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Model Selection in a Multi-Hypothesis Test Setting:
Applications in Financial Econometrics

F. P. Esposito

Abstract

In this thesis, we investigate model selection in a general setting and perform
several exercises in financial econometrics. We present the multi-hypothesis
testing (MHT) framework, with which we design different type of model com-
parisons. We distinguish between test of model performance significance, of
relative and absolute model performance and apply our framework to mar-
ket risk forecasting model, to latent factor jump-diffusion models employed for
the estimation of the statistical measure of an equity index, as well as to eq-
uity option pricing models. We develop original tests and, with regard to the
proper exercise of model selection from an initial battery of models without
any reference to a benchmark model, we combine the MHT approach with the
model confidence set (MCS) to deliver a novel test of model comparison that
is performed along with the established version of the MCS, as well as with an
alternative simplified new MCS test that are detailed in the course of this work.
We collect empirical evidence concerning model comparison in several subjects.
With respect to market risk forecasting models, we have found that models cap-
turing volatility clustering or targeting directly an auto-correlated conditional
distribution percentile, perform better than the target model set and in partic-
ular, better than the historical simulation, widely employed by practitioners,
and better than the so called RiskMetrics model. With respect to the equity
index data dynamics, we have found that the popular affine jump-diffusion
model requires a CEV augmentation to perform appropriately and that those
models are slightly overperformed by an alternative stochastic volatility model,
characterised by stochastic hazard with high frequency small jumps. The test
performed over a large model set employed in the option pricing exercise points
to a wide similarity of the results obtained by the many model specifications
of the superior exponential volatility model, therefore suggesting a more care-
ful adjustment of the model complexity. The model selection framework has
proven very flexible in dealing with the varied collection of statistical problems.
In particular, our main contribution represented by the generalised MHT based
MCS test provides a method for model selection that is robust to finite sample
distribution and that has the advantage of an adjustable tolerance for false
rejections, allowing conservative to aggressive testing profiles.

Keywords: Multi-hypothesis test, generalised family-wise error rate, tail probability of false discovery proportion, station-
ary bootstrap, step-down algorithm, model confidence set, value-at-risk, expected shortfall, likelihood function, second order
non-linear filter, jump-diffusion, stochastic volatility, stochastic hazard, option pricing model, partial integral-differential
equation, finite difference method.
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1 CHAPTER 1. MODEL SELECTION FRAMEWORK

Model Selection Framework

The question that is debated in this thesis is central to a wide range of statistical applications. The

research objective can be summarised as follows: given a set of models returning output that is data

explanatory or data forecasting, which model or which model subset produces the best performance?

Further characterisation is required by demanding: what degree of uncertainty can be associated with,

and how robust is the decision concerning the best model set? This task is referred to as model selection.

In statistics, this term is usually associated with the comparison of models as partial representations of

the data generating process (DGP). In this work, on the contrary, we use this label in a wider sense. In

general terms, we deal with a given set of objects, namely models, which characterise the execution of

a certain action on the experimental observations or indirect measurements of the phenomenon under

analysis, that is the data. The concept of a “model” has to be interpreted in abstract terms as a set of

rules prescribing the data processing function, although it will ultimately be associated with a probability

distribution hypothesis1. The action of the model is intended as a transformation of the experimental

1 The term model that is adopted throughout this thesis is in line with the practiotioners’ use of this word. In Office of
the Comptroller of the Currency (2011) “the term model refers to a quantitative method, system, or approach that applies
statistical, economic, financial or mathematical theories, techniques, and assumptions to process input data into quantitative
estimates. A model consists of three components: an information component, which delivers assumptions and data to the
model; a processing component, which transforms inputs into estimates; a reporting component, which translates those
estimates into useful business information.” Nonetheless, with very few exceptions in this manuscript, a model might still
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data that provides explanatory information about or forecasts the behaviour of the underlying system of

variables. The result of this action feeds a model performance indicator, which enables the comparison of

the model set, as prescribed by the model selection criterion. The focus is tilted towards the statistical

distribution of this loss function rather than to the approximation of the DGP, two aspects of the decision

problem that might not directly coincide as such, for instance, in the linear constrained regression prob-

lem of Toro-Vizcarrondo and Wallace (1968), whereby the minimum squared error criterion is regarded

as the discerning factor for the evaluation of the model performance, whereas testing the likelihood of

the model restrictions does not necessarily provide a matching result. In the lecture note Rao and Wu

(2001), the authors propose a classification of the model selection process, which is mostly methodologi-

cal. According to the authors, model selection can be characterised into several problem types. In fact,

it is either conducted as a sequence of hypotheses testing, as a forecasting error minimisation problem,

through information theoretic criteria, based on bootstrap methods or approached in a Bayesian set-up.

Other categories that are mentioned in the lecture note pertain to specific statistical problem classes, such

as cross-validation, order selection in time series, categorical data analysis, non-parametric regression and

data-oriented penalty. The literature on the subject is overwhelming, therefore this introduction does

not serve as a complete review of such a vast and varied subject matter. In this section, we demarcate

this research and identify the areas from which we draw the methodology and the instruments to devise

the econometric applications presented in this thesis.

Model selection is deeply rooted in the origins of statistics. The major problem is that of model specifi-

cation, which can be traced back to discipline establishing works such as Fisher (1922, 1924) and Pearson

(1936), which advocated, respectively, the method of maximum likelihood and the method of moments

as procedures for model identification. Tests for model specification were devised later involving a single

specification hypothesis on the model significance, such as the Lagrange multiplier test (Silvey, 1959;

Breusch and Pagan, 1980), the Hausman (1978) test, the information matrix test and the score test of

White (1982), the Newey (1985) test, the approach of Wooldridge (1990). Tests involving direct pairwise

model comparisons can be referenced, for instance, to the Wald (1943) test for model parameters restric-

tions, the likelihood ratio statistic of Wilks (1938) and more generally the testing framework of Vuong

(1989). Eventually, it was the work of Akaike (1974, 1981) that provided the model specification task with

a criterion allowing for a more extensive model comparison. Furthermore in the context of model specifi-

cation, a direct pairwise comparison exploiting the AIC was pursued with the test of Linhart (1988), which

was later employed in conjunction with the model subset selection procedure of Gupta and Huang (1976)

to construct the confidence set of models of Shimodaira (1998), probably the first procedure providing a

multiple comparison model selection test with a general application in the realm of maximum likelihood.

In this perspective, this aspect of model selection as a multiple comparison statistical test is central to

this thesis work. We adopt the multiple hypothesis testing (MHT) framework of Beran (1988a,b, 1990,

2003) and Romano and Wolf (2005a, 2007, 2010) in constructing balanced confidence set based multiple

comparison tests for the sake of model selection. For our purposes, we seek a general procedure that is

not only applicable to likelihood tests but that is capable of handling virtually any kind of model com-

parison problem, requiring a minimum set of assumptions. The general setup is related to several works

be associated with an hypothesis regarding the DGP, although we employ the former definition.
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in model forecasting performance, such as Diebold and Mariano (1995), West (1996) in a pairwise model

comparison setting, and the works of White (2000) and Hansen (2005), in a multiple comparison context.

Although not only confined to forecasting model comparison, the latter multiple comparison tests suffer

from the lack of ability to identify the best performing models, yielding an inference as to whether the

model set contains items that perform better than a given reference model. This fact has been noted in

Romano and Wolf (2005b), who deliver a step-wise procedure version of the reality check approach of

White (2000) and Hansen (2005) that isolates the subset of models that perform better than the reference

model, see also Romano et al. (2008). We indicate this type of test as relative model comparison. Finally,

we remark that, whenever the problem is configured such that the specification of a reference model is

not required, the collection of multiple model comparison tests just referenced are limited. We indicate

the problem of model selection without a pre-specified term of comparison as absolute model comparison.

In this regard, we build upon the Hansen et al. (2011) version of the model confidence set (MCS) to

design a generalised multiple hypothesis test for model comparison that does not require the choice of a

reference model, with several applications in financial econometrics showcased. This multiple comparison

model selection procedure, which we coin the γ-MCS, is a characterisation of the MHT controlling for

the number k of tolerated false discoveries and, in an extended version, the γ tail probability of the false

discovery proportion can also be triggered; both cases allow for a complete analysis of the set of model

comparisons. The hypotheses testing is structured to embed the complete multi-dimensional nature of

the model selection exercise and draw inference with respect to individual model comparisons, at the

same time controlling for test dependencies. The model selection procedures are powered by a simulation

engine represented by a type of block bootstrap device such as the stationary bootstrap of Politis and

Romano (1994a,b), rendering the test robust to finite sample statistic distribution. The bootstrap ap-

proach enables the method to handle virtually any model selection problem, without resorting to pivotal

results, in this case meaning without resorting to the asymptotic normality of the statistics. Thus, the

exercise is reduced to a matter of experimental design, an attractive characteristic for financial practi-

tioners. In fact, with the empirical applications in this thesis, we are able to construct model selection

procedures whereby the models are misspecified in nature and the model battery may contain parametric

and non parametric models, whereby we could could compare continuous and discrete time models, we

could include nested and non-nested model specifications, or further we could operate in a context of

partial information. In several applications, the exercise is worsened by the finite precision of the several

numerical procedures involved in the calculation of the crucial measures of model performance, a feature

that can be improved at the cost of overall computational demand.

With this Chapter 1, we provide the fundamental link between all parts of this thesis by means of formally

introducing the model selection approach pursued throughout. We introduce the general problem of test

dependencies, articulated and solved within the framework of Beran (1988a,b, 1990, 2003) and Romano

and Wolf (2005a, 2007, 2010), whereby the balanced confidence set for the MHT are constructed and

combined with generalised error controlling algorithms. Building on the model comparison test design

based on the loss function of Diebold and Mariano (1995), West (1996) White (2000) and Hansen (2005),

we outline performance significance and relative model comparison MHT. Finally, invoking the MCS

concept drawn by Hansen et al. (2011), we provide an original contribution to the literature by merging
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the generalised MHT and the MCS to develop the γ-MCS test. In our interpretation, the MCS is a set re-

striction hinging on a preference relationship amongst the model set, which is ultimately defined through

a statistical test. The inference process delivers the equivalence set of best performing models that, al-

though preserves some coherence across different types of test, is not necessarily unique. We provide this

important insight through the construction of a simplified MCS test of model selection, which utilises

the same comparison strategy as the γ-MCS, but which does not retain its superior MHT properties.

We indicate this test as the t-MCS. In general, when the main model clusters are very distinct, the tests

tend to deliver the same results, whereas when the models are tightly competing, the test dependencies

play a major role, whereby the γ-MCS reveals greater flexibility in its model discrimination capability,

represented by the generalised controlling mechanism.

In the following Section 1.1 we develop the model selection strategy, whereas in Section 1.2 we present the

technical details for the construction of the multiple hypothesis test with balanced confidence intervals,

which represent the main instrument for the pursuing of the several model comparison exercises. In

Section 1.3 we characterise the procedure for discarding the benchmark model in the model selection test

and constructing the model confidence set. In this section, the main MCS test of Hansen et al. (2011) is

detailed, while the additional t-MCS and γ-MCS tests are presented. Section 1.4 provides an overview of

the thesis by introducing the motivation for and the layout of the chapter experiments, emphasising the

contributions and main findings in each case. Section 1.5 concludes this methodological chapter.

1.1 The Model Selection Strategy

In our set-up, a model is ultimately conceived as a conjecture on a probability distribution P, by which we

identify the model itself. We define the initial model set asM0 ≡ {P0,P1, . . . ,Pm0
}. The performance

of model Pi ∈ M0 is measured by the data transform Li,t := L(Xt,Pi), that is a numerical function

of the data set Xt observed at time t, evaluated according to the model prescriptions defined by Pi. A

classic exercise of hypotheses testing that will be accomplished within the experimental part of Chapter 2

concerns the construction of tests of significance of the model performance, where the model performance

metric is compared with a target value, whenever this one can be defined. However, tests of this type are

not suited for the purpose of model comparison, as they do not involve pitting the models against one

another. In fact, models producing significant performances do not necessarily produce superior output

when contrasted with competitors. This brings us to the following discussion of methods for model com-

parison.

A model comparison is defined as the contrasting of models Pi and Pj , whose outcome is a preference

ordering that decides which model is best, or that both models are equivalent. Whenever model i is

preferred to model j, we write Pi � Pj or Pj ≺ Pi and we say, respectively, that model i is superior

to model j or that model j is inferior to model i. The equivalence between the two models is written

as Pi ∼ Pj . The objective of this thesis is the characterisation of the decision rule establishing the

preference structure upon the model set M0. This task in general corresponds to a statistical testing

procedure that might involve a sequence of tests or a joint multivariate test, delivering in addition a



5 CHAPTER 1. MODEL SELECTION FRAMEWORK

model ranking system. In the model comparison framework we are devising, the model performance

measure L is a model loss function, that the lower this figure, the better. The reference metric is the

relative performance measure dij,t := Li,t−Lj,t, where the ordering is important. The testing procedures

presented in the rest of this chapter target either the quantity µij := E [dij,t], such that Pi � Pj , if

µij < 0 or Pi ∼ Pj , if µij = 0. Whenever a model P0 ∈ M0 is attributed with the special role of being

a benchmark, we refer to this as a relative model performance test, where the objective is to determine

whetherM0 contains a model preferable to the benchmark. In the literature there are several examples

of relative performance tests such as the reality check (RC) of White (2000) or the superior predictive

ability (SPA) test of Hansen (2005). These types of tests are known to be very conservative2. In Chap-

ter 3 we present two applications of our alternative form of relative model performance test, whereby the

benchmark is either clearly identified, or the test is run by recursively selecting the benchmark model,

revealing model clusters and the full collection of model preferences. This feature might be useful in

suboptimal decision making, that is whenever the usage of the best model is prevented, the mapping of

the full set of model comparison results allows the choice of second best models. However, synthesising

the information provided by this form of test is subjective to some extent as it lacks a procedure for

the automatic selection of superior models. There, to address this, a contribution of this study is the

construction of a general model selection procedure in an MHT setting, designed to automatically select

the superior models from a given model set. We indicate this type of statistical test as an absolute model

performance test.

In the next section we introduce the generalised MHT procedure by which we construct the test of

significance of model performance, the relative performance test, as well as the main step of the MHT

based absolute model performance tests. In Section 1.3 we introduce the fundamental concept of MCS as

in Hansen et al. (2011), by which we complete the design of the novel γ-MCS along with the introduction

of more MCS tests.

1.2 Multiple Hypothesis Testing

A multiple hypothesis test is a statistical test on the set of hypotheses H1, . . . ,Hm. The distinctive

feature of the test is that the Hj ’s are considered jointly and hence the test statistic is, in general, an m

dimensional vector. The construction of a procedure for MHT requires some subtleties. When dealing

with multiple hypothesis testing the notions of a rejection region and confidence level acquire higher

complexity, and it is not immediate the translation of a single testing procedure into an MHT which

takes into account the multiple dimension of the decision under analysis. In the case of a single null H0

versus an alternative HA, the criterion in hypothesis testing prescribes the construction of a rejection
2 The formal null hypothesis is H0 : maxi=1,...,m µ0i ≤ 0 which corresponds to the hypothesis that “no model in the

model set M0 is superior to the benchmark P0”. As noted in Corradi and Distaso (2011), the introduction of a poorly
performing model, although it does not have any impact on the asymptotic value of the statistic because max1,...,m+1 µ0i =
max1,...,m µ0i, it will certainly affect the percentiles and then the p-value of the statistic distribution. Indeed, the poorly
performing model Pm+1 will have a consistent impact on the distribution of the max statistic. The introduction of a
poorly performance model will therefore have the effect of inflating the p-value, which can actually be made large at will,
by including bad performing objects in the target model set. This is a substantial limitation of the reality check, which still
persists in the standardised version of the test, see Hansen (2005). To attenuate the dependence on the outlier bad model,
the author proposes to discard the bootstrap generated performance measures that exceed an asymptotic threshold. It is
not clear, however, if the superior predictive ability test is more powerful than the reality check, cfr. Corradi and Distaso
(2011).
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region Γ, whereby the inclusion of the sample determined statistic T ∈ Γ leads to the rejection of the

null hypothesis, whereas T /∈ Γ leads to its acceptance. The probability measure of the rejection region

P(Γ) = α represents the confidence level, which is the probability of committing a type I error that is

the rejection of H0 when it is true. A type II error occurs when T /∈ Γ implies the acceptance of the

null, while HA is actually true. The power of the test is given by 1 − P {T /∈ Γ, s.t.|HA| = 1}, where

in general terms |A| is the Boolean value of the event A. On the other hand, when considering the

problem of testing m null hypotheses simultaneously, the situation is more intricate. Now there are many

intersections of type I and type II errors and it is not clear how to define a rejection region Γ and what

measure to be targeted in defining multiple hypotheses tests. To understand intuitively the importance

of appropriately identifying this set, it is useful to refer to the following simple example borrowed from

Romano et al. (2010). Consider 100 independent statistical tests, each of them with a confidence level of

α = 0.05; the probability of rejecting at least one of these tests assuming all are in fact true is extremely

high, that is 1 − 0.95100 = 0.994. Hence, the probability of committing a joint type I error is close

to certainty, implying the need for a procedure capable of controlling the probability of false rejections

in the presence of a multiple test structure. The classical approach to solving the multiplicity problem

consists of introducing control of the family-wise error rate (FWER), that is the probability of rejecting

at least one true hypothesis; or otherwise stated, the probability of making at least one false discovery.

A generalisation of the FWER concept is the

k-FWER=P{reject at least k hypotheses Hs : |Hs| = 1}

whereby the FWER is the same as the 1-FWER special case. The k family-wise error rate has been

conceived and implemented within the confidence set approach in Romano and Wolf (2005a, 2007, 2010).

However, when the number of hypotheses grows large, it is more convenient to consider a further generali-

sation of the concept of k-FWER, which is referred to as the false discovery proportion (FDP), that is the

ratio of the false rejections to the total number of rejections. The FDP is useful as it provides a method

for the automatic selection of the k, the number of tolerated false rejections, by simply setting the ratio

of the number of accepted false rejections to that of the number of the actual rejections, a coefficient

that is independent of the size of the hypothesis set. Given the user specified ratio γ ∈ [0, 1), the target

quantity for the construction of a rejection region is the tail probability of the FDP, or formally

γ-TPFDP=P{FDP>γ}, for all Hs

Controlling the generalised family-wise error rate or the false discovery proportion involves fixing a con-

fidence level α such that k-FWER≤ α or γ-TPFDP≤ α. Another approach that has also been used in

literature is represented by the false discovery rate, which defines the MHT control of the E(FDP ) ≤ γ,

for all Hs. For this criterion compare, e.g. Benjamini and Hochberg (1995, 2000) and Storey (2002). A

strong limitation of the latter error rate is that it does not allow for the probabilistic control of the false

discoveries, as the probability of the false discovery rate being larger than a given threshold might occur

to be quite large, cfr. Romano and Wolf (2010).

In the course of this research we deal with several model selection exercises. We construct test of model
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performance significance and relative model performance MHT, which control for the k-FWER, and fur-

ther introduce a novel MHT of absolute model performance, controlling for the γ-TPFDP. In the financial

econometric application of Section 2.3, we construct an MHT for the significance of the model perfor-

mance, investigating the outcome of a forecasting model in relation to target values. With the various

other applications, we look at the research objective from the same angle, when we observe that a model

selection test is by construction a multiple hypothesis problem corresponding to the combined paired

comparisons. In a relative model selection test one model is fixed, such as for instance the experiment in

Section 3.3. In contrast, all combinations are explored in an absolute model selection exercise, like those

delivered in Section 2.3, Section 3.3 and Section 4.3. With respect to the latter task though, an auxiliary

concept will be needed in order to deliver the final MHT absolute model performance test, an instrument

developed in Section 1.3.

Specifically and with reference to the methodological approach of model selection we implement in this

thesis, in Chapter 2 we construct several multiple hypothesis tests of statistical significance for the market

risk forecasting models considered, see Section 2.3. The MHT is structured as follows:

Hi : νi = 0, ∀Pi ∈M. (1.1)

whereby νi is the expected forecasting error of model Pi. It is implicit that, in order to derive such a

measure for the test (1.1), a reference forecasting target should be identifiable.

In contrast, when structured as an MHT, a model selection test is a multiple hypothesis problem for-

mulated on the full range of paired comparisons. We distinguish between relative and absolute model

comparison test in this context. In a relative model selection, one reference model, say Pk, is kept fixed

and designated as the benchmark, thus the MHT corresponds to the joint hypotheses that exist equiva-

lent models inM\Pk. The relative performance model selection MHT we adopt is the equivalence joint

hypotheses test

Hik : µik = 0, ∀Pi ∈M, i 6= k. (1.2)

The test is bidirectional, whereby breaches of the right or left thresholds indicate, respectively, superior

or inferior models, in practice partitioning the non equivalent models into two further subgroups. In

one exercise employing this type of test, we iterate the benchmarking Pk across the model set M to

investigate the model clustering. The test defined in (1.2) is applied experimentally in Section 3.3.

Finally, as the major contribution of this research, we construct absolute model selection tests under the

MHT framework. The approach pursued in this thesis for constructing tests of model selection consists

in the explicit analysis of the following pairwise model performance comparisons:

Hij : µij ≥ 0, ∀Pi,Pj ∈M, i 6= j (1.3)

The multiple hypothesis (1.3) is structured such that the null hypothesis Hij , for each scalar test, consists

of a conjecture on at least equivalence of model Pj with respect to Pi. The procedure for the absolute
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model selection is completed with the extraction of the MCS defined by the γ-MCS algorithm and detailed

in Section 1.3.3. In Section 2.3, Section 3.3 and Section 4.3 we investigate, respectively, the MCS in (i)

market risk forecasting models, (ii) maximum likelihood estimation and filtering of stochastic volatility

models and (iii) option pricing models.

1.2.1 The Implementation of the MHT Procedure

In order to construct tests of multiple hypotheses, we adopt the method of the balanced confidence set,

see Beran (1988a, 1990) and Romano and Wolf (2010). Assume the DGP of the data X is determined by

the unknown probability distribution P and consider the problem of simultaneously testing s hypotheses

Hj : rj ∈ Cj , j = 1, . . . , s (1.4)

where the Hj represents the j-th hypothesis defined by the event rj and the subset Cj ⊂ T is the re-

striction of the domain of events T which characterises the j-th hypothesis. In practice, the multiple

hypothesis test defined upon the region (1.4) is determined by the data function Rn,j (X;P), where the

dependency on the sample size n has also been made explicit. In this section we present the method for

constructing multiple dimension confidence set that are right semi-intervals. Nevertheless, the implemen-

tation of the tests (1.1) and (1.2) requires the construction of bi-directional intervals that can be achieved

by repeating the procedure at the left side of the sample domain. We wish to determine the right-hand

confidence set

Cj = {rj ∈ T : Rn,j (X;P) ≤ cn,j (α;P)} . (1.5)

Further, the joint confidence set C := C1 ∩ · · · ∩Cs is required to have coverage probability 1 − α and

be balanced, in the sense that all tests contribute equally to error control. The first constraint forces

the MHT to put in place a mechanism for controlling the FWER, while the second constraint, that is

balancing, is a very important property of the test: if lacking balance then the joint test would determine

tighter (wider) confidence bands for more (less) variable rj . In terms of model comparison, the lack

of balance would translate into tighter equivalence conditions for worse models and wider equivalence

conditions for better ones. The aforementioned procedure is achieved through pre-pivoting, see Beran

(1988a,b). In fact, indicating with Jn,j (·) the cumulative distribution function of Rn,j and with Jn(·)

the left continuous distribution of max {Jn,j ,∀j}, the right boundary of the confidence set Cj is then

cn,j = J−1
n,j

[
J−1
n (1− α)

]
. (1.6)

In case of the construction of a double sided confidence set with joint probability 1− ᾱ, define α = ᾱ/2

and compute (1.6) as the right boundaries whereas to determine the left edge, consider the left sided

version of cn,j , this time defining Jn := min {Jn,j ,∀j}. The solution to (1.6) is the “plug-in” estimate

ĉn,j(α, P̂) = Ĵ−1
n,j

[
Ĵ−1
n (1− α)

]
, (1.7)

calculated with bootstrapping, cfr. the following Section 1.2.3 and see also Beran (1988a, 1990, 2003).

In the series of papers Romano and Wolf (2005a, 2007, 2010), the authors introduce procedures for
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the MHT extending the concept of family-wise error rate to that of the k-FWER presented in the

previous section, eventually generalising the balanced FWER controlling procedure of Beran (1988a). The

generalised FWER expands the capability of targeting multiple false discoveries. Setting k-FWER=α

means controlling for the joint probability of at least k false discoveries, thereby introducing a target

probability of committing joint errors of Type I. The presented procedure allows the construction of the

multiple rejection region, complementary to (1.5), which controls the generalised confidence level and

which is balanced. In order to obtain balanced right sided confidence sets with k-FWER=α set

Jn := k-max {Jn,j ,∀j} ,

in (1.6), with k-max{y1 < y2 < · · · < ys} := ys−k+1, k ≤ s.

The procedure just introduced provides a double benefit to multiple testing: first, the extension to control-

ling the k-FWER of balanced multiple hypothesis tests raises the tolerance to false rejections, therefore

it makes the acceptance threshold tighter, eventually increasing the significance of the null hypothesis

that are accepted; second, the parameter k draws attention on individual test statistics that are not

excessively far away from the acceptance region, whereby adjusting the k-FWER, it is possible to detect

weak departures from the null hypothesis.

The definition of the k, the number of tolerated false rejections, might be arbitrary and in general it

is good practice to make this number proportional to the total number of hypotheses. To extend the

tools available for the MHT, Romano and Wolf (2007, 2010) provide a new algorithm for the automatic

selection of the k, with the further benefit of controlling for the tail probability of the false discovery

proportion. The γ-TPFDP controlling MHT procedure builds directly upon the latter, as the following

algorithm shows.

Algorithm FDP: Control of the γ-TPFDP via k-FWER

− Let j = 0 and kj = 0;

− do

j = j + 1 and kj = kj−1 + 1;

call the kj-FWER procedure and let Nj be the number of hypotheses it rejects;

while Nj ≥ kj/γ − 1;

− reject all the hypotheses rejected by kj-FWER and stop;

The FDP algorithm consists of a sequence of k-FWER procedures, starting with k = 1. The routine

terminates when the γ fraction of the actual rejections plus one is greater than or equal to the current

number of tolerated rejections kj . Romano and Wolf (2007, 2010) proved that the FDP algorithm delivers

balanced asymptotic control of the proportion of false discoveries building upon any k-FWER controlling

procedure. The procedure for constructing balanced k-FWER controlling multiple hypothesis tests and

the FDP algorithm constitute the engines for the application of MHT to the model selection approach in

this thesis.
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To further summarise the general MHT approach pursued in this study, we remark that the tests defined

in (1.1), in (1.2) and in (1.3) are performed via the construction of the multi-rectangle C in T retaining

the properties of a balanced confidence set controlling for the joint measure of type I error k-FWER and

for its extension γ-TPFDP. Whenever the latter is implemented, the procedure is capable of selecting

the k-FWER automatically by targeting the tail probability of the false discovery proportion, a more

appropriate control measure for the tolerance level of false rejections that are best selected when scaled

to the total number of hypotheses. In order to realise the operating principles of the MHT algorithms

presented in this thesis, it is important to notice here the peculiarity of the confidence set method we

adopt to implement the hypothesis testing. We do not alter the confidence set3 and thus target the

theoretical critical value, rather than the bootstrap sample means. In the MHT (1.1) and (1.2), the null

hypotheses of, respectively, significant performance and benchmark equivalence, are tested by controlling

that the target forecast and the zero point fall within each confidence interval. With the MHT (1.3), the

distinctiveness of the method is more evident. For each scalar test, we reject the null hypothesis if the

zero point falls in the right tail of the statistic distribution, thus we control that the upper bound of the

interval is greater than zero to accept the null.

1.2.2 The Step-Down Algorithm

The result achieved by the balanced MHT controlling for the k-FWER can be further improved by

means of a step-down method, see Romano and Wolf (2005a, 2007) and Romano and Shaikh (2006). This

procedure represents an augmentation of the step-wise method conceived to achieve increased power of the

MHT, as it has been employed in several experiments of this thesis. The step-down method is designed

to increase the probability of to not commit a type II error, but it does come at the cost of being

computationally intensive when the multiplicity of hypotheses is excessively large. With a step-down

procedure, a sequence of MHT is performed by progressively rejecting the least significant hypothesis

and hence testing the subset of surviving Hj until no further hypotheses are rejected. These methods

aim at strengthening the test result by increasingly pressuring the decision of acceptance of the previous

MHT steps. Step-down methods implicitly estimate the dependency structure of the individual tests

achieving an improvement in the power of the MHT. The algorithm of Romano and Wolf (2005a) can be

described as follows. Let the MHT be the set of m (right hand sided) simultaneous hypotheses

Hj : Rn,j ≤ cn,K,j(α, k) (1.8)

where now we directly refer to the operational version of the confidence set and further make explicit

the association with a set of hypothesis indexes K = {1, . . . , s} and the dependency of c on k. The sets

Am and Bm are, respectively, the sets of accepted and rejected hypotheses at the step m. At the start of

the procedure, set A0 ≡ K, i.e. the full set of hypotheses, and the counter m := 0. The pseudo-code in

algorithm A below presents the mechanics of the generic step-down method with control of the k-FWER.

3 Alternatively, the test might be structured by re-centring the bootstrap distribution around the critical point and hence
testing for the bootstrap average. The approach we adopt is a mere programming choice and both procedures are equivalent.
In fact, the pre-pivoting of the sample data implies that the confidence set is independent of the location parameter.
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Algorithm A: Generic step-down method for control of the k-FWER

− If Rn,j ≤ ĉn,A0,j(α, k), ∀j ∈ A0, then accept all the hypothesis and stop;

otherwise, reject any Hj for which Rn,j > ĉn,A0,j(α, k) and include j in B1;

set A1 := A0\B1 and increase the step m by 1;

− while |Bm| ≥ k

reject any Hj for which Rn,j > d̂n,Am,j(α, k) and include j in Bm+1, where

d̂n,Am,j(α, k) := max
I⊆Bm
|I|=k−1

{ĉn,D,j(α, k) : D = Am ∪ I};

set Am+1 := Am\Bm+1 and increase the step m by 1;

end

The algorithm A is capable of increasing the statistical power, that is the probability of rejecting a false

null hypothesis, because at each iteration the subset of the lowest p-value statistics is excluded, tightening

confidence bands in the subsequent iteration and hence strengthening the ability to pick true discover-

ies. However, accounting for at least k > 1 false discoveries involves the possibility that at the previous

stage we have rejected true hypothesis, but hopefully at most k − 1. As a consequence, at step m we

have to consider within the current MHT the event of having previously dismissed k − 1 true nulls, a

fact that would affect the current critical values. In practice, at each iteration the step-down algorithm

searches among all the possible sets of surviving hypotheses augmented with at most k − 1 potentially

false rejections, to determine tighter new confidence set to run a more stringent test on the accepted Hj ’s.

However, it is not known which of the rejected hypotheses may represent false discoveries. Hence, it is

necessary to circulate through all combinations of Bm, of size (k − 1) , in order to obtain the appropriate

critical values. The algorithm determines a maximum critical value d̂n,Am,j(α, k) for each hypothesis

test j. Iterating through the set Bm to include the event “rejection of k − 1 true nulls” might turn out

to be a formidable task due to a rapidly growing number of possible combinations of size k − 1 from

the previously rejected hypotheses. For this reason, the authors propose a streamlined algorithm, which

simplifies the computational burden of algorithm A.

The rationale of algorithm B is to reduce the computational burden due to the number of combinations

generated by calculating critical values d̂n,As,j by limiting the pool of rejected hypotheses to those that

are least significant. The streamlined step-down method tries to reduce the computational effort, lim-

iting the set to be explored to the hypotheses that are most likely to be rejected. As a consequence,

the algorithm is as close as possible to the generic algorithm A in the sense that it maintains much of

the attractive properties of the generic algorithm.4. The step-down algorithm defines a search path to

strengthen the power of the MHT, driven by the implicit dependency structure of the individual tests.

At each iteration the algorithms A and B minimise the Type II error probability, hence improving the

statistical power. Notice that in the case of two sided confidence sets the previous algorithms have to

4 The generic algorithm offers a number of attractive features. Firstly, the generic algorithm is conservative in its
rejection of hypotheses. Secondly, the generic algorithm also allows for finite sample control of the k-FWER under Pθ. And
thirdly, the bootstrap construction is such that the generic algorithm provides asymptotic control in the case of contiguous
alternatives. Romano and Wolf (2007) provide a more detailed discussion.
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be modified accounting for left critical values computed as minima across the search set and furthermore

including left p-values in the operational method. In this research, MHT applications exploiting the

step-down algorithm are presented in Section 2.3 and Section 3.3, whereby both statistical significance

and relative performance tests implement the k-FWER procedure with the step-down algorithm.

Algorithm B: Streamlined step-down method for control of the k-FWER

− If Rn,j ≤ ĉn,A0,j(α, k), ∀j ∈ A0, then accept all the hypothesis and stop;

otherwise, reject any Hj for which Rn,j > ĉn,A0,j(α, k) and include j in B1;

set A1 := A0\B1 and increase the step m by 1;

− while |Bm| ≥ k

for each j ∈ Bm calculate the p-value p̂n,j = 1−Jn,j and sort them in descend-

ing order p̂n,r1 ≥ · · · ≥ p̂n,r|Bm| , where
{
r1, r2, . . . , r|Bm|

}
is the appropriate

permutation of the p-value indices that gives this ordering; then pick a user

specified integer Nmax ≤
(|Bm|
k−1

)
and let M be the largest integer such that(

M
k−1

)
≤ Nmax;

reject any Hj for which Rn,j > d̃n,Am,j(α, k) and include j in Bm+1, where

d̃n,Am,j(α, k) := max
|I|=k−1

I⊆{r1,r2,...,rM}

{ĉn,D,j(α, k) : D = Am ∪ I}

set Am+1 := Am\Bm+1 and increase the step m by 1;

end

1.2.3 The Stationary Bootstrap

In order to pursue the ultimate goal of isolating the best performing models the criteria for model selection

are required to operate in a particularly problematic statistical context. In the experimental part of this

work, we tackle the general problem of model selection in the presence of misspecification, complicated by

the inclusion in the model set of non-nested models. We encounter conditions of insufficient information

set in defining the complete system dynamics, whereby the system state is partially observable. The

derivation of exact or asymptotic statistical tests applied to this class of problems should take into ac-

count the further restraint represented by the finite precision of the several numerical procedures involved

in the calculation of the crucial measures of model performance. These strong restrictions suggest that

limiting distributions encompassing the statistical test are extremely difficult to obtain for reasonably

general problems. Therefore, we approach the construction of the tests for model selection by exploiting

a sample-based simulation engine that is capable of producing robust estimates of multiple hypothesis

statistic distributions. This device is the bootstrap.

The bootstrap (Efron, 1979) is a versatile method for investigating a general form of functions depending

on the full sample history. In the original form of this procedure, we search for an estimate of the statistic5

5 In the model selection framework, the data function R relies also on a modelling hypothesis Pj which characterise it.
In this paragraph and successively, the probability distribution P represents the “true” distribution of the observations, that
is the DGP, whereby we suppress the model dependency, indicating it if necessary with a subscript j, that is Rj(X;P),
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R(X;P) with X = {Xi}i=1,...n and Xi
iid∼ P. The bootstrap method allows one to construct an estimate

of the statistic distribution using the sample distribution P̂

R? = R(X?; P̂),

which consists of repeatedly drawing with replacement observations X ∈ X, each weighted with proba-

bility 1/n. The distribution estimate of R is generated through the re-sampling X?, (m resamplings of

X). This procedure is valid under the i.i.d. hypothesis for X. A further generalisation is achieved, for

example, with the methods in Küsch (1989), Liu and Singh (1992) or in Politis and Romano (1994b),

whereby the bootstrap delivers robust estimates of the distribution of the sample function, R, for sta-

tionary and weakly dependent time series. In this work, we employ the stationary bootstrap of Politis

and Romano (1994a,b). The theoretical justification for the use of this versatile and general procedure

can be retrieved from the early works of these two authors. We reproduce here the major result. Let H

be an Hilbert space,

Theorem 1.2.1 (Theorem 3.1 Politis and Romano, 1994a). Let X1, . . . , Xn be a stationary sequence

of H-valued random variables with mean m and mixing sequence αX(·). Assume the Xi are essentially

bounded and ΣjαX(j) < ∞. Let X̄n = n−1Σni=1Xi and Zn =
√
n(X̄n −m); also, let L(Zn) denote the

law of Zn. Conditional on X1, . . . , Xn, let X∗1 , . . . , X∗n be generated according to the stationary bootstrap

resampling scheme, with p = pn satisfying pn → 0 and np2
n →∞. The bootstrap approximation to L(Zn)

is the distribution, conditional on X1, . . . , Xn of Z∗n where Z∗n =
√
n(X̄∗n −m) and X̄∗n = n−1Σni=1X

∗
i ;

denote this distribution by L(Z∗n|X1, . . . , Xn). Then ρ (L(Zn), L(Z∗n|X1, . . . , Xn)) → 0 in probability,

where ρ is any metric metrising weak convergence in H.

Proof. See the cited reference.

In practice, this result establish week convergence for bootstrap estimates that are smooth functionals

of the data. We rely on this result to construct non parametric estimates of the target MHT statistics,

conceived as function of the sample data R(X;P). Recently, the assumptions for asymptotic and con-

sistency results for the stationary bootstrap have been weakened to more general results, cfr. Gonçalves

and White (2002), Hwang and Shin (2012).

Operationally, the stationary bootstrap algorithm starts by “wrapping” the data in circle, such that

Yt = Xt̃,∀t ∈ N, with t̃ := (t mod n) and the convention that X0 := Xn. A pseudo-time series X?

is produced retaining the stationary properties of the original data sample X. The re-sampling scheme

requires the construction of blocks Bi,l = {Yi, Yi+1, . . . , Yi+l−1}, generated through the withdrawal of i.i.d.

discrete uniform random numbers I1, . . . , Is ∈ {1, .., n} and geometric random block lengths L1, . . . , Ls,

with distribution function D{Li = k} = p(1 − p)(1−k), k ∈ N. The generic re-sampled time series

is X? := {BI1,L1
, . . . , BIs,Ls}. Although optimally choosing the expected block length 1/p does not

affect the consistency properties of the bootstrap, the optimal p grants the fastest convergence rate of

the estimates and therefore their minimum variability, cfr. Politis and White (2004). In the several

applications assembled in this work, the artificial samples employed with the purpose of generating

however entailing R(X,Pj ;P).
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bespoke statistics distributions are simulated with preconditioning on the optimal p according to the

procedure of Politis and White (2004), Patton et al. (2009). In terms of bias and variability of the variance

of the pseudo-time series, the stationary bootstrap of Politis and Romano (1994b) is equivalent to other

techniques for bootstrapping stationary and weakly dependent sample data. This characteristics was not

originally noticed in the work of Lahiri (1999) when comparing several bootstrapping techniques, but

successively corrected by Nordman (2009). The most attractive characteristic of the bootstrap approach

is its high degree of flexibility. In particular, it can be used with parametric and non-parametric models,

non-pivotal statistics, i.e. statistics lacking asymptotic distribution results, and mostly it can capture

features of finite sample statistics whose distributions might be sensibly different from asymptotic pivotal

results, see Horowitz (2001) for a review on the topic. These features are very appealing in the present

context where the goal is to design experiments for model selection based on the performance of models

with different statistical properties and targeting measures that might have unknown finite sample or

asymptotic properties. Finally, we remark that the analysis that has been conducted in this thesis

strongly relies on bootstrap results, the performance of which we do not analyse. However, we notice

the result of Beran (1988b), concerning the efficiency of parametric bootstrap estimators with respect to

pivotal tests results. In that work, while discussing prepivoting, i.e. the trasformation of the bootstrap

test data by its bootstrap null cdf, the author proved that the prepivoted bootstrap quantile, when

compared to asymptotic statistics quantile, has a smaller or equivalent order of error in the confidence

level if, respectively, the statistic is a pure pivot6 or it is parameter dependent. Moreover, in the latter

case, the order of error of the bootstrap statistic can be made smaller by reiterating pivoting.

1.3 The Model Confidence Set

The central problem of this research has been formalised in Section 1.1, whereby model comparison is

achieved by means of a loss function determined by the contrasting of the target model performance

measures. In Section 1.2 we have introduced a statistical framework to handle virtually any statistical

problem presenting a multiplicity of hypotheses. In the MHT setup, the implementation of simple tests

of significance or tests of relative model performance can be derived by simply arranging the appropriate

hypotheses, reducing the model selection problem to a matter of experimental design, as for the tests

(1.1) and (1.2). Likewise, a general MHT test for the absolute model performance taking into account the

complete collection of pairwise model comparisons is outlined in (1.3). Nevertheless, at this stage it has

not yet been clarified how to identify the subset of best performing models and draw final conclusions. We

might, in the first instance, reject models that do not produce significant performances, if a target value

can be identified, and successively iterate across all the relative model comparisons to map out all the

pairwise precedence. But how does one synthesise this information into the final partition of the set into

superior and inferior models? Is it possible to produce a further model ranking across the set of superior

models? For this purpose, it is necessary to consider a framework designed to extract the superior group

from the battery of models. The framework we utilise is the model confidence set (MCS). In this section

we introduce the MCS along with several procedures to obtain it from the initial model set. It will turn

out that the MCS is not unique and it is strictly dependent on the statistical decision rule that controls

6 In statistics, a pure pivot is a theoretical sample statistic that does not depend on unknown parameters.
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the rejection of inferior models. In the following, we present one version of the algorithms introduced by

the seminal article Hansen et al. (2011), followed by a novel test inspired by the procedure in Corradi

and Distaso (2011) and finally, as a further contribution to the literature, we construct a new algorithm

bringing the MCS within the generalised MHT framework and complete the definition of the test (1.3).

The MCS is the key concept that we exploit in this research for the construction of an absolute perfor-

mance model selection procedure that is the subsetM? of the initial model setM0 that with a certain

degree of confidence represents the best sub-group of equivalent models. The MCS (Hansen et al., 2011)

is the subset of best models that have equivalent performance, formally defined as

Definition 1.3.1. The set of superior models is

M? ≡ {Pi ∈M0 : µij ≤ 0, ∀Pj ∈M0} .

From 1.3.1, the set of best models is the subset {Pi} of equivalent models such that any other model in

M0\M? has an inferior expected performance. The characterisation of the property µij ≤ 0, ∀Pj ∈M0

will thus determine the final MCS. Actually, it turns out that methods to construct MCS can be various.

In fact, with the procedure of Hansen et al. (2011), the MCS final property is deduced from an iterative

procedure exploiting the TR,M statistic, instead of the direct analysis of the null hypotheses tij = 0.

On the contrary, in this study we aim at constructing the MCS by actually testing the complete set of

model comparisons and hence extracting the final MCS by the analysis of the testing outcome. In the

following we introduce a plain version of this novel test that isolates the MCS by testing individually the

pairwise comparisons for model superiority. Furthermore, when combining the MCS property with the

generalised MHT in the original contribution provided in this thesis, the MCS is constructed by testing

the full set of pairwise comparisons taking into account the test dependencies and controlling for the

k-FWER. The immediate consequence of the various configurations that the test might display is that

the MCS will not be unique as a result of the statistical rule discriminating the hypotheses about multiple

comparisons. However, we would expect that algorithms selecting the MCS return outputs that entail at

least set inclusion. This is an important property that is explored only empirically, in this research.

In the following we introduce several procedures to obtainM?, as well as the confidence levels entrusted

to the MCS.

1.3.1 The max -MCS

The original idea of the MCS was introduced in Hansen et al. (2011). The implementation of the test

involves an augmentation of the RC / SPA test, combined with a sequential approach that relies on

the Holm (1979) sequence of scalar equivalence tests H0,Mk
: Tk = 0, k = 0, 1, . . . , producing the model

sequenceM0 ⊃M1 ⊃ · · · ⊃ Mk. With reference to the test version we adopt in the empirical application

of this work, the statistic Tk is defined as

TR,Mk
= max

Pi,Pj∈Mk

tij (1.9)
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and involves the calculation of the sample statistics d̄ij = 1
T

∑
t dij,t and their standardised values tij =

d̄ij

/√
1
T

∑
t d

2
ij,t − d̄2

ij . The target statistic (1.9) is the scalar analogue of the multiple hypothesis of

equivalence among the models and, in its maximisation, grants control of the probability of committing

at least one false rejection (the family-wise error rate, cfr. Section 1.2). The test sequence terminates the

first time that the null hypothesis is accepted, that is at min k : |H0,Mk
| = 1. Each time |H0,Mk

| = 0, the

model with the worst target statistic is expelled from the model set Mk. This is the elimination rule.

Concerning the definition of TR,Mk
, it has to be noticed that the version adopted in this work of the test

H0,M based on the statistic (1.9) is not constructed from the absolute value of tij as in the reference

article. In the case of adopting the absolute value of the statistic, the worst and the best relative model

comparisons, say tuv and tvu would produce the same p-value, leaving ambiguity as to which model to

reject at the current step. We represent the general algorithm with the following pseudo-code:

Algorithm max-MCS: Hansen et al.’s MCS (2011)

LetM0 ≡ {Pi}i=1,...,m, k = −1

do

k = k + 1

compute the c(1− α) quantile of the TR,Mk
distribution under H0,Mk

if any tij > c then

Let Pr be the model producing the highest trs

Mk+1 ≡Mk\ {Pr}

endif

while |H0,Mk
| = 0

setM? ≡Mk and stop

The construction of the test is based on the CLT result
√
T (Z̄ − EZ̄)

d−→ N(0,Ω), as T → ∞, with

Z̄
(k)
s = d̄ij , Pi,Pj ∈ Mk and i 6= j, with s = 1, . . . ,mk(mk − 1). For the implementation of the MCS,

we need to structure the equivalence hypothesis among the test comparisons as jointly distributed as a

multivariate normal ξ(k) and then derive the asymptotic distribution for TR,Mk
that corresponds to the

distribution of the maxs ξ
(k)
s . The matrix Ωξ is estimated with a bootstrap technique. A full bootstrap

version of the test can be obtained by centring around the zero the bootstrap distributions of the dij . The

standardisation of the relative performance measures introduces a balancing factor by the homogenisation

of the domain of variation of the target variables, in the sense that if the individual statistics were all

distributed as the standard normal, the same critical value would produce matching confidence at the

individual test level and with respect to the FWER. To define a p-value for this MCS, we indicate with

p̂Mi
the sought value for the max test at step i and eventually the sequence p̂j ≡ maxi≤j p̂Mi

up to

the last model set Mk before the MCS, whereas p̂s, for k < s ≤ m are the p-values of the best models

computed from the max distribution associated withM?, see Hansen et al. (2011) for further discussion

and illustration of the MCS p-value. The MCS test is a powerful tool, which allows one to automatically

select the subset of best performing models, at the same time producing a model ranking as a result of

the elimination sequence.
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1.3.2 The t-MCS

With the second method we present in this study, we introduce the core argument by which novel MCS

tests are constructed. The intuition consists in assembling statistical tests that target the full collection

of pairwise model comparisons, whose outcome is exploited for the identification of the models that are

characterised by the MCS property 1.3.1. The main feature of our alternative tests is that of direct

model performance comparison, whereas in contrast the max -MCS hinges on the equivalence between

the model confrontation and the max statistics. The first contribution we provide is indicated as the

t-MCS, whereby we are inspired by the procedure presented in Corradi and Distaso (2011) and design

two variations of a new plain test of model multiple comparison. An application of the max -MCS and

the t-MCS to market risk model selection is presented in Cummins et al. (2017). From an operational

perspective, the MCS performs a random sequence of model benchmarking, whereby at each iteration

inferior models are rejected until all the surviving models are deemed equivalent. The rejected model set

may include the current benchmark, if inferior to any competitors. The following pseudo-code describes

the algorithm:

Algorithm t-MCS: Corradi et al.’s MCS (2011)

Let k = 0,M0 ≡ {Pi}i=1,...,m, B0 ≡ ∅

do

pick any Pj ∈Mk\Bk
compute the tij , ∀i 6= j

call the relative performance test and let E ≡ {Pu ∈Mk : Pu ≺ Pj}

if there is a Ps ∈Mk : Ps � Pj then

E ≡ E ∪Pj

endif

k = k + 1,Mk ≡Mk−1\E , Bk ≡ Bk−1 ∪Pj

whileMk\Bk 6≡ ∅

setM? ≡Mk and stop

The random benchmarking will generate a unique outcome if the decision rule is independent from the

sequencing. This can be achieved by considering a test statistic and hence critical values that remain

unchanged irrespective of the benchmark picking process. Nonetheless, the randomised sequence is not

strictly necessary for the construction of the test. In fact, if we consider all possible benchmark sequencing

we see that a model belongs to the MCS only if the collection of its expected relative performances are

significantly equivalent or superior to each and every competitor when it is either taken as the benchmark

or it is compared to a benchmark. By the symmetry of the tij ’s, the statistical preference rule that defines

the t-MCS leads to the same result whether the benchmark is Pi or Pj . Therefore, a model will enter

the MCS if and only if no dominant model can be identified. The t-MCS can therefore be simplified by

circulating the benchmark through M0 and rejecting the benchmarks that have at least one dominant

model, allowing the identification of the MCS in one single step. The pseudo-code for this modified

algorithm can be written as:
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Algorithm modified t-MCS

LetM0 ≡ {Pi}i=0,...,m ,B−1 ≡ ∅

for k = 0 to m

compute tik ∀i 6= k

call relative performance test

if there is a Pi ∈M0 : Pi � Pk then

Bk ≡ Bk−1 ∪Pk

else

Bk ≡ Bk−1

endif

endfor

setM? ≡M0\Bm and stop

In contrast to Corradi and Distaso (2011)7, we define the model preference rule by appealing to the CLT

for dependent sequences to construct asymptotic scalar tests for each relative model comparison. The

single fixed critical value Φ−1(1 − α), that is the α-right tail inverse cumulative normal distribution, is

exploited for the individual scalar relative model comparison test. This strategy allows control of the

confidence level for each scalar model comparison, but does not take into account test dependencies,

which are considered with joint model multiple comparison. This MCS test achieves model comparison

by either a random sequence or by a thorough cycle, which are equivalent procedures. As noticed at

the opening of this section, the approach we take with the analysis of the complete collection of model

confrontations is the building block of our alternative test, that in the forthcoming Section 1.3.3 is com-

bined with the generalised MHT framework to derive the novel γ-MCS. The t-MCS designed here, can

be considered as a streamlined version of that one, hinging on independent asymptotic statistics. In

this light, it will be interesting to compare the results of this test with those of the γ-MCS, which, as

presented below, employs the full arsenal of the MHT framework. Refining the t-MCS, we introduce a

ranking system for the MCS, a feature that cannot be produced by the original version of the t-MCS.

For this ranking system, we define the t-MCS p-value by taking the worst expected relative performance

for each model as determined by the bootstrap method and computing the complement of its quantile

on a standard normal distribution. This number represents the probability of committing a false rejec-

tion under the hypothesis of equivalence with its best competitor. Akin to the case of the max -MCS

p-value, the higher our t-MCS p-value the more confidence we have that a model is a member of the MCS.

We finally remark that for the max -MCS and t-MCS experiments pursued in this study, we compute the

sample statistics as bootstrap expectations, in order to render the testing results more robust to small

sample bias.

7 In Corradi and Distaso (2011) the authors chose
√

2 log log T/T , a value that grants what they call a doubly consistent
MCS, that is a model confidence set estimate which contains the “true” MCS with probability one and includes inferior
models with probability zero.
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1.3.3 The γ-MCS

With the t-MCS introduced in the previous subsection, we have provided a test whereby the multitude of

hypotheses of the problem is central. The MCS is achieved with an algorithm employing scalar relative

performance tests. However, as anticipated, a limitation of this new elaboration is the disregard of the

dependency of the hypotheses. In this subsection, this alternative test construction is combined with

the general MHT approach to reconcile the multiple comparison nature of the model selection problem

with the MCS concept obtaining a new statistical test for the selection of the set of the best equivalent

models from a given model set of competitors. The proposed test can be seen as an extension to the

plain t-MCS device, which explores the model selection problem in a complete direct model contrasting,

taking into account the multi-hypothesis nature of the problem. The motivation for constructing an

alternative MCS test that takes into account test dependencies, can be found in the conjecture that the

MCS is not unique. This hypothesis is indirectly explored with the experimental exercises that have been

conducted in this thesis. Concerning the max -MCS, the solution provided exploits the correspondence

between the hypotheses set represented by the sequence H0,Mk
and the multiple hypothesis {Hij}, pro-

viding also control for the FWER. This correspondence, however, holds asymptotically whereas small

sample distributions might not grant that an MCS constructed through the max statistic corresponds

to an MCS constructed with a statistical test exploring the whole combinations of pairwise comparisons

and furthermore controlling for the generalised k-FWER. In this thesis, we will learn through empirical

evidence that the latter conjecture is verified, providing further confirmation that the MCS is not unique

and, indeed, depends on the statistical procedure structuring the model preference ordering.

As an original contribution to the model comparison testing problem, we propose a new version of the

MCS test developed within the MHT approach, which achieves a further level of flexibility by allowing

balancing and strong control of k-FWER. Indeed, the intuition lies in noting that the construction of

the MCS corresponds to the identification of the models that are inferior to no other model. The setup

of the test has been anticipated in Section 1.2 when defining the test in (1.3), which is reproduced here

for the reader’s convenience. The MHT for the identification of the set of equivalent superior models is

structured as follows:

Hij : µij ≥ 0, ∀Pi,Pj ∈M0, i 6= j

which represents the complete set of the hypotheses8 of at least model equivalence to be submitted to the

testing framework. The rejection of the inferior models inM0 would leave the set of equivalent superior

modelsM?. A γ-TPFDP version of the MCS, which is coined γ-MCS, corresponds to the following steps,

as outlined in pseudo-code:

8 It is interesting to notice that the number of hypotheses that the construction of the MCS actually involves is way
larger than the number of modelsm. Therefore, allowing for flexibility in controlling for the k-FWER provides an additional
instrument that permits to raise the tolerance above the model level rather than controlling for the false rejection of individual
model comparisons.
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Algorithm γ-MCS: MCS with MHT controlling for the γ-TPFDP

LetM0 ≡ {Pi}i=0,...,m ,B ≡ ∅

call the γ-TPFDP(α) procedure and

store the joint confidence set C

set B ≡ {Pj ∈M : ∃ at least a Pi such that |Hij | = 0 with cij(1− α) < 0}

setM? ≡M0\B and stop

In practice, the test is essentially made up of two steps: a first step where a γ-TPFDP(α) is run and

inference is jointly drawn about the model Pj ’s equivalence or superiority hypotheses {Hij}, that is the

generalised MHT on the full set of pairwise comparisons are progressively constructed until the loop

breaking condition of the FDP algorithm in Section 1.2.1 is reached9; a second step where the collection

of the outcomes is explored to search for rejection events, whereby the inferior models are identified and

dropped fromM0. The latter step is necessary because the MHT returns hypotheses on the individual

comparisons that must be searched in order to identify those elements that contradict the Definition 1.3.1.

As noticed in Section 1.2 each individual hypothesis is formulated as a right-tailed test, whereby the con-

jecture for the generic statistic tij is “model Pj is at least equivalent to model Pi”. Operationally, we

search for confirmation that the zero is at the left of the right hand boundary of the balance confidence

interval cij(1 − α). Were we to test equivalence10, we should control for the left hand boundary cij(α).

However, our effective target is the identification of the MCS, therefore after the MHT, we only need to

select the rejected hypotheses, which correspond to models that are inferior to at least another element

of M0. The correspondence is one-to-one as we are considering the full set of right-tailed hypotheses,

therefore targeting the model Pj , with the test statistic tij . Finally and to conclude the test, the proce-

dure moves from the test results to the model set B, by collapsing the hypotheses collection to the set of

models that have been rejected at least once. After the latter set has been removed from the initial model

setM0, we are left with the MCS, because the setM∗ does not contain any inferior models, therefore the

survivors must be all equivalent. The model setM∗, obtained as described, thus satisfies the definition

(1.3.1). With the γ-MCS, we are investigating the MCS as the remainder class, once the inferior models

have been eliminated. In fact,M0\B contains equivalent models that are at least equivalent to any other

model inM0. If that was not the case and the final set contained an inferior model, than the procedure

would yield a contradiction. On the other hand, if two models in the remainder were not equivalent then

either of the two would be an inferior model, yielding another contradiction.

Notwithstanding the superior statistical properties of the γ-MCS inherited from the MHT framework

9 If the implemented version requires a k-FWER that is set in advance, the γ-TPFDP loop is discarded and the algorithm
runs directly the MHT with the target number of least amount of tolerated false rejections, with a given probability.

10 The choice of constructing the algorithm by targeting the right hand tails is a programming strategy, whereas an
algorithm considering the (numerically more restricted) set of bidirectional hypotheses and therefore employing hypotheses
such as “models Pi and Pj are equivalent” could be employed, as well. The substantial difference would be that in our
algorithm the distribution of the Jn in (1.6) involves the right tail of tij and its left tail through tji by merging them,
whereas a two-sided test would keep left and right tails of tij distinct and there would not be the need of a tji statistic.
In the latter case though, including the first or the second statistic would affect the distribution of k-min{Jn,j , ∀j} and
k-max{Jn,j , ∀j} and therefore change the outcome of the test, inducing non-uniqueness of the result. Avoiding the latter
issue would entail the inclusion of both hypotheses of equivalence for tij and tji, therefore eliminating the problem of
which sequence of the orientation of the axis of the L’s characterises the set of equivalence. Nonetheless, another problem
arises because under this configuration we would be duplicating the actual test hypotheses and therefore overstructuring the
rejection region. The solution employed for the construction of the γ-MCS entails no ambiguity for the region of rejection
and produces a unique bootstrap distribution of the multivariate statistic.
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which this construction relies upon, this procedure cannot produce either a ranking across the initial

and the rejected model sets, as it lacks an Holm-like sequence as in max -MCS. Exploiting the bootstrap

machinery, we resort to a wider definition of the MCS p-value, which, as opposed to the more conventional

MCS test, is independent from the algorithm that isolates the set of best models. We define the p-value

attached to model i by the γ-MCS as the probability of observing a relative model performance less than

zero, with respect to the probability distribution of the union of the events tij , ∀Pj ∈M? and represents

the probability of observing a superior performance of model i with respect to the model confidence set

M?. We notice that the target value represents the probability of model i to be included within the MCS,

as of the multivariate distribution of the model performance measures, estimated via the bootstrap. The

γ-MCS p-value contrasts with the max -MCS p-value taken out ofMk for model i, which represents the

probability of observing worst performances off the worst performance statistic TR,Mk
, were the models

equivalent and compared at step k. The γ-MCS p-value is also different from the t-MCS p-value attached

to model i, as the latter represents the probability of observing worst performances of the benchmark i,

were it equivalent to its best performer, as identified by the bootstrap expectations. We notice further

that the latter two MCS procedures rely on asymptotic normal results, whereas the γ-MCS hinges on the

balanced bootstrap confidence sets and therefore it is expected to be more robust to non pivotal sample

distribution.

1.4 Thesis Summary

The last few decades have witnessed an increased complexity in the average model employed in the fi-

nancial industry. This complexity is continuing to rise and permeating all aspects of financial decision

making. Complex models are used not only in derivative pricing but are as well employed to measure

and control market risk, investment credit risk, counterparty risk, liquidity risk, and more. The potential

for operational risks resulting from the misuse, or worse from the misunderstanding of the functioning

of, a model is remarkable. In April 2011, the US Board of Governors of the Federal Reserve System

published the Supervisory Guidance on Model Risk Management (SR 11-7), which defines model risk

as the “potential for adverse consequences from decisions based on incorrect or misused model outputs

and reports”, Office of the Comptroller of the Currency (2011, p. 3). SR 11-7 typifies incorrect model

outputs, taking account of all errors at any point from design through to implementation. The European

Banking Authority’s Supervisory Review and Evaluation Process (SREP) requires that model risk be

identified, mapped, tested and reviewed. For this purpose, financial institutions have been structuring

internal model validation units in charge of the whole process of model risk evaluation. Among the many

aspects of model validation, one important step consists of the benchmarking of the chosen model, with

the ultimate objective of ranking the model set according to meaningful model performance measures. In

defining the tasks of model validation in Basel Committee on Banking Supervision (2009, p. 6), the reg-

ulator remarks that the valuation results should be confronted with an “independent benchmark model”.

Within this industry and regulatory context, the studies presented in this thesis would be of particular

interest to financial practitioners. We provide a statistically robust framework whereby model comparison

and hence selection can be performed within a systematised approach, which only requires the definition
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of the target model performance measure. With this thesis, we organise methods for model selection that

reduce the complex task of the comparison and ranking of models to a question of experimental design.

The experimental model selection exercises assembled and performed in this thesis provide new evidence

in applied statistics for finance. Drawing on the suite of methods set out in Section 1.3.1, Section 1.3.2

and Section 1.3.3, we tackle several model selection problems, applying relative model performance MHT,

the MCS and, through our methodological contribution, an MHT version of the MCS. The novel MCS

test allows to control the generalised k-FWER and further the γ-TPFDP. As we concentrate on largely

flexible model selection procedures, the subjects can be varied. We have decided to look at three typical

prototype problems in investment portfolios exposed to market risk, that is the estimation of several

portfolio risk metrics such as the VaR and the ExS, as well as the estimation of the historical and the

risk-neutral measures of widely employed stochastic processes in finance, such as jump-diffusion models.

The choice of these subjects of investigation is mainly related to the background of the author of this

manuscript, who has spent more than a decade working with applied econometrics in the wealth manage-

ment industry. We argue that these problems have an immediate appeal for practitioners. Nonetheless,

this choice is merely discretional as several other applications can be envisaged in the field of applied

econometrics. The following describes the layout of the thesis and sets out the main contributions of

each chapter, while highlighting a range of interesting findings that emerge. The concluding paragraphs

of this section summarise the evidence in relation to the comparison of the testing procedures that have

been implemented in this thesis.

In Chapter 2, we deal with the forecasting of some key measures in market risk management. These

are the value-at-risk and the expected-shortfall. We employ several econometric techniques to construct

market risk forecasting models that are confronted in an exercise similar to that of Bao et al. (2006).

The original contribution of our work lies in the application of generalised MHT and MCS techniques to

market risk forecasting model performance comparison. By means of the MHT framework, we provide

new evidence departing from the results of Bao et al. (2006), while at the same time delivering robust

inference for the identification of the best market risk models. While the MHT based tests from this

chapter have already been published in Esposito and Cummins (2015), post this publication, the analysis

for this chapter has been extended to include the construction of the max -MCS, t-MCS and γ-MCS. The

empirical results that we obtain diverge significantly from the evidence collected in Bao et al. (2006).

The target risk measures are the VaR and ExS forecast on 1-day and 10-day time horizons. We apply

model performance significance tests that are balanced and control for the k-FWER, with the auxiliary

benefit of the statistical power augmentation delivered by the step-down method. The absolute model

performance tests introduced with the MCS concept, have the ability to identify the subset of the best

performing models and produce a model ranking via the p-value measure, providing results that are

more informative than the RC p-value, which in Bao et al. (2006) fails to detect any model superiority

over the benchmark RiskMetrics model. In general, we find that models which account for volatility

mean reversion and fat-tailedness result in the best performance. This result is in contrast with previous

findings and shows that GARCH rolling window parameter estimates introduce high model uncertainty,

inevitably compromising their forecasting performance. The quantile regressions approach is shown to
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perform quite well. Model performance is generally found to be more widespread on longer horizons. The

expected-shortfall at 5% on a 1d horizon seems to be the most difficult to forecast, exhibiting the smallest

MCS. Historical Simulation, which is a common practice approach in industry, performs reasonably, re-

sulting in mid-ranking performance. Risk Metrics, another popular model among practitioners, does not

exhibit a noticeable performance and on the short term horizon enters the MCS only in the value-at-risk

at the 5% level.

In Chapter 3 we approach the problem of time-series estimation of jump-diffusion (JD) models, pro-

ducing experiments involving models of stochastic volatility and state dependent jumps with a latent

single-factor. In an important contribution, we investigate the model aliasing of structurally different

models, whereby model aliasing in our context is the observed behaviour that models, which have dis-

tinct dynamic features, nonetheless produce densities and estimates of the latent factor that are similar

and statistically exchangeable. In the same context, we develop a market data exercise that contributes

with experimental information to works such as Andersen et al. (2002), Chernov et al. (2003), Eraker

et al. (2003), showing, with the support of multiple comparison model selection procedures, that alter-

native models are able to produce superior model performances with parsimonious parametrisation. We

present a novel exercise of model selection applied to likelihood estimation and the latent factor filtering

with a JD model set acting on simulated and financial market data. We uniquely employ MHT and MCS

techniques to produce relative and absolute model performance comparison. Moreover, for estimation

purposes in our JD setting, we extend the second order filtering procedure in Maybeck (1982) to allow

jump components in the system state. The model set we consider contains the popular affine single

factor stochastic volatility model, augmented with a CEV parameter. The affine model is extended with

rare jumps in return under several specifications. The model set is extended with a stochastic intensity

high frequency jump class coupled with a constant volatility diffusion component, representing a non

standard alternative model family. The latter model class is taken into account as an alternative spec-

ification, whereby the volatility clustering is generated by means of mean-reverting stochastic intensity.

Both model families can include a jump in the latent affine factor, generating either stochastic diffu-

sion or stochastic intensity. Under simulated tests, the respective nesting models prove to be able to

produce similar features to one another, with respect to the performance measures. The latter result

reinforces the findings of the empirical exercise, whereby the stochastic intensity family exhibits superior

models in the majority of the tests. The strong conclusions that we are able to make from the analysis

is that there is a redundancy to jumps in volatility when measuring marginalised likelihoods, as well as

a non-significant prevalence of this component with respect to the latent component filtering measures.

The contribution of jumps in volatility appears to be dubious, contrary to the findings of Eraker et al.

(2003) and more in line with the model selection results of Chernov et al. (2003), though our findings are

more explicit than the latter. Secondly, high empirical kurtosis and moderate asymmetry are found to

be prevalent features, that can be captured with both conventional and non conventional models, that is

CEV with jumps as well as stochastic hazard models with high average frequency of jumps, with the latter

class performing slightly better under the filtering measures. Third, our findings point to the redundancy

of mixing both stochastic diffusion and stochastic intensity to model historical equity financial time series.
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Finally, with Chapter 4, we make a unique contribution through channelling, for the first time, the flex-

ibility and robustness of MHT and MCS methods to the problem of derivative pricing, whereby we test

different families of stochastic volatility models augmented with several types of jumps. The battery of

tests allow the comparison of option pricing models with respect to the mean squared pricing errors.

We employ a large sample of S&P 500 index options in our empirical analysis. We contribute to liter-

ature in several directions. We construct model comparison tests with novel MCS techniques targeting

a vast array of option pricing models, the majority of which result from original combinations of jump

and volatility specifications relative to the existing literature. This study provides empirical evidence of

strong aliasing amongst many option pricing models, ranging from high to lower levels of complexity.

This suggests scope for model simplification, which counters the trend in the academic literature towards

ever more complex derivatives pricing models. The model selection procedures we apply provide robust

evidence indicating that the popular single factor affine specification, extended in several directions, is

strongly rejected. Moreover, model augmentation such as jump in volatility, stochastic hazard and the

parametrisation of the elasticity of the diffusion factor are probably excessive complications. A simple

model, such as the correlated exponential volatility diffusion, perform very well in the OTM option sam-

ple, whereas the inclusion of a compensated single directional exponential jump in returns produces one

of the top performances for the ALL option sample.

In the Appendix A we provide technical details regarding the main algorithms developed throughout the

experimental parts and some proofs, whereas the Appendix B presents several algorithms in pseudo-code

that have been used for the experiments.

With respect to a thorough comparison of the flagship tests of this thesis, i.e. our version of the established

MCS test and our novel MHT based MCS, we remark that this task is beyond the scope of this work.

However, here we elaborate further as to why the MHT approach should be preferred. A first important

theoretical reason for our inclination towards the γ-MCS is certainly the lack of control for the generalised

FWER of the method of Hansen et al. As noticed in Romano and Wolf (2007), when the number of

tests in an MHT becomes large, control of the mere FWER becomes too stringent. In fact in the latter

scenario, the possibility of committing at least one false rejection grows to certainty, whereas controlling

at a high confidence level might force the test to accept a larger number of nulls. This reasoning led

the authors to a relaxation of the family-wise error concept, namely, the k-FWER. Another important

theoretical reason for preferring the MHT approach is represented by the concept of strong control of the

FWER as opposed to the weak control, the latter defined as the control of the FWER conditional on the

joint full set of hypotheses being true, whereas the former is referred to the conditioning on any subset

of hypotheses picked from the complete set. It is acknowledged that allowing for strong control might

be revealed as a formidable task. In the seminal paper Romano and Wolf (2005a), the authors point

out that the closure method of Marcus et al. (1976) can be used to construct methods that control the

FWER of the MHT Hi, i ∈ {1, . . . , k}, if we know how to test each intersection hypothesis HK , which

denotes the hypothesis that all Hj are true, with j ∈ K and for any K ⊂ {1, . . . , k}. This method can be

used together with the idealised method of Romano and Wolf (2005a) to construct a stepdown algorithm

that grants strong control of the FWER. From the perspective of this latter work, the MCS algorithm
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of Hansen et al. (2011) can be viewed as an idealised stepdown method, whereby the Tn,i statistics are

the max over all j models loss functions Li,j , for each benchmark model i, and the critical value cn,Ks is

the max statistic at iteration s for the set of surviving models Ks. In their seminal paper Romano and

Wolf point out that, with the purpose of avoiding the construction of 2k− 1 tests and allowing for strong

control, it is possible to construct k-order methods, provided that the theoretical statistic satisfies at

least the subset pivotality condition11 of Westfall and Troendle (2008) or the monotonicity condition12,

which is at the base of their bootstrap and subsampling construction of stepdown methods allowing for

strong control of the simple and generalised FWER. To the best of our knowledge, it is not clear if the

MCS of Hansen et al. (2011) grants for strong control of the FWER13. The latter should be the topic of

more focused future research.

In more practical terms, what we have achieved in this thesis, with regard to the confrontation of the two

MCS methods, is the collection of qualitative evidence. We have encountered diverse circumstances. In

the market risk forecasting exercise of Chapter 2, the model set elements achieve moderately homogeneous

performances, at least on the one day horizon, allowing the max -MCS and the γ-MCS to isolate the

cluster of best models. The MHT based test can furthermore modulate the sensitivity to false rejections

and incrementally reduce the model confidence set, which exhibits sensitivity to this parameter. Higher

tolerance to false discovery shrinks the MCS toward the t-MCS outcome, which in general manifests a

more aggressive outcome, providing a more restricted MCS in the majority of the experiments. When the

model comparison is more ambiguous as in the ten day market risk forecast horizon or in the artificially

generated model aliasing of the jump-diffusion model estimation experiments of Chapter 3, all of the

MCS tests struggle to identify the best model set, although the γ-MCS provides a more informative

model ranking measure, while the t-MCS results in a tighter selection. The latter test might be useful

as a quick diagnostic tool to identify the region containing the candidate best models or in conditions

where it is difficult to distinguish models, the t-MCS might provide a term of comparison for various γ

values in the γ-MCS. The behaviour of the tests in the market data experiment of the jump-diffusion

model estimation exercise presents a condition where all the statistics agree upon the size of the MCS. In

this case, the MCS is pretty much insensitive to the γ-TPFDP controlling parameter. Finally, in the last

chapter, Chapter 4, of this thesis we are confronted with a very large option pricing model set experiment,

whereby the model components are shown to perform very closely to one another. In this exercise, the

ability of the γ-MCS to modulate the result by targeting different k-FWER allows one to focus upon

the set of best performing models, whereas the benchmark test max -MCS is incapable of providing any

screening of the large option pricing model set, failing to reduce the initial set at a 10% confidence level.

This is an interesting outcome that shows the limitations of the max -MCS in the presence of a large model

set and should be connected to the control of the simple FWER, which is revealed to be too stringent is

such a context. A further indication of this relation can be found in the ability of the γ-MCS to restrict

11 The subset pivotality condition states that, heuristically, the statistic joint distribution that is used to test the subset
of true hypothesis is not dependent on the truth or falsehood of the remaining hypotheses.

12 The monotonicity condition is satisfied if the algorithm is such that, given the set J contained in set K, J ⊂ K, then
the critical values produced by the algorithm cn,J and cn,K associated, repectively, with the set J and K, are such that
cn,J ≤ cn,K .

13 It has to be noticed that in Romano and Wolf (2005a), the authors remark that the reality check of White (2000),
which might be seen as a subcomponent of the MCS test, allows for the weak only control of the FWER.
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the final set by relaxing the number of allowed false rejections at the target confidence level. Moreover, as

the MHT based MCS permits the direct testing of the complete set of model comparisons by constructing

specific confidence intervals, a more granular check of the order of precedence is possible, whereby in a

tightly competing model set, several model contrasting measures might be close to the rejection tail and

the triggering of the k-FWER would allow the user to expose these borderline behaviours. A further point

of comparison can be identified in the behaviour of the p-value, that in the case of the max -MCS exhibits

the tendency for a lack of discriminating capacity between the top section of the MCS components. This

feature might be related to a finite sample distribution bias, a characteristic that has not been explored.

Ultimately, the p-value model ranking measure that we construct for our novel test, provides a highly

significant ranking factor that does not produce the counterintuitive result of the max -MCS’s p-value.

1.5 Concluding Remarks

In this chapter we have defined the model selection framework to be used in the applied econometrics

exercises of the following chapters, whereby we have specified the notion of significance of the model

performance, relative and absolute model comparison. In the following chapters we produce statistical

experiments of the latter type. Furthermore, we have introduced the multiple hypothesis testing frame-

work and defined the model confidence set. With respect to the latter concept, we design a MCS test

with the Hansen et al. (2011) approach, the max -MCS and introduce two alternative novel tests, the

t-MCS and the γ-MCS. Both tests hinge on the full collection of the pairwise comparisons of the model

set components. In the first procedure, the test dependencies are disregarded and each model comparison

is dealt with as an individual scalar test hinging on CLT results. With the second procedure, the major

contribution of this chapter, we combine the MCS concept with the arsenal of the MHT approach, pro-

ducing a novel MCS test relying on non pivotal results, which exploit balanced confidence sets and allows

strong control for the k-FWER. In the course of this thesis, the latter innovation provides an important

means of refinement of the initial model set.
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Model Selection of

Market Risk Models

Value-at-Risk, or more simply VaR, has gained popularity among practitioners in the past years

because of the increasing exposure to market risk of large financial companies and financial divisions

of non-financial firms, and mostly because of the ability of this metric to deliver a readable quantity

concerning overall risk borne. This popularity has increased as a result of the many “crises” and large

corporate defaults due to market exposure, which have become more frequent since the early 90’s and

largely publicised by the media. VaR1 is used by risk managers in banks and wealth management compa-

nies to monitor the market risk of large and varied portfolios of financial securities and over-the-counter

products in order to trigger action by the management on the back of the information packed into this

number. This metric summarises the optimistic loss in a worst case scenario, with a given probability on

a certain time horizon. This calculation has also become part of regulatory requirements, e.g., in banking

regulations such as in Europe, whereby it is used to determine the amount of regulatory and economic

1 We keep referring to VaR in this work although we always mean the target quantile of the empirical returns. Nevertheless,
originally, the VaR is defined as a monetary measure that better refers to a consolidated portfolio of asset values rather
than returns. However, it is theoretically easy to switch from one measure to another.
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capital. From an operational point of view, however, VaR in general lacks the important property of

subadditivity, Artzner et al. (1999). Practically, this means that the VaR of a weighted sum of individual

quantities is not equal to the weighted sum of each VaR, hence requiring multiple layers of calculation

when aggregating from subsets to the consolidated portfolio level. This feature led to a shift of focus

towards the alternative risk measure of expected-shortfall (ExS), see Artzner et al. (1999), which holds

the subadditivity property and provides further information: namely, the expected loss in a worst case

scenario, with a given probability on a certain time horizon. This measure represents also a complemen-

tary indicator that accounts for the magnitude of losses exceeding the VaR threshold and draws attention

to the full shape of the tail event distribution.

The statistical testing of risk models is an important step towards assessing the ability of these tools to

provide reliable output and to contribute to the decision-making process hinged on market risk exposure.

From a practitioner perspective, there are serious implications for a financial institution from its choice

of risk model in terms of its overall risk management performance and more importantly its capital ad-

equacy requirements. So for industry, the question of which risk model performs bests in capturing and

forecasting risk exposure is crucial. Historically the first contributions in backtesting the performance

of risk-models are those of Kupiec (1995) and Christoffersen (1998), who construct unconditional and

conditional tests based on the mere sequence of VaR breaches. Thereafter, research focused on specific

issues affecting the VaR prediction ability, such as the time-horizon of the forecast, the inclusion of time-

varying volatility and accounting for fat-tailed distributions generated by volatility clustering and jumps

in returns, see BIS (2011) for a review. On the other hand, backtesting ExS is more problematic due to

the peculiarity of its functional form which in principle requires the estimation of the entire tail distri-

bution. The literature on model prediction of ExS is not as extensive as that on VaR, possibly due to

the latter reason. The main contributions in this field are Berkowitz (2001) and Kerkhof and Melenberg

(2003), who use the probability transform Rosenblatt (1952) to process the data and construct tests of

ExS prediction based, respectively on the likelihood ratio and the δ-functional method Van der Vaart

(1998). Both these works focus on the development of a test for ExS.

In this chapter, we build on the work of Bao et al. (2006) in that we use a similar model set but investi-

gate model predictive ability not only for the VaR but also for the ExS models with respect to different

time horizons and volatility conditions. The main contribution of this work consists of the application

of the MHT framework to the backtesting of market risk measures. We test the statistical significance

of the forecasting performance of a varied set of market risk models, targeting the VaR and the ExS risk

metrics. We design MHT exploiting the empirical coverage probability as the sample statistic for the

VaR, whereas we use the sample shortfall as we develop a new test of significance and model comparison

for the ExS. Moreover, in this thesis, we extend the already published work (Esposito and Cummins,

2015), aiming our sights at the absolute model comparison of market risk forecasting models. Employing

the methodological approach developed in Section 1.1 and Section 1.3, we designed MCS tests of the

market risk absolute model performance hinging on the max -MCS of Hansen et al. (2011), as constructed

in Section 1.3.1, our new t-MCS inspired by Corradi and Distaso (2011), as constructed in Section 1.3.2,
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and the novel γ-MCS, as constructed in Section 1.3.3, settling the MCS in an MHT framework2.

We construct bootstrap MHT of risk model predictive ability, analysing the out-of-sample performance

over 1-day and 10-day time horizons. We extend the investigation to forecasts that target a time hori-

zon wider than a single day, an exercise that might either confirm the predictive power of a model or

highlight situations whereby the forecast deteriorates fast. We also observe the model performance under

stressed market scenarios. The inference procedure is accomplished via a direct measure of the VaR

predictive ability or rather exploiting the idea first popularised by Diebold et al. (1998) and used by

Berkowitz (2001), Kerkhof and Melenberg (2003), Bao et al. (2007), in that we use the probability trans-

form Rosenblatt (1952) to construct statistics which are functionals of the model probability distribution

and thereby indirectly test the data via the probability transformed sample. The battery of tests draws

inference about two aspects of the model forecasting ability. In a first exercise, we construct tests of

statistical significance of the forecasting ability of each model, with reference to the target quantities to

be predicted. The latter can be easily recognised in the VaR forecasting test, whereas in the ExS test

we resort to pre-pivoting to obtain a data domain standardisation and construct a new simple test for

the backtesting of the model predictive ability of the expected-shortfall. With this backtesting exercise,

we estimate confidence sets for the target statistic and derive joint balanced tests which control for the

k-FWER. This experiment also presents an application of the streamlined step-down algorithm, as pre-

sented in Section 1.2.2, a procedure of recursive testing that potentially allows for further rejections,

in an attempt to increase the statistical power of the test. In a second application, we explore model

superiority in market risk forecasting with an absolute model performance test. We derive the max -MCS,

the t-MCS and the γ-MCS.

The chapter is organised as follows. In Section 2.1 we briefly introduce the conditional distribution models

that form the suite of competing market risk forecasting instruments, whereas in Section 2.2 we define

the target risk measures and the sample statistics, further describing the structure of the testing exercise.

The experimental Section 2.3 describes the data set, the modelling approach and discusses the empirical

evidence exhibited. This section also introduces the first application of the MCS tests providing some

examples of the operational characteristics of the model confidence set tests. Section 2.4 concludes.

2.1 The Conditional Distribution Model Set

In this chapter we introduce the components of the market risk forecasting model setM. The output of

the models we are interested in is the conditional probability density forecast delivered by the different

techniques. Although it is sufficient to model just the tail of P to produce the inference that is sought,

in certain cases we will need the full distribution to project the system forward. The model set includes:
2 In a previous version of this analysis, we approach the absolute model comparison by exploring the bootstrap generated

multidimensional distribution of the model performances, measuring the probability that each Li ≤ Lj of pairwise superior-
ity, for each dij . This information is then collated into a synthetic table presenting a model ranking index that represents,
for each model, the number of time this probability is greater than 0.5, providing an instrument for measuring the model
superiority across the model set. In this work we do not present this information as it resemble the results of the absolute
comparison test we are introducing, whereas the statistical properties of the latter approach have been extensively studied
in the literature.
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heuristic models such as the historical simulation (HS), which is a rolling window histogram, a rolling

window Normal model (G) and RiskMetrics (RM)3; a non-parametric model based on a kernel regression

(KR); parametric models such as the autoregressive conditional heteroskedastic model (CH), the quantile

auto-regression model (QR) and several parametric distribution assumptions such as normality, student-t,

generalized error distribution (GED) and the generalised Pareto distribution (GPD).

Historical Simulation

The historical simulation (HS) model consists of a rolling window histogram of the return distribution.

The implicit assumption is that a t-left neighbourhood data sample histogram is a good local estimate of

the conditional distribution Pt. Although this might be acceptable as an estimate of Pt (Xt+ε) , ε > 0,

a model-free approach seems inadequate when ε� 0. Under the i.i.d. assumption, we can compute the

distribution ∆ lags forward with numerical convolution or Monte Carlo integration. This model is the

most widespread in the financial community, because of the ease of implementation and mainly because

it allows one to aggregate easily the many varieties of financial exposures which would otherwise require

the design of an all-inclusive market risk model.

Normal Hypothesis

The classical assumption of the Black-Scholes model is that log-returns are normal. A practical approach

to the estimation of a conditional mean-variance model is the plugging in of a rolling window sample

mean and variance into the normal function to construct a model of Pt (Xt+ε). This model should be

able to capture some momentum and volatility clustering.

RiskMetrics

The RM model, J.P.Morgan (1996), consists of an exponential smoothing of the squared returns, which

is used for a t+ 1 variance proxy. Formally,

ht = θ · ht−1 + (1− θ) · x2
t−1. (2.1)

It was originally designed as a simple alternative to the GARCH model on the observation that the lag

polynomial is often close to the stability condition and the GARCH parameters for financial time series

are not widely different across a large collection of data. It presents the disadvantage that it cannot be

projected forward. As a working template, we use the normal hypothesis to compute projections of the

conditional probability distribution, assuming innovation of the variance proxy at current h.

Kernel Regression

A robust and efficient (but biased) technique to estimate a conditional distribution is to exploit the

kernel regression of Nadaraya-Watson, cfr. Nadaraya (1964), Watson (1964) and Bierens (1987) for

3 The RiskMetrics model is presented as a heuristic model because the model parameter θ is fixed a-priori and we assume
conditional normality to project the system forward.
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several statistical results. Formally,

Ê{y|x} =

∑
j yjKh(x− xj)∑
j Kh(x− xj)

(2.2)

A drawback of this estimator is that it shows high variability when conditioning on values of xt−∆ that

are far away from the centre of gravity of the sample distribution, therefore producing unstable estimates

of the tails. On the other hand, an attractive feature of the KR estimator is that it can generate directly

an estimate of the distribution conditional on any lag; in this case the projection exercise is a direct

output of the estimation function.

Quantile Regression, CAViaR

The quantile regression model, Koenker and Bassett (1978), is a statistical model of empirical percentile.

Basically, it is a parametric model of relations between the explanatory variables and the percentile of

the target variable. In this work, we employ the specification in Engle and Manganelli (2004), which

accounts for autoregressive features of the model quantile. The model has been designed pretty much

for the estimation of an auto-regressive VaR, therefore the epithet of conditional autoregressive VaR,

designated as CAViaR. Formally, letting Xt−1 = {yt−1, . . . , yt−i, . . . }, a quantile auto-regression model

is defined as

yt = f (Xt−1;β) + εθt

= ft (β) + εθt ,

with the auxiliary assumption that the θth-quantile of the εθt distribution is equal to 0. The model

estimation is carried out with the minimisation of the loss function

min
β

1

T

∑
t

(
θ − 1{yt<ft(β)}

)
(yt − ft(β)) (2.3)

which is minimal whenever ft ≡ θ.

In this work we employ four different CAViaR specifications: the adaptive; the symmetric; the asymmet-

ric; and the indirect GARCH. The latter three models are specified as in Engle and Manganelli (2004),

whereas the adaptive CAViaR is defined as

ft = ft−1 +
[
1{yt−1<ft−1} · b1 + 1{yt−1≥ft−1} · b2

]
· (yt−1 − ft−1). (2.4)

For each model, we estimate a quantile regression for the 1st-5th percentiles, in addition to the 7.5% and

10% levels, in order to smooth out the borders of the distribution. Hence, we use those percentiles as

a point-wise tail estimate. The extreme value distribution is assumed to have a linear to higher order

polynomial decay, matching the all-time minimum, with polynomial degree ranging from 1 to 20. In this

exercise we are modelling the tail of the conditional distribution function only. We project the distribution

forward, simply multiplying the knot points, that is the estimated percentiles, by the square root of time.
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GARCH-EVD Models

Financial time series exhibit volatility clustering features and fat tailed distributions. The generalised

autoregressive conditional heteroskedastic models, Engle (1982), Bollerslev (1986), represent the most

successful statistical device in mimicking the evolution of financial time series in the past thirty years.

The GARCH models come in a variety of fashions. However, a GARCH(1,1) does not seem an unrea-

sonable assumption for financial time series, cfr. Hansen and Lunde (2005). In the MHT experiment

we account for modelling time series volatility clustering with conditional heteroskedastic models, and

incorporate asymmetry with exponential or threshold GARCH, cfr. Nelson (1991) and Glosten et al.

(1993). Specifically, we estimate symmetric GARCH models, Engle (1982), Bollerslev (1986)

ht = α0 + α1ε
2
t−1 + β1ht−1 (2.5)

and models capable of producing asymmetric distributions such as the TARCH(1,1) of Glosten et al.

(1993)

ht = α0 +
(
α1 + γ1{εt−1<0}

)
ε2
t−1 + β1ht−1 (2.6)

and the EGARCH(1,1) of Nelson (1991)

log ht = α0 + α1 (|vt−1| −E |vt−1|) + β1 log ht−1, (2.7)

with εt = vt
√
ht.

The stochastic driver vt is such that Evt = 0, Ev2
t = 1 and vt ∼ G(θ), where G(θ) is a parametric

distribution of type normal or student-t. However, it is common knowledge that financial time series

exihibit fat tailed4 distributions, Longin (1996). Further improvement is achieved by augmenting the

model with a piecewise distribution for G(θ). Thereby, we adapt extreme-value distributions to each tail

of the residuals with a quasi-maximum likelihood estimation (QMLE) of the model classes introduced

above, while a conditional normal or GED is estimated for the mid percentiles. In order to parametrise a

GPD for each tail, we exploit the idea in Gonzalo and Olmo (2004) and maximise the Kolmogorov-Smirnov

statistic of the empirical distribution of the exceedances. This approach is different from that taken by Bao

et al. (2006), whereas the threshold is picked at a conventional level. A robust alternative semi-parametric

estimation technique has been proposed in Mancini and Trojani (2011). The described econometric setup

is able to capture the time dependency described by volatility clustering, the asymmetric effect and the

thick tails phenomenon.

2.2 Model Comparison Testing

The design of tests of market risk model forecasting performance requires the determination of the

target risk measures employed with the loss functions L. The target risk measures are the VaR and

4 When we refer to fat-tailedness in this thesis, we refer to model distribution tails that are not exponentially boundend.
High kurtosis, on the other hand, is a measure of the distribution shape that can be referred to as the “peakedness” of the
distribution. The kurtosis might be affected by fat-tailedness.
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the ExS5. In this regard, it is important to notice that in this chapter we refer to the VaR measure as

obtained under the log-transform of the price, which is therefore the corresponding quantile of the return

distribution forecast. Under a monotonic transformation, quantiles are preserved. However, this is not

true for the ExS, which is thus the expected shortfall of the portfolio return, not the value. Formally, let

Ft,∆(x) := Pt (Xt+∆ ≤ x) and define the value-at-risk

VaRt(∆, α) = F−1
t,∆(α) (2.8)

that is the α percentile of the return conditional distribution over the target time horizon ∆, and the

expected-shortfall

ExSt(∆, α) = 1
αEPt

[
Xt+∆1{Xt+∆<VaRt(∆,α)}

]
. (2.9)

that is the return expectation, conditional upon observing values below the VaRt(∆, α). The correspond-

ing sample measures of the quantities defined in (2.8) and (2.9) are either employed in the construction

of simultaneous confidence set for the statistical significance test or enter the loss function defined as the

absolute difference between the realised values and their ex-ante expectations. The type of tests we set

up concern the model forecasting ability of VaR and ExS over 1-day and 10-day time horizons, under low,

high and average volatility conditions. We test the VaR model predictive performance, cfr. Bao et al.

(2006), Kerkhof et al. (2009), using the sample measures of the empirical coverage probability (ECP).

Assuming a sample of T observations, starting from the first datum after the minimum amount of data

needed for the estimation, we define the ECP as

ρ := 1
T−∆+1

T∑
t=∆

1{Xt<VaRt−∆} (2.10)

To obtain tests targeting the expected shortfall, we transform the data with the ∆-step ahead conditional

distribution Pt (xt+∆) to construct the probability transform yt+∆ =
∫ xt+∆

−∞ dPt(s; ∆), obtaining the ran-

dom variable Y that is independent uniformly distributed, cfr. Rosenblatt (1952), Diebold et al. (1998).

Exploiting the sequentially independence property of Y , the latter work derives tests for probability

density forecasting performance whereby the loss function measures the divergence of the transformed

data from the uniform distribution. Building on this approach, several formal methods of testing density

forecasts and applications to financial risk measurement have been designed, based on the likelihood-ratio

test, cfr. Berkowitz (2001), the Kullback-Leiblier information criterion, cfr. Bao et al. (2007) and the

δ-functional method, cfr. Van der Vaart (1998) and Kerkhof and Melenberg (2003). In this study instead,

we apply the probability transform and then derive the sample measure

ρ :=

∑T
t=∆ Yt1{Yt<ν}∑T
t=∆ 1{Yt<ν}

(2.11)

where ν indicates the reference percentile of Y , with respect to the sought shortfall. It is appropriate for

a forecasting model selection exercise defining the loss function Li of model i for the various measures as
5 To be rigorous, see e.g. Kerkhof and Melenberg (2003), the VaRt(∆, α) might have a finite probability (P not sur-

jective) or an interval on X might have 0 probability (P not injective). In the most general definition, VaRt(∆, α) :=

inf {x ∈ R : Pt (Xt+∆ ≤ x) ≥ α} and ExSt(∆, α) :=
EPt [Xt+∆|E ]+[Pt(Ē)−Pt(E)]·VaR∆,α

Pt(Ē)
with E = {Xt+∆ < VaRt(∆, α)}.

However, this extended definition is redundant for operational purposes.
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the distance from the theoretical forecast, that is

Li := |ρi − ρ∗| (2.12)

For reference, the target critical values ρ∗ for the statistics undergoing the testing procedures are sum-

marised in the following scheme:

α = 1% α = 5%

VaRt(∆,α) 0.010 0.050

ExSt(∆,α) 0.005 0.025

In practice, the VaR model forecasting ability test of significance can be obtained referencing to the ECP

as the critical value, whereas the loss function employed in the absolute model performance tests corre-

sponds to the sample distance of the empirical coverage probability (2.10) from the reference quantile

value, either from the transformed or directly from the unprocessed data. On the other hand, testing

the model performance for the ExS forecasting ability, necessarily requires the data transformation in

order to avoid assumptions about the true shortfall value. After the domain standardising probability

transform, expected shortfall forecasting model performance measures can be constructed by comparing

the sample ExS to that of a uniform distribution at the sought confidence level. To our knowledge, this

is the first time that such a test for the expected-shortfall has been devised.

Relative forecasting ability has been first investigated by the seminal work of White (2000), who designs

the Reality Check (RC), a joint statistical inference procedure that extends the methods of Diebold and

Mariano (1995) and West (1996), and which has been in turn extended in several directions, cfr. Hansen

(2005) and Corradi and Swanson (2006). In recent years, several works on risk model backtesting, see

for instance Gonzales-Rivera et al. (2003), Bao et al. (2006), Kerkhof et al. (2009), and density forecast,

cfr. Bao et al. (2007) have used the RC framework to cope with joint testing of model forecasting ability.

This work is different in that we produce an experiment of forecasting performance statistical significance

as defined in (1.1), hinging on the MHT and controls for the k-FWER, which is further refined by a

step-down algorithm B, as the one presented in Section 1.2.2. In the empirical section, we discuss the test

results under several forecast scenarios. To complete the model selection exercise targeting market risk

forecasting measures and employing the algorithms presented, respectively, in Section 1.3.1, Section 1.3.2

and Section 1.3.3, we produce the max-MCS, the t-MCS and the γ-MCS for the ECP and the realised

ExS of the probability transformed data, as described above.

2.3 Experimental Section

2.3.1 Preliminary Considerations

The data set consists of a large sample of a well diversified equity stock index, that is the Dow Jones

Industrial Average index, ranging from December 31st 1970 to April 22nd 2013. We work with log-returns

of the index daily close level series. This large sample allows us to consider at least two comparable

volatility peaks, around October 1987 and October 2008 as well as a high number of volatility waves. To
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perform the backtesting experiment, we split the data sample into in-sample and out-of-sample segments,

assuming size T = R+P , where R indicates the size of the in-sample data used for model estimation and

P indicates the size of the sample used for prediction in the out-of-sample segment. The full sample size

is T = 10, 674. The working assumption here is that there exists stable transition probability distribu-

tions, albeit unknown. We subtract the sample average from the return sub-sample ending on December,

31st 1998, assuming thereon a zero off-set constant. We draw on a large sub-sample for first estimation

and set R = 6, 572, that is we start the out-of-sample exercise on January, 1st 1997 and use the same

parameters for the parametric models throughout 260 observations, after which the model is estimated

again. As a consequence we split the out-of-sample exercise into 16 blocks which are re-sampled 2,000

times with the stationary bootstrap of Politis and Romano (1994b). We choose the sample size such

that we observe sensible smoothing of the statistic distributions. The optimal bootstrap block-length is

estimated on the growing sample base with the Patton et al. (2009) algorithm. We deliberately discard

the rolling-window approach for parametric models like GARCH-EVD and CAViaR because this practice

increases rather than shrinks the forecast variability. For instance, the autoregressive coefficient of the

symmetric GARCH equation exhibits wide variations if resulting from a two-year rolling sample monthly

estimate as opposed to the procedure employed in the experiments consisting of a yearly estimate on a

growing sample basis. For reference, the mentioned rolling-window approach for a symmetric GARCH

model would produce an average autoregressive coefficient of 0.869 with a standard deviation of 0.073 and

a spike at 0.346, whereas the growing sample approach delivered an average coefficient of 0.920 with a

standard deviation of 0.002. We believe that is the main reason for the poor performance of the GARCH

models in, e.g., Kerkhof et al. (2009) and Bao et al. (2006). Hence, in this study we do not include rolling

window versions of the GARCH or CAViaR models, relying on the results of similar models employed

by other authors for reference. The rolling window approach applied to models that are designed to

produce conditional and stationary distributions of the data generating process, is more likely to hurt

their performances by the increased model uncertainty introduced with the parameter variability, rather

than improving their local forecasts. Concerning the estimation risk, we adopt the working hypothesis

that the parameters or the non-parametric estimates are set to their p-limits, due mainly to restrictions

to the currently available computational power. We plan to expand this feature in future experiments

and include estimation risk in the full simulation.

In this empirical study, we generate the sample statistics with resampling from subsamples of 260 days.

There are two reasons for this: firstly to avoid the phenomenon of location bias, Corradi and Swanson

(2007), that is the bias in resampling for recursive problems, whereby earlier observations are used more

frequently than temporally subsequent observations when forming test statistics; and secondly to con-

struct artificial samples with classified volatility, in order to investigate the model performance in different

volatility environments. The average block size for the resampling procedure is computed according to

the Patton et al. (2009) procedure, resulting in a 195 day block size. We construct model predictive

ability measures on 1-day and 10-day projections of the target risk measures, the latter time-horizon

corresponding to 2-weeks of calendar days. The risk measures presented in this report are the empirical

coverage probability, for VaR models, and the realised ExS of the probability transformed sample distri-

butions. However, the analysis has been performed on a slightly larger set of measures, containing the
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empirical loss function and the VaR of the pivoted sample, essentially producing the same results. As

described earlier, the out-of-sample data is divided into 16 blocks of 1 calendar year.6 We investigate the

full out-of-sample performance of the models. Furthermore, we back-test the performance in low / high

volatility scenarios each corresponding to four blocks labelled as L/V and H/V, representing extreme

sample years. The blocks are not necessarily time-contiguous.

Where necessary, the model 1-step and 10-step distributions are constructed via Monte Carlo integration.

In order to consistently reduce the computational time, the GARCH-EVD distributions are constructed

on a grid for the conditioning variable entailing an array of forecast distributions, which is used at run

time by truncating over the prescribed grid the dependency on the current value. The historical simu-

lation is projected forward via Monte Carlo integration. The RiskMetrics distributional assumption is

Gaussian with ht variance. The Kernel regression estimate is constructed in a similar manner as the

GARCH-EVD distributions, that is on a grid for the conditioning variable that is determined on the

historical sample as well. In order to reduce the computational time, the Kernel regression is also kept

fixed until the subsequent estimation. The rolling window models are recalculated daily at time t−1. The

CAViaR equation requires some inventiveness to be employed. As they stand, the quantile regressions

cannot be projected forward or input in the probability transform, because they have naturally been

designed to be free of any distributional assumption. This model is appealing both for the short term

memory quantile feature as well as for the absence of an explicit probability assumption. Nevertheless,

we need a conditional distribution to feed the Rosenblatt functional and construct the ExS backtesting

procedure. Therefore, we proceed by estimating several quantile auto-regressions to construct a linear

approximation of the tail of interest. We need to expand on the inner side in order to avoid polarisation

on the quantile of interest, that is the 5th in this exercise. Meanwhile, on the outer side, we need a

tail assumption to work with. We start joining the all time minimum with the first percentile with a

straight line and then with a (translated and scaled) polynomial of degree 5, 10 and 20. To be sure that

the operation model we are designing produces reasonable results, we ought to prove that the percentile

order is what is expected to be. In this case, we rely on the careful choice of the pivot points, on the

constraint preventing the autoregressive quantiles to cross each other, were that to happen and, of course,

on the empirical evidence. The quantiles are carried forward in time simply multiplying by the square

root of time.

Furthermore, we are also interested in the significance of conditioning in the presence of model misspec-

ification. We include in the model a fully unconditional distribution assumption, based on a dual tail

GPD distribution with constrained normal or GED distribution for the mid quantiles, estimated through

MLE on the base sample. We also consider for the 10-step ahead forecast the unconditional distribution

of the GARCH-EVD models. This distribution is constructed taking the expectation with respect to the

conditioning variable, formally P(X) = EY [P(X|Y )], which corresponds to the k-step unconditional dis-

tribution under the modelling specification. The rationale in testing these models relies on the possibility

that the forecast 10 steps ahead is possibly distorted by the conditioning, firstly because of the speed

of the mean reversion of the volatility, which should be ruled out by the preliminary tests on the model

6 The last block is less than 1 year but the resampled data is let run for a full year.
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parameters significance, but mostly because of possibly a misspecification of the model that might include

unexpected innovations that impact rapidly and significantly the model projections. Tab. 1 provides a

summary of the models and the acronyms that are used in the next section.

2.3.2 Market Data Experiment

In this section, we summarise the empirical evidence obtained from our testing.

With respect to the full sample of the target market risk measures and then the VaR numbers for the L/V

and H/V blocks, Tab. 2 to 5 present the balanced k-FWER confidence sets investigating the statistical

significance of each model market risk forecasts under the MHT paradigm, augmented with the step-down

algorithm. Finally, from 6 to 13 we presents model confidence sets identified by the several algorithms

introduced in Section 1.3, that is the max -MCS, the t-MCS and the γ-MCS. The statistical significance

test tables show the balanced confidence set estimates before the application of the step-down procedure,

while the shaded cells correspond to those models rejected at the termination of the aforementioned

algorithm. Therefore, the greyed cells represents models that exhibit not significant performance for the

corresponding risk metrics. The empty cells are associated to models that have not been employed for the

corresponding risk metrics exercise. These tables also show the bootstrap mean of the target statistic for

each model, which represents the expected model performance. The critical values are applied according

to the following scheme7,

Measure Horizon Confidence k

ECP 1d 99% 3

ECP 10d 95% 4

ExS 1d 99% 4

ExS 10d 95% 5

In Tab. 2 we exhibit the full sample results for the VaR forecasting experiment. Although the MHT for

the empirical coverage probability (ECP) of the VaR(1d, 5%) shows that the HS and the Gaussian models

are significant good predictors, in forecasting VaR(1d, 1%) the class of heteroskedastic models augmented

with EVD deliver superior results, as well as in the former experiment. The KR can surprisingly capture

the 1d first percentile, while being rejected in estimating the fifth percentile: this model generally shows

quite erratic performance. The Nadaraya-Watson kernel is quite sensitive to tail data and so is especially

erratic in the tails; this model could possibly improve its performance slightly if iterating the estimation

daily or using a weighted version of the kernel.8 The CAViaR exhibits the same underestimation effect

(higher empirical coverage) that is visible in the designers’ work Engle and Manganelli (2004), probably

due to finite sample effect. Increasing the sample size reduces the bias effect allowing improved per-

formance. The Student-t type models seem to suffer on the 5th percentile exercise. The unconditional

models DT_n and DT_ged are systematically rejected in the 1d horizon. In the 10d forecasting exercise

the higher variability produces more widespread acceptable model performance, despite having relaxed

the Type I error and the the generalised FWER. The EVD models seem to slightly overestimate the

7 We allow for lower confidence on longer time horizons, because of the increased variability of the statistics, while we
keep the number of false rejections across the tests in the range of 10− 13%.

8 We have run some experiments with the weighted version of this model which did not seem to stabilise the tails.
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quantile over the 10d projection; this might be connected to the necessity for improving the likelihood

optimisation. The good performance of the CH*t_avg model in the VaR(5%,10d) case, whereby this

model is usually affected by critical performance of the higher percentile yet nevertheless performs well

in the longer horizon exercise, seems to suggest that the joint estimation of the GARCH filter and the

tail model may add to predictive power. In fact, this is the only fat-tailed GARCH model which has

been estimated with full MLE. The unconditional GARCH-EVD models are accepted in both experi-

ments and also the DT_* models are significant in the 5th quantile experiment. This performance raises

the question concerning “how far” the conditional distribution is from the stationary one over the projec-

tion horizon. The RM model produces significant forecasts, except in the short time short tail experiment.

Turning to the ExS experiment in Tab. 3, we notice the large number of rejections over the 1d horizon.

Contrary to the common sense intuition, the number of models that pass the test is greater in the smaller

tail. The non-Gaussian heteroskedastic models with fat tail innovations provide statistically significant

predictors for the ExS(1d, 1%), whereas only the symmetric EVD and CH3t are significant at the fifth

percentile. In general, the GARCH-EVD are good predictors on the shorter horizon, whereas they tend to

show slightly biased forecast on the 10d horizon, though still significant. The tail adjustment in the QR

model delivers significant results in several cases for the first percentile exercise. The historical simulation

proves to be an acceptable choice on the short term horizon and for ExS(10d, 5%), while it fails on the

far tail at the long horizon. The 10d horizon exercise shows again more wide spread significant results in

the longer tail forecast, whereas in the small tail experiment only a few models outside the CH class can

deliver significant results. We exclude unconditional models from the ExS forecasting model suite, which

basically produce the same conclusions as the VaR experiment.

In a stress test experiment, we evaluate the significance of the VaR predictive ability of the model battery

in a controlled volatility environment characterised by low (L/V) and high (H/V) volatility, respectively

shown in Tab. 4 and Tab. 5. The general result is that Gaussian models tend to outperform with low

volatility, while the GARCH-EVD class, mimicking more probability distribution characteristics, outper-

form almost systematically. In the low volatility scenario the RM can also deliver significant results.

To conclude this empirical section as well as this chapter about market risk forecasting model selection,

we introduce a first application of the main instrument for assessing model comparison that is among

the objectives of this work. In the Tab. 6 to 13 we present the model confidence sets for the market risk

forecasting models that are estimated with the max -MCS test exploiting the approach of Hansen et al.

(2011), the t-MCS inspired to the remark in Corradi and Distaso (2011) and the novel γ-MCS algorithm,

developed in Section 1.3.3 and exploiting the MHT approach presented in Section 1.2. The latter results

involving the max -MCS and the t-MCS are presented in Cummins et al. (2017). The MCS test exhibits

the appealing characteristic of the automatic partitioning of the model set between superior and inferior

models, at the same time providing a ranking across the model set. With other approaches involving

the analysis of the model performance significance or the recursive relative performance benchmarking,

this exercise involves partially subjective judgement. Although showing set inclusion, the exercise of this

chapter and the several other MCS tests of this thesis, differ in the structure of the test, in the way they
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consider test dependencies and in targeting finite sample distributions. Despite the fact that a comparison

of the MCS algorithms is beyond the scope of this thesis at the moment, we present the outcome of these

techniques concurrently as they quite resemble gradations of the same concept. As the data analysis

proceeds however, some form of qualitative comparison of the several MCS procedures will emerge. In

this respect, it seems evident that the t-MCS is quite aggressive, as a result of the lack of consideration

for the test dependencies. The max -MCS and the γ-MCS produce similar results although the TPFDP

control mechanism embedded in the latter provides a trigger to modulate the tolerance for false rejec-

tions and hence produce a further skimming across the subset of best performing models. In our study,

the focus of the empirical application of MCS techniques remains on the cut-off they produce onM, di-

viding the model set into inferior and equivalently superior models as well as the generated model ranking.

Concerning the application of MCS tests to the market risk forecasting models discussed so far, we

produce VaR and ExS model confidence sets for the full sample with the max -MCS, the t-MCS and the

γ-MCS algorithm with γ = 10% and γ = 50%. In general, the results look similar for the MCS that

have been applied, whereby the t-MCS tend to reject slightly more models most of the times, whereas

the γ-MCS sometimes allows to modulate the result between the max -MCS and the t-MCS. The MCS

allows model selection and model ranking. Concerning the latter concept, the experiment reveals the

intricacies we face when coping with a multiplicity of dependent tests. The models at the border between

the γ-MCS and the subset of the rejected models are not necessarily ordered if taken together as the

probability of observing superior performances of the first rejected model, for instance, might be quite

high. The definition of MCS only demands that if a model is rejected there exist at least one other model

which is superior to it, whereas if the statistical preference rule ascertain that it is superior or at most

equivalent to any other model, the model enters the MCS, despite its probability of observing superior

performance upon the union of the counted events might be lower than a rejected model. The definition of

MCS requires that only models that are never rejected are considered superior, whereas it might happen

that a rejected model might exhibit the probability of being superior to any of the models of the MCS

that is actually larger than the worst component of the MCS. This phenomenon though, seems to happen

only in a neighbourhood of the MCS border. Turning to the experimental results, we notice that, in

general, models producing non-significant performances do not enter the model confidence set, which is

an expected outcome, which is an expected outcome. As for the most distinctive results, we notice the

performance of the CH1 models with EVD extensions, which are persistently among the top models and

produce significant forecasts for all the measures and across all the scenarios, with the only exception

being the L/V environment, whereby all the models perform poorly with the exception of the RM. On

the short term horizon, the heteroskedastic models with fat tails are among the best performers. In the

case of the VaR(1d,5%) the CH*g enters the MCS as well, indicating that volatility clustering matters

more than fat-tailedness around this percentile. The HS model performs well on short horizons, whereby

it is included within the MCS with a central or a borderline ranking most of the time. The RM model

performs well only in the case of the five percentile VaR, whereas the best model for the ExS(1d,1%) is

the augmented CAViaR with 10-th degree polynomial tail. Over the longer horizon, the model confidence

set is more ample, confirming a larger variability of the model performances. It is interesting to notice

under this configuration that the max -MCS can hardly produce a ranking among the best model set, a
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fact which is reflected by the low variability of the p-values of the top performers in the γ-MCS. The

QR and the unconditional heteroskedastic models perform well in forecasting the expected-shortfall on

a bi-weekly horizon, whereas a VaR(2w,5%) can easily be captured by a Gaussian rolling window or by

a RM model. The latter is the only scenario whereby unconditional DT models perform decently. The

first percentile requires slightly more sophisticated models, although virtually all the models can produce

statistically equivalent performances.

2.4 Concluding Remarks

In this chapter, we apply the model selection paradigm proposed in this thesis to market risk forecasting

models and extend the exercise carried out in Bao et al. (2006) by means of testing the statistical signifi-

cance of the performance of a suite of models in forecasting 1-day and 10-day VaR and ExS with an MHT

methodology. With the latter set of experiments we present a new simple test for the expected-shortfall,

building on the probability transform. We further complement previous work (Esposito and Cummins,

2015) by introducing a first application of the model confidence set test under several specifications. The

exercise prompts the discussion to focus on several operational aspects of the various MCS algorithms

exploited here and in the rest of this work. We believe the model selection approach assembled in this

research to be particularly appealing to practitioners, due to the fact that it allows one to design robust

model comparison tests, which can easily accommodate decision-making problems in financial economet-

rics.

The empirical results that we obtain diverge significantly from previous evidence. We have used more

stable parameters for the GARCH models and optimised the estimates of the thresholds for the GPD.

Furthermore, we apply model performance significance tests that are balanced and control for the k-

FWER, with the auxiliary benefit of the statistical power augmentation delivered by the step-down

method. The absolute model performance tests introduced with the MCS concept, have the ability to

identify the subset of the best performing models and produce a model ranking via the p-value measure,

providing results that are more informative than the RC p-value, which in Bao et al. (2006) fails to detect

any model superiority over the benchmark RiskMetrics. The experimental results of the latter article

are extended and improved as we provide a test of significance of the target model performances within

the MHT framework, we improve the performance of the filtered models with a more efficient estimation

procedure that yields superior models as detected by the MCS procedures, which confirm and strengthen

the experimental outcomes in Esposito and Cummins (2015). These tests exploited for the market risk

model selection exercise, are capable of the automatic selection and the ranking of the model competitors,

some features that cannot be achieved with a simple RC benchmarking test. We have compared the

forecasting ability of several models with respect to different performance measures. In general, models

which account for volatility mean reversion and fat-tailedness result in the best performance. This result is

in contrast with previous findings and shows that GARCH rolling window parameter estimates introduce

high model uncertainty, inevitably compromising their forecasting performance. On the contrary, we

have found that several specifications of the GARCH model are among the top performers. The quantile

regressions also perform quite well, in forecasting the 1% ExS on the 1d and 2w horizons, as well as the
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5% ExS on the 2w horizons, which are all surprising results as the QR model has been extended for use

in the ExS forecasting and forward projection in a practitioner manner. In this regard, the underlying

hypothesis, which is adopted as a rule of thumb, is such that the distributional quantiles, which are

referred to for the estimation of the ExS in the QR model, preserve their relative position with respect

to the distributional domain, which is supposed to grow by the square root of time, as time elapses. The

model performance is more widespread on longer horizons. The expected-shortfall at 5% on a 1d horizon

seems to be the most difficult to forecast, exhibiting the smallest MCS. The Historical Simulation method

also performs reasonably, resulting in mid-ranking performance. Risk Metrics, another popular model

among practitioners, does not exhibit a noticeable performance and on the short term horizon enters the

MCS only in the VaR at the 5% level.
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Name Model
CH1g Gaussian GARCH(1,1)
CH1t Student-t GARCH(1,1)
CH1x_n GARCH(1,1) with ε ∼ dual GPD tailed and normal mid-quantile
CH1x_ged GARCH(1,1) with ε ∼ dual GPD tailed and GED mid-quantile
CH2g Gaussian TARCH(1,1)
CH2t Student-t TARCH(1,1)
CH2x_n TARCH(1,1) with ε ∼ dual GPD tailed and normal mid-quantile
CH2x_ged TARCH(1,1) with ε ∼ dual GPD tailed and GED mid-quantile
CH3g Gaussian EGARCH(1,1)
CH3t Student-t EGARCH(1,1)
CH3x_n EGARCH(1,1) with ε ∼ dual GPD tailed and normal mid-quantile
CH3x_ged EGARCH(1,1) with ε ∼ dual GPD tailed and GED mid-quantile
CH1g_avg Unconditional Gaussian GARCH(1,1)
CH1t_avg Unconditional Student-t GARCH(1,1)
CH1x_n_avg Unconditional GARCH(1,1) with ε ∼ dual GPD tailed and normal mid-quantile
CH1x_ged_avg Unconditional GARCH(1,1) with ε ∼ dual GPD tailed and GED mid-quantile
CH2g_avg Unconditional Gaussian TARCH(1,1)
CH2t_avg Unconditional Student-t TARCH(1,1)
CH2x_n_avg Unconditional TARCH(1,1) with ε ∼ dual GPD tailed and normal mid-quantile
CH2x_ged_avg Unconditional TARCH(1,1) with ε ∼ dual GPD tailed and GED mid-quantile
CH3g_avg Unconditional Gaussian EGARCH(1,1)
CH3t_avg Unconditional Student-t EGARCH(1,1)
CH3x_n_avg Unconditional EGARCH(1,1) with ε ∼ dual GPD tailed and normal mid-quantile
CH3x_ged_avg Unconditional EGARCH(1,1) with ε ∼ dual GPD tailed and GED mid-quantile
DT_n Unconditional dual GPD tailed and normal mid-quantile
DT_ged Unconditional dual GPD tailed and GED mid-quantile
G0 2 years rolling window Gaussian with 0 mean
Gm 2 years rolling window Gaussian
HS 2 years rolling window Histogram
KR Kernel Regression
RM RiskMetrics
QR1 Adaptive CAViaR
QR1_005 Adaptive CAViaR with 5 degree rational tail
QR1_010 Adaptive CAViaR with 10 degree rational tail
QR1_020 Adaptive CAViaR with 20 degree rational tail
QR2 Symmetric CAViaR
QR2_005 Symmetric CAViaR with 5 degree rational tail
QR2_010 Symmetric CAViaR with 10 degree rational tail
QR2_020 Symmetric CAViaR with 20 degree rational tail
QR3 Asymmetric CAViaR
QR3_005 Asymmetric CAViaR with 5 degree rational tail
QR3_010 Asymmetric CAViaR with 10 degree rational tail
QR3_020 Asymmetric CAViaR with 20 degree rational tail
QR4 GARCH Indirect CAViaR
QR4_005 GARCH Indirect CAViaR with 5 degree rational tail
QR4_010 GARCH Indirect CAViaR with 10 degree rational tail
QR4_020 GARCH Indirect CAViaR with 20 degree rational tail

Table 1: VaR and ExS Forecasting Models.
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VaR 1% 1d VaR 5% 1d VaR 1% 10d VaR 5% 10d
Conf. Set mean Conf. Set mean Conf. Set mean Conf. Set mean

CH1g 0.0146 0.0247 0.0194 0.0434 0.0595 0.0514 0.0052 0.0221 0.0125 0.0298 0.0617 0.0452
CH1t 0.0046 0.0114 0.0076 0.0292 0.0441 0.0367 0.0009 0.0115 0.0053 0.0152 0.0386 0.0263
CH1x_n 0.0075 0.0148 0.0108 0.0448 0.0605 0.0528 0.0026 0.0164 0.0086 0.0238 0.0528 0.0378
CH1x_ged 0.0075 0.0148 0.0108 0.0448 0.0605 0.0528 0.0026 0.0164 0.0086 0.0238 0.0528 0.0378
CH2g 0.0160 0.0254 0.0204 0.0458 0.0603 0.0532 0.0044 0.0194 0.0110 0.0297 0.0587 0.0439
CH2t 0.0053 0.0119 0.0083 0.0318 0.0454 0.0382 0.0006 0.0104 0.0047 0.0153 0.0373 0.0259
CH2x_n 0.0084 0.0154 0.0118 0.0497 0.0643 0.0569 0.0024 0.0149 0.0078 0.0251 0.0522 0.0384
CH2x_ged 0.0084 0.0154 0.0118 0.0497 0.0643 0.0569 0.0024 0.0149 0.0078 0.0251 0.0522 0.0384
CH3g 0.0173 0.0281 0.0224 0.0491 0.0640 0.0565 0.0047 0.0197 0.0114 0.0306 0.0615 0.0456
CH3t 0.0076 0.0148 0.0111 0.0380 0.0519 0.0449 0.0016 0.0131 0.0065 0.0200 0.0452 0.0321
CH3x_n 0.0097 0.0178 0.0136 0.0530 0.0688 0.0609 0.0031 0.0162 0.0089 0.0275 0.0567 0.0415
CH3x_ged 0.0097 0.0178 0.0136 0.0530 0.0688 0.0609 0.0031 0.0162 0.0089 0.0276 0.0566 0.0415
CH1g_avg - - - - - - 0.0103 0.0356 0.0219 0.0489 0.0911 0.0694
CH1t_avg - - - - - - 0.0041 0.0237 0.0126 0.0311 0.0666 0.0481
CH1x_n_avg - - - - - - 0.0070 0.0294 0.0169 0.0405 0.0803 0.0599
CH1x_ged_avg - - - - - - 0.0068 0.0293 0.0169 0.0407 0.0803 0.0598
CH2g_avg - - - - - - 0.0089 0.0327 0.0196 0.0469 0.0882 0.0669
CH2t_avg - - - - - - 0.0031 0.0219 0.0110 0.0303 0.0651 0.0470
CH2x_n_avg - - - - - - 0.0060 0.0282 0.0157 0.0405 0.0800 0.0596
CH2x_ged_avg - - - - - - 0.0060 0.0282 0.0157 0.0406 0.0803 0.0597
CH3g_avg - - - - - - 0.0085 0.0323 0.0194 0.0447 0.0854 0.0640
CH3t_avg - - - - - - 0.0042 0.0239 0.0126 0.0309 0.0663 0.0479
CH3x_n_avg - - - - - - 0.0063 0.0287 0.0162 0.0400 0.0794 0.0589
CH3x_ged_avg - - - - - - 0.0063 0.0287 0.0162 0.0400 0.0794 0.0590
DT_n 0.0112 0.0245 0.0176 0.0572 0.0826 0.0702 0.0101 0.0351 0.0215 0.0333 0.0697 0.0506
DT_ged 0.0112 0.0245 0.0176 0.0572 0.0826 0.0702 0.0100 0.0351 0.0215 0.0333 0.0697 0.0506
G0 0.0168 0.0297 0.0234 0.0440 0.0643 0.0542 0.0101 0.0330 0.0204 0.0334 0.0697 0.0511
Gm 0.0181 0.0305 0.0243 0.0460 0.0655 0.0560 0.0127 0.0353 0.0234 0.0418 0.0752 0.0587
HS 0.0102 0.0184 0.0141 0.0472 0.0644 0.0564 0.0107 0.0307 0.0201 0.0388 0.0712 0.0548
KR 0.0097 0.0198 0.0146 0.0171 0.0316 0.0245 0.0117 0.0332 0.0218 0.0482 0.0859 0.0666
RM 0.0143 0.0240 0.0192 0.0460 0.0628 0.0547 0.0068 0.0255 0.0153 0.0320 0.0636 0.0470
QR1 0.0135 0.0233 0.0181 0.0551 0.0722 0.0634 0.0074 0.0237 0.0150 0.0396 0.0700 0.0541
QR2 0.0133 0.0242 0.0183 0.0512 0.0689 0.0605 0.0069 0.0256 0.0152 0.0370 0.0719 0.0540
QR3 0.0145 0.0247 0.0196 0.0585 0.0739 0.0658 0.0089 0.0269 0.0172 0.0431 0.0769 0.0603
QR4 0.0163 0.0286 0.0225 0.0559 0.0755 0.0665 0.0096 0.0333 0.0209 0.0429 0.0813 0.0611

Table 2: VaR MHT. MHT with 1% 3-FWER for ECP and MHT with 5% 4-FWER for ECP. The table contains
balanced confidence sets, with control of the generalised family-wise error rate. The grey shaded cells indicate model
performance significance which have been rejected during the step-down algorithm. The performance of the CH1x_*
models is remarkable, as it is consistent throughout the experiment, a result that is persistent for the ExS metric and
in the majority of the stressed scenarios. The remaining heteroskedastic models produce relevant performances with
some rejections. The unconditional heteroskedastic models CH**_avg all produce significant 2w forecast performance,
a result that indicates that “on average” we could disregard conditioning, although it is evident from the stressed
scenarios’ results of this type of models that this strategy might incur into frequent errors. The performance of the
remaining models is in general not significant.
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ExS 1% 1d ExS 5% 1d ExS 1% 10d ExS 5% 10d
Conf. Set mean Conf. Set mean Conf. Set mean Conf. Set mean

CH1g 0.0004 0.0027 0.0013 0.0144 0.0253 0.0196 0.0007 0.0093 0.0034 0.0152 0.0401 0.0262
CH1t 0.0038 0.0099 0.0066 0.0281 0.0399 0.0339 0.0031 0.0225 0.0106 0.0308 0.0659 0.0471
CH1x_n 0.0029 0.0069 0.0048 0.0193 0.0267 0.0228 0.0017 0.0142 0.0062 0.0207 0.0489 0.0333
CH1x_ged 0.0029 0.0069 0.0048 0.0193 0.0267 0.0228 0.0017 0.0142 0.0062 0.0207 0.0489 0.0333
CH2g 0.0003 0.0024 0.0011 0.0142 0.0230 0.0185 0.001 0.0103 0.0043 0.0173 0.0404 0.0277
CH2t 0.0034 0.009 0.0059 0.0277 0.0380 0.0326 0.0039 0.0235 0.0118 0.0324 0.0649 0.0476
CH2x_n 0.0028 0.0065 0.0044 0.0180 0.0245 0.0211 0.0023 0.0144 0.007 0.0219 0.0468 0.0333
CH2x_ged 0.0028 0.0065 0.0044 0.0180 0.0245 0.0211 0.0023 0.0144 0.007 0.0219 0.0468 0.0333
CH3g 0.0002 0.0019 0.0008 0.0120 0.0210 0.0163 0.0009 0.0101 0.0041 0.0165 0.0398 0.0267
CH3t 0.0023 0.0066 0.0043 0.0226 0.0311 0.0267 0.0025 0.0179 0.0083 0.0259 0.0557 0.0394
CH3x_n 0.0023 0.0057 0.0038 0.0159 0.0225 0.0191 0.0018 0.0132 0.006 0.0197 0.0443 0.0306
CH3x_ged 0.0023 0.0057 0.0038 0.0159 0.0225 0.0191 0.0018 0.0132 0.006 0.0197 0.0443 0.0305
DT_n 0.0007 0.0046 0.0020 0.0112 0.0202 0.0151 0.0001 0.0045 0.0009 0.0074 0.0349 0.0187
DT_ged 0.0007 0.0046 0.0020 0.0112 0.0202 0.0151 0.0001 0.0045 0.0009 0.0074 0.0349 0.0187
G0 0.0000 0.0009 0.0003 0.0105 0.0226 0.0154 0.0000 0.0039 0.0008 0.0083 0.0345 0.0188
Gm 0.0000 0.0008 0.0002 0.0099 0.0205 0.0143 0.0000 0.0027 0.0006 0.0068 0.0261 0.0147
HS 0.0032 0.006 0.0045 0.0183 0.0252 0.0215 0.0007 0.0045 0.0018 0.0101 0.0309 0.0184
KR 0.0000 0.0025 0.0003 0.0354 0.0626 0.0480 0.0002 0.0033 0.0011 0.0073 0.0231 0.0139
RM 0.0003 0.0021 0.0009 0.0132 0.0225 0.0176 0.0002 0.0067 0.002 0.0126 0.0377 0.0236
QR1 0.0091 0.0096 0.0093 0.0156 0.0221 0.0185 0.0090 0.0105 0.0096 0.0153 0.0334 0.0229
QR1_005 0.0065 0.0081 0.0073 0.0151 0.0216 0.0180 0.0063 0.0098 0.0080 0.0147 0.0332 0.0225
QR1_010 0.0046 0.0067 0.0057 0.0147 0.0212 0.0176 0.0043 0.0092 0.0066 0.0142 0.033 0.0222
QR1_020 0.0027 0.005 0.0038 0.0141 0.0207 0.0171 0.0021 0.0084 0.0049 0.0135 0.0329 0.0218
QR2 0.0090 0.0096 0.0094 0.0165 0.0245 0.0203 0.0090 0.0110 0.0096 0.0159 0.0363 0.0244
QR2_005 0.0063 0.0084 0.0074 0.0160 0.0242 0.0198 0.0061 0.0105 0.0080 0.0152 0.0362 0.0241
QR2_010 0.0044 0.0072 0.0058 0.0156 0.0239 0.0195 0.004 0.0099 0.0065 0.0146 0.036 0.0237
QR2_020 0.0024 0.0057 0.0039 0.0150 0.0236 0.0190 0.0019 0.0091 0.0048 0.0138 0.0358 0.0233
QR3 0.0091 0.0096 0.0094 0.0157 0.0221 0.0187 0.0090 0.0100 0.0095 0.0148 0.0309 0.0216
QR3_005 0.0064 0.0083 0.0074 0.0152 0.0217 0.0182 0.0061 0.0093 0.0078 0.0141 0.0307 0.0212
QR3_010 0.0045 0.007 0.0058 0.0147 0.0214 0.0178 0.004 0.0085 0.0062 0.0135 0.0306 0.0208
QR3_020 0.0025 0.0054 0.0038 0.0140 0.0210 0.0173 0.0019 0.0075 0.0044 0.0126 0.0304 0.0203
QR4 0.0088 0.0095 0.0091 0.0130 0.0205 0.0160 0.0087 0.0098 0.0093 0.0118 0.0298 0.0188
QR4_005 0.0055 0.0077 0.0066 0.0122 0.0200 0.0154 0.0052 0.0089 0.0071 0.0109 0.0295 0.0182
QR4_010 0.0033 0.0061 0.0046 0.0115 0.0196 0.0148 0.003 0.008 0.0053 0.01 0.0292 0.0177
QR4_020 0.0014 0.0045 0.0025 0.0107 0.0192 0.0142 0.0011 0.0067 0.0033 0.0089 0.029 0.0171

Table 3: ExS MHT. MHT with 1% 4-FWER for ExS and MHT with 5% 5-FWER for ExS. The table contains
balanced confidence sets, with control of the generalised family-wise error rate. The grey shaded cells indicate
model performance significance which have been rejected during the step-down algorithm. With respect to the ExS
forecasting experiment, the only result that stands out is the performance of the CH1x_* models, whereas the
remaining models produce non persistent results.



45 CHAPTER 2. MODEL SELECTION OF MARKET RISK MODELS

VaR 1% 1d VaR 5% 1d VaR 1% 10d VaR 5% 10d
Conf. Set mean Conf. Set mean Conf. Set mean Conf. Set mean

CH1g 0.0041 0.0215 0.0120 0.0180 0.0479 0.0317 0.0000 0.0119 0.0030 0.0053 0.0481 0.0227
CH1t 0.0000 0.0101 0.0039 0.0094 0.0345 0.0210 0.0000 0.0081 0.0008 0.0005 0.0303 0.0118
CH1x_n 0.0004 0.0132 0.0060 0.0197 0.0490 0.0335 0.0000 0.0105 0.0016 0.0029 0.0400 0.0178
CH1x_ged 0.0004 0.0132 0.0060 0.0197 0.0490 0.0335 0.0000 0.0105 0.0016 0.0029 0.0400 0.0178
CH2g 0.0042 0.0202 0.0117 0.0177 0.0446 0.0308 0.0000 0.0114 0.0021 0.0046 0.0420 0.0201
CH2t 0.0000 0.0107 0.0044 0.0114 0.0346 0.0223 0.0000 0.0071 0.0006 0.0003 0.0280 0.0111
CH2x_n 0.0007 0.0130 0.0060 0.0199 0.0471 0.0334 0.0000 0.0084 0.0011 0.0025 0.0359 0.0161
CH2x_ged 0.0007 0.0130 0.0060 0.0199 0.0471 0.0334 0.0000 0.0084 0.0011 0.0025 0.0359 0.0161
CH3g 0.0054 0.0225 0.0132 0.0202 0.0498 0.0334 0.0000 0.0112 0.0029 0.0053 0.0449 0.0219
CH3t 0.0011 0.0148 0.0067 0.0154 0.0410 0.0270 0.0000 0.0101 0.0015 0.0025 0.0359 0.0159
CH3x_n 0.0017 0.0156 0.0076 0.0250 0.0510 0.0375 0.0000 0.0113 0.0020 0.0039 0.0413 0.0192
CH3x_ged 0.0017 0.0156 0.0076 0.0250 0.0510 0.0375 0.0000 0.0113 0.0020 0.0039 0.0413 0.0192
CH1g_avg - - - - - - 0.0000 0.0032 0.0001 0.0000 0.0190 0.0053
CH1t_avg - - - - - - 0.0000 0.0000 0.0000 0.0000 0.0088 0.0014
CH1x_n_avg - - - - - - 0.0000 0.0011 0.0000 0.0000 0.0135 0.0030
CH1x_ged_avg - - - - - - 0.0000 0.0011 0.0000 0.0000 0.0135 0.0030
CH2g_avg - - - - - - 0.0000 0.0017 0.0000 0.0000 0.0170 0.0046
CH2t_avg - - - - - - 0.0000 0.0000 0.0000 0.0000 0.0084 0.0012
CH2x_n_avg - - - - - - 0.0000 0.0004 0.0000 0.0000 0.0125 0.0026
CH2x_ged_avg - - - - - - 0.0000 0.0004 0.0000 0.0000 0.0125 0.0026
CH3g_avg - - - - - - 0.0000 0.0016 0.0000 0.0000 0.0149 0.0036
CH3t_avg - - - - - - 0.0000 0.0000 0.0000 0.0000 0.0088 0.0014
CH3x_n_avg - - - - - - 0.0000 0.0008 0.0000 0.0000 0.0127 0.0027
CH3x_ged_avg - - - - - - 0.0000 0.0008 0.0000 0.0000 0.0127 0.0027
DT_n 0.0000 0.0047 0.0010 0.0019 0.0215 0.0104 0.0000 0.0032 0.0001 0.0000 0.0095 0.0016
DT_ged 0.0000 0.0047 0.0010 0.0019 0.0215 0.0104 0.0000 0.0032 0.0001 0.0000 0.0095 0.0016
G0 0.0014 0.0181 0.0081 0.0115 0.0403 0.0256 0.0000 0.0163 0.0044 0.0022 0.0442 0.0191
Gm 0.0015 0.0181 0.0084 0.0126 0.0426 0.0274 0.0004 0.0196 0.0064 0.0066 0.0531 0.0261
HS 0.0012 0.0127 0.0065 0.0128 0.0409 0.0267 0.0000 0.0173 0.0056 0.0056 0.0496 0.0242
KR 0.0000 0.0047 0.0010 0.0000 0.0044 0.0010 0.0000 0.0044 0.0002 0.0000 0.0223 0.0079
RM 0.0066 0.0263 0.0158 0.0348 0.0649 0.0491 0.0026 0.0259 0.0103 0.0162 0.0656 0.0386
QR1 0.0039 0.0185 0.0103 0.0506 0.0825 0.0654 0.0008 0.0199 0.0066 0.0275 0.0779 0.0508
QR2 0.0012 0.0163 0.0079 0.0183 0.0496 0.0335 0.0000 0.0125 0.0032 0.0073 0.0560 0.0273
QR3 0.0010 0.0141 0.0066 0.0218 0.0518 0.0356 0.0000 0.0122 0.0025 0.0127 0.0517 0.0306
QR4 0.0000 0.0056 0.0013 0.0096 0.0363 0.0224 0.0000 0.0057 0.0003 0.0022 0.0393 0.0169

Table 4: L/V VaR MHT. L/V MHT with 1% 3-FWER for ECP and L/V MHT with 5% 4-FWER for ECP. The
table contains balanced confidence sets, with control of the generalised family-wise error rate. The grey shaded cells
indicate model performance significance which have been rejected during the step-down algorithm. The low volatility
scenario is the only environment where the CH1x_* models do not produce significant performances, whereas the
only model that performs well under this volatility condition is the RM.
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VaR 1% 1d VaR 5% 1d VaR 1% 10d VaR 5% 10d
Conf. Set mean Conf. Set mean Conf. Set mean Conf. Set mean

CH1g 0.0135 0.0367 0.0246 0.0460 0.0821 0.0640 0.0067 0.0541 0.0270 0.0377 0.1154 0.0756
CH1t 0.0039 0.0207 0.0115 0.0308 0.0628 0.0457 0.0004 0.0320 0.0133 0.0191 0.0799 0.0475
CH1x_n 0.0068 0.0255 0.0156 0.0471 0.0832 0.0650 0.0029 0.0424 0.0199 0.0302 0.1042 0.0653
CH1x_ged 0.0068 0.0255 0.0156 0.0471 0.0832 0.0650 0.0029 0.0424 0.0199 0.0302 0.1040 0.0653
CH2g 0.0147 0.0356 0.0254 0.0522 0.0851 0.0675 0.0060 0.0470 0.0239 0.0396 0.1114 0.0742
CH2t 0.0050 0.0202 0.0122 0.0335 0.0606 0.0474 0.0001 0.0283 0.0116 0.0192 0.0763 0.0464
CH2x_n 0.0080 0.0245 0.0162 0.0559 0.0902 0.0723 0.0028 0.0390 0.0183 0.0341 0.1029 0.0666
CH2x_ged 0.0080 0.0245 0.0162 0.0559 0.0902 0.0723 0.0028 0.0389 0.0183 0.0341 0.1029 0.0666
CH3g 0.0175 0.0414 0.0293 0.0553 0.0911 0.0732 0.0063 0.0489 0.0250 0.0431 0.1173 0.0785
CH3t 0.0072 0.0239 0.0159 0.0408 0.0714 0.0565 0.0016 0.0342 0.0152 0.0261 0.0888 0.0560
CH3x_n 0.0096 0.0279 0.0189 0.0589 0.0969 0.0778 0.0038 0.0423 0.0204 0.0380 0.1093 0.0722
CH3x_ged 0.0096 0.0279 0.0189 0.0589 0.0969 0.0778 0.0038 0.0423 0.0204 0.0381 0.1093 0.0722
CH1g_avg - - - - - - 0.0263 0.1172 0.0691 0.1001 0.2363 0.1655
CH1t_avg - - - - - - 0.0122 0.0820 0.0425 0.0704 0.1861 0.1261
CH1x_n_avg - - - - - - 0.0192 0.1012 0.0552 0.0860 0.2123 0.1472
CH1x_ged_avg - - - - - - 0.0192 0.1012 0.0552 0.0860 0.2123 0.1472
CH2g_avg - - - - - - 0.0233 0.1099 0.0627 0.0972 0.2311 0.1608
CH2t_avg - - - - - - 0.0095 0.0755 0.0373 0.0678 0.1823 0.1238
CH2x_n_avg - - - - - - 0.0172 0.0975 0.0518 0.0864 0.2129 0.1474
CH2x_ged_avg - - - - - - 0.0172 0.0975 0.0519 0.0867 0.2129 0.1476
CH3g_avg - - - - - - 0.0226 0.1092 0.0620 0.0931 0.2242 0.1561
CH3t_avg - - - - - - 0.0118 0.0816 0.0423 0.0693 0.1849 0.1257
CH3x_n_avg - - - - - - 0.0176 0.0988 0.0529 0.0848 0.2111 0.1457
CH3x_ged_avg - - - - - - 0.0176 0.0988 0.0529 0.0849 0.2112 0.1458
DT_n 0.0266 0.0729 0.0492 0.1063 0.1772 0.1434 0.0259 0.1162 0.0680 0.0755 0.1929 0.1312
DT_ged 0.0266 0.0729 0.0492 0.1063 0.1772 0.1434 0.0259 0.1162 0.0680 0.0755 0.1929 0.1312
G0 0.0233 0.0608 0.0416 0.0611 0.1129 0.0882 0.0147 0.0840 0.0459 0.0517 0.1540 0.1006
Gm 0.0239 0.0598 0.0421 0.0625 0.1131 0.0884 0.0159 0.0824 0.0459 0.0574 0.1463 0.1009
HS 0.0140 0.0363 0.0251 0.0684 0.1124 0.0915 0.0134 0.0756 0.0414 0.0544 0.1406 0.0958
KR 0.0218 0.0563 0.0393 0.0370 0.0808 0.0585 0.0302 0.1009 0.0640 0.0956 0.2108 0.1511
RM 0.0108 0.0318 0.0214 0.0423 0.0757 0.0590 0.0065 0.0526 0.0267 0.0315 0.1058 0.0670
QR1 0.0176 0.0412 0.0291 0.0514 0.0941 0.0727 0.0091 0.0599 0.0317 0.0455 0.1161 0.0794
QR2 0.0146 0.0412 0.0285 0.0591 0.1012 0.0800 0.0084 0.0669 0.0342 0.0490 0.1353 0.0902
QR3 0.0175 0.0421 0.0297 0.0678 0.1056 0.0867 0.0129 0.0669 0.0377 0.0569 0.1412 0.0960
QR4 0.0281 0.0684 0.0475 0.0793 0.1291 0.1050 0.0214 0.0996 0.0578 0.0657 0.1722 0.1160

Table 5: H/V VaR MHT. H/V MHT with 1% 4-FWER for ECP and H/V MHT with 5% 5-FWER for ECP. The
table contains balanced confidence sets, with control of the generalised family-wise error rate. The grey shaded cells
indicate model performance significance which have been rejected during the step-down algorithm. In a high volatility
scenario, the sole models producing significant and persistent performance are the heteroskedastic symmetric models
with fat tails, that is the CH*t and the CH1x_*.
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max-MCS MCS-10% MCS-50% t-MCS
CH1x_ged 1 CH3t 0.7289 CH3t 0.5794 CH1x_n 0.57019
CH1x_n 1 CH1x_n 0.7216 CH1x_n 0.5658 CH1x_ged 0.57019
CH3t 1 CH1x_ged 0.7216 CH1x_ged 0.5658 CH3t 0.42981
CH2t 1 CH2t 0.6185 CH2t 0.4843 CH2t 0.38552
CH2x_ged 0.9997 CH2x_n 0.5490 CH1t 0.2884 CH2x_n 0.23733
CH2x_n 0.9997 CH2x_ged 0.5490 CH2x_n 0.2875 CH2x_ged 0.23733
CH1t 0.9973 CH1t 0.4655 CH2x_ged 0.2875 CH1t 0.18018
KR 0.7080 CH3x_n 0.2026 ***** ***** ***** *****
HS 0.5681 CH3x_ged 0.2026 CH3x_n 0.1099 KR 0.03719
CH3x_ged 0.5259 HS 0.1867 CH3x_ged 0.1099 HS 0.02463
CH3x_n 0.5259 KR 0.1498 KR 0.0804 CH3x_n 0.02177
DT_ged 0.0897 ***** ***** HS 0.0804 CH3x_ged 0.02177
DT_n 0.0897 DT_n 0.0138 DT_n 0.0111 DT_n 0.00225
***** ***** DT_ged 0.0138 DT_ged 0.0111 DT_ged 0.00225
QR1 0.0058 QR1 0.0072 QR2 0.0021 QR1 0
QR2 0.0002 QR2 0.0039 RM 0.0005 QR2 0
RM 0.0001 RM 0.0016 QR1 0.0004 RM 0
QR4 0.0001 CH1g 0.0011 CH1g 0.0003 QR4 0
CH1g 0.0001 QR3 0.0008 QR3 0.0003 CH1g 0
QR3 0.0001 CH2g 0.0001 CH2g 0 QR3 0
G0 0 CH3g 0 CH3g 0 G0 0
CH2g 0 G0 0 G0 0 CH2g 0
Gm 0 Gm 0 Gm 0 Gm 0
CH3g 0 QR4 0 QR4 0 CH3g 0

Table 6: VaR 1% 1d. This table contains the output of the MCS produced by the Hansen et al.’s, the modified
Corradi et al’s and this thesis MCS algorithms, applied to a market risk forecasting model set. Each column contains
the output of the corresponding MCS test, indicating the model label, the model confidence set cut-off, represented
by an asterisk line and the model ranking achieved within each set by means of the p-values. We produce the MCS-
max the MCS-γ at 10% and 50% γ and the MCS-t. The confidence level is at 5%. Considering the k, the selected
FWER levels for the MCS10% and the MCS50% are, respectively, k = 13 and k = 93. The MCS test can expose the
best performing models and isolate them from the initial model set, at the same time producing a ranking measure
through the p-value provided. In the 1d forecasting experiments, the CH1_* models are included in the MCS and
rank as the top performers. It is worth mentioning the tendency of the max -MCS to assimilate the performance of
the highest cluster with indiscriminate p-values, whereas the γ-MCS and the t-MCS can produce more diversified
ranking measures. Another notice is for the HS model performance as ranked by the max -MCS and by the γ and the
t test, whereby the former assigns a probability of 0.57 to the superiority of this model, whereas the latter two tests
either rank the model very low or expel it from the MCS. The comments to this table are in Section 2.3.
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max-MCS MCS-10% MCS-50% t-MCS
CH1g 1 CH1g 0.8453 CH1g 0.7924 CH1g 0.68824
CH2g 0.9999 CH2g 0.7276 CH2g 0.6023 CH2g 0.31176
CH1x_ged 0.9998 CH1x_n 0.7013 CH1x_n 0.5716 CH1x_n 0.26866
CH1x_n 0.9998 CH1x_ged 0.7013 CH1x_ged 0.5716 CH1x_ged 0.26866
CH3t 0.9996 G0 0.6085 G0 0.4991 CH3t 0.23502
G0 0.9995 RM 0.5240 CH3t 0.4019 G0 0.23264
RM 0.9877 CH3t 0.4920 RM 0.3598 RM 0.14665
Gm 0.9623 Gm 0.3941 Gm 0.2503 Gm 0.10926
HS 0.9385 HS 0.3478 HS 0.2009 HS 0.09201
CH3g 0.5527 CH3g 0.3260 ***** ***** ***** *****
CH2x_ged 0.1291 CH2x_n 0.2448 CH3g 0.2047 CH3g 0.02346
CH2x_n 0.1291 CH2x_ged 0.2448 CH2x_n 0.1749 CH2x_n 0.00322
***** ***** QR2 0.033 CH2x_ged 0.1749 CH2x_ged 0.00322
QR2 0.0306 ***** ***** CH2t 0.0482 QR2 0.00050
QR1 0.0306 CH2t 0.0911 QR2 0.0375 QR1 0.00042
CH3x_ged 0.0008 CH1t 0.0607 CH1t 0.0324 CH3x_n 0
CH3x_n 0.0008 CH3x_n 0.0460 CH3x_n 0.0253 CH3x_ged 0
CH2t 0.0002 CH3x_ged 0.0460 CH3x_ged 0.0253 CH2t 0
QR4 0.0001 QR1 0.0232 QR1 0.0071 QR4 0
DT_ged 0.0001 QR4 0.0013 QR4 0.0018 DT_n 0
DT_n 0.0001 QR3 0.0012 QR3 0.0012 DT_ged 0
CH1t 0.0001 DT_n 0.0003 DT_n 0.0004 CH1t 0
QR3 0 DT_ged 0.0003 DT_ged 0.0004 QR3 0
KR 0 KR 0 KR 0 KR 0

Table 7: VaR 5% 1d. This table contains the output of the MCS produced by the Hansen et al.’s, the modified
Corradi et al’s and this thesis MCS algorithms, applied to a market risk forecasting model set. Each column contains
the output of the corresponding MCS test, indicating the model label, the model confidence set cut-off, represented by
an asterisk line and the model ranking achieved within each set by means of the p-values. We produce the MCS-max
the MCS-γ at 10% and 50% γ and the MCS-t. The confidence level is at 5%. Considering the k, the selected FWER
levels for the MCS10% and the MCS50% are, respectively, k = 10 and k = 67. In this experiment, the heteroskedastic
models perform best again, with EVD extension as well as the Gaussian type. Some practitioner models such as G0
and RM also enter the MCS. Although both tests produce the same MCS, the contrast between the max -MCS and
the MHT based MCS can be seen from the p-value measure, whereby, for instance, the HS model is ranked at 0.94 in
the former and 0.35 in the latter. The comments to this table are in Section 2.3.
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max-MCS MCS-10% MCS-50% t-MCS
QR4_010 1 QR4_010 0.7407 QR4_010 0.7407 QR4_010 0.5717
CH1x_ged 1 CH1x_n 0.7044 CH1x_n 0.7044 CH1x_ged 0.4283
CH1x_n 1 CH1x_ged 0.7009 CH1x_ged 0.7009 CH1x_n 0.4280
HS 1 HS 0.6694 HS 0.6694 HS 0.4226
QR1_010 1 CH2x_n 0.5917 CH2x_n 0.5917 QR1_010 0.3814
QR3_010 1 CH2x_ged 0.5917 CH2x_ged 0.5917 QR3_010 0.3541
QR2_010 1 QR1_010 0.5790 QR1_010 0.5790 QR2_010 0.3514
CH2x_n 1 QR3_010 0.5424 QR3_010 0.5423 CH2x_n 0.3271
CH2x_ged 1 QR2_010 0.5302 QR2_010 0.5301 CH2x_ged 0.3265
CH2t 1 CH3t 0.5188 CH3t 0.5188 CH2t 0.2867
CH3t 0.9999 CH2t 0.4697 CH2t 0.4697 CH3t 0.2329
CH1t 0.9775 QR2_020 0.3569 QR2_020 0.3570 CH1t 0.1006
QR2_020 0.9351 QR3_020 0.3203 QR3_020 0.3203 QR2_020 0.0718
CH3x_n 0.9249 QR1_020 0.2983 QR1_020 0.2983 CH3x_n 0.0677
CH3x_ged 0.9248 CH3x_n 0.2826 CH1t 0.2677 CH3x_ged 0.0676
QR3_020 0.8951 CH3x_ged 0.2718 CH3x_n 0.2464 QR3_020 0.0579
QR1_020 0.6587 CH1t 0.2677 CH3x_ged 0.2464 ***** *****
***** ***** ***** ***** ***** ***** QR1_020 0.0255
QR4_005 0.0017 QR4_005 0.1949 QR4_005 0.1949 QR4_005 0
DT_ged 0.0002 QR2_005 0.0441 QR2_005 0.0441 DT_ged 0
DT_n 0.0002 QR3_005 0.0416 QR3_005 0.0416 DT_n 0
QR4_020 0.0000 QR1_005 0.0393 QR1_005 0.0393 QR4_020 0
CH1g 0 QR4_020 0.0334 QR4_020 0.0334 CH1g 0
CH2g 0 DT_ged 0.0202 DT_ged 0.0202 CH2g 0
RM 0 DT_n 0.0200 DT_n 0.0200 CH3g 0
CH3g 0 CH1g 0.0065 CH1g 0.0065 G0 0
QR2_005 0 CH2g 0.0041 CH2g 0.0041 Gm 0
KR 0 RM 0.0034 RM 0.0034 KR 0
QR3_005 0 CH3g 0.0025 CH3g 0.0025 RM 0
QR1 0 KR 0.0008 KR 0.0008 QR1 0
QR3 0 QR4 0.0008 QR4 0.0008 QR1_005 0
QR4 0 G0 0.0006 G0 0.0006 QR2 0
Gm 0 QR1 0.0005 QR1 0.0005 QR2_005 0
G0 0 Gm 0.0005 Gm 0.0005 QR3 0
QR2 0 QR2 0.0005 QR2 0.0005 QR3_005 0
QR1_005 0 QR3 0.0005 QR3 0.0005 QR4 0

Table 8: ExS 1% 1d. This table contains the output of the MCS produced by the Hansen et al.’s, the modified
Corradi et al’s and this thesis MCS algorithms, applied to a market risk forecasting model set. Each column contains
the output of the corresponding MCS test, indicating the model label, the model confidence set cut-off, represented
by an asterisk line and the model ranking achieved within each set by means of the p-values. We produce the MCS-
max the MCS-γ at 10% and 50% γ and the MCS-t. The confidence level is at 5%. Considering the k, the selected
FWER levels for the MCS10% and the MCS50% are, respectively, k = 29 and k = 179. In this exercise, the CH1x_*
persistently perform at the top of the collective, whereas the QR4_010 model now achieves top performance. It is
interesting to notice that the QR model has been structured in a creative way to allow the estimation of the ExS
measure, indeed capturing the tail dynamics, by the joint modelling of multiple quantile autoregressions, as well as
providing a consistent guess of the tail behaviour, by including a polynomially decaying curve to accommodate the
transition density shape at the border. The comments to this table are in Section 2.3.
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max-MCS MCS-10% MCS-50% t-MCS
CH3t 1 CH1x_ged 0.8688 CH1x_ged 0.7110 CH3t 0.5510
CH1x_ged 1 CH1x_n 0.7593 CH3t 0.6385 CH1x_ged 0.4490
CH1x_n 0.9654 CH3t 0.7357 CH1x_n 0.4555 CH1x_n 0.2382
HS 0.8836 HS 0.5009 HS 0.1918 HS 0.1668
CH2x_ged 0.0678 CH2x_ged 0.4956 ***** ***** ***** *****
CH2x_n 0.0677 CH2x_n 0.3593 CH2x_n 0.1606 CH2x_ged 0.0057
***** ***** QR2 0.1934 CH2x_ged 0.1606 CH2x_n 0.0057
QR1 0.0274 CH1g 0.0844 QR2 0.0886 QR1 0.0016
QR2 0.0046 ***** ***** CH1g 0.0745 QR2 0.0002
CH1g 0.0026 QR2_005 0.1162 QR2_005 0.0626 CH1g 0
QR3 0.0000 CH2t 0.0992 QR2_010 0.0430 QR3 0
CH2g 0 QR2_010 0.0783 CH2t 0.0360 CH2g 0
KR 0 CH1t 0.0579 QR2_020 0.0285 KR 0
CH1t 0 CH3x_n 0.0541 CH3x_n 0.0225 CH1t 0
CH3x_n 0 CH3x_ged 0.0541 CH3x_ged 0.0225 CH3x_n 0
CH3x_ged 0 QR1 0.0526 CH2g 0.0211 CH3x_ged 0
CH2t 0 QR2_020 0.0426 CH1t 0.0206 CH2t 0
G0 0 QR3 0.0368 QR3 0.0141 CH3g 0
DT_ged 0 QR1_005 0.0321 RM 0.0116 DT_n 0
DT_n 0 QR3_005 0.0211 QR3_005 0.0110 DT_ged 0
QR2_005 0 CH2g 0.0199 QR3_010 0.0079 G0 0
QR4 0 QR1_010 0.0195 QR1 0.0076 Gm 0
QR4_005 0 QR1_020 0.0106 QR3_020 0.0058 RM 0
QR3_005 0 QR3_010 0.0105 QR1_005 0.0046 QR1_005 0
RM 0 RM 0.0059 CH3g 0.0044 QR1_010 0
CH3g 0 QR3_020 0.0049 G0 0.0041 QR1_020 0
QR2_010 0 G0 0.0036 QR1_010 0.0026 QR2_005 0
QR4_010 0 CH3g 0.0022 QR4 0.0013 QR2_010 0
QR2_020 0 DT_n 0.0010 QR1_020 0.0011 QR2_020 0
QR3_010 0 DT_ged 0.0010 DT_n 0.0010 QR3_005 0
QR4_020 0 QR4 0.0008 DT_ged 0.0010 QR3_010 0
QR3_020 0 Gm 0.0006 Gm 0.0010 QR3_020 0
Gm 0 QR4_005 0.0004 QR4_005 0.0006 QR4 0
QR1_005 0 QR4_010 0.0003 QR4_010 0.0006 QR4_005 0
QR1_010 0 QR4_020 0.0003 QR4_020 0.0005 QR4_010 0
QR1_020 0 KR 0 KR 0 QR4_020 0

Table 9: ExS 5% 1d. This table contains the output of the MCS produced by the Hansen et al.’s, the modified
Corradi et al’s and this thesis MCS algorithms, applied to a market risk forecasting model set. Each column contains
the output of the corresponding MCS test, indicating the model label, the model confidence set cut-off, represented by
an asterisk line and the model ranking achieved within each set by means of the p-values. We produce the MCS-max
the MCS-γ at 10% and 50% γ and the MCS-t. The confidence level is at 5%. Considering the k, the selected FWER
levels for the MCS10% and the MCS50% are, respectively, k = 25 and k = 187. In this exercise, again the fat-tailed
conditionally heteroskedastic models perform best. Divergence between the max -MCS and the tests performing a
direct model comparison can be inferred from the HS model p-value, very high in the first case, whereas it exhibits
borderline behaviour in the latter cases. The comments to this table are in Section 2.3.
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max-MCS MCS-10% MCS-50% t-MCS
CH3x_ged 1 CH2g 0.7743 CH2g 0.7743 CH3x_ged 0.5065
CH3x_n 1 CH3g 0.7648 CH3g 0.7648 CH3x_n 0.4935
CH2g 1 CH3x_ged 0.7344 CH3x_ged 0.7344 CH2g 0.4789
CH3g 1 CH3x_n 0.7339 CH3x_n 0.7339 CH3g 0.4367
CH1x_n 1 CH2t_avg 0.7288 CH2t_avg 0.7288 CH1x_n 0.4340
CH1x_ged 1 CH1g 0.7215 CH1g 0.7215 CH1x_ged 0.4337
CH2t_avg 1 CH1x_n 0.7094 CH1x_n 0.7094 CH2t_avg 0.4142
CH2x_n 1 CH1x_ged 0.7094 CH1x_ged 0.7094 CH2x_n 0.3747
CH2x_ged 1 CH1t_avg 0.6987 CH1t_avg 0.6987 CH2x_ged 0.3738
CH1t_avg 1 CH3t_avg 0.6952 CH3t_avg 0.6952 CH1t_avg 0.3280
CH3t_avg 1 CH2x_n 0.6684 CH2x_n 0.6684 CH3t_avg 0.3253
CH1g 1 CH2x_ged 0.6680 CH2x_ged 0.6680 CH1g 0.3060
CH3t 1 CH3t 0.5921 CH3t 0.5921 CH3t 0.2438
QR1 1 QR1 0.5820 QR1 0.5820 QR1 0.1959
QR2 1 QR2 0.5748 QR2 0.5748 QR2 0.1442
CH2x_n_avg 1 CH2x_n_avg 0.5610 CH2x_n_avg 0.5610 CH2x_n_avg 0.1422
CH2x_ged_avg 1 CH2x_ged_avg 0.5585 CH2x_ged_avg 0.5585 CH2x_ged_avg 0.1416
RM 1 RM 0.5510 RM 0.5510 RM 0.1394
CH3x_n_avg 1 CH1t 0.5061 CH1t 0.5061 CH3x_n_avg 0.1237
CH3x_ged_avg 1 CH3x_n_avg 0.4999 CH3x_n_avg 0.4999 CH3x_ged_avg 0.1230
CH1t 1 CH3x_ged_avg 0.4969 CH3x_ged_avg 0.4969 CH1t 0.1146
CH1x_ged_avg 0.9994 CH2t 0.4539 CH2t 0.4539 CH1x_ged_avg 0.0863
CH1x_n_avg 0.9994 CH1x_ged_avg 0.4256 CH1x_ged_avg 0.4256 CH1x_n_avg 0.0862
QR3 0.9975 CH1x_n_avg 0.4247 CH1x_n_avg 0.4247 QR3 0.0699
CH2t 0.9966 QR3 0.4243 QR3 0.4243 CH2t 0.0668
G0 0.9553 CH3g_avg 0.3025 CH3g_avg 0.3025 ***** *****
QR4 0.9032 CH2g_avg 0.2760 CH2g_avg 0.2760 G0 0.0346
HS 0.8923 HS 0.2409 HS 0.2409 QR4 0.0248
CH3g_avg 0.8873 G0 0.2259 G0 0.2259 HS 0.0235
CH2g_avg 0.8480 QR4 0.1881 QR4 0.1881 CH3g_avg 0.0229
KR 0.7021 DT_ged 0.1494 DT_ged 0.1494 CH2g_avg 0.0194
DT_ged 0.5064 DT_n 0.1485 DT_n 0.1485 KR 0.0118
DT_n 0.5051 KR 0.1277 KR 0.1277 DT_ged 0.0063
CH1g_avg 0.4029 CH1g_avg 0.1092 CH1g_avg 0.1092 DT_n 0.0062
Gm 0.3389 Gm 0.0739 Gm 0.0739 CH1g_avg 0.0044
***** ***** ***** ***** ***** ***** Gm 0.0034

Table 10: VaR 1% 2w. This table contains the output of the MCS produced by the Hansen et al.’s, the modified
Corradi et al’s and this thesis MCS algorithms, applied to a market risk forecasting model set. Each column contains
the output of the corresponding MCS test, indicating the model label, the model confidence set cut-off, represented by
an asterisk line and the model ranking achieved within each set by means of the p-values. We produce the MCS-max
the MCS-γ at 10% and 50% γ and the MCS-t. The confidence level is at 5%. Considering the k, the selected FWER
levels for the MCS10% and the MCS50% are, respectively, k = 1 and k = 1. In the 2w forecasting experiments, the
model performances are more widespread. The top models CH1x_* either rank at the top of the MCS or are there
included. The comments to this table are in Section 2.3.
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max-MCS MCS-10% MCS-50% t-MCS
RM 1 G0 0.6894 G0 0.6894 RM 0.5025
G0 1 QR1 0.6783 QR1 0.6783 G0 0.4975
QR1 1 RM 0.6753 RM 0.6753 QR1 0.4962
DT_n 1 CH3g 0.6619 CH3g 0.6619 DT_n 0.4746
DT_ged 1 DT_n 0.6596 DT_n 0.6596 DT_ged 0.4743
CH3g 1 DT_ged 0.6591 DT_ged 0.6591 CH3g 0.4736
CH1t_avg 1 QR2 0.6573 QR2 0.6573 CH1t_avg 0.4702
CH3t_avg 1 HS 0.6565 HS 0.6565 CH3t_avg 0.4675
HS 1 CH1t_avg 0.6530 CH1t_avg 0.6530 HS 0.4330
QR2 1 CH3t_avg 0.6487 CH3t_avg 0.6487 QR2 0.4288
CH2t_avg 1 CH1g 0.6332 CH1g 0.6332 CH2t_avg 0.4284
CH1g 1 CH2t_avg 0.6281 CH2t_avg 0.6281 CH1g 0.3863
CH2g 1 CH2g 0.6039 CH2g 0.6039 CH2g 0.3278
CH3x_n_avg 1 CH3x_n_avg 0.5311 CH3x_n_avg 0.5311 CH3x_n_avg 0.2573
CH3x_ged_avg 1 CH3x_ged_avg 0.5252 CH3x_ged_avg 0.5252 CH3x_ged_avg 0.2557
CH2x_n_avg 1 Gm 0.5126 Gm 0.5126 CH2x_n_avg 0.2320
CH2x_ged_avg 1 CH3x_ged 0.4990 CH3x_ged 0.4990 CH2x_ged_avg 0.2188
CH1x_ged_avg 1 CH3x_n 0.4939 CH3x_n 0.4939 CH1x_ged_avg 0.1938
CH1x_n_avg 1 CH2x_n_avg 0.4667 CH2x_n_avg 0.4667 CH1x_n_avg 0.1906
CH3x_ged 1 QR3 0.4567 QR3 0.4567 CH3x_ged 0.1865
CH3x_n 1 CH2x_ged_avg 0.4544 CH2x_ged_avg 0.4544 CH3x_n 0.1857
QR3 1 CH1x_ged_avg 0.4412 CH1x_ged_avg 0.4412 QR3 0.1831
QR4 1 CH1x_n_avg 0.4352 CH1x_n_avg 0.4352 QR4 0.1750
Gm 1 QR4 0.4242 QR4 0.4242 Gm 0.1676
CH3g_avg 0.9940 CH2x_n 0.3532 CH2x_n 0.3532 CH3g_avg 0.0696
CH2x_n 0.9932 CH2x_ged 0.3513 CH2x_ged 0.3513 CH2x_n 0.0677
CH2x_ged 0.9929 CH1x_n 0.3239 CH1x_n 0.3239 CH2x_ged 0.0672
KR 0.9901 CH1x_ged 0.3203 CH1x_ged 0.3203 KR 0.0620
CH1x_n 0.9875 CH3g_avg 0.3065 CH3g_avg 0.3065 CH1x_n 0.0587
CH1x_ged 0.9870 CH2g_avg 0.2165 CH2g_avg 0.2165 CH1x_ged 0.0581
CH2g_avg 0.8204 KR 0.2145 KR 0.2145 ***** *****
CH1g_avg 0.4149 CH3t 0.1634 CH3t 0.1634 CH2g_avg 0.0210
***** ***** CH1g_avg 0.1424 CH1g_avg 0.1424 CH1g_avg 0.0054
CH3t 0.0298 ***** ***** ***** ***** CH3t 0.0002
CH1t 0.0000 CH1t 0.0860 CH1t 0.0860 CH1t 0
CH2t 0 CH2t 0.0777 CH2t 0.0777 CH2t 0

Table 11: VaR 5% 2w. This table contains the output of the MCS produced by the Hansen et al.’s, the modified
Corradi et al’s and this thesis MCS algorithms, applied to a market risk forecasting model set. Each column contains
the output of the corresponding MCS test, indicating the model label, the model confidence set cut-off, represented by
an asterisk line and the model ranking achieved within each set by means of the p-values. We produce the MCS-max
the MCS-γ at 10% and 50% γ and the MCS-t. The confidence level is at 5%. Considering the k, the selected FWER
levels for the MCS10% and the MCS50% are, respectively, k = 1 and k = 2. In this experiment, some practitioner
models, such as the G0 and the RM exhibit best performance. The QR1 also performs very well. This is the only
experiment where the dual tail model ranks high in the model list. The comments to this table are in Section 2.3.
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max-MCS MCS-10% MCS-50% t-MCS
QR4_010 1 QR4_010 0.8253 QR4_010 0.8180 QR4_010 0.6010
QR1_020 1 QR1_020 0.7883 QR1_020 0.7817 QR1_020 0.3990
QR3_020 1 QR3_020 0.7665 QR3_020 0.7603 QR3_020 0.3786
QR2_020 1 QR2_020 0.7629 QR2_020 0.7561 QR2_020 0.3244
QR3_010 1 QR3_010 0.7194 QR3_010 0.7054 QR3_010 0.2665
CH2x_ged_avg 1 CH1t_avg 0.6866 CH1t_avg 0.6793 CH2x_ged_avg 0.2400
CH2x_n_avg 1 CH2t_avg 0.6777 CH2t_avg 0.6696 CH2x_n_avg 0.2383
CH2g 1 CH2x_ged_avg 0.6525 CH2x_ged_avg 0.6457 CH2g 0.2264
CH3x_ged 1 QR2_010 0.6525 QR2_010 0.6357 CH3x_ged 0.2218
CH3x_n 1 QR1_010 0.6418 CH3x_ged 0.6278 CH3x_n 0.2217
CH1t_avg 1 CH3x_ged 0.6347 CH2x_n_avg 0.6267 CH1t_avg 0.2204
CH1x_ged 1 CH2x_n_avg 0.6343 QR1_010 0.6241 CH1x_ged 0.2188
CH1x_n 1 CH3t_avg 0.6305 CH3t_avg 0.6237 CH1x_n 0.2188
CH2t_avg 1 CH3x_n 0.6287 CH3x_n 0.6214 CH2t_avg 0.2080
QR1_010 1 CH2g 0.6154 CH2g 0.6071 QR1_010 0.1980
QR2_010 1 CH3g 0.6061 CH3g 0.5979 QR2_010 0.1979
CH2x_n 1 CH1x_n 0.5952 CH1x_n 0.5883 CH2x_n 0.1960
CH3t_avg 1 QR4_020 0.5932 QR4_020 0.5858 CH3t_avg 0.1959
CH2x_ged 1 CH1x_ged 0.5908 CH1x_ged 0.5837 CH2x_ged 0.1959
QR4_020 1 CH1x_ged_avg 0.5374 CH1x_ged_avg 0.5306 QR4_020 0.1851
CH3g 1 CH2x_n 0.5357 CH2x_n 0.5286 CH3g 0.1638
CH3t 1 QR4_005 0.5356 CH2x_ged 0.5184 CH3t 0.1534
CH1g 1 CH2x_ged 0.5258 CH1g 0.5169 CH1g 0.1393
CH1x_ged_avg 1 CH1g 0.5245 QR4_005 0.5120 CH1x_ged_avg 0.1380
CH1x_n_avg 1 CH1x_n_avg 0.5157 CH1x_n_avg 0.5078 CH1x_n_avg 0.1372
CH3x_ged_avg 0.9996 CH3x_n_avg 0.4903 CH3x_n_avg 0.4824 CH3x_ged_avg 0.1122
CH3x_n_avg 0.9996 CH3x_ged_avg 0.4800 CH3x_ged_avg 0.4717 CH3x_n_avg 0.1119
CH1t 0.9961 CH2g_avg 0.4176 CH2g_avg 0.4088 CH1t 0.0832
CH2g_avg 0.9956 QR3_005 0.4014 CH3t 0.3965 CH2g_avg 0.0812
RM 0.9658 CH3t 0.4008 QR3_005 0.3818 ***** *****
QR4_005 0.9568 QR2_005 0.3532 CH3g_avg 0.3211 RM 0.0493
CH2t 0.8985 QR1_005 0.3410 RM 0.3177 QR4_005 0.0458
CH1g_avg 0.8717 CH3g_avg 0.3283 CH1g_avg 0.3102 CH2t 0.0318
HS 0.8040 RM 0.3232 HS 0.2852 CH1g_avg 0.0278
G0 0.2473 CH1g_avg 0.3176 CH1t 0.2409 HS 0.0211
KR 0.2171 HS 0.2898 KR 0.1732 G0 0.0024
CH3g_avg 0.0585 CH1t 0.2413 CH2t 0.1496 KR 0.0020
***** ***** KR 0.1750 DT_n 0.1423 CH3g_avg 0.0004
Gm 0.0269 CH2t 0.1491 DT_ged 0.1396 Gm 0.0001
QR1_005 0.0128 DT_n 0.1440 G0 0.1268 QR1_005 0
DT_n 0.0124 DT_ged 0.1415 ***** ***** DT_n 0
DT_ged 0.0124 G0 0.1288 QR2_005 0.3481 DT_ged 0
QR3_005 0.0118 ***** ***** QR1_005 0.3386 QR3_005 0
QR2_005 0.0063 QR4 0.1253 QR4 0.1305 QR2_005 0
QR4 0.0000 QR3 0.1043 QR3 0.1088 QR4 0
QR1 0.0000 QR2 0.0986 QR2 0.1034 QR1 0
QR3 0 QR1 0.0974 QR1 0.1019 QR2 0
QR2 0 Gm 0.0949 Gm 0.0941 QR3 0

Table 12: ExS 1% 2w. This table contains the output of the MCS produced by the Hansen et al.’s, the modified
Corradi et al’s and this thesis MCS algorithms, applied to a market risk forecasting model set. Each column contains
the output of the corresponding MCS test, indicating the model label, the model confidence set cut-off, represented by
an asterisk line and the model ranking achieved within each set by means of the p-values. We produce the MCS-max
the MCS-γ at 10% and 50% γ and the MCS-t. The confidence level is at 5%. Considering the k, the selected FWER
levels for the MCS10% and the MCS50% are, respectively, k = 3 and k = 19. The MCS test for the ExS 1% and 5%
2w forecasting experiment shows the superior performance of the QR model, which is quite surprising if considering
that the projection has been achieved through a rule of thumb multiplication by the square root of time. The CH1_*
model still ranking high. The comments to this table are in Section 2.3.
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max-MCS MCS-10% MCS-50% t-MCS
QR2 1 QR2 0.7444 QR2 0.7392 QR2 0.5083
QR1 1 QR1 0.7411 QR1 0.7358 QR1 0.4917
CH3g 1 QR2_005 0.7325 QR2_005 0.7271 CH3g 0.4169
QR3 1 QR2_010 0.7182 QR2_010 0.7125 QR3 0.4112
CH2t_avg 1 QR1_005 0.7144 QR1_005 0.7086 CH2t_avg 0.3836
CH2g 1 QR2_020 0.6970 QR2_020 0.6909 CH2g 0.3801
CH3t_avg 1 QR3 0.6949 QR3 0.6888 CH3t_avg 0.3648
CH1t_avg 1 CH3g 0.6944 CH3g 0.6879 CH1t_avg 0.3646
CH1g 1 QR1_010 0.6868 QR1_010 0.6804 CH1g 0.3485
QR2_005 1 CH1g 0.6829 CH1g 0.6763 QR2_005 0.3339
QR2_010 1 CH3t_avg 0.6635 CH3t_avg 0.6565 QR2_010 0.3120
QR2_020 1 CH1t_avg 0.6629 CH1t_avg 0.6559 QR2_020 0.2909
RM 1 CH2t_avg 0.6613 CH2t_avg 0.6541 RM 0.2829
CH3x_ged 1 CH2g 0.6591 CH2g 0.6518 CH3x_ged 0.2348
QR1_005 1 QR3_005 0.6579 QR3_005 0.6510 QR1_005 0.2288
QR1_010 1 QR1_020 0.6520 QR1_020 0.6449 QR1_010 0.2154
CH2x_ged_avg 1 RM 0.6504 RM 0.6435 CH2x_ged_avg 0.1951
QR1_020 1 QR3_010 0.6213 QR3_010 0.6137 QR1_020 0.1913
CH2x_n_avg 1 QR3_020 0.5767 QR3_020 0.5683 CH2x_n_avg 0.1863
G0 0.9998 CH3x_ged 0.5600 CH3x_ged 0.5502 G0 0.1450
DT_ged 0.9998 CH2x_ged_avg 0.5478 CH2x_ged_avg 0.5390 DT_ged 0.1439
DT_n 0.9998 CH3x_n 0.5428 CH3x_n 0.5326 DT_n 0.1439
HS 0.9998 CH2x_n_avg 0.5299 CH2x_n_avg 0.5208 HS 0.1432
CH3x_n 0.9996 CH3x_n_avg 0.4953 CH3x_n_avg 0.4854 CH3x_n 0.1298
QR3_005 0.9993 QR4 0.4853 QR4 0.4751 QR3_005 0.1190
CH1x_n 0.9991 CH3x_ged_avg 0.4771 CH3x_ged_avg 0.4668 CH1x_n 0.1130
CH1x_ged 0.9990 HS 0.4369 HS 0.4258 CH1x_ged 0.1122
QR4 0.9986 G0 0.4325 G0 0.4217 QR4 0.1051
QR3_010 0.9978 QR4_005 0.4269 QR4_005 0.4156 QR3_010 0.0985
CH2x_n 0.9930 CH1x_ged_avg 0.4220 CH1x_ged_avg 0.4107 CH2x_n 0.0787
QR3_020 0.9909 CH1x_n 0.4193 CH1x_n 0.4062 QR3_020 0.0747
CH1x_n_avg 0.9811 CH2x_n 0.4153 CH2x_n 0.4021 CH1x_n_avg 0.0632
CH1x_ged_avg 0.9800 DT_n 0.4066 DT_n 0.3954 CH1x_ged_avg 0.0623
CH3x_ged_avg 0.9498 CH1x_n_avg 0.4029 CH1x_n_avg 0.3910 ***** *****
CH3x_n_avg 0.9497 DT_ged 0.4009 DT_ged 0.3896 CH3x_ged_avg 0.0466
CH2x_ged 0.9394 CH1x_ged 0.3996 CH1x_ged 0.3861 CH3x_n_avg 0.0465
QR4_005 0.9063 CH2x_ged 0.3946 CH2x_ged 0.3810 CH2x_ged 0.0433
CH3g_avg 0.9026 QR4_010 0.3741 QR4_010 0.3618 QR4_005 0.0358
CH2g_avg 0.8626 QR4_020 0.3149 QR4_020 0.3016 CH3g_avg 0.0351
QR4_010 0.8253 CH3g_avg 0.2639 CH3g_avg 0.2497 CH2g_avg 0.0289
Gm 0.7842 CH2g_avg 0.2184 CH2g_avg 0.2034 QR4_010 0.0251
QR4_020 0.7079 Gm 0.1961 Gm 0.1812 Gm 0.0215
KR 0.5263 CH3t 0.1862 CH3t 0.1677 QR4_020 0.0165
CH3t 0.1366 CH1g_avg 0.1434 CH1g_avg 0.1273 KR 0.0090
***** ***** KR 0.1414 KR 0.1252 CH3t 0.0012
CH1g_avg 0.0205 CH1t 0.0543 ***** ***** CH1g_avg 0.0001
CH1t 0.0001 ***** ***** CH1t 0.0543 CH1t 0
CH2t 0 CH2t 0.0465 CH2t 0.0402 CH2t 0

Table 13: ExS 5% 2w. This table contains the output of the MCS produced by the Hansen et al.’s, the modified
Corradi et al’s and this thesis MCS algorithms, applied to a market risk forecasting model set. Each column contains
the output of the corresponding MCS test, indicating the model label, the model confidence set cut-off, represented by
an asterisk line and the model ranking achieved within each set by means of the p-values. We produce the MCS-max
the MCS-γ at 10% and 50% γ and the MCS-t. The confidence level is at 5%. Considering the k, the selected FWER
levels for the MCS10% and the MCS50% are, respectively, k = 1 and k = 2. The comments to this table are in
Section 2.3.
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Model Selection of

Jump-Diffusion Models

With the model selection experiment of this chapter, we are interested in the econometric analysis

of a large class of stochastic models, capable of matching observed financial market data characteristics.

This chapter is focused on parametric model families that are designed to capture the historical equity

stock price return dynamics. The model set is large enough to mimic the stylised features of the time

series as evidenced in the literature. We focus on single factor stochastic volatility models and restrict the

exercise to a suite of model types that are tested on several nested layers. A core challenge with any such

model specification analysis is the performance of the estimation procedures in the presence of insufficient

information, as the equity volatility is unobservable. As presented in Section 3.1, the observable variable,

that is the equity stock return is assumed to be given as a linear function of a set of stochastic inputs that

are either partially or completely unobserved. Specifically, we consider a jump-diffusion system which is

characterised by a latent component that enters either the stochastic diffusion or the stochastic inten-

sity driving the jump process. The benchmark model is represented by the stochastic volatility model

of Heston (1993), which is extended in several directions and compared with a non conventional model
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family. The Heston model and, in general, the affine model class have gained popularity and widespread

use since their formalisation in Duffie and Kan (1996), Duffie et al. (2000) and Dai and Singleton (2000).

This model class provides a convenient tool for capturing stochastic volatility, an important statistical

characteristic of financial time series, at the same time allowing a certain ease of use due to the an-

alytic form of their moment generating function. However, the single factor stochastic volatility SDE

usually applied to model equity stocks can produce distributions with strong kurtosis only under extreme

parameter configurations and in general can generate a very moderate skew. Incremental kurtosis can

be achieved with the extension by an incremental parameter to trigger the elasticity of variance in the

constant elasticity of variance (CEV) model specification, used in Beckers (1980), Macbeth and Merville

(1980) and in a stochastic volatility context in Jones (2003) and Aït-Sahalia and Kimmel (2007). The

introduction of jump components also increases the flexibility of the model in adapting to observed return

distributions. In this regard, it is customary in finance to use jumps to explain rare events and usually

the estimations provided concerning the jump frequency and size vary from one to nine jumps per year,

with a negative average size of −3%, see Andersen et al. (2002), Eraker et al. (2003), Chernov et al.

(2003) and Pan (2002). In Section 3.1 and Appendix A.4, we provide more information concerning the

model details and their use in the literature. In this study, we counterbalance this application of the

jump component by extending the model set with a class of stochastic hazard models that employs high

frequency jumps in modelling financial time series. In this perspective, rare large jumps should be viewed

as tail events of frequent small jumps, as opposed to the standard paradigm that jumps are rare events

overall. The further major feature of this alternative model class, however, is that it is capable of gen-

erating stochastic volatility by combining frequent jumps and stochastic intensity, whereby the volatility

clustering is produced by peaks of the frequency of jumps.

The model selection exercise is conducted in two different environments. In the first test environment,

we arrange a simulation exercise to analyse the model ability in reproducing the sample characteristics

of a known DGP by testing the model performance with respect to the target estimation functions. The

purpose of this experiment involves testing the capacity of the models in reproducing each other’s charac-

teristics and hence provide alternative formulations for the econometric problem of interest. Specifically,

we compare CEV stochastic diffusive models equipped with rare large jumps that occur in the returns

process with constant intensity, a model class we indicate as the stochastic diffusion (SD) family, whereas

the alternative class of models contains constant diffusion models with high intensity of small jumps

characterised by stochastic hazard1 (SH). Both classes allow for constant intensity asynchronous jumps

in the latent factor. The complexity of the exercise is increased by the fact that the larger models within

each class are themselves affected by aliasing among their components. The use of simulation allows

the control of the sample features, whereby we have chosen to balance between the contribution to the

data variability of the diffusion and the jump component, whenever the latter is present. This simulation

parameters setting means that the unconditional variances of the diffusion and the jump component,

which sum up to the total model unconditional variance, are programmed to be equal. In particular

1 Two parametric models are nested if one can be derived from the other one by simply varying the parameters. Although
there is a possibility for nesting the two model classes, this modelling choice is prevented and the nesting class (i.e. the
model that is characterised simultaneously by CEV stochastic diffusion and CEV stochastic intensity, both driven by the
same latent component) is excluded.
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though, the variance produced by a jump component in the SD class is determined by rare large jumps,

whereas the variance produces by a jump component in the SH class is determined by very frequent small

jump. With the SH family we investigate a model whereby the volatility clustering can be generated by

the jump component solely. The motivation as to why we choose to include the SH family in the model

selection exercise and expand the overarching CEV class, is mainly scientific. This class has received

no attention in the applied finance literature. However, discrete time models that are at the foundation

of the econometrics discipline, can be viewed as high intensity jump models with non stochastic jump

times. Furthermore, the full record of the daily transactions on a typical trading day for a liquid financial

asset is intrinsically an high frequency stochastic intensity jump price sample. In the second test envi-

ronment, we produce a market data experiment whereby we test the model set performance and draw

inferences on real financial time series. The model set and estimation procedures applied to real market

data, complemented with tests of model comparison, reveal information useful for empirical researchers.

Concerning the test statistics, within the simulation test environment, they are produced with Monte

Carlo, whereas within the market data test environment, the market sample data are resampled with the

stationary bootstrap. The simulated experiment is suited for the application of a relative model compar-

ison test, whereby the suite of models is tested against the benchmark generating the sample data. A

relative model comparison is also arranged for the market data experiment, where the MHT is structured

to circulate the benchmark across the model set. The relative model comparisons expose the detail of

the preferences among individual models induced by the statistical test and reveal the full collection of

equivalence hypotheses. Finally, we explore the absolute model performance, whereby MCS tests are

applied to the data set to draw general conclusions regarding model superiority. Exploiting the flexibility

of the approach of Section 1.1 and Section 1.3, we deliver MCS tests of the performance of jump-diffusion

(JD) models targeting the historical measure of an equity index log-levels. The model comparisons are

based on the max -MCS of Hansen et al. (2011), as constructed in Section 1.3.1, our new t-MCS inspired

by Corradi and Distaso (2011), as constructed in Section 1.3.2, and the novel γ-MCS, of Section 1.3.3,

combining the MCS and the MHT framework.

The econometric analysis of the historical measure of equity stock indices by means of stochastic volatility

JD models is pursued in articles such as Andersen et al. (2002), Chernov et al. (2003) and Eraker et al.

(2003). These articles, however, lack of a direct model comparison statistical procedure, whereby the

model pairwise confrontation is at most achieved by comparing the EMM χ2 statistics, or pursued with

the approach of the Bayesian factors, which is not strictly based on hypothesis testing, but is rather a

relative measure of the likelihood of a model. The contribution of this study is original as the model

selection analysis is achieved explicitly via joint statistical testing targeting several measures of model

performance. This chapter provides several contributions. First, we test the model aliasing hypothesis

among two alternative classes of jump-diffusion models, namely the conventional affine stochastic volatil-

ity model class popular in the literature and the non-conventional stochastic hazard model class, that

exhibit the ability to generate similar empirical time series features and that heretofore have not been

pitted against each other in the literature. Second, we provide new insights into the stochastic hazard

class, with the market data experiment showing such models to be highly ranked in performance. Third,

we uniquely design and implement model comparison tests under recent and novel testing approaches, ex-
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ploiting multiple hypothesis testing and the model confidence set techniques. Such techniques are ideally

structured to allow us to explore the model aliasing hypothesis. Finally, as a methodological extension

specific to this chapter, we extend the second order filtering procedure in Maybeck (1982) to allow jump

components in the system state. The general information that we gather from the experiments of this

study shows that the main model families exhibit strong aliasing and can produce similar features, with

respect to the model performance measures. The fact that the models can in principles be each other sub-

stitutes, makes the market data experiment outcome more significant, whereby a particular alternative

model reveals superior performance than the more conventional ones. This behaviour indicates that some

SH models exhibit larger flexibility as they can structurally resemble the behaviour of SD models, at the

same time producing distinctively top range performance in mimicking market data. On the other hand,

the CEV model class delivers interesting performances and, specifically with respect to the likelihood

performance measure, points to a simplified model structure in preference over more complex structures.

The chapter is organised as follows. In Section 3.1 we introduce the model set and define the general

stochastic differential equation (SDE) describing the model components in Eqs. (3.1), (3.2), discussing

also the general behaviour of the system. In Appendices A.1 to A.3 we detail the algorithms necessary

for the parameter and latent state estimation, as well as the calculation of the performance measures by

which the model selection exercise is addressed. Section 3.2 discusses the testing framework and presents

the relative loss function defined upon the output of the likelihood function and the filtering procedure.

Section 3.3 elucidates on several operational aspects of the exercises of this chapter and proposes a light

comparison exercise between the filter technique employed in this work and a particle filter. The re-

mainder of the latter section presents the results of the various experiments with simulated and financial

market data. Section 3.4 gathers conclusions. The Appendix A collects several technical aspects con-

cerning the analytics used throughout the article, whereas Appendix B provides more details about the

implementation of the algorithms by which the experiments have been assembled.

Some clarifications

In econometrics, the aliasing effect is usually referred to the loss of information arising when discretely

sampling continuous time processes. Specifically, the term originates from the theory of signals and refers

to the lack of identifiability of the ω + 2πk, k ∈ Z frequencies, as they will all appear to have frequency

ω, cfr. for instance Priestley (1981). As a consequence, it might occur that two processes with the same

sample spectra could differ in frequencies that cannot be observed because of the discrete data and thus

be indistinguishable, from a statistical perspective. Another phenomenon that has been referred to as

aliasing in econometrics, for instance, is the problem of estimating the parameters of the diffusion and the

jump component in a jump-diffusion process, cfr. Aït-Sahalia (2004). The author of that study provides

interesting intuition as to why the aliasing arises. In fact, for the reference Merton model, it is shown

that suitably changing the diffusion and jump components’ parameters, it is possible to obtain a fixed

measure of the shape distribution, such as, for example, the variance or the kurtosis. Another interesting

point is the rapidly decreasing probability of detecting a jump, when the sampling interval increases.

Analytic results are obtained with respect to the simple prototype model, which show that the likelihood
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can asymptotically detect the diffusion coefficient without the interference due to the presence of jumps,

as long as the process is sampled at very short time intervals. Notwithstanding those results carried over

an analytically tractable model, the asymptotic moments remain entangled with both diffusion and jump

coefficients and therefore anticipating uncertainty when using the GMM.

In this thesis chapter we employ the term aliasing in a wide context, referring to model performances

that are confusing in the sense that models that are structurally different produce similar outcomes. The

sources of aliasing might be multiple. The models are expected to be misspecified or are rather misspeci-

fied by construction and the system is assumed to be partially observed. The point of testing for aliasing

with simulation is as follows. Assume, for instance, we have two nested models. The question is to which

extent the nested one is statistically equivalent to the overarching model when the former is adapted to

a sample which is generated by the latter. We would expect that, foremost, the answer depends on the

model performance measure. In particular, we are targeting a marginalised likelihood and the projection

of the latent system state with an approximated non-linear filter, two measures that are constructed on

a partial information set. We notice, for instance, that jump-less models hardly match discontinuous

paths, whereas jumps in volatility have a more elusive sample feature. The exercise is limited in the

sense that we only consider an affine SD family and a disjoint SH family hinging on the prior that the

volatility clustering is produced by frequent small jumps hitting the system with stochastic intensity. A

CEV extension is also considered, as well as several jump specifications. Another interesting result of the

simulation is the very flexible performance of the SH models, that are among the top performers in the

real market data exercise, as long as a good performing CEV specification is in place.

For the purpose of model selection, we distinguish the problem of parametrising the statistical distribu-

tion of the model set from that of filtering the latent state component, as we employ two procedures that

target respectively and distinctively the likelihood of the observable and the projection of the unobserved

component. The estimates are then used to perform computations and to evaluate model performance.

We exploit an approximation of the likelihood function to estimate the model parameters that involves

the marginalisation of the unobservable variable, whereas the path of the latent component is estimated

through a filtering procedure which receives the model parameters as an input. The focal point of the

analysis is the comparison of possibly misspecified models acting in a context of partial information,

whereby their performance is measured in terms of the information they are capable of extracting from

sample data, both from a distributional as well as from a dynamic behaviour perspective. The loss

functions defining the model comparison statistics therefore measure the ability of the model in match-

ing the sample information and therefore reproducing the distributional characteristics of the observed

system and the ability of the model in inferring the dynamic behaviour of the latent components. The

measures for model comparison are derived directly from the likelihood function and from the filtering

algorithm. Despite the different objectives of the estimation approaches2, they share a common origi-

nation in the forward equation, that is the partial integral-differential equation (PIDE) describing the

transition density of the system. The inner component of the likelihood function is constructed as the
2 The procedure of marginalisation of the latent component has been developed primarily to target the likelihood of

the observed data, insulating the further complication of estimating the unobservable variable into a distinct computation.
Incidentally, the algorithm improves the computational charge.
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numerical solution of the forward equation and, combined with the marginalisation procedure, is used

for the parameter estimation and to derive information theoretic loss measures. The filtering technique

of Maybeck (1982), Nielsen et al. (2000), Baadsgaard et al. (2000), also used in Hurn et al. (2013), is

constructed as a projection onto the observable set of information. The filtered latent path feeds either

measures of path-wise distance or a joint likelihood loss indicator. Exploiting the procedure by which

the (diffusion only) propagation equation is derived, we extend the filter by including a jump element

that allows one to deal with more general JD models, as we pursue here. This jump-augmented filtering

approach is another of the main contributions of this chapter. The form of the jump that the filter

can handle is quite general, including synchronous or asynchronous jumps, state-dependent jump size

distributions along with affine as well as non-affine state-dependent jump-intensities.

The specific statistical entanglement and the effects of truncation errors related to the algorithms em-

ployed are not subjects of research, as we focus on the application of the bootstrap methodology and

the MHT-MCS framework to explore model similarities and superior performances in simulated and real

data experiments. However, we pinpoint here several issues left for further examination. The analysis is

executed with approximate maximum likelihood estimation methods, that is the likelihood of the chosen

model is not known in closed form and therefore numerical methods have been employed to generate the

estimation function. From a theoretical statistics point of view, the analysis can be set in the frame-

work of Poulsen (1999) whereby, assuming consistent and asymptotically normal estimates (CAN) of the

‘true’ likelihood, only second order precision of the AML is required to obtain CAN as well. On the

other hand, the AML can in general fall into the theory of misspecified models when the more practical

misspecification hypothesis is assumed, see White (1982, 1994). The study of the empirical behaviour of

the discretisation is beyond the scope of this thesis. Another complication of the analysis of this chapter,

which deserves a separate analysis, is represented by the partial observation of the system state, entailing

the exploitation of filtering techniques to measure the expected path of the latent component. We resort

to an approximated non linear filter, which we trace back to Maybeck (1982). The peculiar feature of the

filter is that it can disregard the estimation of the prior distributions, as it only requires the evolutionary

equations of the latent state projections and provides a direct expression for the evolutionary equation of

the system projection. To obtain an ordinary differential equation that can be employed for computation,

the ODE can be expanded in some terms that involve the expectation operator, effectively rendering a

second order approximated filter3. As a consequence of the higher order expansion, the estimate of the

system state transition expectation is adjusted by a bias correction term. However, some crude estimation

is then used when the observation density is required, in practice resorting to a (first order approximated)

non linear least square of the expected posterior value. The consequences of these practical remedies in

terms of precision of the estimates and possible improvements, deserve further research. A point we make

is that we do not use the likelihood of a possible observation error in order to estimate the system param-

eters. In many simulation we do not report, the peculiar form of the system state which hosts already

the observed variable, determines some odd behaviour of the latent state projection, as indeterminacy

is already captured by the diffusion and possibly the jump component. Furthermore, this approach has

been proved to be distorted, as the observation error exhibits high correlation with observable, as well as

3 It has to be noticed that for affine and quadratic models the time-propagation equation is exact.
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autocorrelation, see for instance Dempster and Tang (2011).

3.1 The Jump-Diffusion Model Set

In this chapter, we restrict the attention to a jump-diffusion system, which is designed to capture many of

the stylised features of equity stock financial time series. The overarching model we consider is specified

by the following parametric SDE

dx = θvγ0dW0 + J0 dN0 −m0dt

dv = κ(1− v) dt+ σ
√
v dW1 + J1 dN1 −m1dt,

(3.1)

which represents a jump-diffusion family of models which is characterised by log-return process x and a

volatility process v, both driven by defined diffusive and jump factors. The volatility process v is defined

to evolve according to a square root process that can be affected by jumps, which may or may not be

synchronous with the jumps in the returns process. The jump process are defined by the following two

jump-related differentials describing jump arrival intensity:

dΛ0 = λ0v
2γ1dt

dΛ1 = λ1dt
(3.2)

These are the hazard functions of the compounded Poisson jumps N0 and N1. The stochastic factor

can enter either the constant elasticity4 of variance (CEV) diffusion in x or the CEV stochastic hazard

function of N0, where we fix 0 ≤ γ0, γ1 < 1. The overarching model in Eq. (3.1) and (3.2) is intended

to mimic the behaviour of the log-price of and equity stock. The x process is not characterised by any

particular drift, which is expected to be null5. The model produces stochastic volatility, that is the

clustering of price variations into high and low volatility regimes and further instantaneous acceleration

of the price achieved through jump in level and possibly sudden spikes in volatility generated by jumps

in the latent factor. As we allow for high frequency small jumps, the stochastic volatility can be gen-

erated by either a higher diffusion factor or by a peak in the number of jumps. The clustering of the

returns is determined by the mean reversion feature of the latent factor, which exhibits some viscosity

in pulling back to the long run level from a spike. We do not mix stochastic diffusion and stochas-

tic intensity models, thus if γ0 6= 0 ⇒ γ1 = 0 and viceversa. We make this choice as in the present

study we exploit jump models with random jump frequency in an alternative fashion, allowing for an

high intensity self-exciting system that uses the latent stochastic hazard function to generate stochastic

volatility. The suggested hypothesis that is complementary is that combining stochastic diffusion and

stochastic intensity determines an overidentifying restriction. Hence, the intensity of the jumps in x are

either constant or random, whereas the intensity of the jump in the v factor is constant. The latter

is the one that is considered latent in the simulation or is unobservable or partially observable in the

4 In economics, the elasticity of the function U(c) is defined as −cU ′′/U ′. This corresponds to an elasticity of the function
vγ of 1− γ.

5 Contrary to market practice in defining log-transform models of affine stochastic volatility, we drop here the Jensen
term that would result from the transformation of the price martingale, as the perspective that we take is mainly that of
the historical data. As explained in the Appendix A.4, employing a log-return model with a stochastic volatility drift term
should be justified by autocorrelation in the first difference of the data, which is not the case, see also Bollerslev and Zhou
(2002).
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market-data experiment. In term of parameters, we observe that we apply some simple transformations

to popular versions of the model subcomponents, see Appendix A.4, to obtain a latent factor v that

oscillates around a unitary mean, with mean reversion factor κ. The diffusion of the square root factor

is determined by the parameter σ, whereas the jump component J1dN1 is compensated by the drift

adjustment m1dt; the constant intensity is λ1. The latent factor enters either the diffusion of x, whereby

it is scaled by θ and exponentiated by γ0, which in the non CEV version is fixed to one half, or it enters

the intensity function of the jump in return process J0dN0, whereby it is scaled by the parameter λ0

and exponentiated by γ1, which in the non CEV version is fixed to one half and in the SD model class

is fixed to zero. The jumps compensation drifts m0 and m1 are constant. The mean reversion speed is

requested to be higher than the jump drift and their difference greater than half the squared diffusion

coefficient, that is β −m1 >
σ2

2 > 0, in order to obtain stationary variance, at the same time preventing

the crossing of the zero level6. We allow for the presence of correlated diffusive random drivers7 between

the factor x and the stochastic volatility factor v, that is d[W0,W1] = ρdt, the so called leverage effect,

a phenomenon witnessed at least since Schmalensee and Trippi (1978) and modelled, for instance, in

Glosten et al. (1993). If jumps in v are included, their expectation is required to be greater than one,

cfr. (A.2) in Appendix A. The jump size distribution J1 of the Poisson point process component in v

is specified as a positive exponential, whereas in the case of N0 a negative exponential jump is specified

in the stochastic diffusion case, with constant jump intensity. A double-exponential distribution or a

skewed normal jump is employed with the stochastic hazard model version of x, whereby in this case

the jump size is constrained to a zero expected value. Moreover, we notice that the stochastic hazard

family is not affine, as the covariance matrix of the diffusion component cannot be written in a linear form.

The models of the exercise in this chapter are organised into two major families, exhibiting stochastic

volatility that is generated either by the diffusion factor, the SD class, or by the jump intensity of the

Poisson component of the cumulative return process, the SH class. In fact, both the stochastic diffusion

and the stochastic jump intensity version of the overarching model in Eqs. (3.1), (3.2) are stochastic

volatility models, as it can be seen by taking their quadratic variation given by the v-dependent stochas-

tic integral
∫

dt
[
θ2v2γ0 + λ0v

2γ1EJ2
0

]
. The volatility clustering which characterises diffusive stochastic

volatility models can be also produced by intensively jumping stochastic hazard models, which entails

a concentration of larger variations of x during volatility peaks. In the case of the CEV version of the

SH family, the γ0 parameter will exacerbate this feature, for higher parametric values. The stochastic

hazard models are characterised by high frequency jump intensity on average, whereas models of the

stochastic diffusion class that manifest jumps in the level of the observable variable are expected to

jump less frequently. A minor distinction between the stochastic diffusion and the stochastic hazard

6 We will sometimes refer to the ratio σ2

2(β−m1)
, as the volatility excursion factor. It should be between zero and one,

whereby values close to the unity determine very spiked volatility paths, that is large excursion, whereas values close to
zero entails that v rarely leaves a neighbourhood of the long-run level.

7 This feature produces a bidimensional diffusion which tends to associate negative variations in x with increasing v and
viceversa, but not necessarily couples large negative variations in x with peaks in volatility and the other way around,
therefore producing only slight asymmetry in the marginal density of the observable x. That is to say, the correlated
diffusion W0 and W1 do not produce higher volatility in the presence of negative trends in the price level, but they tend to
associate negative returns with growing volatility, a feature that might happen at low levels of volatility as well. Therefore,
affine models are not expected to produce strong asymmetry via the ρ coefficient. In practice, if were, for instance, to set
a simulation of a correlated affine stochastic volatility model, we would observe that the first difference of x be correlated
with the first difference of v but not with its level. From the simulation, we observe that in the presence of negative or
bidirectional jumps, the likelihood manifest a strong aliasing between the correlation coefficient and the latter component.
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classes lies in the direction of the jumps of x, if any, which is negative in the former case, whereas it it

can be positive or negative in the latter case. From a distributional perspective this feature entails that

the SD class can only produce negative symmetry that is the case of interest for market data applications.

The system in (3.1) contains or can be connected with several popular models used in financial econo-

metrics applications, although not all of them are employed in the analysis here and in general some

subcomponents are disconnected in order to obtain models exhibiting similar features but that are struc-

turally different. Indeed, as the scope of this analysis covers discriminating among stochastic models in

terms of explanatory power, the inclusion of an overall nesting model would not add any insight to the

final result, because the overall nesting model would be capable of matching any behaviour of its compo-

nents. One of the hypotheses we are investigating in the market data experiment consists in whether one

of the model class is superior. The connection with popular models is only illustrative. Correspondence

of the overarching model to model specifications prominent in the financial literature is shown in Tab.

15. However, a full illustration of the transformations needed to obtain more conventional models used

in literature are presented in Appendix A.4. Parameters constraint associated to the latter models are

as follows. If we exclude both jumps in return and volatility and set γ0 = γ1 = 1/2 we get the seminal

stochastic volatility model of Heston (1993). Considering the jump in volatility and if the jump in x is

skewed normal with null parameter of asymmetry, we obtain the SVS(C)J model of Eraker (2004), with

uncorrelated jumps. If in the last model we set γ1 = 0, we obtain Eraker et al. (2003), also included in

Duffie et al. (2000), Bates (2000) and Pan (2002); if further zeroing λ1 = 0, we get Bates (1996), also in-

cluded in Duffie et al. (2000). If we leave γ0 free, set λ0 = λ1 = 0 we can obtain the CEV models in either

Beckers (1980) and Macbeth and Merville (1980) or Jones (2003) and Aït-Sahalia and Kimmel (2007).

If we then set γ0 = γ1 = 0 and consider the Gaussian determination of the skewed Normal jump distri-

bution, we get the Merton (1976) model, whereas with double-exponential jumps, we obtain the (Kou,

2002; Kou and Wang, 2004) model. Notwithstanding this established relation between the system in Eqs.

(3.1), (3.2), and these prominent models in the financial literature, in this work we compare reduced and

extended forms of these models to perform model comparison of conventional and unconventional models

of stochastic volatility. The model set is first tested in a simulated environment to check for fungible

characteristics. Successively, the model set is tested onto real market data to search for model superior

performance. This research has to date provided evidence to support the adequacy of these increasing

complicated model specifications, however, the work in this chapter is the first study to examine a wide

range of jump-diffusion models where it is conjectured that there is a strong aliasing among these mod-

els, and further among individual components of these models, which offers the possibility of simplifying

model structure, at least from an historical measure perspective. The trend in the literature has been

towards increasingly complicated model specifications in an effort to better capture market dynamics,

yet this comes at a cost in terms of increasing levels of estimation error and bias and, from a practitioner

perspective, increasing disconnect with the regulatory requirements of industry. The analysis presented

in this chapter offers new insights into the trade off between alternative model specifications using for the

first time a rigorous MCS approach, which is further complemented with a direct multiple comparison

test in the MHT testing, under the most general γ-MCS. The MCS approach taken here is ideally suited

for the investigation of model aliasing among the suite of models considered.
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3.1.1 Parameter Estimation

The parameter estimation of jump-diffusion models in quantitative finance has received extensive treat-

ment, in the latter two decades. Methods to pursue this task are varied. Without any claim of compiling

an exhaustive literary review on the topic, we recall the efficient method of moments of Gallant and

Tauchen (1996), the empirical characteristic function approach of Singleton (2001), the spectral GMM

of Chako and Viceira (2003). In the realm of the likelihood estimation, the methods to approximate the

likelihood relies on simulation, as in the simulated maximum likelihood of Pedersen (1995b) and its exten-

sions in Durham and Gallant (2002), or exploit the expansion of the transition density as in Aït-Sahalia

(1996, 1999, 2002, 2008) or alternatively use PIDE methods to solve the transition equation. Example

of the latter approach are Lo (1988), Poulsen (1999), Lindström (2007). In this study, we embrace an

approximate maximum likelihood (AML) method of this type as it has proved to be very general and

relatively easy to implement, with moderate computational costs. We favourite FDM to solve the main

PIDE as polynomial expansion methods deliver oscillatory solutions. Moreover, the likelihood approach

is theoretically the most efficient estimator and is characterised by a distinctive theory of model compar-

ison when the models are misspecified, see for instance Akaike (1974), White (1982). We use likelihood

methods for the parameter estimation of multivariate JDs with latent components, constructed as the

numerical solution of the forward equation (A.6) combined with the marginalisation of the latent factor

by weighting for its stationary density. Exploiting an approximate maximum likelihood approach, the

procedure acquires the inherent optimal properties of the exact likelihood that can be achieved asymp-

totically by the approximation, cfr. Pedersen (1995a), Poulsen (1999). The same result extends to the

PIDE version, provided uniform convergence of the solution, see Lindström (2007).

The likelihood function hinges on the marginal densities of the first difference of the x process, constructed

around the transition density of the state vector. Symbolically, the log-likelihood is represented by index

LN (Θ) = − 1
N

N∑
i=1

log Pδti {∆x = ∆xi|0x; Θ} (3.3)

which provides the measure for the construction of multiple hypothesis model selection tests, as detailed

in Section 3.2. In the likelihood equation, ∆xi is the return over the time horizon δti and each likelihood

solution Pδti is centred at x = 0. For each model and sample data, the parameter vector Θ∗ that optimises

the data function (3.3), enters both the likelihood and the latent component loss functions. The main

steps toward the practical implementation of the likelihood estimation algorithm adopted in the model

comparison exercise are depicted in the Appendix A.1, which describes the logical step to achieve the

marginalisation of the latent variable and therefore obtain the likelihood of the observable variable, as well

as the setup for the approximation of the transition density. More information related to the numerical

solution of the PIDE equation of this problem are given in Appendix A.2, which presents the construction

of the solver by the FDM. The pseudo-code description of this algorithm is presented in Appendix B.1.
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3.1.2 The Second Order Non-Linear Filter

In order to analysis the performance of the model set with respect to the latent component problem,

we adopt the filtering technique of Maybeck (1982), employed in finance in applications such as Nielsen

et al. (2000), Baadsgaard et al. (2000) and Hurn et al. (2013). As an auxiliary contribution of this

work, we extend the second order non-linear filter (NLF2) augmenting the time-propagation equation

to include a jump component in the system. This approach is convenient and, in particular, it does

not require the solution of the PIDE associated with (3.1), relying instead on the transition equation of

the expectation function derived from the forward equation. In Appendix A.3 we present the particular

approach undertaken in the construction of the time-propagation equation of the filter, as well as the

jump extension introduced in this study. In the appendix we also illustrate the standard approach in

determining the update equation and explain the second order expansion by which non linear expectation

are dealt with in the application section. Appendix A.3 also exhibits some examples. As this solution

does not involve time expensive calculations, we can afford an increased system state dimension and hence

split the x variable into its main stochastic drivers, namely the diffusion and the jump component, further

introducing a new observable, that is the integrated variance. The integrated variance is an elaboration

of x which makes observable the cumulative second order moment of the return process. Specifically,

rearranging the system of Eq. (3.1) and introducing the auxiliary observable w, we concentrate the

analysis on the system

dξ = θvγ0 dW0 −m0dt

dv = κ(1− v) dt+ σ
√
v dW1 + J1 dN1 −m1dt

du = θ2v2γ0 dt

dπx = J0 dN0

dπw = J2
0 dN0

(3.4)

which represents the engine of the latent component estimation exercise. The system state in Eq. (3.4)

is augmented with the observable w = u + πw that represents the integrated variance. Moreover, the

state is rearranged in such a way that the diffusion and the jump components of the x and w observable

variables are projected explicitly. The observation equation is given by the linear form

x = ξ + πx

w = u+ πw
(3.5)

which in the formalism described in Appendix A.3 corresponds to the observable vector Y = (x,w)> =[
1 0 0 1 0

0 0 1 0 1

]
X. With the system state X = (ξ, v, u, πx, πw)> we are isolating the random sources

into specific state variables, a choice of design that allows for the disentangling of the jump variable

from the diffusion component. As a consequence, the filter defined by the Eqs. (3.4) and (3.5) is able,

in particular, to produce the projection of the latent variable πx, which accumulates the jumps8 of the

observable x. We will use this filter output to estimate the jump times and sizes and to produce a simple

benchmarking exercise of the procedure used here with a particle filtering technique. A by-product of the

8 This strategy, however, cannot be directly implemented for the estimation of the jump component of the v factor, as it
does not enter directly into any observable.
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filtering which might be of interest is the estimate of the path of the latent variable ξ and thus the total

variance attribution between the jump and diffusion component of x. Progressing with the construction

of the device needed for the second battery of model comparison tests, we have augmented the observable

with a new variable w, which plays a special role in the system economy. As the state vector (ξ, πx, v)

is completely unobservable with a dimension higher than that of x, we would expect a strong degree

of indeterminacy in estimating its projection. For this case study, however, we can resort to stochastic

calculus and obtain two new variables which increase the information content available by introducing a

new observable. We expand the system with the integrated variance of the process x, which is partially

observable. This system extension can be proved to be statistically significant. The integrated variance

has been used in other applications in a realised volatility context, see for instance Bollerslev and Zhou

(2002), which exploits its moment structure to improve the estimation of a stochastic volatility model,

see also Barndorff-Nielsen and Shephard (2002), Barndorff-Nielsen and Shephard (2004). In this work,

the origination point is different. We construct the process w considering the SDE which describes the

observable x = ξ + πx and derive the process dynamics for χ = x2

dχ = 2x (θvγ0 dW0 −m0 dt) + θ2v2γ0 dt+
[
(x− J0)2 − x2

]
dN0

= 2x dx+ θ2v2γ0 dt+ J2
0 dN0

= 2x dx+ du+ dπw.

Hence, let w = x2 − 2
∫
x dx to obtain the new observable w = u+ πw. It is implicit that because of the

term 2
∫
xdx that can only be approximated, the variable w is subject to a measurement error which

is assumed to spill into the estimate of πw. We do not introduce further auxiliary variables interpreted

as observation errors because of the presence of several overlapping latent sub-components into which

the total system variance has to be attributed. A noisy observation error is redundant as it can easily

be blurred into the diffusion component or be considered as the leftover variance once the system jumps

have been isolated as tail events of the projected jump components, π̃x and π̃w, cfr. Section 3.3.

3.2 Model Comparison Testing

As anticipated in Section 1.4, for the experimental part of this chapter we devise an exercise of relative

model performance MHT, as defined in (1.2), targeting jump-diffusion models. The test exploits the

balanced simultaneous confidence set controlling for the k-FWER and augmented with a step-down algo-

rithm to further refine the subset of significantly equivalent models and increase the statistical power of

the test. The relative performance test is executed under the simulated scenario, whereby the structure of

the experiment is suited for this type of comparison. For each benchmark model, sample data is generated

and hence model performance measures are derived, after previous parametrisation and filtering. The

main purpose of the test is to explore the model ability in reproducing each other’s features exhibiting

greater flexibility with respect to the target loss functions. We also produce a relative model performance

MHT processing real market data, whereby, as the “true” data generating process is unknown, a bench-

marking iteration is used to scan thoroughly the precedence relationships across the full set of model

comparisons. The purpose of this exercise is mainly to be descriptive of the multivariate distributions of
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the model comparison statistics, which are thereafter synthesised and represented by the outcome of the

absolute model performance MHT. Final conclusions regarding the model selection exercise are drawn

by means of the max -MCS (Section 1.3.1), the t-MCS (Section 1.3.2) and the γ-MCS (Section 1.3.3)

performed with simulated and real data. With the simulated exercise, the set of the best equivalently

performing models can be regarded as the collection of models that are statistically similar to the selected

benchmark and can therefore be considered as substitutes. With the real market data experiment, we

search for the best set of models fitting the data in terms of the target functions, producing original

model selection results through the application of the MHT and the MCS. The reference model setM is

represented by stochastic volatility families described in Section 3.1.

The loss functions Lj ’s constructed for the sake of model comparison, exploit an information criterion as

well as the metric represented by the path-wise distance derived from the filtering procedure. The first

measures when combined into the model relative performance dij ’s give raise to likelihood ratios, which is

essentially a measure of fitting of the target empirical distribution. Moreover, as the latter is constructed

by integrating out the latent component, we investigate a further indicator of model performance, which

measures the model ability in producing superior projections of the unobservable component. For the

case of the real market experiment, we also construct a hybrid measure of model performance combining

the full approximate likelihood evaluated at the vector of parameter Θ∗i over the actual market returns

and the filtered volatility trajectory. Particulars of the loss functions are presented in the following para-

graphs. The AML algorithm and the augmented non-linear filter employed in this study are detailed in

Appendix A.1 and Appendix A.3.

The loss functions presented in this section are used in the empirical section to construct MHT with

step-down refinement relative performance test that are indicated as LR-MHT, LC-MHT, LRLC-MHT

and TG-MHT. Absolute performance tests are executed in the simulation environment, with respect to

each model sample, and in the market-data experiment, with respect to a well diversified large stock

index data, employing the (LR/LC/LRLC/TG)-MCS-max, the (LR/LC/LRLC/TG)-MCS-t and the

(LR/LC/LRLC/TG)-MCS-γ, defined as follows.

3.2.1 Likelihood Ratio

In the context of model specification analysis, a fundamental result is represented by the following limit.

Let z1, . . . , zn be n independent observations on a random vector z, with probability density function

g(z) and consider the family of models represented by the parametric family of densities {fθ(z), θ ∈ Θ}

with a vector parameter θ and parameter space Θ ⊂ Rk. The following limit holds almost surely

1
n

n∑
i=1

log fθ(zi)
n−→
∫

dz g(z) log fθ(z),

provided the last integral exists. Indicating with S(g; fθ) the latter limit integral, we can define the

Kullback-Leibler information criterion, which is a distance measure of the likelihood of the possibly

misspecified model from the true one, that is K := S(g; g) − S(g; fθ), cfr. White (1982, 1994) and Rao
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and Wu (2001). By the Cramer-Rao bound, K ≥ 0 with equality only if fθ ≡ g. The likelihood ratio

between model fθ and model hϕ is the difference

LR(g; fθ, hϕ) := S(g; fθ)− S(g;hϕ),

which represents the distance gap of the model candidates.

Concerning the model comparison experiments targeting the model likelihood, we define the loss function

as

Li := −Li (Θ∗i ) (3.6)

whereby the RHS refers to Eq. (3.3) and we have dropped the reference to the sample size and introduced

the model index i. The sign has been changed because in practice the objective function is minimised and

more importantly to comply with the definition of a loss function, as adopted in the context of the model

selection strategy in Section 1.1. As a consequence, the relative performance measure dij = Li − Lj

corresponds to the sample equivalent of the LR, which would signal model equivalence as long as its

value is not significantly different from zero. We refer to tests obtained from the loss function (3.6) as

the likelihood ratio test (LR).

3.2.2 Distance from the Latent Component

The second type of performance measure we employ is intended to detect the ability of a model to produce

a reliable projection of the latent system state variable v. The unobservable component projection is the

output of the NLF2 procedure developed in Appendix A.3 and applied to the system described in the

Eqs. (3.4) and (3.5). The performance indicator that is used with this battery of test focuses solely on the

filter output, which by construction does not involve the likelihood function to produce the latent state

estimate. The test is intended to measure the model ability in describing the evolution of the system, with

particular reference to the inferred unobservable variable v. The test is centred on the latent stochastic

driver v as it is common to the full model set. Some measures of the jump-time hit rate are reported as

descriptive quantities of the filter algorithm performance in the filter benchmarking exercise of Tab. 30

as illustrated in Section 3.3.1.1. The loss function is obtained as the absolute distance of either the latent

variable projection from the actual path of v for each benchmark sample in the simulation exercise, or

of the appropriately scaled and translated latent variable projection from a threshold GARCH estimate,

cfr. Glosten et al. (1993), of the financial returns volatility, in the real data experiment. In the latter

case, with the experiment involving financial market data, we fix the lack of knowledge of the v path

by linking the filter output to the GARCH model that in econometric applications has been used as a

financial return volatility proxy for decades, see for instance Engle (1982) and Bollerslev (1986), Nelson

(1991) and Hansen and Lunde (2005). However, although employing observable data, the autoregressive

conditional heteroskedastic model offers a term of comparison only indirectly related to the system state

projection9.

9 The ratio of the overall average of the absolute path distance of the scaled and translated filter output from the standard
deviation of the GARCH filter is 17.25%
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Indicating with ν the reference latent system state path, the loss function of the model Pi is

Li = 1
N

N∑
j=1

∣∣∣ṽitj − νtj ∣∣∣ (3.7)

In the loss function (3.7), when referred to the simulation exercise, the variable ṽt coincides with the filter

output v̄t, whereas νt indicates the simulated trajectory of v under the benchmark. When referring to the

financial data experiment, νtj is the threshold GARCH estimate of the squared daily volatility, whereas

ṽt = v̄ta + b, that is the appropriately scaled and translated projection v̄. This approach is justified as

follows. If we consider the first difference of a discrete approximation of w, we get

∆w ≈ (∆x)2 ≈

 vθ2∆t+ λ0j02∆t+ ε

vλ0j02∆t+ θ2∆t+ ε
(3.8)

and therefore the parametric constant a, b are appropriately defined according to the stochastic diffusive

or stochastic hazard structure of the reference model. As the relation in (3.8) remarks, disregarding

approximation errors, the opportunely scaled and translated projection v̄ can be related to the squared

first differences that feed directly the GARCH filter. The Fig. 5(c) exhibits a path fragment of the

TGARCH estimated volatility (red line) and the scaled and translated output of the NLF2 (blue line)

for the CEVJJ process, as applied to market data. After recentring and rescaling the non-linear filter

projection to account for the observed variability of x, the filtered path track closely the trajectory of

the discrete time TGARCH filter, to a visual impact. This testing strategy is exploited in this study for

the first time in the literature. We refer to the first type of test presented in this subsection as the latent

component test (LC), whereas the second test is indicated as the threshold GARCH test (TG).

3.2.3 LR with Latent Component

In case of the real data experiment with the LC test, we evaluate the model ability in estimating the

latent component with respect to a model that although provides consistent estimates of the observed

squared return dynamics, introduces an interpretation of the data which is based on a specific conjecture.

In order to attenuate the dependence of the test output on the characteristics of the GARCH volatility

estimates, with the market data experiment we additionally produce a test that evaluates the model

filtering ability coherently with the theoretical transitional properties of the model, without the need of

an external term of comparison.

With the likelihood ratio latent component test (LRLC) we produce an LR test whereby the likelihood

function corresponds to the full likelihood of the vector (x, v) and the latent path is obtained from the

output of the model filter. Hence the reference loss function is

Li := 1
N

N∑
j=1

log Pi

(
∆xtj , ṽ

i
tj ; 0x, ṽ

i
tj−1

; Θ∗i

)
(3.9)

whereby the model likelihood can be symbolically represented by the Eq. (A.7). The log-likelihood

represents the full likelihood of the system, that is without marginalising the v component, but dealing
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with it as its projection achieved by the filter was the actual observed trajectory of the latent factor.

The loss function defined in Eq. (3.9) simultaneously measures the ability of the model in generating

distributional hypotheses matching not only the observed data but also the projection of the latent

component delivered by the NLF2.

3.3 Experimental Section

3.3.1 Preliminary Considerations

The analysis is restricted to a scalar observable x with a single latent factor v model that can admit

asynchronous jumps in level of the observable N0 and in the level of latent factor N1, which are com-

pounded with the random jump size J•. The general equation of the system is presented in Eq. (3.4). The

unobserved factor v can feed the dynamics of the diffusion coefficient determining a stochastic volatility

model or alternatively can transfer its action onto the hazard function of the stochastic jump N0 and

generate a stochastic hazard model. The transfer function for the quadratic variation of the stochastic

volatility model and for the intensity of the stochastic hazard model is the (scaled) power v2γ , 0 ≤ γ ≤ 1,

excluding model configurations which combine random volatility and random intensity. When the jump

intensity of the jump component of x is not stochastic and the system is allowed to jump, the discon-

tinuities flow with an expected constant yearly rate λ•. The jumps in v have in all cases the latter

feature, whenever they are included. The jump sizes J• may capture different stylised features, including

singled sided exponential, double-exponential and skewed normal jumps, as summarised in Section 3.1.

The main prototypes considered are listed in Tab. 14. The parameter estimation is performed by con-

structing the complete likelihood of the system state of the general equation, of which an example is

given in Fig. 1. The exhibit shows an instance of the output of the procedure for the marginalisation

of the density of the observed variable, specifically that of the SV model. The algorithm is described in

Appendix A.1.1. The upper-left section, 1(a), shows the final construction, that is the model marginal

density under the simulation parameters, whereas the upper-right section, 1(b), plots several bivariate

densities on a grid of initial conditions for v, ranging from 0 to seven times the projected variance over

the five days reference time horizon. In practice, in order to integrate out the latent variable, we need

to integrate for the determinations of v at the right hand side of the time interval, as well as performing

a weighted integration of the v initial conditions, that is on the left hand side of the time frame. Now,

in order to determine the finite size of the range of definition of the v’s initial condition, we refer to a

multiple of the expected variance of v over the reference time interval, therefore discriminating by the

latent factor parameter values. The initial condition for x is centred at 0 for each grid-point of v, hence

determining the transition densities as solutions of the main PIDE. The likelihood functions that are

obtained, conditionally on the initial values of v0, generates the observable’s marginal distributions at

each grid-point as depicted in the lower-left section of Fig. 1(c). These functions, which are obtained by

integrating over vt, are then weighted by the stationary distribution of v, exemplified in the lower-right

section of Fig. 1(d), in order to get the marginal density of x. The latter integration corresponds to the

marginalisation of v0. It is important to notice that this procedure does not produce the loop prior-to-

posterior distribution that is typical of the Bayesian algorithm employed in filtering, but rather producing
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a single conditional distribution for the observable, unconditional from the latent variable v, by means

of the stationary distribution. This particular construction exploits the properties of the model families

described in Appendix A.1, with the capability of computing the likelihood much faster because, at each

iteration, it only necessitates a single distribution for the full sample. This procedure delivers a likelihood

function that has an empirical equivalent in the histogram obtained by taking a stratified sample of the

first differences over the target horizon of the time-series data, as for instance in Fig. 4(a) that shows the

simulated histogram against the numerical solution of the PIDE for the model SVXJ. In practice, the

marginalised likelihood is targeting the shape of the observed histogram, at the same time supporting

the consistency of the model SDE structure. In general, however, the partial set of information available

complicates the problem, generating model aliasing with respect to several model performance measures.

The latent state estimation is achieved through the application of the jump extended non-linear filtering

algorithm of Appendix A.3. In order to estimate the latent path of the v variable, the system dynamics are

augmented by the (partially) observable integrated variance w and its transition equation is rearranged

in the form of Eq. (3.5), which allows a more thorough decomposition of the observable into its principal

stochastic drivers. It is interesting to notice how this particular filtering construction allows the augmen-

tation of the system dimension without exponentially inflating its computational cost, an extension of the

information content that in terms of the quality of the latent path extraction can be empirically proved

to introduce statistically significant information. Another benefit introduced by the filtering procedure

is the possibility to disentangle the diffusion from the jump component of the observable variables with

a simple reshaping of the state transition equation, whereas this task would otherwise have involved a

complex manipulation of the domain definition of its likelihood function. Combining the efficiency and

the robustness of the likelihood approach with the capacity of a state-space method to handle latent

component systems allows us to explore different aspects of the model set constituents in describing the

sample information.

The configuration of the simulation parameters is not extreme, in order to observe the ability of the test-

ing procedure to isolate unique behaviours and to identify model clusters. In the simulation experiment

we keep the benchmark sample at a constant unconditional yearly variance with an even allocation of

the variability parameter among the diffusion and jump component10, whenever the latter is included,

therefore producing distribution that are located and spread closely, but that differs in some key shape

numbers. The estimation exercise is complicated beyond the mere model similarities by the additional

trade-offs among certain parameters, which raise the uncertainty around the model selection. The fol-

lowing discussion sheds some light on this complication where we refer to several distributional shape

coefficients. The simulation benchmark model coefficients, the location and their shape numbers are pre-

sented in Tab. 16, complemented with two further standardised central moments. The most immediate

example of possible issues in discerning among models and model configurations is the variance attribu-

tion between the diffusion and the jump component, see for instance Aït-Sahalia (2004), a fact which

is complicated further by the multiplicity of the parameters involved, depending on the model type. To

elaborate further, an example which also hints at the effects of the loss of information resulting from the

10 In practice, we fix the unconditional variance generated by the model and choose the parameters appropriately such as
to attribute half variance to the diffusion and the other half to the jump component, when present.
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lack of observation of the system variable v is represented by the presence of the correlation factor ρ. From

a likelihood angle, this coefficient generates skewness in the marginal distribution, although a sensible

−0.5 simulation parameter when compared to ρ = 0 in the SV model, it can only account for a −0.14

skewness factor against a zero, cfr. Fig. 2(b). A visual aid elucidating the mechanics of the procedure

can be traced in the cross-section of the correlated (Fig. 2(c)) and uncorrelated (Fig. 2(d)) bivariate

distributions at a given initial condition (v0 = 2.46) against the domain of the observable, revealing a

dynamic behaviour that actually disappears when smoothed out by the marginalising procedure. In fact,

the quadrant c and d highlight visually that although the cross sections of the bivariate distributions are

different, the overall contour of the probability distribution of the observable is very similar, notwithstand-

ing one model is characterised by innovations correlated with the stochastic volatility factor. Therefore,

once the initial condition has been marginalised by the same system of weights, as the correlation factor

does not impact the stationary distribution of v, the output functions, which are exhibited in quadrant

b, only different by a restrained asymmetry. Those premises translate into the tendency to zeroing the

correlation in the presence of skewed empirical distributions, in the absence of complementary features11.

In fact, skewed distributions can also be generated by asymmetric jump components. In Fig. 3 the SV

model (blue curve) is compared with several other members of the model set, depicted at the simulation

parameters. In the frame (a) the shape of SV is compared to the slight increase in kurtosis generated by

SVVJ (red line), whereas a γ = 0.75 parameter of the CEVVJ (light blue line) model pushes this shape

factor somewhat higher. Asymmetry is generated by jumps in the SVXJ (red line) model of frame (b)

and in the SHB (red line) and the CSHBVJ (dashed light blue line) of frame (c), whereby in the latter

case it visualises the marginal effect onto the v unconditioned distribution of the CEV parameter and

the jump in the latent factor. The lower-right frame (d) shows the profile of two representatives of the

stochastic hazard with skewed Normal jump family against the SV, whereby the SHA (red curve) mani-

fests a semi-Normal profile, whereas the CSHAVJ is slightly more spiked. Turning to kurtosis, we notice

that stochastic volatility and appropriate jump specifications can produce widely peaked distributions

when compared to a Normal distribution, as in Fig. 2(a) whereby the profile of a Gaussian function with

zero mean and same standard deviation (0.2) is compared to that of the SV model. Indeed, a larger γ

and jumps in volatility can as well increase the kurtosis, although in the stochastic diffusion models that

effect can be achieved also with an increased or extreme volatility excursion factor. In the stochastic

hazard model, the larger variance elasticity factor and the jumps in the intensity process do not seem to

generate a sensitive boost in kurtosis, whereas for double exponential jumps, which we will indicate as

type-B jump, SH models allocating variance between the constant diffusion and the double exponential

jump produces consistent variations of kurtosis. SH models characterised by a skewed Normal distribu-

tion jump size, which we will indicate as type-A jump, do not exhibit a large range of kurtosis. From a

dynamic behaviour perspective, it is interesting to notice that the speed of mean reversion, the volatility

of volatility and the jump parameters can be triggered leaving the excursion unchanged, a factor which

largely affects the asymptotic distribution of the latent parameter. Furthermore, for the CEV models

and up to a certain extent for the SV models, increasing spikes in the quadratic variation process can be

produced with either the excursion factor or the γ parameter.
11 Because a large uncertainty is revealed in the filtering exercise, in the simulation experiment we keep the ρ constant to

its model value of −0.5 for all the specifications. With the real data experiment we leave ρ free to move in its region of
definition.



73 CHAPTER 3. MODEL SELECTION OF JUMP-DIFFUSION MODELS

There are further complications in implementing the testing procedure. As illustrated in Section 3.2, the

burden of producing a simulated test distribution must be balanced with the computational cost of both

the likelihood PIDE solution and the filtering algorithm. The procedures employed in this work are very

convenient, but entail some drawbacks. The filter extension introduced in Appendix A.3 displays ample

flexibility in the system decomposition and in the derivation of the filter, which is general and simple to

program and most interestingly is much faster than a particle filter algorithm based on simulation as, for

instance, the SIRPF of Section 3.3.1.1. However, though the second order truncation is a bias correction

factor for the propagation equation, cfr. Maybeck (1982), the approximation of the update equation is at

most first order precise, introducing a bias that requires further study. The augmentation of the system

with the integrated variance endows the system with an incremental source of information that can be

proved to be statistically significant for the purpose of the estimation of the latent factor. On the other

hand, in the presence of jumps in the return process x, the particular ex-post mechanism of updating the

system determines some unexpected discontinuities in the projected path, that could be corrected with

the introduction of a residual jump process in the observation equation of w, which is assumed to be

parametrised like the jumps in the integrated variance, with perfect jump size correlation. In Fig. 4(c)

we show the simulated path of the latent factor of an SVXJ model (left axis, red curve), coupled with

the integrated variance of x (right axis, blue dotted line), where several discontinuities are visible on the

chart. These anomalies can be detected as tail events of observed integrated variance differentials. In this

study, we adopt a solution that attenuates these unexpected jumps in the projection, when they seldom

appear, with the only drawback of decelerating the projection. This anomaly is originated by the poor

approximation of the update equation, which requires further improvements. This heuristic approach

is not investigated further, in this work. In the same figure, quadrant (d), we exhibit the process of

attenuation of the unexpected shock due to the system updating via the residual dummy jump process.

The corresponding detail on the path of w has been noticed in Fig. 4(c) with a rectangle. The Fig.

4(d) shows the path of v (red line) with several projections characterised by the presence of the dummy

residual jump, multiplied by a constant ranging from 0 (blue dots) to 1 (light blue dots). Turning to the

numerical solution of the marginalised likelihood, also in this case we remark the ease of implementation

of the adopted solution. The downside is represented by the rapidly increasing complexity of the problem,

in first instance by the curse of dimension, which for the likelihood test is limited to the main observable

x and the latent variable v, and secondly and most important for the model selection exercise is the

precision achieved by the grid resolution. In Fig. 4(b), we illustrate the potential impact of an extremely

coarse grid (blue line) that diverges on several quartiles from the more refined solution represented by the

red line. Given the stock of computational power and the multiple hypothesis test task to be performed, a

compromise between precision and speed of calculation is represented by the 25x25 grid solution employed

in the simulation and the market data experiment, exemplified by the light blue curve of the same chart,

in the case of the SVXJ model of the Monte Carlo experiment.
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3.3.1.1 Benchmarking the NLF2 with Particle Filtering

Because of its flexibility and ease of implementation, the nonlinear filter employed in this analysis is

particularly appealing for applications, as it does not require the complex and computationally intensive

numerical procedures that are necessary for the calculation of the system likelihood. The filter is ex-

ploited in the following experimental sections to obtain the LC and the LRLC loss functions and hence

evaluate the ability of competing stochastic models to produce estimates of the latent system state. In

this section, in order to provide a term of comparison for this filtering technique that presents some

elements of originality in our implementation, we introduce an alternative technique in filtering. The

benchmark technique consists in a particle filtering (PF) method.

The PF is a simulation method for the implementation of filtering, intended as a means to evaluate the

density of the system observations Y , keeping track of the prescribed evolution of the, partially latent,

system state X, with Y = q(X). In general, filtering at discrete observations consists of an application

of the Bayes’ theorem. The purpose of the procedure consists in the evaluation of the observed likelihood

P{Yt|Ys} obtained as the projection of the prior likelihood P{Xt|Ys} onto Gt through the measurement

likelihood P{Yt|Xt}. An intermediate product of discrete filtering is the posterior likelihood P{Xt|Yt} that

up to a proportionality constant at is represented by the density p(Xt|Yt) ∝ p(Yt|Xt)p(Xt|Ys)at, which is

the needed ingredient for this bechmarking exercise as it is employed to construct the quantity for compar-

ison X̄t =
∫

dP{Xt|Yt}Xt, that is the system state projection. To summarise how the posterior likelihood

is carried forward between the observation time s < t in the general framework, we start by assuming

that the measure P{Xs|Ys} be known at time s and subsequently combined with the transition den-

sity p{Xt|Xs} to obtain the prior likelihood, that is p(Xt|Ys) =
∫

dXs p(Xt|Xs)p(Xs|Ys), which is hence

merged with the measurement likelihood to get the observed density p(Yt|Ys) =
∫

dXt p(Yt|Xt)p(Xt|Ys)12.

The process to construct the posterior density is initialised by setting the prior p(X1|Y0) = p(X1|X0),

where Y0 is a dummy observation and X0 that, with reference to the system described by the Eqs. (3.4)

and (3.5), is set to 0, with the exception of v0 which is set to its long-run expectation. To further

characterise the filtering algorithm and therefore construct a procedure which can be coded into a com-

puter, we need a solution to the differential equation associated to (3.4), while the measurement density is

assumed to be know. In the PF implementation the probability distributions involved are estimated point-

wise, with the transition density determined by simulation. According to how the algorithm draws from

P{Xs|Ys}, particle filtering can be distinguished into the sampling/importance resampling (SIR) of Rubin

(1987), acceptance resampling (Hürzeler and Künsch, 1998) and the Markov Chain Monte Carlo (MCMC)

algorithm, cfr. for example Jones (1998), Eraker (2001) and Elerian et al. (2001). In this benchmarking

exercise, we adopt the SIR method of Gordon et al. (1993), cfr. also Pitt and Shephard (1999), Pitt (2002)

and for an application in Finance see Johannes et al. (2009). The PF transition from time s to time t is

defined by the set of multidimensional particles {x1, . . . , xM}, which provides the M initial conditions xj

to propagate the system via simulation and produce the R×M new particles {x(j)
1 , . . . , x

(j)
R }, associated

to the probabilities {π(j)
1 , . . . , π

(j)
R }. The measurement likelihood ps(Yt|x(j)

i ) := hij is then evaluated to

12 It can be noticed that the latter equation is obtained as a normalising constraint to the Bayes’ equality p(Xt|Yt) =
p(Yt|Xt)p(Xt|Ys)

p(Yt|Ys)
⇒

∫
dXt p(Xt|Yt) = 1⇔

∫
dXt p(Yt|Xt)p(Xt|Ys) = p(Yt|Ys).
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obtain the wij = hijπ
(j)
i and hence the discrete probabilities p(i−1)R+j = wij/

∑
ij wij that are associated

to each x(j)
i . The new particles at time t are obtained by drawingM times from the multinomial distribu-

tion {x(j)
i , p(i−1)R+j}. The algorithm presented above is summarised with the pseudo-code Appendix B.2.

The SIRPF is employed to construct an alternative estimation of the trajectories of the partially latent

system state X̄ =
∑
j xj/M in (3.4) at each time t when observing Y described in (3.5), to which we

compare the JD filtering extension introduced with the Eqs. (A.13), (A.16) and (A.18). In Fig. 5(d)

we shows path fragment of the actual v path (red line) for the SV simulated process, with the SIRPF

output path (green line) and the NLF2 projected latent component (blue line). Hence, we provide

some elements of comparison for the NLF2 derived in Appendix A.3 and section 3.1, which is used as

a term of reference for the performance of the SIRPF, within the same simulated environment. Tab.

30 presents several results useful to compare the performance of the two methods. For each long run

sample, that is the 100 year sample employed for the sake of parameter estimation, we employ model

parameters to obtain the LC measure for both the nonlinear and the SIR filter. The latter results are

used as critical values in a scalar statistics based on the simulated LC statistic distribution, sampled

daily. Although a thorough comparison of these filtering methods is beyond the scope of this study, we

can infer some conclusions. The SIRPF proves extremely time consuming when compared to the NLF2,

which is approximately 4,000 times faster, for the same sample on the same machine (4Ghz) on the same

sampling frequency13, an advantage that is decisive for the implementation of the simulated statistic

approach in this article. The SIRPF is produced with a 300 path resampling, on a weekly basis, for each

model reference. Several filtered samples are produced also at a daily frequency, matching the NLF2

frequency. The reference statistic distributions are those of the second order nonlinear filter. The average

absolute latent component distance realised by the particle filter is compared to the bidirectional 5%

interval of the scalar LC statistic distribution. The general conclusion is that the daily sampled NLF2 is

equivalent to the weekly sampled SIRPF, if not superior in a few cases. We would expect a superiority

of the SIRPF when sampled daily, which is not the case. The filter outputs for the model SV and SVVJ

are equivalent, turning slightly superior when a jump component is added, with the SVXJ and CEVXJ

models. These results paired with the high uncertainty in matching the actual latent path, as the LC

measure are considerably high if compared to the standard deviation of the actual v trajectories, and

considering that the critical values are quite close to the acceptance region, do not clearly indicate if the

higher uncertainty imported into the projection mechanism by unclustered random jump times leads to

prefer the SIRPF. What we observe with the SVXJ and CEVXJ experiments on daily frequency is that

the LC numbers of the particle filter are 40% better than the nonlinear filter numbers, and whereby the

p-values are respectively 0.023 and 0.015. Furthermore, in the presence of state independent jumps in the

x level the NLF2 tends to flatten the projection of v at the stationary expectation, therefore accumulating

divergence when the trajectory of v is widely below the average. In the latter two exercises, the SIRPF

tends to follow the trajectory of v closely, but manifests overshooting during high volatility phases, a

feature that the LC number cannot capture. The situation is overturned when we focus on some jump

detection performance measures. In Tab. 30, the jump times matching indicator is formed as a sequence

13 For the SIRPF, we take the average ratio of the computational times between the daily and weekly frequency, where
produced, and then scale the average of the weekly sampled LC computational times
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of Boolean values in correspondence of the daily or weekly records of the filter output. Practically, the

percentage number indicates if at the time the filter signals a jump14, there be at least one jump in the

corresponding unit of time. There is no penalty for the jumps produced by the filter which do not match

an actual jump. As a consequence, the indicator is fairly “benevolent” with respect to the performance

of the filter in forecasting jumps. Notwithstanding the performance measure characteristics, the SIRPF

in the case of the SVXJ and CEVXJ sampled at weekly and daily frequencies performs extremely poorly

when compared to the NLF2 so much as to deliver a worse index at a shorter time interval. This latter

feature actually leads to a disastrous performance of the SIRPF in the only daily sampled filtering exercise

for the SH broad family, that is the CSH model. The filtered v path seems to diverge early from the long

run expectation, stabilising around a higher expected jump frequency. This feature might signal issues

in the estimation of very tiny jump probabilities or even distortion in the simulation engine. Further

investigation might be needed. The results consists in a huge loss function value.

3.3.2 Monte Carlo Experiment

With the Monte Carlo experiment we compare the model performances in a controlled environment,

whereby reference objects such as the actual DGP and the actual path of v can be used to provide a

benchmark to the procedure, whereas they are taken as unknown by the function producing the test

statistics. The JD models are able to produce similar statistical features, primarily kurtosis, skewness

and stochastic volatility, but that instead are structurally dissimilar, as the random quadratic variation

is generated by the diffusion in one case and by the jump intensity in the other one. A further minor

structural difference is represented by the jump direction which is single or double. The model fami-

lies include several layers of nested models and, in the case of the SH family, the bidirectional jump is

characterised with two types of distribution. The model parameters for the non-benchmark models Θ∗j ,

j 6= i are estimated on a very large simulated sample, that is 100 years, and therefore considered as the

equivalent of asymptotic estimates. The parameters are kept fixed when producing the test statistics,

therefore excluding further variability that might be generated by parameter uncertainty. A future study

will include this aspect of the model selection problem. The multiple dimensional distributions of the

likelihood-ratio (LR) and the latent-factor comparison statistics (LC) are generated via Monte Carlo;

that is, the parametrised loss functions (3.6) and (3.7) are applied to a simulated sample of 2000 paths

of 10 years in duration, sampled 5 times a day that, for each relative test i, have been generated by the

benchmark model Pi at the simulation parameters Θi. The data are taken at weekly frequency both for

the LR test and for the LC test.

In the first exercise presented in Tab. 18, we construct a relative comparison test, whereby the likelihood

ratio statistic of Eq. (3.6) is calculated for each model with respect to the corresponding likelihood data

produced by the benchmark model, that is the model generating the data sample for each single test.

As for the rest of the relative performance MHT of this section, the rejected models do not provide a

confidence interval, whereas the corresponding row is filled with a north-east “↗” or a south-east “↘”

14 The jumps correspond to the tail(s) of the first difference of the projected jump path. In the case of the NLF2 the
jump path is adjusted by the auxiliary variable dampening the unexpected shocks in the update equation. The cut-off of
the first difference jump path is set to the expected jump frequency.
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arrow, whenever the corresponding model is, respectively, superior or inferior to the benchmark model.

The benchmark model of the testing exercise is indicated with a star, while the table is organised in block

rows containing the balanced confidence set output of the step-down procedure, whenever the equivalence

hypothesis is accepted. There are four block rows, each corresponding, from top to bottom, to the SV,

CEV, SHB and SHA broad families. For the simulated LRMHT, the α is set to 5% for each tail of the

statistic distribution, the number of tolerated false rejections is k = 4, which represents one forth of the

full model set. Like the rest of the relative comparison MHT in this section, we adopt a full step-wise

procedure, as the set of hypotheses for the MHT is considered small. The output results are interesting

as they provide indication about the prominent features of the prototype models and hints at possible

direction as to ameliorate the model design. For the discussion about the testing results, we refer to

the major shape parameters to infer significant information about model equivalence, although the scope

of the LR test is wider as it involves higher order moments. Turning to the analysis of the LR test

table 18, we notice immediately that models producing slightly asymmetric distributions and lying at

the inner core of their nesting categories like the SV, SVVJ and CEV and CEVVJ, can be reproduced

by any other component of their nesting and non-nesting families, in the latter case confirming the fun-

gible nature of the stochastic hazard models. The test results also suggest that jumps in volatility have

no significant effect on marginalised distributions, henceforth anticipating the difficulty in their identi-

fication. On the other hand, one might infer that a marginalised likelihood, like the one employed in

this analysis, might fail to capture the elusive feature of jumps in the latent factor. We conjecture that

the extension of the likelihood approach to a fully Bayesian approach might be able to extract more

information from the observable and possibly improve model comparison. Another look at the results

pertaining to these model classes reveals that the kurtosis generated by the γ = 0.75 parameter can be

achieved with appropriate, though extreme, volatility excursion factors. The introduction of jumps in the

x level for the model families of the stochastic diffusion type definitely rules out the models SV/SVVJ

and CEV/CEVVJ somehow deeming them as inferior models in the overall model selection exercise15,

whereby the type-A jump stochastic hazard models reveal an unexpected flexibility, given the fact that

the jump size distribution can only produce limited kurtosis and asymmetry, but the inclusion of a diffu-

sion parameter evidently increases the adaptability of this model version, whereas the type-B jumps are

rejected. The rejection of the latter models suggests that the SHB broad family might be characterised by

some rigidity when high kurtosis is combined with large asymmetry whereby they display the inability of

reducing the kurtosis while keeping high skewness16. When the reference DGP is represented by a model

of the SHB broad class, which in the exercise is characterised by the largest asymmetry and kurtosis, the

equivalence multiple hypothesis likelihood ratio test shows that within the benchmark class and with this

test parameter configuration, its representative are quite equivalent and can be mimicked significantly by

stochastic diffusion models with extended features, that is jump in levels and, but not necessarily, jump

15 Concerning the distributional asymmetry producible by those models, the SV reference model in the simulation exercise,
with ρ = −0.5, generates a skewness of only -0.138, that can be increased only up to -0.142 by squeezing the correlation
factor to −0.95. The slightly more skewed CEV model (-0.2152) generates as well a reduction of the skewness of only
−0.19% in correspondence to a reduction of the correlation of −90%, from −0.5 to −0.95. This consideration points to a
low sensitivity of the likelihood to the correlation parameter.

16 In this test example, with respect to the SVXJ benchmark sample and considering the actual skewness and kurtosis
generated by the MLE estimates on a coarse grid, we have that the theoretical model skewness and kurtosis are, respectively,
−1.45 and 9.22, whereby the estimated model values of SHB are −1.8 and 11.7, with −1.8 and 11.4 for the CSHVJ, whereas
a CSHAVJ that structurally cannot reach high absolute skewness and kurtosis delivers a −0.77 and 7.7, sufficient to produce
superior likelihood ratios.
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in volatility and CEV parameter. To a certain extent, the SHA broad family performs very well, whereby

the slight kurtosis increase granted by the CEV extension to the benchmark model, can still significantly

be captured by SHAVJ and CSHAVJ. The SHA model broad family proves to be quite flexible, although

it does not seem to be able to discriminate either among its components, as the last block row of the test

matrix in Table 26 exhibits. It is interesting to notice how the SHB broad family of models is capable to

produce a likelihood performance equivalent to this class, which is characterised by quasi Normal kurtosis

and low skewness, by the outweighing of the diffusion component and appropriate balancing of the tails.

With respect to the SHA and SHAVJ benchmark samples the stochastic diffusion cluster returns inferior

output, whereas when the stochastic intensity function of the benchmark DGP is augmented with a CEV

exponent, in the case of the CSHA and CSHAVJ samples, the SV, SVVJ and CEV, CEVVJ which are

moderately leptokurtic and skewed are capable of producing equivalent marginal likelihood measures,

although in the first case the SD-based models are close to rejection.

In the second exercise we construct the LCMHT relative model performance test that evaluates the ability

of the elements of the model set to infer the behaviour of the latent component v. In Tab. 19 for each

benchmark model sample we construct a balanced confidence MHT based on the relative loss comparison

of the latent factor statistic as in Eq. (3.7) that, in correspondence of each test, is calculated with respect

to the loss measure of the data generating benchmark model. For the simulated LCMHT, the α is set

to 5% for each tail of the statistic distribution, the number of tolerated false rejections is k = 4. The

results of the simulated LC test are less neat than the LR’s and the general outcome consists in a quite

broad equivalence of the model suite components in the latent state filtering. We record a moderate

underperformance of the plain SV model, which is inferior to the equivalence model set one third of the

time it is applied to a different model sample, indicating the need of enhanced features for the sake of

filtering, whenever the simple stochastic volatility hypothesis might be rejected. The testing exercise with

a relatively smaller model equivalence set is in the cases of the CEV and CEVVJ benchmarks, which

basically tell that the effect of the CEV factor on the observable variable matters from a dynamical

standpoint. It is interesting in that respect the performance of the SHB broad family that is relatively

deemed equivalent to the CEV filters. The introduction of a jump component in x with the CEVXJ and

the CEVJJ instances, blurs again the distinction between the equivalence model subset and the inferior

performers. A final piece of information we are able to extract from the battery of LCMHT concerns

the jumps in volatility that do not seem to affect the projection exercise. This phenomenon should be

expected if we take into account the fact that we have only considered asynchronous jumps that thus

cannot be isolated within the state equation. Moreover, it is important to notice that the simulation

exercise is performed at weekly frequency, a choice that might significantly affect the wide equivalence

result obtained for the latent state estimation comparison test. In the real data application pursued in

the following section, we switch to a daily frequency obtaining more neat results.

Finally, we derive for each benchmark sample and for each loss function LR and LC, model confidence

sets with the max-MCS, the t-MCS and the γ-MCS algorithms. In a first not reported experiment

of absolute model performance testing, whereby for moderate confidence levels of the LRMCS-max and

letting the γ-TPFDP (10%) to control the k-FWER targeting a moderate α (5%) as well, we obtain strong
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aliasing among the model set components, whereas the unrefined LRMCS-t is capable of discovering

model clusters more in line with the recursion performed by the relative performance MHT. Increasing

the confidence level (10%) and allowing a higher fixed percentage (20%) of the total number of hypotheses

for the k-FWER, allows to investigate the reciprocal model ability in mimicking the simulated likelihood

characteristics. Nonetheless, the LRMCS-γ offers more neat results. The LR results are reported in the

Tab. 20, 21 and 22. We discuss the latter two as the LRMCS-max reports results that are less consistent

with the relative performance test and the latter MCS type test, pointing again to a certain limitation of

the test constructed on Hansen et al. (2011) to discriminate among closely performing models. Concerning

the stochastic diffusion family, we notice that the inner models are easily mimicked by the whole model

set, whereas the introduction of a jump in the level of the observable cannot be captured by more simple

nested models of this family, whereas skewed Normal jump models of the SH class enter the MCS, with

the latter jump specification performing better than the double-exponential one. A restriction of the

MCS with CEVXJ and CEVJJ as a benchmark confirms the capability of the affine model specification

to reproduce a not extreme CEV diffusion form. These results, coupled with the more mitigated results

of the previous algorithms, draw attention to some unidentifiable feature of the system that must be

connected to the latency of the volatility factor. In this regard, we observe that the likelihood of the

simulated exercise is quite flat, that is it exhibits low sensitivity to model parameters and the Hessian

conditioning number is often very high thus signalling parameter uncertainty. Direction for further

research might include exploring transformations of the system under analysis in order to migrate model

parameters from the latent component to the observable variable or at least to its first order component.

Finally, we notice in the context of the simulated LRMCS test that the stochastic diffusion class enters

the SH model confidence set, as well as the CEV model with jumps is able to explain the likelihood of the

simulated stochastic hazard sample, pointing to a substantial equivalence of the two classes. Moreover,

the ability of the single directional jump models to explain strongly asymmetric sample distribution

suggest the possibility of further simplifying the parametric structure of the SH class, introducing offset

single directional jump components. With the LCMCS the only strong general conclusion that we can

gather is again the heavy model aliasing, with some slight peculiarities within the LCMCS-t context.

3.3.3 Market Data Experiment

In this paragraph, we employ the ability of the developed MHT procedures and the insight collected

with the simulation exercise to elaborate a model selection experiment targeting financial market data.

Specifically, the sample is represented by the logarithm transform17 of the daily closing quotes of the

Standard & Poor’s 500 Index, ranging from January, 3rd 1950 to February, 26th 2016, providing in total

16,636 observations that on the conventional 260 days per year represents 64 trading years circa. In

this exercise the reference frequency is daily, and both the LR and the LC are calculated with this time

horizon. The time interval are made even, although the analysis is easily implementable on a uneven

time grid. The sample is cleaned from the secular trend and the resulting observable is assumed to be a

martingale, hypothesis that is empirically justified by the stylised flat autocorrelogram of the daily first

17 The data is multiplied by 100 and hence the unit of measure is implicitly the percentage. For balancing reasons, several
coefficients are scaled, that is θ is divided by 10 while λ1 is multiplied by 10. As in the simulation test, the λ0 parameter
for the stochastic hazard models is divided by 100.



3.3. EXPERIMENTAL SECTION 80

order differences. The Fig. 5(a) shows the cumulative log return path employed for market data test-

ing. Fig. 5(b) exhibits the histogram of daily returns with the superimposed estimated CSHB marginal

likelihood. The model set on which the model selection exercise hinges, it is the reference model set

of Eqs. (3.1) and (3.2), while the filter is again represented by the Eqs. (3.4) and (3.5). Referring

to the standard distributional shape measures, we report that the returns mark an yearly volatility of

15.69, with a skew factor of −1.01 and 30.12 kurtosis. The test statistics are produced by the stationary

bootstrapping, whereby the block window (Politis and White, 2004; Patton et al., 2009) is calibrated

to the autocorrelation function of the threshold GARCH estimates of the sample volatility, in order to

preserve the spectral properties of the 10 year long 2000 output samples. The average block size is 264

days, which reflects a higher viscosity of the data as in the longer sample we find many more volatility

spikes. The likelihood parameter estimates for the model set components are presented in Tab. 26. It

is important to notice that the parameter aliasing entails a strong dependency of the MLE upon the

initial conditions, a fact that requires an educated guess. With respect to the subject of investigation,

that is the historical measure of an equity index such as the S&P 500, this study can be assimilated

to the analysis of Andersen et al. (2002), Chernov et al. (2003) and Eraker et al. (2003), although the

perspective is original. In those studies, the statistical significance of mainly the affine class and the log-

linear stochastic volatility model18 is investigated and a limited relative model comparison is performed.

The article Andersen et al. (2002) studies the significance of those two model classes concluding that

stochastic volatility coupled with jumps in return are significant and generate strong reduction in the

χ2 measure of significance. Eraker et al. (2003) reports log-Bayes ratios, pair-wise model performance

comparison that is not based on hypothesis testing, concluding that stochastic volatility and jumps are

more significant that models exhibiting stochastic volatility only and that including a jump in volatility

seems to improve the model performance. Chernov et al. (2003) studies multi-factor stochastic volatility

models, reporting with respect to the SV family, that jumps in return and jumps in return and volatility

are both significant, with the latter providing a p-value that is almost identical to that of the jump-in-

return only model and which does not justifies the superiority of the jump-in-volatility augmented affine

model, finally selecting the one with jump-in-return only. In this study, we focus on a slightly different

model set, including the single factor affine model, augmented with a CEV factor and a fully stochastic

intensity model family with double-exponential and skewed Normal high frequency jumps. The latter

constraint is realised as the specific setting of the initial parameter in the AML procedure, whereby

we target a particular local neighbourhood of the parametric space. This work is original in that we

exploit peculiar statistical techniques allowing joint comparison of the model set. In this experiment

we set up several measures of relative performance test hinging on multi-hypothesis balanced confidence

sets, further refined with the step-wise procedure of Romano and Wolf (2005a, 2007, 2010). The model

selection is further tested and synthesised with absolute performance tests targeting a specification of

the MCS of Hansen et al. (2011) paired with a novel MHT based procedure aiming at the model confi-

dence set. A rough term of comparison of those test is represented by a streamlined test combining the

concept of MCS with scalar asymptotic test of the sample averages of the full set of pairwise comparisons.

18 This model is included in the model set in the next Chapter 4 analysis concerning the performance of option pricing
models
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A close examination of the results of the relative performance MHT reveals significant information. The

LRMHT shows that that stochastic volatility and jumps in volatility alone are not sufficient to mimic the

distributional features of the market data sample. The SV and the SVVJ models are inferior almost in the

totality of comparisons, with the exception of equivalence between the SVVJ and SVJJ. The performance

of the SVXJ is superior in the affine model set, although inferior to the more complex CEV specification

and to the majority of models with stochastic hazard. The introduction of a jump in volatility with the

SVJJ model introduces some ambiguity, worsening the model performance attained previously by the

SVXJ model. The performance of the CEV family ranks overall at least equivalent to the top model

cluster, with some variations. This broad class appears as an equivalence class, as all its components are

equivalent at each fixing of the likelihood ratio to any of its members. However, the introduction of a

jump in volatility to the nested model class exhibits again some distortion, which can be seen with the

comparison of the performance results when changing the benchmark from CEV to CEVVJ and from

CEVXJ to CEVJJ. Concerning the SHB family, we notice probably the most informative result within the

context of the relative model performance, which corresponds to the benchmarking to the SHBVJ model,

which is among the top performing model group, composed by the SHBVJ, CSHB, CSHA, CSHAVJ and

CEV models, with SHBVJ performing slightly better. This result, however, is not distinctively superior,

as the top performing model group is connected to the CEV family, as the equivalence of the performance

of this class might suggest, and to the SHB wide class, as the test with LR to CSHB, CSHA and CSHAVJ

reveals. This result is further circumscribed by the application of the MCS procedures (Tab. 29) that

in the context of the LR test exhibit the clear superiority of the CSHB, CSHA, SHBVJ and CSHAVJ.

The CEV and CEVXJ both enters the MCS in max-MCS and 10%-MCS, CEVJJ is also included in the

former. The CEV models work on a 0.6 ca. elasticity parameter. It is interesting to notice the high

performance of the CEV diffusion-only, suggesting that the strong kurtosis exhibited by the data might

be the predominant feature, when framed by the likelihood procedure adopted for testing. The max-MCS

test version shows a slightly enlarged version of the MCS, which is more in line with the indeterminacy

of the system.

With the LCMHT test we evaluate the ability of the non-linear filter to extract from the observable data

the trajectory of the latent variable v. Because of the lack of a known comparative element to construct

the loss measure, we adopt the output of the threshold GARCH as a reference and calculate an appropriate

distance as in Eq. (3.7). The outcome of the TGMHT are shown in Tab. 27. With this table, the ability

of the MHT approach in model selection is even more remarkable when compared to the result of the MCS

computed on the same data and measures. With TGMHT we can isolate at least two major clusters. The

analysis of the balanced step-down results of Tab. 27 reveals a top group formed by the CEVJJ, the SHA

and SHVJ model, providing indication of strong volatility clustering and hence high volatility spikes, rare

jumps in the x level and possible jumps in volatility, although the presence of SHA weakens this result. A

strongly inferior group is found in the CSHA and CSHAVJ models, whereas the remaining components of

the model set spreads in the middle cluster, with SVJJ and SVXJ also performing well. The TG measure

results are useful as they offer a means for assessing the model ability to estimate the unobserved system

component v. However, those results are tied to the output of an auxiliary model, that is the threshold

GARCH, as the statistic is determined by measuring the absolute tracking error of the projection with
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respect to a measure of observable the volatility. Finally, in order to construct a model selection exercise

without the need of an offset model, we adopt the LRLCMHT, which exploit a loss function based on

a joint likelihood measure of system state projection, providing the ex-post “most probable” latent state

estimate. The results are illustrated in Tab. 28. It is interesting to notice the different perspective.

When joining a likelihood measure, one of the best performer in the LRMHT test is now indicated as

the best model performer, that is the CSHB, equivalently to its jump in volatility augmented version. A

top cluster can be identified as formed by CSHB, SHB, CSHBVJ and SHA. A large bottom model cloud

contains the SV and CEV broad families plus the CSHA and CSHAVJ models. The SHAVJ and SHBVJ

models gravitates at a middle ranking level. The application of the MCS battery of tests to the TG

and LRLC performance measures, confirms the results we were able to gather from a thorough relative

performance test based on a benchmarking rotation. The SHA and SHAVJ models perform at the top

ranking in the TG absolute performance test, whereby the model confidence set is restricted to those two

model set components. The CEVJJ also seems to perform well in the latter test. The inferior model set

exhibits a quite low range of p-values. The LRLCMCS test also exhibits a strong polarisation in favour

of the CSHB and CSHBVJ models. The latter result is probably due to a distinctive smoothness of

the LC projections produced by the parametrised version of those models. These MCS results are quite

surprising if compared with the simulation experiment whereby a large model similarity was evident. On

the account of this outcome, we conjecture that, in the context of single factor models, the joint usage of

stochastic diffusion and stochastic intensity might be redundant, whereby models of the latter class exhibit

performances at least equivalent to the CEV family in explaining the historical behaviour of market data.

From our tests, the superior performance of models embedding jumps in volatility appears ambiguous,

probably as a consequence of the marginalisation procedure, which does not exploit the prior-to-posterior

loop and relies on an analytic result pertaining the stationary distribution of the latent factor. In future

research, we plan to expand on this topic.

3.4 Concluding Remarks

In this chapter, we have presented a novel exercise of model selection applied to a JD model set tar-

geting the historical measure of simulated and financial market data. We construct several measures of

model comparison that are tested with relative and absolute MHT and MCS type tests. The model set

contains the popular affine single factor stochastic volatility model, augmented with a CEV parameter;

the collection is further extended with a stochastic intensity high frequency jump class, representing a

non standard alternative model family. Under the simulated test, the respective nesting models prove

to be able to produce similar features to one another, as measured by the target performance functions.

The latter result reinforces the findings of the empirical exercise, whereby the stochastic intensity family

exhibits superior models in the majority of the tests. It is important to notice that the affine framework

is strongly rejected in the real market data experiment. Moreover, there is a redundancy to jumps in

volatility when measuring marginalised likelihoods, as well as a non-significant prevalence of this com-

ponent with respect to the latent component filtering measures. The contribution of jumps in volatility

appears to be dubious, contrary to the findings of Eraker et al. (2003) and more in line with the model

selection results of Chernov et al. (2003), though our findings are more explicit than the latter. Secondly,



83 CHAPTER 3. MODEL SELECTION OF JUMP-DIFFUSION MODELS

the high empirical kurtosis and the moderate asymmetry are the prevalent features, that can be captured

with both conventional and non conventional models, that is CEV with jumps as well as stochastic hazard

models with high average frequency of jumps, with the latter class performing slightly better under the

filtering measures. Third, these results point to the redundancy of mixing both stochastic diffusion and

stochastic intensity to model historical equity financial time series. The last message we hope to convey

with this analysis is that there is probably room for a simplification of the modelling structure of financial

time series, which counters the general trend in the academic literature for ever increasing complexity.

Finally, as a complementary methodological contribution that facilitates our empirical analysis, we ex-

tend the second order filtering procedure in Maybeck (1982) to allow jump components in the system state.

The analysis produced in this chapter is original in that we propose a general model selection procedure,

based on MHT and MCS, to investigate superior model performance in the context of the statistical

measure of financial data, where we take the perspective of dealing with stochastic volatility as a latent

factor and construct model performance measures targeting several aspects of the estimation problem.

The outcome of this exercise is useful in that we question model overparametrisation when combining

stochastic diffusion and stochastic hazard, at the same time suggesting directions for model simplification.
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SV stochastic volatility model
SVVJ stochastic volatility model with positive exponential (exp) jumps in volatility
SVXJ stochastic volatility model with negative exp jumps in the x level
SVJJ stochastic volatility model with positive exp jumps in volatility and negative exp jumps in the x level
CEV stochastic volatility model with CEV
CEVVJ stochastic volatility model with positive exp jumps in volatility and CEV
CEVXJ stochastic volatility model with negative exp jumps in the x level and CEV
CEVJJ stochastic volatility model with positive exp jumps in volatility, negative exp jumps in the x level and CEV
SHB stochastic hazard model with double exp jumps in the x level
SHBVJ stochastic hazard model with double exp jumps in the x level and positive exp jumps in the intensity function
CSHB stochastic hazard model with double exp jumps in the x level and CEV
CSHBVJ stochastic hazard model with double exp jumps in the x level, positive exp jumps in the intensity function and CEV
SHA stochastic hazard model with skewed Normal (N) jumps in the x level
SHAVJ stochastic hazard model with skewed N jumps in the x level and positive exp jumps in the intensity function
CSHA stochastic hazard model with skewed N jumps in the x level and CEV
CSHAVJ stochastic hazard model with skewed N jumps in the x level, positive exp jumps in the intensity function and CEV

Table 14: Model Set Acronyms.
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Model description Jump size distribution Coefficient configuration References
The stochastic
diffusion model.

γ0 = 1/2,
λ0 = λ1 = 0

Heston (1993)

The stochastic
diffusion model
with constant
intensity jumps in
the cumulative
return level.

The jump size
distribution is
Normal.

γ0 = 1/2, λ1 = 0 Bates (1996), also
included in Duffie
et al. (2000)

The stochastic
diffusion model
with constant
intensity jumps in
the cumulative
return level and in
the volatility
factor.

The jump size
distribution is
Normal in the x
and positive
exponential in v.

γ0 = 1/2, γ1 = 0 Eraker et al.
(2003), also
included in Duffie
et al. (2000), Bates
(2000) and Pan
(2002)

The stochastic
diffusion model
with stochastic
intensity jumps in
the cumulative
return level and in
the volatility
factor.

The jump size
distribution is
Normal in the x
and positive
exponential in v.

γ0 = γ1 = 1/2 Eraker (2004)

The constant
elasticity of
variance model.

λ0 = λ1 = 0 Cox and Ross
(1976), also
included in
Beckers (1980) and
Macbeth and
Merville (1980)

The constant
diffusion model
with jumps in the
cumulative return
level.

The jump size
distribution is
Normal.

γ0 = γ1 = 0,
λ1 = 0

Merton (1976)

The constant
diffusion model
with jumps in the
cumulative return
level.

The jump size
distribution is
double-
exponential.

γ0 = γ1 = 0,
λ1 = 0

Kou (2002) and
Kou and Wang
(2004)

Table 15: Standard Models and the Model Set. The table describes the connections between the model set
and several standard models in the literature of financial markets. We remark that the parameter linkage for some of
those models has to be intended jointly with model transformations, which are explained in Appendix A.4.
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θ κ σ ρ γ λ1 η1 λ0 ηa ηb µ σ2 µ3/σ
3
2
2 µ4/σ

2
2 µ5/σ

5
2
2 µ6/σ

3
2

SV 1.41 1.50 1.41 -0.5 0 0.04 -0.14 4.87 -2.3 55.4
SVVJ 1.41 2.00 1.41 -0.5 2.5 2 0 0.04 -0.14 5.38 -2.6 72.9
SVXJ 1.00 1.50 1.41 -0.5 1.0 2.24 0 0.04 -1.42 8.49 -33.9 197.0
SVJJ 1.00 2.00 1.41 -0.5 2.5 2 1.0 2.24 0 0.04 -1.44 8.70 -34.5 204.8
CEV 1.26 1.50 1.41 -0.5 0.75 0 0.04 -0.22 7.34 -6.0 149.7
CEVVJ 1.21 2.00 1.41 -0.5 0.75 2.5 2 0 0.04 -0.22 8.96 -7.5 243.0
CEVXJ 0.89 1.50 1.41 -0.5 0.75 1.0 2.24 0 0.04 -1.45 9.22 -35.3 226.1
CEVJJ 0.85 2.00 1.41 -0.5 0.75 2.5 2 1.0 2.24 0 0.04 -1.53 9.94 -38.2 258.3
SHB 1.00 1.50 1.41 -0.5 2.6 2.30 0.08 0 0.04 -1.55 9.41 -45.2 282.0
SHBVJ 1.00 2.00 1.41 -0.5 2.5 2 2.6 2.30 0.08 0 0.04 -1.57 9.66 -47.8 309.0
CSHB 1.00 1.50 1.41 -0.5 0.75 2.6 2.30 0.07 0 0.04 -1.71 10.85 -59.4 420.2
CSHBVJ 1.00 2.00 1.41 -0.5 0.75 2.5 2 2.6 2.30 0.06 0 0.04 -1.72 11.41 -66.3 503.3
SHA 1.00 1.50 1.41 -0.5 2.6 0.97 -9.00 0 0.04 -0.16 3.74 -2.2 29.4
SHAVJ 1.00 2.00 1.41 -0.5 2.5 2 2.6 0.97 -9.00 0 0.04 -0.16 3.88 -2.2 33.4
CSHA 1.00 1.50 1.41 -0.5 0.75 2.6 0.87 -9.00 0 0.04 -0.15 4.54 -2.7 54.5
CSHAVJ 1.00 2.00 1.41 -0.5 0.75 2.5 2 2.6 0.83 -9.00 0 0.04 -0.18 5.01 -4.1 75.5

Table 16: Simulation MHT Model Parameters and Standardised Moments. This table shows the model
parameters for the simulated experiments, as well as the mean (µ) the (weekly) variance (σ2), the skewness (µ3/σ

3/2
2 ),

the kurtosis (µ4/σ2
2) and the fifth (µ5/σ

5/2
2 ) and sixth (µ6/σ6

2) standardised central moments for each model at the
simulation parameters. We notice that the yearly variance for each model is circa 2, which is equally split between the
diffusion and the jump component, whenever the latter is present. The model parameters within the ten columns from
the left are indicated by Greek letters corresponding to the model definition in Eq. (3.1) and (3.2), with exception of
η0 which indicates the expected jump size of the jump in volatility and ηa that indicate the the size of a negative for
stochastic diffusion with jumps and stochastic hazard with double exponential. For the SHB family, the parameter
ηb represents the expected positive jump size, whereas the probability of a positive jump is constrained such that
the jump component drift be null. The latter two Greeks, in the case of skew Normal stochastic hazard models,
indicate, respectively, the shape and the skew parameter. We further notice that for gradient balancing reasons, λ0

is multiplied by a factor of 10, λ1 is divided by the same factor in the case of the stochastic diffusion family, whereas
it is scaled by 100 times in the case of high frequency jump models. The parameters ηa and ηb are multiplied by 10
whenever included.
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θ κ σ ρ γ λ1 η1 λ0 ηa ηb

SV 1.3929 7.0560 3.7566 -0.6003
(0.0052) (3.5075) (1.0017) (0.1903)

SVVJ 1.4342 8.0792 3.6425 -0.5544 2.5682 4.0251
(0.0115) (3.6301) (0.7258) (0.2765) (0.3023) (0.2326)

SVXJ 1.3831 7.0447 3.7536 -0.1404 2.2707 3.0109
(0.0137) (2.4441) (0.7613) (0.1618) (0.8135) (0.5025)

SVJJ 1.4032 8.0713 3.6353 -0.1123 2.5713 4.0278 2.2897 3.0088
(0.0135) (3.5364) (1.1282) (0.1244) (0.3797) (0.5130) (0.1440) (0.0604)

CEV 1.3872 7.2392 3.3622 -0.4583 0.6113
(0.0086) (2.7717) (0.6109) (0.1770) (0.0041)

CEVVJ 1.3978 8.2314 2.7311 -0.5000 0.6605 2.5183 4.9184
(0.0066) (2.6390) (0.2126) (0.1536) (0.0046) (0.1955) (0.5727)

CEVXJ 1.3661 7.1791 3.6354 -0.1956 0.5517 2.0417 2.9293
(0.0359) (2.8231) (0.8556) (0.1792) (0.0111) (0.2223) (0.2285)

CEVJJ 1.3973 8.1534 2.9306 -0.2388 0.5817 2.8949 4.4266 2.1760 3.0521
(0.0093) (3.4842) (0.1000) (0.1301) (0.0120) (0.1713) (0.3350) (0.1187) (0.4411)

SHB 0.9273 7.1993 3.1988 -0.4891 1.5079 0.8520 0.7691
(0.0157) (2.4277) (0.1417) (0.1773) (0.0899) (0.0114) (0.0114)

SHBVJ 0.9289 8.1939 3.2029 -0.4043 2.4959 3.9904 1.6124 0.8474 0.7631
(0.0213) (4.2880) (0.9970) (0.2489) (0.2152) (0.3519) (0.5041) (0.0813) (0.2090)

CSHB 0.9262 7.2023 3.1690 -0.4735 0.4615 1.5193 0.8582 0.7714
(0.0246) (2.8224) (0.4908) (0.2921) (0.0124) (0.0568) (0.0217) (0.0187)

CSHBVJ 0.9251 8.1969 3.1353 -0.4107 0.4531 2.4305 3.8970 1.6269 0.8513 0.7628
(0.0158) (2.3032) (0.5645) (0.2096) (0.0029) (0.9021) (0.5776) (0.0671) (0.0079) (0.0077)

SHA 0.9102 7.0201 3.7470 -0.5595 0.9044 1.4244 -0.3356
(0.0075) (3.1592) (0.8669) (0.2443) (0.0374) (0.0166) (0.0450)

SHAVJ 0.8065 8.1383 3.8650 -0.8992 2.1367 3.1327 1.5397 1.1078 -0.2333
(0.0082) (3.6899) (0.5718) (0.3695) (0.7451) (0.3872) (0.0101) (0.0092) (0.0125)

CSHA 0.7765 7.1372 3.3321 -0.5445 0.8795 2.8252 0.7296 -0.4587
(0.0104) (2.6834) (0.7027) (0.2113) (0.0194) (0.4307) (0.0723) (0.1548)

CSHAVJ 0.7276 8.3488 2.1948 -0.6106 0.9000 2.6211 4.1696 2.9964 0.8264 -0.5342
(0.0054) (1.4450) (0.7062) (0.1619) (0.0108) (0.2016) (0.1599) (0.0374) (0.0044) (0.0122)

Table 17: Financial Market Data Model Parameters Estimates and MCS Test Results. This table shows
the parameter estimates for the Model Set, applied to the Standard & Poor’s 500 Equity Index daily log return data,
ranging from January, 3rd 1950 to February, 26th 2016. Several parameters are scaled, that is θ is divided by 10
while λ1 is multiplied by 10. As in the simulation test, the λ0 parameter for the stochastic hazard models is divided
by 100. In parentheses we exhibit the estimated parameter standard errors.
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Benchmark samples: SV, SVVJ, SVXJ, SVJJ
SV ? ? -0.0121 0.0145 − ↘ − ↘
SVVJ -0.0049 0.0053 ? ? − ↘ − ↘
SVXJ -0.0032 0.0038 -0.0142 0.0129 ? ? -0.0136 0.0175
SVJJ -0.0031 0.0037 -0.0120 0.0132 -0.0091 0.0105 ? ?
CEV -0.0056 0.0062 -0.0106 0.0133 − ↘ − ↘
CEVVJ -0.0026 0.0034 -0.0107 0.0129 − ↘ − ↘
CEVXJ -0.0030 0.0036 -0.0100 0.0128 -0.0113 0.0122 -0.0138 0.0180
CEVJJ -0.0043 0.0049 -0.0121 0.0145 -0.0101 0.0107 -0.0139 0.0164
SHB -0.0044 0.0043 -0.0099 0.0096 -0.0237 0.0031 -0.0264 0.0007
SHBVJ -0.0084 0.0083 -0.0099 0.0103 -0.0241 0.0028 -0.0274 0.0006
CSHB -0.0052 0.0053 -0.0112 0.0114 -0.0426 0.0039 -0.0276 0.0001
CSHBVJ -0.0045 0.0048 -0.0116 0.0117 -0.0237 0.0027 -0.0269 0.0005
SHA -0.0059 0.0058 -0.0097 0.0110 -0.0181 0.0030 -0.0205 0.0033
SHAVJ -0.0065 0.0064 -0.0035 0.0031 -0.0562 0.0169 -0.0189 0.0026
CSHA -0.0056 0.0055 -0.0099 0.0112 -0.0405 0.0070 -0.0213 0.0065
CSHAVJ -0.0063 0.0063 -0.0094 0.0107 -0.0374 0.0089 -0.0161 0.0035

Benchmark samples: CEV, CEVVJ, CEVXJ, CEVJJ
SV -0.0255 0.0132 -0.0596 0.0177 − ↘ − ↘
SVVJ -0.0195 0.0124 -0.0582 0.0212 − ↘ − ↘
SVXJ -0.0240 0.0143 -0.0548 0.0158 -0.0250 0.0240 -0.0205 0.0122
SVJJ -0.0187 0.0118 -0.0495 0.0151 -0.0244 0.0243 -0.0151 0.0096
CEV ? ? -0.0273 0.0288 − ↘ − ↘
CEVVJ -0.0125 0.0140 ? ? − ↘ − ↘
CEVXJ -0.0096 0.0116 -0.0284 0.0289 ? ? -0.0077 0.0102
CEVJJ -0.0121 0.0148 -0.0239 0.0154 -0.0232 0.0244 ? ?
SHB -0.0132 0.0079 -0.0476 0.0228 − ↘ − ↘
SHBVJ -0.0130 0.0082 -0.0294 0.0084 − ↘ − ↘
CSHB -0.0099 0.0069 -0.0365 0.0262 − ↘ − ↘
CSHBVJ -0.0146 0.0125 -0.0359 0.0263 − ↘ − ↘
SHA -0.0166 0.0103 -0.0426 0.0199 -0.0220 0.0039 -0.0294 0.0008
SHAVJ -0.0140 0.0098 -0.0319 0.0112 -0.0330 0.0197 -0.0248 0.0011
CSHA -0.0126 0.0123 -0.0315 0.0280 -0.0258 0.0052 -0.0183 0.0010
CSHAVJ -0.0134 0.0139 -0.0323 0.0298 -0.0212 0.0066 -0.0189 0.0011

Benchmark samples: SHB, SHBVJ, CSHB, CSHBVJ
SV − ↘ − ↘ − ↘ − ↘
SVVJ − ↘ − ↘ − ↘ − ↘
SVXJ -0.0132 0.0081 -0.0150 0.0097 -0.0190 0.0092 -0.0171 0.0052
SVJJ -0.0219 0.0052 -0.0219 0.0056 -0.0246 0.0055 -0.0221 0.0009
CEV − ↘ − ↘ − ↘ − ↘
CEVVJ − ↘ − ↘ − ↘ − ↘
CEVXJ -0.0117 0.0081 -0.0177 0.0103 -0.0202 0.0074 -0.0173 0.0040
CEVJJ -0.0198 0.0084 -0.0204 0.0078 -0.0260 0.0038 -0.0177 0.0026
SHB ? ? -0.0009 0.0004 -0.0023 0.0004 -0.0027 0.0007
SHBVJ -0.0003 0.0004 ? ? -0.0020 0.0006 -0.0077 0.0007
CSHB -0.0007 0.0026 -0.0009 0.0020 ? ? -0.0004 0.0003
CSHBVJ -0.0005 0.0031 -0.0008 0.0022 -0.0004 0.0003 ? ?
SHA -0.0177 0.0061 -0.0222 0.0052 − ↘ − ↘
SHAVJ -0.0164 0.0041 -0.0232 0.0027 -0.0229 0.0006 -0.0211 0.0014
CSHA -0.0055 0.0076 -0.0266 0.0030 − ↘ − ↘
CSHAVJ -0.0093 0.0087 -0.0203 0.0028 -0.0143 0.0027 − ↘

Benchmark samples: SHA, SHAVJ, CSHA, CSHAVJ
SV − ↘ − ↘ -0.0141 0.0000 -0.0143 0.0016
SVVJ − ↘ − ↘ − ↘ − ↘
SVXJ − ↘ − ↘ -0.0158 0.0000 -0.0138 0.0029
SVJJ − ↘ − ↘ − ↘ − ↘
CEV − ↘ − ↘ -0.0122 0.0006 -0.0146 0.0014
CEVVJ − ↘ − ↘ − ↘ − ↘
CEVXJ − ↘ − ↘ -0.0130 0.0004 -0.0144 0.0016
CEVJJ − ↘ − ↘ -0.0215 0.0038 − ↘
SHB -0.0028 0.0019 -0.0024 0.0018 -0.0029 0.0021 -0.0023 0.0013
SHBVJ -0.0028 0.0018 -0.0023 0.0015 -0.0028 0.0018 -0.0016 0.0011
CSHB -0.0027 0.0018 -0.0024 0.0018 -0.0029 0.0019 -0.0022 0.0013
CSHBVJ -0.0027 0.0017 -0.0022 0.0015 -0.0027 0.0018 -0.0035 0.0014
SHA ? ? -0.0013 0.0013 -0.0013 0.0010 -0.0006 0.0008
SHAVJ -0.0013 0.0005 ? ? -0.0019 0.0012 -0.0004 0.0008
CSHA -0.0002 0.0001 -0.0011 0.0012 ? ? -0.0005 0.0007
CSHAVJ -0.0081 0.0007 -0.0045 0.0011 -0.0091 0.0025 ? ?

Table 18: Simulated LRMHT. This table exhibits the LRMHT for the simulated experiment. Each pair of
columns for each block row represents an MHT, showing the final set output of balanced step-down algorithm,
benchmarked to the model indicated with a double star. In the simulated experiment the benchmark model also
indicates the DGP, which has produced the simulated paths. The rejected models do not provide a confidence
interval, whereas the corresponding row is filled with a north-east or a south-east arrow, whether the corresponding
model is, respectively, superior or inferior to the benchmark model. In this test the confidence level for each tail is
5% and the k-FWER=4. It is interesting to notice how the SD model class can be reproduced by any other model.
Moreover, the moderately parametrised (0.75) CEV family, can be reproduced by the inner models, a feature that is
the foundation of this experiment, that is the exploration of statistically undistinguishable models, though some are
structurally inferior. The SHB family seems to show some rigidity in combining high kurtosis and moderate skew.
Moreover, the sample generated by the latter family can be reproduced by the other models, whereas the SHA family
sample appears to be harder to dissimulate.
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Benchmark samples: SV, SVVJ, SVXJ, SVJJ
SV ? ? − ↘ -0.6203 0.0406 -0.4349 0.1172
SVVJ − ↘ ? ? -0.4071 0.0961 -0.4543 0.1188
SVXJ -0.0120 0.0919 -0.1157 0.0577 ? ? -0.0876 0.0305
SVJJ -0.0139 0.0925 -0.0364 0.0693 -0.0699 0.0428 ? ?
CEV − ↘ -0.0505 0.0646 -0.3462 0.1042 -0.2867 0.1409
CEVVJ -0.0166 0.0003 -0.0210 0.0431 -0.3653 0.1032 -0.3522 0.1378
CEVXJ -0.0043 0.1024 -0.0520 0.1171 -0.0525 0.0177 -0.0906 0.0315
CEVJJ -0.0027 0.0938 -0.0321 0.1432 -0.0418 0.0250 -0.0178 0.0034
SHB -0.2653 0.0700 -0.2677 0.0805 -0.0625 0.0735 -0.0410 0.0743
SHBVJ -0.2143 0.0962 -0.1946 0.1129 -0.0603 0.0762 -0.0865 0.1038
CSHB -0.2609 0.0776 -0.2970 0.0816 -0.0827 0.0692 -0.1107 0.0550
CSHBVJ -0.2377 0.0918 -0.2409 0.0982 -0.0600 0.0716 -0.0850 0.0568
SHA -0.3082 0.0356 -0.3941 0.0107 -0.0848 0.0453 -0.0898 0.0338
SHAVJ -0.3056 0.0393 -0.4019 0.0098 -0.1518 0.0735 -0.1106 0.0501
CSHA -0.3112 0.0295 -0.3865 0.0125 -0.0889 0.0452 -0.0813 0.0304
CSHAVJ -0.3054 0.0393 -0.3950 0.0074 -0.1019 0.0613 -0.0992 0.0424

Benchmark samples: CEV, CEVVJ, CEVXJ, CEVJJ
SV − ↘ − ↘ − ↘ − ↘
SVVJ -0.6441 0.0007 − ↘ − ↘ − ↘
SVXJ -0.5469 0.0206 − ↘ -0.1052 0.0169 -0.1514 0.0104
SVJJ -0.5667 0.0262 − ↘ -0.1124 0.0223 -0.1320 0.0371
CEV ? ? -0.0683 0.0033 -0.3422 0.0698 -0.2525 0.0575
CEVVJ -0.0252 0.0569 ? ? -0.2947 0.0852 -0.2020 0.0769
CEVXJ -0.0357 0.0611 -0.0654 0.0535 ? ? -0.0959 0.0212
CEVJJ -0.0483 0.0675 − ↘ -0.0844 0.0286 ? ?
SHB − ↘ − ↘ -0.0968 0.0717 -0.0517 0.0764
SHBVJ -0.2734 0.0012 -0.1465 0.0410 -0.0948 0.0784 -0.0857 0.0657
CSHB -0.3189 0.0016 -0.2219 0.0079 -0.1100 0.0534 -0.1499 0.0204
CSHBVJ -0.3075 0.0049 -0.2289 0.0082 -0.1090 0.0551 -0.0958 0.0360
SHA − ↘ − ↘ -0.1578 0.0288 -0.1500 0.0047
SHAVJ − ↘ − ↘ -0.1995 0.0546 -0.1528 0.0076
CSHA − ↘ − ↘ -0.1487 0.0232 -0.1389 0.0021
CSHAVJ − ↘ − ↘ -0.1653 0.0333 -0.1532 0.0062

Benchmark samples: SHB, SHBVJ, CSHB, CSHBVJ
SV -0.4693 0.0414 -0.4618 0.0573 -0.4168 0.0795 -0.3834 0.0839
SVVJ -0.4478 0.0349 -0.4232 0.0600 -0.4406 0.0623 -0.3942 0.0812
SVXJ -0.0373 0.0377 -0.0739 0.0332 -0.0364 0.0243 -0.0530 0.0160
SVJJ -0.0657 0.0605 -0.0920 0.0656 -0.0546 0.0564 -0.0831 0.0785
CEV -0.4601 0.0450 -0.4559 0.0607 -0.3986 0.0790 -0.3754 0.0866
CEVVJ -0.4294 0.0394 -0.4138 0.0619 -0.4112 0.0689 -0.3677 0.0829
CEVXJ -0.0370 0.0382 -0.0528 0.0353 -0.0333 0.0289 -0.0419 0.0190
CEVJJ -0.0611 0.0633 -0.0606 0.0542 -0.0990 0.0891 -0.0477 0.0272
SHB ? ? -0.0590 0.0463 -0.0317 0.0175 -0.0674 0.0446
SHBVJ -0.0092 0.0124 ? ? -0.0459 0.0431 -0.0261 0.0235
CSHB -0.0265 0.0276 -0.0585 0.0511 ? ? -0.0609 0.0462
CSHBVJ -0.0509 0.0626 -0.0105 0.0119 -0.0132 0.0172 ? ?
SHA -0.0289 0.0185 -0.0697 0.0498 -0.0664 0.0324 -0.0773 0.0419
SHAVJ -0.0692 0.0620 -0.0515 0.0366 -0.1070 0.0564 -0.1010 0.0578
CSHA -0.0388 0.0184 -0.0478 0.0321 -0.0712 0.0375 -0.0769 0.0422
CSHAVJ -0.0552 0.0520 -0.0633 0.0439 -0.1134 0.0597 -0.0885 0.0511

Benchmark samples: SHA, SHAVJ, CSHA, CSHAVJ
SV -0.1686 0.2182 -0.1063 0.2261 -0.1096 0.2715 -0.1195 0.2704
SVVJ -0.1106 0.2087 -0.0798 0.2193 -0.0639 0.2579 -0.0694 0.2740
SVXJ -0.1684 0.1665 − ↘ -0.0509 0.2568 − ↘
SVJJ -0.0792 0.2059 -0.0408 0.1920 -0.0055 0.2279 -0.0772 0.2743
CEV -0.1412 0.2228 -0.1041 0.2244 -0.0931 0.2631 -0.1037 0.2645
CEVVJ -0.1131 0.2089 -0.0588 0.2159 -0.0614 0.2569 -0.0588 0.2747
CEVXJ − ↘ − ↘ − ↘ -0.3254 0.0230
CEVJJ -0.0190 0.1692 -0.0075 0.1894 -0.0313 0.2720 -0.1216 0.2458
SHB -0.1012 0.0774 -0.1522 0.0950 -0.0613 0.0519 -0.1768 0.0901
SHBVJ -0.0929 0.1164 -0.0437 0.0704 -0.0142 0.0709 -0.0349 0.0864
CSHB -0.0779 0.0804 -0.1509 0.0948 -0.0541 0.0457 -0.1506 0.0903
CSHBVJ -0.1358 0.1369 -0.0414 0.0724 -0.0527 0.0952 -0.0527 0.1280
SHA ? ? -0.0235 0.0220 -0.0385 0.0293 -0.0250 0.0260
SHAVJ -0.0142 0.0119 ? ? -0.0157 0.0137 -0.0332 0.0314
CSHA -0.0052 0.0044 -0.0164 0.0162 ? ? -0.0291 0.0280
CSHAVJ -0.0173 0.0150 -0.0154 0.0142 -0.0238 0.0212 ? ?

Table 19: Simulated LCMHT. This table exhibits the LCMHT for the simulated experiment. Each pair of columns
for each block row represents an MHT, showing the final set output of balanced step-down algorithm, benchmarked
to the model indicated with a double star. In the simulated experiment the benchmark model also indicates the
DGP, which has produced the simulated paths. The rejected models do not provide a confidence interval, whereas the
corresponding row is filled with a north-east or a south-east arrow, whether the corresponding model is, respectively,
superior or inferior to the benchmark model. In this test the confidence level for each tail is 5% and the k-FWER=4.
In this exercise, it is interesting to notice that the performance is widespread and in particular jumps in return do
not seem to affect the estimation of the latent factor. Jumps in volatility are not distinctively detected. With respect
to the latter remark, we have to report that, in this exercise, we are using weekly data and asynchronous jumps only.
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Benchmark samples: SV, SVVJ, SVXJ, SVJJ
SHBVJ 1 SV 1 CEVXJ 1 CEVXJ 1
CEV 1 SVXJ 1 SVJJ 1 CEVJJ 1
CSHB 1 SVJJ 1 SVXJ 0.9997 SVJJ 0.9999
SHAVJ 1 CEV 1 CEVJJ 0.9997 SVXJ 0.9998
CEVVJ 1 CEVXJ 1 SHA 0.8531 CSHAVJ 0.9316
SVJJ 1 SHA 1 SHAVJ 0.8395 SHA 0.8479
SHB 0.9999 SHAVJ 1 SHB 0.6716 SHAVJ 0.8409
CEVJJ 0.9999 SVVJ 1 SHBVJ 0.6429 CSHA 0.8126
SVVJ 0.9999 CEVJJ 1 CSHBVJ 0.6294 SHB 0.6262
CSHBVJ 0.9999 CEVVJ 1 CSHAVJ 0.6211 SHBVJ 0.5587
SVXJ 0.9999 CSHAVJ 1 CSHA 0.2419 CSHB 0.5208
SHA 0.9999 CSHA 1 CSHB 0.2401 CSHBVJ 0.5160
CEVXJ 0.9997 CSHB 0.9999 SV 0.1232 ***** *****
SV 0.9997 SHB 0.9996 ***** ***** CEVVJ 0.0508
CSHA 0.9995 CSHBVJ 0.9994 SVVJ 0.0990 SV 0.0390
CSHAVJ 0.9989 SHBVJ 0.9975 CEV 0.0234 CEV 0.0390
***** ***** ***** ***** CEVVJ 0.0152 SVVJ 0.0265

Benchmark samples: CEV, CEVVJ, CEVXJ, CEVJJ
CEVVJ 1 CEVXJ 1 SVJJ 1 CEVXJ 1
CSHA 1 CEVVJ 1 CEVJJ 1 SVXJ 1
SHAVJ 1 CEV 1 CEVXJ 1 SVJJ 0.9998
CEV 1 CEVJJ 1 CSHAVJ 0.9780 CEVJJ 0.9995
CSHAVJ 1 CSHAVJ 0.9999 SHAVJ 0.9751 CSHA 0.7462
CEVXJ 1 SHAVJ 0.9999 SHA 0.9685 CSHAVJ 0.7233
SHA 1 CSHA 0.9999 SVXJ 0.9040 SHAVJ 0.7127
CSHB 1 SHA 0.9998 CSHB 0.6423 SHA 0.6632
SVJJ 1 SHBVJ 0.9994 SHB 0.5957 SV 0.4536
CEVJJ 1 SHB 0.9993 CSHBVJ 0.5838 SVVJ 0.4522
SVVJ 1 SVJJ 0.9991 SHBVJ 0.5548 CEVVJ 0.3866
CSHBVJ 1 SVVJ 0.9989 SV 0.3569 SHBVJ 0.3214
SHB 1 SV 0.9965 SVVJ 0.3005 CEV 0.2069
SHBVJ 1 CSHB 0.9956 CSHA 0.2293 CSHB 0.1697
SV 1 CSHBVJ 0.9951 CEV 0.1869 CSHBVJ 0.1676
SVXJ 0.9999 SVXJ 0.9840 CEVVJ 0.1538 SHB 0.1217
***** ***** ***** ***** ***** ***** ***** *****

Benchmark samples: SHB, SHBVJ, CSHB, CSHBVJ
CSHA 1 CSHBVJ 1 CSHB 1 CSHBVJ 1
CSHBVJ 1 SVXJ 0.9999 CSHBVJ 1 CSHB 1
CEVXJ 0.9995 SHBVJ 0.9874 SVXJ 0.9990 SHB 0.9994
CSHAVJ 0.9975 SHB 0.9775 SHBVJ 0.9944 SVXJ 0.9813
SHBVJ 0.9921 CSHB 0.9507 SHB 0.9799 SHBVJ 0.9637
CSHB 0.9906 CEVXJ 0.9379 CEVJJ 0.8804 CEVXJ 0.9527
SHB 0.9901 SHA 0.9314 CSHAVJ 0.8784 SHAVJ 0.8705
SVXJ 0.9607 SHAVJ 0.8521 CEVXJ 0.7567 CEVJJ 0.8549
CEVJJ 0.9032 CSHAVJ 0.7628 SHAVJ 0.7014 CSHAVJ 0.5830
SHAVJ 0.6322 CEV 0.1277 SHA 0.4020 SVJJ 0.3679
SHA 0.6310 CSHA 0.1202 CEV 0.3040 SHA 0.2936
SVJJ 0.2864 ***** ***** SVVJ 0.2625 CSHA 0.2521
***** ***** SV 0.0567 CSHA 0.2340 CEVVJ 0.1885
CEV 0.0829 SVVJ 0.0419 CEVVJ 0.2173 SVVJ 0.1342
SV 0.0393 CEVVJ 0.0273 SV 0.1737 CEV 0.1263
SVVJ 0.0112 SVJJ 0.0260 ***** ***** ***** *****
CEVVJ 0.0044 CEVJJ 0.0123 SVJJ 0.0041 SV 0.0145

Benchmark samples: SHA, SHAVJ, CSHA, CSHAVJ
CSHA 1 CSHA 1 CSHA 1 SHA 1
SHA 1 SHAVJ 1 SHAVJ 1 SHAVJ 1
SHB 0.9999 CSHB 0.9999 SHA 1 CSHA 1
CSHB 0.9999 SHBVJ 0.9998 SHB 0.9999 CSHB 0.9995
SHBVJ 0.9999 CSHBVJ 0.9997 CSHBVJ 0.9999 SHB 0.9994
CSHBVJ 0.9999 SHB 0.9989 SHBVJ 0.9999 CSHAVJ 0.9993
SHAVJ 0.9950 SHA 0.9977 CSHB 0.9997 CSHBVJ 0.9983
CSHAVJ 0.7823 CSHAVJ 0.9089 CSHAVJ 0.9427 SHBVJ 0.9958
CEVXJ 0.2996 CEVXJ 0.4962 CEVJJ 0.7124 SVXJ 0.8183
SVXJ 0.2812 SV 0.4353 CEV 0.6737 CEVXJ 0.7183
SV 0.2616 CEV 0.4214 SVXJ 0.6341 SV 0.7134
CEV 0.2583 SVXJ 0.3605 SV 0.6039 CEV 0.7069
CEVJJ 0.1672 ***** ***** CEVXJ 0.4720 ***** *****
***** ***** SVJJ 0.0756 SVJJ 0.3647 SVVJ 0.0145
SVJJ 0.0062 CEVJJ 0.0675 CEVVJ 0.1277 CEVJJ 0.0111
SVVJ 0.0012 SVVJ 0.0009 ***** ***** SVJJ 0.0105
CEVVJ 0.0005 CEVVJ 0.0007 SVVJ 0.0155 CEVVJ 0.0078

Table 20: Simulated LRMCS-max. This table exhibits the LRMCS-max for the simulated experiment. Each
column refers to a sample benchmark, which are arranged in block rows, as indicated by each row header. Each
column contains the output of the MCS test, indicating the model label, the model confidence set cut-off, represented
by an asterisk line and the model ranking achieved within each set by means of the p-values. The confidence level is at
10%. In this fundamental exercise of the simulated experiment, the established max -MCS test cannot offer extensive
discrimination among the model set, which is achieved to a certain extent when considering the p-value ranking. The
comments to this table are in Section 3.3.2.
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Benchmark samples: SV, SVVJ, SVXJ, SVJJ
SHBVJ 0.6437 SVXJ 0.6105 CEVXJ 0.8532 CEVXJ 0.7756
CEV 0.6249 SV 0.6041 SVJJ 0.7883 SVXJ 0.7096
SHAVJ 0.6069 CEV 0.6037 CEVJJ 0.7801 CEVJJ 0.7058
SVVJ 0.5637 SVJJ 0.5890 SVXJ 0.6846 SVJJ 0.6541
CSHB 0.5555 CEVXJ 0.5515 SHA 0.4228 CSHAVJ 0.3807
CSHAVJ 0.5303 SHA 0.5509 SHB 0.3713 CSHA 0.2828
SHA 0.5260 CEVVJ 0.5296 CSHBVJ 0.3167 SHAVJ 0.2821
CEVJJ 0.5234 CSHA 0.5010 CSHAVJ 0.2873 SHA 0.2092
CSHBVJ 0.4726 CEVJJ 0.4977 SHAVJ 0.2548 ***** *****
SVJJ 0.4692 CSHAVJ 0.4951 SHBVJ 0.2409 SHB 0.1103
SHB 0.4608 SHAVJ 0.4509 ***** ***** SHBVJ 0.1061
CSHA 0.4519 CSHB 0.4506 CSHA 0.2169 CSHBVJ 0.0987
SVXJ 0.4466 SVVJ 0.3977 CSHB 0.1994 CSHB 0.0903
CEVVJ 0.4285 CSHBVJ 0.3947 SVVJ 0.1158 CEVVJ 0.0350
CEVXJ 0.4009 SHB 0.3933 CEV 0.1129 SV 0.0289
SV 0.2952 SHBVJ 0.3796 CEVVJ 0.0982 SVVJ 0.0270
***** ***** ***** ***** SV 0.0819 CEV 0.0223

Benchmark samples: CEV, CEVVJ, CEVXJ, CEVJJ
CSHA 0.5776 CEVXJ 0.6836 SVJJ 0.7632 CEVXJ 0.8036
CEVVJ 0.5743 CSHAVJ 0.6229 CEVJJ 0.7161 SVXJ 0.7634
SHAVJ 0.5531 CEV 0.6228 CEVXJ 0.5738 SVJJ 0.6976
CSHAVJ 0.5512 CSHA 0.6105 SHAVJ 0.3882 CEVJJ 0.6733
CSHB 0.5304 CEVJJ 0.5913 CSHAVJ 0.3478 CSHAVJ 0.3865
SHA 0.5283 SHA 0.5168 SHA 0.2109 CSHA 0.3526
CEVXJ 0.5208 SHAVJ 0.5019 ***** ***** SHAVJ 0.2363
CSHBVJ 0.5060 CSHBVJ 0.4926 SVXJ 0.6285 SHA 0.0868
CEVJJ 0.4956 CSHB 0.4724 CSHA 0.1930 ***** *****
SVJJ 0.4814 SHB 0.4563 CSHBVJ 0.1142 SHBVJ 0.1423
SHBVJ 0.4798 CEVVJ 0.4495 CEVVJ 0.1021 CSHBVJ 0.1051
CEV 0.4686 SVVJ 0.4412 SHB 0.0996 CEVVJ 0.0881
SHB 0.4659 SHBVJ 0.4382 CSHB 0.0993 CSHB 0.0861
SVVJ 0.4470 SVJJ 0.4313 SHBVJ 0.0942 CEV 0.0646
SV 0.4204 SV 0.3527 CEV 0.0842 SHB 0.0638
SVXJ 0.3995 SVXJ 0.3160 SV 0.0589 SVVJ 0.0531
***** ***** ***** ***** SVVJ 0.0488 SV 0.0510

Benchmark samples: SHB, SHBVJ, CSHB, CSHBVJ
CSHBVJ 0.7083 CSHBVJ 0.8163 CSHB 0.7903 CSHB 0.8122
CSHA 0.6512 CSHB 0.6916 CSHBVJ 0.7835 CSHBVJ 0.8116
CSHB 0.6132 SHBVJ 0.6514 SHBVJ 0.6673 SHB 0.6933
CEVXJ 0.5039 SVXJ 0.6201 SHB 0.5948 SHBVJ 0.5087
SHBVJ 0.4998 SHB 0.5760 SVXJ 0.5616 SVXJ 0.4504
SHB 0.4812 CEVXJ 0.4862 CEVXJ 0.3898 CEVXJ 0.3171
CSHAVJ 0.4516 SHA 0.3014 CSHAVJ 0.3699 SHAVJ 0.2186
SVXJ 0.3881 SHAVJ 0.2048 CEVJJ 0.1976 CEVJJ 0.1881
CEVJJ 0.2029 CSHAVJ 0.1522 SHAVJ 0.1453 ***** *****
***** ***** ***** ***** ***** ***** CSHAVJ 0.1800
SHA 0.2565 CEVJJ 0.3058 SVJJ 0.2046 SHA 0.0963
SHAVJ 0.2433 SVJJ 0.2440 CSHA 0.0773 CSHA 0.0891
SVJJ 0.1178 CSHA 0.0943 SHA 0.0752 SVJJ 0.0784
CEV 0.0189 CEV 0.0200 SVVJ 0.0189 CEVVJ 0.0261
SV 0.0163 SV 0.0167 CEV 0.0185 CEV 0.0240
SVVJ 0.0116 SVVJ 0.0109 CEVVJ 0.0174 SV 0.0103
CEVVJ 0.0108 CEVVJ 0.0091 SV 0.0169 SVVJ 0.0083

Benchmark samples: SHA, SHAVJ, CSHA, CSHAVJ
CSHA 0.7054 CSHA 0.7491 CSHA 0.7813 SHA 0.7390
SHA 0.6856 SHAVJ 0.7289 SHA 0.7727 CSHA 0.7242
SHB 0.5988 SHA 0.6826 SHAVJ 0.7678 SHAVJ 0.7233
CSHB 0.5866 CSHB 0.6534 SHB 0.6870 CSHAVJ 0.6401
SHAVJ 0.5718 SHBVJ 0.6163 CSHBVJ 0.6738 CSHB 0.6251
SHBVJ 0.5343 SHB 0.5909 SHBVJ 0.6633 SHB 0.5697
CSHBVJ 0.5175 CSHBVJ 0.5862 CSHB 0.6051 CSHBVJ 0.5642
CSHAVJ 0.2349 CSHAVJ 0.4188 CSHAVJ 0.4310 SHBVJ 0.5587
CEVXJ 0.0651 SV 0.2102 CEV 0.3556 SVXJ 0.2467
***** ***** CEVXJ 0.2005 SV 0.2648 SV 0.2206
CEV 0.0748 CEV 0.0634 SVXJ 0.2343 CEV 0.1955
SV 0.0714 ***** ***** CEVJJ 0.2007 CEVXJ 0.1928
SVXJ 0.0679 SVXJ 0.1582 SVJJ 0.0630 ***** *****
CEVJJ 0.0351 SVJJ 0.0182 ***** ***** CEVVJ 0.0468
CEVVJ 0.0116 CEVJJ 0.0153 CEVXJ 0.2985 SVJJ 0.0348
SVVJ 0.0114 SVVJ 0.0108 CEVVJ 0.1350 CEVJJ 0.0336
SVJJ 0.0082 CEVVJ 0.0059 SVVJ 0.0968 SVVJ 0.0311

Table 21: Simulated LRMCS-γ. This table exhibits the LRMCS-γ with fixed γ = 20% for the simulated
experiment. Each column refers to a sample benchmark, which are arranged in block rows, as indicated by each
row header. Each column contains the output of the MCS test, indicating the model label, the model confidence
set cut-off, represented by an asterisk line and the model ranking achieved within each set by means of the p-values.
The confidence level is at 5%. When employing the LRMCS-γ, we are able to highlight distinctively the aliasing
feature of the model set components. Disregarding the innermost affine models, whose behaviour can be reproduced
interchangeably by the other models, we notice that the SD and SH classes can produce statistically indistinguishable
likelihood ratio performance, as long as, for instance, SHAVJ and and SHBVJ enter the affine and CEV MCS, whereas
the CEV, CEVXJ, SV and SVXJ are included in the majority of the SH MCS. The comments to this table are in
Section 3.3.2.
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Benchmark samples: SV, SVVJ, SVXJ, SVJJ
SHBVJ 0.5441 SV 0.5070 CEVXJ 0.6112 CEVXJ 0.5822
CEV 0.4559 SVXJ 0.4930 SVJJ 0.3888 CEVJJ 0.4178
CSHB 0.4134 SVJJ 0.4864 SVXJ 0.3159 SVJJ 0.3638
SHAVJ 0.4111 CEV 0.4801 CEVJJ 0.3159 SVXJ 0.3166
CEVVJ 0.3931 CEVXJ 0.4426 SHA 0.0978 CSHAVJ 0.1311
SVJJ 0.3865 SHA 0.4272 SHAVJ 0.0932 SHA 0.0915
SHB 0.3837 SHAVJ 0.4154 SHB 0.0547 SHAVJ 0.0892
CEVJJ 0.3814 SVVJ 0.4045 SHBVJ 0.0501 CSHA 0.0810
SVVJ 0.3735 CEVJJ 0.3972 ***** ***** ***** *****
CSHBVJ 0.3728 CEVVJ 0.3942 CSHBVJ 0.0479 SHB 0.0450
SVXJ 0.3703 CSHAVJ 0.3828 CSHAVJ 0.0467 SHBVJ 0.0364
SHA 0.3558 CSHA 0.3704 CSHA 0.0108 CSHB 0.0323
CEVXJ 0.3208 CSHB 0.3133 CSHB 0.0107 CSHBVJ 0.0318
SV 0.3125 SHB 0.2855 SV 0.0045 CEVVJ 0.0014
CSHA 0.3031 CSHBVJ 0.2748 SVVJ 0.0035 SV 0.0009
CSHAVJ 0.2847 SHBVJ 0.2341 CEV 0.0006 CEV 0.0008
***** ***** ***** ***** CEVVJ 0.0003 SVVJ 0.0005

Benchmark samples: CEV, CEVVJ, CEVXJ, CEVJJ
CEVVJ 0.5186 CEVXJ 0.5484 SVJJ 0.5603 CEVXJ 0.5786
CSHA 0.4814 CEVVJ 0.4516 CEVJJ 0.4397 SVXJ 0.4214
SHAVJ 0.4635 CEV 0.4101 CEVXJ 0.3869 SVJJ 0.3260
CEV 0.4490 CEVJJ 0.4092 CSHAVJ 0.1622 CEVJJ 0.3110
CSHAVJ 0.4440 CSHAVJ 0.3673 SHAVJ 0.1574 CSHA 0.0660
CEVXJ 0.4408 SHAVJ 0.3586 SHA 0.1486 CSHAVJ 0.0614
SHA 0.4357 CSHA 0.3449 SVXJ 0.1013 SHAVJ 0.0592
CSHB 0.4338 SHA 0.3344 ***** ***** SHA 0.0509
SVJJ 0.4018 SHBVJ 0.3087 CSHB 0.0415 ***** *****
CEVJJ 0.3828 SHB 0.3035 SHB 0.0357 SV 0.0253
SVVJ 0.3794 SVJJ 0.2947 CSHBVJ 0.0344 SVVJ 0.0252
CSHBVJ 0.3650 SVVJ 0.2923 SHBVJ 0.0314 CEVVJ 0.0195
SHB 0.3629 SV 0.2552 SV 0.0154 SHBVJ 0.0147
SHBVJ 0.3618 CSHB 0.2470 SVVJ 0.0121 CEV 0.0078
SV 0.3586 CSHBVJ 0.2416 CSHA 0.0084 CSHB 0.0060
SVXJ 0.3426 SVXJ 0.1995 CEV 0.0064 CSHBVJ 0.0059
***** ***** ***** ***** CEVVJ 0.0050 SHB 0.0039

Benchmark samples: SHB, SHBVJ, CSHB, CSHBVJ
CSHA 0.5093 CSHBVJ 0.6550 CSHB 0.5339 CSHBVJ 0.5150
CSHBVJ 0.4907 SVXJ 0.3450 CSHBVJ 0.4662 CSHB 0.4850
CEVXJ 0.3207 SHBVJ 0.2179 SVXJ 0.2976 SHB 0.2978
CSHAVJ 0.2797 SHB 0.1961 SHBVJ 0.2490 SVXJ 0.1853
SHBVJ 0.2403 CSHB 0.1614 SHB 0.2010 SHBVJ 0.1587
CSHB 0.2346 CEVXJ 0.1499 CEVJJ 0.1157 CEVXJ 0.1472
SHB 0.2336 SHA 0.1454 CSHAVJ 0.1148 SHAVJ 0.0986
SVXJ 0.1757 SHAVJ 0.1052 CEVXJ 0.0761 CEVJJ 0.0924
CEVJJ 0.1302 CSHAVJ 0.0788 SHAVJ 0.0643 ***** *****
SHAVJ 0.0540 ***** ***** ***** ***** CSHAVJ 0.0384
SHA 0.0538 CEV 0.0055 SHA 0.0242 SVJJ 0.0178
***** ***** CSHA 0.0051 CEV 0.0160 SHA 0.0129
SVJJ 0.0153 SV 0.0021 SVVJ 0.0128 CSHA 0.0104
CEV 0.0029 SVVJ 0.0013 CSHA 0.0109 CEVVJ 0.0071
SV 0.0012 CEVVJ 0.0008 CEVVJ 0.0099 SVVJ 0.0046
SVVJ 0.0002 SVJJ 0.0006 SV 0.0074 CEV 0.0043
CEVVJ 0.0001 CEVJJ 0.0003 SVJJ 0.0001 SV 0.0003

Benchmark samples: SHA, SHAVJ, CSHA, CSHAVJ
CSHA 0.5156 CSHA 0.5054 CSHA 0.5662 SHA 0.5077
SHA 0.4844 SHAVJ 0.4946 SHAVJ 0.4338 SHAVJ 0.4923
SHB 0.3881 CSHB 0.3719 SHA 0.4248 CSHA 0.4390
CSHB 0.3840 SHBVJ 0.3533 SHB 0.3593 CSHB 0.3332
SHBVJ 0.3712 CSHBVJ 0.3477 CSHBVJ 0.3437 SHB 0.3285
CSHBVJ 0.3663 SHB 0.3074 SHBVJ 0.3406 CSHAVJ 0.3247
SHAVJ 0.2829 SHA 0.2893 CSHB 0.3101 CSHBVJ 0.3037
CSHAVJ 0.1006 CSHAVJ 0.1482 CSHAVJ 0.1398 SHBVJ 0.2766
***** ***** ***** ***** CEVJJ 0.0601 SVXJ 0.1039
CEVXJ 0.0201 CEVXJ 0.0418 CEV 0.0534 CEVXJ 0.0767
SVXJ 0.0184 SV 0.0341 ***** ***** SV 0.0755
SV 0.0167 CEV 0.0325 SVXJ 0.0475 CEV 0.0742
CEV 0.0164 SVXJ 0.0260 SV 0.0434 ***** *****
CEVJJ 0.0094 SVJJ 0.0036 CEVXJ 0.0283 SVVJ 0.0005
SVJJ 0.0002 CEVJJ 0.0030 SVJJ 0.0190 CEVJJ 0.0004
SVVJ 0.0000 SVVJ 0.0000 CEVVJ 0.0047 SVJJ 0.0003
CEVVJ 0.0000 CEVVJ 0.0000 SVVJ 0.0004 CEVVJ 0.0002

Table 22: Simulated LRMCS-t. This table exhibits the LRMCS-t for the simulated experiment. Each column
refers to a sample benchmark, which are arranged in block rows, as indicated by each row header. Each column
contains the output of the MCS test, indicating the model label, the model confidence set cut-off, represented by an
asterisk line and the model ranking achieved within each set by means of the p-values. The confidence level is at 5%.
The test results are similar to those of the test in Tab. 21. The comments to this table are in Section 3.3.2.
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Benchmark samples: SV, SVVJ, SVXJ, SVJJ
CEVXJ 1 CEVJJ 1 SHBVJ 1 SHB 1
CEVJJ 1 SHBVJ 0.9999 SHB 1 SHBVJ 1
SVXJ 0.9925 SVJJ 0.9999 SVXJ 1 SVJJ 0.9978
SVJJ 0.9916 SVVJ 0.9999 CEVXJ 0.9999 CEVXJ 0.9972
SHBVJ 0.9139 CEVVJ 0.9943 CEVJJ 0.9994 SVXJ 0.9971
CSHBVJ 0.9088 CEVXJ 0.9577 CSHBVJ 0.9975 CEV 0.9839
CSHB 0.8487 CSHB 0.9281 SVJJ 0.9895 CEVVJ 0.9602
SHB 0.7776 CSHBVJ 0.8693 SHA 0.9759 CSHA 0.9281
SV 0.6018 CEV 0.8338 CSHAVJ 0.9653 CEVJJ 0.8736
CEVVJ 0.4915 SVXJ 0.8194 CSHA 0.9634 CSHBVJ 0.8658
CSHAVJ 0.3749 SHB 0.7012 CEV 0.9461 SHA 0.8416
SHAVJ 0.3735 CSHA 0.5750 CSHB 0.9397 CSHAVJ 0.7816
SHA 0.3489 SHA 0.5533 CEVVJ 0.9380 CSHB 0.7330
SVVJ 0.3419 SHAVJ 0.5377 SHAVJ 0.9155 SV 0.7311
CSHA 0.3214 SV 0.5352 SVVJ 0.7613 SHAVJ 0.7281
CEV 0.1006 CSHAVJ 0.5293 SV 0.1279 SVVJ 0.3282
***** ***** ***** ***** ***** ***** ***** *****

Benchmark samples: CEV, CEVVJ, CEVXJ, CEVJJ
CEVXJ 1 CEVVJ 1 SHBVJ 1 SHB 1
CEVVJ 1 CEVXJ 1 CEVXJ 1 CEVJJ 1
CEVJJ 0.9982 SHA 1 CEVJJ 1 SHBVJ 0.9999
CEV 0.9845 SHBVJ 0.9995 SVJJ 1 SVJJ 0.9998
SVJJ 0.9661 SVJJ 0.9985 SVXJ 1 CEVXJ 0.9995
SVXJ 0.9630 SVXJ 0.9967 SHB 0.9890 CEVVJ 0.9994
SVVJ 0.4027 SVVJ 0.9325 CEVVJ 0.9809 SVXJ 0.9973
CSHBVJ 0.3897 SV 0.8703 CSHBVJ 0.9539 CEV 0.9952
SV 0.3848 CEV 0.8175 CSHAVJ 0.9536 CSHBVJ 0.9840
CSHB 0.3822 CSHB 0.7261 CSHA 0.9504 CSHA 0.9347
SHB 0.2725 CSHBVJ 0.6822 SHA 0.9299 SHA 0.9168
SHBVJ 0.2569 CEVJJ 0.2079 CSHB 0.9094 SV 0.9078
***** ***** CSHA 0.1268 SHAVJ 0.8660 CSHAVJ 0.9030
SHAVJ 0.0288 SHAVJ 0.1134 SVVJ 0.6084 SVVJ 0.8959
CSHAVJ 0.0288 SHB 0.1064 SV 0.6000 CSHB 0.8824
CSHA 0.0288 CSHAVJ 0.0924 CEV 0.2841 SHAVJ 0.8684
SHA 0.0272 ***** ***** ***** ***** ***** *****

Benchmark samples: SHB, SHBVJ, CSHB, CSHBVJ
CSHBVJ 1 CSHBVJ 1 CSHBVJ 1 CSHBVJ 1
CSHB 1 SHBVJ 1 SVJJ 1 SVJJ 1
SHBVJ 1 SHB 1 SHBVJ 1 SHBVJ 1
CEVXJ 1 CSHB 1 SHB 1 SHB 1
SHB 1 CEVJJ 1 CSHB 1 CSHB 1
SHA 1 CEVXJ 1 CEVXJ 1 CSHA 1
CEVJJ 1 CSHA 1 CEVJJ 1 CSHAVJ 1
SVXJ 1 SHA 1 SVXJ 0.9997 SHA 1
CSHAVJ 1 SHAVJ 1 CSHA 0.9967 CEVJJ 1
SHAVJ 1 CSHAVJ 1 CSHAVJ 0.9958 SHAVJ 0.9999
CSHA 0.9999 SVXJ 1 SHA 0.9949 CEVXJ 0.9999
SVJJ 0.9990 SVJJ 0.9962 SHAVJ 0.9936 SVXJ 0.9972
CEV 0.7836 CEVVJ 0.8670 SV 0.9456 SV 0.9267
CEVVJ 0.7834 CEV 0.8252 CEV 0.9417 CEV 0.9190
SV 0.6914 SV 0.8202 CEVVJ 0.9245 CEVVJ 0.8840
SVVJ 0.2135 SVVJ 0.2284 SVVJ 0.2580 SVVJ 0.8576
***** ***** ***** ***** ***** ***** ***** *****

Benchmark samples: SHA, SHAVJ, CSHA, CSHAVJ
CEVJJ 1 CEVJJ 1 CEVJJ 1 CEVVJ 1
CSHBVJ 0.9939 CEVVJ 0.9984 SVJJ 1 SVJJ 1
SVJJ 0.9938 SHB 0.9781 SVXJ 0.9950 SHB 0.9947
SHBVJ 0.9896 CSHB 0.9778 CSHBVJ 0.9484 CSHB 0.9940
SHB 0.9890 SV 0.9631 SHB 0.9434 SHAVJ 0.9933
CSHB 0.9807 CEV 0.9561 CSHB 0.9368 SHA 0.9929
SVVJ 0.9790 SVVJ 0.9422 SHA 0.9149 CSHA 0.9929
CEV 0.9625 SHBVJ 0.9160 CEVVJ 0.8861 CSHAVJ 0.9902
SHAVJ 0.9337 CSHBVJ 0.9047 CEV 0.8774 SHBVJ 0.9844
CSHA 0.9187 SVJJ 0.8961 SVVJ 0.8692 CSHBVJ 0.9642
SHA 0.9113 SHA 0.8494 SV 0.8619 SV 0.7679
CEVVJ 0.9043 CSHA 0.8095 SHBVJ 0.8593 SVVJ 0.7337
CSHAVJ 0.8644 SHAVJ 0.7697 CSHA 0.8531 CEV 0.6902
SV 0.3434 CSHAVJ 0.7189 SHAVJ 0.8265 SVXJ 0.1856
SVXJ 0.2678 SVXJ 0.0521 CSHAVJ 0.7872 CEVXJ 0.1807
***** ***** ***** ***** CEVXJ 0.0658 ***** *****
CEVXJ 0.0166 CEVXJ 0.0001 ***** ***** CEVJJ 0.0140

Table 23: Simulated LCMCS-max. This table exhibits the LCMCS-max for the simulated experiment. Each
column refers to a sample benchmark, which are arranged in block rows, as indicated by each row header. Each
column contains the output of the MCS test, indicating the model label, the model confidence set cut-off, represented
by an asterisk line and the model ranking achieved within each set by means of the p-values. The confidence level is at
5%. The test results for the latent factor estimation exhibit wide equivalence amongst the model set. The comments
to this table are in Section 3.3.2.
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Benchmark samples: SV, SVVJ, SVXJ, SVJJ
CEVJJ 0.9305 CEVJJ 0.8792 SHBVJ 0.7870 SHB 0.8550
CEVXJ 0.9055 SVJJ 0.7426 SHB 0.7851 SHBVJ 0.7587
SVXJ 0.8503 CEVXJ 0.7369 CSHBVJ 0.7402 SVJJ 0.7140
SVJJ 0.8207 SHBVJ 0.7188 SVXJ 0.6775 CSHBVJ 0.6568
SV 0.6475 SVVJ 0.6985 CEVJJ 0.6127 CEVJJ 0.6081
CEVVJ 0.5635 CEVVJ 0.6499 CSHB 0.6114 SVXJ 0.5710
SHBVJ 0.5380 CSHBVJ 0.5759 CEVXJ 0.5903 CEVXJ 0.5461
SVVJ 0.4779 CEV 0.5463 SVJJ 0.5667 CSHA 0.4867
CSHBVJ 0.4558 SVXJ 0.4877 SHA 0.5076 CSHB 0.4749
CEV 0.4187 SHB 0.4675 CSHAVJ 0.4929 SHA 0.4574
CSHB 0.3700 CSHB 0.4390 CSHA 0.4535 CSHAVJ 0.4446
SHB 0.3103 CSHA 0.1813 SHAVJ 0.3732 SHAVJ 0.4054
CSHAVJ 0.2345 SHA 0.1392 CEV 0.3208 CEV 0.3931
SHAVJ 0.2065 SHAVJ 0.1224 CEVVJ 0.2593 CEVVJ 0.3135
SHA 0.1530 CSHAVJ 0.1148 SVVJ 0.1764 SV 0.1821
CSHA 0.1174 ***** ***** SV 0.0454 SVVJ 0.1326
***** ***** SV 0.3563 ***** ***** ***** *****

Benchmark samples: CEV, CEVVJ, CEVXJ, CEVJJ
CEVXJ 0.9044 CEVVJ 0.8703 SHBVJ 0.8327 SHB 0.8596
CEVJJ 0.8266 CEVXJ 0.8126 SHB 0.7748 SHBVJ 0.7702
CEVVJ 0.7504 SHBVJ 0.6336 CEVXJ 0.7069 CEVJJ 0.7421
CEV 0.7347 CEV 0.5808 CSHBVJ 0.6646 CSHBVJ 0.7040
SVJJ 0.5177 SVJJ 0.3888 CSHB 0.5956 CEVXJ 0.6205
SVXJ 0.5013 SVVJ 0.1951 CEVJJ 0.5740 SVJJ 0.5534
CSHBVJ 0.3596 SV 0.0188 SVXJ 0.5069 CSHB 0.5026
SHBVJ 0.3498 ***** ***** SVJJ 0.5043 CEVVJ 0.4813
SVVJ 0.2548 CSHB 0.4394 CSHAVJ 0.3954 SVXJ 0.4689
SHB 0.1854 CSHBVJ 0.4361 CSHA 0.3777 CSHA 0.4388
SV 0.1155 SHB 0.4098 SHA 0.3634 SHAVJ 0.4094
***** ***** SVXJ 0.3285 SHAVJ 0.2812 CSHAVJ 0.4025
CSHB 0.3032 CSHA 0.2336 CEVVJ 0.2721 SHA 0.3951
SHAVJ 0.1632 SHAVJ 0.2326 CEV 0.1507 CEV 0.3607
CSHAVJ 0.1537 SHA 0.2304 ***** ***** SV 0.1637
CSHA 0.1507 CSHAVJ 0.2212 SVVJ 0.0279 SVVJ 0.1272
SHA 0.1422 CEVJJ 0.0139 SV 0.0263 ***** *****

Benchmark samples: SHB, SHBVJ, CSHB, CSHBVJ
CSHBVJ 0.6981 CSHBVJ 0.7101 CSHBVJ 0.7297 CSHBVJ 0.7446
SHBVJ 0.6737 SHBVJ 0.7068 SHBVJ 0.7111 SHBVJ 0.6803
CSHB 0.6503 SHB 0.6661 SVJJ 0.6889 SVJJ 0.6217
CEVXJ 0.6467 CSHB 0.6466 CSHB 0.6731 SHB 0.6181
SHB 0.6454 CEVXJ 0.6253 SHB 0.6551 CSHB 0.6152
SVXJ 0.6321 CEVJJ 0.6091 CEVXJ 0.6536 CEVXJ 0.6089
CEVJJ 0.6189 CSHA 0.5939 SVXJ 0.6160 CEVJJ 0.5984
SHA 0.6037 SHA 0.5865 CEVJJ 0.5536 CSHA 0.5654
CSHAVJ 0.5938 SHAVJ 0.5719 SHA 0.5088 SHA 0.5366
SHAVJ 0.5570 SVXJ 0.5380 CSHA 0.5024 CSHAVJ 0.5306
CSHA 0.5368 CSHAVJ 0.5319 CSHAVJ 0.4466 SVXJ 0.5281
SVJJ 0.5328 SVJJ 0.5143 SHAVJ 0.4430 SHAVJ 0.4805
CEVVJ 0.2281 CEVVJ 0.2652 CEV 0.2763 CEV 0.2571
CEV 0.1648 SVVJ 0.1882 SV 0.2359 SV 0.2523
SVVJ 0.1331 CEV 0.1549 CEVVJ 0.2165 CEVVJ 0.2347
SV 0.0847 SV 0.0912 SVVJ 0.0893 SVVJ 0.1274
***** ***** ***** ***** ***** ***** ***** *****

Benchmark samples: SHA, SHAVJ, CSHA, CSHAVJ
CEVJJ 0.8583 CEVJJ 0.8814 SVJJ 0.8554 CEVVJ 0.8261
SVJJ 0.6651 CEVVJ 0.7450 CEVJJ 0.8476 SVJJ 0.7171
SVVJ 0.5975 SVJJ 0.6765 CEVVJ 0.6870 SVVJ 0.7169
SHBVJ 0.5588 SVVJ 0.6212 SVXJ 0.6360 CEV 0.5075
CEVVJ 0.5333 CSHBVJ 0.5163 SVVJ 0.6217 SHBVJ 0.4688
CSHB 0.5254 SHBVJ 0.5052 CSHBVJ 0.5189 CSHBVJ 0.4588
SHB 0.5004 CEV 0.4840 SHBVJ 0.5039 SV 0.4287
CSHBVJ 0.4975 SV 0.4491 CEV 0.4779 SHA 0.4145
CSHA 0.4619 CSHB 0.3922 SHB 0.3994 CSHA 0.4112
SHAVJ 0.4617 SHB 0.3897 SV 0.3851 SHAVJ 0.4088
SHA 0.4568 SHAVJ 0.3464 CSHB 0.3651 CSHAVJ 0.4006
CSHAVJ 0.4366 SHA 0.3376 CSHA 0.3160 CSHB 0.3895
CEV 0.4320 CSHA 0.3329 SHAVJ 0.3066 SHB 0.3517
SV 0.2861 CSHAVJ 0.3226 SHA 0.2969 ***** *****
SVXJ 0.2288 ***** ***** CSHAVJ 0.2824 CEVJJ 0.4520
***** ***** SVXJ 0.0150 ***** ***** CEVXJ 0.0430
CEVXJ 0.0022 CEVXJ 0.0049 CEVXJ 0.0054 SVXJ 0.0202

Table 24: Simulated LCMCS-γ. This table exhibits the LCMCS-γ with γ = 10% for the simulated experiment.
Each column refers to a sample benchmark, which are arranged in block rows, as indicated by each row header. Each
column contains the output of the MCS test, indicating the model label, the model confidence set cut-off, represented
by an asterisk line and the model ranking achieved within each set by means of the p-values. The confidence level is
at 5%. Considering the k, with the exception of CEV and CSHBVJ whereby k = 2 and CEVVJ whereby k = 3, all
the model tests select k = 1. The comments to this table are in Section 3.3.2.
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Benchmark samples: SV, SVVJ, SVXJ, SVJJ
CEVXJ 0.5418 CEVJJ 0.7147 SHBVJ 0.5418 SHB 0.6186
CEVJJ 0.4582 SHBVJ 0.2853 SHB 0.4582 SHBVJ 0.3814
SVXJ 0.1894 SVJJ 0.2769 SVXJ 0.3967 SVJJ 0.2507
SVJJ 0.1859 SVVJ 0.2719 CEVXJ 0.3129 CEVXJ 0.2458
SHBVJ 0.1032 CEVVJ 0.1869 CEVJJ 0.2774 SVXJ 0.2451
CSHBVJ 0.1009 CEVXJ 0.1206 CSHBVJ 0.2440 CEV 0.1933
CSHB 0.0795 CSHB 0.1005 SVJJ 0.1991 CEVVJ 0.1567
SHB 0.0629 CSHBVJ 0.0770 SHA 0.1710 CSHA 0.1300
***** ***** CEV 0.0673 CSHAVJ 0.1562 CEVJJ 0.1039
SV 0.0370 SVXJ 0.0640 CSHA 0.1539 CSHBVJ 0.1008
CEVVJ 0.0265 ***** ***** CEV 0.1367 SHA 0.0927
CSHAVJ 0.0177 SHB 0.0437 CSHB 0.1319 CSHAVJ 0.0760
SHAVJ 0.0176 CSHA 0.0294 CEVVJ 0.1309 CSHB 0.0658
SHA 0.0160 SHA 0.0274 SHAVJ 0.1168 SV 0.0654
SVVJ 0.0156 SHAVJ 0.0260 SVVJ 0.0663 SHAVJ 0.0649
CSHA 0.0143 SV 0.0258 ***** ***** ***** *****
CEV 0.0033 CSHAVJ 0.0253 SV 0.0043 SVVJ 0.0172

Benchmark samples: CEV, CEVVJ, CEVXJ, CEVJJ
CEVXJ 0.6208 CEVVJ 0.5625 SHBVJ 0.5634 SHB 0.6848
CEVVJ 0.3792 CEVXJ 0.4375 CEVXJ 0.4366 CEVJJ 0.3152
CEVJJ 0.3069 SHA 0.4282 CEVJJ 0.3381 SHBVJ 0.2771
CEV 0.2376 SHBVJ 0.2324 SVJJ 0.3223 SVJJ 0.2696
SVJJ 0.2045 SVJJ 0.2087 SVXJ 0.3108 CEVXJ 0.2523
SVXJ 0.2011 SVXJ 0.1926 SHB 0.1764 CEVVJ 0.2450
***** ***** SVVJ 0.1014 CEVVJ 0.1585 SVXJ 0.2059
SVVJ 0.0331 SV 0.0774 CSHBVJ 0.1269 CEV 0.1887
CSHBVJ 0.0315 CEV 0.0644 CSHAVJ 0.1267 CSHBVJ 0.1499
SV 0.0309 ***** ***** CSHA 0.1239 CSHA 0.1016
CSHB 0.0306 CSHB 0.0483 SHA 0.1106 SHA 0.0926
SHB 0.0191 CSHBVJ 0.0424 CSHB 0.0998 SV 0.0888
SHBVJ 0.0177 CEVJJ 0.0070 SHAVJ 0.0838 CSHAVJ 0.0867
SHAVJ 0.0010 CSHA 0.0038 ***** ***** SVVJ 0.0839
CSHAVJ 0.0009 SHAVJ 0.0033 SVVJ 0.0372 CSHB 0.0794
CSHA 0.0009 SHB 0.0031 SV 0.0362 SHAVJ 0.0751
SHA 0.0008 CSHAVJ 0.0026 CEV 0.0115 ***** *****

Benchmark samples: SHB, SHBVJ, CSHB, CSHBVJ
CSHBVJ 0.5543 CSHBVJ 0.5219 CSHBVJ 0.5203 CSHBVJ 0.5704
CSHB 0.4457 SHBVJ 0.4781 SVJJ 0.4797 SVJJ 0.4296
SHBVJ 0.4456 SHB 0.4317 SHBVJ 0.4621 SHBVJ 0.3976
CEVXJ 0.4039 CSHB 0.4268 SHB 0.4077 SHB 0.3906
SHB 0.4015 CEVJJ 0.3745 CSHB 0.4026 CSHB 0.3871
SHA 0.3952 CEVXJ 0.3694 CEVXJ 0.4003 CSHA 0.3289
CEVJJ 0.3793 CSHA 0.3578 CEVJJ 0.3496 CSHAVJ 0.3227
SVXJ 0.3768 SHA 0.3399 SVXJ 0.2861 SHA 0.3178
CSHAVJ 0.3676 SHAVJ 0.3373 CSHA 0.2281 CEVJJ 0.3100
SHAVJ 0.3415 CSHAVJ 0.3252 CSHAVJ 0.2224 SHAVJ 0.2872
CSHA 0.2961 SVXJ 0.3045 SHA 0.2159 CEVXJ 0.2788
SVJJ 0.2582 SVJJ 0.2248 SHAVJ 0.2096 SVXJ 0.2148
CEV 0.0701 CEVVJ 0.0919 SV 0.1287 SV 0.1088
CEVVJ 0.0700 CEV 0.0789 CEV 0.1257 CEV 0.1049
SV 0.0524 SV 0.0775 CEVVJ 0.1144 CEVVJ 0.0899
***** ***** ***** ***** ***** ***** SVVJ 0.0810
SVVJ 0.0084 SVVJ 0.0091 SVVJ 0.0099 ***** *****

Benchmark samples: SHA, SHAVJ, CSHA, CSHAVJ
CEVJJ 0.7768 CEVJJ 0.7358 CEVJJ 0.5399 CEVVJ 0.6558
CSHBVJ 0.2232 CEVVJ 0.2642 SVJJ 0.4601 SVJJ 0.3442
SVJJ 0.2224 SHB 0.1776 SVXJ 0.2186 SHB 0.2195
SHBVJ 0.2038 CSHB 0.1771 CSHBVJ 0.1376 CSHB 0.2149
SHB 0.2018 SV 0.1572 SHB 0.1342 SHAVJ 0.2115
CSHB 0.1816 CEV 0.1492 CSHB 0.1292 SHA 0.2098
SVVJ 0.1785 SVVJ 0.1368 SHA 0.1156 CSHA 0.2098
CEV 0.1565 SHBVJ 0.1202 CEVVJ 0.1024 CSHAVJ 0.1986
SHAVJ 0.1328 CSHBVJ 0.1143 CEV 0.0989 SHBVJ 0.1816
CSHA 0.1236 SVJJ 0.1107 SVVJ 0.0958 CSHBVJ 0.1499
SHA 0.1190 SHA 0.0928 SV 0.0933 SV 0.0676
CEVVJ 0.1154 CSHA 0.0814 SHBVJ 0.0925 SVVJ 0.0610
CSHAVJ 0.0985 SHAVJ 0.0718 CSHA 0.0904 CEV 0.0537
***** ***** CSHAVJ 0.0618 SHAVJ 0.0824 ***** *****
SV 0.0177 ***** ***** CSHAVJ 0.0727 SVXJ 0.0074
SVXJ 0.0124 SVXJ 0.0016 ***** ***** CEVXJ 0.0071
CEVXJ 0.0004 CEVXJ 0.0000 CEVXJ 0.0021 CEVJJ 0.0003

Table 25: Simulated LCMCS-t. This table exhibits the LCMCS-t for the simulated experiment. Each column
refers to a sample benchmark, which are arranged in block rows, as indicated by each row header. Each column
contains the output of the MCS test, indicating the model label, the model confidence set cut-off, represented by an
asterisk line and the model ranking achieved within each set by means of the p-values. The confidence level is at 5%.
In this experiment it is interesting to notice some incoherence of the LCMCS-t, whereby, for the innermost segment
of the affine model set, the benchmark is either low ranked or even excluded from the MCS. The comments to this
table are in Section 3.3.2.
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Benchmark samples: SV, SVVJ, SVXJ, SVJJ
SV ? ? − ↘ − ↘ − ↘
SVVJ ↗ − ? ? − ↘ -0.0213 0.0012
SVXJ ↗ − ↗ − ? ? ↗ −
SVJJ ↗ − -0.0011 0.0212 − ↘ ? ?
CEV ↗ − ↗ − -0.0018 0.0132 ↗ −
CEVVJ ↗ − ↗ − -0.0032 0.0095 ↗ −
CEVXJ ↗ − ↗ − ↗ − ↗ −
CEVJJ ↗ − ↗ − ↗ − ↗ −
SHB ↗ − ↗ − ↗ − ↗ −
SHBVJ ↗ − ↗ − ↗ − ↗ −
CSHB ↗ − ↗ − ↗ − ↗ −
CSHBVJ ↗ − ↗ − ↗ − ↗ −
SHA ↗ − ↗ − -0.0074 0.0097 -0.0023 0.0150
SHAVJ ↗ − ↗ − -0.0193 0.0011 -0.0138 0.0064
CSHA ↗ − ↗ − ↗ − ↗ −
CSHAVJ ↗ − ↗ − ↗ − ↗ −

Benchmark samples: CEV, CEVVJ, CEVXJ, CEVJJ
SV − ↘ − ↘ − ↘ − ↘
SVVJ − ↘ − ↘ − ↘ − ↘
SVXJ -0.0146 0.0024 -0.0099 0.0030 − ↘ -0.0112 0.0003
SVJJ − ↘ − ↘ − ↘ − ↘
CEV ? ? -0.0051 0.0077 -0.0074 0.0069 -0.0113 0.0116
CEVVJ -0.0083 0.0054 ? ? -0.0065 0.0016 -0.0071 0.0045
CEVXJ -0.0072 0.0074 -0.0014 0.0060 ? ? -0.0037 0.0050
CEVJJ -0.0114 0.0105 -0.0039 0.0063 -0.0047 0.0034 ? ?
SHB -0.0039 0.0231 ↗ − -0.0022 0.0192 -0.0016 0.0205
SHBVJ -0.0024 0.0246 ↗ − -0.0010 0.0211 -0.0003 0.0221
CSHB -0.0031 0.0238 ↗ − -0.0017 0.0200 -0.0014 0.0217
CSHBVJ -0.0035 0.0223 ↗ − -0.0019 0.0186 -0.0016 0.0203
SHA − ↘ -0.0112 0.0049 -0.0135 0.0035 -0.0174 0.0087
SHAVJ − ↘ − ↘ − ↘ -0.0312 0.0008
CSHA -0.0005 0.0290 ↗ − ↗ − ↗ −
CSHAVJ -0.0064 0.0266 ↗ − -0.0025 0.0203 ↗ −

Benchmark samples: SHB, SHBVJ, CSHB, CSHBVJ
SV − ↘ − ↘ − ↘ − ↘
SVVJ − ↘ − ↘ − ↘ − ↘
SVXJ − ↘ − ↘ − ↘ − ↘
SVJJ − ↘ − ↘ − ↘ − ↘
CEV -0.0223 0.0032 -0.0231 0.0014 -0.0237 0.0028 -0.0214 0.0030
CEVVJ − ↘ − ↘ − ↘ − ↘
CEVXJ -0.0189 0.0018 − ↘ -0.0199 0.0017 -0.0182 0.0019
CEVJJ -0.0195 0.0007 − ↘ -0.0212 0.0006 -0.0192 0.0007
SHB ? ? − ↘ -0.0016 0.0001 -0.0004 0.0008
SHBVJ ↗ − ? ? -0.0010 0.0021 ↗ −
CSHB -0.0001 0.0015 -0.0019 0.0008 ? ? 0.0000 0.0017
CSHBVJ -0.0008 0.0004 − ↘ -0.0017 0.0001 ? ?
SHA − ↘ − ↘ − ↘ − ↘
SHAVJ − ↘ − ↘ − ↘ − ↘
CSHA -0.0003 0.0082 -0.0010 0.0065 -0.0018 0.0084 -0.0002 0.0088
CSHAVJ -0.0087 0.0075 -0.0095 0.0055 -0.0104 0.0078 -0.0087 0.0083

Benchmark samples: SHA, SHAVJ, CSHA, CSHAVJ
SV − ↘ − ↘ − ↘ − ↘
SVVJ − ↘ − ↘ − ↘ − ↘
SVXJ -0.0101 0.0080 -0.0007 0.0187 − ↘ − ↘
SVJJ -0.0164 0.0033 -0.0069 0.0141 − ↘ − ↘
CEV ↗ − ↗ − -0.0284 0.0001 -0.0268 0.0063
CEVVJ -0.0055 0.0112 ↗ − − ↘ − ↘
CEVXJ -0.0030 0.0128 ↗ − − ↘ -0.0205 0.0027
CEVJJ -0.0072 0.0160 ↗ − − ↘ − ↘
SHB ↗ − ↗ − -0.0083 0.0004 -0.0080 0.0092
SHBVJ ↗ − ↗ − -0.0069 0.0013 -0.0068 0.0103
CSHB ↗ − ↗ − -0.0082 0.0017 -0.0080 0.0107
CSHBVJ ↗ − ↗ − -0.0087 0.0003 -0.0086 0.0093
SHA ? ? ↗ − − ↘ -0.0322 0.0033
SHAVJ − ↘ ? ? − ↘ − ↘
CSHA ↗ − ↗ − ? ? -0.0003 0.0097
CSHAVJ -0.0027 0.0311 ↗ − -0.0094 0.0000 ? ?

Table 26: Market Data LRMHT. This table exhibits the LRMHT for the market data experiment. Each pair
of columns for each block row represents an MHT, showing the final set output of balanced step-down algorithm,
benchmarked to the model indicated with a double star. In the market data experiment we lack of the knowledge
of the DGP process, therefore we iterate the benchmarking exercise across the set of models, to produce a complete
model comparison. The rejected models do not provide a confidence interval, whereas the corresponding row is filled
with a north-east or a south-east arrow, whether the corresponding model is, respectively, superior or inferior to the
benchmark model. In this test the confidence level for each tail is 5% and the k-FWER=3. With this test, the
empirical performance of the model set is analysed. Relevant information is represented by the performance of the
SV and SVVJ models, that are in general inferior, ruling out the core of the affine model set. Remarkable is the
performance of the CEV model, which is at least equivalent to any other model. The CSH and CSHAVJ exhibit the
best performances. It is interesting to notice that the inclusion of a VJ component worsen the performance of models
such as CEV, SHB and SHA.
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Benchmark samples: SV, SVVJ, SVXJ, SVJJ
SV ? ? ↗ − − ↘ − ↘
SVVJ − ↘ ? ? − ↘ − ↘
SVXJ ↗ − ↗ − ? ? -0.0085 0.0391
SVJJ ↗ − ↗ − -0.0440 0.0101 ? ?
CEV − ↘ − ↘ − ↘ − ↘
CEVVJ − ↘ − ↘ − ↘ − ↘
CEVXJ ↗ − ↗ − -0.0810 0.1353 -0.0478 0.1385
CEVJJ ↗ − ↗ − -0.0131 0.1293 ↗ −
SHB ↗ − ↗ − − ↘ − ↘
SHBVJ ↗ − ↗ − -0.7364 0.0167 − ↘
CSHB ↗ − ↗ − − ↘ − ↘
CSHBVJ ↗ − ↗ − − ↘ − ↘
SHA ↗ − ↗ − ↗ − ↗ −
SHAVJ ↗ − ↗ − -0.0099 0.2269 ↗ −
CSHA − ↘ − ↘ − ↘ − ↘
CSHAVJ − ↘ − ↘ − ↘ − ↘

Benchmark samples: CEV, CEVVJ, CEVXJ, CEVJJ
SV ↗ − ↗ − − ↘ − ↘
SVVJ ↗ − ↗ − − ↘ − ↘
SVXJ ↗ − ↗ − -0.1272 0.0739 -0.1278 0.0053
SVJJ ↗ − ↗ − -0.1385 0.0448 − ↘
CEV ? ? ↗ − − ↘ − ↘
CEVVJ − ↘ ? ? − ↘ − ↘
CEVXJ ↗ − ↗ − ? ? -0.0749 0.0190
CEVJJ ↗ − ↗ − -0.0190 0.0735 ? ?
SHB ↗ − ↗ − − ↘ − ↘
SHBVJ ↗ − ↗ − − ↘ − ↘
CSHB ↗ − ↗ − − ↘ − ↘
CSHBVJ ↗ − ↗ − − ↘ − ↘
SHA ↗ − ↗ − ↗ − -0.0191 0.1477
SHAVJ ↗ − ↗ − ↗ − -0.0248 0.1275
CSHA − ↘ − ↘ − ↘ − ↘
CSHAVJ − ↘ − ↘ − ↘ − ↘

Benchmark samples: SHB, SHBVJ, CSHB, CSHBVJ
SV − ↘ − ↘ − ↘ − ↘
SVVJ − ↘ − ↘ − ↘ − ↘
SVXJ ↗ − -0.0032 0.7157 ↗ − ↗ −
SVJJ ↗ − -0.0055 0.6786 ↗ − ↗ −
CEV − ↘ − ↘ − ↘ − ↘
CEVVJ − ↘ − ↘ − ↘ − ↘
CEVXJ ↗ − ↗ − ↗ − ↗ −
CEVJJ ↗ − ↗ − ↗ − ↗ −
SHB ? ? − ↘ ↗ − ↗ −
SHBVJ ↗ − ? ? ↗ − ↗ −
CSHB − ↘ − ↘ ? ? -0.0288 0.0386
CSHBVJ − ↘ − ↘ -0.0379 0.0280 ? ?
SHA ↗ − ↗ − ↗ − ↗ −
SHAVJ ↗ − ↗ − ↗ − ↗ −
CSHA − ↘ − ↘ − ↘ − ↘
CSHAVJ − ↘ − ↘ − ↘ − ↘

Benchmark samples: SHA, SHAVJ, CSHA, CSHAVJ
SV − ↘ − ↘ ↗ − ↗ −
SVVJ − ↘ − ↘ ↗ − ↗ −
SVXJ − ↘ -0.2222 0.0050 ↗ − ↗ −
SVJJ − ↘ − ↘ ↗ − ↗ −
CEV − ↘ − ↘ ↗ − ↗ −
CEVVJ − ↘ − ↘ ↗ − ↗ −
CEVXJ − ↘ − ↘ ↗ − ↗ −
CEVJJ -0.1533 0.0204 -0.1308 0.0271 ↗ − ↗ −
SHB − ↘ − ↘ ↗ − ↗ −
SHBVJ − ↘ − ↘ ↗ − ↗ −
CSHB − ↘ − ↘ ↗ − ↗ −
CSHBVJ − ↘ − ↘ ↗ − ↗ −
SHA ? ? -0.0547 0.0773 ↗ − ↗ −
SHAVJ -0.0761 0.0547 ? ? ↗ − ↗ −
CSHA − ↘ − ↘ ? ? ↗ −
CSHAVJ − ↘ − ↘ − ↘ ? ?

Table 27: Market Data TGMHT. This table exhibits the TGMHT for the market data experiment. Each pair
of columns for each block row represents an MHT, showing the final set output of balanced step-down algorithm,
benchmarked to the model indicated with a double star. In the market data experiment we lack of the knowledge
of the DGP process, therefore we iterate the benchmarking exercise across the set of models, to produce a complete
model comparison. The rejected models do not provide a confidence interval, whereas the corresponding row is filled
with a north-east or a south-east arrow, whether the corresponding model is, respectively, superior or inferior to the
benchmark model. In this test the confidence level for each tail is 1% and the k-FWER=2. With the TGMHT, the
circulation of the benchmark across the model set and the relative model comparison testing shows that, with respect
to this measure, the CEVXJ, CEVJJ, SHA and SHAVJ are the top performing.
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Benchmark samples: SV, SVVJ, SVXJ, SVJJ
SV ? ? -0.0294 0.1829 -0.1229 0.3825 -0.1537 0.3749
SVVJ -0.1835 0.0294 ? ? -0.2131 0.3354 -0.2459 0.3209
SVXJ -0.4019 0.1240 -0.3437 0.2093 ? ? -0.0763 0.0528
SVJJ -0.3800 0.1573 -0.3214 0.2459 -0.0553 0.0739 ? ?
CEV − ↘ -0.2805 0.0255 -0.4090 0.2196 -0.4277 0.2417
CEVVJ -0.4236 0.0082 -0.3353 0.0348 -0.4136 0.2297 -0.4488 0.2630
CEVXJ -0.3021 0.1818 -0.2620 0.2546 -0.0151 0.1598 -0.0310 0.1460
CEVJJ -0.4399 0.1183 -0.3931 0.2132 -0.1289 0.0711 -0.1488 0.0623
SHB ↗ − ↗ − ↗ − ↗ −
SHBVJ ↗ − ↗ − ↗ − ↗ −
CSHB ↗ − ↗ − ↗ − ↗ −
CSHBVJ ↗ − ↗ − ↗ − ↗ −
SHA ↗ − ↗ − ↗ − ↗ −
SHAVJ ↗ − ↗ − ↗ − ↗ −
CSHA -0.2083 0.5025 -0.1386 0.5426 -0.0747 0.6624 -0.1182 0.6842
CSHAVJ -0.2075 0.5403 -0.1326 0.5891 -0.1048 0.7022 -0.1279 0.7237

Benchmark samples: CEV, CEVVJ, CEVXJ, CEVJJ
SV ↗ − -0.0054 0.4163 -0.1812 0.3012 -0.1180 0.4327
SVVJ -0.0219 0.2703 -0.0305 0.3247 -0.2659 0.2585 -0.2165 0.3934
SVXJ -0.2191 0.3709 -0.2350 0.4010 -0.1646 0.0144 -0.0772 0.1289
SVJJ -0.2373 0.4053 -0.2447 0.4343 -0.1470 0.0310 -0.0628 0.1494
CEV ? ? -0.0907 0.1315 -0.4567 0.1551 -0.3925 0.2701
CEVVJ -0.1293 0.0879 ? ? -0.4644 0.1648 -0.3807 0.2684
CEVXJ -0.1439 0.4326 -0.1436 0.4440 ? ? -0.0160 0.2042
CEVJJ -0.2546 0.3759 -0.2630 0.3683 -0.2044 0.0150 ? ?
SHB ↗ − ↗ − ↗ − ↗ −
SHBVJ ↗ − ↗ − ↗ − ↗ −
CSHB ↗ − ↗ − ↗ − ↗ −
CSHBVJ ↗ − ↗ − ↗ − ↗ −
SHA ↗ − ↗ − ↗ − ↗ −
SHAVJ ↗ − ↗ − ↗ − ↗ −
CSHA ↗ − ↗ − -0.1303 0.6300 -0.0197 0.6956
CSHAVJ ↗ − ↗ − -0.1661 0.6577 -0.0548 0.7216

Benchmark samples: SHB, SHBVJ, CSHB, CSHBVJ
SV − ↘ − ↘ − ↘ − ↘
SVVJ − ↘ − ↘ − ↘ − ↘
SVXJ − ↘ − ↘ − ↘ − ↘
SVJJ − ↘ − ↘ − ↘ − ↘
CEV − ↘ − ↘ − ↘ − ↘
CEVVJ − ↘ − ↘ − ↘ − ↘
CEVXJ − ↘ − ↘ − ↘ − ↘
CEVJJ − ↘ − ↘ − ↘ − ↘
SHB ? ? ↗ − − ↘ -0.0934 0.0161
SHBVJ − ↘ ? ? − ↘ − ↘
CSHB ↗ − ↗ − ? ? -0.0200 0.0857
CSHBVJ -0.0146 0.0930 ↗ − -0.0700 0.0082 ? ?
SHA -0.2908 0.0298 -0.1888 0.1811 − ↘ − ↘
SHAVJ − ↘ -0.3224 0.0116 − ↘ − ↘
CSHA − ↘ − ↘ − ↘ − ↘
CSHAVJ − ↘ − ↘ − ↘ − ↘

Benchmark samples: SHA, SHAVJ, CSHA, CSHAVJ
SV − ↘ − ↘ -0.4918 0.1931 -0.5376 0.1888
SVVJ − ↘ − ↘ -0.5377 0.1343 -0.5808 0.1213
SVXJ − ↘ − ↘ -0.6691 0.0715 -0.7059 0.0792
SVJJ − ↘ − ↘ -0.6790 0.1127 -0.7150 0.1074
CEV − ↘ − ↘ − ↘ − ↘
CEVVJ − ↘ − ↘ − ↘ − ↘
CEVXJ − ↘ − ↘ -0.6130 0.1241 -0.6557 0.1293
CEVJJ − ↘ − ↘ -0.6779 0.0126 -0.7169 0.0265
SHB -0.0580 0.2992 ↗ − ↗ − ↗ −
SHBVJ -0.1992 0.1899 -0.0014 0.2981 ↗ − ↗ −
CSHB ↗ − ↗ − ↗ − ↗ −
CSHBVJ -0.0039 0.3203 ↗ − ↗ − ↗ −
SHA ? ? ↗ − ↗ − ↗ −
SHAVJ − ↘ ? ? ↗ − ↗ −
CSHA − ↘ − ↘ ? ? -0.1876 0.1481
CSHAVJ − ↘ − ↘ -0.1490 0.1882 ? ?

Table 28: Market Data LRLCMHT. This table exhibits the LRLCMHT for the market data experiment. Each
pair of columns for each block row represents an MHT, showing the final set output of balanced step-down algorithm,
benchmarked to the model indicated with a double star. In the market data experiment we lack of the knowledge
of the DGP process, therefore we iterate the benchmarking exercise across the set of models, to produce a complete
model comparison. The rejected models do not provide a confidence interval, whereas the corresponding row is filled
with a north-east or a south-east arrow, whether the corresponding model is, respectively, superior or inferior to the
benchmark model. In this test the confidence level for each tail is 1% and the k-FWER=2.
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LRMCS-max LRMCS-10% LRMCS-50% LRMCS-t
CSHA 1 CSHA 0.9336 CSHA 0.9193 CSHA 0.8660
CSHB 0.8077 SHBVJ 0.6864 SHBVJ 0.6190 CSHB 0.1340
SHBVJ 0.7866 CSHB 0.5865 CSHB 0.4970 SHBVJ 0.1259
CEV 0.4901 CSHAVJ 0.4739 CSHAVJ 0.3684 CEV 0.0541
CSHAVJ 0.3264 CEV 0.1756 CEV 0.0964 ***** *****
CEVXJ 0.2216 CEVXJ 0.1440 ***** ***** CSHAVJ 0.0297
SHA 0.2200 ***** ***** SHB 0.3191 CEVXJ 0.0178
CSHBVJ 0.0981 CSHBVJ 0.4218 CSHBVJ 0.3184 SHA 0.0176
CEVJJ 0.0660 SHB 0.4215 CEVXJ 0.1440 CSHBVJ 0.0065
SHB 0.0584 CEVJJ 0.1317 CEVJJ 0.1005 CEVJJ 0.0041
***** ***** CEVVJ 0.0623 CEVVJ 0.0519 SHB 0.0035
SVXJ 0.0188 SHA 0.0419 SVXJ 0.0335 SVXJ 0.0008
CEVVJ 0.0141 SVXJ 0.0279 SHA 0.0214 CEVVJ 0.0006
SVVJ 0.0034 SVJJ 0.0023 SVJJ 0.0027 SVVJ 0.0001
SHAVJ 0.0000 SHAVJ 0.0010 SHAVJ 0.0009 SHAVJ 0.0000
SV 0 SVVJ 0.0006 SVVJ 0.0007 SV 0.0000
SVJJ 0 SV 0 SV 0 SVJJ 0

TGMCS-max TGMCS-10% TGMCS-50% TGMCS-t
SHA 1 SHA 0.7413 SHA 0.7413 SHA 0.5412
SHAVJ 0.9943 SHAVJ 0.7195 SHAVJ 0.7195 SHAVJ 0.4588
CEVJJ 0.1644 CEVJJ 0.0393 CEVJJ 0.0393 ***** *****
***** ***** ***** ***** ***** ***** CEVJJ 0.0353
CEVXJ 0.0278 CEVXJ 0.0560 CEVXJ 0.0560 CEVXJ 0.0029
SVXJ 0.0278 SVXJ 0.0110 SVXJ 0.0110 SVXJ 0.0021
SHBVJ 0.0059 SVJJ 0.0010 SVJJ 0.0010 SHBVJ 0.0003
SVJJ 0.0057 SV 0 SV 0 SVJJ 0.0003
CSHBVJ 0.0004 SVVJ 0 SVVJ 0 CSHBVJ 0.0000
SHB 0 CEV 0 CEV 0 SHB 0.0000
CSHB 0 CEVVJ 0 CEVVJ 0 CSHB 0.0000
SV 0 SHB 0 SHB 0 SV 0.0000
CEV 0 SHBVJ 0 SHBVJ 0 CEV 0.0000
CSHA 0 CSHB 0 CSHB 0 CSHA 0.0000
SVVJ 0 CSHBVJ 0 CSHBVJ 0 SVVJ 0
CEVVJ 0 CSHA 0 CSHA 0 CEVVJ 0
CSHAVJ 0 CSHAVJ 0 CSHAVJ 0 CSHAVJ 0

LRLCMCS-max LRLCMCS-10% LRLCMCS-50% LRLCMCS-t
CSHB 1 CSHB 0.9085 CSHB 0.9085 CSHB 0.9075
CSHBVJ 0.1835 CSHBVJ 0.0915 CSHBVJ 0.0915 CSHBVJ 0.0925
***** ***** ***** ***** ***** ***** ***** *****
SHA 0.0102 SHB 0.0270 SHB 0.0270 SHA 0.0018
SHB 0.0102 SHA 0.0050 SHA 0.0050 SHB 0.0012
SHBVJ 0 SV 0 SV 0 SHBVJ 0.0000
SHAVJ 0 SVVJ 0 SVVJ 0 SHAVJ 0.0000
SVJJ 0 SVXJ 0 SVXJ 0 SV 0
CEVXJ 0 SVJJ 0 SVJJ 0 SVVJ 0
SVXJ 0 CEV 0 CEV 0 SVXJ 0
CEVJJ 0 CEVVJ 0 CEVVJ 0 SVJJ 0
CSHAVJ 0 CEVXJ 0 CEVXJ 0 CEV 0
CSHA 0 CEVJJ 0 CEVJJ 0 CEVVJ 0
SV 0 SHBVJ 0 SHBVJ 0 CEVXJ 0
SVVJ 0 SHAVJ 0 SHAVJ 0 CEVJJ 0
CEVVJ 0 CSHA 0 CSHA 0 CSHA 0
CEV 0 CSHAVJ 0 CSHAVJ 0 CSHAVJ 0

Table 29: Market Data MCS. This table contains the output of the LRMCS, TGMCS and LRLCMCS produced
by the Hansen et al.’s, the modified Corradi et al’s and this thesis MCS algorithms. Each column contains the output
of the corresponding MCS test, indicating the model label, the model confidence set cut-off, represented by an asterisk
line and the model ranking achieved within each set by means of the p-values. We produce the MCS-max the MCS-γ
at 10% and 50% γ and the MCS-t. The confidence level is at 5%. Considering the k, the selected FWER levels for the
10%-MCS and the 50%-MCS are, respectively, k = 7 and k = 36 for the LR test, k = 11 and k = 57 for the TG test
and finally, k = 8 and k = 46 for the LRLC test. This table shows the full set of MCS test for the likelihood analysis of
this Chapter 3. The results show that the CSHA, CHSB, CEV models produce the best likelihood measures, whereas
in terms of latent factor estimation in the TGMHT test, those models might necessitate some extensions, as it is the
case of the CEVJJ model. The outcome of the LRLCMCS test is controversial, as it appears excessively polarised.
The comments to this table are in Section 3.3.3.
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NLF2 SIRPF LC-test
SV 0.31 − d 4.54 0.49 − w 2,701.56 0.2431 0.4611 ↘
SV 0.31 − d 4.54 0.42 − d 7,897.67 0.2431 0.4611 ↔
SVVJ 0.33 − d 4.44 0.58 − w 2,915.26 0.2380 0.5371 ↘
SVVJ 0.33 − d 4.44 0.45 − d 10,183.33 0.2380 0.5371 ↔
SVXJ 0.60 54.79% d 3.89 0.50 19.66% w 2,894.75 0.3979 0.8185 ↔
SVXJ 0.60 54.79% d 3.89 0.37 3.36% d 16,001.13 0.3979 0.8185 ↗
SVJJ 0.76 55.74% d 3.92 0.59 19.08% w 3,023.62 0.4210 0.9320 ↔
CEV 0.26 − d 4.80 0.39 − w 3,352.43 0.2199 0.3774 ↘
CEVVJ 0.29 − d 4.79 0.47 − w 3,608.07 0.2294 0.4307 ↘
CEVXJ 0.54 54.94% d 4.18 0.47 19.24% w 3,590.61 0.3956 0.7394 ↔
CEVXJ 0.54 54.94% d 4.18 0.36 3.73% d 11,147.78 0.3956 0.7394 ↗
CEVJJ 0.63 54.88% d 4.18 0.69 17.42% w 3,697.20 0.4183 0.8623 ↔
SHB 0.55 100.00% d 5.34 0.73 100.00% w 5,248.37 0.3814 0.8277 ↔
SHBVJ 0.64 100.00% d 5.31 0.83 100.00% w 5,553.92 0.4083 1.0041 ↔
CSHB 0.60 100.00% d 5.71 0.80 100.00% w 6,514.98 0.3761 0.8140 ↔
CSHB 0.60 100.00% d 5.71 14.59 100.00% d 11,200.15 0.3761 0.8140 ↘
CSHBVJ 0.60 100.00% d 5.73 0.88 100.00% w 6,542.32 0.4027 0.9520 ↔
SHA 0.60 100.00% d 5.47 0.68 100.00% w 12,619.16 0.4016 0.8677 ↔
SHAVJ 0.69 100.00% d 5.66 0.77 100.00% w 10,243.15 0.4258 0.9785 ↔
CSHA 0.61 100.00% d 5.92 0.69 100.00% w 11,103.20 0.4037 0.8892 ↔
CSHAVJ 0.59 100.00% d 5.91 0.68 100.00% w 11,306.36 0.4230 1.0365 ↔

Table 30: The NLF2 and the SIR Particle Filter. In this table, we compare the long run model performance
measure of the NLF2 to those of the SIRPF. We produce the 100 years simulated sample measures as the absolute
distance of the projection of v from the actual latent component of the benchmark sample. The parameters are the
exact model parameters. The column of the NLF2 and the SIRPF subsection of this table shows, from left to right,
the sample value of the LC statistics, the percentage of the jump times produced by the filter that actually match the
realised jumps, the frequency at which the filter is calculated that is either daily (d) or weekly (w) and the rightmost
column indicates the number of seconds necessary to produce the filter output. The LC-test section exhibits the
interval of the scalar distributions of the test statistics for each single model employed in the MHT exercise. The
rightmost column indicates if the SIRPF is superior, inferior or equivalent to the NFL2 by, respectively, a north-east,
a south-east or a left-right arrow.
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Figure 1: The Likelihood Function Algorithm.

The figure shows 4 sections that are labelled from a to d in matrix order. Section (a) shows the marginalised
density of the simulation SV model. Section (b) depicts the bivariate densities on the grid of initial condition for
v, ranging from (almost) 0 to seven times the projected variance over the weekly horizon. The initial condition for
x is centred at 0 for each grid-point of v. The (c) quadrant shows the conditional marginals that are weighted by
the stationary distribution of the initial conditions for v, as shown in the section (d).
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Figure 2: An example of Information Loss.

The figure shows 4 sections that are labelled from a to d in matrix order. Section (a) compares the shape of a
Gaussian function (red line) with zero mean and appropriate standard deviation (0.2) to the simulation SV model.
Section (b) compares the simulation SV model with ρ = −0.5 (blue line) with a SV with the same parameters
with the exception of ρ = 0 (red line), producing, respectively a −0.14 skewness factor against a zero. The lower
(c) and (d) quadrant exhibit, respectively, the cross-section view onto the x domain of a bivariate distributions
contributing to the previous marginal densities, with v0 = 2.46.
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Figure 3: The Distributional Shape of the Model Set.

The figure shows 4 sections that are labelled from a to d in matrix order. In this figure, the SV model (blue
curve) marginal distribution is compared with several other members of the model set, computed at the simulation
parameters. Frame (a) shows some kurtosis generated by ancillary model components, as in the case of the SVVJ
(red line) and the CEVVJ (light blue line) model. In the SVXJ (red line) model of frame (b) and in the SHB (red
line) and the CSHBVJ (dashed light blue line) of frame (c), asymmetry can be generated by jumps. In the (d)
quadrant, the marginal densities of two stochastic hazard models with skewed Normal jumps are plotted against
the SV profile, that is the SHA (red curve) and the CSHAVJ.
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Figure 4: Several Implementation Issues.

The figure shows 4 sections that are labelled from a to d in matrix order. This figure section (a) shows the
simulated histogram against the numerical solution of the PIDE for the model SVXJ. In the (b) quadrant, the
PIDE solution for the SVXJ model is calculated with several grid specification, that are 13x13 (blue line), 25x25
(green line) and 61x61 (red line). Section (c) and (d) exemplify the unexpected shock phenomenon in the pure
diffusive v path, when large jumps are observed in the x level. Section (c) we shows the simulated path of the
latent factor of the SVXJ model (left axis, red curve), coupled with the integrated variance of x (right axis, blue
dotted line). Several large discontinuities are visible on the chart. The time frame corresponding to the encircled
area in the (c) quadrant, is reported in section (d), which shows the evolution of the actual v system variable (red
line), with several projections characterised by the presence of the dummy residual jump, multiplied by a constant
ranging from 0 (blue dots) to 1 (light blue dots). This exhibit shows the process of attenuation of the unexpected
shock due to the system updating by means of the residual dummy jump process.
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Figure 5: Market Data Applications.

The figure shows 4 sections that are labelled from a to d in matrix order. Section (a) shows the cumulative log return
(times 100) path employed for market data testing. The (b) quadrant exhibits the histogram of daily returns with
the superimposed estimated CSHB marginal likelihood. Section (c) shows a segment of the TGARCH estimated
volatility (red line) and the scaled and translated output of the NLF2 (blue line) for the CEVJJ process, as applied
to market data. The lower-right picture (d) shows a portion of the actual v path (red line) for the SV simulated
process, with the SIRPF output path (green line) and the NLF2 projected latent component (blue line).
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Model Selection of

Derivative Pricing JD Models

In this chapter, we explore the model selection problem in the context of option pricing models. The

general focus is on several formulations of stochastic volatility models that in their broadest specification

include jump components. As noticed in Christoffersen et al. (2010), the literature on stochastic volatility

models can be grouped into three branches. In Chapter 3, we have tackled the analysis of the daily return

distribution of financial returns from a time-series perspective, including alternative models within the

affine set, a study which falls within the first body of research. The second set of studies concerns the

analysis of realised volatility or volatility proxies to forecast future volatility, examples of which are Bakshi

et al. (2006), Aït-Sahalia and Kimmel (2007). The latter overlaps to some extent with the general option

pricing literature, which forms the last body of econometric studies of stochastic volatility models and

to which this chapter contributes. Seminal studies in this subject are represented by the works of Bates

(1996) and Bakshi et al. (1997), which both set standards in the model performance analysis by exam-

ining measures of in-sample and out-of-sample mispricing, option implied stochastic process features as

compared to the underlying return and implicit volatility behaviour, single-instrument and delta-neutral
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hedge analysis. The literature mainly works within the affine framework, as a consequence of the stylised

approach originated in Heston (1993), Duffie and Kan (1996), Duffie et al. (2000) and the computational

efficiency that integral transform methods generally offer in terms of option pricing and hedge measure

calculation. Examples of studies that compare affine models versus alternative model specifications using

option data, but not strictly in an option mispricing context, are those in Benzoni (2002), Jones (2003)

and Aït-Sahalia and Kimmel (2007). The first article exploits log-normal volatility as an alternative,

whereas the latter two both employ a volatility CEV model, which is complemented with a GARCH

stochastic volatility in the most recent one. The non affine model in Benzoni (2002) appears unable to

outperform the Heston model, whereas the evidence in Jones (2003) and Aït-Sahalia and Kimmel (2007)

points to a misspecification of the affine model. A further extension in the analysis of stochastic volatility

models with contrasting alternatives to the affine specification is the cited work of Christoffersen et al.

(2010), which employs a wide database including realised volatility, S&P500 returns and a panel of op-

tion data. The model set is diverse and includes several alternative volatility specifications that perform

better than the affine model under several measures. The cited works, however, employ mainly diffusion

models, although evidence suggesting the need for discontinuous extensions is inferred from short-term

OTM pricing model behaviour. Empirical works using JD models can be found, for instance, in Bates

(1996, 2000), Pan (2002), Eraker et al. (2003) and Eraker (2004), which all apply the affine framework

with combinations of constant or stochastic intensity and independent or correlated jumps in volatility

and returns. The general result is that jumps improve the option pricing performance with a preference

for joint jumps in return and volatility. The performance of the stochastic intensity model does not seem

to improve the overall model yield. Those articles model the volatility jump size with an exponential

distribution and the price jump size at most with an offset log-normal distribution.

In our analysis, we gather evidence that the popular single factor affine specification common in the liter-

ature are strongly rejected. Moreover, model augmentation such as jumps in volatility, stochastic hazard,

and the parametrisation of the elasticity of the diffusion factor, appear to be excessive model complica-

tions. A simple model, such as the log-normal correlated volatility model, performs very well in the OTM

option sample we consider, whereas the inclusion of a compensated single directional exponential jump

in return produces one of the top performance for the ALL option sample. We also sketch a qualitative

comparison among the established Hansen et al. (2011) MCS test and our original γ-MCS test, developed

within the MHT framework of Romano and Wolf (2010), whereby we provide evidence that the latter

test can offer a wider flexibility allowed by the k-FWER controlling mechanism. This chapter therefore

provides several contributions. First, we construct a novel model selection test that, for the first time in

literature, is using a vast array of option pricing models, containing 280 model specifications in today,

the majority of which are obtained by uniquely combining jumps and volatility specifications in a way

never explored before in the literature. Second, we exploit for the first time the power of MHT and MCS

techniques, specifically the max -MCS and our novel MHT consistent γ-MCS, in an option pricing model

comparison exercise. Third, by selecting the subset of best performing equivalent models, we are also

able to infer conclusion about the model similarity hypothesis and provide empirical evidence of strong

aliasing amongst many option pricing models ranging from high to a lower level of complexity, whereby

complexity may be ascribed to the size of the parameter vector.
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We exploit the finite difference method (FDM) combined with numerical integration to construct the

solution of the pricing equation for a large collection of JD models. The references for the finite difference

method are represented, for instance, by Tavella and Randall (2000), Duffy (2006). The model set can be

mainly divided into two families of stochastic volatility models, characterised by affine volatility (Heston,

1993) or by volatility generated with the exponential of a Gaussian mean-reverting process (Scott, 1987).

The latent factor can include an exponential jump component. The models are augmented with elasticity

of variance parameters and with a wide range of jump specifications in the price process, endowed with

stochastic hazard in their more complex specifications. The model selection exercise conducted in this

chapter applies the main MCS tests constructed in Chapter 1, with the objective of the mean squared

error (MSE) measure of mispricing as the model performance loss function.

The work is organised as follows. In Section 4.1 we introduce the model set and describe the model dy-

namics features. Section 4.2 introduces the testing set-up, whereas Section 4.3 details the implementation

of the test and describes the results. Section 4.4 offers concluding remarks.

4.1 The Derivative Pricing Model Set

With the empirical exercise in this study, we employ a very large model set of equity derivative pricing

models to test for the MCS. The model collection contains two major families of stochastic volatility mod-

els, whereby the volatility factor is either modelled as an affine process as in the Heston (1993) model, or

it is generated by a mean reverting Geometric Brownian motion, as in the Scott (1987) model. We extend

the model set represented by affine jump-diffusion specifications as evidence supporting faster than affine

acceleration of the volatility factor are common in the econometrics of financial markets literature, see for

instance Jones (2003), Christoffersen et al. (2010). The stochastic volatility factor defining the diffusion

function is either square rooted or powered by a free parameter, allowing for extended CEV specifications

in the affine case or for linear elasticity1 of variance (LEV) in the geometric variance case. The model

diffusive dynamics is also combined with Poisson jumps under several specifications. The jumps can

affect the model price and volatility processes, which can jump independently or simultaneously. The

price jump process can also allow for stochastic intensity, which under this configuration is coupled with

stochastic diffusion. We do not include here high frequency jump models, as we have already established

in Chapter 3 that they are equivalent to more orthodox models, which are the focus of this analysis. In

the execution of the exercise, we are also interested in testing the contribution to the model performance

of the diffusion correlation factor (ρ), as we test models with or without the leverage effect. Combining

the inclusion or exclusion of the cited model components with the several specifications of the volatility

and the jump factors, we obtain a collective of 280 models. The full model set is split into two groups

characterised by the alternative specifications of the latent factor. In general, the model structure is

1 We include the LEV parameter in the geometric mean-reverting specification of the stochastic diffusion factor, in order
to parallel the flexibility of the elasticity of diffusion that is provided by the CEV model. However, as it is shown in
Appendix A.4, in the log-normal model this parameter simply acts as an amplifier of the variability of the v factor entailing
wider excursions of the diffusion process. This feature can as well be obtained by changing the θ value, although with a
different sensitivity of the model performance measure to the parameter variations.
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obtained by either the inclusion or the exclusion of any amongst the allowed components, as well as the

characterisation of the jump in return type. The majority of the models obtained by such combinations

are employed for the first time in this study. A comprehensive picture of the models most common in

the literature that are covered by this model set is presented at the conclusion of this section.

The model specifications are captured by the following overarching model:

dS

S
= r dt+ θvγ0 dW0 + J0 dN0 −m0v

γ1 dt (4.1)

dv = κ(δ − v) dt+
√
v dW1 + J1 dN1 −m1 dt (4.2)

dy = (a− by) dt+ dW1 + J1 dN1 −m1 dt (4.3)

whereby the two stochastic families are specified by the equation couples (4.1) and (4.2), for the affine

volatility version, and (4.1) and (4.3), with v = exp(y), for the log-normal volatility version. Some

more auxiliary information is needed to fully characterise the system dynamics allowed by the models

included in this MCS study. In fact, we remark that the Brownian components W0 and W1 can in

general be correlated, that is d[W0,W1] = ρdt, with the ρ coefficient left free to vary in the negative

range2 or otherwise fixed to be zero in case of models excluding the price-volatility correlation. The

hazard processes driving the jump intensities of the counting random numbers N0 and N1 are given by

dΛ0 = λ0v
2γ1dt (4.4)

dΛ1 = λ1dt (4.5)

As in Chapter 3 the jump intensity of the price process can be stochastic, but at most affine that is γ1

is either zero or one and the stochastic factor v is scaled by the coefficient λ0, whereas the volatility,

when allowed, jumps with constant frequency λ1. More parameters are necessary to define the jump size

distributions, which are not shown in the SDE (4.1), (4.2) and (4.3). We notice that the system (3.1),

(3.2) and the model set of this study present several differences. We have already anticipated that the

high frequency jump model is not included, whereas this model set deals with an alternative specification

for the volatility factor that can be log-normal, as in (4.3). In the experiment of this study, we allow

for combined stochastic volatility and stochastic intensity of jumps. The size of the jump in volatility

is exponential, whereas the jump in price can be characterised by either a centred, as for instance in

Merton (1976), or offset, as e.g. in Duffie et al. (2000), Normal distribution or by a negative/double

sided exponential, as in Kou (2002), Kou and Wang (2004) or Lomax3 distribution. In the case of a

double sided jump size distribution, the probability of the sign of the jump is either derived as a con-

straint involving the expected positive jumps size such as to get a zero centred distribution, or it is a

free parameter. Moreover, a joint jump in price and volatility, that is N0 ≡ N1, is allowed as in Duffie

2 During preliminary analysis, we have noticed the high sensitivity of the mean squared error model performance function
to the correlation parameter ρ, which was systematically hitting the negative border of the interval of variation. As a
consequence, in the model versions characterised by negative price-volatility correlation, this parameter has been fixed to
-0.7 value.

3 This extreme value distribution has been employed to characterise the EVD innovation of a class of GARCH model in
the Chapter 2. In practice, a Lomax distribution corresponds to a Pareto distribution which has been shifted to extend the
range of variation to a full semi-axis.
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et al. (2000). In this case the intensity is allowed to be constant only. Further difference lies in the

observable S, which would be the corresponding geometric process of the cumulative return x in (3.1)

of Chapter 3 that is taken at the risk-neutral measure, entailing a drift at the constant interest rate r.

In this chapter, the main reason for designing the system with respect to the S variable, is found in the

nature of the problem, which includes the observable index level and the option prices as functions of

the former, whereas in the previous set of experiments the price is otherwise observed as a log-return

curve. Listing other differences when compared to the system of the previous chapter, we observe that

the Poisson jump of S is compensated locally by including the possibly stochastic hazard factor. Another

difference which is experimented here is the standardisation of the volatility acceleration, which implies

an adjustment factor4 in the unitary mean of (3.1). In terms of parameter definitions, we notice that the

coefficient r is the constant interest rate, corresponding to the instantaneous equivalent rate of the three

months LIBOR rate. The parameter r is assumed to be constant, although during the optimisation the

interest rate is observed daily. As noticed in Scott (1997), stochastic interest rates have a limited impact

on short dated options. Further parameters are represented by the diffusion process scaling factor θ, as

we rescale the latent component to have unitary diffusion parameter. The diffusion component in (4.1)

is powered to the γ0 coefficient, which controls CEV and LEV effects, respectively for the affine and the

log-normal volatility model. As mentioned earlier, the jump process is compensated in order to obtain the

martingale
∑N0(t)
i=1 Sτi

(
J0,i − m0

λ0
Λ0(t)

)
and therefore m0 represents simply the intensity scaling factor

λ0 times the expectation of J0 ≡ z in the case of the Lomax distribution and J0 ≡ ez with all other

distribution hypotheses. We choose the former configuration for the extreme value distribution (EVD),

as it lacks of finite exponential moments. In Eq. (4.2) we describe the latent factor specification of the

affine/CEV family, whereby the parameter κ represents the speed of mean reversion and δ the mean level

of v. Under this specification, we scale the conventional stochastic volatility factor in order to obtain an

unitary coefficient in the diffusion component. This choice is motivated by the intention to simplify the

estimation of the latent component by moving some parameters either onto the observable or at least

onto its first order component5. In the case of the log-normal latent component of Eq. (4.3), the speed

of mean reversion is represented by the coefficient b, whereas the mean level is represented by the ratio

a/b. Both the latent components might include a constant intensity exponential jump J1, compensated

by the opposite sign of the Poisson process drift m1.

The affine specification in Eq. (4.1) and (4.2) embeds the Heston (1993) model. Under independent or

dependent Normal jumps in price and exponential jumps in volatility it contains the models in Duffie et al.

(2000) and Eraker et al. (2003), while under stochastic hazard the (single factor) model of Bates (2000)

augmented with jumps in volatility is also captured. The jumps can be negative sided or double sided, with

appropriate compensation factor or, in the case of double jumps, the compensation is embedded within

constrained probability of positive/negative jumps. The double exponential jump of Kou (2002) and Kou

and Wang (2004) is augmented with stochastic volatility and intensity. A novel jump specification is

represented by the EVD jump model. Moreover, the stochastic volatility family of this study is expanded

4 To standardise the stochastic volatility diffusion from the Eq. (3.1), we simply set u = v/σ2 and rewrite the system,
adjusting the drift and the volatility factor of x. In Eq. (4.1) and (4.2), we have kept the same variable and parameter
denomination as in Chapter 3, whereby the affine model of this study can be easily reverted to the previous type.

5 See Appendix A.4 for further details concerning the transformations of the conventional models adopted in this study.
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with a mean-reverting log-normal stochastic volatility model as in Scott (1987), also (partially) introduced

during the same year by Wiggins (1987) and Hull and White (1987), whereby the diffusion is augmented

with the collection of jumps just outlined. The CEV specifications can also be allowed, which in the case

of affine volatility can be seen as an extension of the models in Beckers (1980), Macbeth and Merville

(1980) but also, under a transformation, can be related to the CEV stochastic volatility model class used

in Jones (2003) and Aït-Sahalia and Kimmel (2007). As to our knowledge, the LEV specification under

the log-normal volatility model is a novel application. Certain model components combination are also

explored for the first time in the literature. Specifically, these models comprise: stochastic volatility

combined with exponential and Lomax jumps; the log-normal volatility model combined with stochastic

intensity and with the further jump specification generating joint jumps; models that allow jumps in

volatility only. In Appendix A.4 we specify which transformation should be performed to connect the

models of this study to more conventional models used in the literature. In Section 4.3.1, we will be

presenting a labelling scheme to identify the model configurations in the context of the testing results.

4.2 Model Comparison Testing

In the experimental section of this chapter, we apply the max -MCS test introduced in Section 1.3.1 and

construct the MHT (1.3) combined with the MCS algorithm as in Section 1.3.3, to produce an option

model mispricing exercise with the reference MCS test and the novel γ-MCS presented in this thesis. The

goal is the selection of the best set of models producing the lowest MSE when applied to a large sample

of option market data. Option pricing for affine models is usually pursued with the Fourier inversion

technique introduced in Heston (1993) and refined in Carr and Madan (1999). A multidimensional general

Fourier inversion technique is presented in Shephard (1991a,b). In the context of the Scott model, a quasi-

analytic solution exploiting the Laplace transform is found in Perelló et al. (2008). Another technique

traditionally used for pricing alternative models consists of the recombining tree method, introduced in

Finance by Cox and Ross (1976). Simulation is also widely used in the financial community for derivative

pricing, see for instance Platen and Bruti-Liberati (2010) to construct a multidimensional JD simulation

with pre-specified order of convergence. An alternative technique is represented by the quasi-analytic

approximation of the price density constructed in Aït-Sahalia (1999, 2008). In this study, we use PIDE

solution techniques, see for example Tavella and Randall (2000), Duffy (2006). To generate the bootstrap

samples and the summary statistics feeding the MCS algorithms, we exploit the FDM6 to construct a

numerical solution of the backward equation defining the European call/put option price

EQ [(ST −K)± |Ft
]

e−r(T−t) (4.6)

where the interest rate is assumed non-stochastic. We employ the martingale approach to achieve the

derivative price, as we have constructed the SDE describing the underlying’s dynamics in (4.1) as such

that discounting the price by a non-stochastic or non-correlated factor, a martingale process is obtained.

The solution of the expectation in (4.6) is generated by means of the Fokker-Planck equation approach,

as mentioned above. It is acknowledged that in the case of a complete market, the martingale approach

6 For further details regarding the implemented procedure, compare Appendix A.2.
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and the risk-neutral technique, achieved by the construction of a risk-less replicating portfolio, are both

equivalent, see for instance Musiela and Rutkowski (1997). However, when the market is not complete,

that is some risk factors are not traded, as is the case for the asset volatility, the pricing equation

obtained via the hedging argument is not unique, see for instance Scott (1987). Thus, usually the market

equilibrium argument is invoked and a “market risk premium” is introduced. For practical purposes,

the introduction of risk premia usually has the effect of altering the parameters of some risk factors,

without changing the overall structure of the main SDE. The analysis of the effect of market risk premia

on the main equation is beyond the scope of this thesis. For an interesting analysis concerning the

estimation of risk-premia in JD models, see for instance Pan (2002). In order to simplify the complexity

of the computations, the strike price K is taken out of the pay-off function and the underlying variable

redefined as sT = ST /K, which evolves according to the reference dynamics, that is Eqs. (4.1) and

(4.2)/(4.3), but with initial condition st. In practice, each option price O±j , where the plus and minus

signs refer, respectively, to the call and put option, corresponds to the present value of the strike times

a stochastic factor depending on stj and the model parameters, whereas the relative strike is always

unitary. That is,

O±j (Tj , stj ; Θ, vtj ) = EQ [(sTj − 1)±
∣∣Ftj ]Kje

−r(Tj−tj) (4.7)

and we conduct the analysis in terms of the relative option prices ω±j = O±j /Kj . We adopt this strategy

in contrast to the usage of dollar prices as in Bakshi et al. (1997) that induces dependence on the index

level and therefore the time of the price record. This procedure is also alternative to the option price

standardisation of Bates (1996, 2000), which operates with option-to-underlying price ratios. As we solve

the option pricing problem with a PIDE solution method, it is natural to standardise the underlying by

the strike and not viceversa, whereby this strategy only modifies the initial condition of the reference

underlying at the same time anchoring any instrument in the sample to a unitary strike. As a consequence,

the complexity of the problem is simplified because in this way, we are centring the solution domain over

a given range initiated by a unique terminal condition. The reverse strategy instead, that is dividing

the option price by the underlying level, virtually changes the nature of the problem, as we are now in

the presence of a stochastic strike option over a constant reference underlying. Moreover, although not

interested into the hedging problem here, we notice that the latter strategy complicates any perturbation

analysis as the computation of the sensitivity effect are more involved7. In the following, unless otherwise

explicitly stated, when we write of option prices we will be referring to relative option prices.

4.2.1 Mispricing MSE

The model performance measure we use in this study is the mispricing, that is the average squared

difference between model prices and actual prices, or its square root (RMSE). The MSE is essentially a

measure of the goodness of fit of the model across the set of observed data; the lower the mispricing,

7 In fact, from a numerical perspective, because when standardising by the strike the initial condition of the PIDE is
unique for any option data set, the computation of the numerical derivative will only involve as many solution as the chosen
finite difference would require, whereas standardising by the current level of the strike will have the effect of multiplying
the latter number by the number of strikes in the sample. Another complication for the computation of the ∆ is that, in
the former case, variations of the current price level will only impact the standardised underlying linearly and therefore the
variations will simply be proportional to the strike, whereas in the latter case variations of the underlying will impact the
initial condition non linearly entailing a distortion of the ∆ range or more articulated calculations to reconstruct the non
standardised effect.
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the better the model explains the realised market quotes. It is important to notice that the use of

the MSE requires the standardisation of the option prices, in order to get rid of the dependency on

the money value of the strike. Moreover, the choice of standardising by the strike, rather than the

underlying price value as it is customary in other articles, as for instance Bates (2000), gives to the option

relative value the immediate significance of a dimensionless measure of “moneyness”, that is a relative

number indicating how deep in the money the option is, whereas standardising by the current level of the

underlying turns this quantity in the opposite direction, whereby lower numbers would indicate higher

moneyness and viceversa, lacking of an intuitive significance. Dropping for convenience the reference to

the moneyness and the tenor of the option and highlighting the dependency on the parameter vector Θ

and the market volatility information, the loss function for the generic model Pi is described as following,

using information across the full time span of the sample:

Li := 1
N

∑
j

(
ωj(Θi, v

i
tj )− ϕj

)2

(4.8)

whereby ϕj is the j-th market implied option price, with tj = t, ∀t, j, and vit the model Pi volatility at

time8 t. In Eq. (4.8) more information is necessary to determine the model price of the ϕj , which we

do not make explicit; namely, the option type, the underlying level-to-strike ratio providing the initial

condition for the pricing engine, the tenor of the option and the current interest rate level. With respect

to the latter model components, we notice that the parameter vector Θ∗i and the estimated volatility

sample path
{
vik
}K
k=1

for the model Pi are the output of the following program

min
Θi,{vik}Kk=1

Li (4.9)

The estimation of the parameter vector Θ is performed as follows. The target MSE function is constructed

such that, for a given Θ, the loss function L, at each observation date k = 1, . . . ,K, is evaluated over a

grid spanning the domain of definition of the latent variable v and thus the sequence {v̂k}Kk=1 is selected

such as to render the least loss. It is implied that the grid is determined by the restriction of the current

parameters to those defining the v process, such that the domain of definition spreads between zero

and seven times the long run model volatility, whereas the number of points is fixed and proportionally

distributed amid the boundaries. In practice, at each evaluation given the parameters Θ, the loss function

returns the minimum value amongst all the possible determinations over the vk sequence, determined over

the current grid. The parameter vector Θ is hence optimised by sequential quadratic programming. As a

consequence, the optimisation problem (4.9) is divided into two sub-problems: the main one consists of

numerically minimising Li with respect to Θi and the secondary one provides the minimum Li |Θi with

respect to the sequence of model implied volatility, refining the target function for the main problem. We

make a point in this latter analysis of applying a given set of parameters across the time dimension of

the price sample, thereby focusing on the stochastic volatility models ability to reproduce market prices

by the means of the latent factor only. This bestows upon the solution strategy the nature of a highly

8 In order to summarise the procedure, we have appended a subscript j to each option price in the data panel, entailing
that an ordered record of market option prices and their corresponding model generated values is available. Because the
volatility factor is an essential input of the model price, its estimate will enter each model determination, whereby the daily
v̂t is cross-referenced to the determination of the j-th options that will be given at market time tj , that is the reference
volatility at time t is attributed to each j-th option at day t.
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parametrised problem, as in Bates (2000). We choose to solve the problem (4.9) over a coarse grid of the

volatility within a plausible range of variation, given the current set of parameters. Although we do not

employ any filtering technique, the projected path can be considered as a suboptimal solution achieved

with reasonable speed of computation.

4.3 Experimental Section

4.3.1 Preliminary Considerations

In this section, we produce several MCS tests to select the best option pricing models from a collection

of Heston (1993) and Scott (1987) stochastic volatility models feeding a diffusion function that can be,

respectively, linear or exponential and is extended to allow for constant or linear elasticity of variance.

The diffusion components are furthermore combined with several jump specifications that can produce

discontinuities in the index level with constant or stochastic intensity. Moreover, the models can include

either a strongly negative ρ parameter or exclude the leverage effect, which in the context of the model

selection procedure corresponds to testing for the model performance contribution of the correlation

parameter. The jump specifications are described in Section 4.1. The models are designed such as to

produce martingale discounted index prices and therefore the option price is evaluated as an expectation,

that is the solution of the backward equation associated with the model set components. In Appendix A.2

we provide some details of the FDM and the numerical integration techniques used to solve the forward

and backward equations that have been encountered in the course of this thesis.

We obtain a large data sample of exchange traded index options, disseminated by the US Option Pricing

Reporting Authority (OPRA), which consolidates the data sourced by the participant exchanges. The

sample consists of the last traded price and the last national best bid offer (NBBO) at the exchange

closing. In this study, we focus on the Standard and Poor’s 500 Index European option data, spanning

from 02-Jan-1990 to 08-Jul-2015 with strikes ranging from 225 to 3,500 whereby the underlying varies

between 295.46 and 2,130.82, see the underlying index level path in Fig. 6. Among the whole set of CBOE

traded options, we select the traditional AM-settled SPX and the most recently introduced weekly options

SPXW, which started trading in October 2005, assuring that there exists only one call/put pair for each

combination of strike/maturity/trade-date. We use last price data and the simple average of the bid/ask

price if the last trade is absent and both the NBBO are available. From the original sample containing

3,439,236 observed pairs, we employ a particular selection criterion. As we consider end-of-day data, we

cannot include intra-day trading information to trigger liquidity selection thresholds. As we target paired

call/put option data we consider the put/call parity as a means to select significant prices that respect a

model-free coherency requirement, entailing the absence of arbitrage for a risk-free portfolio composed by

buying one equity at price S and one put with strike K, selling one call with equal strike and borrowing

the present value of the strike for the corresponding option tenure. Excluding complications related to

counterparty credit risk, the value of such constructed portfolio ought to be null and this structural

relation might hold at most within the range of the bid/ask spread, otherwise implying the presence of

market operators that would soon shrink the impairment by making risk-free profits. Therefore, for each
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couple of instruments we compute the distribution of the imbalances in the put-call parity relationship,

that is, we consider

ω+
j − ω

−
j −

(
stj − e−rtj (Tj−tj)

)
and exclude the option couples that exceed the 5-97.5 percentile. We choose an asymmetric tail cutoff

due to the different range of variation of the upper and lower tails of the put/call impairment distribution.

We remark that the range of variation of the left tail of the parity imbalances is quite wide, whereby the

fifth percentile is slightly lower than −0.08, meaning that one out of twenty option pairs in the sample

exhibits an overpricing of the put arm in the parity relationship that is at least 8% of the strike price.

As it often occurs in real financial markets, rational conditions are disappointed, leaving room for further

investigation that might render an ideal constraint more realistic. We report for the case of interest for

this study, that the sample is characterised by a strong impairment of put-call relation, especially in

the left arm of the imbalances distribution, witnessing systematic overvaluation of put options that we

conjecture are ITM, as the trades in that area are very intensive. We choose the cutting points of the

put-call parity breaches distribution aiming at the balancing of the trade-off between the amount of data

rejected and the width of the range of variation of those imbalances. This operation is easier for the right

tail, whereby disregarding the rightmost 2.5% of the data only, we obtain an extreme value of 0.02 circa

which is close to the average RMSE of the model pricing. On the other hand, disregarding the leftmost

5% of the data does not allow to reduce the impairment to less than −0.08, which is a remarkable value.

Excluding more data would deteriorate further the daily moneyness-tenor coverage of the option sample

data. The last characteristic, however, is slightly attenuated if considering that only data with maturity

inferior than nine months are to be used in the model comparison exercise. In Fig. 7 we show the event

counting of the latter data elaboration (full two years tenor sample), whereby the left and right tail have

already been rejected9. We notice the quite wide range of variation of the relative price imbalance, which

appears to be more concentrated on the negative tail. The distribution has a strong kurtosis (7.51) and

negative skewness (-1.85); in order to get a left tail cut around -0.02 a further 15% of data should be re-

jected. The average is -0.0095. The data with tenor lower than nine months exhibits similar distribution

shape numbers, with slightly higher kurtosis (8.93) and reduced skewness (-1.69), as a consequence of

the reduced left tail. The latter is significantly thinner as the minimum negative impairment reduces to

-0.053 and the leftmost 6% is below -0.02. The largest positive impairment persists at about 0.02. The

average is -0.0051. The large left tail of the data that violate the parity however, generates no concern

for the data integrity, as the option sample undergoes a final screening hinging on implied volatility,

whereby a consistent portion of ITM calls are rejected as quoted below the pay-off. Several few data

pairs are further rejected after visual inspection. These rejections corresponds to data points that clearly

stand out from the data cloud, when plotted as in Fig. 8. The rejected data represents about 1% of the

two year tenor sample and 0.69% of the final data. The outcome of the data selection query is shown

graphically in Fig. 8 whereby the actual prices of the call (blue point charts) and put (red points charts)

are exhibited over the (S −K) axis, irrespective of the tenor and the observation date, before and after

the process. From the charts we can observe the impact of the data selection procedure based on the

put-call parity relationship: the data cloud consolidates in a neighbourhood of the terminal condition

9 As a result, in the chart 7 the left and right boundaries of the data domain correspond to the 5-97.5 percentile of the
previous data sample.
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assuming a configuration which masks the hypothetical behaviour of the time sequence of the solution

function converging to the final pay-off of the option. It has to be noticed that the visually rejected data,

with exception of a handful of points floating far apart the cloud, are mainly ITM call that fall below the

right arm of the pay-off function, that is extremely underpriced. We leave however a 2% range which is

finally absorbed by the next implied volatility selection query. A time series view of the full clean data

capped at 2 years tenor, is available in Fig. 9, whereby the upper section shows the time-to-maturity of

the option pairs, whereas the lower section shows the call relative prices (blue positive points) and the

put relative prices (red negative points). We notice the intense coverage of the maturity range and the

growing coverage across the years of the short maturity range, up to half a year.

With the main sample established, in order to construct our MCS experiments, we restrict further the

data available to deal with maturities of at most 3/4 of one year, that is nine months to maturity. We

choose this tenor range as it seems a reasonable compromise between the short dated option samples em-

ployed in the majority of the reference studies, that is three/four months, and the analysis of long dated

options, that is two years or more. In general, options with maturity higher than six to nine months fall

into a residual class: in Bakshi et al. (1997) and Eraker (2004), for instance, options with tenor greater

than six months are aggregated in a residual category; in Bates (2000) options expiring later than nine

months from the observation date form an homogeneous group of analysis. A further reason as to why we

choose this boundary tenor is that the Black-Scholes (BS) implied volatility becomes sensibly flat around

that area. We furthermore consider only the range [0.5, 2], to square off the underlying st domain and

make the negative and positive range symmetric, as the price value boundary from the unitary standard

strike is halved in the negative direction and doubled in the positive one, entailing a log-return range of

±69.31%. We choose this interval as it is the largest (log) symmetric range with respect to the moneyness,

which captures the majority of the available data, meaning that, observing the lower section of Fig. 9,

we only drop a limited amount of the put options historical data by selecting the 0.5 boundary and hence

obtaining the call threshold by overturning the top ITM put value. Data that cannot produce implied

volatility, mainly ITM calls, are discarded. In such cases, we drop here the full put/call pairing. From the

initial two year clean sample containing 3,136,529 observations, the selection of the nine months sample

produces the rejection of 18% of the data yielding 2,590,811 paired observations. Finally, the implied

volatility selection drops further data, leaving 2,503,439 observations of put options and 1,600,955 ob-

servations of call options. For estimation purposes, we look at both OTM and full option sample. With

respect to OTM option prices, we construct a sample of put options with underlying indices stj ranging

between exp(0.02) and 2, as well as call options characterised by values in the range [0.5, exp(−0.02)]. We

exclude the tight range of log moneyness [−2%,+2%] as we report an excessive variability of short dated

ATM options. We report in Fig. 11 in the upper and lower charts, respectively, the full cloud of implied

volatility points employed in the OTM sample and the mid-quantile surface obtained as a surface quan-

tile interpolation10 of a smooth volatility surface. The latter chart has only illustrative purposes. The

implied volatility surfaces for the call and put selections present a relatively steeper wing at short term

maturities over the respective ITM segments. To provide further information concerning the structure of

the data employed in this study, in Tab. 31, 32, 33, 34, 35, 36 we show the average BS implied volatility

10 Compare also Eq. (2.3) introduced in Section 2.1 and Koenker and Bassett (1978).
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and the data distribution over the moneyness/tenor grid, organised in squared intervals. For the sake

of completeness in the testing exercise, we also estimate parameters and produce MCS tests using the

full range of the option sample, that is including and merging the previously discarded call and put op-

tions to generate simulated statistics for both the samples, employing the respective parameter estimates.

For the implementation of the MSC tests, we exploit the stationary bootstrap of Politis and Romano

(1994a,b), whereby the block window is calibrated to the autocorrelation function of the target time

series, see Politis and White (2004) and Patton et al. (2009). The simulated statistic distribution is

obtained from the target measure of the daily root mean squared error (RMSE), which represents a

measure of the data fitting of the various option pricing functions. The average RMSE times series across

the whole model set is illustrated in Fig. 10, and evolves with a daily average of 83 bps and with an

average standard deviation of 28 bps, which represent, respectively, the overall model pricing error and

its intra-model variability. The figure also illustrates the sequence of daily min and max RMSE across

the models, which are represented with red dots. It is interesting to notice that spikes or turning points

in the model performance measures, whereby a surge in the RMSE is recorded, can be detected, for

instance, in 1998 around the LTCM default, starting about the events of 9/11, 2001 and another evident

burst at the beginning of the subprime crisis in 2007, culminating with the filing for bankruptcy of the

Lehman Brothers in Sept. 2008. Another two spikes are noticeable at the ending of the RMSE path in

correspondence of the European debt crisis and the Greek quasi-default, about May 2010, as well as in

mid 2011, when the U.S. Sovereign debt was downgraded from AAA to AA+. The time series consists

of 6, 429 daily observations. Out of these data, the bootstrap sample is generated as full sample averages

of 1, 500 times series with 1, 000 observations, generated with resampling via the stationary bootstrap of

the daily RMSE, for each model. The average block size is 188 days, as estimated via the Politis and

White (2004) procedure. We remark that this is the first study that attempts a bootstrapping of this

sort, as in general the few references that can be found mainly relate to the bootstrapping of a static

confidence interval for the option prices, see for instance Yatchew and Härdle (2006) and Dotsis and

Markellos (2008). We exploit the MCS-γ, with fixed γ at 20% and 40% of the relative k-FWER. In this

exercise, this is done mainly for reasons of speed of computation. We notice that imposing a 20% of

the k-FWER over the total number of testing hypothesis, does not correspond to accepting a 20% of

falsely rejected models, but this percentage refers to the total number of comparisons that are N2 −N ,

where N is the model number. The confidence level is set to a 5% for a single directional hypothesis.

To conserve on space, we perform but only partly report the MCS-max test with 10% confidence, as

this test is incapable of rejecting models from the initial model set in three out of four experiments11,

suggesting a strong similarity in the model performances. However, for the one test where the MCS-max

does give an MCS different from the initial model set, only 20 out of 280 models are ultimately rejected.

11 The MCS test results that have been reported refer to a full sample averages of resampled data. The central limit
effect is stronger when constructing the sample in this way, because we are averaging daily RMSE and this procedure
yields strongly bell shaped distributions. Nonetheless, there are still wide differences in the results of the MCS-γ from the
MCS-max, which relays on pivotal statistics. We conjecture that a small sample distribution bias persists while generating
the statistic distributions via bootstrapping. As an alternative experiment that is not reported, we generate the MCS
with historical simulation, that is considering the statistic distribution as generated by the daily RMSE, entailing more
asymmetric and leptokurtic distributions. The results for the MCS-γ are not strongly different, whereby we obtain larger
MCS. However, we cannot compare those alternative results with the MCS-max either, as again it rejects no model from
the initial set. Therefore, in total, the test performed with the MCS-max are four, whereby in three out of four cases it
cannot reject any model.
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The difference between the two MCS approaches is due largely to higher conservatism in the MCS-max

test relative to the more flexible MCS-γ, which allows a more circumscribed set of superior models via

direct control of the k-FWER. The latter result is interesting as it indicates that the MHT based MCS

test is able to identify the best performing model in a closely competing contest. On the other hand, the

general MCS-max outcome is a reminder of a possible attenuated view, whenever the structure of the

test is modified alongside the Hansen et al. (2011) paradigm. That is to say that, in the latter test setup,

the model performance discrepancies are not strong enough to justify the prevalence of any model within

the collective. Considering, however, test dependencies in the MHT framework and exploring the full set

of comparisons, we are able to obtain a more stringent model confrontation.

Before moving to the experimental results, we define the model labelling rule. As the model set is very

numerous, we adopt the following conventions to identify the model to which the test output is referred.

In total, the model set comprises 280 models. Each model label is composed of four, six or eight letters.

The first two letters are either a “SV” or “SS” if, respectively, the latent factor is affine or in case there

is a jump, the intensity is affine as well and it is determined directly as a function of the latent factor.

A “C” in place of the first “S” indicates that the model has a coefficient at the exponent of the diffusion

factor of the price SDE making the model be extended to a constant elasticity of variance. A “Z” in the

place of the first “S” will indicate a model with log-normal latent factor, as well as a “Z” in the place of

the second “S” indicates that there is a jump that is driven by an log-normal stochastic intensity. An “L”

in place of the “C” indicates the model is extended with a linear elasticity of variance coefficient. The

third and forth letters are either “R0” if ρ = 0 or “R1” if ρ = −0.7, indicating either a zero leverage effect

or a negative leverage effect. The model label is made of four letters if no jumps are included. A six

letter model can include the letters “VJ” at the fifth and sixth position, meaning that the model has only

an exponential jump in the latent factor or exhibit the letter “CJ” if the model presents a single Poisson

factor triggering simultaneous and correlated jumps. A jump in the price level only or unpaired jumps

in price and volatility are indicated, respectively, with the letters “XJ” and “JJ” in the fifth and sixth

positions. In this case, two more letters indicate the price jump type that can be centred (“N0”) or offset

(“N1”) Gaussian, single sided exponential/Lomax(“E1”/“L1”), double sided with constrained (“E2”/“L2”)

or free (“EE”/“LL”) positive jump probability exponential/Lomax distribution jump size.

4.3.2 Market Data Experiment

In this section, we apply the model selection procedures to an equity index option pricing experiment,

whereby we search for the best model subset delivering superior RMSE performance. As just outlined, we

consider a very large model set including stochastic volatility models with affine or exponential volatility,

augmented with many types of jumps in return, exponential jumps in volatility, constant or linear elas-

ticity of variance and stochastic intensity. The S&P500 index option sample is very extensive, containing

a large part of the CBOE traded options daily closing NBBO ranging from 02-Jan-1990 to 08-Jul-2015.

To the best of our knowledge, this is the first study exploiting such an extensive option sample, both

in the time and in the moneyness dimensions, and such a wide model set, which includes combinations

of components that yield novel models heretofore not examined in the literature. Furthermore, we con-
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tribute with an original application of the MCS test to produce evidence concerning the best equity option

pricing models. The model contrasting exercise is complicated by the strong model similarities that are

tackled with a rigorous statistical approach. The MCS-max test designed alongside the established model

confidence set approach of Hansen et al. (2011), struggles to identify top models in a tightly competing

set. The design of an alternative model comparison device based on the MHT approach of Romano and

Wolf (2010) achieves a more focused MCS.

We perform the model parameter estimation for two samples of option prices; namely, the complete set

of option prices across moneyness, the ALL sample, and the sample restricted to just OTM options.

The overall performance based off both sets of options data are very similar in terms of RMSE, for each

model. However, to reduce parameter uncertainty and homogenise model comparison, we proceed by

estimating the parameters for the innermost nested models and thereafter estimate the parameters of

the incremental model components - basically the jump components - by holding the core parameters

fixed; the only exception here being the diffusion coefficient, in order to capture the variance attribution

between the diffusion and the jump factors. In practice, when estimating a jump augmented model,

the diffusion component parameters are kept constant but the total variance attributed to diffusion is

triggered by the free coefficient. The model implied volatility sequence is free at each optimisation, leaving

a highly parametrised optimisation problem which is solved at each iteration recursively over a coarse

grid of volatility values. The range of the volatility grid is a large multiple of the stationary variance,

given the current parameters. Therefore, the parametric set is exploited for the computation of the time

series of the RMSE for each model, whereby each time series is exploited to generate resampled path

with the stationary bootstrap that are henceforth averaged to determine the bootstrap distribution of

the overall sample average. The results for the MCS-γ are summarised Tab. 38, which exhibits the MCS

for the OTM and the ALL option samples at several k-FWER, with k such that γ =
⌊

k
N(N−1)

⌋
, with a

5% confidence, whereby here we indicate the number of models with an N . In the OTM options sample,

the MCS comprises 19 models in the γ = 20% test and by 5 models in the γ = 40% test. In the ALL

options sample, the MCS comprises 34 models in the γ = 20% test and 2 models in the γ = 40% test.

The general results are similar. The models with exponential volatility are predominant, a result that can

be reconnected with the analysis of Christoffersen et al. (2010). The latter article provides an extensive

analysis in terms of the dataset used and technique exploited. The more interesting findings that can be

related to this study correspond to the volatility cross-section regression, which is most significant when

a log-transform is applied to daily realised volatility, as well as the predominance of the models that

allow higher than affine acceleration of the volatility path. In particular, the best model is identified in

the ONE model12, which is able to produce superior pricing error performance. Some exception to this

outcome are several CEV affine specifications as in Jones (2003), which are however lower ranked. The

solely affine stochastic volatility models are completely rejected, entailing that, not only when compared

to jump extensions affine models are rejected, as it is the case in, for instance, Eraker (2004), but also

that affine jump-diffusion models generate inferior performance whenever the latent factor acceleration

12 The ONE model is not included in the model set of this study. However, under a log-transform of the latent factor,
this model results in a process with Gaussian innovations and mean reversion of exponential type, that is generating an
asymmetric response when above/below the average. Therefore the ONE model differs from the log-linear volatility model
only in the response to the pull to the mean, which is asymmetrical.
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is augmented with a CEV factor. The correlation factor is highly significant, although several R0 models

enters the MCS in both the OTM and ALL sample. The most interesting result is the presence of the

ZVR1 model, that is the exponential volatility pure diffusive model with negative correlation (-0.7) in

the MCS set of the γ = 20% MCS-γ over the OTM sample. Although with a p-value of 0.3861 against a

0.7791 of the top ranked ZVR1XJE2 (which corresponds to the same model augmented with a constant

intensity bi-directional exponential jump in return only, with constrained probability of the positive

direction), this outcome is affirming that in the case of OTM options excessive model parametrisation

and hence complexity, might be redundant, as for fairly equivalent results in terms of RMSE can be

obtained with a model characterised with a lesser number of parameters like the ZVR1. In the case of

the ALL options sample, the jumps seems to be necessary to obtain superior results, although the form

of the jump does not seem to matter. This result suggests that jumps have a larger impact on ITM

options. Jumps in volatility, LEV and stochastic intensity extensions are redundant, whereas ZV**XJ**

models are either superior or very highly ranked. Some specifications of the CEV model enters the MCS,

but are ranked very low based on p-value. These considerations indicate that option pricing models are

overparametrised, beyond necessity, in contrast to studies such as Bates (1996), Eraker et al. (2003) and

Eraker (2004). This suggestion is strengthened in the context of the MCS-max test results that for the

OTM sample options considers all 280 model specifications to be equivalent, with no sorting possible as

a p-value ranking cannot be performed as a measure of model confidence can only be determined in case

of rejection. However, the MCS-max test based on the ALL option sample test yields a 260 model MCS,

allowing some considerations on the model ranking. Again, highly parametrised models perform better,

whereby the models with a p-value of at least 0.99 are all in the exponential volatility class or CEV affine.

Interesting, the ZVR1 model is ranked very high, with a p-value of 0.9496, suggesting again that LEV

and jumps in volatility and in return might be redundant even for the ALL option sample. On the other

hand, these results suggest that perhaps, in a context of tightly performing models, the Hansen et al.

(2011) MCS test is either conservative or might require low levels of confidence to restrict the size of the

MCS. In this case, the usage of the newly designed MCS-γ test manifests a wider flexibility to handle

large set joint model comparison tasks.

4.4 Concluding Remarks

In this chapter, we have compared a large sample of option pricing models by means of novel model selec-

tion tests hinging on the model confidence set and exploiting multiple hypothesis testing. We contribute

to literature in several directions. We construct model comparison tests with novel MCS techniques tar-

geting a vast array of option pricing models, the majority of which results from the original combination

of jumps and alternative volatility specifications. This study provides empirical evidence of the strong

aliasing amongst many option pricing models ranging from high to a lower levels of complexity, suggesting

scope for model simplification over increasing complexity. We obtain interesting results suggesting an

alternative conclusion as opposed to the tendency in the literature to an increasing complexity of the

option pricing models. The model selection procedures we apply provide robust evidence indicating that

the popular single factor affine specification, extended in several directions, is strongly rejected. More-

over, model augmentation such as jumps in volatility, stochastic hazard, and the parametrisation of the
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elasticity of the diffusion factor, are probably excessive model complications. A simple model, such as

the ZVR1, that is the correlated exponential volatility model, performs very well in the OTM option

sample, whereas the inclusion of a compensated single directional exponential jump in return, that is the

ZVR1XJE1 produces one of the top performances for the ALL option sample. Considering the relative

novelty of the MCS approach and the new test form we have introduced, that is the MHT version of the

MCS test, we provide a qualitative comparison of the outcome of the max-MCS and the γ-MCS test.

The general conclusion is that the latter test offers a wider flexibility allowed by the k-FWER controlling

mechanism. In contrast, the max-MCS fails to reduce the initial model set at a 10% confidence level.

Another difference between the two tests is represented by the use of non pivotal results hinging on the

bootstrap device in the γ-MCS test, which exhibits a stronger selection ability in tightly competing model

sets.
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Table 31: The Call Option Average Implied Volatility. In this table, we show the sample average
implied volatility arranged by moneyness per tenor buckets. The top row and the right hand column show
the consolidated averages by, respectively, time-to-maturity and relative index price. The sample contains the
selected option prices with moneyness ranging in (0.5, 2) and tenor in (0.01, 0.75).
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Table 32: The Put Option Average Implied Volatility. In this table, we show the sample average
implied volatility arranged by moneyness per tenor buckets. The top row and the right hand column show
the consolidated averages by, respectively, time-to-maturity and relative index price. The sample contains the
selected option prices with moneyness ranging in (0.5, 2) and tenor in (0.01, 0.75).
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Table 33: The Call Option Data Distribution. In this table, we show the sample data distribution
arranged by moneyness per tenor buckets. The top row and the right hand column show the consolidated
weights by, respectively, time-to-maturity and relative index price.
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Table 34: The Put Option Data Distribution. In this table, we show the sample data distribution
arranged by moneyness per tenor buckets. The top row and the right hand column show the consolidated
weights by, respectively, time-to-maturity and relative index price.
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Table 35: The (tighter) OTM Call/Put Option Average Implied Volatility. In this table, we show
the sample average implied volatility arranged by moneyness per tenor buckets. The top row and the right
hand column show the consolidated averages by, respectively, time-to-maturity and relative index price. The
sample contains the selected option prices with moneyness ranging in (0.5, 2) and tenor in (0.01, 0.75).
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Table 36: The (tighter) OTM Call/Put Option Data Distribution. In this table, we show the sample
data distribution arranged by moneyness per tenor buckets. The top row and the right hand column show the
consolidated weights by, respectively, time-to-maturity and relative index price.
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Bootstrap MCS-γ
OTM sample γ = 20% OTM sample γ = 40% ALL sample γ = 20% ALL sample γ = 40%

ZVR1XJE2 0.7791 ZVR1XJE2 0.6235 LZR1XJE1 0.8220 LZR1XJE1 0.6053
ZZR1XJE2 0.7468 ZZR1XJE2 0.6032 ZZR1XJE1 0.8154 ZZR1XJE1 0.3947
ZVR1CJ 0.7140 ZVR1XJN1 0.4498 LZR1JJE1 0.7925
ZVR1XJN1 0.6536 ZVR1XJE1 0.4217 LVR1XJE1 0.7214
ZVR1XJL2 0.6447 ZVR1XJL2 0.4018 LVR1XJEE 0.7051
ZVR1XJE1 0.6407 ZVR1XJEE 0.6906
ZVR1XJL1 0.4878 LVR1JJE1 0.6488
ZZR1XJL1 0.4841 LZR1JJL1 0.5984
LVR1XJEE 0.4817 ZZR1JJLL 0.5801
ZVR1XJN0 0.4592 LZR0XJEE 0.5590
ZZR0XJE2 0.4519 LZR1XJEE 0.5515
LZR0XJE2 0.4416 LZR1JJLL 0.5503
LVR1XJE2 0.4356 LZR0XJN1 0.5391
ZZR1XJLL 0.4153 ZZR1XJLL 0.5297
ZVR1 0.3868 LZR1XJLL 0.5204
ZZR1XJL2 0.3861 LZR0XJE1 0.5144
CVR1CJ 0.3637 LZR0JJE1 0.4963
ZZR1XJN0 0.2904 LZR1XJL1 0.4954
LVR1XJLL 0.2368 ZZR1XJL1 0.4952

LVR1XJLL 0.4767
ZZR0XJE1 0.4606
ZZR1XJEE 0.4562
LZR0JJN1 0.4547
ZZR0XJEE 0.4524
ZVR1JJLL 0.3996
LVR1JJL1 0.3879
ZVR1JJL1 0.3672
ZVR1XJLL 0.3596
ZVR1XJL1 0.3356
LVR1XJL1 0.2798
LVR1JJLL 0.2678
CSR1XJLL 0.2554
CSR1XJL1 0.2354
CSR1XJEE 0.1855

Table 37: Bootstrap MCS-γ fix at 20% and 40% OTM and ALL sample. In this table, we present the
MCS results for the model selection of the OTM and ALL sample estimated option pricing model experiment,
exploiting the MCS-γ with fixed k-FWER at 20% and 40% of the total number of comparisons. When compared
with the following Tab. 38 with respect to the ALL sample, it is evident how the novel MHT based MCS test is
capable of a more selective results, which can be modulated by targeting the k family-wise error rate. The main
result ofthe analysis is represented by the rejection of the affine family, which does not produce any equivalent
performance to the best MCS. It also worth to notice the performance of a simplified model, such as the ZVR1,
that is the diffusive log-normal volatility model, which enters the restricted MCS for the OTM sample. Simple
augmentations to this model, such as a single directional jump, as in the ZVR1XJE1 in the latter sample, or the
stochastic intensity in the ALL sample (an extension that does not include further parameters) produce one of
the top models.
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Bootstrap MCS-max ALL sample
LZR1XJE1 1 SSR1JJE1 0.9719 CVR1JJEE 0.8729 SVR1XJL2 0.6951 LVR0JJE2 0.4715
ZZR1XJE1 1 ZVR1XJL2 0.9678 ZVR0XJL1 0.8708 LVR0JJE1 0.6924 CSR0JJLL 0.4485
LZR1JJE1 1 CSR1XJE1 0.9662 LVR0CJ 0.8702 SVR1JJL2 0.6784 SSR0JJL2 0.4411
LVR1XJE1 1 ZVR0XJEE 0.9626 ZVR0XJLL 0.8653 LVR0JJEE 0.6776 SVR0XJL2 0.4313
LVR1XJEE 1 SSR0JJEE 0.9596 SVR1XJLL 0.8649 SVR1JJE2 0.6738 SSR1XJN0 0.4288
LZR1JJL1 1 SSR0JJE1 0.9595 SVR1JJE1 0.8625 LVR0XJEE 0.6705 ZVR1JJN0 0.4248
ZVR1XJEE 1 LVR0XJE1 0.9561 LVR1CJ 0.8618 ZZR0JJN0 0.6656 ZZR0XJE2 0.4248
ZZR1JJLL 1 SSR1XJL1 0.9556 SVR1XJL1 0.8564 SVR1JJLL 0.6638 CSR0XJLL 0.4247
LZR1JJLL 1 LZR0JJEE 0.9541 LZR1JJEE 0.8484 SSR0JJLL 0.6624 LVR1JJN0 0.4241
LZR1XJEE 1 ZVR0XJE1 0.9507 ZVR0XJE2 0.8456 LZR0JJN0 0.6613 CVR1JJN1 0.4138
LVR1JJE1 1 ZVR1 0.9496 LVR0XJL2 0.8402 CSR1XJN0 0.6553 CSR1JJE2 0.4072
ZZR1XJLL 0.9999 SSR1XJLL 0.9491 LVR0XJE2 0.8338 SVR1JJN0 0.6527 LVR1JJN1 0.4038
LVR1XJLL 0.9999 SSR0JJN1 0.9444 CVR1JJLL 0.8335 SVR1JJL1 0.6514 CSR0XJL1 0.3969
ZZR1XJL1 0.9999 SSR1XJEE 0.9421 LZR1JJL2 0.8267 CSR0XJE1 0.6450 CVR0JJE2 0.3904
LZR1XJLL 0.9999 LZR0XJLL 0.9411 ZVR0XJL2 0.8222 SSR0JJL1 0.6448 CVR0JJLL 0.3862
LZR1XJL1 0.9999 LVR1 0.9409 CVR1XJLL 0.8208 ZVR1XJN0 0.6242 CVR0XJL1 0.3854
ZVR1JJLL 0.9999 SSR0JJE2 0.9390 CSR0XJEE 0.8205 ZVR1JJE2 0.6241 CSR0JJL2 0.3676
ZVR1JJL1 0.9999 CSR1JJL1 0.9340 CVR1XJN1 0.8201 LVR0 0.6142 ZVR0XJN0 0.3642
ZVR1XJLL 0.9999 CSR0JJEE 0.9323 CVR1JJL1 0.8158 CVR1XJEE 0.6118 CVR0XJLL 0.3498
ZZR1XJEE 0.9999 LZR0XJL1 0.9309 ZZR0XJN0 0.8127 LVR1XJN0 0.6089 CSR0JJN0 0.3436
LVR1JJL1 0.9999 CSR0JJE2 0.9253 LVR1JJL2 0.8119 SSR1JJE2 0.6004 SVR0JJEE 0.3414
ZVR1XJL1 0.9999 LVR1VJ 0.9230 LZR1XJL2 0.8080 ZVR0JJN1 0.5952 LVR0JJN0 0.3340
LVR1JJLL 0.9993 CVR1JJE1 0.9220 ZVR0JJL2 0.8064 LVR0JJL2 0.5950 ZVR0JJN0 0.3300
LVR1XJL1 0.9993 ZZR0XJLL 0.9216 LZR0XJN0 0.7973 CVR1XJE1 0.5909 LVR0XJN0 0.3203
LZR0XJN1 0.9987 CSR1JJLL 0.9212 LVR1JJE2 0.7915 CVR1XJL2 0.5846 SVR0JJE1 0.3140
CSR1XJLL 0.9987 ZZR1XJE2 0.9203 SVR1XJE1 0.7829 SSR1JJL2 0.5761 SVR0JJL2 0.3058
LZR1XJN1 0.9986 ZZR0XJL1 0.9165 LZR0JJE2 0.7768 SSR1JJN0 0.5755 SVR0XJEE 0.2930
CSR1XJL1 0.9983 LZR0JJL1 0.9155 SVR1XJEE 0.7728 SSR1XJE2 0.5590 SVR0XJN1 0.2865
ZVR1XJE1 0.9969 ZVR0JJL1 0.9149 CVR0JJL1 0.7693 CSR1JJN0 0.5565 CSR0XJL2 0.2801
LZR0JJN1 0.9957 CSR0JJN1 0.9146 CSR1XJE2 0.7687 SVR0JJL1 0.5559 SVR0CJ 0.2728
LZR1XJE2 0.9950 ZVR1XJE2 0.9124 CSR1JJN1 0.7654 ZVR1XJN1 0.5554 SSR0XJL2 0.2671
CSR1XJEE 0.9946 ZVR0XJN1 0.9111 ZZR1JJEE 0.7583 SVR1XJN0 0.5494 CVR1VJ 0.2648
ZZR1XJN0 0.9941 LZR0JJLL 0.9098 CVR1XJL1 0.7530 CVR1JJE2 0.5465 SVR0XJE1 0.2583
LZR0JJE1 0.9939 SSR0XJEE 0.9095 ZVR0JJE1 0.7512 ZVR1JJEE 0.5306 ZVR1JJN1 0.2577
ZZR1JJE1 0.9933 LVR0XJN1 0.9088 LZR0XJE2 0.7509 CVR1JJL2 0.5253 CSR0XJN1 0.2575
LZR1XJN0 0.9929 SSR0XJE1 0.9071 SSR0XJLL 0.7494 LVR0JJLL 0.5243 SSR0JJN0 0.2425
ZZR0XJE1 0.9926 ZVR0JJLL 0.9057 SVR1XJN1 0.7405 CVR1XJE2 0.5241 CSR0XJN0 0.2406
LZR0XJEE 0.9919 ZVR1JJL2 0.9054 ZZR0JJL2 0.7394 CVR1XJN0 0.5203 ZVR0JJE2 0.2243
ZZR0XJEE 0.9917 SSR1JJEE 0.9044 ZZR1JJN0 0.7370 SVR1XJE2 0.5164 SVR0JJN1 0.2017
LZR0XJE1 0.9907 LVR0XJLL 0.9033 CSR1JJL2 0.7342 SSR1XJL2 0.5149 SVR0XJE2 0.1893
ZZR1JJL2 0.9899 SSR1JJN1 0.9012 ZZR0XJL2 0.7247 CVR1CJ 0.5103 CVR0VJ 0.1828
ZZR1XJL2 0.9897 LVR0JJL1 0.8998 CSR1XJL2 0.7229 ZVR0 0.5044 LVR0VJ 0.1827
ZZR1XJN1 0.9881 LVR0XJL1 0.8979 CSR1XJN1 0.7193 SVR0XJL1 0.5043 SVR0XJN0 0.1791
LVR1XJL2 0.9866 ZVR1VJ 0.8968 SVR1JJN1 0.7172 ZZR0XJN1 0.5021 SVR1VJ 0.1765
ZVR1CJ 0.9859 CSR0JJE1 0.8965 SVR1CJ 0.7151 SSR0XJE2 0.4949 SSR0XJN0 0.1751
SSR1XJE1 0.9856 SSR0XJN1 0.8923 CSR1JJEE 0.7150 SVR0XJLL 0.4884 SVR0VJ 0.1568
ZZR0JJN1 0.9839 SSR1JJL1 0.8867 ZVR0JJEE 0.7140 SVR0JJLL 0.4831 SVR1 0.1536
CSR1JJE1 0.9819 SSR1XJN1 0.8863 LVR1XJN1 0.7093 CVR1JJN0 0.4806 SVR0JJN0 0.1531
LZR1JJN0 0.9816 LVR1XJE2 0.8855 LZR0JJL2 0.7057 CSR0JJL1 0.4805 SVR0JJE2 0.1426
ZVR1JJE1 0.9799 SVR1JJEE 0.8826 SSR0XJL1 0.7038 ZVR0VJ 0.4788 LZR0XJL2 0.1226
ZZR0JJEE 0.9792 SSR1JJLL 0.8782 ZZR0JJE1 0.6994 LVR0JJN1 0.4739 CVR0XJL2 0.1220
LZR1JJN1 0.9746 ZVR0CJ 0.8750 LVR1JJEE 0.6979 LZR1JJE2 0.4736 ZZR1JJN1 0.1042

Table 38: Bootstrap MCS-max at 10% ALL sample. In this table, we present the MCS results for the
model selection of the ALL sample estimated option pricing model experiment, exploiting the MCS-max with
10% confidence. We notice the lack of selection ability of the test with closely competing models. The p-value
can produce some ranking and discriminate across the models. The application to the OTM sample of the same
test with the same confidence level yields an empty set of rejected models. This test exhibits inconsistency for the
max -MCS that, in the context of a large model set, provides non intuitive results. Foremost, the plain stochastic
volatility model SVR1, although with a low p-value, enters the MCS and, according to the null hypothesis, is
supposed to belong to the set of equivalently bet performing models.
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.

Figure 6: S&P500 Index Level.
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Figure 7: Put/Call Parity Distribution.

The figure shows the event counting of the Put/Call parity of the full option sample, after the cut-off of the 5-97.5
percentile tails. We notice the quite wide range of variation of the relative price unbalance, which appears to be
more concentrated on the negative tail.
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Figure 8: The Selection of the Option Price Sample.

The figure shows the option price sample before and after the data selection, implemented by dropping the option
pairs displaying extreme put/call parity behaviour. A marginal data point selection has been achieved via visual
inspection. The charts shows, proceeding from the top to the bottom, the call option sample (blue points) before
and after the selection, plotted on the x axis showing the difference between the actual index level and the strike,
irrespective of the time-to-maturity dimension. The put option sample (red points) before and after the selection
are exhibited at the bottom of the chart.
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Figure 9: Time Series Features of the Option Price Sample.

The figure shows the coverage of the tenor dimension of the option price sample, as the time elapses. Each point of
the upper chart displays, on the ordinates, the time-to-maturity of each option pair at each trading day, reported
in the abscissa. The lower chart shows the relative option price sample time series by plotting the call/put values
(blue/red points), whereby the put price have inverted sign for compactness purposes.
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Figure 10: The RMSE Time Series.

The figure shows the average across the models of the daily RMSE in percentage obtained from the interpolation
of the option pricing function over the ALL option sample. The red dots represents the daily min and max RMSE
across the model sample data. There seems to be a visible pattern of the model RMSE, starting from the late 90’s,
whereby the dispersion of the RMSE appears to have shrunk. We conjecture that either the quality of the average
model has improved, implying less and less price outliers, or more simply, the range of the traded options has grown
in such a way that the average RMSE has reduced, although larger pricing error might be concentrated on certain
areas of the moneyness/maturity domain.
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Figure 11: The Volatility Surface Quantile Regression.

The figure shows in the upper chart the OTM sample exploited for the over-the-money volatility surface quantile
regression procedure. The same procedure is also applied to the full sample of call and put prices, therefore producing
the call and put volatility surface percentile. The lower chart exhibits the median OTM volatility surfaces.
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Conclusions

In this thesis, we have presented several applications of the generalised MHT approach of Romano and

Wolf (2005a, 2007, 2010), providing a statistical method to confront the problem of model selection in a

very general setting. The experimental exercises that have been conducted, provide an example of the

flexibility and ease of implementation of the proposed tests. Disregarding the complexity of the problem,

the procedure requires only bootstrap samples of the target model performance measures and is capable

of delivering tests of significance, tests of benchmark comparison (relative model performance) and tests

for the automatic selection of the equivalently best performing models (absolute model performance), the

latter achieved with the support of the MCS construction (Hansen et al., 2011). In Chapter 2, we have

designed tests of model performance statistical significance with the balanced confidence set introduced

in the seminal work of Beran (1988a,b, 1990) and generalised in the reference work of Romano and oth-

ers, further augmented with the step-down method of Romano and Wolf (2005a, 2007) and Romano and

Shaikh (2006), an MHT procedure that allows to increase the power of the test. In a particular exper-

iment of Chapter 3, we have utilised the concept of model comparison via a loss function implemented

in studies such as Diebold and Mariano (1995), West (1996) to derive relative model comparison tests

targeting a benchmark model, in a context similar to the reality check of White (2000) and the superior
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predictive ability test of Hansen (2005). Despite the similarity with the objective of these tests, our con-

tribution is original in that we have designed relative performance tests within the MHT framework that

not only test the hypothesis of models being superior to the benchmark, but that are otherwise capable of

identifying the subsets of superior, equivalent and inferior models such to partition the initial set into the

corresponding collections of superior, equivalent and inferior models. Comparable explicit results have

previously been obtained, within the context of MHT, in the article of Romano and Wolf (2005b). When

the structure of the problem permits the exploitation of the relative performance test, the inference is

delivered by a single instance of the procedure, as in the simulated experiment of Section 3.3.2. Alter-

natively, when a benchmark is not identifiable or even unnecessary, we have experimented the use of the

relative performance test by circulating the benchmark model across the model set, as executed in the

first part of Section 3.3.3. This approach has the benefit of exposing the complete pairwise contrasting of

the models belonging to the initial model set, but otherwise providing an excess of information that can

be synthesised into a model selection decision only through a careful and, to a certain extent, subjective

process of consideration. With this regard, in this thesis we have provided a significant further contribu-

tion to the literature by assembling a model selection procedure for the automatic detection of the set of

superior models, which inherits all the properties of the generalised MHT. In the Chapter 2, Chapter 3

and Chapter 4, we have built on the MCS concept introduced by the seminal work of Hansen et al. (2011),

as defined in (1.3.1), and designed absolute model performance tests. This procedure is represented by

the γ-MCS of Section 1.3.3, an MHT that regards the model selection as a multi-dimensional test in-

volving hypotheses of model superiority on the full set of pairwise model comparisons, which eventually

filters those accepted hypotheses with the application of the MCS rule. As a term of reference, we have

constructed the established MCS test of the cited authors with the implementation of the max -MCS

as in Section 1.3.1, which delivers also a p-value model ranking measure that is based on the sequence

of the p-values of the target statistic. On the contrary, the model ranking measure associated to our

novel test builds on the multidimensional statistic bootstrap distribution and provides an estimate of

the probability that each model in the model set be superior to any element belonging to the MCS.

As a complementary exercise, we have also included a streamlined MCS test version by modifying and

adapting the approach in Corradi and Distaso (2011), a method that disregards test dependencies and

the control of the k-FWER, as presented in Section 1.3.2. This test displays some affinity with the

γ-MCS, in that it potentially explores the full combination of model comparisons, but instead ignores

the hypotheses structure relaying on scalar asymptotic tests for the implementation of the preference

decision rule. We have indicated this test as the t-MCS. The model ranking measure delivered by the

t-MCS is defined by taking the worst expected relative performance for each model as determined by

the bootstrap method and computing the complement of its quantile on a standard normal distribution,

that is the worst p-value for each model with respect to any model comparison. The observation of the

experimental results highlights the importance of the MHT paradigm, which in situations whereby the

model selection is problematic, allows to modulate between some conservative results, such those provided

by the max -MCS and some other boundary outcomes, such those provided by the t-MCS, which tends

to strongly restrict the MCS. With this research, we have been studying procedures that allow flexibility

of usage, preserving robustness and rigour of the analysis. As a result, the model selection procedures

that we have presented have the merit of reducing the main research question to a problem of exper-
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imental design, leaving to the investigator the task of the construction of the model performance measure.

In the course of the experimental exercises, we have explored and provided significant evidence concern-

ing several problems in financial econometrics involving the decision as to which model is preferable for

a given task. We have analysed three typical prototype problems in investment portfolios exposed to

market risk, that is the estimation of several portfolio risk metrics such as the VaR and the ExS, as well

as the estimation of the historical and the risk-neutral measures of widely employed stochastic processes

in finance, such as JD models. In Chapter 2 we have dealt with market risk model selection. Targeting

model performance measures of VaR and ExS, we have constructed statistical significance MHT and

absolute model performance test. The model set contains a small but very diverse collection of market

risk forecasting model. We have obtained results that diverge from the precedent analysis of Bao et al.

(2006), whose general conclusion consists in the lack of a superior model in the relative performance

contest, whereby the benchmark model is represented by the RiskMetrics model. On the contrary, we

provide evidence that some of the GARCH models and to a certain extent the quantile regression models,

provide the best performance on the short term horizon, whereas on the longer forecast horizon the MCS

is very wide and the model ranking measure only can provide some indications. In Chapter 3, we have

tackled the estimation of JD models under the historical measure. We have produced an original model

selection exercise involving affine models with jump extensions, as well as stochastic intensity models with

high frequency jumps. The analysis of this chapter has targeted measures of likelihood and of filtering

performance. With the market data experiment, we have obtained evidence confirming the findings of

Jones (2003) in relation to the superiority of the CEV extension with respect to the plain affine stochastic

volatility model, as well as highlighting the importance of jumps in returns, as in Andersen et al. (2002),

Chernov et al. (2003) and Eraker et al. (2003). Furthermore, the analysis of MCS tests has rejected the

inclusion of a jump in the volatility factor, providing an element of model simplification, as opposed to

the result of Eraker et al. (2003) and more in line with what has been remarked in Chernov et al. (2003),

although the results of our test concerning the jump in volatility component are more explicit. Another

interesting result of the market data experiment pointed out the excellent performance of some SH mod-

els, providing indication for a slightly more parsimonious parametrisation. Finally, with the Chapter 4,

we have explored model selection from a very large JD option pricing model set. The analysis of this

chapter has targeted a measure of RMSE. The particularly large model set and the extreme similarity

of the model performances have caused troubles to the max -MCS, which has not been able to discrim-

inate across the competitors collection. In this exercise the flexibility of our novel γ-MCS has revealed

a substantial advantage. Moreover, the tests have provided indication of the superiority of the exponen-

tial stochastic volatility model, a result in line with the findings of Christoffersen et al. (2010), whereby

models producing high kurtosis and large spikes in the volatility factor are preferable. The results of our

tests also points to a containment of the complexity of the model.

As a further contribution to the literature of this thesis, in Chapter 2 we have produced a novel ExS test

and in Chapter 3 we have extended the nonlinear filter of Maybeck (1982) with a jump component.

With regards to a thorough comparison of the model selection tests employed in this thesis, we remark
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that such a task is beyond the scope of the work. However, from a theoretical standpoint, we notice the

following. Foremost, we are inclined to prefer the γ-MCS as the max -MCS lacks of control for the gener-

alised FWER, whereby in a context such that the number of tests in the MHT is remarkable, the control

of the mere FWER becomes too stringent. Moreover, the γ-MCS, hinging on the MHT approach, it

grants the strong control of the k-FWER. In more practical terms regarding the confrontation of the dif-

ferent tests, we have collected evidence that allows qualitative comparison. We have encountered diverse

circumstances, whereby the max -MCS and the γ-MCS tend to perform similarly in a context whereby

the best models are unambiguously identified, such as the 1d market risk metrics forecast experiment

in Chapter 2 and the LRMCS test of the market data experiment in Chapter 3, whereas the t-MCS

produces smaller top model sets. We notice moreover that, as it allows for the control of the generalised

FWER, the MHT based MCS offers a gear to modulate the sensitivity to false rejections and hence

identify models that are close to rejection, further contracting the MCS. Under conditions whereby the

model comparison is more ambiguous and all of the MCS tests struggle to identify the best model set, as

it is the case of the 2w forecasting exercise of Chapter 2 and the simulation experiment involving model

aliasing of Chapter 3, the γ-MCS provides a more informative model ranking measure, while the t-MCS

results in a tighter selection. The latter test might be useful as a quick diagnostic tool to identify the

region containing the candidate best models or in conditions where it is difficult to distinguish models,

the t-MCS might provide a term of comparison for various γ values in the γ-MCS. In the final model

selection exercise of Chapter 4, we deal with a very large model set, whereby the ability of the γ-MCS to

modulate the result by targeting different k-FWER allows one to focus upon the set of best performing

models, whereas the benchmark test max -MCS is incapable of providing any insight as for the best model

set out of the initial pool. A further term of comparison can be identified in the behaviour of the p-value,

that in the case of the max -MCS exhibits the tendency for a lack of discriminating capacity between the

top section of the MCS components. Eventually, the p-value model ranking measure that we construct

for our novel test, provides a highly significant ranking factor. In conclusion, the model selection tests we

develop and apply in this research constitute an approach that is very promising in providing important

support in problems of model risk.

For the future research, we expect the refinement of the core procedures and plan to extend the study

of the theoretical properties of the max -MCS and the γ-MCS and how they relate each other and they

relate to a test such as the t-MCS. Moreover, the many algorithms that have been studied and developed

in this research provide further matter for extensions and application to financial econometric problems

such as market risk, filtering, likelihood estimation and pricing. Finally, we notice that particularly in

the context of JD models, the uncertainty related to the parameters estimation is considerable and hence

further research in this domain aiming at producing applications in the model risk space is attractive. In

particular, a topic of interest is the measurement of the model risk associated to parameter uncertainty.

Further analysis can be conducted in the domain of model transformations that simplify the computation

procedures and reduce the estimation risk. Moreover, we notice that the analysis in Chapter 3 is partial to

a certain extent, as it lacks further testing in term of loss measures targeting specifically the distribution

tails, and the analysis would benefit from an extension of the likelihood to a full Bayesian approach.

As a notice for future research in relation to Chapter 4, a limitation of this study consists of the lack
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of analysis such as the coherence of the implied factor distributions generated by market prices or the

hedging performance of the model set such as, for instance, in Bakshi et al. (1997), Bates (2000). Further

directions of future research might concern the derivation of statistical arbitrage strategies through the

analysis of the dynamics of the mispricing error or that of the premium to a replicating portfolio strategy.

Another important insight, which has been suggested by the examiners, consists of exploring the model

ranking through time to highlight possible patterns in the evolution of the pricing errors, which might

inform the construction of statistical arbitrage trading strategies.
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Algorithms

In this section, we provide more technical details concerning the main procedures that have been

employed in the experimental parts of this thesis. The intention is to clarify the construction of the

build blocks that led to the model performance measurements. Although covering almost completely the

procedures of Chapter 3 and Chapter 4, this collection is not complete and we refer to the cited literature

for completion.

A.1 The Approximate Likelihood Function

The full system state likelihood function is obtained as the numerical solution of the PIDE defining

the transition probability density associated with the SDE of the target model, Eq. (3.1) and (3.2).

The parameter estimation problem in the presence of a partially observed system state is tackled by

marginalising the latent component with the procedure described below.
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A.1.1 The Marginalisation Procedure

The practical implementation of the estimation algorithm involves the numerical approximation of a

δt-step ahead transition probability conditional on the “average” level of the latent factor, where the

marginalisation is achieved by weighting the transition density by the stationary distribution of the

latent factor v. The marginalisation of the latent variable has been used in literature in studies such as

Singleton (2001), Chako and Viceira (2003), which exploit the characteristic function of the affine process

and more general spectral methods. The appeal of this solution is represented by the peculiar structure

of the system under analysis. Let P {xt, vt, vt−δ|Ft−δ} be the join probability of the observable x and

the random latent factor v, taken at the current observation time t− δt for the next one t. Because x is

a Markovian, level independent martingale and v is incidentally endowed with a stationary distribution

that can be worked out quasi-analytically, it is convenient to write the previous probability measure as

P {∆x, vt|0x, vt−δ}P {vt−δ}, and obtain the marginal distribution of ∆x over the time interval δt, by

integrating out the initial and terminal condition of the latent variable v, that is

P {∆x|0x} =

∫
P {∆x, dvt|0x,dvt−δ}P {dvt−δ} (A.1)

The stationary density of the latent factor v is exploited for the marginalisation of the latent initial

conditioning variable in the transition probability density. The complete stationary density is

Lemma A.1.1 (The stationary distribution of the jump-square-root process). The stationary distribution

of the stochastic process process v defined in Eq. (3.1), λ1 > 0, is

c e
− v
λ1 vB1+B2−1

Γ(B1 +B2)
1F1

[
B1, B1 +B2,−( 1

β −
1
j11

)v
]

(A.2)

with the coefficients β = σ2

2κ , B1 = A1

[
σ2

2 ( 1
β −

1
j11

)− λ1j11

]
, B2 = A1λ1β, A1 = 2

σ2β ( 1
β −

1
j11

)−1 and c

is a normalising constant. The Γ(a) is the parametrised gamma function

Γ(a) =

∞∫
0

ds e−ssa−1

while 1F1 is the confluent hypergeometric function

1F1[a, b, z] =

∞∑
n=0

a(n)zn

b(n)n!

where
a(0) = 1

a(n) = a(a+ 1)(a+ 2) · · · (a+ n− 1).

When λ1 → 0 the Eq. (A.2) becomes the usual Feller process stationary distribution

c

Γ( 1
β )

e
− vβ v

1
β−1 (A.3)

Proof. Consider the PIDE describing the transition probability of the square root process with exponential
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jump

∂tp = ∂2
v [σ2vp]− ∂v[(κ− λ1j11 − κv)p]− λ1p+ λ1

+∞∫
0

ds p(v − s)e−
s
j11 . (A.4)

The solution consists of applying the Laplace transform and some manipulation. The stationary distri-

bution of v, if it exists, satisfies the Eq. (A.4) with ∂tp = 0. Taking the Laplace transform L(p) we

get
L′

L
= −

(κ− λ1j11)z + κ
j11

σ2

2 (z + 1
β )(z + 1

j11
)

that, applying the partial fraction decomposition and the inverse transform, yields

L = c(z + 1
β )−B1(z + 1

j11
)−B2

L−1

=⇒ p =
c

Γ(B1)Γ(B2)

(
e
− vβ vB1−1

)
?

(
e
− v
j11 vB2−1

)

where the ? sign indicates the convolution product. Then, making the convolution explicit, the following

expression

p =
c e
− v
j11

Γ(B1)Γ(B2)

v∫
0

du exp
[
−
(

1
β −

1
j11

)
u
]
uB1−1(v − u)B2−1 (A.5)

can be represented as a confluent hypergeometric function, if we notice that the latter function coincides

with the integral representation of

Γ(a)Γ(b)

Γ(a+ b)
1F1[a, a+ b, s] =

1∫
0

dτ esττa−1(1− τ)b−1

that after the change of variable τ = u/v and the substitution s = −
(

1
β −

1
j11

)
can be plugged into the

Eq. (A.5) to replace the convolution term.

In order for v to have a well defined stationary distribution, the coefficients need to satisfy the inequalities

j11 >
σ2

2κ and κ − λ1j11 >
σ2

2j11
, which coupled with the positive in probability constraint on v, that is

κ−λ1j11 >
σ2

2 > 0 are directly satisfied if we impose j11 > 1, a choice which seems reasonable if we were

to clearly distinguish a jump-less square-root process from one which allows for instantaneous acceleration

of the volatility in x. The function 1F1 is represented in its hypergeometric series form because in the

the application it is calculated as a truncated summation.

A.1.2 The Approximation of the Transition Density

In order to complete the construction of the AML, we necessitate the construction of the numerical so-

lution of the two-dimensional transition probability density implied by the SDE (3.1), we refer to, for

instance, Tavella and Randall (2000), Duffy (2006) as more detailed presentations of PIDE solutions

techniques. We approximate the core integrating element of Eq. (A.1), that is p (∆x, vδt |0x, v), for each

component of the likelihood definition (3.3) via a combination of a finite difference method (FDM) and an

ordinary integral approximation which defines an ODE system, where the multiplication for the charac-

teristic matrix A+ J represents an approximation of the cumulative action of the partial differential and

the integral operators onto the discretised function p in the space dimensions. Further details concerning

the approximation of the characteristic operator are given in the next section.
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In order to solve for the transition equation, we exploit the operator approximation to transform the

Kolmogorov forward equation

∂t[p] = (A + J )[p] (A.6)

into the ODE homogeneous system

d
dtp(t) = (A+ J) · p(t)⇒ p(t) = exp [(A+ J)t] · p(0) (A.7)

In the case of the likelihood estimation exercise, the PIDE approximation is formally solved via the

exponentiation of the system matrix, as stated in Eq. (A.7). The vector p(t) contains the stack of the

grid-points at t and where the initial condition p(0) is a representation of the delta-functional. Care has

been taken in the stabilisation of the approximation of the jump-diffusion operator.

First, the one step ahead likelihood has been centred and scaled, such that the grid upon which the solu-

tion is constructed stretches around the initial condition and is extended or contracted proportionally to

the conditional variance of the state vector, while the number of the grid points is kept constant: centring

grants stability in those regions of the domain that would otherwise be extreme, whereas scaling, under

model-tailored solutions, grants improved sensitivity to model parameters and further better behaviour

around the tails. We exploit, where possible, closed form solutions for the calculation of the conditional

expected variances. The exception is represented by the CEV specifications, for which we adopt again

the approximation in Eq. (A.20).

Second, the initial condition which is the delta function is modelled as a simple pulse, as the pretty coarse

grid we are using cannot justify more articulated proxies. This choice is a consequence of the fact that

we do not embrace the strategy of fixing the initial condition covariance matrix at the terminal time

values, cfr. for instance Poulsen (1999), as we have found that the shape of the distribution tends to

be overblown, when compared to the simulated distribution. Furthermore, at the border of the grid set

which defines the solution, we impose that the function is equal to zero. Although the solution usually

integrates almost to one, we adjust this feature to make it exact. We use two dimensional trapezoidal

rule for numerical integration for the model of interest.

A.2 The PIDE solution

In recent years, the finite different method (FDM) has received renewed attention in continuous-time

financial econometrics, since the seminal papers of Lo (1988), Pedersen (1995b) and Poulsen (1999). Ex-

amples are Jensen and Poulsen (2002), Lindström (2007), Hurn et al. (2010), Lux (2012). The model

problem we tackle is represented by the forward equation (A.6), which is employed in the likelihood esti-

mation of Chapter 3. Nonetheless, in terms of abstract operators, the option pricing problem of Chapter 4

involving the backward equation, can also be regarded under the same formulation. The techniques de-

scribed in this section are adapted and applied to both those exercises.
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The construction of the PIDE solution of p(x, v, t) involves the approximation of the integral-differential

operator with the purpose of obtaining a linear system. The solution function is accomplished on a grid

of points that are stacked into the time dependent vector

f(t) = vec


p(x1, v1, t) . . . p(xn, v1, t)

p(x1, v2, t) . . . p(xn, v2, t)
... . . .

...

p(x1, vm, t) . . . p(xn, vm, t)

 .

The approach we adopt is to apply the FDM to the differential operator, whereas the numerical integration

corresponds to a linear operator that transform f into the sought primitive function. The references for

the finite difference method are represented, for instance, by Tavella and Randall (2000), Duffy (2006).

In particular, the former reference contains a detailed explanation on how to construct a finite difference

operator with a given order of precision, to estimate the partial derivative of f , locally. The strategy

consists of taking Taylor expansions of the function in a neighbourhood of each point of the defined grid

and then estimating the partial derivative as a linear combination of enough function values to obtain

the following

∂•fk =
∑
i

αifi +R

where R is the residual with the target order of precision. In practice, we can obtain a linear system,

whereby the weights αi are such that annihilate the unnecessary Taylor terms and sum up to one. It

is implicit that the higher the dimension of the system, the more complex the expression to obtain a

finite difference operator would result. Whereby the partial differential operators in one dimension are

relatively easy to obtain, the mixed derivatives involve instead many alternative formulations. The dif-

ferential operators approximations define a banded matrix that approximates the action of the PIDE

operator A in the space dimension. The main problem in constructing the approximation matrix A is

obtaining a stable matrix; that is, a matrix that does not explode under exponentiation. This problem

is complicated by the presence of the integral operator, which breaks the banded structure of the system

matrix A + J . The general rule we follow is exploiting the Gershgorin circle theorem, see Duffy (2006),

sampling from an allowed range of model parameters. The approximation of the various configurations

of the integral operator J with the linear discrete operator J is constructed as a matrix of weights that

are obtained either applying the trapezoidal rule, as in the Chapter 3 exercise, or analytically integrat-

ing1 a linear or exponential interpolation within the context of the experiments of Chapter 4. The only

jump size convolution that exploit the linear interpolation is the case of the Lomax jump, whereas all

other cases require the exponential interpolation approach. Some assumptions are taken to enclose the

integration within the border of the grid over which the numerical solution is constructed. In the case of

the likelihood, we assume that over an incremental contour the solution decreases linearly to zero. In the

case of the option pricing function, we let the function be constant outside the grid and simply integrate

the convolution from the function boundary to the jump domain closure. The latter approach amounts

to adding a weight to the corresponding matrix slot, according to the analytic solution of the tail integral.
1 In the case of the joint jump in return and in volatility, the convolution operator is defined on a two-dimensional plane.

The grid points define a network whereby the integration of the interpolating function is performed over the various types
of rectangles that patch the integrating function domain.
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Alternative assumptions concerning the tail behaviour seem not to contribute significantly to the final

solution, or otherwise distort the result.

Eventually, the components of the vector f(t) correspond to the function values at each point of the

possibly multidimensional grid in the space domain. A lexicographic ordering of the mesh points is

introduced to organise the data in the stack. With such structure and the conforming construction of

the matrix A+ J , we transform the original PIDE into the system of ODE

d
dtf(t) = (A+ J) · f(t) (A.8)

The solution of the above equation provides the approximation of the Eq. (A.6). As noticed in the

previous section, in the context of the AML the solution of (A.8) is obtained via the matrix exponential

of the system matrix, as in (A.7). Differently from that, in Chapter 4 in order to accomplish the solution

of the pricing equation we apply the FDM also to the time domain, employing the implicit, the explicit

and the Crank-Nicholson method in combination to the operator splitting approach, see for instance

Duffy (2006). The latter method is particularly appealing for the sake of the dimensional reduction of

PIDE. However, we exploit this method to achieve a closer control of the operator stability, performing

the stability analysis for circumscribed components of the compounded operator.

A.3 The Nonlinear Filter

In this section we provide more details about the construction of the filter used for the estimation of the

latent system state in Chapter 3, while in the previous Appendix A.1 we have described the method for

dealing with the parameter estimation. Both techniques hinge on the partial integral-differential equation

defining the transition probability distribution of the main system, although the particular filter solution

we adopt avoids the construction of the likelihood function. This is a key feature that allows ease of

implementation. We remark that exploiting the filtering approach laid out in Maybeck (1982), we build

upon the same intuition to extend the time-propagation equation to a jump component.

In the context of filtering, the object of investigations is represented by the dynamics of a real valued,

continuous time multi-dimensional stochastic process {St}t∈[0,T ). We refer to the vector St as a system,

essentially because the stochastic differential equations describing the dynamics of its components are

interconnected. The system S is arranged into two blocks S = (X>, Y >)>, in relation to their observ-

ability. We indicate the observable components as Y , which is a function of X, the state of the system.

The system state X is fully or partially latent, that is its path can only be inferred from the information

coming through the measurement Y . The problem we tackle consists in the estimation of the trajectories

of the latent components, using only the information concerning the structure of the system dynamics

and the stream of the observations on Y , recorded at discrete times, {Yt-n , . . . , Yt-1 , Yt0}. In general,

St belongs to a parametric family and hence implicates a preliminary problem of estimation. In the

approach pursued in this work, we distinguish the task of inferring the latent trajectories from that of the

estimation of the model parameter, which is achieved with likelihood methods. This section is dedicated
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to the solution of the former problem that, as a key contribution to the literature, is extended to include

jump components. The construction of the likelihood that is employed in the experimental section of

Chapter 3 is pursued in Appendix A.1.

Filtering is the problem of finding the best estimate in a mean square sense of the state of the system,

that is the Gt-measurable random variable X̄t that minimises the path-wise distance from the true state

Xt. Let the probability space (Ω,F ,Ft,P) and let the flow of information as represented by the set

G ⊂ F , be respectively defined as the algebra of events representing the observable trajectories and

the full set of information about the system (X,Y ). The solution to the problem defined above, is the

projection from the space L2 (P) onto the space K ⊂ L2 (P) of the Gt-measurable random variables.

The projection operator corresponds to the expectation E [·|Gt], see Øksendal (2003). The following

aims to construct an approximation of the projection operator, when the stochastic process is a jump-

diffusion. Actually, because the observables are recorded only at discrete times, we need two projection

operators providing the latent state estimates. Filtering involves two equations defining the operators

of projection E [Xt |Gt−δt ] and E [Xt |Gt ]. In order to simplify notation, we will indistinctly indicate

Et|s [X] =: E [Xt |Gs ] := X̄t|s, s ≤ t. Corresponding to the previous expectations, the non-linear filter

is composed of the time-propagation equation, which moves the state estimates between the observation

times t− δt and t, the time segments being not necessarily equally spaced, whereas the update equation

generates the new estimate of the partially latent state vector Xt when a new observation Yt is available.

The problem amounts to the construction of the projection and update operators of the first two central

moments of the system state. Formally, the work space is given by the parametric system state

dX = b(X−;ϑ)dt+A(X−;ϑ)dW + J(z;X−, ϑ)dN (A.9)

The functions b, A include dependency on the parametric vector ϑ ∈ Θ. The jump size component vector

J depends on the mark point z, whose distribution is parametric and may depend on the state. The

random drivers of the system are the Brownian vector W and the Poisson counting process N , with

stochastic intensity λ(X−; θ). The random functions b, A and J are assumed to satisfy conditions that

grant a unique solution for Eq. (A.9) (see e.g. Platen and Bruti-Liberati, 2010), ∀θ ∈ Θ. In Eq. (A.9) we

make explicit the dependency on the left limit of X, that is its level immediately before the jump, if any.

Subsequently, this notation is dropped, whereby we focus on the construction of the estimation procedure.

For a complete treatment of the stochastic integral X and its components, see, e.g., Cont and Tankov

(2003), Hanson (2007). For the practical purpose of system estimation, we will assume that the jump

size vector of the synchronous jump can be written as J = G(z)f(X), with G = diag(g), where f and g

are mapping, respectively, from the domain of X and z, the mark point vector, to R• and the operator

diag(·) transforms a vector into a diagonal matrix. The definition of J makes the jump size dependent at

the same time on the mark-point vector z and on the state X, but in a way that allows the factorisation

of the jump-component and the state component in the time-propagation equation, introduced onward

in this section. The second component of the system is represented by the observation equation, where
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the observable Y is described as a function of the state X

Y = q(X) (A.10)

In the development of applications, in Eq. (A.10) we assume a simple linear form for q(X) = HX,

through the constant matrix H. This case is relevant, for example, for the stochastic volatility model,

where H is a pick matrix, or for a latent factor term structure model that targets the estimation of the

empirical measure. The extension of Eq. (A.10) to more general forms requires a further approximation

in the update equation, see e.g. Nielsen et al. (2000), Baadsgaard et al. (2000). See Christoffersen

et al. (2014) for a study of non-linearity in the observation equation in the case of an unscented Kalman

filter. Furthermore, we allow for a random hazard function where the jump intensity λ(X) is intended,

in general, as a function of the state. Assuming the intensity process be almost surely not negative and

with finite second order moments the differential of the hazard function Λ is defined as

dΛ = λ(X)dt (A.11)

therefore defining the jump component as random process governed by a state dependent Poisson jump

measure.

To conclude the construction of the nonlinear filter, we remark that in the classical filtering approach a

measurement error term E is included in the observation equation, Y = q(X) + E, usually employed

in the parameter estimation exercise. That approach is justified as long as the term E represented the

observed mismatch between the observed Y and the target function of the state, that is E = Y − q(X).

On the contrary, we deal with ancillary constituents of the functional form of the observations as further

latent components, therefore augmenting the system state X and letting E = 0. Evidence related to

the higher complexity of the residuals in financial applications can be found in Dempster and Tang

(2011). The first reason for this choice is operational, as we have found that the joint estimation of the

model parameters and the estimation of the path of the latent components by exploiting the likelihood

of observed residuals is subject to high uncertainty. Further reason for this choice can be traced in the

ambiguity about the attribution of the total variability among the several stochastic drivers accountable

for the explanation of the observed dynamics, such that the isolation of a residual variable collecting the

mismatching between the observations and the projected function of the latent state has to be deemed

redundant because such uncertainty is absorbed by some of the latent elements.

A.3.1 The Time-Propagation Equation

In order to construct optimal estimates of the state of the system X, which is observed at discrete

times only, we need conditions for the evolution of the system state projections between two observation

times. This is called the time-propagation equation. The idea in Maybeck (1982) is to derive possibly

approximated ordinary differential equations for the first two moments of X, cfr. Nielsen et al. (2000),

Baadsgaard et al. (2000). Considering the time derivative of the expectations d
dtEt|s[X] and d

dtEt|s[XX
>],
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we study the equations

d
dt

[
X̄
]

=
∫
X∂t[p] dx

d
dt

[
V̄
]

=
∫
XX>∂t[p] dx− d

dt

[
X̄
]
X̄> − X̄ d

dt

[
X̄
]> (A.12)

In Eq. (A.12), we substitute the forward equation (A.6) for the jump-diffusion transition probability p

to obtain an exact or an appropriately approximated ordinary differential equation (ODE) system for

X̄t|s and V̄t|s. The operators A and J indicate the partial differential and the integral component of

the forward equation. The aim is to calculate the solution of (A.12) for the jump-diffusion (A.9). To

obtain the solution the following integrals are involved
∫
X(A + J )[p] and

∫
XX>(A + J )[p] that

because of linearity can be handled separately with respect to each individual KFE operator. For the

same reason, further synchronous jumps can be easily included to the state model. We split Eq. (A.12)

into its diffusion and jump component, using linearity of the operators, that is d
dt [·] = d

dt [·]A + d
dt [·]J .

To simplify notation, we indicate the operator EP[·] with L·M and EQ[·] with J·K. We find that the diffusion

component of Eq. (A.12) is

Proposition A.3.1 (The Diffusion Component of the Time-Propagation Equation, Maybeck, 1982).

d
dt

[
X̄
]
A

= LbM

d
dt

[
V̄
]
A

= LCM + LbX>M + LXb>M− LbMX̄> − X̄LbM>
(A.13)

Proof. Recall the Forward Kolmogorov Equation associated to the pure diffusion version of Eq. (A.9)

(J = 0) and C = AA>

∂t[p] = 1
2

∑
ij

∂2
ij [Cijp]−

∑
i

∂i [bip] (A.14)

Where p represents the state transition density. Therefore, we can take the time derivative of the expec-

tation and combine with (A.14)

X̄t|s =

∫
dx pt|sX ⇒ d

dtX̄ =

∫
dx ∂tpX =

1
2

∫
dx
∑
ij

∂2
ij [Cijp]X −

∫
dx
∑
i

∂i [bip]X (A.15)

and simplify the expression. In fact, considering the generic component of the last term and integrating

by parts, we obtain

−
∫

dx ∂i [bip]X = −
∫
· · ·
∫

dx1 . . . dxi−1dxi+1 . . . dxn

∫
dxi ∂i [bip]X =∫

dx [bip] ∂iX =

∫
dx [bip] ei = eiLbiM.

Similarly, integrating by parts the first term we obtain

∫
dx p

∑
ij

Cij∂
2
ijX = 0

because ∂2
ijX = ∂iej = 0.
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In order to obtain the the evolutionary equation for the covariance of the X̄, we consider the expression

Vt|s = Et|s
[
XX>

]
− X̄t|sX̄

>
t|s

and obtain
d
dtVt|s = d

dtE
[
XX>

]
− d

dt

[
X̄
]
X̄> − X̄ d

dt

[
X̄
]>

Now, combining (A.14) with the d
dtE

[
XX>

]
and with the same argument as above we obtain

−
∫

dx
∑
i

∂i [bip]XX
> = −

∫
dx p

∑
i

bi∂iXX
>

but ∂iXX> = eiX
> +Xe>i , hence

−
∫

dx
∑
i

∂i [bip]XX
> = −

∫
dx p

(
bX> +Xb>

)
=

LbX>M + LXb>M

The last component of the expression for d
dtVt|s is

1
2

∫
dx
∑
ij

∂2
ij [Cijp]XX

> = 1
2

∫
dx p

∑
ij

Cij∂
2
ij

[
XX>

]
but

∑
ij

∂ijXX
> =

∑
ij

∂i
(
ejX

> +Xe>j
)

=


2 1 . . . 1

1 2 . . . 1
...

...
. . .

...

1 1 . . . 2


hence

1
2

∫
dx
∑
ij

∂2
ij [Cijp]XX

> = LCM.

The filter
(
X̄, V̄

)
can be extended with the same approach described above, adapting the integration

procedure to handle the jump component. We augment the time propagation equation as conceived by

Maybeck (1982) with a marked point Poisson element, which can be state-dependent in the jump intensity

function and in the jump size distribution. The intuition consists in exploiting the same approach as in

the deriving the propagation equation for the diffusion process, as applied to the jump operator of the

forward equation. We derive workable expressions for the estimation of the latent system-state, providing

the following formal ODE system.

Proposition A.3.2 (The Jump Component of the Time-Propagation Equation).

d
dt

[
X̄
]
J

= JGKLλfM =: U

d
dt

[
V̄
]
J

= JGKLλfX>M + LλXf>MJGK + Lλff>M� Jgg>K− UX̄> − X̄U>
(A.16)
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Proof. Consider the multi-dimensional synchronised pure jump forward equation

∂t[p] = − (λp) +

∫
Z

dQ(z; h) |∇h| (λp) ◦ h (A.17)

where Q is the jump size probability measure, h : X+ → X− is the post-jump transform, |∇h| is the

determinant of the Jacobian of h and we indicate by ◦ the function composition operator. The jump

intensity is the process λ(X). When calculating the first two moments of the state using (A.17) and taking

into account the distributional equality (J ?[u], v) = (u,J [v]), we notice that it is more convenient to

revert back to the pre-jump transform h(X+) = X−⇔X+ = X−+J(z;X−) and including the factorisable

hypothesis upon the jump J , we are left with the integrals

∫
dxdQ(z)λp(X + J)−

∫
dxλpX = JGKLλfM

and

∫
dxdQ(z)λp(X + J)(X + J)> −

∫
dxλpXX> = JGKLλfX>M + LλXf>MJGK + Lλff>M� Jgg>K

that combined yield the Eq. (A.16).

In the above, we have used the sign � to indicate component-wise multiplication. The jump component

(A.16) represents to the best of our knowledge a novel contribution to the literature and provides an

extension to the nonlinear filter of Maybeck (1982) and the most recent applications in finance of Nielsen

et al. (2000), Baadsgaard et al. (2000) and Hurn et al. (2013), which can be used for the estimation

of the latent state of jump-diffusions. In order to get a workable expression to use for computations

the time-propagation equations require the evaluation of the expectations on the RHS of the previous

differential expressions.

A.3.2 The Update Equation

The non-linear filter we have developed in the previous section has the purpose of projecting the system

between two consecutive times, carrying over the whole set of information inferred by the observation

vector for the sake of delivering the best estimate of the partially observed system state. Once the system

is at the observation time t and new information is collected about Y , we need a means to incorporate

such quantities into the system state estimate in an optimal way. The update equation consists of a

mechanism to estimate the expectation X̄t|t by refreshing the system state projection with the newly

arrived information Yt+ , which are the only observable quantities in the context of a latent system state.

The optimal filter X̄ represents the best estimate of the state under partial information, which is the

natural condition under which data on a phenomenon are presented to the researcher.

The update equation mainly consists of the application of Bayes’ rule, when conditioning the state

estimates onto the observed information set at current time. Assuming the update equation form is a

linear function of the residuals, it can be found that:
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Proposition A.3.3 (The update of a linear projection, Maybeck, 1982). The update equation for the

non-linear filter defined by Eqs. (A.13) and (A.16) is given by

X̄t|t = X̄t|s + ΣxyΣ−1
yy

(
Yt − Ȳt|s

)
V̄t|t = V̄t|s − ΣxyΣ−1

yy Σyx

(A.18)

with

Σyy = Et|s
[(
Yt − Ȳt|s

) (
Yt − Ȳt|s

)>]
Σxy = Et|s

[(
Xt − X̄t|s

) (
Yt − Ȳt|s

)>]
= Σ>yx

Proof. Following Maybeck (1982), we define two functions of the state vector X and the observed vector

Y , ψ(X) and θ(Y ) and, applying a version of the iterated expectations

Et|s [ψ(X)θ(Y )] = Et|s
[
Et|t [ψ(X)] θ(Y )

]
(A.19)

To obtain the Eq. (A.18) we assume the form

X̄t|t = at +At
(
Yt − Ȳt|s

)
V̄t|t = Σt

The update equation can therefore be obtained by defining appropriately the functions ψ and θ and then

plugging the definitions into the Eq. (A.19). The term at is obtained by letting ψ = Xt− X̄t|t and θ = 1,

whereas ψ = Xt − X̄t|t and θ =
(
Yt − Ȳt|s

)> entails that the (A.19) can be solved for At. The matrix Σt

can be obtained with ψ =
(
Xt − X̄t|t

) (
Xt − X̄t|t

)> and θ = 1 and substituting the definition of X̄t|t in

the RHS.

Embedding new information into X̄t|s about the observed residuals Yt − Ȳt|s imports into the states

estimates information that would be lost otherwise. We notice that as long as the updating procedure is

first order precise, it constitutes a source of bias for the filtering algorithm.

A.3.3 The Expectation Proxy

With Eqs. (A.13) and (A.16), we have obtained an ordinary differential system which describes the

projection operators for the first two central moments of the state-equation as a function of time. However,

it has to be noticed that Eq. (A.13) and Eq. (A.16) are only a formal definition, because the RHS is

in general unknown. In order to obtain a workable specification, we need to characterise this formal

statement of the time-propagation equations. The approach undertaken in this paper is along the lines

of the seminal papers cited above. The expectation of a generic scalar function of the state q(X) is

approximated by taking a Taylor series expansion of q around the current state estimate X̄ and applying

the operator E [·], to both side of the equation, cfr. Maybeck (1982), Nielsen et al. (2000), to obtain

E[q(X)] = q
(
X̄
)

+ 1
2 trace

[
∇2q

(
X̄
)
· V̄
]

+R, (A.20)
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where we neglect the remainder R, which contains a third order central moment function. The truncated

second order expansion introduces bias correction and can be seen as a stochastic equivalent of the ex-

tended Kalman filter2. It is interesting to notice that if the state function q(X) is at most quadratic,

the expansion in Eq. (A.20) is exact. In general, we have obtained an estimate of the time-propagation

equation for the jump diffusion (A.9), with state-dependent jump intensities and amplitudes. This ap-

proach differs from that undertaken in Hurn et al. (2013), which uses the quasi-likelihood to approximate

the integral with numerical quadrature. We believe this approach offers convenience in allowing for the

construction of the time-propagation equation for the estimation of the main projection operator in a

quasi-analytic form and further it can be coded in a very flexible fashion.

Example: state-independent affine jump-diffusion

From Eqs. (A.13), (A.16) and (A.20) it is evident that when the b and λ are affine, the jump size is state

independent and the diffusion matrix is at most a quadratic function of the state, the time propagation

equations are exact and can even be solved explicitly. For instance, in the affine jump-diffusion case,

when the jump intensity is λ(X) = λ0 +λ1 ·X and the synchronised jump vector J is state-independent,

we get the exact ODE system

d
dtX̄ = ã+ B̃X̄ (A.21)

d
dt V̄ = D̃ + B̃V̄ + V̄ B̃>

where

ã = a+ λ0

B̃ = B + JJKλ>1

D̃ = AD2
X̄A
> + (λ0 + λ1 · X̄)JJJ>K

which admits a closed form solution. In other situations we have to revert to an approximated ODE.

Example: non-affine volatility

When the stochastic system is not affine, we approximate the time-propagation equation via Eq. (A.20).

In this example, we look at a scalar pure diffusion, with an affine drift a + bX and a squared diffusion

function C = σ2X2γ , hence the ODE driving the system projection is then

d
dtX̄ = a+ bX̄ (A.22)

d
dt V̄ = σ2X̄2γ + σ2(2γ2 − γ)X̄2(γ−1)V̄ + 2bV̄

The expression (A.22) is used later within the experimental section, in junction with a larger system,

when conducting an exercise with a non-affine model.

2 The extended Kalman filter corresponds to a first order approximation within the same methodology, cfr., e.g., Lund
(1997) and in comparison with other methods in Duffee and Stanton (2012), Christoffersen et al. (2014).
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A.3.4 The NLF2 of the SD and SH Classes

Finally, elaborating on the general filtering formulas in Eqs. (A.13) and (A.16), we devise the propagation

equation for the specific filter employed in the experimental section, as follows. When ι = 1, the first

moment component of the propagation equation is given by

d
dt


ξ

v̄

ū

πx

πw

 =


−λ0j01

κ(1 − v̄)

θ2
[
v̄2γ + γ(2γ − 1) V̄22 v̄

2γ−2
]

λ0j01

λ0j02

 (A.23)

while the second moment element is

d
dt V̄ =


θ2

[
v̄2γ + γ(2γ − 1) V̄22 v̄

2γ−2
]

σρθ
[
v̄γ+1/2 + 1

2
(γ2 − 1

4
) V̄22 v̄

γ−3/2
]

0 0 0

σρθ
[
v̄γ+1/2 + 1

2
(γ2 − 1

4
) V̄22 v̄

γ−3/2
]

σ2v̄ 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

+

− κ


0 V̄12 0 0 0

V̄21 2V̄22 V̄23 V̄24 V̄25

0 V̄32 0 0 0

0 V̄42 0 0 0

0 V̄52 0 0 0

+ θ2γv̄2γ−1


0 0 V̄12 + V̄21 0 0

0 0 2V̄22 0 0

V̄12 + V̄21 2V̄22 2(V̄32 + V̄23) V̄42 + V̄24 V̄52 + V̄25

0 0 V̄42 + V̄24 0 0

0 0 V̄52 + V̄25 0 0

+

+


0 0 0 0 0

0 λ1j12 0 0 0

0 0 0 0 0

0 0 0 λ0j02 λ0j03

0 0 0 λ0j03 λ0j04


(A.24)

In the case when ι = 0, we consider models with high frequency of tiny jumps (j01 = 0) coupled with

a constant diffusion component; the latent factor v characterises the evolution of a stochastic hazard

rate, which can be a CEV function. The purpose consists in the analysis of the filter behaviour with

those models and their relative comparison with the family of models described above. As we will see

later on when introducing the parametric structure of the model set, the variance attribution between the

diffusion and the jump drivers is kept balanced, while some feature are intentionally set to high levels, like

the expected kurtosis, the asymmetry and the volatility excursion factor3, in order to observe the system

under emphasised features. In this configuration, the first moment component of the update equation is

given by

d
dt


ξ

v̄

ū

πx

πw

 =


0

κ(1 − v̄)

θ2

0

λ0j02

[
v̄2γ + γ(2γ − 1) V̄22 v̄

2γ−2
]

 (A.25)

3 By the volatility excursion factor we indicate the ratio 0 ≤ σ2

2(κ−λ1j11)
≤ 1, which regulates kurtosis and asymmetry

of the v factor distribution.
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while the second moment component is

d
dt V̄ =


θ2 σρθ

[√
v̄ − 1

8
V̄22 v̄

−3/2
]

0 0 0

σρθ
[√
v̄ − 1

8
V̄22 v̄

−3/2
]

σ2v̄ 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

− κ


0 V̄12 0 0 0

V̄21 2V̄22 V̄23 V̄24 V̄25

0 V̄32 0 0 0

0 V̄42 0 0 0

0 V̄52 0 0 0

+

+


0 0 0 0 0

0 λ1j12 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

+ λ0

[
v̄
2γ

+ γ(2γ − 1) V̄22 v̄
2γ−2

]


0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 j02 j03

0 0 0 j03 j04

+

+ λ0γv̄
2γ−1


0 0 0 j01(V̄12 + V̄21) j02(V̄12 + V̄21)

0 0 0 2j01V̄22 2j02V̄22

0 0 0 j01(V̄32 + V̄23) j02(V̄32 + V̄23)

j01(V̄12 + V̄21) 2j01V̄22 j01(V̄32 + V̄23) 2j01(V̄42 + V̄24) (j01 + j02)(V̄52 + V̄25)

j02(V̄12 + V̄21) 2j02V̄22 j02(V̄32 + V̄23) (j01 + j02)(V̄42 + V̄24) 2j02(V̄52 + V̄25)



(A.26)

The filter Eqs. (A.23), (A.24), (A.25) and (A.26) represent the first and second order projections of

the system state, which coupled with the update equation (A.18) provide, in general, a second order

approximation of the non linear filter solution for the path estimation of the latent components and the

stochastic drivers decomposition of the model class described in Eq. (3.1). In the stochastic diffusion

family, it is interesting to notice that for γ = 1/2 the solution is exact, whereas in the stochastic hazard

specification, the affine value of γ does not produce an affine and hence exact characterisation, because

of the approximated diffusion component in d
dt V̄ . From those equation it can also be seen that if V̄ (0) is

symmetric, then ¯V (t) is continuously symmetric. To our knowledge, general conditions for the positive

definiteness of V̄ are not known. Experimentally, it always turns out to be well formed.

Concerning the practice of including an exogenous component in the measurement equation to account

for a residual not explained variability in the observations, we remark that this ancillary variable is redun-

dant4, because of the presence of jumps, which carry a further source of measurement error. Nonetheless,

the inclusion of a variance proportional jump-type element in the update equation might be necessary

for operational purposes. In the simulated experiments we observe that the v component might in some

cases exhibit unjustified extreme jumps, probably due to the ex-post update mechanism and its poor

approximation order that can be accommodated by the introduction of a jump latent measurement error

variable that has the sole characteristic of attenuating those unaccountable events, cfr. Section 3.3.

A.4 Model Transformations

In this section we elaborate on the transformations that reconnect the model equations employed in

Chapter 3 and Chapter 4 to conventional models in literature.

We start by noticing that in Eq. (3.1) we use the linearised version of the geometric model, that is

x = logS, whereby S is conventionally the equity price or the index level. In strictly financial terms, we

are looking at the instantaneous intensities of growth x of the continuous compounding law S. Considering

the SDE, we notice we perform a first modification, for strictly statistical reasons. Specifically, if we have

4 It should be noticed that, when no measurement error is included, the update equation delivers exactly x at the fist
component of the observable Y .



A.4. MODEL TRANSFORMATIONS 168

the stochastic volatility model,

dS = S
√
v dW

where v is adapted, Markovian, mean reverting and positive almost certainly. The absence of a drift or

jump does not affect the result. Indeed, if we consider the log transform of the geometric motion, which

is characterised by the SDE

dx = − 1
2v dt+

√
v dW

we proceed with the computation of the first lag autocovariance of the process x. In order to do so, we

define the k steps forward return over the period ∆ computed at t, that is

∆X(k) = − 1
2

k+1∫
k

v(t+ ∆τ) dτ +

k+1∫
k

√
v(t+ ∆τ) dW (t+ ∆τ), k ∈ N0

First fact we notice is that the expectation of the forward return, that is

E [∆X(k) |Ft ] = − 1
2

k+1∫
k

E [v(t+ ∆τ) |Ft ] dτ

entailing that the transformation of the initial martingale model of the price generates a model of in-

stantaneous returns that are expected to have a negative drift. Now, this inconvenience is not major as

it can be corrected by modifying the model for x with a positive constant, assuming that the original

price model is trending upward in correspondence to empirical evidence. The problem with the statistical

analysis of the logarithmic transform of the initial model is the following. Elaborating from the price

model of S we obtain an SDE that is characterised by non zero autocovariance. In fact, considering that

v is Markovian and mean reverting, the mixed moment of the return with lag k becomes

E [∆X(0)∆X(k) |Ft ] = 1
4

k+1∫
k

E [v(t+ ∆)v(t+ ∆τ) |Ft ] dτ, k ∈ N

and because the joint distribution of ∆X(0) and ∆X(k) is non factorisable, the autocovariance function

will be different from 0, implying the presence of autocorrelation in the model for x, which cannot be

reconciled with the observed behaviour of market returns. As for in Chapter 3 we are performing the

statistical analysis of the return process, we modify the SDE in order to obtain a weekly stationary model

of the first order differences. Therefore, with respect to models formulated upon the price level and struc-

tured as a geometric process like the referenced models in Tab. 14, the stochastic model in the main

equation of Chapter 3 is the result of the application of the logarithmic transform, but by concurrently

dropping the Jensen term arising from the transformation and that would otherwise generate dynamic

features that do not fit the empirical evidence5. Nonetheless, this solution necessitates further investi-

gation, as we notice that the formulation of Eq. (3.1) entails the presence of the volatility component

in the drift of the price level S, which can be reconciled with the empirical evidence but that has been

5 On the other hand, in the case of the stochastic hazard class of Chapter 3, the latter consideration is unnecessary as
the logarithmic transform of jump-diffusions such as Merton (1976) and Kou (2002) do not produce a mean reversion term
in the drift of x.
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analysed in Benzoni (2002) and appears to show a non significant factor loading. For future research we

plan to develop a likelihood model of the price level, in order to avoid this modelling issue and further

align the historical and risk-neutral measure approach.

Another transformation that is necessary to reconcile the model version exploited in this thesis with the

standard versions presented in literature is that of the constant elasticity of variance model. In literature,

when referring to the CEV model for equity stock we retrieve two versions, a single factor and a two

factor model, both modelling the price level with a geometric process. In the first version, the plain BS

model whereby the stochastic diffusion factor is determined by a multiple of the level of price, is modified

by exponentiating the price level factor in the diffusion component, in order to modulate the response

to oscillation in the value of S. In the formulation of Beckers (1980) and Macbeth and Merville (1980),

disregarding the drift, the price SDE is the following

dS = σS1+γdW

In order to obtain the formulation of this thesis, we might in principle reshape the diffusion as σSuγdW ,

whereby in the original model the volatility factor u is perfectly correlated with price. This dependence

is loosen by introducing the auxiliary factor v of the Eq. (3.1) and (4.1)−(4.2). Another model that in

literature is referred to as the CEV model, is the stochastic volatility model employed in Jones (2003) and

Aït-Sahalia and Kimmel (2007), whereby the latent factor v is formulated as the Cox and Ross (1976)

model, which originally applied the SDE to model the dynamics of the short term interest rate. The

bivariate model is

dS = S
√
udW0

du = (a− bu) dt+ σu1+γ dW1

whereby the exponentiation factor 1+γ in the diffusion component of u produces acceleration or deceler-

ation of the volatility that increases or reduces the kurtosis of the return distribution, let the remaining

parameters be constant. Now, taking into consideration the difficulty of the parameter estimation exer-

cise, see for instance Dai and Singleton (2000), Aït-Sahalia and Kimmel (2007), Collin-Dufresne et al.

(2008), amplified by the latency of u and the second order action of γ, we apply a transformation to move

the γ parameter onto the observable x. Thus, with respect to the latter CEV formulation, we consider

only the model with a = 0 and introduce the transformation

V = u−2γ ⇔ u = V 2γ

obtaining, after redefinition of some coefficients

dS = SV γ dW0

dV = (ã− b̃V ) dt+ σ̃
√
V dW1

Eventually, appropriately rescaling the latent factor v = V/c, we can either fix the long-run average of
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the stochastic volatility factor or standardise its diffusion coefficient. The latter two transformations are

respectively used in Chapter 3 and Chapter 4 and determine the repositioning of the parameter from the

latent factor to the diffusion of the observable.

Finally, for the sake of precision, we mention that with respect to the log-normal volatility model of Scott

(1987) in Chapter 4 the equation is presented as a Gaussian mean reversion factor that is used as the

stochastic exponent in the diffusion of S, whereas in the original paper the SDE of the diffusion is written

as a geometric mean reversion. A straightforward application of stochastic calculus yields the version of

this thesis. Furthermore, we also scale the latent factor in order to obtain a standardised diffusion. As a

consequence, the parameter γ0 in the log-normal volatility model in Eq. (4.1)−(4.3) acts as a rescaling

of x, although the parameter θ produces the same effect upon the stochastic diffusion. The latter con-

siderations entails the structural redundancy of the LEV factors that are affected by uncertainty in the

context of optimisation, whereby they tend to be shrunk towards output values not significantly different

from 0.5, or even lower, but at the same time transferring variability to the jump component.
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Pseudo-Codes

In this section, we present several algorithms used in the analysis, arranged in pseudo code. The

main routines which are called have significant names that allow to deduce the functions they embed.

However, the codes do not follow any standard syntax and might not necessarily compile or run even if

the called function or the several variables’ and objects’ definition were provided. The following routines

are intended primarily to exemplify and clarify the calculation steps of the program, presenting the main

variables and loops.
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B.1 The AML algorithm

The likelihood function of the process described by the Eq. (3.1) and illustrated in Appendix A.1 is

presented in this section in a pseudo-code snippet. Disregarding consistency check functions and ancillary

procedures and implying that some of the output variables are global and hence not all of them are passed

to the subsequent procedures. In general, we assume that the necessary data are progressively produced

and then used. The main steps are summarised by the sub-functions that, in the order of presentation,

determine the range of variation for the variable v, practically fixing the upper bound in relation to the

parametric value; solve the PIDE for each initial condition in the vector v0, assuming the initial condition

for x is always 0 (the solver determines the solution grid according to the projected variance); merge all

the solution grids and adjusting the functions by interpolation in order to have an individual solution

grid for each initial condition; eventually integrate out the v dimension and finally the initial condition,

by weighting for the stationary distribution of v. Once obtained the marginal individual likelihood, the

x data are exploited to determine the sample likelihood L. Formally,

vec to r v0 = v_domain ( theta ) ;

int k = v . s i z e 1 ( ) ;

mesh2 X0(k ) ;

mesh2 V0(k ) ;

mesh2 F0(k ) ;

for ( int i =0; i<k ; i++){

T = jd_so lver ( theta , v0 ( i ) , t ) ;

X0 . data2 ( i ) = get<0>(T) ;

V0 . data2 ( i ) = get<1>(T) ;

F0 . data2 ( i ) = get<2>(T) ;

}

T = merge (X0 ,V0 , F0 ) ;

matrix X( get<0>(T) ) ;

matrix V( get<1>(T) ) ;

mesh2 F( get<2>(T) ) ;

T = stat ionary_v ( theta ) ;

vec to r vs ( get<0>(T) ) ;

vec to r f s ( get <1>(T) ) ;

T = jd_marginal ise_v1 (X,V,F ) ;

vec to r x = get<0>(T) ;

matrix G = get<1>(T) ;
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vecto r l = jd_marginal ise_v0 (v0 ,G) ;

double L = l i k e l i h o o d (x , l , x_data ) ;
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B.2 The SIR−PF algorithm

The SIR−PF algorithm introduced in Section 3.3.1.1 is summarised in a pseudo-code snippet in the

following. It is assumed that the loop is initiated with a single particle x0 as the prescribed initial

condition of the system state. In practice, the initial condition is equal to the long-run value at the v0

component and zeroed elsewhere. Therefore, the first iteration produces R ×M particles, conditioned

on x0, whereas, after the first resampling, the main iteration produces R particles for each M initial

condition and successively weighting by importance sampling and eventually resampling. It should be

noticed that while simulating the transition density the drawns can be organised on appropriate grids,

whereas skipping the meshing would entail that each trajectories has individual probability π(j)
i = 1/R,

simplifying the whole procedure. Formally,

p a r t i c l e s points_0 (M) ;

p a r t i c l e s points_1 (R∗M) ;

vec to r prob (M) ;

T = sampling_trans_prob ( x_0 , theta , R∗M ) ;

points_1 = get<0>(T) ;

prob = pointwise_mult ( get<1>(T) , observat ion_weight ings ( points_1 , Y(0) ) ) ;

point_0 = importance_resampling ( points_1 , prob ) ;

branches<pa r t i c l e s > Branch (R,M) ;

matrix Prob (R,M) ;

int n = Y. l ength ( ) ;

matrix X(d , n+1);

X. column (0) = x_0 ;

X. column (1) = point_0 .mean ( ) ;

for ( int i =1; i<n ; i++){

for ( int j =0; j<M; j++){

T = trans_prob_grid ( po in t s ( j ) , theta , R ) ;

Branch . data ( j ) = get<0>(T) ;

Prob . column ( j ) = get<1>(T) ;

}

T = f l a t t e n ( Branch , Prob ) ;

points_1 = get<0>(T) ;

prob = pointwise_mult ( get<1>(T) , observat ion_weight ings ( points_1 , Y( i ) ) ) ;

point_0 = importance_resampling ( points_1 , prob ) ;

X. column ( i +1) = point_0 .mean ( ) ;

}
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B.3 The MSE algorithm

The following pseudo-code illustrates the core calculation of the MSE, as it is performed in the context

of the parameters calibration and in the bootstrapping of the MSE sample. In the former case, it is

assumed that the function containing the MSE procedure is the input of the optimisation algorithm,

whereas in the latter case the MSE calculation is inserted in a loop whereby the bootstrapped option

data define the option pricing error sample bootstrap, for each model. Within the following routine, the

sub-optimisation of the volatility variable is made explicit. It is important to notice that the dynamic

dimension of the volatility is disregarded. The volatility path that optimises the MSE of the option pricing

function is achieved without progressively conditioning upon the information gathered up to current time,

but instead selecting the volatility that minimises the MSE daily, altogether. This procedure does not

involve any progression of the system state. This choice might also be regarded as the intention of letting

the market drive the volatility measurement. The code assumes that, in the context of calibration, the

interest rate data are rounded across a fixed grid, whereas when bootstrapping, the overall interest rate

average is used and the wrapping cycle that performs the interpolation at each interest rate data point is

excluded. The procedure produces model prices across four dimension, that is the underlying level, the

time-to-maturity, the volatility and the interest rate.

T = jd_pr ic ing (model , days , gr id_s ize , theta ) ;

poly_cube Cal l = get<0>(T) ;

poly_cube Put = get<1>(T) ;

cube S = get<2>(T) ;

cube T = get<3>(T) ;

cube V = get<4>(T) ;

vec to r r = get<5>(T) ;

vec to r vo l = get<6>(T) ;

matrix H;

matrix D;

for ( int i =0; i<r . s i z e 1 ( ) ; i++){

T = data_se lec t ( cal l_data , s_call_data , ttm_call_data , . . .

put_data , s_put_data , ttm_put_data , Cal l , Put , r ( i ) ) ;

cd = get<0>(T) ;

s_cd = get<1>(T) ;

ttm_cd = get<2>(T) ;

day_cd = get<3>(T) ;

pd = get<4>(T) ;

s_pd = get<5>(T) ;

ttm_pd = get<6>(T) ;

day_pd = get<7>(T) ;

c a l l = get<8>(T) ;
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put = get<9>(T) ;

for ( int j =0; j<vo l . s i z e 1 ( ) ; j++){

c = in t e rp3 (S ,T,V, c a l l , s_cd , ttm_cd , vo l ( j ) ) ;

p = in t e rp3 (S ,T,V, put , s_pd , ttm_pd , vo l ( j ) ) ;

sqe_c . Column( j )= ( c−cd ) . ^ 2 ;

sqe_p . Column( j )= (p−pd ) . ^ 2 ;

}

H. Expand( sqe_c ) ;

H. Expand( sqe_p ) ;

D. Expand(day_cd ) ;

D. Expand(day_pd ) ;

}

matrix K( aggregate_by_index (D, H) ) ;

T = min (K, 2 ) ;

mse = mean( get<0>(T) ) ;

Vol = vo l ( get <1>(T) ) ;
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