recognise

different emotions. For instance, the work carried out by Ramanathan et al. (2006)

uses a Morphable Expression Model (MEM) to recognise four expressions: neutral,

happy, sad and angry on a custom dataset. The depth data is fitted by minimising
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the energy function between certain triangular meshes. The morphing parameters

produced during this process are used as the features. Gong et al. (2009) proposed

to use the Basic Facial Shape Component (BFSC) to recognise emotions in the

BU-3DFE dataset. The depth data was first aligned using Iterative Closest Point

(ICP), then the BFSC was fitted to each mesh, and finally the difference between

the aligned mesh and the BFSC was used to form the feature vectors.

The 2D representation-based features usually can be divided into two categories

based on how the depth data is converted to 2D representations: direct conversion

and indirect conversion. The direct conversion uses the z value (distance value)

directly at each x, y position to form a depth map, while the indirect conversion

applies a transformation to depth data to form a 2D representation. For instance,

Berretti et al. (2011) carried out an experiment on BU-3DFE dataset using the

direct conversion approach. After conversion, the Scale-Invariant Feature Transform

(SIFT) algorithm was applied at each of the automatic detected landmarks to extract

local features. Vretos et al. (2011) calculates Zernike moments on the histogram

equalised depth map and used these as the features to classify basic emotions on

both BU-3DFE and Bosphrous datasets. The work by Zhen et al. (2013) explored the

use of LBP-TOP and LPQ-TOP on a depth map to classify the six basic emotions

for the BU-4DFE dataset. On the other hand, Rosato et al. (2008) investigated

the use of conformal mapping to convert 3D meshes to 2D planar meshes. The

2D planar meshes are then used to generate a set of labels to describe the small

surface variation during the motion of facial surfaces, and finally the distributions

of different labels are used as features to classify different emotions using the BU-

3DFE dataset. Savran et al. (2012b) proposed to convert the depth data into a

2D representation using differential geometry-based features and experiments were

carried out on the Bosphorus dataset for the AU detection task.
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2.4.2 Machine Learning for Affect Recognition

After an appropriate feature representation has been extracted, it is the task of the

machine learning component to learn how to match the feature representations to the

target labels. In this section we introduce the machine learning techniques used later

in the thesis. Specifically, the Support Vector Regression (SVR) is used to investi-

gate the performance of various histogram-based visual features, the Convolutional

Neural Network (CNN) is used to study the performance of automatic generated

visual features, and the Long-Short Term Memory (LSTM) neural network is used

in the multi-modal fusion.

To formalise the machine learning problem, assume there exists a hidden func-

tion f : X → Y that for a input instance x ∈ X, generates an output instance

y ∈ Y . Machine learning techniques try to learn a hypothesis function h : X → Y

as close as possible to the hidden function f . Depending on the learning tasks,

machine learning techniques for affect recognition are usually divided into two cat-

egories: classification and regression. If Y are discrete values then this is defined

as a classification problem. When there are only two discrete labels, this is often

called two-class classification. When there are more discrete labels, this is often re-

ferred to as multi-class classification. Classification machine learning techniques are

commonly used for predicting categorical and discrete dimensional affective states.

If Y are continuous values, then this is defined as a regression problem. Regression

machine learning techniques are commonly used for continuous dimensional affect

recognition. The most common way to learn the hypothesis function h is achieved

by defining a cost function that will assign a value to indicate the difference between

ground truth labels and labels being predicted by the hypothesis function h. De-

pending on the type of cost function, the goal of machine learning algorithms is to

either minimise or maximise the cost function. Different machine learning techniques

have been successfully applied to affect recognition such as Support Vector Machine
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(SVM), K-Nearest Neighbour Classifiers (KNN), Decision Tress, Conditional Ran-

dom Fields (CRF), Hidden Markov Models (HMM), Convolutional Neural Networks

(CNN) and Long Short Term Memory Recurrent Neural Networks (LSTM). The fol-

lowing section briefly introduces two of the most commonly used machine learning

techniques for affect recognition.

2.4.2.1 Support Vector Machine (SVM)

A Support Vector Machine (SVM) is a popular machine learning technique that has

been used widely for both classification and regression problems. It was first intro-

duced by Vapnik (1995) based on the Vapnik-Chervonenkis’ (VC) theory (Vapnik

and Chervonenkis, 1968, 1971). The goal of an SVM is to find the optimal hyper-

plane which maximizes the margin of the training data. This is shown in Figure

2.17 where the positive sign and negative sign indicates two different classes. In

order to separate the data, a line could be used, commonly called a hyperplane.

In this case, three possible hyperplanes are highlighted, shown in blue, orange and

green. The hyperplane is usually defined as h(x) = wTx + b where w is called the

weight vector and b is called the bias. The margin is defined as the distance between

the closest training examples and the hyperplane. By varying the value of w and

b, one can find a set of parameters that maximizes the margin. In this case, the

blue hyperplane has the largest margin and is chosen as the optimal hyperplane.

The closest training examples (A, B, C) on the dash line are called Support Vectors.

To find the best set of w and b, the Lagrange multipliers can be used to construct

the Lagrange functions (Cortes and Vapnik, 1995), and then the Sequential Minimal

Optimization (SMO) algorithm developed by Platt et al. (1998) can be used to solve

the Lagrange functions. When used for classification, the cost function of an SVM

is defined as:

`(ŷ, y) = max(0, 1− ŷ · y)
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Figure 2.17: Data points and hyperplanes (Cortes and Vapnik, 1995)

where y is the ground truth label and ŷ is the predicted label. This cost function

is referred to as the hinge loss function. The hinge loss is 0 when y and ŷ have

the same sign (meaning the classifier’s prediction is the same as the ground truth)

and increases linearly with y when they have different signs. When used for the

regression task, the ε-insensitive loss function proposed by Smola and Vapnik (1997)

is commonly used. It is defined as:

`(ŷ, y) =


0 if |y − ŷ| ≤ ε

|y − ŷ| − ε otherwise

where ε is used to define the number of errors the loss function ignores. By min-

imising the loss function, a hyperplane can be found that best fits the given training

data as shown in Figure 2.18. When the training data that is not linearly separa-

ble, a technique called the Kernel Trick is employed. The Kernel Trick works by

projecting the training data into a high-dimensional space where the data can be

linearly separated using kernel functions. Some of the most commonly used kernel

functions including Polynomial Function, Radial Basis Function (RBF) and Sigmoid
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Figure 2.18: Support Vector Machine for Regression

Function.

2.4.2.2 Neural Network

In recent years, neural networks, especially deep neural networks (also known as deep

learning) have attracted a great amount of research interest. They have been applied

to solve different research problems such as object classification, speech recognition

and machine translation, and have achieved state-of-the-art performance. A Neural

Network is inspired by the structure of the biological brain, specifically it uses a

large collection of neural units to model the way a brain solves problems. Neural

Networks are typically organised in layers. These generally consists of three types of

layers: input layer, hidden layer and output layer. If there is more then one hidden

layer, this is usually referred to as a deep neural network. The hidden layer usually

consists of a number of interconnected neurons (nodes) which contain an activation

function. The output of the activation function is calculated as f(
∑
wixi+b) where

x is the input vector, w is the weight vector and b is the bias. This is shown in

Figure 2.19. Some of the most commonly used activation functions are shown in

Table 2.2.

The goal of the neural network is to learn the weight vectors through training

data that minimise the error between predictions and ground truth. This is achieved
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Table 2.2: Commonly used activation functions and their corre-
sponding derivatives

Activation Function Type Function Derivative

Binary threshold y(z) =

{
1 z ≥ θ
0 z < θ

y′ = 0

Identity y(z) = z y′(z) = 1

Sigmoid y(z) = 1
1+e−z

y′(z) = y(z)(1− y(z))

Hyperbolic Tangent (tanh) y(z) = tanh(z) y′(z) = 1− tanh2(z)

Rectified Linear Unit (ReLu) y(z) =

{
z z ≥ θ
0 z < θ

y(z) =

{
1 z ≥ θ
0 z < θ

Figure 2.19: A 2-layer Neural Network
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using the so called backpropagation algorithm. The algorithm works by first initial-

ising the weight vector randomly, then computing the error between the output

from forward propagation of the ground truth, and then calculating the gradient of

weight layer-by-layer using the chain rule, which allows the error to propagate back

from output to input. The weight vector is then updated by subtracting a portion

of the gradient. The portion is usually refered as the learning rate. The algorithm

iterates the process until the error no longer changes or a predefined error threshold

has been reached. More details about the backpropagation algorithm can be found

in the paper by Rumelhart et al.

The neural network structure shown in Figure 2.19 is called a Multilayer Per-

ceptron (MLP) where each layer is fully connected to the next one except for the

input layer. The Convolutional Neural Network (CNN) is another popular neural

network structure that has attracted a great amount of research interest in recent

years given its superior performance in object recognition tasks (Krizhevsky et al.,

2012). Two of the key concepts of a CNN are the convolutional layer and pooling

layer (sub-sampling layer). Unlike the fully connected layer, in the convolutional

layer only a sub-region of the input data are fully connected with each node. This

greatly reduces the number of weights that need to be learnt by the network. The

output of the convolutional layer is called a feature map and it is computed as the

dot product of the sub-region input and the weights vector. The learnable weight

vector is also known as a filter and it allows a CNN to capture useful local features.

The Pooling layer can be seen as a form of non-linear down-sampling. It works by

dividing the input data into non-overlapping sub-regions and for each sub region a

single value is calculated. Two of the most commonly used pooling layers are max-

pooling and average-pooling. As the name suggest, max-pooling works by selecting

the maximum value in the sub-region as the final output while average-pooling com-

putes the mean value of the sub-region as the final output. Figure 2.20 shows the

structure of a CNN with 2D convolutional layers and pooling layers. In this exam-
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ple, the input is a gray-scale image. C1 is a convolutional layer with 4 filters which

results in 4 feature maps. S1 is a pooling layer that is used to down-sample the

feature maps. C2 and S2 are a further convolutional layer and pooling layer. S2 is

then fully connected with the next hidden layer to select the useful local features

learned in previous layers.

Figure 2.20: Convolutional Neural Network (Cong and Xiao, 2014)

The aforementioned neural network structures such as MLP and CNN are usually

called feed-forward networks since the signals can only flow in one direction; e.g.,

from input to output as indicated by the arrows in Figure 2.19. A Recurrent network

is another type of neural network which has directed cycles in the structure as

shown in Figure 2.21. This means that by following the direction of the arrow,

the signals could flow back to the neuron from which it started. Recurrent neural

networks provide a natural way to model sequential data. Each neuron in the hidden

layer can be thought of as a deep network in time (see Figure 2.21) thus at each

time step t the states of the neuron s can be used to determine the states of the

neuron in next time step t+1. More specifically an RNN takes the internal state

information as an additional input, which ideally consists of all relevant information

from the past states of the network. This extends the network’s ability to capture

temporal information and enhances the learning capabilities to predict the output in

time sequence data. Another advantage of RNNs over feed-forward networks is the
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ability to process arbitrary lengths of input data by using its internal memory and

this makes it very popular in speech recognition and language modeling. In order

to train an RNN, the backpropagation through time (BPTT) algorithm can be used.

The key difference of this algorithm compared to the one used in feed-forward neural

networks is that the gradient at each layer is computed as the sum of gradients at

each time step. One limitation of the original RNNs trained with BPTT is that it

is unable to model long-term dependencies since the error flowing backward in time

either increases exponentially or vanishes. To solve this problem another network

structure called Long Short Term Memory (LSTM) was proposed.

Figure 2.21: An RNN and its unfolded representation. x : input,
o:output, V, W, U : weight matrix

LSTM is a type of RNN which was first introduced by Hochreiter and Schmid-

huber (1997). The LSTM deals with the vanishing gradient problem by introducing

multiplicative gate units which learn to open and close access to the error flow.

Gates are a way to control the information flow. A simple LSTM layer includes

three types of gate: input gate, forget gate and output gate. Each gate consists of

a sigma function which has an output between 0 and 1. When multiplying them by

another vector, one could decide on how much of that vector to keep. A value of 0

means “do not keep anything”, while a value of 1 means “keep everything”.
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2.4.3 Multi-Modal Fusion

As discussed in Section 2.3.2, a human’s affective state can be interpreted from

different modalities. When multiple modalities are used it is necessary to fuse the

results from different modalities to generate one final prediction. There are two

commonly used methods to fuse the data: feature-level fusion (early fusion) and

decision-level fusion (late fusion). As the name suggests, feature-level fusion takes

features from different modalities and concatenates them together to train the model,

whereas decision-level fusion first uses features from different modalities to train the

model separately and then the outputs from each model are fused together to train

a final model.

2.4.4 Performance Evaluation

When evaluating the performance of an affect recognition system, different metrics

could be used depending on how the data is annotated or the on nature of the

learning task (classification vs. regression).

For data annotated using emotion categories and discrete dimensional labels, the

measures of detection rate and F1 score are commonly used (Gunes and Schuller,

2013). The detection rate can be computed at the instance-level (frame-level for

visual-based detection and unit-level for vocal-visual-based detection) or segment-

level (fixed or variable time interval). The detection rate is calculated as the fraction

of the number of correctly detected instances or segments per emotion category

divided by the total number of segments for that emotion category. The F1 score

also known as F-score or F-measure gives a measure of a classifier’s accuracy. It

uses both precision and recall for calculation. Precision is computed as the number

of true positives (when both prediction and ground truth are positive) divided by

the number of true positives plus the number of false positives (when prediction

is positive but ground truth is negative). Recall is defined as the number of true
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positives divided by the number of true positives plus the number of false negatives

(when prediction is negative but ground truth is positive). The F1 score is then

calculated as the harmonic mean of precision and recall (Equation. 2.1) with the

highest value of 1 and lowest value of 0.

F1 = 2 · precision · recall
precision+ recall

(2.1)

When it comes to evaluating continuously annotated affective state, the opti-

mal evaluation metrics remains an open research issue (Gunes, 2010). The most

commonly used metrics are Root Mean Squared Error (RMSE) and Correlation

Coefficient (CC) (Grimm and Kroschel, 2005; Wöllmer et al., 2008; Schuller et al.,

2012; Valstar et al., 2013, 2014). RMSE is defined as:

RMSE =
√
MSE

MSE =
1

n

∑
i

(ŷi − yi)2
(2.2)

where n is the total number of samples that need to be predicted, ŷi is the predicted

value of the ith sample, and yi is the ground truth of the ith sample. RMSE measures

the absolute difference between the prediction and ground truth. When RMSE

is 0 it means the predicted value matches the ground truth exactly. Correlation

Coefficient (CC) is also known as Pearson’s product-moment correlation coefficient.

It is commonly represented by the Greek letter ρ. CC measures the strength and

direction of the linear relationship between two variables. CC is defined as:

ρŶ ,Y =
COV (Ŷ , Y )

σŶ σY
=
E
[(
Ŷ − µŶ

)
(Y − µY )

]
σŶ σY

(2.3)

where Y and Ŷ are two sequences of ground truth and predictions along time (time

series), COV denotes the covariance, σY denotes the standard deviation of Y , E is

the expectation and µY is the mean of Y. Correlation coefficients range from -1 to 1.
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A value of 1 implies that a strong positive linear relationship exists between Ŷ and

Y , i.e., as Ŷ increases, Y also increases. A value of -1 means a strong negative linear

relationship exists where Ŷ increases as Y decreases. A value of 0 means that there

is no linear relationship between the two variables. A CC score only measures the

linear relationship between two series and doesn’t measure the difference between

them. For instance, if for every prediction the value is 2 times bigger than the actual

value, the CC will be 1. When evaluating continuous affect recognition systems it

is important to make sure the prediction is close to the ground truth while linearly

correlated with the ground truth. More recently the Concordance Correlation Co-

efficient (CCC) (Ringeval et al., 2015b) has become a popular metric for evaluating

continues affect prediction as it combines the Pearson’s correlation coefficient with

the square difference between the mean of the two compared variables. CCC was

first proposed by Lawrence and Lin (1989). It is defined as:

CCC =
2ρŶ ,Y σŶ σY

σ2
Ŷ

+ σ2
Y − (µŶ − µY )2

(2.4)

where ρŶ ,Y is the correlation coefficient of two time series as defined in equation 2.3.

σ2
Ŷ

and σ2
Y are the variance of prediction and ground truth time series respectively,

and µŶ and µY are the mean value of each time series. As it can be seen from the

equation, unlike CC, predictions that are well correlated with ground truth (high ρ

value) but different in value are penalised, resulting in a low CCC score.

2.4.5 Discussion

This section presents the technical background necessary to understand the research

performed in this thesis to investigate automatic affect recognition. A number of key

decisions are taken based on this state-of-the-art review. Firstly, among different 2D

visual features, histogram-based appearance features have been widely employed for

continuous affect recognition systems and have achieved good recognition results.
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However, there is still little research that investigates the performance of differ-

ent histogram-based features across different datasets and thus it is unclear if one

histogram-based set of features will consistently perform better than another one

when using different datasets. The research carried out in this thesis thoroughly

investigates the performance of different histogram-based features using different

datasets.

Secondly, features used in most of the existing affect recognition systems are

extracted from the whole face, and to our best of our knowledge no research has

been carried out to study the use of facial parts (e.g., eyes and mouth) for continuous

affect recognition. The work described in this thesis involved design of experiments

to study if individual facial parts can be used for this purpose.

Thirdly, most of the existing research has focused on using 3D visual features to

predict discrete categorical emotions, and no research have been done on using them

for continuous affect recognition. In the work described in this thesis, the histogram-

based features were applied to the depth map to investigate the performance of 3D

features in continuous affect recognition.

For the experiments decribed in this thesis, a variety of machine learning tech-

niques including SVR, CNN and LSTM were selected for evaluation. Decision-level

fusion was chosen as the fusion method for two main reasons. Firstly, feature-level

fusion could result in high dimensional feature vectors, which usually results in an

over-fitted model that does not generalised well for unseen data. Secondly, decision-

level fusion could provide greater flexibility in modelling. since different machine

learning techniques can be applied to the fusion stage. Finally, in order to com-

pare the results with the state-of-the-art affect recognition systems, three metrics

including RMSE, CC and CCC were used.
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2.5 Baseline Systems

In order to compare the experimental results reported in this thesis to state-of-the-

art, it is important to select a number of continuous affect recognition systems as

baseline systems. Since experiments described in this thesis use only the visual

modality, only results using visual features are chosen for comparison. In total, four

representative baseline systems have been identified. They are the baseline system

used for AVEC 2012 (Schuller et al., 2012) and AVEC 2015 (Ringeval et al., 2015b)

and the winning system of each challenge (Nicolle et al., 2012; He et al., 2015).

At the beginning of this research, it was proposed to implement the AVEC 2012

winning system (Nicolaou et al., 2011) as the only baseline system and apply it to

different datasets to compare with the experimental results presented in this thesis.

At the time this system was chosen for two reasons. Firstly, it achieved the best

average prediction results compared to other entries. Secondly, part of the feature

extraction code used in this system is publicly available. Thirdly, by implementing

the baseline system one can gain more insight on how the system works. As a re-

sult, this system was considered the best performing and most reproducible baseline

system. Full implementation details are provided in Appendices A. However, during

the implementation of the baseline system it was found that it was not possible

to reproduce the results reported in the original paper since there are parameters

that are not specified in the paper and details of certain steps are missing. For this

reason, the best performed system in AVEC 2015 (He et al., 2015) was also chosen

in order to compare the experiments across different datasets. The two baseline

systems of AVEC 2012 and 2015 are also included for comparison purposes. As

introduced earlier, the AVEC 2012 uses a subset of the SEMAINE dataset which

include continuous annotations on arousal, valence, expectation and power dimen-

sions while AVEC 2015 uses a subset of the RECOLLA dataset which only includes

continuous annotations on arousal and valence dimensions, thus only arousal and
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Table 2.3: State-of-the-art recognition results in terms of CC score
on the development partition of different datasets.

System Dataset Visual Feature Learning Method Arousal Valence
Schuller et al. (2012) SEMAINE LBP SVR 0.151 0.207
Nicolle et al. (2012) SEMAINE Geometric Kernel Regression 0.538 0.319
Nicolle et al. (2012) SEMAINE Global Appearance Kernel Regression 0.498 0.281
Nicolle et al. (2012) SEMAINE Local Appearance Kernel Regression 0.470 0.354
Ringeval et al. (2015b) RECOLA LGBP-TOP SVR + LSTM 0.183 0.358
He et al. (2015) RECOLA LGBP-TOP LSTM 0.399 0.501
He et al. (2015) RECOLA LPQ-TOP LSTM 0.665 0.399

valence dimensions are chosen for the experiments carried out in this thesis. Table

2.3 shows the comparison between the different baseline systems in terms of datasets

used, visual features, machine learning techniques and recognition results. There are

two things that should be noted. Firstly, the results shown are evaluated using the

development partition of both challenges since the labels for the testing partition are

not publicly available for evaluation. Secondly, the recognition results are reported

in terms of CC score since CCC score was not used for AVEC 2012.

2.6 Conclusion

In this chapter, existing research and the theoretical background related to this

work is outlined and used at varying points throughout the following chapters in

this thesis. Different emotion models are discussed in Section 2.2. The dimensional

model was chosen for the work describe in this thesis due to its ability to encode

small differences in affect over time while remaining easy to implement.

In Section 2.3 some of the most commonly used affect datasets in the literature

in terms of elicitation method, modalities, emotion models and annotations are

reviewed. A problem identified with the existing datasets is that none of them

consist of recordings of spontaneous behaviours with 3D information that are also

annotated continuously. To address this important gap, it was decided to capture

a multi-modal multi-speaker 3D spontaneous affect dataset. More details on how
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this dataset was constructed are presented in Chapter 3. In addition to the newly

captured dataset, the SEMAINE dataset used in AVEC 2012 and the RECOLA

dataset used in AVEC 2015 were also selected to evaluate the experimental results

obtained from the system described in this thesis.

Various enabling technical components of affect recognition are introduced in

Section 2.4 including feature extraction, machine learning, multi-modal fusion and

performance evaluation. After examining the current state-of-the-art research, it

was decided that the work described in this thesis would focus on the following

areas: i) a thorough investigation in the performance of different histogram-based

features using different datasets; ii) a study whether individual facial parts can be

used for continuous affect recognition; iii) a study of the performance of 3D features

in continuous affect recognition by extending the histogram-based features to the

depth map; iv) development of a novel system that combines colour and depth and

an investigation of the performance gain achieved.

Finally, a number of baseline systems were chosen in order to compare the experi-

mental results obtained by the system described in this thesis to the state-of-the-art.
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Chapter 3

Multi-Modal Dataset Collection

and Annotation

3.1 Introduction

It is believed that the study of the complex, affective state displayed by humans

during social interactions requires rich sets of labelled data that occur naturally

in daily-life (Grimm et al., 2008). Such datasets enable researchers to study the

relationship between different behavioural cues, e.g., facial expressions and head

gestures and their communicative functions during social interactions, e.g., agree-

ment and disagreement. Although there is growing interest in collecting data of

social interactions as discussed in Section 2.3.4, to our best of knowledge, there is

still no dataset that includes recordings of spontaneous behaviours with both audio-

visual and depth data that is also annotated continuously in a multi-dimensional

affective space. This Chapter introduces and describes the creation of one of the

first spontaneous and continuously annotated multi-modal dataset focused on hu-

man interaction during a debate. The novelties of our multi-modal dataset are as

follows:

(i) it is based on a three-way debate scenario, allowing researchers to study the
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spontaneous affective state in relation to different modalities and to study

affective response between different participants.

(ii) it contains multimodal data including video, depth and audio modalities with

detailed continuous annotation on different dimensions.

The remainder of this chapter is organised as follows: Section 3.2 explains how

the dataset was constructed. Section 3.3 introduces a multi-modal capture platform

designed for this data capture. Section 3.4 details the segmentation and annotation

process of the dataset. Finally Section 3.5 describes a statistical analysis on the

dataset to validate its usefulness as a research tool.

3.2 Dataset Construction

3.2.1 Participants and Environment

In total 16 participants from Dublin City University and Bell Labs Ireland were

recruited for the dataset capture. The 14 participates were 4 females and 12 males

with age group ranging from 20 to 50 years old. Six offices with various background

and illuminations were used during the capture. In order to capture both facial

expressions and upper-body gestures, each participant was arranged to sit one meter

away from the screen.

3.2.2 Procedure

At the beginning of each capture session, the 3 participants were introduced to each

other, followed by an introduction to the experiment. Then they were separated

in three different offices and a debate topic was given. Similar to Mahmoud et al.

(2011), a wizard-of-oz method was used. Participants were told at the beginning

of the experiment that their video and audio would be recorded for face and voice

recognition purposes. Not knowing the real objectives of the experiment avoided
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having participants exaggerate or mask their true affect state (Mahmoud et al.,

2011). Each capture session ended when either a time limit was reached (60 minutes)

or the debate came to a natural conclusion.

3.2.3 Elicitation of Affective States

As discussed in Section 2.3.1, there are three main types of interaction behaviour

for eliciting affective state: (i) posed behaviour. (ii) induced behaviour and (iii)

spontaneous behaviour. Since this dataset focuses on collecting spontaneous be-

haviour in a real-life situation, a debate scenario was chosen. Compared to other

scenarios, a debate scenario features the following attributes: (i) debate occurs nat-

urally in everyday life, such as in a meeting, when watching a football match, or

watching movies, and participants are typically moved by real motivations leading to

highly spontaneous affective states; ii) debate scenarios convey rich affective state

and social behaviours such as conflicts, dominance, agreement/disagreement and

interest/non-interest (Vinciarelli et al., 2009).

To start the debate, the following topics were selected:

1. How Ireland performed in the Six Nations Rugby match (a high profile sporting

event).

2. Should Ireland reduce the minimal wage?

3. Will the Irish economy take off in the future?

4. Do humans have free will?

5. Do humans have a moral obligation to be vegetarian?

The first topic was used in two capture sessions. The first capture session consists

of three sports fans, allowing the capture of strong interest. The second capture

session includes two sports fans and one non-sports fan. This allows the capture of
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Figure 3.1: Plan-view of capture environment layout

rich interest and non-interest. The rest of the topics were used to enable the capture

of agreement/disagreement and positive/negative valence.

3.3 Multi-Modal Recording Setup

3.3.1 Sensors and Software

The capture environment setup is shown in Figure 3.1 and was replicated in each

office. A High-Defintion (HD) webcam (Logitech C910) was used and fixed on top

of the Microsoft Kinect to collect the visual signals. The microphones in the HD

webcam were used to capture the audio signals and the Kinect was used to capture

the depth information. Two computers were used in each office, one computer was

used by the participant to communicate using Google Hangout, while the other

computer was used to capture the multi-modal data. The HD webcam provided

1280×720 resolution colour images at 30 frames per second. The Kinect sensor
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consists of a normal RGB camera and an infrared camera. The RGB camera is

able to provide 640×480 color image and the infrared camera is used to capture

structured light and calculate a 640×480 11-bit disparity map. A headphone was

used by each participant to prevent capturing other participants’ voice. In order

to reduce the load on the hard drive, only the depth stream from the Kinect was

recorded. The audio was recorded using the microphone on the HD webcam at 16

bit and 96kHz. Camera calibration (Zhang, 1999) was performed between the HD

webcam and Kinect infrared camera in order to map the depth information to the

RGB image.

To capture the video, audio and depth simultaneously for each participant, modi-

fications were made to the open source video capture software Virtualdub (Lee, 2013)

to support reading depth streams from the Microsoft Kinect. The video stream was

compressed using MJPEG, while the depth stream was saved in the ONI format

developed and used by the OpenNI framework. Given that participants are sited

in different locations, a program was developed to start and stop recording at the

same time across different locations through asynchronous TCP socket communica-

tion. On each local machine an AutoIT Script was created to automate the capture

process. An overview of the multi-station capture system is shown in Figure 3.2.

Figure 3.3 shows sample data from the captured dataset with different arousal and

valence values. It can also be seen that the captured dataset consists of various

background and lighting conditions.

3.4 Annotations

3.4.1 Segmentation

Since each debate section usually lasted from 40 to 60 minutes, the videos were

segmented into 5 to 10 minute clips for easier annotation. After watching different
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Figure 3.2: Overview of the Multi-Station Capture System

Figure 3.3: Sample data from the dataset
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capture sessions, it was found that the beginning of a session usually consists of warm

up chat while at the end of a session the participant might end up discussing other

topics. These two parts do not involve as many different affective states compared

to the middle part. As a result only the middle part of each session was annotated.

This resulted in 36 video clips consisting of approximate 5 hours and 30 minutes of

data.

3.4.2 Annotation Guidelines

Three independent annotators were hired. Before the annotation task, each annota-

tor was introduced to the annotation task. Then they were required to complete a

set of training tasks to test their affect recognition skill and to become familiar with

the use of Gtrace (See Section 2.3.3). The first training task involved the identifi-

cation of emotions expressed on the face. The second task required participants to

describe the emotional state shown in a video clip. The third task involves mapping

a list of 24 emotional keywords to a valence-arousal 2-dimensional space. Task 4

involved annotating a list of sample videos from the SEMAINE dataset (McKeown

et al., 2012) using Gtrace. Upon completion of the training tasks and having be-

come familiar with the Gtrace annotation tool, the annotators were prompted to

start the annotation tasks. For convenience, annotators were allowed to pause or

restart an annotation at a any given time. To help the annotator better follow the

conversation, audio clips from each participant during the same capture session were

mixed together. For each video clip, five dimensions were continuously annotated,

including arousal, valence, agreement, interest and content. The value range for all

dimensions was set to [−1, 1].
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3.4.3 Post-processing

The annotations were first post-processed to remove duplicated annotations, and

cropped to be temporally aligned with the video sequences. The annotation data

was then binned with a frame rate fixed to match the video frame rate, which is a

33ms duration bin in our case.

Because the video and depth signal are captured from different sensors and there

was no hardware synchronization available, subsequent manual synchronisation was

required. Although the video and depth frame programmatically start at the same

time, the Kinect usually takes a longer time for the first frame to arrive and the delay

is not constant and may depend on the computer hardware specification. To deal

with this problem, after each capture session was segmented into clips as described

in the previous section, the first frame for each depth video clip was manually aligned

to its corresponding colour video clip. This eliminated the delay between the first

frame of the colour and depth streams.

3.5 Statistical Analysis

To evaluate the reliability of the annotations, three metrics are used, including the

percentage of positive frames, the mean Correlation Coefficient (CC) and Cron-

bach’s α. The percentage of positive frames is defined as the number of frames that

have annotations greater than zero, divided by the total number of frames. It is

an indication of whether the collected data is balanced, where ideally 50% positive

frames and 50% negative frames as desired. The mean correlation coefficient mea-

sures the average linear relationship between different annotations. It is calculated

using Equation 2.3. Cronbach’s α is used to measure the internal consistency. It is

defined as:

α =
Kc̄

(v̄ + (K − 1)c̄)
(3.1)
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where K is total number of annotators, v̄ is the average variance of each annota-

tion and c̄ is the average of the covariances matrix between different annotations

excluding the current annotation. The standard description of α levels is (George

and Mallery, 2003):

• > 0.9 Excellent

• > 0.8 Good

• > 0.7 Acceptable

• > 0.6 Questionable

• > 0.5 Poor

• < 0.5 Unacceptable

It should be noted that 0.6 is the lowest value commonly considered acceptable in

practice.

The results of the statistical analysis of the proposed dataset are shown in Table

3.1. The analysis of the raw data shows an extremely high percentage of positive

arousal and interest, and a high percentage of positive valence, agreement and con-

tent. This could be explained by the nature of the debate scenario since during

a debate, participants are usually highly engaged in the conversation. Since the

annotation itself is a subjective measurement (e.g., different annotators could give

different annotations for the same affective state), Zero mean normalisation as em-

ployed in Ringeval et al. (2013) can be applied to balance the data. In terms of mean

correlation coefficients, the analysis shows good correlations between annotators on

the valence, agreement and content dimensions, and high correlations on the arousal

and interest dimensions. The analysis also shows good internal consistency for the

arousal and interest dimensions, and acceptable consistency for valence, agreement

and content dimensions. One explanation of the low internal consistency is that
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Table 3.1: Statistics of the annotations

Statics Properties Arousal Valence Agreement Content Interest
% Pos Frame 97.3 73.3 79.6 74.8 94.6
Mean Corr. 0.76 0.47 0.46 0.39 0.66
Mean α 0.89 0.66 0.63 0.60 0.83

there are situations where the signs of affective state on these dimensions are am-

biguous (e.g., a person looks happy but his/her voice sounds unhappy). To further

investigate this, the annotations from different annotators were played back along

with the video recordings. It was found that during the debate, there are situations

where no clear indications of participant’s affective state on valence dimension are

presented and the the annotators tended to interpret the affective state differently.

Figure 3.4, 3.5, 3.6 and 3.7 shows the annotation on arousal, valence, agreement and

content dimensions for the same segment of a video recording. As it can be seen, the

annotators gave very different values for valence (between -0.3 to 0.4), agreement

(between 0 to 0.7) and content (between 0.2 to 0.6) dimensions. In contrast, the

annotators gave very similar values (between 0.8 to 0.9) for the arousal dimension.

Figure 3.4: Annotation comparison for different annotators on
arousal dimension
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Figure 3.5: Annotation comparison for different annotators on va-
lence dimension

Figure 3.6: Annotation comparison for different annotators on agree-
ment dimension
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Figure 3.7: Annotation comparison for different annotators on con-
tent dimension

3.6 Conclusion

In this chapter, the development of a data capture platform capable of collecting a

synchronised colour and depth stream is first described and then it is described how

this was used to create a multi-modal dataset in real-world settings. To the best

of our knowledge, this is one of the first spontaneous and continuously annotated

multi-modal datasets based on human interaction during a debate. 16 participants

were recorded during a sequence of debates in a three-way video conference setup.

Recordings include video signals, audio signals and depth signals. In total, over five

hours of data have been manually annotated in five dimensions including arousal,

valence, agreement, content and interest. Due to the nature of the debate scenario,

participants are usually highly engaged in the conversation, which meant that the

percentage of positive frames for the arousal and interest dimension are significant

higher. The Cronbach alpha measure shows correlation on arousal and interest

dimensions and acceptable correlation on valence and content dimensions, making it

a suitable dataset for the work proposed in this thesis. After plotting the annotation
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along with the video, it was found that the low Cronbach’s measure was mainly

caused by situations where no clear indications of participants affective state for

valence, agreement and content dimension are presented and the annotators tended

to interpret the affective state differently. One way to solve this problem could be

to increase the number of annotators since more annotators could give more reliable

annotations. However, this would further exacerbate an already extremely tedious

manual process.
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Chapter 4

Affect Recognition using Colour

Video Data

4.1 Introduction

As discussed in Section 2.4.1.1, facial features extracted from colour video data can

be divided into two main categories: geometric features and appearance features.

Geometric features are robust to lighting conditions since the focus is on coordinates

of landmarks rather than the intensity of the pixel. However, they are very sensitive

to facial landmarks registration errors as they are calculated purely based on the

landmark coordinates. Compared to geometric features, appearance features are

also robust to illumination variations, as they are extracted from small regions, and

usually do not depend on facial landmark registration. Among different appearance

features, the histogram-based appearance features have been used widely in affect

recognition since they can be normalised to increase the robustness of the overall

representation and are computationally simple when compared to filter-bank-based

features. Some of the most commonly used histogram-based features in affect recog-

nition include Local Binary Pattern (LBP), Local Phase Quantisation (LPQ), Local

Gabor Binary Patterns (LGBP), Local Binary Patterns on Three Orthogonal Planes
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Table 4.1: Histogram-based features and corresponding datasets
that used to evaluate their performance

Feature Type Dataset
LBP SEMAINE
LPQ AViD
LGBP -
LBP-TOP RECOLA
LPQ-TOP RECOLA
LGBP-TOP AViD, RECOLA

(LBP-TOP), Local Phase Quantisation on Three Orthogonal Planes (LPQ-TOP)

and Local Gabor Binary Patterns on Three Orthogonal Planes (LGBP-TOP). For

instance, the LBP feature was used in systems developed by Schuller et al. (2011,

2012), Van Der Maaten (2012), Savran et al. (2012a) and Sánchez-Lozano et al.

(2013). The LPQ feature was employed in the work carried out by Valstar et al.

(2013) and Kaya et al. (2014). Kächele et al. (2015) compared the performance

of the LBP-TOP feature with Histograms-of-oriented-gradients (HOG) feature and

Pyramids of histograms of oriented gradients in three orthogonal planes (PHOG-

TOP) feature. The work carried out by He et al. (2015) investigated the performance

of the LPQ-TOP feature. The LGBP-TOP feature was adopted in systems devel-

oped by Valstar et al. (2014), Senoussaoui et al. (2014), Ringeval et al. (2015b),

He et al. (2015) and Chen and Jin (2015). Although the performance of different

histogram-based features has been studied, their performance are usually evaluated

using different datasets as shown in Table 4.1 and different learning techniques.

Thus there is no clear indication of which histogram-based feature performs best

for continuous affect recognition. Furthermore, current research uses fixed configu-

rations when extracting histogram-based features, and it is not clear how different

configurations will affect the recognition result. No current research has reported

the performance of LGBP features for continuous affect recognition.

The Convolutional Neural Network (CNN) introduced in Section 2.4.2.2 has been

applied to solve a variety of problems such as image recognition, video analysis and
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natural language processing. More recently, it has also been applied for continuous

affect recognition. For instance, Chao et al. (2015) explored the use of CNN as a

feature extractor to extract appearance features for continuous affect recognition.

The AlexNet CNN structure (Krizhevsky et al., 2012) was pre-trained using a com-

bination of Celberity Faces in the Wild (CFW) (Zhang et al., 2012) and FaceScrub

dataset (Ng and Winkler, 2014). The outputs of the last convolutional layer are used

as face features. It achieved a CC score of 0.348 on the arousal dimension and 0.561

on the valence dimension on the development partition of the AVEC 2015 dataset.

The work carried out by Khorrami et al. (2016) uses a simple three-layer CNN as a

feature extractor, and the network achieved a CC score of 0.554 on valence dimen-

sion on the development partition of AVEC 2015 dataset. However, to the best of

our knowledge, the current deep learning approaches all use features extracted from

the entire face region and none of them have presented the use of individual facial

parts such as eyes and mouth for continuous affect recognition.

In this Chapter, different appearance features extracted from the video modality

are examined. In particular, experiments have been designed to thoroughly study the

performance of different histogram-based features and to investigate if it is possible

to use individual facial parts for continuous affect recognition.

4.2 Experiment 1: Configuration of histogram-

based features

The aim of Experiment 1 is to investigate the best configurations for different

histogram-based features. Specifically, experiments are carried out to identify the

best block size for different histogram-based features. More blocks means more de-

tailed description of the input image, which in turn results in higher dimensional

features and usually longer feature extraction time. For LBP, LPQ, LBP-TOP,

75



LPQ-TOP features, the code provided by CMV, University of OULU is used 1. For

the LGBP and LGBP-TOP features, the code developed by Michel Valstar is used

2.

In this experiment, the AVEC 2015 dataset is selected for two reasons. Firstly,

it has been widely used for continuous affect research. Secondly, it consists of more

subtle expression changes when compared to other datasets, as suggested by Kächele

et al. (2015).

4.2.1 Data Pre-processing

To extract the histogram-based features, 49 facial landmarks are first detected and

tracked for each video frame using the Supervised Descent Method (SDM) proposed

by Xiong and De la Torre (2013). The face is then extracted using the minimal and

maximal coordinates from the tracked facial landmarks for the x-axis and y-axis

respectively. Finally, the face image is re-sized to 96× 96 for feature extraction. An

overview of the pre-processing steps is shown in Figure 4.1.

Figure 4.1: Overview of pre-processing steps

1http://www.cse.oulu.fi/wsgi/CMV/Downloads
2http://www.cs.nott.ac.uk/~pszmv/resources/visum_package.zip
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4.2.2 Experimental Procedure

In this experiment, the most commonly used configurations for different histogram-

based features in the literature (Schuller et al., 2012; Valstar et al., 2013; Zhao

and Pietikainen, 2007; Valstar et al., 2014) are used for comparison purposes. The

configurations are shown in Table 4.2. The window size used for Fourier phase

computation is set to 7 for LPQ features, and 7 for LPQ-TOP features on x-y

planes and 3 for x-t and t-t planes as suggested by Jiang et al. (2014). To reduce

Table 4.2: Configuration for different histogram-based features

Feature Type Neighbor Radius Mapping Time Interval(frames)
LBP 8 1 Uniform -
LPQ - - - -
LGBP 8 1 Uniform -
LBP-TOP 8 1 Uniform 5
LPQ-TOP - - - 5
LGBP-TOP 8 1 Uniform 5

the feature dimensions of LGBP and LGBP-TOP features, the number of scales is

set to 2 while the number of orientations is set to 3. This generates six Gabor filters

in total. The block sizes are evaluated at 1×1, 2×2 and 4×4. To further reduce the

dimensions, no block size is applied to the temporal axis (e.g. for block size 4 × 4,

only the x-y plane is divided into 4× 4 blocks, x-t and y-t planes are divided to 4*1

blocks). Since the feature dimensions for some histogram-based features could be

high (shown in Table ??, which may lead to overfitting, the dimensionality reduction

is needed. Similar to the work carried out by Ringeval et al. (2015b), the Singular

Value Decomposition (SVD) from a low-rank approximation (Halko et al., 2011) is

applied to all the extracted features. To ensure the reduced features have similar

dimensions, the rank of each block size configuration is set to 1/2, 1/12 and 1/50 of

the feature dimensions respectively, and the reduced number of features are selected

to cover 98% of the variation of the original features. The original number of features

and number of reduced features for each histogram-based feature are shown in Table
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Table 4.3: Original number of features and reduced number of fea-
tures for different block sizes

1× 1 2× 2 4× 4
Total Reduced Total Reduced Total Reduced

LBP 59 25 236 19 944 19
LPQ 256 121 1024 81 4096 76
LGBP 177 79 1416 108 5664 112
LBP-TOP 177 86 708 58 2832 58
LPQ-TOP 708 335 3072 242 12288 237
LGBP-TOP 1416 649 2832 214 8496 152

4.3. Furthermore, for static features (LBP, LPQ and LGBP), the feature values are

forced to be zero where a face is missing, while for dynamic features (LBP-TOP,

LPQ-TOP and LGBP-TOP), the feature values are forced to be zero if the volume

data contains more than one frame where a face is missing. These feature values

are excluded from the modelling process since they can be misleading and skew the

training process.

For machine learning, a linear Support Vector Machine for regression (SVR) was

used to perform the regression task using the liblinear library (Fan et al., 2008).

The L2-regularised L2-loss dual solver was chosen and a unit bias was added to the

feature vector. During training, feature vectors containing all zeros were dropped.

The complexity parameter c of the SVR was optimised in the range of [10−5 − 100]

while other parameters were kept as default.

4.2.3 Experimental Results and Analysis

The result for different block size configurations are shown in Table 4.4. The score is

calculated in terms of Root Mean Square Error (RMSE: lower is better), Correlation

Coefficient (CC: higher is better) and Concordance Correlation Coefficient (CCC:

higher is better) as discussed in Section 2.4.4.

To better compare the performance of different histogram-based features and

block sizes, bar charts are plotted in terms of CC score, since CCC score can usually
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Table 4.4: Results on development partition for different block sizes.
The best results in different metrics are highlighted in bold.

Arousal Valence
RMSE CC CCC RMSE CC CCC

LBP 0.190 0.158 0.050 0.127 0.141 0.091
LPQ 0.201 0.191 0.127 0.132 0.280 0.234
LGBP 0.222 0.036 0.017 0.135 0.141 0.094
LBP-TOP 0.185 0.295 0.213 0.128 0.185 0.127
LPQ-TOP 0.187 0.315 0.245 0.125 0.336 0.293
LGBP-TOP 0.196 0.078 0.022 0.137 0.092 0.071

(a) Block size: 1× 1

Arousal Valence
RMSE CC CCC RMSE CC CCC

LBP 0.191 0.146 0.046 0.126 0.242 0.192
LPQ 0.211 0.120 0.095 0.133 0.234 0.206
LGBP 0.228 0.015 0.009 0.149 0.138 0.094
LBP-TOP 0.188 0.259 0.081 0.134 0.147 0.121
LPQ-TOP 0.197 0.154 0.105 0.127 0.281 0.249
LGBP-TOP 0.202 0.151 0.095 0.136 0.172 0.135

(b) Block size: 2× 2

Arousal Valence
RMSE CC CCC RMSE CC CCC

LBP 0.217 0.220 0.146 0.118 0.302 0.213
LPQ 0.206 -0.080 -0.037 0.135 0.228 0.170
LGBP 0.197 -0.003 -0.001 0.123 0.207 0.138
LBP-TOP 0.189 0.293 0.108 0.118 0.310 0.210
LPQ-TOP 0.193 0.202 0.098 0.122 0.338 0.166
LGBP-TOP 0.193 0.166 0.045 0.124 0.187 0.088

(c) Block size: 4× 4
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be improved by post-processing as can be seen in later experiments. Figure 4.2

illustrates the recognition results for different histogram-based features in various

block size configurations.

Overall, it can be seen that the dynamic features generally achieved better CC

scores on both arousal and valence dimensions compared to their static counter-

parts and this agrees with the findings in Almaev and Valstar (2013) and Jiang

et al. (2014) for facial action unit detection. For LBP features, increased block size

yields better recognition results. The 4 × 4 configuration achieved the best result

on both arousal and valence dimensions. For LPQ features, increased block size

results in lower CC score for both arousal and valence dimensions. The 1× 1 block

size achieved the best recognition result. For LGBP features, increased block size

decreases performance on the arousal dimension, but increases performance on the

valence dimension. For LBP-TOP features, the 4× 4 configuration achieved similar

results as the 1×1 configuration for arousal dimension, but achieved much better re-

sults on the valence dimension when compared to other configurations. In contrast,

for LPQ-TOP features, the 1×1 configuration achieved the best performance on the

arousal dimension and similar results as the 4 × 4 configuration on the valence di-

mension. Finally, for LGBP-TOP features, the performance increases linearly with

the block size, with the 4× 4 configuration achieved the best result. Among all the

features, LPQ-TOP features achieved the best recognition result for both arousal

and valence dimensions followed by LBP-TOP features. It is also interesting to note

that most features extracted using a 1 × 1 configuration generally perform well on

the arousal dimension, while features using a 4× 4 configuration generally perform

well on the valence dimension.

Table 4.5 shows the computation time of the different histogram-based features

with different block size configurations. All computation was tested on a Intel Core

i7-2600K processor with 16 gigabytes of RAM. As can be seen, increased block size

generally increases the computation time except for the LBP-TOP feature. For static
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(a) Arousal

(b) Valence

Figure 4.2: Comparison of the performance of different block size
configurations in terms of CC score on Arousal and Valence dimen-
sions
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Table 4.5: Computation time in seconds for histogram-based features
with different block size configurations. The LBP, LPQ and LGBP
features are computed per frame. The LBP-TOP, LPQ-TOP and
LGBP-TOP features are computed every 5 frames.

LBP LPQ LGBP LBP-TOP LPQ-TOP LGBP-TOP
1× 1 0.048 0.057 0.096 0.187 0.129 0.178
2× 2 0.053 0.065 0.218 0.182 0.180 0.280
4× 4 0.061 0.074 1.383 0.167 0.279 2.090

features, the LGBP feature require the most computation time while for dynamic

features, LGBP-TOP is the most computationally expensive.

4.3 Experiment 2: Annotation Delay

As discussed in Section 2.2.2, one of the main challenges of using a continuously an-

notated dimensional dataset is the delay in the annotation. To deal with this prob-

lem, various approaches have been proposed. For instance, Nicolaou et al. (2011)

estimated constant shifts between the prediction and ground truth to minimise their

mean square error (MSE). Nicolle et al. (2012) assumes a linear relationship between

the features and labels, and proposed a correlation-based measure to find the delay.

Nicolaou et al. (2012) introduced the dynamic probabilistic canonical correlation with

time warping (DPCTW) approach to compensate for local delays between different

annotators. The aim of this experiment is to study the performance of different

block size configurations after the annotation delay has been compensated and to

investigate the general annotation delays for arousal and valence dimension.

4.3.1 Experimental Procedure

Similar to experiment, the AVEC 2015 dataset was used for this experiment. The

same experimental setup as in previous experiment was used and the time delay was

treated as a hyperparameter. It was optimised by CC score for arousal and valence

respectively on the training partition. The delay was considered as a constant shift

82



from 0 to 8 seconds with a step size of 0.4 seconds. Each SVM model was trained

with the shifted ground truth and the best results are reported in Table 4.6.

4.3.2 Experimental Results and Analysis

A bar chart is provided to compare performance as shown in Figure 4.3. Overall

the 4 × 4 LPQ-TOP feature achieved best results on the arousal dimension while

the 4× 4 LPQ-TOP features perform best on the valence dimension. Compared to

the first experiment, the performance on all configurations have been improved. On

the arousal dimension, the best CC score is improved by 38% (from 0.315 to 0.435)

while on the valence dimension, the best CC score is improved by 31% (from 0.338

to 0.445).

In order to analyse the annotation delay on the arousal and the valence dimen-

sions, the recognition results for different features are plotted in terms of different

time delays. This is shown in Figure 4.4, 4.6, 4.5 and 4.7. By looking at the maxi-

mum values for each delay curve, one can identify an average delay between 1.6 to 2

seconds for the arousal dimension and 1.6 to 2.4 seconds for the valence dimension

across different histogram-based features.

4.4 Experiment 3: The effect of post-processing

Since the predictions from the machine learning step usually suffer from issues such

as bias, scaling and noise, various post-processing techniques have been employed for

recently developed affect recognition systems. For instance, Kächele et al. (2015)

scaled the predictions using the minimum and maximum value from the training

partitions. Exponential smoothing is used to remove the noise in the work carried out

by Chen and Jin (2015). He et al. (2015) employed Gaussian smoothing with both

fixed and variable window length to remove the noise. The aim of this experiment

is to study how post-processing steps can be used to improve the recognition result.
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Table 4.6: Results on development partition for different block sizes
with shifted annotation. The best results in different metrics is high-
lighted in bold

Arousal Valence
Delay RMSE CC CCC Delay RMSE CC CCC

LBP 1.2 0.189 0.189 0.061 2.4 0.127 0.183 0.130
LPQ 0.8 0.202 0.201 0.143 1.2 0.132 0.334 0.284
LGBP 3.6 0.223 0.123 0.054 2 0.124 0.204 0.105
LBP-TOP 1.6 0.177 0.406 0.246 2.4 0.125 0.249 0.183
LPQ-TOP 1.6 0.181 0.430 0.348 1.6 0.122 0.403 0.373
LGBP-TOP 2 0.193 0.205 0.065 7.2 0.130 0.169 0.134

(a) Block size: 1× 1

Arousal Valence
Delay RMSE CC CCC Delay RMSE CC CCC

LBP 1.2 0.189 0.188 0.057 1.6 0.122 0.289 0.231
LPQ 0.8 0.200 0.136 0.090 2 0.124 0.362 0.327
LGBP 4.8 0.224 0.082 0.039 2.4 0.131 0.191 0.065
LBP-TOP 2 0.179 0.393 0.227 1.6 0.132 0.205 0.174
LPQ-TOP 2 0.188 0.284 0.176 1.6 0.121 0.378 0.356
LGBP-TOP 2 0.193 0.293 0.192 1.6 0.135 0.193 0.155

(b) Block size: 2× 2

Arousal Valence
Delay RMSE CC CCC Delay RMSE CC CCC

LBP 1.6 0.200 0.279 0.144 2.4 0.113 0.397 0.304
LPQ 6.4 0.266 -0.024 -0.022 1.2 0.129 0.307 0.240
LGBP 3.2 0.232 0.032 0.018 2 0.129 0.311 0.231
LBP-TOP 2 0.184 0.435 0.225 2.4 0.116 0.412 0.243
LPQ-TOP 1.6 0.188 0.316 0.195 1.6 0.111 0.445 0.303
LGBP-TOP 2 0.189 0.305 0.097 2 0.121 0.269 0.135

(c) Block size: 4× 4
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(a) Arousal

(b) Valence

Figure 4.3: Comparison of the performance of different block size
configurations in terms of CC score on Arousal and Valence dimen-
sions

85



Figure 4.4: Plot of arousal delay for static features

Figure 4.5: Plot of arousal delay for dynamic features

86



Figure 4.6: Plot of valence delay for static features

Figure 4.7: Plot of valence delay for dynamic features
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4.4.1 Experimental Procedure

Similar to experiment, the AVEC 2015 dataset was used for this experiment. For

this experiment, the following post-processing steps are applied to the initial pre-

dictions: (i) median filtering and (ii) centering and scaling. The median filter is a

nonlinear filter which is commonly used in digital signal and image processing for

noise reduction. The main idea of the median filter is to go through every entry in

the signal and replace each entry with the median of its neighbouring entries. The

size of neighbouring entries is usually referred as the window size. In this exper-

iment, various window size have been tested ranging from 0.4s (10 frames) to 20s

(500 frames) with a step size of 0.4s. For centring and scaling, the following formula

was used.

yfinal =
(ypred − µpred)

σpred
∗ σtrain + µtrain (4.1)

where yfinal is the final prediction, ypred is the raw prediction, mupred is the mean

of the raw prediction, σpred is the standard deviation of the raw prediction, σtrain is

the standard deviation of the training labels, and µtrain is the mean of the training

labels.

The prediction results from the second experiment were used in this experiment,

specifically the 4×4 LBP-TOP feature was selected for arousal prediction while the

4× 4 LPQ-TOP feature was selected for valence prediction since they achieved the

highest CC scores respectively after delay compensation.

4.4.2 Experimental Results and Analysis

Table 4.7 shows the original prediction results and the prediction results after post-

processing. As it can be seen, both the arousal and valence prediction have been

improved in term of CC score and largely improved in terms of CCC score. Through

the experiment, it was found that for the arousal dimension, the median filter with

window size of 4.8s achieved best results, while for the valence dimension, a window
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size of 4s achieved best results. To visualise the effect of the post-processing steps,

Figure 4.8 and 4.9 show the arousal and valence curves of a segment of video,

including the ground-truth labels, the initial prediction result, the prediction after

median filter was applied and the prediction after centering and scaling. From the

figures it can be seen, after the median filter, the prediction curve becomes much

smoother while still capturing the trend of the ground truth. After the centering

and scaling steps, the bias and scaling issues that come with the initial prediction

have been reduced.

Table 4.7: Original and post processed result on the development
partition of AVEC 2015 dataset

Original Post Processed
RMSE CC CCC RMSE CC CCC

LBP-TOP Arousal 0.184 0.435 0.225 0.181 0.590 0.553
LPQ-TOP Valence 0.111 0.445 0.303 0.125 0.546 0.537

Figure 4.8: Plot of post processed prediction on arousal dimension
using LBP-TOP features

Table 4.8 and 4.9 compare the recognition results with the AVEC 2015 baseline

system and the AVEC 2015 winning system where the best results are highlighted in

bold. It can be seen that our system outperformed the AVEC 2015 baseline system

on both arousal and valence dimensions. Compared to the winning system in AVEC

2015, the proposed system achieved close performance on the arousal dimension and

better performance on the valence dimension. However, it should be noted that the
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Figure 4.9: Plot of post processed prediction on valence dimension
using LPQ-TOP features

Table 4.8: Comparison with selected baseline results on the devel-
opment set on arousal dimension

Arousal
Ringeval et al. (2015b) He et al. (2015) our results

RMSE 0.214 0.148 0.181
CC 0.183 0.665 0.590

CCC 0.103 0.587 0.553

winning system used a deep Bidirectional Long Short-Term Memory (BLSTM) Re-

current Neural Network which is known to have a better performance on modelling

temporal information compared to a linear SVR. It also used additional steps such

as feature selection to select more correlated features. Since the aim of these ex-

periments is to thoroughly investigate the performance of different histogram-based

features on continuous affect recognition, only the linear SVR was selected as the

learning technique in order to benchmark different features.

Table 4.9: Comparison with selected baseline results on the devel-
opment set on valence dimension

Valence
Ringeval et al. (2015b) He et al. (2015) our results

RMSE 0.117 0.105 0.125
CC 0.358 0.501 0.546

CCC 0.273 0.346 0.537
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4.5 Experiment 4: Generalisation across datasets

In previous experiments it was investigated how block size effects the performance

of different histogram-based features. The aim of this experiment is to investigate if

a particular histogram-based feature will perform consistently well across different

datasets. For AVEC 2015 dataset, the 4 × 4 LBP-TOP feature achieved the best

result on arousal dimension, while the 4 × 4 LPQ-TOP achieved the best result

on valence dimension after the delay compensation. In this experiment, the best

block size configuration for different histogram-based features was selected based on

previous experimental results. The selected configurations are: 4 × 4 LBP feature,

1× 1 LPQ feature, 4× 4 LGBP feature, 4× 4 LBP-TOP feature, 1× 1 LPQ-TOP

feature, 4×4 LPQ-TOP feature and 4×4 LGBP-TOP feature. For this experiment,

the aforementioned features were tested using the AVEC 2012 dataset and the DCU

dataset introduced in Chapter 3.

4.5.1 Experimental Procedure

The DCU dataset was first partitioned into three person independent subsets (train-

ing, development and testing) similar to the AVEC 2012 and AVEC 2015 dataset.

The ground truth annotation was calculated as the average across all three anno-

tators. The same pre-processing steps used in Section 4.2 was first employed to

extract and re-size the face region to 96 × 96. Next, different histogram-based fea-

tures were extracted using the selected configurations and the same SVD from a

low-rank approximation was used to reduce the feature dimensions. Finally, a lin-

ear SVM was used for prediction. To compare the performance with other baseline

systems, the evaluation was carried out using the training partition and evaluated

using the development partition for both the AVEC 2012 and DCU datasets.

91



Table 4.10: Recognition result for different histogram-based features
on AVEC 2012 development partition

Arousal Valence
RMSE CC CCC RMSE CC CCC

LBP
(4× 4)

0.235 0.250 0.153 0.251 0.377 0.308

LPQ
(1× 1)

0.238 0.242 0.173 0.241 0.205 0.157

LGBP
(4× 4)

0.226 0.355 0.262 0.274 0.294 0.262

LBP-TOP
(4× 4)

0.227 0.343 0.245 0.247 0.422 0.255

LPQ-TOP
(1× 1)

0.233 0.301 0.229 0.238 0.453 0.411

LPQ-TOP
(4× 4)

0.222 0.403 0.254 0.249 0.409 0.357

LGBP-TOP
(4× 4)

0.224 0.383 0.284 0.264 0.227 0.150

4.5.2 Experiment Results and Analysis

The recognition results for the AVEC 2012 and DCU datasets are shown in Table

4.10 and 4.11 respectively. For the AVEC 2012 dataset, it can be seen the 4×4 LPQ-

TOP feature achieved best recognition result on arousal dimension, while the 1× 1

LPQ-TOP feature performed best on the valence dimension in terms of CC score.

For the DCU dataset, the 1×1 LPQ-TOP and 4×4 LBP-TOP feature achieved best

recognition results on arousal and valence dimensions respectively in terms of both

CC and CCC score. However, the recognition results on the valence dimension is

relatively low compared to the arousal dimension on the DCU dataset. This could be

caused by inconsistent annotations from multiple annotators on valence dimension

as discussed in Section 3.5.

The recognition result for both datasets after delay compensation are shown in

Table 4.12 and 4.13. Similar to the experiment without delay composition, 1 × 1

LPQ-TOP and 4×4 LBP-TOP achieved the best recognition results on arousal and

valence dimensions respectively for the DCU dataset, while the 4×4 LPQ-TOP and
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Table 4.11: Recognition result for different histogram features on
DCU development partition

Arousal Valence
RMSE CC CCC RMSE CC CCC

LBP
(4× 4)

0.277 -0.019 -0.016 0.208 -0.014 0.010

LPQ
(1× 1)

0.244 0.189 0.118 0.229 0.112 0.058

LGBP
(4× 4)

0.223 0.399 0.320 0.251 -0.122 -0.073

LBP-TOP
(4× 4)

0.217 0.426 0.303 0.189 0.246 0.166

LPQ-TOP
(1× 1)

0.197 0.559 0.468 0.237 0.171 0.093

LPQ-TOP
(4× 4)

0.268 0.470 0.262 0.240 -0.047 -0.026

LGBP-TOP
(4× 4)

0.203 0.522 0.409 0.223 0.065 0.039

the 1× 1 LPQ-TOP features perform best for the AVEC 2012 dataset. In addition,

it can be seen for the AVEC 2012 dataset that there exists a delay between 3 and

4 seconds for the arousal dimension and between 4 and 5 seconds for the valence

dimension. For the DCU dataset, the delay is generally between 3 and 4 seconds for

the arousal dimension while for the valence dimension the delay time is between 1

and 2 seconds.

Table 4.14 and Table 4.15 show the recognition results for both AVEC 2012

and DCU dataset after the post-processing steps proposed in Section 4.4 have been

applied to the predictions after delay compensation. As can be seen, the post-

processing steps have improved the performance of the proposed system on both

datasets. Compared to the AVEC 2012 winning system, the proposed system has

achieved better results on the valence dimension and comparable results on the

arousal dimension in terms of CC score.
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Table 4.12: Recognition result for different histogram features on
AVEC 2012 development partition with delay compensation

Arousal Valence
Delay RMSE CC CCC Delay RMSE CC CCC

LBP
(4× 4)

2.4 0.232 0.266 0.166 5.6 0.248 0.419 0.359

LPQ
(1× 1)

1.6 0.236 0.255 0.184 4.4 0.263 0.291 0.226

LGBP
(4× 4)

2.4 0.222 0.385 0.297 3.6 0.271 0.331 0.305

LBP-TOP
(4× 4)

4 0.221 0.379 0.277 4 0.245 0.449 0.282

LPQ-TOP
(1× 1)

4.8 0.228 0.325 0.253 4.8 0.235 0.493 0.437

LPQ-TOP
(4× 4)

4 0.217 0.426 0.280 4 0.245 0.444 0.395

LGBP-TOP
(4× 4)

3.6 0.219 0.409 0.299 3.6 0.263 0.251 0.174

Table 4.13: Recognition result for different histogram features on
DCU development partition with delay compensation

Arousal Valence
Delay RMSE CC CCC Delay RMSE CC CCC

LBP
(4× 4)

0 0.277 -0.019 -0.016 2.8 0.207 0.013 0.009

LPQ
(1× 1)

4 0.261 0.196 0.105 1.2 0.230 0.112 0.058

LGBP
(4× 4)

2 0.218 0.429 0.350 0.8 0.250 -0.120 -0.072

LBP-TOP
(4× 4)

2.4 0.212 0.474 0.362 1.6 0.189 0.258 0.178

LPQ-TOP
(1× 1)

3.2 0.182 0.644 0.572 2 0.237 0.181 0.094

LPQ-TOP
(4× 4)

3.2 0.266 0.528 0.302 1.2 0.241 -0.041 -0.022

LGBP-TOP
(4× 4)

3.2 0.198 0.563 0.462 0.8 0.223 0.066 0.040
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Table 4.14: Recognition result on AVEC 2012 development partition
after post-processing

Arousal Valence
Before After Nicolaou et al. (2012) Before After Nicolaou et al. (2012)

RMSE 0.217 0.227 - 0.235 0.228 -
CC 0.426 0.516 0.538 0.493 0.539 0.354
CCC 0.280 0.512 - 0.437 0.488 -

Table 4.15: Recognition result on DCU development partition after
post-processing

Arousal Valence
Before After Before After

RMSE 0.182 0.175 0.189 0.246
CC 0.644 0.777 0.258 0.326
CCC 0.572 0.725 0.178 0.302

4.6 Experiment 5: Affect Recognition using Con-

volutional Neural Network

As discussed in Section 2.4.2.2, a number of well-established pattern recognition

problems such as object detection, image recognition and speech recognition have

benefited greatly from the advent of deep neural networks. Recently, deep neural

networks have also been applied to continuous affect recognition and have achieved

state-of-the-art performance. The deep neural networks are usually used in three

different ways. The first uses the deep neural network as a feature extractor. For

instance, Chao et al. (2015) trained the Convolutional Neural Networks (CNN) on

110,000 images from 1032 people in Celebrity Faces in the Wild (CFW) (Zhang

et al., 2012) and FaceScrub (Ng and Winkler, 2014) datasets. The 9216 nodes’

values from the last convolutional layer are then used to compute face features and

are used to train a Long Short Term Memory Recurrent Neural Network (LSTM)

for affect recognition. The second uses the deep neural networks as a machine

learning method. The work carried out by He et al. (2015) uses LGBP-TOP features

extracted from the face region and LSTM to predict the affective state. The third
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approach treats the deep neural network as a combination of feature extraction

and machine learning. For example, Khorrami et al. (2016) uses the facial images

directly from the dataset to train the CNN for affect recognition.

However, to the best of our knowledge the current deep learning approaches all

use features extracted from the entire face region, and none of them have consid-

ered to use individual facial parts such as eyes and mouth for affect recognition.

People tend to use different facial parts as reference when perceiving other people’s

emotions. For instance, the work carried out by Jack et al. (2012) suggested that

the mouth is more informative for western people when judging people’s affective

state whereas the eyes are more informative for East Asian people. The aim of this

experiment is to investigate if it is possible to use individual facial parts for contin-

uous affect recognition. In this experiment, the CNNs are used as a combination of

feature extraction and machine learning. They are trained using both the entire face

and individual facial parts as input and their respective performances are compared.

4.6.1 Data Pre-processing

The AVEC 2015 dataset was chosen for this experiment. In total, 67,500 images

are used for training, 30,000 images are used for validation and 47,500 images are

used for testing. For CNN training using the entire face image, the face region was

extracted using the same method introduced in Section 4.2.1 while the face image

was also re-sized to 96×96. For the CNN trained using facial parts, each facial part

was extracted using the detected landmarks. In particular, the following facial parts

were selected for this experiment: (i) left and right eye region to capture gaze direc-

tion, blinks and eyebrows movements, (ii) glabellar lines to capture extreme negative

affective state such as anger, fear and depression, (iii) left and right nasolabial folds

to capture smiles, and (iv) mouth to capture mouth movements. Each of these facial

parts are shown in Figure 4.10. Before training, the input images for both networks
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Figure 4.10: Facial Part

are standardised by subtracting the mean and dividing by the standard deviation

computed on the training partition. All experiments carried out in this section were

trained using an NVIDIA GTX 970 GPU with 4 Gigabyte memory.

4.6.2 Experimental Procedure

A classic feed-forward CNN was used in all experiments presented in this section.

For simplicity, the CNN trained using an entire face is referred as CNNentire while

the CNN trained using facial parts is referred to as CNNpart. The network structure

for CNNentire is similar to one used by Khorrami et al. (2016) since it’s one of the

first works using CNN for End-to-End affect recognition, and achieved better results

when compared to hand-crafted features (Ringeval et al., 2015a,b). The network

consists of three convolution layers with 64, 128, 256 filters respectively, with filter

sizes of 5×5. Each layer is followed by a max pooling layer of size 2×2. The network

is then followed by a fully-connected layer with 300 hidden units and a dense layer

with output equal to 1. CNNpart consists of four convolution layers with 64, 64, 128,

256 filters respectively, with filter sizes of 3× 3. A max pooling layer with size 2× 2

is applied after each convolution layer except for the first one. The network is then
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followed by a fully-connected layer with 128 hidden units and, finally, a dense layer

with output equal to 1 was used to predict either the arousal or the valence value.

The network was trained for each facial part separately. For all hidden layers in

CNNentire and CNNpart, the ReLU activation function was used. Both CNNentire

and CNNpart were trained using stochastic gradient descent with a batch size of

128, momentum of 0.9 and a weight decay of 1e-5. The learning rate was set to

0.001 throughout the training. The parameters of each layer were initialised with

uniform distribution.

As shown in Section 4.3, there exist delays in the annotations for the AVEC

2015 dataset and the experiments with histogram-based features have shown that

the recognition results were significantly improved after delay compensation. In

this experiment the same delay compensation method was used by shifting the

annotation forward from [0-8] seconds with a step size of 0.4 seconds. The delayed

annotations were then used to train both CNNentire and CNNpart.

4.6.3 Experimental Results and Analysis

Table 4.16 shows the performance of the CNNentire and CNNpart in terms of CC

score. The results shown that not only is it possible to use facial parts for continuous

affect recognition, but also this approach achieved better performance compared to

the entire face approach. It can be seen from the results when using facial parts

that the mouth region is good at predicting the valence dimension, while the eye

regions and glabellar lines achieved better results on the arousal dimension. The

performance of nasolabial folds are similar for both arousal and valence dimensions.

Although it is expected that the glabellar lines should perform well on the valence

dimension since it is highly correlated with negative emotions, the recognition results

show poor performance on the valence dimension. This might be caused by the fact

that the training data only consists of very few examples of negative emotions which
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involve glabellar lines, meaning the network is unable to learn any useful features.

When using the entire face, the performance on the valence dimension is significantly

better than the arousal dimension. Among different facial parts, the right nasolabial

folds achieved best results on the arousal dimension, while the mouth performs best

for the valence prediction.

Since a face is symmetric, one might expect that the performance of symmetric

parts should be similar. However, the results have shown that the right nasolabial

folds perform better compared to their symmetric part. After analysing the data it

is found that the main reason for this is due to the visibility of the facial part. For

instance, the left nasolabial region is constantly obstructed by the microphone worn

by the participants as shown in Figure 4.11a. The result is that the performance

of left nasolabial folds is significantly lower compared to the right one. Since both

left eye and right eye can be blocked by hair (See Figure 4.11b), they achieved very

similar results.

Table 4.16: CC score without annotation delay using CNN

Arousal Valence
Whole Face 0.014 0.243
Mouth 0.032 0.334
Left Eye 0.122 0.017
Right Eye 0.177 0.060
Glabellar Lines 0.154 -0.083
Left Nasolabial Folds -0.080 -0.023
Right Nasolabial Folds 0.198 0.132

Table 4.17 shows the recognition results in terms of CC score after delay com-

pensation has been applied. Similar to previous experiments, the performance for

both CNNentire and CNNpart have been improved. The eye regions and mouth re-

gion are generally good at predicting both arousal and valence dimensions compared

to other facial parts. This agrees with the findings by Jack et al. (2012) who sug-

gest that both mouth and eyes are informative in judging people’s emotions. After

delay compensation, the right eye achieved best results on the arousal dimension
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(a) Left nasolabial folds blocked by microphone

(b) Eye regions blocked by hair

Figure 4.11: Sample data from AVEC 2015 dataset

followed by the right nasolabial folds, while the mouth region achieved best results

on the valence dimension. In addition, it can be seen that the different facial parts

have different time delays when predicting arousal and valence dimensions. This

might suggest that people have different reaction time when perceiving emotions

from different facial parts. The mouth region requires a longer reaction time when

judging the arousal dimension compared to the valence dimension. In contrast the

nasolabial folds requires longer reaction time on the valence dimension than arousal.

Compared to other facial parts, the eye regions have shorter reaction time for both

dimensions.

Table 4.17: CC score with annotation delay using CNN

Delay Time Arousal Delay Time Valence
Whole Face 0.8 0.114 1.2 0.401
Mouth 2.4 0.258 0.8 0.432
Left Eye 0.8 0.250 0.8 0.233
Right Eye 0.8 0.274 0.8 0.157
Glabellar Lines 2.4 0.223 0 0.016
Left Nasolabial Folds 0.8 0.031 1.6 0.104
Right Nasolabial Folds 0.8 0.244 2.4 0.204

Compared to the previous experiments that use histogram-based features, the

use of facial parts and CNN have shown comparable results on the valence dimension
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Table 4.18: Results comparison between histogram-based features
and facial parts in terms of CC score

Arousal Valence
LBP-TOP Right Eye LPQ-TOP Mouth

0.435 0.274 0.445 0.432

but lower results on the arousal dimension (See Table 4.18). This might due to the

fact that in order for a CNN to learn representative features, a very large amount

of data with significant variations is usually needed.

4.7 Conclusion

In this chapter various experiments have been carried out to investigate thoroughly

the performance of different histogram-based features in continuous affect recogni-

tion and to study if individual facial parts can be used for continuous affect recog-

nition.

The experimental results indicate that unlike facial action recognition where

LGBP-TOP features outperformed other histogram-based features, the LBP-TOP

and LPQ-TOP features in general perform best for continuous affect recognition.

However, the best block size configurations tend to vary for different datasets and

dimensions when measured in terms of CC score. For the AVEC 2015 dataset,

the 4× 4 LBP-TOP features performs best for the arousal dimension and the 4× 4

LPQ-TOP features perform best for valence dimension. For the AVEC 2012 dataset,

the 4 × 4 LPQ-TOP features achieved best results on arousal dimension while the

1 × 1 LPQ-TOP features perform best for the valence dimension. For the DCU

dataset, the 1× 1 LPQ-TOP features obtained the highest CC score on the arousal

dimension while the 4 × 4 LBP-TOP features perform best for valence dimension.

By combining the best histogram features with Support Vector Regression (SVR)

and post-processing techniques, the proposed system has achieved better results on

the valence dimension and comparable result on the arousal dimension in terms of
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both CC score when compared to the AVEC 2012 and AVEC 2015 winning systems.

The annotation delay analysis shows that the annotation delay also tends to vary

for different datasets and dimensions. In general, the delay time is longer for the

valence dimension than the arousal dimension. It was observed for the AVEC 2015

dataset that the delay time are between 1.6 and 2 seconds on the arousal dimension

and 1.6 to 2.4 seconds on the valence dimension while for the AVEC 2012 dataset the

delay time are between 3 and 4 seconds on the arousal dimension and 4 to 5 seconds

on the valence dimension. For the DCU dataset, the delay time are between 2.4 to

2.8 seconds for the arousal dimension and 1 to 2 seconds for the valence dimension.

The experiments on individual facial parts have shown that by using Convolu-

tional Neural Networks (CNN) it is not only possible to predict affective state using

facial parts, but also that it achieved better results when compared to the use of the

entire face image directly as input. In general, the eye region is good at predicting

arousal while the mouth region performs best for valence prediction. In addition,

this approach should be more robust to occlusion compared the use of the entire

face since one could use the facial parts that are not occluded for affect prediction.

The annotation delay analysis suggests that when annotating the data the reaction

time for different dimensions is different. The mouth region requires a longer reac-

tion time when judging arousal than valence and the nasolabial folds require longer

reaction time for valence than arousal. Compared to histogram-based features, the

use of facial parts achieved comparable results on the valence dimension but lower

results on the arousal dimension which might due to the fact that the amount of

training data for the CNN to learn representative features was relatively small.
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Chapter 5

Multi-Modal Affect Recognition

5.1 Introduction

As suggested by Ambady and Rosenthal (1992), facial expression gives the most clear

and naturally preeminent signals for humans to communicate emotions. It is used for

clarification, giving emphasis, expressing intentions and more generally, to regulate

interactions under different environments and other people. These facts highlight

the importance of facial behaviour analysis in automatic affect recognition. As dis-

cussed in Section 2.2 and Section 2.3.4, much of the previous research has focused

on recognising deliberately displayed affective state, mainly prototypical expression

of six basic emotions, captured under highly controlled environments. Recent efforts

focus on the recognition of complex and spontaneous affective state which is anno-

tated continuously using dimensional models. When using visual modalities, most

of these existing systems use 2D facial images which usually require to maintain a

consistent frontal face view in order to achieve good recognition performance. In

addition, systems that use 2D facial images are also sensitive to recording conditions

such as illumination and occlusions. One advantage of using a depth image is its

robustness against different lighting conditions as shown in Figure 5.1. It can be

seen that under low light conditions, it is impossible to detect the face from the
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colour image, however, the depth image is not affected by the lighting condition.

Furthermore, since a 2D facial image is unable to capture out-of-plane changes, cer-

(a) (b) (c)

Figure 5.1: Comparison between colour and depth image under dif-
ferent lighting conditions. (a) and (b) shows the colour image with
light on and off. (c) shows the depth image with light off

tain facial expressions such as lip pucker and jaw clenching are difficult to detect

in a 2D frontal view (Sandbach et al., 2012). To tackle these problems, depth (3D)

data can be used. Although, various 3D affect datasets have been captured, there

still does not exist any publicly available 3D affect dataset that includes recordings

of spontaneous behaviours that is also annotated continuously using dimensional

models. As a result, the reported research using depth data only focuses on discrete

affect recognition.

In addition, recent works on continuous affect recognition have shifted towards

utilising multiple modalities. For instance, the work carried out by Valstar and

Pantic (2012) and Nicolle et al. (2012) investigated the use of video and audio

modalities, while the work by Ringeval et al. (2015b) and He et al. (2015) studied

the use of additional physiological modalities. It has been shown that by fusing

different modalities, the recognition results are generally improved when compared

to using a single modality. As discussed in Section 2.4.3, two of the most commonly

used fusion methods are feature-level fusion and decision-level fusion. In automatic

104



affect recognition, feature-level fusion is obtained by concatenating all the features

from different modalities into one feature vector which is then fed into machine

learning techniques. When the frame rate from different modalities are different,

down-sampling or up-sampling is used to ensure all modalities have the same frame

rate. In decision-level fusion, the input for each modality is modeled independently,

and the single modal recognition results are combined in the end, using machine

learning techniques.

By using the dataset introduced in Chapter 3, the aim of this Chapter is to

first investigate how 3D data can be used for continuous affect recognition and then

to study if the use of video and depth modalities can further improve recognition

results.

In order to use 3D facial data, the location of the face must be first detected.

Section 5.2 proposes a method for face detection using the depth image that is

then used to extract all the face regions from the recordings. In Section 5.3, the

histogram-based features used in previous experiments are applied to the depth data,

and the performance of these features are examined and compared with the results

from the video modality. Section 5.4 proposes a multi-modal affect recognition

framework which can be used in real world settings (e.g. under low light conditions).

Experiments are then carried out to investigate if the use of both colour and depth

features could lead to a significant increase in performance in affect recognition. In

particular, both aforementioned fusion methods are evaluated.

5.2 Face Detection using Depth Data

As discussed earlier, previous 3D facial expression studies have been mainly carried

out on publicly available 3D expression datasets such as BU-3DFE (Yin et al., 2006)

and BU-4DFE (Yin et al., 2008) for discrete expression classification and recognition

of facial action units (AUs). These datasets only capture the face region which means
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they can be used directly without the need to extract the face region. Unlike the

aforementioned datasets, the dataset introduced in Chapter 3 captures the full scene

instead of the face region, thus it is necessary to locate the face in order to use it for

continuous affect recognition. One way to do this is by aligning the depth image with

the colour (2D) image using camera calibration. After the depth image is aligned,

the face detection result on the colour image can be projected on to the depth image

to locate the face. However, this approach is limited by the fact that face detection

in colour images is highly sensitive to illumination conditions which means under low

light conditions, the face detection may no longer work. Compared to colour images,

depth images are more robust to illumination changes which means the depth data

can be used when the 2D facial image is not visible. In order to leverage this it is

necessary to detect the face location directly on the depth image.

Various methods have been proposed for face detection using depth data. For

instance, Colombo et al. (2006) performed 3-D face detection by first identifying

candidate eyes and noses using curvature analysis, and then by using the candidate

regions in a PCA-based classifier. In the work carried out by Mian et al. (2007),

face detection is achieved by first finding the location of the nose tip, and then

the face region is localised by a cropping sphere centred at the noise tip. Nair

and Cavallaro (2009) proposed using a point distribution model for face detection.

Although different methods have been proposed, these methods usually require high

resolution depth data which is different from the data provided by the Microsoft

Kinect. In this section, a method is proposed to use the Histogram Of Gradient

features (Dalal and Triggs, 2005) combined with a structural SVM based training

algorithm King (2015) to locate faces in the low resolution depth image obtained

from a Microsoft Kinect.
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5.2.1 Data Collection and Annotation

In order to train the face detector, 420 depth images with various head poses are

extracted from the dataset captured in Chapter 3. On average, 30 depth images are

extracted for each participant. The 420 depth images are then annotated manually

by drawing a bounding box around the face region. The images are then split into

person independent groups as shown in Figure 5.2 where each group consists of 30

images of the same participant.

Figure 5.2: Samples of extracted depth image and the corresponding
colour image.

5.2.2 Data Pre-processing

To increase the detection accuracy, the openNI library was first used to remove the

background from the depth image. This is shown in Figure 5.3. Before training,

each image is up-sampled by a factor of 2 to allow detection of small faces, followed

by adding a mirrored version of each training image since human faces are generally

left-right symmetric, thus doubling the number of images to 840. The range of the
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raw depth data is from 0 to 4096, it is then normalised to the range of 0 to 255 (8

bit).

5.2.3 Experimental Procedure

To extract the HOG features, an image pyramid that down-samples the image at

a ratio of 5/6 was applied to each image. For each pyramid level a sliding window

with size 80 × 80 is applied to each image and the HOG features were extracted.

The structural SVM based training algorithm (King, 2015) was used to train the

face detector. The complexity parameter (C) was set to 1 and the epsilon was set

to 0.01. The Dlib library (King, 2009) was used throughout this experiment for

both HOG feature extraction and SVM learning. The 5-fold cross-validation leave-

one-out method was used to compute the accuracy of the face detector. In order to

test the generalisability of the face detector, cross-validation was applied to person

independent groups instead of all extracted images, which means the training set

and testing set do not contain the same person.

5.2.4 Experimental Results and Analysis

Figure 5.4 shows a visualisation of the learnt HOG descriptors. Due to noise and

the limited accuracy of the Kinect sensor, both 16 bit and 8 bit depth images give

good face boundary details though they provide less detail around the centre part

of the face.

Table 5.1 shows the face detection results using different image types. Due to

the relatively small number of testing subjects and the simple scene, all image types

achieved very high face detection accuracy. Although the 16 bit depth image could

identify more face structures compared to the 8 bit one since it has a bigger range,

this did not improve the detection accuracy. Figure 5.5 shows some examples of

the detection results, and it can be seen that the face detector has shown good
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(a) Original depth image

(b) Depth image with background removed

(c) Labeled face on depth image

Figure 5.3: Pre processing steps
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performance on various head poses.

(a) 16 Bit Depth (b) 8 Bit Depth

Figure 5.4: Visualisation of learned HOG detector

Table 5.1: Face detection results using depth images

16 Bit Depth 8 Bit Depth
Accuracy 97% 97%

5.3 Affect Recognition using Depth Data

There has been extensive research on solving the problem of 3D Facial Expression

Recognition. As indicated by Sandbach et al. (2012), most of the systems devel-

oped have attempted to recognise expressions from static 3D facial expression data,

while more recent works use dynamic 3D facial expression data. Various static and

dynamic 3D features have been developed, as discussed in Section 2.4.1.2. However,

previous systems have been only focused on predicting discrete affective state, and

to the best of our knowledge, no research has been done on using the depth data for

continuous affect recognition. The aim of this section is to investigate how depth

data could be used for continuous affect recognition. Specifically, the histogram-

based features used in Chapter 4 are applied to the depth data and the SVR is used

to evaluate the performance of the features.

110



Figure 5.5: Example detection results using 8 bit depth image
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5.3.1 Data Pre-processing

To extract the histogram-based features, the face detector proposed in Section 5.2

is first used to extract the face image. The face image is then re-sized to 96× 96 for

feature extraction. 2D Gaussian smoothing with a kernel size 5× 5 is then applied

to reduce the noise of the depth image. The overview of the pre-processing steps is

shown in Figure 5.6.

Figure 5.6: Overview of pre-processing steps

5.3.2 Experimental Procedure

Similar to previous experiments (Section 4.2), the LBP, LPQ, LGBP, LBP-TOP,

LPQ-TOP and LGBP-TOP features with block size of 1 × 1, 2 × 2 and 4 × 4 are

used in this experiment. The same configurations as shown in Table 4.2 are used

to extract the histogram-based features. A SVD from a low-rank approximation

is then applied to reduce the dimensions of the features. The original number of

features and number of reduced features for each feature are shown in Table 5.2.

For the learning method, the SVR with the same parameter configurations as in

Section 4.2 are used. The recognition results are measured in terms of Root Mean

Square Error (RMSE: lower is better), Correlation Coefficient (CC: higher is better)

and Concordance Correlation Coefficient (CCC: higher is better).
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Table 5.2: Original number of features and reduced number of fea-
tures for different block sizes

1× 1 2× 2 4× 4
Total Reduced Total Reduced Total Reduced

LBP 59 19 236 17 944 19
LPQ 256 117 1024 78 4096 74
LGBP 177 79 1416 108 5664 112
LBP-TOP 177 71 708 54 2832 56
LPQ-TOP 708 296 3072 230 12288 229
LGBP-TOP 1416 442 2832 213 8496 150

5.3.3 Experiment Results and Analysis

As can be seen from Table 5.3, the 4× 4 LPQ-TOP feature achieved best results in

predicting the arousal and valence dimensions compared to other features. Similar

to the experimental results when using video data, the depth data achieved good

results on the arousal dimension, but performed poorly on the valence dimension

which might be caused by the unreliable annotation on the valence dimension as

discussed in Section 4.5.2.

Table 5.4 shows the recognition results after delay compensation has been ap-

plied. Among all features, the 4×4 LPQ-TOP achieved best results on both arousal

and valence dimensions. The results suggest that the delay is between 0.4 to 2.4

seconds for the arousal dimension which is similar to the one obtained using the

video modality. However, for the valence dimension, the delay tends to vary largely

depending on which feature is used. This could be caused by unreliable annotation

on the valence dimension as discussed earlier.

Table 5.5 shows the results after post-processing steps have been applied. It can

be seen, as in previous experiments, that the post-processing steps have improved the

recognition results in terms of both CC and CCC scores. However, the improvement

is relatively small for the valence dimension.

Compared to the previous experimental results using the video modality, the

results from the depth modality are relatively poor, which might be caused by the

113



Table 5.3: Results on development partition for different block sizes.
The best results in different metrics are highlighted in bold

Arousal Valence
RMSE CC CCC RMSE CC CCC

LBP 0.256 0.190 0.127 0.255 -0.202 -0.136
LPQ 0.232 0.298 0.227 0.245 -0.082 -0.050
LGBP 0.241 0.184 0.134 0.245 0.099 0.052
LBP-TOP 0.261 0.158 0.106 0.245 -0.175 -0.124
LPQ-TOP 0.234 0.294 0.236 0.261 -0.061 -0.038
LGBP-TOP 0.237 0.252 0.191 0.232 0.028 0.016

(a) Block size: 1× 1

Arousal Valence
RMSE CC CCC RMSE CC CCC

LBP 0.233 0.232 0.121 0.239 -0.010 -0.006
LPQ 0.229 0.301 0.196 0.227 0.078 0.046
LGBP 0.237 0.221 0.158 0.252 0.005 0.003
LBP-TOP 0.245 0.223 0.121 0.230 0.053 0.034
LPQ-TOP 0.231 0.318 0.198 0.245 0.098 0.062
LGBP-TOP 0.232 0.303 0.236 0.233 0.055 0.030

(b) Block size: 2× 2

Arousal Valence
RMSE CC CCC RMSE CC CCC

LBP 0.225 0.347 0.189 0.221 -0.040 0.024
LPQ 0.226 0.341 0.268 0.222 0.035 0.023
LGBP 0.232 0.296 0.228 0.247 0.022 0.010
LBP-TOP 0.225 0.353 0.194 0.220 -0.067 -0.040
LPQ-TOP 0.228 0.361 0.305 0.229 0.112 0.071
LGBP-TOP 0.235 0.278 0.227 0.236 0.054 0.031

(c) Block size: 4× 4
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Table 5.4: Results on development partition for different block sizes
with shifted label

Arousal Valence
Delay RMSE CC CCC Delay RMSE CC CCC

LBP 0 0.256 0.190 0.061 2 0.255 -0.200 -0.135
LPQ 2.4 0.232 0.297 0.224 1.2 0.245 -0.079 -0.049
LGBP 4.8 0.240 0.196 0.139 4.4 0.246 0.109 0.057
LBP-TOP 0 0.261 0.158 0.106 2.4 0.247 -0.174 -0.124
LPQ-TOP 2.8 0.234 0.305 0.243 1.2 0.261 -0.060 -0.037
LGBP-TOP 1.6 0.236 0.261 0.199 3.2 0.232 0.031 0.018

(a) Block size: 1× 1

Arousal Valence
Delay RMSE CC CCC Delay RMSE CC CCC

LBP 0.8 0.233 0.233 0.121 0 0.239 -0.010 -0.006
LPQ 0.8 0.200 0.136 0.090 2 0.124 0.036 0.033
LGBP 4.8 0.224 0.082 0.039 2.4 0.131 0.191 0.065
LBP-TOP 1.2 0.245 0.224 0.121 0 0.230 0.052 0.034
LPQ-TOP 2 0.230 0.327 0.209 0.4 0.245 0.098 0.062
LGBP-TOP 2 0.232 0.307 0.233 0.4 0.233 0.056 0.031

(b) Block size: 2× 2

Arousal Valence
Delay RMSE CC CCC Delay RMSE CC CCC

LBP 0 0.225 0.347 0.189 4.8 0.254 -0.037 -0.024
LPQ 0.4 0.226 0.341 0.273 2 0.221 0.039 0.026
LGBP 2.4 0.232 0.304 0.244 4.8 0.249 0.024 0.012
LBP-TOP 0.4 0.224 0.354 0.195 7.6 0.250 -0.054 -0.036
LPQ-TOP 1.2 0.228 0.366 0.311 1.2 0.228 0.116 0.074
LGBP-TOP 1.6 0.233 0.283 0.220 0.8 0.236 0.055 0.032

(c) Block size: 4× 4

Table 5.5: Results on development partition after post-processing
steps

Arousal Valence
Before After Before After

RMSE 0.228 0.259 0.228 0.277
CC 0.366 0.431 0.116 0.133
CCC 0.311 0.399 0.074 0.122
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quality of the data obtained from the Kinect. This is shown in Figure 5.7. The

quality of such depth images often suffers from limited accuracy and stability due

to invalid depth values (shown as black pixels in the Figure) and inconsistent depth

values. The invalid depth values usually occurs on the boundary of objects, and

smooth or shiny surfaces (e.g. the glass region as shown in the Figure). Furthermore,

the depth value of a particular pixel can change from one frame to the next even

when the scene is static.

Figure 5.7: Data obtain from HD webcam and Kinect. Left: Colour
image. Right: Depth Image

Figure 5.8 and Figure 5.9 shows the arousal and valence prediction results for

the same recording using video and depth modalities respectively along with the

ground truth. As can be seen for the arousal dimension, the predictions from video

modality (red) are more correlated to the ground truth (blue) when compared to the

predictions from the depth modality (yellow). However, there are instances where

the depth modality gives a better prediction as marked by the dashed line. For the

valence dimension, both video and depth modalities performed poorly at predicting

the ground truth due to the unreliable annotation on the valence dimension as
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discussed in Section 3.5. This means that for similar input data, the annotation

could be very different. As a result, the trained model might not be able to model

the data correctly and thus give poor recognition results.

Figure 5.8: Comparison between colour and depth predictions on
arousal dimension

Figure 5.9: Comparison between colour and depth predictions on
valence dimension

5.4 A Multi-Modal Framework

The previous experiments suggest that by combining video and depth modalities,

the recognition results could be further improved when compared to using each

modality alone. A multi-modal framework is proposed in this section, which use
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both modalities. During the training phase, the best histogram-based features are

selected along with the annotation delay and the best window size for post-processing

steps. When the system is in use, the face detection results from video and depth

modality are compared. When the video modality is not visible (e.g. due to low

light conditions), the depth modality is used solely for the prediction. When the

face is detected for both modalities, the predictions can be made either through

feature-level fusion or decision-level fusion.

(a) Feature-level fusion based system

(b) Decision-level fusion based system

Figure 5.10: Overview of feature-level and decision-level multi-modal
system

5.4.1 Experiment 1: Feature-Level Fusion

The aim of this experiment is to evaluate the performance of feature-level fusion

when applied to video and depth modalities.

5.4.1.1 Experimental Procedure

In this experiment, the best features and dimensions are selected for each modality

based on the previous experimental results. For the video modality, the 1× 1 LPQ-

TOP feature is selected for the arousal dimension while the 4× 4 LBP-TOP feature
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is selected to valence dimension. For the depth modality, the 4×4 LPQ-TOP feature

is chosen for both arousal and valence dimensions. Before training, all features from

different modalities are concatenated in a frame-by-frame manner. This results in

548 features for the arousal dimension and 287 features for the valence dimension.

Similarly to experiments described in Section 4.3, the annotation delay is shifted

from 0 to 8 seconds with a time step of 0.4 seconds and the best time delay is

selected using the development partition of the training dataset. A Support Vector

Regression (SVR) is used to perform the regression task with the liblinear library.

As the experiments carried out in Section 4.2, the L2-regularised L2-loss dual solver

was chosen and a unit bias was added to the feature vector. During training, feature

vectors containing all 0s were dropped. The complexity parameter c of the SVR

was optimised in the range of [10−5−100] on the development partition, while other

parameters are kept as default. The post-processing steps proposed in Section 4.4

were then applied to the predictions after delay compensation.

5.4.1.2 Experimental Results and Analysis

Table 5.6 shows the comparison between the prediction results from single modalities

and feature-level fusion. As can be seen, for the arousal dimension the feature-level

fusion outperformed both video and depth modalities in terms of RMSE, CC and

CCC scores. However, for the valence dimension the feature level fusion does not

improve recognition results when compared to using the video modality alone. This

could be caused by annotators giving different values for the same data on the

valence dimension as discussed in Section 4.5.2.

5.4.2 Experiment 2: Decision-Level Fusion

The aim of this experiment is to evaluate the performance of decision-level fusion

when applied to video and depth modalities. Two machine learning techniques were
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Table 5.6: Comparison between single modality and feature-level
fusion on development partition

Arousal Valence
Video Depth Fusion Video Depth Fusion

RMSE 0.175 0.259 0.171 0.189 0.277 0.189
CC 0.777 0.431 0.791 0.258 0.133 0.246
CCC 0.725 0.399 0.739 0.178 0.122 0.169

investigated for the decision fusion including linear regression and LSTM.

5.4.2.1 Experimental Procedure

In this experiment, the predictions from Section 4.4 were used directly. In addition,

the linear regression and LSTM were selected for decision-level fusion. For linear

regression, the Weka 3.7 (Hall et al., 2009) library with default parameters were used.

For LSTM, the CURRENNT toolkit (Weninger et al., 2015) was used. The LSTM

network consists two hidden layers where each hidden layer consists of 100 and 80

LSTM units respectively. Due to the limitation of GPU memory, each recording is

divided into multiple sequences where the maximum frames for each sequence is set

to 1000 frames. To improve generalisation and prevent over-fitting, Gaussian noise

with a standard deviation 0.1 is applied to all inputs. The weights are initialised

randomly using uniform distortion between -0.1 and 0.1. The network is trained

using mini batches of 10 sequences and for a maximum of 200 epochs. Training

is stopped if no improvement in the performance (by RMSE) is observed on the

development partition for more than 50 epochs. The prediction results from decision-

level fusion were then post-processed with the same approach used in Section 4.4.

5.4.2.2 Experimental Results and Analysis

Table 5.7 shows the comparison between the recognition results using linear re-

gression and LSTM respectively. Compared to the feature-level fusion approach,

decision-level fusion has improved the recognition result on both arousal and va-
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Table 5.7: Comparison between linear regression and LSTM recog-
nition results on development partition

Arousal Valence
Linear Regression LSTM Linear Regression LSTM

RMSE 0.170 0.169 0.181 0.176
CC 0.795 0.810 0.247 0.262
CCC 0.740 0.751 0.178 0.195

Table 5.8: Recognition results comparison between single modality,
feature-level and decision-level fusion on test partition. FL : Feature
Level Fusion, LR : Linear Regression

Arousal Valence
Video Depth FL LR LSTM Video Depth FL LR LSTM

RMSE 0.187 0.267 0.185 0.184 0.183 0.210 0.281 0.211 0.199 0.195
CC 0.653 0.363 0.668 0.671 0.695 0.211 0.101 0.201 0.213 0.237
CCC 0.610 0.313 0.621 0.635 0.648 0.156 0.098 0.147 0.160 0.169

lence dimensions. In particular, the LSTM decision-level fusion method achieved

the best results when compared to the linear regression approach.

Table 5.8 shows the recognition results using a single modality, feature-level fu-

sion and decision-level fusion on the test partition of the DCU dataset. Unlike

previous experiments where only the training partition was used to train the model,

both training and development partitions were used to train the model when evalu-

ated on the test partition. As can be seen, for both arousal and valence dimensions,

the results obtained on the test set were quite similar to the development set, which

means the proposed system could generalise well for unseen data. However, due to

the unreliable annotation on the valence dimension as discussed in Section 4.5, the

performance on the valence dimension was significantly lower when compared to the

arousal dimension.

5.5 Conclusion

In this Chapter, experiments carried out to study the performance of the proposed

continuous affect recognition system that uses the depth modality alone and both
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video and depth modalities are described. Before feature extraction, the face region

needs to be located. In order for the depth modality to work independently from the

video modality, a depth face detector was first proposed in Section 5.2. To train the

depth face detector, 420 depth images were extracted from the dataset introduced

in Chapter 3. The HOG feature and structural SVM was used to train the face

detector and it achieved 97% accuracy when measured using a person independent

5-fold cross validation technique.

Section 5.3 evaluated the performance of the histogram-based depth features

on continuous affect recognition. The results show that the histogram-based depth

features can be used for continuous affect recognition. Among different features, the

4×4 LPQ-TOP feature achieved best recognition results on both arousal and valence

dimensions. Similar to the features extracted from the video modality, the prediction

was higher on the arousal dimension then the valence dimension which might be

caused by the unreliable annotation on this dimension. However, compared to the

video modality, the performance using depth was relatively low on both arousal and

valence dimension which could be caused by the noise in the depth data obtained

from the Kinect. By comparing the predictions from video and depth modality, it

can be seen although the video modality result was better correlated with the ground

truth, there were situations where the depth modality gave better predictions. This

might suggest that by combining the video and depth modality, the performance of

the system could be further improved.

In Section 5.4, a system has been developed and experiments have been carried

out to study if the use of both video and depth modalities could lead to a improve-

ment in the performance in affect recognition. In particular, feature-level fusion and

decision-level fusion methods are investigated. The results show that feature-level

fusion improved the recognition results on the arousal dimension, but not on the

valence dimension, while decision-level fusion improved the results on both dimen-

sions. However, due to the unreliable annotation on the valence dimension, the
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improvement is relatively small when compared to arousal dimension. The evalua-

tion results on the test partition of DCU dataset have indicated that the proposed

system could generalise well for unseen data.
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Chapter 6

Conclusion

6.1 Overview

The research reported in this thesis examined the use of features from video and

depth modalities for continuous affect recognition. In particular, histogram-based

features are applied to colour and depth modalities. The best feature configurations

are examined and evaluated on multiple datasets. A multi-modal affect recognition

framework which utilises both colour and depth information is proposed. The fol-

lowing section reviews the key findings of each chapter along with suggestions for

further works.

6.2 Thesis Summary

In Chapter 1, the motivation and research objectives associated with using the

visual modality for continuous affect recognition of this thesis was introduced. The

motivation for carrying out the research is based on the fact that current designs for

Human Computer Interactions ignore the user’s affective state, and automatic affect

recognition is needed to enable a personal and more satisfying user experience in the

future. A brief overview of research in the affect recognition area has identified that
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the current focus of automatic affect recognition research is to continuously recognise

spontaneous affective state using multi-modal cues in valence-arousal dimensional

space. It was found that although existing continuous affect recognition has proven

to be highly successful using data captured in a controlled environment, little work

have been done on using data from unconstrained environments. Following the brief

overview of the research in affect recognition, four research objectives are proposed.

These are:

1. Thoroughly investigate the performance of popular low-level appearance fea-

tures for affect recognition.

2. Explore if individual facial parts such as mouth and eyes could be used to

recognise affective state.

3. Investigate if data captured from a low-cost depth sensor could be used for

continuous affect recognition.

4. Investigate if the use of both video and depth modalities could lead to a

significant increase in performance in affect recognition.

In Chapter 2, the technical background necessary for understanding the re-

search in this thesis was described. The review starts with an overview of the three

most commonly used emotion models, namely the categorical model, the dimensional

model and the appraisal model, along with their advantages and disadvantages. The

dimensional model is chosen for the work carried out in this thesis. In particular, the

arousal and valence dimensions are selected due to their widespread use in continu-

ous affect recognition research. Then various techniques used to construct an affect

dataset are discussed and the existing datasets in the literature are compared. It was

found that although a number of datasets have been captured to fullfill the needs of

training and testing automatic affect recognition systems, there still does not exist

any dataset that includes recordings of spontaneous behaviours with 3D information
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that is also annotated continuously using the dimensional model. To address these

issues a multi-modal multi-speaker 3D spontaneous affect dataset is needed. The

details of constructing such a dataset are presented in Chapter 3. Various enabling

aspects of affect recognition using the visual modality are then reviewed, including

feature extraction, machine learning, multi-modal fusion and performance evalua-

tion. The review shows that there are three areas that require further investigation.

Firstly, among different low-level appearance features little research has been done

to investigate their performance across different datasets. Secondly, features used in

most of the existing affect recognition systems are holistic facial features, while no

research has been carried out to study the use of facial parts features for continuous

affect recognition. Thirdly, most of the existing research focuses on using 3D visual

features to predict discrete emotions and no research has been carried out on using

them for continuous affect recognition. In the last section of this chapter, a number

of baseline systems are introduced to benchmark the approaches proposed in this

thesis.

In Chapter 3, a multi-modal data capture platform that can be used to capture

video, audio and depth simultaneously was presented. The developed platform was

used to capture one of the first multi-modal multi-speaker debate affect dataset.

In total 16 participants and over 5 hours of data were recorded. GTrace was then

employed to annotate the data continuously along 5 dimensions including arousal,

valence, agreement, content and interest. To evaluate the reliability of the annota-

tions, statistical analysis was performed using three metrics including the percentage

of positive frames, the mean Correlation Coefficient (CC) and Cronbach’s α. The

analysis of the annotations indicates good inter-agreement on the arousal and in-

terest dimensions and acceptable inter-agreement on the valence, agreement and

content dimensions, making it a suitable dataset to evaluate the performance of the

systems proposed in the following chapters.

In Chapter 4, a number of experiments were carried out to explore the use
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of histogram-based appearance features extracted from the video modality for con-

tinuous affect recognition. The first set of experiments thoroughly investigated the

performance of histogram-based features and the best configurations when they are

used to predict affective state. The experimental results show that the LBP-TOP

and LPQ-TOP features in general perform best for continuous affect recognition.

However, the best block size configurations tend to vary for different datasets and di-

mensions when measured in terms of CC score. The annotation delay analysis shows

that the annotation delay also tends to vary for different datasets and dimensions.

In general, the delay is longer for the valence dimension than the arousal dimension.

The second set of experiments investigated if individual facial parts could be used

instead of the whole face region to predict affective state. Experimental results in-

dicate that by using Convolutional Neural Networks (CNN) it is not only possible

to predict affective state using facial parts, but also that it achieved better results

when compared to the use of the entire face image directly as input. In general, the

eye region is good at predicting arousal while the mouth region performs best for

valence prediction.

In Chapter 5, the challenges encountered when creating a multi-modal affect

recognition system were explored and addressed . Firstly, a face detector based

on a depth image is proposed in order for the video and depth modalities to work

independently. The results show that the use of depth image achieved comparable

results as using the colour image. Secondly, experiments are conducted to study the

performance of the histogram-based features when applied to the depth modality.

The results show that the histogram-based depth features can be used for con-

tinuous affect recognition. Among different features, the 4 × 4 LPQ-TOP feature

achieved best recognition results on both arousal and valence dimensions when eval-

uated on the DCU dataset. Thirdly, the use of feature-level and decision-level fusion

methods to fuse different modalities are examined and a multi-modal affect recog-

nition framework is proposed. The results show that feature-level fusion improved
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the recognition results on the arousal dimension but not on the valence dimension,

while decision-level fusion improved the results on both dimensions.

6.3 Analysis and Discussion of Research Objec-

tives

In this thesis, a number of research objectives are explored to investigate how visual

modality can be used for human affective state recognition. In this section, the

research objectives are examined with respect to the experimental results obtained.

• Research Objective 1

Thoroughly investigate the performance of popular low level appear-

ance features for affect recognition.

The first four experiments conducted in Chapter 4 explored the use of the six

most commonly used histogram-based features including LBP, LPQ, LGBP,

LBP-TOP, LPQ-TOP and LGBP-TOP for continuous affect recognition. Re-

sults show that in general the dynamic (TOP) features achieved better CC

scores on both arousal and valence dimensions compared to the static fea-

tures. In addition, the LBP-TOP and LPQ-TOP features perform best for

continuous affect recognition. However, the best block size configurations

tend to vary for different datasets and dimensions when measured in terms

of CC score. The experimental results also show that by introducing delay

compensation and post-processing steps the recognition results could be fur-

ther improved in terms of both CC and CCC scores. The annotation delay

also tends to vary for different datasets and dimensions. In general, the delay

is longer for the valence dimension than the arousal dimension. By combining

the best histogram features with Support Vector Regression (SVR) and post-

processing techniques, the proposed system has achieved better results on the
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valence dimension and comparable result on the arousal dimension in terms

of both CC score when compared to the AVEC 2012 and AVEC 2015 winning

systems.

• Research Objective 2

Explore if individual facial parts such as mouth and eyes could be

used to recognise affective state.

This research objective is addressed in the final section of Chapter 4. The ex-

periments on individual facial parts have shown that by using Convolutional

Neural Networks (CNN) it is not only possible to predict affective state using

facial parts, but also that it achieved better results when compared to the use

of the entire face image directly as input. The results show that the eye region

is good at predicting arousal while the mouth region performs best for valence

prediction. The annotation delay analysis suggests that, when annotating the

data, the reaction time for different dimensions is different. The mouth region

requires a longer reaction time when judging arousal than valence, and the

nasolabial folds require longer reaction time for valence than arousal. Com-

pared to histogram-based features, the use of facial parts achieved comparable

results on the valence dimension, but lower results on the arousal dimension,

which might due to the fact that the amount of training data is relatively small

for the CNN to learn representative features.

• Research Objective 3

Investigate if data captured from low cost depth sensor could be

used for continuous affect recognition.

This research objective is explored in Chapter 5, where the performance of

the histogram-based depth features for continuous affect recognition are eval-

uated. The results show that the histogram-based depth features can be used
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for continuous affect recognition. Among different features, the 4 × 4 LPQ-

TOP feature achieved best recognition results on both arousal and valence

dimensions. By comparing the predictions from video and depth modality,

it can be seen that although the video modality result was better correlated

with the ground truth, there were situations where depth modality gave better

predictions. This suggests that by combining the video and depth modality,

the performance of the system could be further improved.

• Research Objective 4

Investigate if the use of both video and depth modalities could lead

to a significant increase in performance in affect recognition.

The last section in Chapter 5 investigates this research objective. In particular,

feature-level fusion and decision-level fusion methods are explored. The results

show that feature-level fusion improved the recognition results on arousal di-

mension but not on valence dimension while decision-level fusion improved the

results on both dimensions. However, the improvement for both methods are

relatively small which could be caused by the unreliable annotations of the

ground truth. Finally, a multi-modal framework which can be used in real

world settings is proposed based on the experimental results.

6.4 Further Work

The experiments conducted in this work lead to several conclusions which pave the

way to further research. In this section, these potential research areas which could

add to the literature in automatic affect recognition are analyzed.

• Cross-dataset learning: As discussed before, deep neural networks have

shown superior performance on various machine learning tasks. However, for

deep neural networks to learn representative features, a large amount of train-
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ing data is required. With the availability of various affect datasets as dis-

cussed in Section 2.3.4, it would be interesting to explore the combinations of

multiple datasets which might improve recognition results.

• 3D face modelling: The work described in this thesis has been mainly

focused on using low level features derived directly from the video and depth

images. Future research can be carried out to explore the use of features

extracted from 3D facial models. The 3D facial models can be reconstructed

from both video and depth data which are robust to large changes including

out-of-plane head rotations, fast head motions and partial facial occlusions.

• Multi-modal feature fusion: As stated earlier, the current trend in au-

tomatic affect recognition focuses on using multiple modalities. The works

described in this thesis has investigated the use of video and depth modalities.

However, the audio modality could be utilised to enhance the performance of

the proposed system. This thesis only focused on using histogram-based fea-

tures whereas other geometric and appearance-based features have also shown

good performance on continuous affect recognition. Hence, it will be inter-

esting to explore the fusion of multiple feature representations to improve the

efficacy of recognition.

• Exploring alternative machine learning methods: Further research can

be carried out to investigate other machine learning techniques viz., ensemble

learning and multi-task learning. Ensemble learning is a machine learning

method where multiple learners are used to solve the same problem. It usually

provides a much stronger generalisation ability when compared to conventional

approaches. Multi-task learning is a another learning paradigm that aims

to utilise useful information to learn various related tasks simultaneously to

improve the generalisation performance, i.e. instead of learning arousal and

valence dimension separately, one can use the multi-task learning method to
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learn the arousal and valence at the same time.
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Appendix A

Baseline System Implementation

A.1 Introduction

As briefly discussed in Chapter 2, various multi-modal affect recognition systems

have been proposed in the literature. For the research reported in this thesis it

is necessary to choose a baseline system so that the performance of the proposed

framework on various databases can be benchmarked. In this Appendix, different

existing frameworks are first compared and the most appropriate one is chosen as the

baseline system. Following this, the implementation details of the baseline system

are discussed and its performance is analysed.

A.2 Comparison of Existing Systems

To select the most appropriate baseline system, a number of systems from the Audio-

Visual Emotion Challenge (AVEC) are chosen. AVEC is an annual competition

event aimed at automatic affect analysis. The challenge provides a common bench-

mark dataset for multimodal affect recognition. In particular, the systems from

AVEC 2012 (Schuller et al., 2012) are compared since this was the most recent

system at the time of implementation.
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Table I: AVEC 2012 Audio Low-Level Descriptors (LLD) Schuller
et al. (2012)

Energy & Spectral (25)
loudness (auditory model based),
zero crossing rate,
energy in bands from 250-650 Hz, 1kHz-4kHz,
25%, 50%, 75% , and 90% spectral roll-off points
spectral flux, entropy, variance, skewness, kurtosis,
psychoacoustic sharpness, harmonicity,
MFCC 1-10
Voicing Related (6)
F0 (sub-harmonic summation, followed by Viterbi smoothing)
probability of voicing, jitter, shimmer (local),
jitter (delta: ”jitter of jitter”),
logarithmic Harmonics-to-Noise Ratio (logHNR)

The system proposed by Schuller et al. (2012) utilises Local Binary Pattern

(LBP) features as the video features and statistical features of the low level descrip-

tors for audio features (as shown in Table I and Table II). The features are then

learned using Support Vector Machine regression (SVR) with Histogram Intersec-

tion Kernels and a Sequential Minimal Optimization (SMO) technique. This system

was used as the baseline system for the AVEC 2012 challenge.

The system proposed by Nicolle et al. (2012) uses the log-magnitude Fourier

spectra to extract dynamic information from the signal that describes the shape

deformation, local and global face appearance. The same set of features as in Schuller

et al. (2012) are used for audio features. A correlation-based feature selection process

is then applied to select a relevant set of features, followed by a weighted K-Means

and Nadaraya-Watson kernel regression. As the final step the predictions from each

feature set are fused using a local linear regression to produce the final prediction.

Another work proposed by Savran et al. (2012a) uses Bayesian filtering with

particle filtering to combine the features extracted from the video, audio and lexical

modalities. The video features are extracted using Local Binary Patterns (LBP)

based on temporal statistics, while the audio features include a subset of features
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Table II: Set of all 42 functionals. 1Not applied to delta coefficient
contours. 2For delta coefficients the mean of only positive values is
applied, other wise the arithmetic mean is applied. 3Not applied to
voicing related LLD Schuller et al. (2012)

Statistical functionals (23)
(positive2) arithmetic mean, root quadratic mean,
standard deviation, flatness, skewness, kurtosis,
quartiles, inter-quartile ranges,
1%, 99% percentile, percentile range 1%99%,
percentage of frames contour is above:
minimum + 25%, 50%, and 90% of the range,
percentage of frames contour is rising,
maximum, mean, minimum segment length1,3,
standard deviation of segment length1,3

Regression functionals1 (4)
linear regression slope, and corresponding
approximation error (linear),
quadratic regression coefficient a, and
approximation error (linear)
Local minima/maxima related functionals1 (9)
mean and standard deviation of rising
and falling slopes (minimum to maximum),
mean and standard deviation of inter maxima distances,
amplitude mean of maxima, amplitude mean of minima,
amplitude range of maxima
Other1,3 (6)
LP gain, LPC 1-5
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used in Schuller et al. (2012) plus class-level spectral features based on three dis-

tinct phoneme classes. The lexical features are calculated as the pointwise mutual

information (PMI) between a word and a given affect dimension. A Support Vector

Machine for Regression (SVR) is then used for each modality and the final results

are fused using a Bayesian framework via particle filtering.

The work reported by Baltrusaitis et al. (2013) proposed a framework to utilise

the combination of Continuous Conditional Random Fields (CCRF) and SVR for

modeling continuous affective state in dimensional space. For video features, the sys-

tem extracts the geometric features described by the expression parameter, along

with appearance features described by Local Binary Patterns on Three Orthogo-

nal Planes (LBP-TOP) and motion features described by head movements. The

prosodic features used in Ozkan et al. (2012) are adopted as audio features. SVR is

then used to predict the affective state for each of the four feature sets (geometric,

appearance, motion and audio) and the final results are fused using the CCRF.

The recent work by Wei et al. (2014) developed a Long Short-Term Memory Re-

current Neural Network (LSTM-RNN) and multiple kernel learning (MKL) based

multi-modal affect prediction framework (LSTM-MKL). Their motivation was to

leverage the advantages of LSTM-RNN for modeling long range dependencies be-

tween observations and MKL for modelling non-linear correlations between input

and output. The system uses visual features proposed in Savran et al. (2012a) and

audio features detailed in Schuller et al. (2012).

The prediction results measured in terms of Pearson Cross Correlation (See Sec-

tion 2.4.4 for more details) of the above systems are shown in Table III. The text in

bold indicates the highest score for a particular dimension. Compared to the bench-

mark system proposed by Schuller et al. (2012), all four systems showed a significant

increase across all four dimensions. This could be a result of introducing informa-

tion on previous affective states and across dimensions. Among the four systems,

the system developed by Nicolle et al. (2012) achieved the best arousal, expectancy
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Table III: Pearson’s correlation score for different systems tested on
AVEC 2012 development database

System Aro Exp Pow Val Mean
Schuller 2012 Schuller et al. (2012) 0.181 0.148 0.084 0.215 0.157
Nicolle 2012 Nicolle et al. (2012) 0.644 0.341 0.511 0.350 0.461
Savran 2012 Savran et al. (2012a) 0.383 0.266 0.556 0.473 0.384
Baltrusaitis 2013 Baltrusaitis et al. (2013) 0.333 0.218 0.309 0.343 0.301
Wei 2014 Wei et al. (2014) 0.453 0.298 0.339 0.327 0.354

and average prediction result. It also achieved the second best result on valence and

very close to best result on power. In addition, part of the feature extraction code

used in the system is publicly available. It is proposed here that this system is both

the best performing and most reproducible baseline system. For the above reasons,

the system proposed by Nicolle et al. (2012) was selected as the baseline system.

Although this thesis focused on using visual features for affect recognition, in order

to compare the results from the implementation with the original paper the audio

features are also used for consistency

A.3 Baseline System Implementation

As shown in Figure I, the baseline system consists of three parts: feature extraction,

affect prediction and result fusion. This section first gives a general description of

each of these components and implementation details are then discussed.

A.3.1 Feature Extraction

In this section the feature extraction component of Figure I is explained. The

baseline system uses four different sets of features. The first three sets of features

are based on visual cues while the fourth one is based on audio. This is shown in

Figure II. The visual features include shape parameters, global face appearance and

local face appearance.
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Figure I: Overview of the baseline system

Figure II: Baseline system feature set (Nicolle et al., 2012)
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A.3.1.1 Static and Dynamic Features

The three sets of visual features are first extracted for each frame. Then a dynamic

descriptor for each of the visual feature sets is extracted using different window sizes

as discussed in Section A.3.1.5.

A.3.1.2 Shape Features

As discussed before, the face shape can be represented by a set of suitable landmarks

Cootes (See Figure 2.16). Landmarks are defined as important geometric features

for faces. They have been well studied and are used widely in biology and statistical

shape analysis (Dunn, 1993; Dryden and Mardia, 1998). As defined by Dryden

and Mardia (1998), “A landmark is a point of correspondence on each object that

matches between and within populations”.

There are three types of landmarks that can be used to model the face. The

anatomical landmarks are defined by experts and have biological meaning, e.g. cor-

ners of eyes and mouth. The mathematical landmarks are defined according to

mathematical or geometric properties, e.g. centre point on outer edge of lower or

upper lip. Finally pseudo-landmarks are usually defined as equally spaced points

between anatomical or mathematical landmarks or outline of the face, e.g. contours

of the cheek (Shi et al., 2006).

A shape model is used to capture the structure and variations among the an-

notated landmarks by linearly combining a base shape X with n shape vectors Xi

as shown in equation A.1. The base shape X and shape vector Xi are normally

computed from hand-labelled training images. The training images are first aligned

using Procrustes analysis (Cootes et al.) to remove the global rigid motion. Math-

ematically, this can be interpreted as simultaneously finding a canonical shape and

transforming each training shape into alignment with the canonical shape using

a similarity transformation (Baggio, 2012). Then Principle Component Analysis
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(PCA) is applied to the aligned shapes to obtain the base shape (mean) X and the

shape vectors (eigenvectors) Xi. By varying the shape parameters different global

and local variations can be modeled as shown in Figure III.

X = X +
n∑
i=1

piXi (A.1)

where pi are the shape parameters that represent the weight of the shape vectors.

Figure III: Effects of varying each of the first four shape parameters
Xi (Baggio, 2012)

After adding the similarity transformation parameters Ts, θ, t to equation A.1 the

equation becomes:

X = Ts,θ,t(X +
n∑
i=1

piXi) (A.2a)

X = sθ(X +
n∑
i=1

piXi) + t (A.2b)

where the similarity transformation includes the translation t, scaling s and a rota-
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tion θ.

The baseline system uses the 3D face tracker proposed by Saragih et al. (2011)

to detect and track the landmarks in the images. The paper uses shape features

corresponding to the “external parameters” and “characterise deformations related

to facial expression”, however, no details are provided on what parameters from the

face tracker are used and how frequently the features are extracted.

In the implementation described in this thesis, the transformation and shape

parameters (t, s, θ, pi) from the face tracker are used. These parameters give

information on the rigid and non-rigid transformation of the face. The shape features

are extracted for each frame to form the shape feature vectors.

A.3.1.3 Global Appearance Features

Similar to the shape model, the appearance of the face A could also be modeled by

a base appearance A plus a linear combination of m appearance images Ai as shown

in equation A.3. In order to compute A and Ai, the hand-labeled training images

are first warped onto the base shape s0 using triangulation and a piecewise affine

warp. Then PCA is applied to the shape normalised training images. A is set to be

the mean image while Ai are set to be the m eigenimages corresponding to the m

largest eigenvalues obtained from PCA. Figure IV shows how the face image could

be represented using base appearance and appearance parameters.

A(x) = A(x) +
m∑
i=1

λiAi(x) ∀x ∈ s0 (A.3)

where λi are the appearance parameters.

To build the global appearance model, the baseline system uses a number of

images from the training set of the AVEC 2012 database. The landmarks of the face

images are first detected using the same face tracker as mentioned in Section A.3.1.2.

Then the important appearance modes are selected using PCA as described above.
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Figure IV: Appearance Model (Matthews and Baker, 2004)

By projecting the face image into the PCA space, the appearance parameters λi are

obtained. However, in the paper there are no details on how many images are used

to build the appearance model, how these images are selected, the image size and

the amount of appearance variation in PCA space the model needs to cover.

In our implementation, in order to build the appearance model the images are

extracted from video recordings of the training partition every 5 seconds since adja-

cent frames can consist of very similar facial expressions. This results in a total of

2000 face images that cover a range of head poses and affective states. The images

are then scaled to 195×145 since this provides a balance between clear visibility of

the face and the speed of the model building process. The appearance models are

chosen to cover 98% of the appearance variations from the PCA result. By pro-

jecting the warped image to the appearance, a set of appearance parameters can

be obtained. The appearance parameters are then calculated for each frame of the

video recording to form the global appearance feature vectors.

A.3.1.4 Local Appearance Features

The local face appearance is defined as a set of local patches that involve facial

actions such as smile and gaze direction. The baseline system extracted 6 types

of local patches as shown in Figure II. These include areas around the mouth, eye,

eyebrows, periorbital lines, glabellar lines, nasolabial folds and smile lines. However,

similar to the global appearance features there are no details on how the local

appearance model is built.
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Table IV: Scale size for different local patch. PL: Periorbital Lines,
GL: Glabellar Lines, NL: Nasolabial Folds, SL: Smile Lines

Patch Type Mouth Eyes Eyebrows PL GL NF and SL
Patch Size (w*h) 60×40 40×20 65×25 30×40 40×30 45×50

In the implementation here, the same set of training images used to build the

global appearance model are used to build the local appearance model. The patches

for each facial part are defined with respect to the landmarks. Each patch is then

scaled to the same size based on its type as shown in Table IV. Again the sizes

are chosen to provide a balance between visibility and the speed of the modelling

process. PCA is then applied to the patch to compute important local appearance

modes for each patch type. The appearance modes were selected to cover 98% of

the local appearance variation. The local appearance parameters are calculated for

each frame by projecting the local patch to the local appearance modes similar to

the global appearance parameters. The local appearance parameters for each patch

are then concatenated together to form the final feature vectors for that frame.

A.3.1.5 Dynamic Features

In order to encode the dynamic information of the visual features, the baseline sys-

tem uses the log-magnitude Fourier spectra. The Fourier coefficients are calculated

every 1 to 4 seconds with a step of 1 second. The frequency is also binned every

5Hz to reduce the noise and dimensions of the dynamic features. Other statistical

features including mean, the standard deviation, the global energy and the first and

second-order spectral moments are also calculated for each window and concate-

nated to form a feature vector for that instance. The corresponding ground truth

label value is calculated as the average label value of the 4 seconds time window.

This results in approximately 8500 training samples for each of the first three visual

feature sets.
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A.3.1.6 Audio Features

The baseline system utilises the audio features from the AVEC 2012 Challenge

directly as shown in Table I. The audio features are extracted during speech with

a 2 second sliding window, with a 0.5 second interval Schuller et al. (2012). In our

implementation, the audio features are also used directly.

A.3.1.7 Feature Normalisation

As the paper suggested, the set of four features is normalised by subject in order to

reduce the inter-subject variability and give the same value range (-1,1) for different

features.

A.3.2 Affect Prediction

The prediction system shown in Figure I is trained for each of the four feature sets.

First, the features are selected based on the correlation score between each feature

and each time-delayed label dimension. Then the selected features are clustered

into groups based on the feature weight to produce the representative samples.

Kernel regression is then used to predict the label values based on the representative

samples. The following section gives more information and implementation details

for each component.

A.3.2.1 Annotation Delay Probability Estimation

Because the affect data is annotated continuously using the Gtrace tool ( See Section

2.3.3 for more details), this introduces a delay between the frame being annotated

and its corresponding label due to the reaction time of human annotator. In order

to address this issue the baseline system proposed to estimate the delay probability

of the label. The probability of different delay time ,P (τ), is calculated as shown in
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Equation A.4

P (τ) =
1

A

n∑
i=1

ρ(fi(t), y(t− τ)) (A.4)

where y(t − τ) is the the ground truth label time series y(t) shifted forward by

τ seconds, fi(t), i ∈ [1, n] is a set of n features, and ρ is the Pearson correlation

coefficient between two time series:

ρX,Y =
E[(X − µX)(Y − µY )]

σXσY
(A.5)

where σ is defined as the standard deviation and µ refers to the mean. A is the

normalisation term defined as:

A =

∫ ∞
−∞

n∑
i=1

ρ(fi(t), y(t− τ))dτ (A.6)

A =
20∑
τ=0

n∑
i=1

ρ(fi(t), y(t− τ)) (A.7)

In our implementation, the label of each dimension is delayed between 0 to 20 seconds

as the baseline paper suggested. Furthermore, for this implementation we set the

delay step to 1 second. The integration in Equation A.6 can then approximate by

the summation in Equation A.7. Because the data is recorded in different video

sequences, the delay probability is calculated as the mean of the delay probability

for each video. During the implementation it was found that using all features that

have very low correlation between the labels could corrupt the delay probability

estimation. Given the lack of details presented in the paper describing how to

address this problem, the top 200 most-correlated features are selected to estimate

the delay probability as this produces the most similar results to those reported in the

paper. Figure V shows a comparison of the delay probability distributions between

the paper and our implementation for the shape parameter features of the training

database in AVEC 2012. The implementation shows a similar delay probability for
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arousal, expectancy and valence. This agrees with the paper for an average delay

between 3 and 4 seconds for valence and arousal, and between 5-6 seconds delay for

expectancy and power. However the shape of the delay probability for the power

dimension is quite different compared to the original paper. This might be due to

the fact that the method used to select features to calculate the delay probability is

different.

A.3.2.2 Correlation-Based Feature Selection

After estimating the delay probability for each dimension, a feature weight is calcu-

lated using the following formulas:

w(fi(t), y(t)) =

∫ ∞
−∞

ρ(fi(t), y(t− τ))P (τ)dτ (A.8)

w(fi(t), y(t)) =
20∑
τ=0

ρ(fi(t), y(t− τ))P (τ) (A.9)

where P(τ) is the delay probability computed in the last step. After setting the

delay time τ to vary between 0 to 20 seconds with a step of 1 second, the integration

in Equation A.8 can then approximate by Equation A.9. Similar to the delay prob-

ability estimate, the feature weight is also calculated as the mean for different video

sequences. This gives a measure of how the ith feature is correlated with the labels

and how consistent this is across different videos. The paper suggested to select fea-

tures based on the feature weights that maximise the total feature score. However,

no details are presented on how this is to be achieved. For our implementation, a

threshold of 0.2 is used to filter out the un-correlated features.

A.3.2.3 K-Means Clustering

The training samples are then clustered into 60 groups to produce the representative

samples as the paper suggested. Unlike traditional K-Means, the baseline system
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Figure V: Comparison of delay probability between baseline paper
(left) and our implementation (right)
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proposed a diagonally-weighted distance by using the feature weights as follows:

dw(X, Y ) =
√

(X − Y )TW (X − Y ) (A.10)

where X and Y are two training samples, W is a diagonally weighted matrix con-

sisting of feature weights defined as:

Wij = w(fi(t), y(t))δij (A.11)

where w(fi(t), y(t)) is the correlation score between each selected feature and the

label, and δij is the identity matrix.

Instead of selecting the initial centroid randomly, the training samples are first

sorted according to each label’s dimensions and divided into k groups of equal size.

The initial centroids are then calculated as the mean of each feature in each group.

After the clustering step, a set of k representative samples are produced. The label

for each sample is computed as the mean label of all the training samples in that

cluster. In our implementation the cluster size is selected based on the experiments

discussed in Section A.4.1

A.3.2.4 Kernel Regression

The baseline system uses Nadaraya-Watson kernel regression (Nadaraya, 1964) to

predict the labels. Kernel regression is a non-parametric model. It is used to esti-

mate a regression function that best matches the training data. Compared to linear

regression or polynomial regression, kernel regression does not assume any under-

lying distribution for the estimation of the regression function. Kernel regression

positions a set of identical weight functions called the Kernel Function at each ob-

served data point. The kernel function will assign a weight to each location based

on the distance from each of the observed data points. Let xi be the feature vec-
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tors of the k representative samples computed from the clustering step and yi be

the corresponding labels. The label value for a sample s with feature vector xs is

described by the following formula:

ŷ(s) =

∑k
i=1K(xs, xi)yi∑k
i=1K(xs, xi)

(A.12)

where K(xc, xi) is the radial basis function (RBF) combined with the learned

weighted-distance dw defined as:

K(Xc, Xi) = e−
dw(xs,xi)

2

2∗σ2 (A.13)

where σ is the kernel width to indicate how spread out each kernel is at each observed

data point.

After the prediction step, the baseline system also performed temporal smoothing

to reduce the noise of the prediction. In our implementation a moving average with

window size 5 is used to post-process the prediction results.

A.3.3 Fusion

The prediction system is trained for each of the four feature sets as described in

Section A.3.1 for each dimension resulting in 16 signals. The baseline system uses

local linear regressions to fuse the signals and produce the final prediction. First the

linear regression parameters for the ith training video sequence and jth dimension

can be obtained by minimising the difference between the predicted value Hi and

the ground truth Y j
i . This can be solved in closed form by taking the derivative of

the right hand side and setting to 0. This gives:

θji = (HT
i Hi)

−1HT
i Y

j
i (A.14)
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The parameters αj of the final linear regression model are computed as the means

of θji weighted by the Pearson’s correlation between the predicated signal and the

ground truth of each video sequence as follows:

αj =

∑n
i=1 r(Hiθ

j
i , Y

j
i )θji∑n

i=1 r(Hiθ
j
i , Y

j
i )

(A.15)

The final prediction for the four dimensions can then be computed as;

ŷj = Htαj (A.16)

where Ht contains the prediction of 16 signals of the test data.

A.4 Experiments and Results

In this section, experiments carried out to optimise the parameters of the baseline

system are described. This includes investigating the cluster size for the clustering

step, the kernel width σ for kernel regression and the hyperparameters for the local

linear regression. Finally, the results from the implemented baseline system are

compared against the original paper.

A.4.1 Optimising Cluster Size

The goal of the clustering step described in Section A.3.2.3 is to group the training

samples that have similar feature values together based on the assumption that these

training samples also have similar affect values in each dimension. This assumes that

the selected features are sufficiently discriminative to separate samples in different

affective ranges. In the worst case, only a fraction of the samples in each cluster

would follow a priori probability of the training data.

During the implementation it was found that the label values in each cluster are
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(a) cluster 1 for arousal (b) cluster 2 for arousal

(c) cluster 1 for expectancy (d) cluster 2 for expectancy

(e) cluster 1 for power (f) cluster 2 for power

(g) cluster 1 for valence (h) cluster 2 for valence

Figure VI: The affect value distribution for the first two clusters (60
clusters in total) of each dimension for dynamic shape features
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Table V: Average label variance for each affect dimension with dif-
ferent cluster sizes using dynamic shape features

No. of Clusters 50 55 60 65 70 75
Arousal 0.036 0.038 0.036 0.037 0.035 0.036
Expectancy 0.157 0.160 0.162 0.175 0.175 0.182
Power 0.033 0.032 0.033 0.032 0.031 0.032
Valence 0.050 0.048 0.048 0.047 0.047 0.045
Mean 0.069 0.069 0.069 0.072 0.072 0.074

usually spread out across different values rather than concentrated on one particular

value range (See Figure VI). This could be caused by the complexity when interpret-

ing human affective state. For example for the same facial expression an annotator

could give different affect values in different situations. One way to address this

problem is by finding the optimal cluster size to generate the best representative

samples. As the details of how the cluster size is selected are not presented in the

original paper, for our baseline system the optimal cluster size is selected as the

largest cluster size with the lowest affect value variation in each cluster. Due to the

size of training sample (around 8500 training samples after extracting the dynamic

features), a large number of clusters could result in empty clusters. The cluster

size is set to vary from 50 to 75 with a step of 5. The mean variation for different

cluster size for each dimension for the dynamic shape features is shown in Table

V. The optimal cluster size 60 is chosen since it gives lowest variance on arousal

and valence while comparable variance on expectancy and power when compared to

other cluster sizes. The same process is applied to the dynamic global appearance

features, dynamic local appearance features and audio features. As a result 60 is

selected as the cluster size for all the four features set and this in fact agrees with

the optimal size selected by the original paper.
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A.4.2 Optimising Kernel Width

As discussed in Section A.3.2.4, the kernel width σ is used as a smoothing factor to

the kernel function. Again since the method of choosing the optimal value of σ is not

detailed in the original paper, the most appropriate kernel width is selected based

on the highest correlation score between the prediction and the labels. The kernel

regression is trained on the training partition of the AVEC database and tested on

the development partition.

A.4.3 Optimising Hyperparameters

In order to optimise the hyperparameters for the local linear regression in the fusion

step, the baseline paper uses a subject-independent cross-validation on the training

partition of the AVEC database. The training partition consists of 31 videos with

6 subjects. In our implementation a 6-fold cross-validation (data for 5 subjects are

selected for training while the last one is used for testing) is used to select the best

set of hyperparameters.

A.4.4 Results Comparison

The final results of the implementated system are shown in Table VI. As per the

paper, the baseline system was trained on the training set and evaluated using the

development set of the AVEC database. For each affect dimension, the left column

shows the result reported in the paper, while the right column shows the result of

the implemented baseline system. The results are measured in terms of Pearson’s

correlations averaged over all sequences.

The implementation generally agrees with the original paper i.e. that the shape

features are effective at predicting the arousal and expectancy dimensions while the

local appearance features are good at predicting valence and power dimensions. The

local linear regression fusion method proposed by the baseline paper increases the
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Table VI: Comparison between result reported in the paper and the
implementation. Left: results reported in original paper. Right:
results from our implementation

Valence Arousal Expectancy Power Mean
Shape 0.319 0.0630 0.538 0.1881 0.365 0.1571 0.429 0.168 0.413 0.1442
Global Appearance 0.281 0.0538 0.498 0.1754 0.347 0.1510 0.431 0.143 0.389 0.1267
Local Appearance 0.354 0.0752 0.470 0.1628 0.323 0.150 0.432 0.153 0.395 0.1293
Audio -0.057 0.062 0.445 0.210 0.280 0.121 0.298 0.213 0.241 0.131
Fusion 0.350 0.082 0.644 0.236 0.341 0.187 0.511 0.213 0.461 0.168

overall performance of the prediction. However, due to lack of detailed description

on various part of the baseline system, the implementation could not reproduce the

high correlation scores reported by the paper. One of the main reasons could be the

correlation-based feature selection part discussed in Section A.3.2.2. The baseline

paper only focused on how the feature score is calculated, but there is no detailed

information on how to select features based on the feature score. Additionally, the

value of parameters of the system such as kernel width are also not given in the

paper.

A.5 Conclusion

In this Appendix, the reason for choosing the proposed baseline system is described.

Then the components of the baseline system are introduced along with the imple-

mentation details. Experiments carried out to optimise the parameters of the base-

line system are then described. Although the implementation follows the general

conclusion of the baseline system, there is a large difference between the reported

results for the original paper and our implementation. Notwithstanding this, it is

proposed that the implementation is sufficient for investigating the performance gain

and various enhancements to an affect recognition system proposed in this thesis.

Going forward, apart from the implemented winning system for AVEC 2012, the

challenge baseline system for AVEC 2012 (Schuller et al., 2012) and AVEC 2015

(Ringeval et al., 2015b), as well as the winning system of for AVEC 2015 (He et al.,
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2015) are also selected for comparison in the following chapters.
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Appendix B

Head Nod and Shake Detection

B.1 Introduction

Nonverbal behaviours such as head gestures, body language, facial expression and

eye contact play an import role in daily communications. As the most common head

gestures, head nod and shake are usually used as semantic functions (e.g. nodding

means yes, and shaking means no), affect indication (e.g. nodding means approval

or acceptance) and conversational feedback (e.g. keep conversation flow), at least

in Western Europe. Therefore, the detection of head nods and shakes can be seen

as a valuable module for achieving affect recognition and natural human-computer

interaction. In this paper we describe a new system that detects head nod and shake

in real time. We use Microsoft Kinect and Kinect for Windows SDK to estimate

head pose robustly. The direction of head movement is then determined based on

the head pose and used by a discrete Hidden Markov Model (HMM) classifier as the

observation sequence to detect whether head nod or shake occurs.

Much work has been done on head nod and shake detection stretching back over

a decade. The related work presented by Davis and Vaks (2001) proposed a head

gesture recognition system for interfaces. The IBM PupilCam is first used to obtain

the location of the user’s face. Based on the face location, a Timed Finite Sate
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Machine is used to detect head nod and shake and the results are used to drive

a perceptual dialogue-box agent (e.g., nod=YES). Similarly, Kapoor and Picard

(2001) present a system that uses a customised IR camera for pupil tracking and a

discrete Hidden Markov Model to detect head nod and shake. Kawato and Ohya

(2000) described another system to detect head nods and shakes in real time by

directly detecting and tracking the between-eyes region using a webcam. Combining

the circle frequency filter together with skin colour information and template, the

between-eyes region could be detected and tracked. A rule based detection algorithm

is then applied to the movement of the between-eyes region to detect head nods and

shakes. Because of its simple rule based detection, some non-regular head nods and

shakes may not be detected. It should be noted that all the systems mentioned

above need to track the eye pupil position in order to detect head nod and shake,

and will not be able to detect any head gesture if the user’s eyes are closed. The

work carried out by Tan and Rong (2003) present another method to detect head

nodding and shaking in real time from video streams. The AdaBoost algorithm

is first used to detect the user’s face and based on the physiological information

of the eye location in the face, eye location can be obtained in each frame. The

direction of head movement is calculated based on eye location and used as an

observation sequence for a discrete HMM to detect head nods and shakes. Kwon

et al. (2006) present a new method for head nods and shakes detection by using 3D

cylindrical head model (CHM) and dynamic template to estimate head pose and

use the accumulative Hidden Markov Models to detect head nod and shake.

In this section, we present a new method to robustly detect head nods and shakes

in real time using the Microsoft Kinect. Despite a lot of work on head nod/shake in

the past, to the best of our knowledge this has not been widely explored with the

Kinect due to its relatively recent introduction. We first use the Microsoft Kinect

for Windows SDK to estimate the head pose of the user. The change of head pose

in each frame indicates the direction of the head movements that are then used as
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an observation sequence by a discrete Hidden Markov Models (HMMs) to detect

if a head nod or shake occurs. The proposed system runs fast and can detect the

head nods and shakes in real time on a standard desktop PC. The approach can

also robustly detect non-obvious and non-regular head nods and shakes.

The overall architecture of the system is shown in Figure. I. The head pose is first

obtained from Kinect through the Kinect for Windows SDK. Then, the head pose

in a temporal window is analysed as a sequence of head movements. Finally, we use

three HMMs to detect the presence of head shake, head nod and other head gestures

in this sequence of head movements. The largest likelihood value is selected as the

detection result. In order to further distinguish head nod and shake from other head

gestures, a predefined threshold is used. More details are described in this section.

B.2 Head Pose Estimation

Head pose estimation has received a lot of attention recently as a key element of

human behaviour analysis. With depth cameras such as Microsoft Kinect becoming

available at commodity prices, the research focus of head pose estimation have shift

from 2D video data based to depth data based and have shown very good results

compared to 2D approach (Breitenstein et al., 2008; Fanelli et al., 2011). The Mi-

crosoft Kinect supports the capture of 2D RGB streams and 3D depth streams at 30

frames per second, based on infrared projection and light coding techniques. How-

ever, the Kinect depth information is not very accurate and much noisier compared

to the data obtained from other devices, such as a laser-scanner, for example. In

order to estimate the head pose, the method described by Cai et al. (2010) was

used. The method utilises a regularised maximum likelihood deformable model fit-

ting (DMF) algorithm to reduce the effect of the noisy depth map acquired from

the Kinect and to improve the accuracy of the estimation results. As this method

has been implemented in the recent release of Kinect for Windows SDK, we use it
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Figure I: System Overview
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directly to obtain the head pose of the user. The SDK gives head pose with respect

to the Kinect by three angles: pitch, roll and yaw, as illustrated in Figure. II. The

angles are expressed in degrees, with values ranging from -90 to +90 degrees.

Roll

Pitch

Yaw

Figure II: Yaw, Pitch and Roll

Vertical

Amplitude

Time
0

Head Nod

(a)

0

Head Shake

Time

Horizontal

Amplitude

(b)

Figure III: (a) Typical Nod Sequence. (b) Typical Shake Sequence.

B.3 Head Nod and Shake Detection

Although head nods and shakes could be performed differently by different people

in terms of intervals and amplitudes, some common characteristics still exist for the

head movement to be recognized as nods or shakes. In this paper we consider a nod

as the head tilted in an alternating down and up manner, whereas a shake is rotation

of the head horizontally from side-to-side. This is shown in Figure. III. The vertical
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and horizontal movement could be represented by pitch and yaw in terms of head

pose as shown in Figure. II. By comparing the difference of pitch and yaw in two

adjacent frames, the direction of head movement can then be determined. Following

Kapoor and Picard (2001), the direction is represented by five directional symbols

(Up, Down, Left, Right and Still). Based on the five states of head movements, three

Hidden Markov Models (HMM) termed nodHMM, shakeHMM and otherHMM are

trained. The nodHMM consists of three states Up, Down and Still, whereas the

shakeHMM consists Left, Right and Still. Both HMMs have five observation states

Up, Down, Left, Right and Still. To further distinguish other head movements (E.g.

moving up, moving down, moving left and moving right) from the actual head nods

and shakes, we first build an additional HMM, termed otherHMM, which consists

of five states Up, Down, Left, Right and Still to recognize head gestures except

head nods and shakes, and then we compare the nod or shake likelihood values to

a predefined threshold. The state transitions of head nod, head shake and other

gestures is shown in Figure. IV.

In order to analyse head movement continuously, we choose a window size of 0.6

seconds similar to the work by Tan and Rong (2003), corresponding to 18 frames/sec,

which we found sufficient to detect both slow as well as subtle head nods and shakes.

During the training phase, we extract the head pose using the method mentioned in

section B.2 for each frame and formed an observation sequence of 18 frames. Since

it is impossible for 18 frames to compromise all the actions of head nod and shake

we consider the sequence containing down as head nod and any obvious Left or

Right as head shake too. The Baum Welch algorithm (Rabiner, 1989) is used to

train the nodHMM, shakeHMM and otherHMM based on the observation sequence.

In the testing phase, the forward-backward procedure (Rabiner, 1989) is used to

compute the log likelihood for the input observation sequence on three HMMs. The

largest likelihood value is selected, and if a head nod or shake is detected, it is

further compared to a predefined threshold. If the likelihood value is larger than
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Recognized As
Head Nods Head Shakes Other

Head Nods 22 0 3
Head Shakes 0 23 2
Other 4 1 20

Table I: Recognition Results for Training set

Table II: Recognition Results for Testing set

Recognized As
Head Nods Head Shakes Other

Head Nods 21 0 4
Head Shakes 0 22 3
Other 5 1 19

the predefined threshold the observation sequence is considered to be a nod or a

shake, otherwise it is considered to be other head gesture such as still or looking

upward.

Up Still Down

(a)

Right Still Left

(b)

DownUp Right LeftStill

(c)

Figure IV: (a) Transition of nodHMM’s hidden states. (b) Transition
of shakeHMM’s hidden states. (c) Transition of otherHMM’s hidden
states

B.4 Recognition Results

We collected a database of manually performed head nods, shakes and other gestures

to train the HMMs. Microsoft Kinect and Kinect studio were used to capture the

head motion. In total 150 samples with 50 head nods, 50 head shakes and 50 other
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head gestures (including still, look upward, look downward, look leftward and look

rightward) were collected and manually annotated. These head nods and shakes

are of obvious motions of nod and shake in different motion magnitudes. Thus, we

ensured that the trained HMM classifiers were suitable for the head nods or shakes

with small or big head motions. A random 50% of the each gesture class is selected

for training to estimate the parameters of nod, shake and other HMMs.

After training, the estimated parameters and the detection algorithm were im-

plemented on an Intel Core i7 3.4GHz machine with Windows 7 with the Kinect

placed under the monitor. The details of recognition results are shown in Table I

and II. This performance appears to be comparable, if not better, to the results

obtained by other methods, such as in the work by Kapoor and Picard (2001) and

Tan and Rong (2003). Future work will investigate this more fully by applying those

techniques to our dataset.

From the results we can see there is no mis-classification among head nods and

head shakes. Most missed head nods are due to the head gestures such as look

downward and look upward and missed head shakes are due to look leftward and

look rightward motions.

A demonstration system has been developed to visualise the estimated head pose

value and show the detection results in a bar chart form, shown in Figure. V. When

the head is detected by the Kinect, a 3D mesh will appear on the face. At the same

time, the detection of head nod and shake begins to work. We visualise the Pitch,

Yaw and Roll data from Kinect for Windows SDK. The real-time data of Pitch,

Yaw, Raw, number of sequence, and the head position relative to the position of the

Kinect is displayed. We finally show the detection results of Nod, Shake and None

by HMM classifiers with above data. The classifier with the maximum probability

is the final detection results.
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Figure V: Screenshot of the system in operation
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