
Learning to Represent, Categorise
and Rank in Community

Question Answering

Daria Bogdanova

Diploma in Applied Mathematics and Computer Science

A dissertation submitted in fulfilment of the requirements for the award of

Doctor of Philosophy (Ph.D.)

to the

Dublin City University

School of Computing

Supervisors:
Dr. Jennifer Foster

Prof. Qun Liu

January 2018



I hereby certify that this material, which I now submit for assessment on the
programme of study leading to the award of Ph.D. is entirely my own work, that
I have exercised reasonable care to ensure that the work is original, and does not
to the best of my knowledge breach any law of copyright, and has not been taken
from the work of others save and to the extent that such work has been cited and
acknowledged within the text of my work.

Signed:

(Candidate) ID No.: 13211109

Date:



Contents

Abstract xi

Publications xii

Acknowledgements xiii

1 Introduction 1

1.1 Question Types in Question Answering . . . . . . . . . . . . . . . . . 4

1.2 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.4 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Deep Learning for Natural Language Processing 15

2.1 Logistic Classifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Artificial Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.1 Artificial Neuron . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.2 Activation Function . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 Architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.1 Multilayer Perceptron . . . . . . . . . . . . . . . . . . . . . . 20

2.3.2 Convolutional Neural Networks . . . . . . . . . . . . . . . . . 21

2.3.3 Recurrent Neural Networks . . . . . . . . . . . . . . . . . . . 24

2.3.4 Other Architectures . . . . . . . . . . . . . . . . . . . . . . . . 34

2.4 Training Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . 34

2.4.1 Parameter Initialisation . . . . . . . . . . . . . . . . . . . . . 35

i



2.4.2 Stochastic Gradient Descent . . . . . . . . . . . . . . . . . . . 37

2.4.3 Overfitting and Regularisation . . . . . . . . . . . . . . . . . . 37

2.5 Unsupervised Pretraining . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.5.1 Word Embeddings . . . . . . . . . . . . . . . . . . . . . . . . 40

2.6 Hyperparameter Tuning . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3 Detecting Semantically Equivalent Questions in CQAs 48

3.1 Question Classification Task . . . . . . . . . . . . . . . . . . . . . . . 50

3.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.2.1 Neural Network Architecture . . . . . . . . . . . . . . . . . . . 52

3.3 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.3.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.3.2 Baselines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.3.3 Word Embeddings . . . . . . . . . . . . . . . . . . . . . . . . 56

3.3.4 Hyperparameters . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.4 Comparison with Baselines . . . . . . . . . . . . . . . . . . . . . . . . 57

3.5 Impact of Domain-Specific Word Embeddings . . . . . . . . . . . . . 58

3.6 Impact of Training Set Size . . . . . . . . . . . . . . . . . . . . . . . 60

3.7 Experiments on a Different Domain . . . . . . . . . . . . . . . . . . . 61

3.8 Error Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.9 The Chapter Reexamined . . . . . . . . . . . . . . . . . . . . . . . . 63

3.10 Related Work on Question Retrieval . . . . . . . . . . . . . . . . . . 64

3.10.1 Rules and Templates for Question Retrieval . . . . . . . . . . 64

3.10.2 Statistical Techniques for Question Retrieval . . . . . . . . . . 65

3.10.3 Representation Learning for Question Retrieval . . . . . . . . 67

3.11 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4 Learning to Rank Answers 69

4.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

ii



4.1.1 Non-Factoid Answer Ranking . . . . . . . . . . . . . . . . . . 70

4.1.2 Ranking Scenarios in CQAs . . . . . . . . . . . . . . . . . . . 71

4.1.3 Features for Non-Factoid Answer Ranking . . . . . . . . . . . 73

4.1.4 Feature-Based Predictors . . . . . . . . . . . . . . . . . . . . . 82

4.1.5 Beyond Feature-Based Approaches . . . . . . . . . . . . . . . 83

4.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.2.1 Learning to Rank Answers . . . . . . . . . . . . . . . . . . . . 88

4.2.2 Answer Ranking with Multilayer Perceptron . . . . . . . . . . 90

4.2.3 Data Representation . . . . . . . . . . . . . . . . . . . . . . . 91

4.3 Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.4 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.4.1 Baselines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.4.2 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . 95

4.4.3 Data Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . 96

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5 Answer Ranking with Paragraph Vector 98

5.1 Paragraph Vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.1.1 Distributed Memory Model . . . . . . . . . . . . . . . . . . . 99

5.1.2 Distributed Bag-of-Words . . . . . . . . . . . . . . . . . . . . 101

5.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.2.1 Ask Ubuntu Question Representation . . . . . . . . . . . . . . 104

5.2.2 DBOW versus DM . . . . . . . . . . . . . . . . . . . . . . . . 105

5.2.3 The Impact of the Paragraph Vector Size . . . . . . . . . . . . 107

5.2.4 Paragraph Vector Representations for New Documents . . . . 108

5.2.5 The Impact of the Pretraining Corpus . . . . . . . . . . . . . 110

5.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6 Learning Representations for Answer Ranking 112

6.1 RNN Encoder for Answer Ranking . . . . . . . . . . . . . . . . . . . 113

iii



6.1.1 Prediction and Training . . . . . . . . . . . . . . . . . . . . . 114

6.1.2 LSTM versus GRU for Answer Ranking . . . . . . . . . . . . 116

6.1.3 Augmenting the Representations . . . . . . . . . . . . . . . . 118

6.2 Answer Ranking with Convolutional Neural Networks . . . . . . . . . 121

6.2.1 Hyperparameters . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.2.2 CNN versus RNN for Answer Ranking . . . . . . . . . . . . . 124

6.3 Multi-Channel Recurrent Convolutional Neural Network . . . . . . . 125

6.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

7 Further Analysis of Answer Ranking 129

7.1 Character-level versus Word-level Embeddings . . . . . . . . . . . . . 130

7.2 Injecting Discourse Features into the Neural System . . . . . . . . . . 131

7.2.1 Discourse Features . . . . . . . . . . . . . . . . . . . . . . . . 132

7.3 The Impact of Pretrained Word Embeddings . . . . . . . . . . . . . . 134

7.4 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

7.5 Experiments on SemEval Data . . . . . . . . . . . . . . . . . . . . . . 141

7.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

8 Conclusion 145

8.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

8.1.1 Creation of Gold Standards . . . . . . . . . . . . . . . . . . . 148

8.1.2 Developing Interpretable Neural Architectures . . . . . . . . . 149

8.1.3 Developing Strategies for Hyperparameter Tuning . . . . . . . 150

8.1.4 Question Answering Evaluation . . . . . . . . . . . . . . . . . 150

8.1.5 Question Type Classification . . . . . . . . . . . . . . . . . . . 151

8.1.6 End-to-End Live Question Answering . . . . . . . . . . . . . . 153

Bibliography 155

iv



List of Figures

1.1 Example of a troubleshooting query. . . . . . . . . . . . . . . . . . . . 2

2.1 Example of a model for spam classification. . . . . . . . . . . . . . . . 20

2.2 Illustration of a multilayer perceptron with one hidden layer. . . . . . 21

2.3 Illustration of a two-dimensional convolution. . . . . . . . . . . . . . 23

2.4 Illustration of a max-pooling operation with a kernel of size 2x2 and

a stride of 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.5 Illustration of a convolutional neural network applied to a sentence. . 25

2.6 Illustration of a vanilla recurrent neural network. . . . . . . . . . . . 26

2.7 Illustration of an unrolled vanilla recurrent neural network. . . . . . . 26

2.8 Illustration of an LSTM cell. . . . . . . . . . . . . . . . . . . . . . . . 28

2.9 Illustration of a GRU cell. . . . . . . . . . . . . . . . . . . . . . . . . 29

2.10 Illustration of a bidirectional recurrent neural network. . . . . . . . . 30

2.11 Illustration of a stacked bidirectional RNN with two layers. . . . . . . 31

2.12 Illustration of an RNN encoder-decoder architecture . . . . . . . . . . 33

2.13 Illustration of an MLP before and after dropout. . . . . . . . . . . . . 39

2.14 High-level illustration of a CBOW model. . . . . . . . . . . . . . . . . 40

2.15 High-level illustration of a skip-gram model. . . . . . . . . . . . . . . 40

2.16 Illustration of the CBOW model for the word panda in context the

panda eats. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.17 Illustration of the skip-gram model predicting the words the and eats

given the word panda. . . . . . . . . . . . . . . . . . . . . . . . . . . 43

v



2.18 Illustration of the learning process with a high learning rate . . . . . 45

2.19 Illustration of the learning process with a low learning rate . . . . . . 45

3.1 Convolutional neural network for semantically equivalent questions

detection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.2 CNN accuracy depending on the size of word embeddings . . . . . . . 60

3.3 Development accuracy for the baseline and the CNN depending on

the size of training set. . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.1 Illustration of a Yahoo! Answers Thread. . . . . . . . . . . . . . . . . 70

4.2 Illustration of a typical deep learning architecture for answer ranking. 84

4.3 Flowchart of our approach to answer ranking. . . . . . . . . . . . . . 90

5.1 Illustration of the DM model for the word panda in context the panda

eats. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.2 Illustration of the DBOW model for learning a vector representation

of the sentence The panda eats . . . . . . . . . . . . . . . . . . . . . . 102

5.3 Illustration of the method based on the Paragraph Vector and an MLP.104

5.4 Development P@1 and test P@1 for the DBOW model with 50, 100,

200, 300 and 400-dimensional representations on the YA dataset. . . . 107

6.1 RNN-MLP model for answer ranking. . . . . . . . . . . . . . . . . . . 115

6.2 Example of a factoid question from TREC QA dataset with its correct

answer and a possible alignment between them. Note that attention

mechanisms define a soft alignment rather than the precise alignment

represented here. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.3 RNN-MLP model with explicitly encoded interactions between ques-

tion and answer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.4 Illustration of a CNN encoder for answer ranking. . . . . . . . . . . . 123

6.5 Illustration of MC-RCNN model. . . . . . . . . . . . . . . . . . . . . 127

vi



7.1 Illustration of a neural architecture that incorporates additional fea-

tures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

7.2 Feature generation for the discourse marker model of Jansen et al.

(2014) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

7.3 Average P@1 of the LSTM-MLP-Discourse versus the Random base-

line on the test questions from most common YA categories. . . . . . 140

vii



List of Tables

1.1 Comparison of factoid and non-factoid question answering. . . . . . . 6

3.1 An example of semantically equivalent questions from Ask Ubuntu

community. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2 Development Accuracy and best parameters for the baselines and the

Convolutional Neural Network. . . . . . . . . . . . . . . . . . . . . . 59

3.3 CNN and SVM accuracy on the development and the test set using

the full training set. . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.4 Development Accuracy of the CNN with word embeddings pretrained

on different corpora. . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.5 Convolutional Neural Network Accuracy tested on Meta Stack Ex-

change community data. . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.1 Comparative summary of the feature-based approaches to non-factoid

answer ranking. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.2 Comparative Summary of Neural Approaches in CQA . . . . . . . . . 87

4.3 Example question and answers from the Yahoo! Answers dataset. . . 93

4.4 Example question and answers from the Ask Ubuntu dataset. . . . . 93

4.5 Comparative statistics on the datasets used in the answer reranking

experiments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.1 Details on the corpora used to train the Paragraph Vector models. . . 103

5.2 DBOW performance: title versus body representation of the AU data. 105

viii



5.3 Answer ranking results of the Paragraph Vector model in combination

with an MLP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.4 Comparison of the MLP performance using the extracted PV repre-

sentations versus using the inferred PV representations. . . . . . . . . 108

5.5 Comparison of the MLP performance using the DBOW representa-

tions inferred using a model trained on in-domain data versus the one

trained on Wikipedia. . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.1 Number of trainable parameters of the RNN-MLP model. . . . . . . . 116

6.2 Performance of the GRU and the LSTM encoders versus the baselines

for answer ranking. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.3 Comparison of variations of encodings with LSTMs for answer ranking.121

6.4 Answer ranking performance when using the RNN versus the CNN

encoder. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.5 Performance of the system with a MC-RCNN encoder versus the RNN

and the CNN-based systems. . . . . . . . . . . . . . . . . . . . . . . . 128

7.1 Answer reranking performance of different models when using word-

level versus character-level embeddings. . . . . . . . . . . . . . . . . . 131

7.2 Experimental results on the test set for different encoders with and

without discourse features. . . . . . . . . . . . . . . . . . . . . . . . . 135

7.3 Details on the corpora used to pretrain the skip-gram model. . . . . . 135

7.4 Performance of the best performing models with random and pre-

trained embeddings. . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

7.5 Example incorrect predictions of the system on the Yahoo! Answers

dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

7.6 Example incorrect predictions of the system on the Ask Ubuntu dataset.140

7.7 Details about Semeval 2016 Task 3 Subtask A data. . . . . . . . . . . 141

7.8 MAP on the Semeval 2016 Task 3 Subtask A development set. . . . . 142

ix



7.9 Performance on the Semeval 2016 Task 3 Subtask A test set. Calcu-

lated using the official scorer. . . . . . . . . . . . . . . . . . . . . . . 142

x



Learning to Represent, Categorise and Rank in
Community Question Answering

Daria Bogdanova

Abstract

The task of Question Answering (QA) is arguably one of the oldest tasks in Natu-

ral Language Processing, attracting high levels of interest from both industry and

academia. However, most research has focused on factoid questions, e.g. Who is

the president of Ireland? In contrast, research on answering non-factoid questions,

such as manner, reason, difference and opinion questions, has been rather piecemeal.

This was largely due to the absence of available labelled data for the task. This is

changing, however, with the growing popularity of Community Question Answering

(CQA) websites, such as Quora, Yahoo! Answers and the Stack Exchange family of

forums. These websites provide natural labelled data allowing us to apply machine

learning techniques.

Most previous state-of-the-art approaches to the tasks of CQA-based question

answering involved handcrafted features in combination with linear models. In this

thesis we hypothesise that the use of handcrafted features can be avoided and the

tasks can be approached with representation learning techniques, specifically deep

learning.

In the first part of this thesis we give an overview of deep learning in natural

language processing and empirically evaluate our hypothesis on the task of detecting

semantically equivalent questions, i.e. predicting if two questions can be answered

by the same answer.

In the second part of the thesis we address the task of answer ranking, i.e. de-

termining how suitable an answer is for a given question. In order to determine the

suitability of representation learning for the task of answer ranking, we provide a rig-

orous experimental evaluation of various neural architectures, based on feedforward,

recurrent and convolutional neural networks, as well as their combinations.

This thesis shows that deep learning is a very suitable approach to CQA-based

QA, achieving state-of-the-art results on the two tasks we addressed.

xi
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Chapter 1

Introduction

Searching for information online has become a part of our day-to-day life. Modern

search engines usually deal very well with simple fact seeking queries, such as find-

ing out when Saint Patrick’s Day is celebrated or looking up a phone number of a

nearby restaurant. However, searching may become much more tiresome when the

search goes beyond look up or fact retrieval (Marchionini, 2006; Cartright et al.,

2011). This is the case when one is looking for a solution to a complex problem.

An example of such a problem is shown in Figure 1.1 – the search results do not

show a straightforward solution for this troubleshooting query. Community question

answering websites (CQA), such as Quora1, Yahoo! Answers2 and Stack Exchange3,

were designed to address this issue and allow users to obtain answers to their ques-

tions directly from other users. A CQA can be viewed as a particular type of web

forum designed to facilitate finding answers to questions. Like traditional web fo-

rums, CQAs are often organised by topic, e.g. programming or travelling. However,

unlike traditional web forums, in CQAs social conversational posts, e.g. how are

you today?, are not allowed or at least are discouraged and penalised. Nonetheless,

these forums do not restrict information seeking questions to any particular type

and contain a large proportion of non-factoid and narrative questions that remain

1http://www.quora.com
2http://www.answers.yahoo.com
3https://www.stackexchange.com/

1

http://www.quora.com
http://www.answers.yahoo.com
https://www.stackexchange.com/


Figure 1.1: Example of a troubleshooting query, where Google search results do
not readily provide the solution, with most search results coming from various user
forums.

a challenge not only for search engines but also for modern question answering sys-

tems. Note that questions asked on CQAs are often not questions in the strict sense,

as people use these forums to find solutions to the problems, e.g. “I recently up-

dated firewall setting (...) and now I am unable to download torrents (...)”4 Before

the advent of CQAs, this kind of question has been rarely addressed in automatic

question answering studies, mostly due to the absence of labelled data.

CQAs offer large amounts of questions along with their answers, allowing ma-

chine learning approaches to learn how to answer these questions. In most CQAs,

4https://askubuntu.com/questions/919790/unable-to-download-torrent-in-
transmission-after-updating-firewall
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a user who posts a question can then accept one of the answers to it, i.e. label it

as correct. These user-provided labels allow us to use this data as training data

for machine learning techniques. Nonetheless, using CQAs as a source of answers

for automatic question answering raises a few challenges. The first one relates to

the fact that there are many ways to ask the same question. Thus, finding useful

questions becomes challenging. The second challenge relates to answer quality, i.e.

not all answers posted on a CQA are useful.

In this thesis we explore the use of CQAs as an answer source in question answer-

ing, particularly focusing on deep learning techniques. By deep learning we mean

machine learning approaches involving artificial neural networks. The research de-

scribed in this thesis was started in 2013 when deep learning approaches were not

common in Natural Language Processing (NLP). A typical approach to many tasks

before the rise of deep learning in NLP was in developing features for the task and

then using machine learning to optimise weights of these features (Manning, 2017;

LeCun et al., 2015). The success of such an approach was mostly due to the clever

feature design and successful numerical optimisation. The feature design or fea-

ture engineering usually required much human effort and domain knowledge. In

contrast, deep learning approaches learn the representations needed for the task

automatically. The word deep in deep learning refers to learning various levels of

representation, starting from raw data and gradually learning more and more ab-

stract representations. CQA sites contain noisy user-generated data which poses a

challenge for many state-of-the-art NLP tools including part-of-speech taggers and

parsers (Foster et al., 2011) and named entity recognisers (Ritter et al., 2011). One

reason to focus on neural approaches is that they hold the promise of obviating

the need for feature engineering, and in doing so allowing us to avoid propagating

errors made by external NLP tools. Moreover, these methods have recently shown

a lot of promise for other NLP applications. In this thesis we hypothesise that the

use of handcrafted features can be avoided and the tasks can be approached with

representation learning techniques, specifically deep learning.
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The rest of this chapter is structured as follows: in Section 1.1 we place the

CQA-based approaches in the context of question answering research and discuss

question types in QA. In Section 1.2 we formulate the research questions we are

addressing in this thesis. In Section 1.3 we summarise the contributions of this

thesis. We give an overview of each of the following chapters in Section 1.4.

1.1 Question Types in Question Answering

The task of Question Answering (QA) is arguably one of the oldest tasks in Natural

Language Processing (NLP), attracting high levels of interest from both industry

and academia. The goal of this task is to provide an answer to a given question.

In fact, question answering can be split into several related areas that all share this

goal but differ in the types of questions they aim to answer:

Factoid Question Answering aims at answering factoid questions, i.e. questions

that “can be answered with simple facts expressed in short text answers” (Ju-

rafsky and Martin, 2014). These answers are usually expressed as numeric or

named entities. Soricut and Brill (2004) refer to factoid questions as “questions

for which a complete answer can be given in 50 bytes or less, which is roughly

a few words”. Factoid QA is a widely addressed task (Ferrucci et al., 2010;

Berant et al., 2013; Iyyer et al., 2014; Voorhees and Tice, 1999), and what is

usually referred to as question answering. The popularity of research on this

type of question was partially due to the Text Retrieval Evaluation Conference

(TREC) that introduced a question answering track in 1999 and since then

has encouraged many research studies by providing a platform for evaluation

and making labelled datasets available. The TREC QA track organisers took

care to “select questions with straightforward, obvious answers”(Voorhees and

Tice, 1999) to facilitate manual assessment, e.g. the TREC questions What is

the name of the managing director of Apricot Computer? and What was the

monetary value of the Nobel Prize in 1989? Methods for factoid question an-
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swering can be divided into systems based on a knowledge base and IR-based

systems. Knowledge base systems (Berant et al., 2013; Fader et al., 2013)

build a semantic representation of the question that is then used to query

a database, such as Freebase.5 Knowledge bases used for question answer-

ing contain (entity, property, entity) triples called assertions, e.g. (Dublin,

CapitalOf, Ireland). The QA systems usually apply semantic parsing to

questions, i.e. convert them to a logical form that can be executed on a

knowledge base. An example of such a logical form is Lambda Dependency-

Based Compositional Semantics (λ-DCS) proposed by Liang (2013) and used

by Berant et al. (2013). This model simplifies lambda calculus for the pur-

poses of question answering. For instance, the logical form for a “writer born

in Dublin” would be Profession.Writer u PlaceOfBirth.Dublin, where u

stands for logical intersection.

IR-based systems (Monz, 2004; Paşca, 2003) typically apply the following steps

to perform question answering:

1. question processing in order to detect the type of the answer (person,

location, number etc.). The question hierarchy of Li and Roth (2006)

is often used. This hierarchy contains six coarse classes (ABBREVIATION,

NUMERIC VALUE, ENTITY, HUMAN, LOCATION and DESCRIPTION) and fifty

fine-grained classes (e.g. entities: animal, colour, food; locations: city,

country etc.);

2. query formulation from the question. This may involve query reformu-

lation or expansion (Lin, 2007), e.g. removing the wh-word: When was

the telephone invented? can be reformulated as telephone was invented.

In contrast to the knowledge base approaches, the IR approaches do not

convert the question into a logical form, and use natural language queries

instead;

5http://www.freebase.com, was discontinued and merged with Wikidata (http://
www.wikidata.org/) in 2015.
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Factoid Non-factoid

Answer
Short, usually a named
entity

Usually longer, not a named
entity

Evaluation
Automatic, String matching Manual, laborious

Main
Resources

TREC benchmarks CQAs

Example
Question: Who invented the
telescope?

Question: How does the
telescope work?

Answer Type: Person Answer Type: Paragraph

Answer: Hans Lippershey

Answer: It uses two mirrors
to magnify incoming light
and form an image for the
eye or an instrument (...)

Table 1.1: Comparison of factoid and non-factoid question answering.

3. document and passage retrieval. Documents are retrieved using a

search engine, then they are broken down into passages;

4. answer processing that extracts the answers from these passages and

ranks them.

An overview of IR-based techniques for factoid QA can be found in Kolomiyets

and Moens (2011).

Non-Factoid Question Answering: This task aims to answer non-factoid (NF)

questions, i.e. questions that are not factoid, such as, for instance, manner

(how) and reason (why) questions. These questions are sometimes also re-

ferred to as narrative questions. Non-factoid questions usually require a

more complex and longer answer than factoid questions. Table 1.1 provides a

comparison of the tasks of factoid and non-factoid question answering.

Research on answering non-factoid questions has been rather piecemeal, largely

due to the absence of available labelled data for the task. Moreover, the nature

of non-factoid questions does not allow automatic evaluation methods to be

used, and thus, requires laborious manual evaluation.
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Methods for non-factoid QA can be roughly divided into (1) Web-based and

(2) CQA-based. The first group of methods adapts the information retrieval

paradigm for factoid QA. First, candidate passages are retrieved using an

information retrieval method, such as BM25 (Robertson et al., 1994), and

then the passages are reranked using more expensive techniques. For instance,

web-based approaches are presented by Keikha et al. (2014) and Yang et al.

(2016). Their findings show that the task is challenging and existing methods

do not perform well on this task. Yang et al. (2016) also showed that the

IR-based approach to factoid QA of Yu et al. (2014) does not perform well

when applied to non-factoid QA, however, adding additional semantic features,

such as vectors obtained with Explicit Semantic Analysis (Gabrilovich and

Markovitch, 2009), improves the performance.

The CQA-based methods use CQA websites as a source of answers. In fact, in

CQA websites, the questions are not interpreted in the strict sense, i.e. they

go beyond the sentence level and rather describe a problem. They may ask

none (e.g. When I login, nothing happens. I am presented with my desktop

wallpaper. No Dash, no Launcher, nothing.6) or several questions (e.g. I’m

absolutely new to Linux. I would like to know how to install Ubuntu alongside

the pre-installed Windows 8+ OS. Should I do it with Wubi, or through the

Live USB/DVD? What steps do I need to take to correctly install Ubuntu? 7)

In this thesis, we focus on the CQA-based methods.

Multi-modal Question Answering: Given an image or a video, the task is to

answer questions about this image or video. Antol et al. (2015) present the

task of visual question answering (VQA) and release a dataset created by

crowdsourcing. They suggest using the very deep convolutional network of

Simonyan and Zisserman (2014) to embed the image; a deep long short term

6https://askubuntu.com/questions/17381/unity-doesnt-load-no-launcher-no-dash-
appears

7https://askubuntu.com/questions/221835/installing-ubuntu-alongside-a-pre-
installed-windows-with-uefi
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memory (LSTM) network to embed the question; and a multilayer perceptron

(MLP) to combine the two embeddings. We discuss these architectures in

detail in Chapter 2. Finally, a softmax layer is used to predict the answer.

Zhang et al. (2016) observed that this model relied mostly on the textual

rather than the visual information, e.g. answering yes to all questions asking

Do you see a ... ? achieved 87% accuracy. In order to emphasise the image

understanding part of the task, they balanced the VQA dataset: for most

questions, they added another image where the answer was different (e.g. the

answer to What is the dog wearing? was collar for one image and life jacket

for another). An overview of methods used in visual question answering can

be found in Wu et al. (2016).

Artificial Intelligence Tests: This area aims at developing methods capable of

general reasoning and natural language understanding. One of the main tasks

this area investigates is reading comprehension, see, for instance, the Facebook

bAbI tasks (Weston et al., 2015a). The bAbI tasks are twenty synthetic tasks

aimed to test general text understanding and reasoning. The dataset contains

simulations of different characters moving between locations and interacting

with each other and with objects. Each task aims at modelling a different

reasoning skill, for instance, basic deduction: Sheep are afraid of wolves. Cats

are afraid of dogs. Mice are afraid of cats. Gertrude is a sheep. What is

Gertrude afraid of? and counting: Daniel picked up the football. Daniel

dropped the football. Daniel got the milk. Daniel took the apple. How many

objects is Daniel holding?. Memory networks (Sukhbaatar et al., 2015) have

been shown to achieve good performance on these tasks.

Rajpurkar et al. (2016) created another dataset for reading comprehension

called the Stanford Question Answering Dataset (SQuAD). This dataset con-

tains more than 100K questions with their answers identified as passages in

corresponding Wikipedia articles. Currently, the best performing system on
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the SQuAD dataset is R-Net (Wang et al., 2017), a model combining gated

recurrent neural networks, attention mechanisms and pointer networks.

1.2 Research Questions

In this thesis we explore the use of CQA sites for question answering. While the

main focus on the thesis is the task of answer ranking in CQAs, we also explore the

task of predicting semantically equivalent questions.

Most previous approaches to non-factoid question answering were based on hand-

crafted features (Verberne et al., 2011, 2007; Higashinaka and Isozaki, 2008; Jansen

et al., 2014; Fried et al., 2015). These approaches require human feature engineer-

ing, and are often difficult to adapt to other domains and datasets, e.g. for CQA

websites, the website-specific metainformation, such as the number of good ques-

tions and answers posted by the same user, is often used. In this thesis, we focus on

deep learning approaches. The first research question concerns the limits of these

methods in detecting semantically equivalent questions:

1. Is it possible to predict semantically equivalent questions in community ques-

tion answering websites using a deep learning system and relying on textual

information only?

The second question concerns the limits of deep learning methods for the task

of answer ranking in CQA:

2. Can we rank answers to questions in community question answering websites

without relying on handcrafted features?

The rest of the research questions concern the neural approaches to the task

of answer ranking. In particular, we explore several neural architectures for the

task of answer ranking including convolutional and recurrent neural networks. We

formulate the third research question as follows:
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3. Which neural architectures are most suitable for encoding questions and an-

swers in answer ranking?

Traditional feature-based and neural approaches are often viewed as opposed to

each other. Our fourth research question concerns the possibility of combining the

two approaches:

4. Can feature-based and neural approaches be successfully combined for the task

of answer ranking? Do neural systems for answer ranking benefit from the

inclusion of tried-and-tested features for this task?

Since we focus on CQAs, that do not restrict questions to any particular type,

we investigate which questions are the most challenging from the point of view of

automatic answer ranking:

5. What kinds of questions pose the greatest challenge for the automatic answer

ranking systems?

1.3 Contributions

The contributions of this thesis are:

1. Experiments on detection of semantically equivalent questions. We de-

fine semantically equivalent questions as questions that can be adequately

answered by the exact same answer and investigate the use of convolutional

neural networks for predicting such questions in CQA sites. We show that

convolutional neural networks provide good performance on this task. We

also show that they need less training data than the baseline methods, i.e.

support vector machines. The neural system for detecting semantically equiv-

alent questions we present was developed in 2014, and it was, to the best of

our knowledge, the first attempt to apply deep learning methods to this task.

2. Survey of the research on non-factoid question answering. Related work

on community question answering spans different areas and communities. We

10



review the literature and provide a detailed overview of existing approaches

to non-factoid answer ranking. We divide the methods into two groups: (1)

feature-based methods, i.e. ones that perform the ranking using handcrafted

features; and (2) neural methods, that achieve the ranking due to the repre-

sentation capacity of the neural architecture. We first provide an overview of

the features used to rank answers to non-factoid questions. Then we describe

the neural approaches to the task as well as some related tasks. To the best of

our knowledge, this is the first comprehensive survey of non-factoid question

answering that includes neural approaches to this task.

3. Experiments on neural approaches for CQA. We investigate the use of ar-

tificial neural networks, i.e. deep learning, for the tasks of community question

answering. We conduct extensive answer ranking experiments in two very dif-

ferent CQAs. We compare the performance of various neural architectures

including the Long Short Term Memory networks and convolutional neural

networks, we also investigate the impact of pretrained word embeddings on

the performance of the neural systems. Overall, we show that neural systems

provide new state-of-the-art results on these tasks.

4. Multi-Channel Convolutional Recurrent Neural Network. We propose a

novel architecture called Multi-Channel Convolutional Recurrent Neural Net-

work (MC-RCNN) for encoding sentences and documents. This architecture

combines the benefits of recurrent neural networks with gating mechanisms

that capture long-term dependencies, and convolutional neural networks, that

capture local features. We experimentally show that this architecture is suit-

able for encoding questions and answers for the task of answer ranking.

5. Combining neural systems with discourse features for answer ranking.

We show that a neural system for answer ranking can be extended and im-

proved by inclusion of tried-and-tested features such as discourse features. We

incorporate the discourse features proposed by Jansen et al. (2014) into our
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neural architecture. We show that despite being often viewed as opposed,

the neural approach and handcrafted features can be complimentary and their

joint use can improve the overall performance of answer ranking systems.

1.4 Thesis Structure

This thesis is structured as follows:

Chapter 2

In this chapter, we review the basics of artificial neural networks, i.e. deep

learning. We mainly focus on the techniques necessary to understand the

content of this thesis. In particular, we introduce multilayer perceptrons,

i.e. feedforward fully connected neural networks, as well as convolutional

neural networks (CNNs) and recurrent neural networks (RNNs). The latter

includes Long Short Term Memory networks (Hochreiter and Schmidhuber,

1997) and Gated Recurrent Networks (Cho et al., 2014b). We provide a very

brief overview of a few other architectures, including RNN encoder-decoder

with attention (Bahdanau et al., 2014). We then explain how neural networks

are trained, and also talk about parameter initialisation and hyperparameter

tuning. We also discuss unsupervised pretraining of word embeddings at the

end of this chapter.

Chapter 3

In this chapter, we introduce the task of detecting semantically equivalent

questions in community question answering websites. We approach this task

by using a convolutional neural network to encode the questions to a fixed-

length vector, and then compare the vectors using cosine similarity. We exper-

imentally show that this approach provides good results. We also investigate

the impact of the word embeddings on the performance of this method by

varying their dimensionality and the corpus used for their training. We also
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investigate the impact of the training set size on the performance of the con-

volutional approach versus the support vector machine baseline.

Chapter 4

In this chapter, we present the task of answer ranking in community question

answering websites. We start by providing a literature review on the topic.

We first describe the traditional feature-based approaches to answer ranking,

and then review neural approaches to this and related tasks. We present our

general approach to the task of answer ranking where we encode the question

and the answer and use a multilayer perceptron to score the answer. We

introduce the experimental setup and the datasets we use in our experiments.

Chapter 5

In this chapter, we investigate the use of the Paragraph Vector model (Le and

Mikolov, 2014) for the task of answer ranking. We first train this model in

an unsupervised fashion and use the obtained vectors to initialise the repre-

sentations for the questions and the answers. We compare the performance of

the two Paragraph Vector models, i.e. the Distributed Bag-of-Words and the

Distributed Memory. We investigate the impact of the dimensionality of the

representations and the nature of the pretraining corpus.

Chapter 6

In this chapter, instead of relying on general purpose representations like in

Chapter 5, we focus on learning representations for questions and answers si-

multaneously with learning the actual task. In particular, we start by encoding

the questions and the answers using recurrent neural networks. We compare

the performance of the two most common variants of recurrent neural net-

works, Long Short Term Memory networks and Gated Recurrent Networks.

We also investigate the use of attention mechanisms for encoding questions

and answers. In addition, we compare recurrent neural networks and con-

volutional neural networks for encoding questions and answers. Finally, we
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combine the two architectures and propose a novel neural architecture that we

call a Multi-Channel Convolutional Recurrent Neural Network.

Chapter 7

In this chapter, we extend the experiments presented in Chapter 6. First, we

investigate the use of character-level instead of word-level word embeddings.

We then suggest enriching the neural system with tried-and-tested features.

We choose to use the discourse features introduced by Jansen et al. (2014).

Our experiments show that the neural approach benefits from the inclusion of

these features. We also investigate the impact of unsupervised pretraining of

the word embeddings, and provide error analysis. Finally, we test some of our

neural approaches on the dataset of the SemEval shared task on community

question answering.

Chapter 8

In this chapter, we summarise the findings of this thesis. We outline some of

the questions remaining open and suggest directions for future work.
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Chapter 2

Deep Learning for Natural

Language Processing

Neural networks (also known as artificial neural networks or ANNs) have a long

history dating back to 1943 when a neurophysiologist Warren McCulloch and a lo-

gician Walter Pits wrote an article hypothesising about how brain neurons might

work (McCulloch and Pitts, 1943). The first system modelling an artificial neuron

was introduced by Rosenblatt (1957) and was called Perceptron. It was only in 1986

when the backpropagation algorithm was proposed by Rumelhart et al. (1986), that

it became possible to train multilayered neural networks. Since the late 80s, neural

networks were believed to be theoretical models that were impossible to be trained

in practice. This changed in 2006 when Hinton et al. (2006) showed that a deep

neural network could be effectively trained. Consequently, neural networks have

regained their popularity in recent years, this time under the new name of deep

learning, suggesting that these models are able to learn multiple levels of composi-

tion (Goodfellow et al., 2016).

Many fields, including Natural Language Processing, have seen their subareas

moving towards deep learning approaches (Collobert et al., 2011; Goldberg, 2015).

Deep learning has become popular in NLP because it obviates the need for feature

engineering. Another reason for its success are the techniques for very efficient
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unsupervised learning of word representations (Mikolov et al., 2013b) also known

as word embeddings, that have been shown to be much more efficient than the

count-based representations traditionally used in NLP (Baroni et al., 2014). In this

chapter we will review the basics of neural networks, paying attention only to the

models necessary to understand this thesis. For a review of greater breadth and

depth we suggest to refer to Goodfellow et al. (2016).

Many NLP approaches involve (1) feature engineering, i.e. representing data as

vectors of handcrafted features, and (2) model learning and/or inference: using a

predictor on the obtained feature vectors. When dealing with the task of supervised

classification, predictors such as logistic regression or a Support Vector Machines

(SVM) classifier (Cortes and Vapnik, 1995) are often used. Neural networks have

greater representation capacity, i.e. are much more powerful function approximators,

than such linear predictors. This representational power makes it possible to avoid

the first step of feature engineering and learn from raw features, such as words and

characters, instead of feeding handcrafted features to a predictor.

This chapter is structured as follows: in Section 2.1 we describe a logistic clas-

sifier and how it is trained. In Section 2.2 we explain the concepts of an artificial

neuron, an activation function and an artificial neural network. Section 2.3 describes

several neural architectures including convolutional and recurrent neural networks.

In Section 2.4 we explain how artificial neural networks are trained. Section 2.5

talks about unsupervised pretraining and word embeddings. In Section 2.6 we talk

about the hyperparameters of neural systems. Finally, we summarise the chapter in

Section 2.7

2.1 Logistic Classifier

In this chapter, we will focus on the task of classification, and before moving on to

neural networks, we would like to demonstrate how a simple linear classifier, such as

a logistic regression works. Classification solves the task of assigning a label to
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an unseen input. The label is also called a category or a class – in this thesis we

will use these terms interchangeably. Some examples of the classification task are:

given a photo, decide if it is a dog, a cat or a capybara; given an image, decide if

there is a person in it or not; given a text predict if it is a news article, a detective

story or a poem. The task is called binary classification if there are only two classes

to choose from, and multiclass classification if there are more than two possible

classes.

Classification is typically a task of supervised learning: supervised means that

we have a set of examples for which we know the correct label, and the goal is to use

this data to build a classifier able to predict a label for an unseen example. Let’s

assume that the task is to predict one of three possible labels. We will use one-hot

encoding for the labels: instead of representing them as one of the scalars 1, 2 or

3, each label will be a 3-dimensional vector with zeros everywhere but the position

of the correct class. For example, (0, 1, 0) represents the label 2.

We will denote the input to the classifier as x and the output as y. The softmax

classifier (also called logistic classifier and logistic regression1, usually in the case of

binary classification and when the logistic function is used instead of the softmax)

applies a linear function to the inputs, generates the output and uses a softmax

function to convert the output to class probabilities:

softmax(Wx + b) = y (2.1)

The softmax function squashes a vector of arbitrary values into a vector of prob-

abilities, i.e. all the values of the resulting vector are in the range of (0, 1) and sum

up to 1:

softmax(z) =
ez∑
i e
zi

The matrix W and the vector b in Equation 2.1 are parameters to be learned

on the training set. In order to learn these parameters we need to define a loss

1even though it has regression in its name, logistic regression is usually used as a classifier.
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function (sometimes also called an objective or a cost function), that measures

how different the predictions are from the true labels. The loss represents the error

and should be high when the classifier performs poorly and low when it is doing

well. Ideally, it should be equal to zero if and only if all predictions are correct. The

loss function of the softmax classifier is usually the cross-entropy:

L(ŷ,y) = −
∑
i

yi log(ŷi) (2.2)

where ŷ is the predicted label and y is the true label. Cross-entropy is also known

as negative log-likelihood. We will later use this loss for more sophisticated models.

In order to train the classifier, we calculate the loss over the training set T and

minimise it as a function of weights and biases:

∑
x,y∈T

L(softmax(Wx + b),y)→ min
W,b

This is usually done using gradient-based optimisation methods. As the gradient

represents the slope of the surface created by the function, following the direction

opposite to the gradient, we can reach a local minimum. This method is called

gradient descent (Cauchy, 1847) – in practice, we usually use its variations such

as stochastic gradient descent that will be discussed in Section 2.4.2.

2.2 Artificial Neural Networks

2.2.1 Artificial Neuron

As we have already mentioned above, the initial motivation behind neural networks

was in imitating the human brain – hence, the name neural networks. In biology,

a neuron is a nerve cell that is able to process and transmit information to other

neurons. In the area of artificial intelligence, neurons, or artificial neurons, are

mathematical functions that receive one or more inputs and produce an output. The

simplest form of a neuron is a linear function, that receives the inputs xi, calculates
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a weighted sum of the inputs and adds biases:

y =
∑
i

wixi + b

2.2.2 Activation Function

Usually, the neurons are non-linear, as combining linear functions always results in a

linear function. A non-linear function g, called an activation function, is applied

to the output:

y = g(
∑
i

wixi + b)

The most common activation functions are:

• sigmoid function: σ(x) = 1
1+e−z

• rectified linear unit (ReLU): ReLU(x) = max(x, 0)

• hyperbolic tangent: tanh(x) = ex−e−x

ex+e−x

A logistic classifier can be seen as one artificial neuron with a sigmoid activa-

tion. Neural networks get their name from the fact that they typically consist of

many neurons. These neurons can be organised in layers, where the input to the

neurons of the current layer are the outputs of the neurons of the previous layer.

Figure 2.1 illustrates a deep model with several layers. The first layer receives the

input in the form of characters, and each consecutive layer represents a more ab-

stract representation of the input. Networks with several layers are referred to as

deep networks.

2.3 Architectures

In this section we will briefly review the main NN architectures that we use in this

thesis.
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Figure 2.1: Example of a model for spam classification. The model receives the
characters as input, and each layer provides a more abstract representation of the
input. The final layer predicts one of the two classes.

2.3.1 Multilayer Perceptron

The most basic neural network architecture is a feedforward fully-connected neural

network, also known as a multilayer perceptron (MLP). This architecture is

called feedforward, as the information flows forward through the network, and fully-

connected, as the neurons of each layer are connected to all the neurons of the

previous layer. Figure 2.2 illustrates a feedforward neural network with one hidden

layer. The inputs x are received by the network and are called the input layer,

and the outputs y are produced by the network and are called the output layer.

The layers hidden in between the input and the output layers (in this case the layer

h) are called hidden layers. Each of the hidden units is a non-linear activation of a

linear combination of the output of the previous layer, in this case the inputs x, i.e.

hj = f(
∑

iw
0
ijxi + b0j), and the output values y are activated linear combinations of
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the hidden units: yj = f(
∑

iw
1
ijxi + b1j), where wkij and bkj are parameters that are

learnt during training.

Figure 2.2: Illustration of a feedforward fully connected neural network, i.e. a mul-
tilayer perceptron, with one hidden layer.

2.3.2 Convolutional Neural Networks

Convolutional Neural Networks (CNN) are designed to work with grids such as raw

representations of images and recognise visual objects. They were inspired by the

way the visual cortex works: the neurons respond to the stimuli of a restricted

region called the receptive field, and the receptive fields of different neurons overlap.

Similarly, in the CNN architecture the neurons are only connected to certain regions

of the input or the previous layer, and these regions usually overlap. They are

similar to the MLPs discussed in the previous section in their feedforward way of

processing the information. However, there are a number of differences between

these architectures. The MLPs treat every input independently, and all the neurons

are fully connected to the neurons of the previous layer. A CNN could be seen

as applying an MLP to a certain patch or kernel of the data, which is then shifted

many times in order to cover the whole input. The weights of these MLPs are shared.
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This operation is called convolution. This is illustrated in Figure 2.3. The input

is divided into patches called kernels or filters, in fact, the window containing the

patch is shifted each time, the shift of the kernel is called a stride. Each kernel

is passed to a hidden layer that produces k outputs called feature maps. Using

this convolution operation the input of size heightinp × widthinp × p where p is the

number of channels (e.g. 3 for red, green and blue) is mapped to an output of size

heightout × widthout × k.

This convolution is usually combined with a pooling operation. The pooling

combines vectors in a certain neighbourhood into a single vector by, for instance,

summing them or getting their maximum or average. A common type of pooling is

max-pooling, which is illustrated in Figure 2.4.

CNNs are designed to work on grid-shaped data, such as images. They are

known to work very well on the task of handwritten digit recognition and achieve

state-of-the-art performance on the MNIST2 database of handwritten digits.3 Most

architectures include combinations of several convolutional and pooling layers. One

of the first successful convolutional architectures was LeNet proposed by LeCun

et al. (1998), which was a combination of a few convolutional and max-pooling

layers with fully-connected layers. Another very famous convolutional architecture

is AlexNet (Krizhevsky et al., 2012) that was initially developed for the task of

image classification (Deng et al., 2009), but this model and its variations were also

successfully applied to the tasks of object detection (Girshick et al., 2014), video

classification (Karpathy et al., 2014), visual tracking (Wang and Yeung, 2013) and

other computer vision tasks.

Even though the CNNs were designed to work with visual data, they have also

been applied to textual data (Kim, 2014; Kalchbrenner et al., 2014; dos Santos and

Gatti, 2014). The motivation for the use of CNNs for text is in their ability to

convert the variable-sized input into a fixed-sized output, which is often needed in

2stands for Mixed National Institute of Standards and Technology, but usually known as just
MNIST.

3http://yann.lecun.com/exdb/mnist/
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Figure 2.3: Illustration of a two-dimensional convolution. The input is divided into
patches called kernels or filters. The window containing the patch is shifted each
time, the shift of the kernel is called a stride. Each kernel is passed to a hidden layer
that produces outputs called features maps.

NLP tasks. A typical CNN applied to texts is usually slightly different from the

one applied to images, as images are usually represented as 3-dimensional grids, the

first two dimensions are the spatial position and the third dimension corresponds to

the colour channel. When dealing with textual data, the text is represented as word

indices and then these indices are replaced with corresponding word embeddings.

The convolution is then applied to word embeddings. Figure 2.5 illustrates a CNN

that encodes a variable length text as a fixed-size vector. First, the words are

represented as word embeddings: ew(1) , ew(2) , ew(3) , ..., ew(n) . These could be either

initialised randomly or pretrained. For each word all the word vectors in the window

of size k around it are concatenated,4 and weights, biases and an activation are

applied to the resulting vector:

z(i) = σ(W[ew(i−k) , ..., ew(i) , ..., ew(i+k) ] + b)

4If there are not enough words on the left or on the right, a special padding vector is used.
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Figure 2.4: Illustration of a max-pooling operation with a kernel of size 2x2 and a
stride of 1.

In Figure 2.5 k is equal to 1, i.e. only one word to the left and one word to the

right are used to calculate the local features. The same weights W and biases b are

used for all words, i.e. the weights and biases are shared for all the words, unlike

the MLP architecture.

Finally, a max-pooling is applied to the output of the convolutional layer: each

dimension i of the resulting representation r is maximum among the values of the

vectors z along this dimension:

ri = max(z
(1)
i , z

(2)
i , ..., z

(n)
i )

We use a similar architecture in Chapter 3 for detecting semantically equivalent

questions. A similar convolutional architecture but over character-level representa-

tion was used by dos Santos and Gatti (2014) for sentiment analysis.

2.3.3 Recurrent Neural Networks

The feedforward neural networks discussed in the previous sections have no cycles in

them, and the information flows only forward, without any feedback. The family

of neural networks with feedback connections are called recurrent neural networks

(RNN). They were designed to work with sequences, as they allow the information

to be carried on through time. This makes them very convenient to use on natural

language data. When we speak and write, the meaning of each word is built on

the meaning of whatever was said previously. For instance, the meaning of bank
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Figure 2.5: Example of a convolutional neural network applied to a sentence. The
input words were transformed into the corresponding word embeddings. Then a
convolution is applied to the embedding matrix. Each window of three words is
convolved in one vector. Then a maximum per each dimension is taken.

if it is following the word commercial would be very different from its meaning if

it has river just before it. This is what makes the RNNs so popular in the area

of NLP. They have been successfully applied to a variety of NLP tasks including

language modelling (Mikolov et al., 2010, 2011), natural language generation (Wen

et al., 2015; Sutskever et al., 2011), machine translation (Auli et al., 2013; Bahdanau

et al., 2014) and sentiment analysis (Tang et al., 2015a).

Figure 2.6 illustrates the way a simple recurrent network is usually visualised. It

has a cycle: every new input to this network is first concatenated with the output

this same network produced before and then passed to the network. This is also

sometimes visualised as many copies of the same network, or the same network ap-
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Figure 2.6: Vanilla
RNN.

Figure 2.7: Unrolled vanilla RNN.

plied at several steps. It is important that these copies share the same weights, and

are rather instances of the same network than its copies. Figure 2.7 shows a recur-

rent network unrolled in time, i.e. recurrent network represented as a multilayer

network, where the number of layers is unlimited.

In the simplest version of the RNN, that is usually known as a vanilla RNN or a

tanh RNN, the input sequence x is passed to the single hidden layer, and the hidden

state h and the output y at each step are calculated as follows:

h(t) = tanh(Wh(t−1) + Ux(t) + b) (2.3)

y = softmax(Vh(t) + c) (2.4)

where W,U,V,b and c are the network’s parameters tuned during training.

In practice, the vanilla RNNs struggle with representing long-term dependencies

due to the vanishing gradient problem. Imagine an unrolled vanilla RNN, which is

essentially a very deep multilayer perceptron that shares weights. When we apply

backpropagation to this network, we multiply the gradients many times, and they

tend to either become very big or very small. The first problem is referred to as the

exploding gradient problem, and is dealt with by gradient clipping (Pascanu

et al., 2013), i.e. not allowing the gradients to grow higher than a certain threshold.
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The second issue, i.e. the gradient becoming too small, is referred to as the van-

ishing gradient problem. Pascanu et al. (2013) suggest a regularisation technique

that allows that problem to be avoided when training RNNs. Another solution to

deal with the vanishing gradient problem is the gating mechanism implemented in

the form of Long Short Term Memory networks described in the next section.

2.3.3.1 Long Short Term Memory Networks

Long short term memory (LSTM) networks (Hochreiter and Schmidhuber, 1997) are

a type of recurrent neural network that were designed to cope well with the vanishing

gradient problem via a gating mechanism. Central to LSTMs is the concept of an

internal state that stores the information and serves as the memory5 of the network.

Let’s denote this state at step t as ct. The gates control what information should be

added to that memory, removed from there or used to generate the output at each

step.

A gate is usually a sigmoid layer, that controls how much information can pass

through this gate. It can be seen as a parametrised probability of passing through it.

The LSTM defines three gates, the input gate it, the forget gate ft and the output

gate ot:

f(t) = σ(Wfx
(t) + Ufh

(t−1) + bf ) (2.5)

i(t) = σ(Wix
(t) + Uih

(t−1) + bi) (2.6)

o(t) = σ(Wox
(t) + Uoh

(t−1) + bo) (2.7)

These gates control what is to be added to the state ct, what is to be forgotten

and what is to be outputted at each step. First, the network generates a new

candidate state c̃(t):

c̃(t) = tanh(Wcx
(t) + Uch

(t−1) + bc) (2.8)

5Note, this vector does not refer to the same concept of memory as in memory networks and
Neural Turing Machines, where memory states for the external memory with read and/or write
access.
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How much of the current state should be forgotten and replaced by the candidate

state is decided using the forget and the input gates:

c(t) = f(t) ? c(t−1) + i(t) ? c̃(t) (2.9)

Finally, how much information from the state should be outputted is decided using

the output gate:

h(t) = ooot ? tanh(c(t)) (2.10)

An illustration of the LSTM cell is shown in Figure 2.8. A detailed and very

clear explanation of the LSTM is given in the blog of Christopher Olah.6

Figure 2.8: Illustration of an RNN with LSTM cell. The red circles stand for
element-wise operations, the yellow squares denote non-linear layers. τ stands for
hyberbolic tangent.

2.3.3.2 Gated Recurrent Neural Networks

The Gated Recurrent Unit (GRU) (Cho et al., 2014b) is a more recent variation of

the LSTM. It uses two gates instead of three, the update gate:

z(t) = σ(Wzx
(t) + Uzh

(t−1) + bz) (2.11)

6http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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and the reset gate:

r(t) = σ(Wrx
(t) + Urh

(t−1) + br) (2.12)

It also has only one state h(t) instead of having separate cell states and hidden

states, as the LSTM does. The candidate state at each step is computed as follows:

h̃
(t)

= tanh(Wx(t) + U(r(t) ? h(t−1)) + b) (2.13)

and the state is a linear interpolation between the previous state and the current

candidate state:

h(t) = (1− z(t)) ? h(t−1) + z(t) ? h̃
(t−1)

(2.14)

Figure 2.9: Illustration of an RNN with a GRU cell. The red circles stand for
element-wise operations, the yellow squares denote non-linear layers. τ stands for
hyberbolic tangent.

An illustration of a GRU cell is shown in Figure 2.9. Chung et al. (2014) evaluate

GRUs versus LSTMs on the tasks of music and speech signal modelling and show

that the two achieve similar performance, even though the GRU has fewer trainable

parameters, and both LSTM and GRU are much more powerful than the vanilla

RNNs. RNNs with GRUs called Gated Recurrent Networks are widely used in the

area of neural machine translation (Firat et al., 2016; Chung et al., 2016).
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There are many other variations of the RNN cell, including the peephole LSTM

cell (Gers and Schmidhuber, 2000), which uses the concatenation of the previous

state, previous output and the current input, in contrast to traditional LSTM that

concatenates only the latter two.

2.3.3.3 Bidirectional and Stacked RNNs

The RNNs we described in the previous sections can be run from left to right or

right to left. Recent inputs to an RNN have a stronger impact on its final output.

This means that if we deal with natural language text in a left-to-right language

like English, we pay more attention to the end of the sentence, which is not always

desirable. A bidirectional RNN (Schuster and Paliwal, 1997) is designed to

overcome these issues.

Figure 2.10: Illustration of a bidirectional recurrent neural network.

A bidirectional RNN consists of two separate unidirectional RNNs, that are run

on the input in opposite directions, i.e. the forward and the backward RNN.

The outputs of the two RNNs are merged, i.e. concatenated at each step. This is

illustrated in Figure 2.10. Let’s denote the outputs of the forward RNN (running

from left to right) as (
−→
h1h1h1,
−→
h2h2h2,
−→
h3h3h3, ...,

−→
hnhnhn), and the outputs of the backward RNN as
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(
←−
h1h1h1,
←−
h2h2h2,
←−
h3h3h3, ...,

←−
hnhnhn). Then, the output of the biRNN is

[
←−
h1h1h1,
−→
h1h1h1], [

←−
h2h2h2,
−→
h2h2h2], [

←−
h3h3h3,
−→
h3h3h3], ..., [

←−
hnhnhn,
−→
hnhnhn]

This applies to an RNN with any type of cell, e.g. LSTM. In this case it is

referred to as bidirectional LSTM.

Another common augmentation of the RNN architecture is a stacked RNN or

a deep RNN (Graves et al., 2013). It also combines several recurrent networks,

but in contrast to the bidirectional RNN, where the two networks are independent,

in this architecture one RNN receives the outputs of the other RNN as inputs.

This could be done with either uni- or bidirectional networks. We illustrate this in

Figure 2.11.

Figure 2.11: Illustration of a stacked bidirectional RNN with two layers.
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2.3.3.4 Encoder-Decoder Architecture and Attention

The RNN encoder-decoder architecture was proposed by Cho et al. (2014b) for the

task of neural machine translation (NMT). It consists of two RNNs: the first RNN

reads the input sequence and encodes it in a single fixed-sized vector, the second

RNN receives that vector and generates the output sequence. The two RNNs are

trained together to maximise the probability of the target sentence given the source

sentence. Figure 2.12 illustrates this process. The encoder RNN encodes the input

sequence to a vector:

fenc RNN(x1x1x1, ...,xTxTxT ) = ccc (2.15)

The decoder RNN at every step receives the previously predicted word, the

previous state of the decoder and the output of the encoder ccc:

si = fdec RNN(sssi−1, yyyi−1, ccc) (2.16)

Cho et al. (2014b) use RNNs with Gated Recurrent Units (described in Sec-

tion 2.3.3.2). However, it is possible to use another network as encoder and/or

decoder, such as an LSTM (Sutskever et al., 2014) or a CNN (Badrinarayanan

et al., 2015).7

Cho et al. (2014a) and Bahdanau et al. (2014) argue that encoding a source

into one fixed-sized vector might be ineffective on longer sequences. To address this,

Bahdanau et al. (2014) propose the attention mechanism that allows the decoder to

focus on different parts of the encoded sequence at different steps, instead of using

one vector as a representation of the source sequence. In this case, the encoder

encodes the source into a sequence of states: hhh1, ...,hhhT . The decoder’s state is

computed similarly to Equation 2.16, with the only difference being that at every

7 Badrinarayanan et al. (2015) use a CNN to encode and decode images for the task of image
segmentation.
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Figure 2.12: Illustration of an RNN encoder-decoder architecture. The encoder
RNN reads the input sequence and encodes it in a single fixed-sized vector, the
decoder RNN receives that vector and generates the output sequence.

step a distinct context vector is used:

si = fdec RNN(sssi−1, yyyi−1, ccci) (2.17)

The context vector ccci is computed as a weighted sum of the outputs of the encoder:

ccci =
Tx∑
j=1

αijhhhj

The weights αij are computed using the softmax function:

αij =
exp(eij)∑Tx
k=1 exp(eik)

where eij represent an alignment model, i.e. how well the inputs around position j
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match the output at position i:

eij = vvv>a tanh(WWW asssi−1 +UUUahhhj)

vvva,WWW a,UUUa are weights to be tuned. This approach allowed Bahdanau et al. (2014)

to improve over the results of Cho et al. (2014b).

Besides the success in NMT, similar attention mechanisms were used in sentiment

analysis (Kumar et al., 2016), image caption generation (Xu et al., 2015), object

recognition (Mnih et al., 2014) and other tasks.

2.3.4 Other Architectures

There are many other important architectures that we do not describe, because

they lie outside the scope of the thesis research. These models include simple

and very powerful memory networks (Sukhbaatar et al., 2015), recursive neural

networks (Socher et al., 2011), neural Turing machines (Graves et al., 2014) and

generative adversarial networks (Goodfellow et al., 2014).

2.4 Training Neural Networks

In Section 2.1 we already described how a logistic classifier is trained. Neural net-

works are trained in the same way, i.e. by minimising the loss function on the training

set. The loss L(ŷ̂ŷy, yyy) is a function that maps the network outputs ŷ̂ŷy and the true

labels yyy to a non-negative scalar representing the error the network makes on the

training set. Usually the loss should only be 0 when the output is correct, i.e. ŷ̂ŷy = yyy.

Common losses for classification are:

• Negative log-likelihood, also known as cross-entropy:

L(yyy, ŷ̂ŷy) = −
∑
i

yi log(ŷi)
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which in case of binary classification simplifies to:

L(y, ŷ) = −ŷ log(y)− (1− ŷ) log(1− y)

• Mean squared error:

L(yyy, ŷ̂ŷy) =
∑
i

(yi − ŷi)2

• Hinge-loss for binary classification:

L(y, ŷ) = max(0, 1− y · ŷ)

The loss function is usually minimised using gradient descent or its variations. Note,

that minimising the loss function means finding the optimal set of network’s parame-

ters. We will further denote the loss function as L(ŷ̂ŷy, yyy,θθθ) or L(θθθ), where θ represents

all the trainable parameters of the network, such as weights and biases of all the

layers of an MLP described in Section 2.3.1. In particular, the gradients of the

loss are computed with respect to the trainable parameters, this is done using the

backpropagation algorithm (Rumelhart et al., 1986): (1) a forward pass is per-

formed on the training examples, i.e. the network parameters are considered fixed;

(2) the loss is calculated for the obtained predictions; (3) the errors are then propa-

gated backwards starting from the output and desired weight updates are obtained.

The recurrent neural networks described in Section 2.3.3 are trained using back-

propagation through time (BPTT), i.e. backpropagation applied to the unrolled

multilayer network.

2.4.1 Parameter Initialisation

Deep learning models are very sensitive to initialisation and it is important to set

the initial parameters correctly, so the training can converge and can also avoid

getting stuck at a local minimum. According to Goodfellow et al. (2016), neural
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network optimisation is not yet fully understood and perhaps the only thing known

with certainty is the importance of “breaking symmetry”. The latter means that if

there are two units with the same activation function connected to the same inputs,

they should be initialised differently in order to prevent the network from always

keeping them equal to each other. Usually random initialisation solves this issue.

For feedforward neural networks it is advised to set the initial weights to small

random values, while the biases should be set to zeros or small positive values

(Goodfellow et al., 2016). One way to initialise the weights of a fully connected

layer with m inputs and n outputs is to sample the weights randomly from either

the uniform distribution: W ∼ U(− 1√
m
, 1√

m
) or a truncated normal distribution with

0 mean and standard deviation of 1√
m

: W ∼ N (0, 1
m

). Glorot and Bengio (2010)

proposed another heuristic for initialising the weights, what they called normalised

initialisation, but what is usually known by the forename of the first author as

xavier initialisation:

W ∼ U
(
−
√

6

m+ n
,

√
6

m+ n

)
(2.18)

Goodfellow et al. (2016) suggest to initialise biases with zeros.

When initialising the weights of the recurrent neural networks, such as LSTMs,

fewer heuristics are available. Many studies (Luong et al., 2015; Sutskever et al.,

2014) sample the initial weights from the uniform distribution around zero, i.e.

U(−0.1, 0.1).

A strategy to initialise the weights of convolutional networks was derived by He

et al. (2015). Their derivations show that the CNNs with ReLU activations should

have the initial biases set to zeros, and the weights should be initialised from the

normal distribution with zero mean and standard deviation of
√
2

k
√
c
, where k is the

filter size and c is the number of channels:

W ∼ N (0,
2

k2c
)
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2.4.2 Stochastic Gradient Descent

In practice, calculating the weight updates on the full training set is very slow,

and this is done on small subsets of the training set called mini-batches instead.

This technique of applying gradient descent to mini-batches is called stochastic

gradient descent (SGD). When the subset is equal to only one training example

this is sometimes called online training mode. The size of the mini-batch is a

hyperparameter to be experimentally chosen. There are several extensions of SGD

that use adaptive learning rate, e.g. Adagrad (Duchi et al., 2011) and Adam (Kingma

and Adam, 2015).

2.4.3 Overfitting and Regularisation

Neural networks are very powerful approximators, and if the architecture and the

hyperparameters are chosen correctly, the network is able to fit the training set

perfectly. This fact has its own downsides, as the network may lose its ability to

generalise, i.e. overfit the training set and perform poorly on unseen instances.

One way to prevent overfitting on the training set is to periodically evaluate the

model on a held-out set. The training should be stopped when the performance

on the held-out set stops improving, i.e. the model starts overfitting the training

data. In practice, both training and development losses (or sometimes accuracy,

precision or another metric) are measured at every iteration. If the development

loss is not decreasing for a number of consecutive iterations (while the training loss

keeps decreasing 8), this is a strong indicator that a model has started overfitting.

In this case the training is stopped and the last best (before the development loss

stopped decreasing) model is used. This technique is called early stopping.

Regularisation is a technique aimed to prevent the network from overfitting the

training data. In this work we use the two most common types of regularisation:

weight decay and dropout. Weight decay is an essential form of regularisation

8The training loss should be always decreasing, if the model is learning. If it does not, this may
indicate the learning rate is set to a too large a value or there is another problem with the model
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that involves adding the sum of the norms of the weights to the loss function, in

order to prevent the weights from growing too much. We usually use weight decay

with L2 norm, also referred to as L2 regularisation.

L2 loss = ||θθθ||2 =
1

2

∑
i

θ2i

and the loss function in this case takes the following form:

loss = L(yyy, ŷ̂ŷy, θθθ) + αL2 loss

where α is the regularisation rate which is usually set to a small number 9 that

can be tuned on a development set.

Another common form of regularisation is dropout (Srivastava et al., 2014).

Dropout is a very powerful regularisation technique that consists in dropping some

units during the training. This is illustrated in Figure 2.13. This prevents the

network from relying on a few neurons and forces it to perform more robustly.

Note, that the dropout is applied during training only. The dropout assumes that

every neuron is activated with a certain probability, i.e. let hhh = (h1, h2, ..., hn) denote

the activations of a layer. Then during the training hhh is set to hhh ? bbb, where each

dimension of bbb is sampled from a Bernoulli distribution: bi ∼ Bernoulli(p), where

p is a hyperparameter that is often set to 0.2-0.5. During inference, the activations

hhh are scaled by p, i.e. are set to phhh.

In recurrent neural networks, dropout is usually applied only to the feedforward

connections (Pham et al., 2014; Zaremba et al., 2014; Bluche et al., 2015), i.e. to the

input and to the output before it is passed to the next step. It was believed that

applying dropout to recurrent connections was not desirable. However, a more recent

technique by Gal and Ghahramani (2016) suggests that the recurrent connections

could also be dropped, but the same mask should be used at each step.

9This number should depend on the number of trainable parameters and the size of the training
set. However, we did not find any heuristics on setting this in the literature. Discovering an optimal
strategy for setting this parameter is perhaps, a good direction for future work.
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Figure 2.13: A multilayer perceptron before (left) and after (right) dropout. The
crossed circles represent dropped units.

2.5 Unsupervised Pretraining

Neural networks are usually powerful enough to learn from raw data, instead of

relying on handcrafted features extracted with external tools. It has been shown that

NNs can even successfully learn directly from bytes (Gillick et al., 2015). In our case

the raw representations are usually words or characters. They are first represented as

vectors in a low-dimensional space and are often called embeddings. In this thesis

we will use the terms word embeddings, word vectors and word representations

interchangeably.

A common way to initialise the embeddings used by a neural network is to

sample them randomly from a uniform distribution with low standard deviation.

Another option is to use pretrained word vectors. Training word embeddings was

first suggested by Bengio et al. (2003), however, did not gain popularity at that

point. Nowadays, the most widely used models for unsupervised pretraining of word
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Figure 2.14: CBOW model Figure 2.15: Skip-gram model.

embeddings are the skip-gram and the continuous bag of words models presented by

Mikolov et al. (2013b), these models are also known as word2vec, the name of the

software providing the implementation of the two models.10

2.5.1 Word Embeddings

The continuous bag of words (CBOW) and the skipgram models presented by Mikolov

et al. (2013a) first initialise all word vectors randomly, and the CBOW predicts the

word using its context (see Figure 2.14), while the skipgram model does the opposite,

given a word, predicts the context around it (see Figure 2.15).

CBOW More formally, let V be the vocabulary size. Let xxx1, ...,xxxV be one-hot

encodings of all words in the vocabulary. The one-hot encodings are mapped to

dense vectors using a matrix WWW of size V × d, which is initialised randomly, and

d is the desired dimensionality of the embeddings. The dimensionality d is usually

much smaller than the vocabulary size, e.g. it is usually set to a number between 50

and 500. The word embedding for a word xxxi could be then denoted as vvvi = WWW>xxxi.

Let’s assume w1, w2, ...wT to be the sequence of training words. The CBOW model

predicts the word given its context, i.e. the k words to the left and the k words to

the right from the given word, i.e. the goal of the CBOW model is to maximise the

10https://code.google.com/archive/p/word2vec/
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following probability:

p(wt|wt−k, ..., wt−1, wt+1, ...wt+k)

Let’s consider an example sentence: The panda eats shoots and leaves, and let

the context window be equal to exactly one word: k = 1. The CBOW model

predicts the word panda using the and eats ; the word eats using panda and shoots,

and so on. Figure 2.16 illustrates the CBOW model for the the panda eats example,

i.e. the prediction of the word panda given its context. Each row of the matrix

WWW represents a word in the vocabulary. The vector hhh is obtained by averaging

(or sometimes, concatenating) the input word representations, i.e. for the example

sentence:

hhh =
1

2
WWW>(xxxthe + xxxeats) =

1

2
(vvvthe + vvveats)

or in a general case:

hhh =
1

C
WWW>(xxx1 + ...+ xxxC) =

1

C
(vvvw1 + ...+ vvvwC

) (2.19)

where xxx1, ...,xxxC are the context words, and vvvw1 , ..., vvvwC
are their embeddings.

WWW
′

(see Figures 2.16) is another weights matrix11 of size d×V , which is used to

compute the score for each word in the vocabulary. Let v′v′v′i denote WWW
′
xxxi, then the

score ui for the word wi is:

ui = v′v′v′>i hhh = (WWW
′
xxxi)
>hhh (2.20)

The output word wo is predicted using softmax:

softmax(ut) =
e(ut)∑V
i=1 e

(ui)
(2.21)

11we omit biases for simplicity
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Figure 2.16: Illustration of the CBOW model for the word panda in context the
panda eats. The model predicts the word panda using the and eats.

Skip-gram The skip-gram model is very similar to the CBOW, with the only

difference being that instead of predicting the word given its context, it does the

opposite, i.e. predicts the context given the word. More formally, the skip-gram

model maximises the average log-probability:

1

T

T∑
i=1

∑
−k≤j≤k
j 6=0

log(wt+j|wt) (2.22)

Let’s return to our example sentence: The panda eats shoots and leaves. The

skip-gram model given the word panda and the window k = 1 tries to predict the

words the and eats ; and given the words eats it tries to predict panda and shoots,

and so on. Figure 2.17 illustrates this process. The vector hhh in Figure 2.17 is the

transposed embedding of the input word:

hhh = WWW>xxxI = vvv>wI
(2.23)

and the score for each output word is predicted using the softmax, as in the Eq. 2.21,

i.e. for the example in Figure 2.17, the probability for the eats given the word panda
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Figure 2.17: Illustration of the skip-gram model predicting the words the and eats
given the word panda, i.e. the model given the word panda and the window of one
word learns to predict the words the and eats.

is:

p(eats|panda) =
ev
′v′v′>pandavvveats∑V
i=1 e

v′v′v′>i vvveats
(2.24)

In practice, the softmax over the whole vocabulary is unfeasible. Instead, a

technique called negative sampling (Gutmann and Hyvärinen, 2012) is used. The

idea behind negative sampling is to make sure that the noise can be distinguished

from the positive examples using a binary logistic regression. For that, num neg

negative (also called contrastive) words w−i are sampled. Mikolov et al. (2013c)

suggest to sample w−i from the unigram distribution raised to the power 3/4, this will

ensure that the frequent words are sampled slightly less frequently. The objective

function of the negative sampling is defined as follows:

LNEG = −log σ(v′v′v′Two
hhh)−

num neg∑
i=1

log σ(−vvvT
w−i
hhh) (2.25)
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Another way to train these models is in using hierarchical softmax (Morin and

Bengio, 2005) instead of a full softmax.

The idea behind using a linear classifier for prediction is to reduce the computa-

tional complexity and allow for faster training of the embeddings on larger datasets.

Even though these embeddings might be not as good as if a non-linear model were

used for their training, they are designed to be trained quickly and eventually used

as an input to another non-linear model that can fine-tune them for a specific task.

The word embeddings obtained with these models were shown to not only per-

form well on the task on word semantic similarity, but also capture meaningful

semantic and syntactic regularities: for instance, the vector of king – man + woman

is very close to the vector of queen, and apple – apples is similar to cars – car

(Mikolov et al., 2013c).

2.6 Hyperparameter Tuning

How the hyperparameters are tuned is perhaps the most obscure area in deep learn-

ing. On the one hand, deep neural networks have many hyperparameters and are

very sensitive to the settings of some of them. On the other hand, there are few

known good strategies to set them. When there are only three or fewer hyperpa-

rameters, such as in the case of Support Vector Machines, grid search or random

search is the most desirable strategy. However, when we deal with dozens of hy-

perparameters, which is the case with complex neural architectures, this becomes

infeasible. A recent paper by Zoph and Le (2016) of the Google Brain team reports

to have used 800 GPUs to find the best settings. There are also a few studies that

suggest using Bayesian optimisation for hyperparameter tuning (Snoek et al., 2012;

Eggensperger et al., 2013).

The most feasible approach is still manual search.12 However, in this case, a

good understanding of the role of each hyperparameter is needed. In this section we

12There are jokes suggesting an alternative name to intelligent manual search: GSD a.k.a. Grad-
uate Student Descent (Kevin Duh at DL4MT winter school)
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Figure 2.18: Learning with too high
learning rate.

Figure 2.19: Learning with too low
learning rate.

will review the main hyperparameters of the architectures we use.

Learning rate: When we train a model with a gradient-based method, such as

stochastic gradient descent, we update the trainable parameters w as follows:

wi = wi − λ
∂L(www)

∂wi
(2.26)

where L(w) is the loss function, and λ is the learning rate. It determines how

far down the direction opposite to the gradient we want to move the weights. This

is perhaps the most important hyperparameter to set correctly. When it is set to

too large a value, we risk simply missing the optimal point (see Figure 2.18). If the

learning rate is too small, the training becomes slower and we risk getting stuck at

a local minimum (see Figure 2.19). That is why it is important to try a range of

values when setting the learning rate.

Hyperparameters that increase the representation capacity: most param-

eters directly influence the model’s representation capacity. For example, increasing

the number of hidden layers makes the model able to learn more complicated

functions. The same happens when we increase the number of hidden units or the

dimensionality of the word embeddings. The size of the convolution kernel falls

into the same group. There are also binary hyperparameters, such as the use of a
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bidirectional RNN instead of a unidirectional RNN, and the use of LSTM instead

of GRU.

Increasing the values of these hyperparameters increases the number of trainable

parameters of the model, i.e. it can better represent the training set. Ideally, the

values of these hyperparameters should be just as large as needed. In practice, it is

very hard to find settings that match the problem’s complexity exactly. Thus, our

general approach to tuning these parameters is to have them slightly higher than

needed, and then add strong regularisation. Having these parameters set at higher

values than actually needed makes the model prone to overfitting on the training

set. In other words, we let the model be able to overfit the training set and then

regularise it with weight decay and dropout.

Regularisation Hyperparameters: these hyperparameters increase the model’s

representation capacity when decreased, i.e. having the dropout probability and the

weight decay set to very low values allows the model fit the training set better,

but also decreases its ability to generalise. Usually for a complex model we set the

dropout probability to 0.3 or 0.5 and the weight decay rate, e.g. L2 regularisation

rate, to a small value around 10−7–10−5. We increase the weight decay rate if we

use a very deep network, and decrease it for smaller networks.

Other hyperparameters: other parameters include the choice of the activation

functions and the choice of the optimiser (SGD versus its variations). In our exper-

iments we usually use ReLU activation for the feedforward networks and hyperbolic

tangent for the recurrent network, and plain SGD optimiser.

Training parameters: Apart from the model hyperparameters, there are a few

other parameters that affect the training process, such as the size of the minibatch

and the number of training steps. We usually determine the number of training

steps with early stopping. We need to set the following parameters: after how many

iterations do we evaluate the model on the development set, and how long do we
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wait for an improvement. In our experiments, we set the number of iterations after

which we evaluate the model on the development set roughly equal to the number

of iterations needed to iterate over the whole training set once. We call this number

an epoch. We usually wait for ten consecutive epochs for an improvement on the

development set, then we stop the training.

2.7 Summary

Deep learning is an area of machine learning that specialises in models with several

layers of nonlinear units, allowing higher representation capacity and multiple levels

of abstraction. In the area of Natural Language Processing, deep learning gained its

popularity mainly because it obviates the need of feature engineering and allows us to

learn from raw representations. Despite being very powerful and achieving state-of-

the-art results in many tasks, it is sometimes criticised for the lack of interpretability

and some attempts are being made to decipher the models (Li et al., 2016).

In this chapter we have summarised the basics of deep learning in application to

some natural language processing tasks. We only reviewed the neural architectures

we will need to describe the experiments presented in this thesis. A comprehensive

overview of deep learning techniques can be found in the Deep Learning book by

Goodfellow et al. (2016). New architectures and techniques appear almost every day,

for most recent advances in deep learning we advise the reader to check arXiv.org

and recent conference proceedings, e.g. Conference on Neural Information Process-

ing Systems (NIPS)13 and International Conference on Learning Representations

(ICLR)14.

13https://www.nips.cc/
14http://www.iclr.cc/
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Chapter 3

Detecting Semantically Equivalent

Questions in CQAs

This chapter describes our early work on the task of question-question semantic

similarity. The work described in this chapter was carried out during an internship at

IBM Research Brazil between September and December 2014 in collaboration with

Cicero dos Santos. Since 2014, deep learning techniques have advanced enormously.

At the end of this chapter, we reconsider the experimental setup and the findings of

this work.

As we compare two questions with a view to provide the answer to one of them,

in this context similar questions means that these questions have the same answer.

This chapter focuses on the task of question classification, i.e. given a pair of ques-

tions, predicting if they can be answered with the same answer.

The focus of this work is in learning from naturally annotated data of CQA web-

sites. In particular, in most of our experiments we use data from Stack Exchange1

communities. This community advises its users to search the forum for an answer

before posting a new question, as it might already have been asked. However, finding

this question is not always a straightforward task, as different users can formulate

the same question in completely different ways. The Stack Exchange community

1http://stackexchange.com
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Title: I can’t download anything and I can’t
watch videos

Title: How can I install Windows soft-
ware or games?

Body: Two days ago I tried to download
skype and it says an error occurred it says
end of central directory signature not found
Either this file is not a zipfile, or it constitutes
one disk of a multi-part archive. In the lat-
ter case the central directory and zipfile com-
ment will be found on the last disk(s) of this
archive. zipinfo: cannot find zipfile directory
in one of ~/Downloads/SkypeSetup-aoc-

jd.exe or ~/Downloads/SkypeSetup-aoc-

jd.exe.zip, and cannot find ~/Downloads/

SkypeSetup-aoc-jd.exe.ZIP pe... this hap-
pens whenever I try to download anything
like games and also i can’t watch videoss it’s
looking for plug ins but it doesn’t find them
i hate this [sic!]

Body: Can .exe and .msi files (Win-
dows software) be installed in Ubuntu?
[sic!]

Link: http://askubuntu.com/questions/
364350

http://askubuntu.com/questions/
988

Possible Answer (Shortened version): .exe files are not binary-compatible with
Ubuntu. There are, however, compatibility layers for Linux, such as Wine, that are
capable of running .exe.

Table 3.1: An example of semantically equivalent questions from Ask Ubuntu com-
munity.

and some other user forums have a duplication policy. Exact duplicates, such as

copy-and-paste questions, and nearly exact duplicates are usually quickly detected,

closed and removed from the forum. Nevertheless, some duplicate questions are

kept. The main reason for that is that there are many ways to ask the same ques-

tion, and a user might not be able to find the answer if they are asking it a different

way.2

We define two questions as semantically equivalent if they can be adequately

answered by the exact same answer. Table 3.1 presents an example of a pair of such

questions from Ask Ubuntu forum. Detecting semantically equivalent questions is

a very difficult task for two reasons: (1) the same question can be phrased in many

different ways; and (2) two questions can be asking different things but looking for

the same solution. Therefore, traditional similarity measures based on word overlap

2http://stackoverflow.com/help/duplicates

49

~/Downloads/SkypeSetup-aoc-jd.exe
~/Downloads/SkypeSetup-aoc-jd.exe
~/Downloads/SkypeSetup-aoc-jd.exe.zip
~/Downloads/SkypeSetup-aoc-jd.exe.zip
~/Downloads/SkypeSetup-aoc-jd.exe.ZIP
~/Downloads/SkypeSetup-aoc-jd.exe.ZIP
http://askubuntu.com/questions/364350
http://askubuntu.com/questions/364350
http://askubuntu.com/questions/988
http://askubuntu.com/questions/988
http://stackoverflow.com/help/duplicates


such as shingling and Jaccard coefficient (Broder, 1997) and its variations (Wu et al.,

2011) are not able to capture many cases of semantic equivalence.

This chapter is structured as follows: Section 3.1 addresses the task of question

classification. In particular, in Section 3.2 we introduce our methodology, including

the neural architecture used in most experiments. Then, we describe our experimen-

tal setup in Section 3.3 including the datasets and the baselines. We experimentally

compare the neural architecture to the baselines in Section 3.4. We compare the

use of domain-specific versus out-of-domain word embeddings in Section 3.5. We

measure the impact of the training set size on the performance in Section 3.6. We

evaluate our approach on another domain in Section 3.7. We provide an error anal-

ysis in Section 3.8. As this chapter presents experiments done at early stages of

the research, in Section 3.9 we reexamine the experimental setup of this chapter

and suggest how it can be improved. In Section 3.10 we provide an overview of ap-

proaches to the task of question retrieval in community question answering websites.

We draw our conclusions in Section 3.11.

3.1 Question Classification Task

Following the duplication policy of the Stack Exchange online community,3 we define

semantically equivalent questions as follows:

Definition 3.1.1. Two questions are semantically equivalent if they can be ade-

quately answered by the exact same answer.

Since our definition of semantically equivalent questions corresponds to the rules

of the Stack Exchange duplication policy, we assume that all questions of this com-

munity that were marked as duplicates are semantically equivalent.4 An example

3http://blog.stackoverflow.com/2010/11/dr-strangedupe-or-how-i-learned-to-stop-
worrying-and-love-duplication/; http://meta.stackexchange.com/questions/32311/do-
not-delete-good-duplicates

4This assumption does not always hold true in reality, as was later reported by Hoogeveen et al.
(2016)
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of such questions is given in Table 3.1. These questions vary significantly in vocab-

ulary, style, length and content quality. However, both questions require the exact

same answer.

The exact task that we approach in this section is a binary classification task:

given two problem definitions, predict if they are semantically equivalent. By prob-

lem definition we mean the concatenation of the title and the body of a question.

Throughout this chapter we use the term question as a synonym of problem defini-

tion.

3.2 Methodology

In this section we use a convolutional neural network architecture to detect seman-

tically equivalent questions. The words are first transformed into word embeddings,

using a large collection of unlabelled data, and then we apply a convolutional neural

network (CNN, described in Section 2.3.2) to build distributed vector representa-

tions for pairs of questions. Finally, the questions are scored using a similarity

metric. Pairs of questions with a similarity score above a threshold, defined based

on a held-out set, are considered duplicates. The CNN is trained using positive

(semantically equivalent) and negative (not semantically equivalent) pairs of ques-

tions. During training, CNN is induced to produce similar vector representations

for questions that are semantically equivalent.

We perform experiments using data from two different Stack Exchange forums.

We compare CNN performance with a Support Vector Machines classifier (Cortes

and Vapnik, 1995) and a duplicate detection approach based on shingling (Broder,

1997).

We also investigate the performance of the network in different settings. In

particular, we evaluate:

- the impact of word embeddings pretrained on in-domain data versus the ones

pretrained on the English Wikipedia;
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- word vectors of different dimensionalities;

- the influence of the training set size on the performance of the CNN versus

the baseline system;

- the impact of in-domain word embeddings when using out-of-domain training

data.

3.2.1 Neural Network Architecture

The encoder we use to obtain the representations for questions must deal with

two main challenges: first, different questions can have different sizes; and second,

important information can appear at any place in the question, i.e. we can not cut

off the end of a question. The convolutional approach (Waibel et al., 1989) is one of

the ways to tackle these challenges. In recent work, convolutional approaches have

been used to solve similar problems when creating representations for text segments

of different sizes (dos Santos and Gatti, 2014) and character-level representations of

words of different sizes (dos Santos and Zadrozny, 2014).

As detailed in Figure 3.1, a convolutional neural network (see Section 2.3.2 for

more details on this architecture) is used to encode each of the two questions, i.e. the

concatenations of their title and body. The input to the network is the tokenised

question text. First, the words are transformed into word embeddings of size d,

where d is a hyperparameter to be chosen. The word embeddings form the only input

channel of the CNN. Then a convolutional layer produces local features around each

word in the question: the filter (word window) of size w is used, where w is another

parameter to be experimentally tuned. The network then combines these local

features using a sum operation (similar to max pooling described in Section 2.3.2)

to create a fixed-sized vector representation for the question: rrrq1 for the first question

and rrrq2 for the second question.

Finally, the CNN computes a similarity score between rrrq1 and rrrq2 . In our exper-
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Figure 3.1: Convolutional neural network for semantically equivalent questions de-
tection.

iments we use the cosine similarity

s(q1, q2) =
rrrq1 · rrrq2
|rrrq1||rrrq2 |

Pairs of questions with similarity above a threshold, defined based on a heldout set,

are considered duplicates.

The network is trained by minimising the mean-squared error over the training

set. Given a question pair (q1, q2), the network with parameter set θθθ computes

a similarity score sθ(q1, q2). Let y(q1,q2) be the correct label of the pair, where its

possible values are 1 (equivalent questions) or 0 (not equivalent questions). We use

stochastic gradient descent (SGD) to minimize the mean-squared error with respect

to θ:

L(θ) =
∑

(x,y)∈D

1

2
(y − sθ(x))2 (3.1)
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where x = (q1, q2) corresponds to a question pair in the training set D and y repre-

sents its respective label y(q1,q2).

3.3 Experimental Setup

3.3.1 Datasets

In our experiments we use data from the Ask Ubuntu Community Questions and

Answers (Q&A) site.5 Ask Ubuntu is a community for Ubuntu users and develop-

ers, and it is part of the Stack Exchange6 Q&A communities. The users of these

communities can ask and answer questions, and vote up and down both questions

and answers. Users with a high reputation become moderators and can label a new

question as a duplicate to an existing question.7 Usually it takes five votes from

different moderators to close a question as a duplicate.

We use the Ask Ubuntu data dump provided in May 2014. We extract all

question pairs linked as duplicates. The data dump we use contains 15277 such

pairs. For our experiments, we randomly select a training set of 24K pairs, a test

set of 6K and a development set of 1K, making sure there are no overlaps between

the sets. Half of each set contains pairs of semantically equivalent questions (positive

pairs) and half are pairs of questions that are not semantically equivalent. The latter

pairs are randomly selected from the corpus.

For the experiments on a different domain that we report in Section 3.7 we use

the Meta Stack Exchange8 data dump provided in September 2014. Meta Stack Ex-

change (Meta) is used to discuss the Stack Exchange community itself. People ask

questions about the rules, features and possible bugs. The data dump we use con-

tains 67746 questions, where 19456 are marked as duplicates. For the experiments

on this data set, we select random balanced disjoint sets of 20K pairs for training,

5http://askubuntu.com/
6http://stackexchange.com
7More information about Stack Exchange communities could be found here: http://

stackexchange.com/tour
8http://meta.stackexchange.com
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1K for development and 4K for testing. We prepare the data in exactly the same

manner as the Ask Ubuntu data.

3.3.2 Baselines

We explore three main baselines: a method based on the Jaccard coefficient which

was reported to provide high accuracy for the task of duplicate detection (Wu et al.,

2011), a Support Vector Machines (SVM) classifier (Cortes and Vapnik, 1995) and

the combination of the two.

Shingling baseline: for this baseline, the documents are first represented as sets

of shingles, i.e. unique n-grams, of lengths from one to four, and then the Jaccard

coefficient for a pair of documents is calculated as follows:

J(S(d1), S(d2)) =
S(d1) ∩ S(d2)

S(d1) ∪ S(d2)
,

where S(di) is the set of shingles generated from the ith document. High values of

the Jaccard coefficient denote high similarity between the documents. If the value

exceeds a threshold T , the documents are considered semantically equivalent. In

this case, the training data is used to select the optimal threshold T .

SVM baseline: for the SVM baseline, we represent the documents with n-grams

of length up to four. For each pair of questions and each n-gram we generate three

features:

1. if the n-gram is present in the first question;

2. if the n-gram is present in the second question;

3. the overall normalised count of the n-gram in the two questions.

We use the Radial Basis Function (RBF) kernel and perform grid search to optimize

the values of C and γ parameters.9 We use a frequency threshold to reduce the

9We used the script provided with the libsvm library that explores C in [2−5; 215] and γ in
[2−15; 23]
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number of features.10 The implementation provided by LibSVM (Chang and Lin,

2011) is used.

Combined baseline: in order to combine the two baselines, for a pair of questions

we calculate the values of the Jaccard coefficient with shingles size up to four, and

then add these values as additional features used by the SVM classifier.

3.3.3 Word Embeddings

The word embeddings used in our experiments are initialised by means of unsuper-

vised pretraining. We perform pretraining using the skip-gram architecture (Mikolov

et al., 2013c) available in the word2vec11 tool. Two different corpora are used to

train word embeddings for most of the experiments: the English Wikipedia and the

Ask Ubuntu community data. The experiments presented in Section 3.7 also use

word embeddings trained on the Meta Stack Exchange community data. In the

experiments with the English Wikipedia word embeddings, we use the embeddings

previously produced by dos Santos and Gatti (2014). They have used the December

2013 snapshot of the English Wikipedia corpus to obtain word embeddings with the

skip-gram model of the word2vec tool.

In the experiments with the Ask Ubuntu and the Meta Stack Exchange, we use

the Stack Exchange data dump provided in May 2014 to train the word embeddings.

Three main steps are used to process all questions and answers from these Stack

Exchange dumps: (1) tokenisation; (2) image removal, URL replacement and pre-

fixing/removal of the code if necessary (see Section 3.4 for more information); (3)

lower-casing of all tokens.

The resulting corpora contains about 121 million and 19 million tokens for Ask

Ubuntu and Meta Stack Exchange, respectively.

10Several values (2, 5, 35 and 100) were tried with cross-validation, the threshold with value 5
was selected

11 http://code.google.com/p/word2vec/
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3.3.4 Hyperparameters

The cosine similarity threshold was set to 0.5. The window size is set to 3, the

number of convolutional units is set to 300, and the word embeddings size to 200

(we experiment with different word embedding dimensionalities in Section 3.5). The

learning rate was experimentally set to 0.005. Out-of-vocabulary words, i.e. those

not present in the training set or whose frequency in the training set did not exceed

the threshold of 5, are mapped to the <UNK> token.

3.4 Comparison with Baselines

In this section we experimentally compare the performance of the CNN versus the

performance of the baseline systems.

Code Handling: the Ask Ubuntu community gives users an opportunity to for-

mat parts of their posts as code by using code tags (an example is in italic in

Table 3.1). It includes not only programming code, but commands, paths to di-

rectories, names of packages, error messages and links. Around 30% of all posts in

the data dump contain code tags. Since the rules for code formatting are not well

defined, it was not clear if a learning algorithm would benefit from including it or

not. Therefore, for each algorithm we tested three different approaches to handling

code: keeping it as text; removing it; and prefixing it with a special tag. The latter

is done in order to distinguish between the same term used within text or within

code or a command (e.g., a for as a preposition and a for in a for loop). When

creating the word embeddings, the same approach to the code as for the training

data was followed.

The development set is used to tune the hyperparameters of the algorithms. In

order to speed up computations, we perform our initial experiments using a 4K

balanced subset of the training set.

We test the shingling-based approach with different shingle sizes. As Table 3.2
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indicates, the accuracy decreases with the increase of the shingle size. The fact

that much better accuracy is achieved when comparing questions based on simple

word overlap (shingle size 1), suggests that semantically equivalent questions are

not duplicates but rather have topical similarity. The SVM baseline performs well

only when combined with the shingling approach by using the values of the Jaccard

coefficient for shingle size up to four as additional features. A possible reason for

this is that n-gram representations do not capture enough information about se-

mantic equivalence. The CNN with word embeddings outperforms the baselines by

a significant margin.

The results presented in Table 3.2 indicate that the algorithms do not benefit

from including the code. This is probably because the code tags are not always used

appropriately and some code examples include long error messages, which make the

user generated data even more noisy. Therefore, in the following experiments the

code is removed. Perhaps, learning separate representations for code could have

been advantageous for this task.

The development accuracy and the test accuracy using the full 24K training

set is presented in Table 3.3. The SVM with four additional shingling features is

found best among the baselines (see Table 3.2) and is used as a baseline in this

experiment. Again, the CNN with word embeddings outperforms the best baseline

by a significant margin.

3.5 Impact of Domain-Specific Word Embeddings

We perform two experiments to evaluate the impact of the word embeddings on the

CNN accuracy. In the first experiment, we gradually increase the dimensionality of

word embeddings from 50 to 400. The results are presented in Figure 3.2. The verti-

cal axis corresponds to development accuracy and the horizontal axis represents the

training time in epochs. As has been shown by Mikolov et al. (2013c), word embed-

dings of higher dimensionality trained on a large enough data set capture semantic
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Approach Features Code Dev Acc. Hyperparameters

SVM-RBF binary + freq. kept 66.20 C=8.0, γ ≈3.05e-05
SVM-RBF binary + freq. removed 66.53 C=2.0, γ ≈1.2e-04
SVM-RBF binary + freq. prefixed 66.53 C=8.0, γ ≈3.05e-05

Shingling size 1 - kept 72.35 -
Shingling size 1 - removed 72.65 -
Shingling size 1 - prefixed 70.94 -
Shingling size 2 - kept 69.24 -
Shingling size 2 - removed 66.83 -
Shingling size 2 - prefixed 67.74 -
Shingling size 3 - kept 65.23 -
Shingling size 3 - removed 62.93 -
Shingling size 3 - prefixed 64.43 -

SVM-RBF bin+freq+shing kept 74.0 C=32.0, γ ≈3.05e-05
SVM-RBF bin+freq+shing removed 77.4 C=32.0, γ ≈3.05e-05
SVM-RBF bin+freq+shing prefixed 73.6 C=32.0, γ ≈3.05e-05

CNN AU word vectors kept 91.3 w=3, d=200,
CNN AU word vectors removed 92.4 conv. units=300
CNN AU word vectors prefixed 91.4 learning rate=0.005

Table 3.2: Development Accuracy and best parameters for the baselines and the
Convolutional Neural Network.

System Dev Acc. Test Acc.
SVM + shingles 85.5 82.4
CNN + Askubuntu 93.4 92.9

Table 3.3: CNN and SVM accuracy on the development and the test set using the
full training set.

information better than those of a smaller dimensionality. The experimental results

presented in Figure 3.2 corroborate these findings: we can see improvements in the

neural network performance when increasing the word embeddings dimensionality

from 50 to 100 and from 100 to 200. However, increasing the dimensionality from

200 to 400 does not improve the performance significantly enough to justify the

increase in the training time.

In the second experiment, we evaluate the impact of in-domain word embed-

dings on the network’s performance. We obtain word embeddings trained on two

different corpora: the Ask Ubuntu community data and the English Wikipedia (see

Section 3.3.3). Both representations are 200-dimensional. The results presented in
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Figure 3.2: CNN accuracy depending on the size of word embeddings

Word Embeddings # tokens Dev Acc.
Wikipedia ≈1.6B 85.5
Ask Ubuntu ≈121M 92.4

Table 3.4: Development Accuracy of the CNN with word embeddings pretrained on
different corpora.

Table 3.4 show that training on in-domain data is more beneficial for the network,

even though the corpus used to create word embeddings is much smaller.

3.6 Impact of Training Set Size

In order to measure the impact of the training set size, we perform experiments using

subsets of the training data, starting from 100 question pairs and gradually increas-

ing the size to the full 24K training set.12 Figure 3.3 compares the learning curves

for the SVM baseline (with parameters and features described in Section 3.4) and

for the CNN with word embeddings trained on Ask Ubuntu and English Wikipedia.

The vertical axis corresponds to the development accuracy, and the horizontal axis

represents the training set size. As Figure 3.3 indicates, increasing the size of the

12 We use sets of 100, 1000, 4000, 12000 and 24000 question pairs.
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training set provides improvements. Nonetheless, the difference in accuracy when

training with the full 24K training set and 4K subset is about 9% for SVM and only

about 1% for the CNN. This difference is small for both word embeddings pretrained

on Ask Ubuntu and Wikipedia but, the in-domain word embeddings provide better

performance independent of the training set size.

Figure 3.3: Development accuracy for the baseline and the CNN depending on the
size of training set.

3.7 Experiments on a Different Domain

Muthmann and Petrova (2014) report that the Meta Stack Exchange Community13

is one of the hardest for finding semantically equivalent questions. We perform

the same experiments described in previous sections using the Meta data set. In

Table 3.5, we can see that the CNN accuracy on Meta test data (92.68%) is similar

to the one for the Ask Ubuntu community on test data (92.4%) (see Table 3.3).

13 http://meta.stackexchange.com/
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Training Data Size Word Embeddings Dev Acc. Test Acc.
META 4K META 91.10 89.97
META 4K Wikipedia 86.90 86.27
META 20K META 92.80 92.68
META 20K Wikipedia 90.60 90.52
Ask Ubuntu 24K META 83.90 83.35
Ask Ubuntu 24K Ask Ubuntu 76.8 80.00

Table 3.5: Convolutional Neural Network Accuracy tested on Meta Stack Exchange
community data.

Also, in Table 3.5, we show results of a domain adaptation experiment in which

we do not use training data from the Meta forum. In this case, the CNN is trained

using Ask Ubuntu data only. The numbers show that even in this case using in-

domain word embeddings helps to achieve relatively high accuracy: 83.35% on the

test set. The performance is about 3% lower when both the word embeddings and

the training data come from another domain.

3.8 Error Analysis

The convolutional neural network with in-domain word embeddings outperforms the

baselines based on lexical features in the task of identifying semantically equivalent

questions. Even being semantically equivalent, most questions are too different in

terms of vocabulary, and in this case the use of CNN is more beneficial than the

vocabulary-based methods. The error analysis shows that the CNN is better at dis-

tinguishing questions with similar vocabulary but different meanings. For example,

the question pair, (q1) How can I install Ubuntu without removing Windows? and

(q2) How do I upgrade from x86 to x64 without losing settings? is erroneously pre-

dicted as a positive pair by the SVM classifier, while the CNN classifies it correctly

as a negative pair.

There are some cases where both CNN and SVM fail to identify semantic equiva-

lence. Some of these cases include questions where essential information is presented

as an image, e.g., a screenshot, which was removed during preprocessing.14 Future

14For instance, http://askubuntu.com/questions/450843
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research could involve the use of a multi-modal system to address this issue.

3.9 The Chapter Reexamined

This chapter described preliminary research carried out in 2014. In this section, we

summarise some drawbacks of this work and suggest how this could be improved.

Solving a real world task: In this chapter we have addressed the task of binary

classification of question pairs. This task is of a rather synthetic nature, be-

cause in the real world scenario one would need to solve the harder task of

question retrieval: given a question and a collection of existing questions with

their answers, the goal is to retrieve existing questions semantically equivalent

to the new one. In the next section we will briefly review existing approaches

to this task.

Creating a more realistic dataset: The dataset we used for classification is bal-

anced, i.e. 50% of the pairs were semantically equivalent, and 50% were not.

Even though this is a common way to create datasets for binary classification

tasks, e.g. a recent dataset of duplicate questions from Quora,15 this simpli-

fies the task, as semantically equivalent questions are usually much more rare

than ones that are not semantically equivalent. That is why creating a dataset

with a realistic distribution of semantically equivalent questions would help to

better estimate the quality of the evaluated methods, as in many cases skewed

datasets represent a challenge for classification methods.

Improving the neural architecture: We used a simple convolutional neural net-

work to encode the questions, and then compared them using cosine similarity.

The network’s good performance was likely due to the quality of the word em-

beddings it used. Since 2014 the field has moved forward, suggesting many

possible ways to improve the architecture. First of all, several different filter

15https://data.quora.com/First-Quora-Dataset-Release-Question-Pairs
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sizes can be used, as well as better regularisation techniques, such as weight

decay and dropout (see Chapter 2 for details on these techniques). Besides, as

we deal with long questions, a recurrent neural network encoder would prob-

ably be more suitable in this case (see our findings in Chapter 6 for the task

of answer ranking).

3.10 Related Work on Question Retrieval

This chapter presented an approach to detection of semantically equivalent ques-

tions, suggesting a model for a rather synthetic task of binary classification of ques-

tion pairs. The end goal of semantically equivalent question detection is question

retrieval: given a new question retrieve existing previously asked questions that are

semantically equivalent to it. In this section we summarise previous attempts to

solve the task of question retrieval. We roughly divide the approaches into three

groups: (1) early approaches based on rules and templates; (2) approaches apply-

ing statistical techniques, including classical term-weighting models such as Okapi

BM25 (Robertson et al., 1994) and its variations; and (3) representation learning

approaches. The rest of this section describes the related work on each of the four

approaches more in detail.

3.10.1 Rules and Templates for Question Retrieval

Some early systems used templates to match new questions to existing ones. Katz

(1997) described START, the first online question answering system that used rules

to convert a question to a ternary expression in the form <subject relation

object>. For instance, these rules aimed to provide the system with informa-

tion on the equivalence of A surprised B with C and A’s C surprised B. The rules

were represented as if-then statements: If <<subject surprise object1> with

object2> Then <object2 surprise object1>.

Another example of template-based question matching is the work of Sneiders
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(2002). They proposed a system for answering one-sentence FAQ-style factoid ques-

tions by introducing question templates – parametrised questions with entity slots,

e.g. What is the best restaurant in <CITY>? A new question was then matched to

existing templates.

A way to provide better templates for matching questions is to use knowledge

bases to find synonyms. For example, Burke et al. (1997) extracted synonyms and

hypernyms from WordNet (Miller, 1995) to better match questions to questions and

answers from FAQ archives.

3.10.2 Statistical Techniques for Question Retrieval

Most existing approaches to question retrieval adapt existing information retrieval

methods to the task. The adaptations aim to overcome two issues: (1) similar

questions being very different on the lexical and syntactic levels (2) questions being

short, which turns out to be an issue, as most retrieval models, e.g. one of the most

popular retrieval models Okapi BM25 (Robertson et al., 1994), were designed for

the retrieval of long documents.

In order to overcome the lexical gap issue, many studies including Zhou et al.

(2011) and Cai et al. (2011) turn to the idea of Berger and Lafferty (1999), who

suggested using statistical machine translation methods to bridge the lexical gap

between the query and the document. In particular, they use IBM Model 1 (Brown

et al., 1993) to estimate word-to-word translation probabilities.

Most studies suggest using translation models together with the language mod-

els (Jeon et al., 2005; Xue et al., 2008; Duan et al., 2008; Zhou et al., 2011). Given

a question q and a candidate question qc, the score of the question qc with respect

to the query q is estimated as the following probability:

pq|qc =
∏
w∈q

p(w|qc)

where word probabilities p(w|qc) are provided by both a translation model and
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a language model:

p(w|qc) = λpLM(w|qc) + (1− λ)pTM(w|qc)

pLM and pTM are the probabilities defined by the language model and the translation

model respectively, and λ is a parameter that controls the effect of each of the models.

Several studies further improve on this approach, e.g. Zhou et al. (2011) incor-

porate phrase-level information into this model instead of relying only on the word

translation probabilities; Cai et al. (2011) and Zhang et al. (2014) suggest using La-

tent Dirichlet Allocation (Blei et al., 2003) to discover the latent topic information

in the questions. The former uses only the questions in the retrieval, while the latter

uses the answers too. Both Cai et al. (2011) and Zhang et al. (2014) combine the

topical information with the translation-based retrieval language (TRLM) model

(i.e. the combination of the translation model and the language model described

above):

p(w|qc) = λpTRLM(w|qc) + (1− λ)pLDA(w|qc)

To address the second issue, i.e. short document retrieval, Wang et al. (2009) and

Zhang et al. (2012) suggest using syntactic information. Zhang et al. (2012) parse

the questions into undirected dependency graphs, and then estimate the distances

between terms as the length of the path between them in the graph. They define

the dependency relevance between two terms as follows:

dep(t1, t2) =
1

bpath(t1,t2)

where b > 1 is a hyperparameter that is tuned to maximise mean average precision.

They define the term weights to be a linear combination of the similarities defined by

pointwise mutual information and the dependency relevance. The weights obtained

in this way are then multiplied by the weights of BM25, translation-based or another
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retrieval model.

3.10.3 Representation Learning for Question Retrieval

With the recent success of representation learning and deep learning in natural

language processing (see Chapter 2 for an overview), research on question retrieval

started to focus on representation learning approaches to the task.

One of the first attempts to learn representations for question retrieval was pre-

sented by dos Santos et al. (2015). They propose an extension of the work presented

in this chapter: the score of the question pair is determined by the combination

of the scores provided by the CNN and the score provided by the weighted bag-of-

words model. The weighted bag-of-words model represents the questions as sparse

vectors of frequencies of each word in the vocabulary, and the final representation

of the model is obtained by multiplying this sparse vector by the vector of weights.

The latter is optimised during training.

Similarly to the approach we presented in this chapter and the approach of dos

Santos et al. (2015), Das et al. (2016) use two convolutional neural networks with

shared parameters to represent the questions and then compare the representations

using cosine similarity. The architecture is almost identical to ours, except for the

additional feedforward layer they incorporate in their network and using different

hyperparameters. The network is trained in the same way as the network presented

in this chapter, i.e. by maximising the similarity between semantically equivalent

questions on the training set, although using a different loss function (they use max-

margin loss in case of non-equivalent questions and the error otherwise). In order

to use this model in the retrieval setting, they combine the score produced by this

model with a score produced by Okapi BM25 model:

score = α ∗ scoreCNN + (1− α) ∗ scoreBM25

Another model for question retrieval that also combines the representation learn-
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ing with the BM25 model was presented by Lei et al. (2016). They propose a novel

neural architecture to represent questions. The architecture is essentially a convo-

lutional neural network with an additional gate that is used to downweight certain

bigrams. Similarly to Das et al. (2016), they combine the score produced by this

model with the score of the BM25 model.

In Chapter 4 we return to the representation learning approaches to community

question answering tasks including question retrieval, and give a more thorough

overview of the techniques used in this task.

3.11 Summary

In this section we introduced a method for identifying semantically equivalent ques-

tions based on a convolutional neural network. We experimentally showed that the

proposed CNN achieves very high accuracy especially when the word embeddings

are pretrained on in-domain data. The performance of an SVM-based approach on

this task was shown to depend highly on the size of the training data. In contrast,

the CNN with in-domain word embeddings provides very high performance even

with limited training data. Furthermore, experiments on a different domain have

demonstrated that the neural network achieves high accuracy independently of the

domain.

The results show that:

- using word embeddings pretrained on domain-specific data allows the network

to achieve very high performance;

- increasing the dimensionality of word embeddings results in higher accuracy;

- in-domain word embeddings provide better performance even with a smaller

training set;

- a convolutional neural network with in-domain word embeddings achieves rel-

atively high accuracy even when using out-of-domain training data.
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Chapter 4

Learning to Rank Answers

The goal of the answer ranking task is to rank answers according to how well they

answer a given question. As this is usually the second step after either question

matching or candidate answer selection, this task is sometimes referred to as answer

reranking.

We focus on the community question answering websites, that serve as the source

of labelled data. We assume that the answer selected by the community as the best

one (see Figure 4.1) is the one that has to be ranked before all other answers. We

will mainly focus on deep learning approaches to answer ranking. We also inves-

tigate the possibility of combining the neural approach with handcrafted features

based on discourse markers. In this chapter we introduce our general methodol-

ogy and describe the experimental setup, and devote the next three chapters to the

experiments.

This chapter is structured as follows: Section 4.1 presents the related work. In

Section 4.2, we describe the ranking problem, the task of answer ranking and our

general approach to the task. In Section 4.3 we introduce the datasets we use in

answer ranking experiments. Section 4.4 describes the experimental setup including

the evaluation metrics and the baselines.

69



Figure 4.1: Example of a question posted on Yahoo! Answers CQA. The best answer
considered as the positive example is in the green box.

4.1 Related Work

4.1.1 Non-Factoid Answer Ranking

One of the main components of a non-factoid question answering system is the

answer (re)ranking module. Given a question, it aims to rearrange the answers in

order to boost the correct answers to the top positions, or the community-selected

best answer in case of the CQA-based AR.

One of the main problems of non-factoid question answering and non-factoid

answer ranking in particular is the so called lexical chasm (Berger et al., 2000), i.e.,

questions and answers usually have a very low or no vocabulary overlap at all. Most

studies are focused on bridging this lexical chasm. One way to bridge the lexical

chasm is to apply Statistical Machine Translation (SMT) techniques. For instance,

Riezler et al. (2007) trained an SMT model on a large corpus of question-answer
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pairs extracted from FAQ pages, and query expansion was performed by adding

best translations of the query, which is used to retrieve answer passages. Another

approach to non-factoid answer ranking is to apply a machine learning ranking

algorithm to the representations of answers. The answers can be represented with

a variety of features including the ones provided by translation models (Surdeanu

et al., 2011) as well as many other features such as discourse markers (Jansen et al.,

2014) and features based on IR ranking models (Surdeanu et al., 2008). More

recent neural approaches learn distributed representations for questions and answers

instead of (dos Santos et al., 2016) or together with (Cheng et al., 2016) handcrafted

features.

In the next sections we will focus on machine learning methods for answer ranking

in CQAs, as this is the main focus of our work. We will roughly divide the methods

into feature-based approaches, i.e. where question-answer pairs are represented as

vectors of handcrafted features, and the success of the ranking/selection is due to

the quality of these features; and neural approaches, where the representations for

question-answer pairs are learned and the main contribution is the architecture of

the machine learning predictor.

4.1.2 Ranking Scenarios in CQAs

When ranking answers in CQAs, there are three possible scenarios depending on

the source of the answers to be ranked:

Ranking answers in a thread: Most studies consider only answers posted in the

same thread as the question (Jansen et al., 2014; Fried et al., 2015; Tymoshenko

et al., 2016a; Barrón-Cedeño et al., 2015). This means that there are only a

few (usually no more than twenty) answers to rank, and this allows expen-

sive ranking methods (that require training and/or feature engineering) to be

used directly on all possible answers without any pre-selection. Feature-based

studies use SVMrank (Joachims, 2006) or Support Vector Regression (Drucker
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et al., 1997) as the predictor. Neural approaches often calculate cosine sim-

ilarity between the learned question and answer representations (dos Santos

et al., 2016; Tan et al., 2015).

Ranking answers to related questions: Semeval 2016 Task 3 introduced a sub-

task on ranking answers that do not belong to the same thread as the given

question. Instead, a set of related threads is retrieved using a search engine,

and the answers in these threads are to be ranked according to their relevance

to the original question (Nakov et al., 2016b). The organisers made available

the ranks of each of the related questions provided by the Google search en-

gine. Most participants including the winning team (Mihaylova et al., 2016)

approached the task by ranking the answers within each thread (i.e. the pre-

vious scenario when only the answers within the same thread are ranked) and

then multiplying the scores by the reciprocal rank of the respective related

question. A different method was used by Nakov et al. (2016a). They consider

pairwise interactions between the original question, the related question and

the answer to the related question. They extract the features for the three

possible pairs and then use a supervised predictor.

Ranking a larger collection of answers from a CQA: Surdeanu et al. (2011)

and Hieber and Riezler (2011) rank all community-selected best answers (to

many different questions). This means ranking thousands of answers for every

question, which is prohibitive for the direct use of expensive machine learning

techniques. This task is usually addressed in two steps: first, a list of candidate

answers is retrieved using a cheap unsupervised model such as tf-idf (Salton

and McGill, 1986) or Okapi BM25 (Robertson et al., 1994). Then a hand-

ful of top answers is re-ranked, for instance, using a feature-based predictor,

such as SVMRank (Joachims, 2006), SVR (Drucker et al., 1997) or Ranking

Perceptron (Shen and Joshi, 2005).
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4.1.3 Features for Non-Factoid Answer Ranking

In this section we will outline different types of features used for the task of answer

ranking in CQA, as well as several related tasks, including non-factoid question

answering and answer quality prediction in CQAs. In order to structure the previous

work on the task, we will roughly classify the features into character-level, lexical,

syntactic, semantic, discourse and non-textual features.1

4.1.3.1 Character-Level Features

A few studies use character-level information in order to extract features from ques-

tions and answers. For instance, Hieber and Riezler (2011) measure the informa-

tiveness of the text as the entropy of the character distribution (as well as the word

distribution). Toba et al. (2014) uses several features indicating whether and how

often non-ASCII or special punctuation symbols are present in the question and/or

the answer, assuming that a good answer is not likely to have a high proportion of

special symbols. Barrón-Cedeño et al. (2015) use nine heuristic binary features in-

dicating whether the answer contains certain symbols, e.g. @ or ?. They also check

if the answer includes three or more consecutive repeated characters, e.g. aaaaa.

4.1.3.2 Lexical Features

Most studies on non-factoid answer ranking use lexical features, i.e. features relying

on word-level representations of the text. These features are computed on either

bag-of-word representations, or bag-of-n-gram representations.

Lexical Similarity Features: These features measure similarity between a ques-

tion and an answer on a lexical level. Several studies calculate normalised

word and n-gram overlaps between the question and the answer (Toba et al.,

2014; Yi et al., 2015), expecting to have a sufficient lexical overlap between a

1Note that this categorisation may not be perfectly precise as some features may belong to sev-
eral categories (e.g. Surdeanu et al. (2011) apply BM25 similarity not only to lexical representations
but also to syntactic dependencies and semantic roles).
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question and an answer, despite the known lexical chasm issue. Other similar-

ity measures include the length-normalised BM25 formula (Robertson et al.,

1994) that was used by Surdeanu et al. (2008, 2011) as follows:

BM25(A) =

|Q|∑
i=0

(k1 + 1)tfAi (k3 + 1)tfQi
(K + tfAi )(k3 + tfQi )

log(idfi) (4.1)

where Q is the question, A is the answer, tfAi and tfQi are the frequencies

of the question term i in A and Q respectively, idfi is the inverse document

frequency of the term i in the whole corpus; and K is the length normaliser:

K = k1((1− b) + b|A|/ans len)

where ans len is the average answer length in the collection. b, k1 and k3 are

the parameters of the BM25 model, that are usually set as follows: k1, k3 ∈

[1.2; 2.0], b = 0.75.

Another common way to measure the similarity between the question and

the answer is in measuring the Kullback-Leibler (KL) divergence (Kullback

and Leibler, 1951) between unigram language models for the question and the

answer (Agichtein et al., 2008; Liu et al., 2008; Cong et al., 2008; Wang et al.,

2010). Let Mu and Mv be two language models, then the KL-divergence is

estimated as follows:

DKL(Mu||Mv) =
∑
w

p(w|Mu)log
p(w|Mu)

p(w|Mv)
(4.2)

Other ways to measure lexical similarity include estimating n-gram co-ocurrence

statistics by adapting measures for machine translation evaluation, e.g. Soricut

and Brill (2004) use BLEU (Papineni et al., 2002) to estimate the n-gram over-

lap between the question and the answer; calculating Jaccard similarity (Jen-

ders et al., 2016) between n-gram representations (as we do in Chapter 3 for
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the task of duplicate question detection); cosine similarity between tf-idf and

other lexical representations of the question and the answer (Cong et al., 2008;

Jansen et al., 2014).

Density and Frequency Features: These features measure the frequency and

density of question words in the answer: e.g. the number of non-stop question

words that appear in the answer (Surdeanu et al., 2011); and answer span, i.e.

the largest distance between two question words in the answer (Hieber and

Riezler, 2011; Surdeanu et al., 2011). In several studies density and frequency

features are applied not only on the lexical level but also on several other

levels of text representation (e.g. Toba et al. (2014) calculates the density of

punctuation signs and non-ASCII symbols in the answer, and Surdeanu et al.

(2011) and Hieber and Riezler (2011) estimate informativeness of the answer

based on the frequencies of various part of speech tags).

Features Extracted with Gazetteers and Regular Expressions: These features

are usually binary features indicating whether a question or an answer contains

a word from a particular gazetteer (a list of words of a dictionary) or match

a certain regular expression. For instance, Yi et al. (2015) use a binary fea-

ture indicating if any of the question words, i.e. why, what, when, how, which

etc., is present in the answer, as this may indicate the answer is only asking a

follow-up question, and thus, is not informative.

Several studies create gazetteers for their tasks. For instance, Verberne et al.

(2011) in their study on answering why questions created a list of 47 of words

“that introduce the explanation”, e.g. because, as a result of, which explains

why. Higashinaka and Isozaki (2008) uses the Japan Electronic Dictionary

Research Institute dictionary2 to create a list of word pairs, with a causality

relation between them, i.e. crime and arrest.

Regular expressions are mostly used to detect if the answer contains a URL or

2http://www2.nict.go.jp/r/r312/EDR/index.htm
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an e-mail (Barrón-Cedeño et al., 2015) or to count them in the answer (Toba

et al., 2014).

4.1.3.3 Syntax-Level Features

POS tags: These features measure frequencies of different POS tags (Hou et al.,

2015) and overlap between a question and an answer in terms of POS tags (Yi

et al., 2015; Verberne et al., 2011). In addition, Hieber and Riezler (2011) mea-

sure the formality of a text as the proportion of nouns, adjectives, preposi-

tions and articles, against the pronouns, verbs, adverbs and interjections; and

informativeness as the number of non-stop nouns, verbs and adjectives that

are present in the answer but not in the question.

Syntactic Trees: Several studies represent the question and the answer as a bag

of syntactic dependencies (Surdeanu et al., 2011; Fried et al., 2015). Surdeanu

et al. (2011) compute the BM25 similarity not only on the lexical but also

on the level of syntactic dependencies. Toba et al. (2014) manually prepare

a list of syntactic patterns to determine the focus word of what and which

questions. The focus word is the main focus of the question, e.g. in What is

your favourite movie? the focus word is movie. They also create a set of

patterns to identify the focus adjective for how questions, e.g. in How old

are you? the focus adjective is old. Verberne et al. (2010) hypothesise that

certain syntactic parts of a question are more important when deciding if a

particular answer is good for that question. They divide the question into

the following syntactic structures: heads, phrase modifiers; the subject, main

verb, nominal predicate, and direct object of the main clause; and all noun

phrases. Then they calculate the word overlap between each of these syntactic

constituents and the answer. For some of these features they also indicate

if the overlapping word is used with the same syntactic function in both the

question and the answer.
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Barrón-Cedeño et al. (2015) represent the question and the answer as shallow

constituency trees in order to estimate the similarity between questions and

answers with partial tree kernels (Moschitti, 2006). Tymoshenko et al. (2016b)

use shallow syntactic trees with an additional REL tag pre-pended to the

nodes that contain the words shared by the question and the answer and also

encode the question subject as a separate subtree with a SUBJECT-S tag

under the ROOT node.

Readability and Grammaticality: Several studies measure the syntactic and se-

mantic complexity of the answer. For instance, Agichtein et al. (2008) suggest

that representing the text as a bag of POS n-grams helps to estimate the

level of grammatical quality of the text. The intuition behind this measure

is that certain patterns, such as how/why/when to usually indicate a lower-

quality question while how/why/when VERB PRONOUN VERB indicates a

higher-quality question (e.g. how to remove ... ? versus how do I remove

... ? ). Hieber and Riezler (2011) measure grammaticality by counting how

many word n-grams appear more than three times in the text. Several studies

also implement readability measures (Toba et al., 2014; Hieber and Riezler,

2011), most of which are based on the proportion of words with more than

three syllables and the sentence length. For instance, the Gunning fog index

of readability (Gunning, 1952) is measured as follows:

SGF = 0.4(avg sentence length + proportion of complex words)

where complex words are usually words with three or more syllables.

4.1.3.4 Semantic Features

Semantic Analysis: Several studies use various techniques for semantic analysis in

order to represent the question and the answer. Inspired by the intuition that

a question and its answer should share the same topics, Tran et al. (2015) used
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Latent Dirichlet Allocation (Blei et al., 2003) (LDA) to represent the question

and the answer as vectors, and then estimated the cosine similarity between

these vectors. Nicosia et al. (2015) use Latent Semantic Analysis (Deerwester

et al., 1990) and Yang et al. (2016) use Explicit Semantic Analysis (Gabrilovich

and Markovitch, 2009) in a similar manner. Some more recent methods use

predictive methods for obtaining word representations, e.g. Jansen et al. (2014)

and Nakov et al. (2016a) represent the question and the answer as averaged

representations obtained by training a skip-gram model (Mikolov et al., 2013b)

for learning word embeddings (see Chapter 2 for more details on the skip-gram

model).

Semantic Role Labelling: Surdeanu et al. (2011) represent the question and the

answers as bags of predicate-argument relations extracted with the semantic

parser of Surdeanu and Ciaramita (2007) that uses PropBank notation (Palmer

et al., 2005). The output of the parser is converted to semantic dependen-

cies by extracting a dependency between each predicate and every one of its

arguments. These dependencies are labelled with the corresponding argu-

ment. For instance, for a sentence A helicopter gets its power from rotors or

blades. the following semantic dependencies are extracted: gets
agent−−→helicopter,

gets
patient−−−→its power, gets

instrument−−−−−→from rotors or blades.

Higashinaka and Isozaki (2008) used several binary features indicating whether

a certain causality relation pattern is present in the answer. They used a corpus

of Japanese sentences annotated with semantic relations in order to extract

these patterns.

WordNet Synsets and Semantic Similarity: Verberne et al. (2010, 2011) link

the words to their WordNet synsets and measure the overlap in terms of

synsets. They also estimate Lesk semantic relatedness measure (Lesk, 1986)

with WordNet (Pedersen et al., 2004), i.e. calculate word overlap between

words glosses and estimate the similarity between the question and the answer

78



as the average pairwise word similarity.

4.1.3.5 Discourse Features

Verberne et al. (2007) were first to show the utility of discourse information in

answering non-factoid questions. They prepared a set of why questions using the

Rhetorical Structure Theory (RST) Discourse Treebank (Carlson et al., 2001). The

RST Treebank contains 385 Wall Street Journal articles from the Penn Treebank (Mar-

cus et al., 1993) that were manually annotated. The discourse structure was repre-

sented as a tree with elementary discourse units as leaves, and with internal nodes

representing text spans. The nodes were also annotated with rhetorical relations.

Carlson et al. (2001) define 78 fine-grained relations that could be grouped into

16 coarse-grained classes. The classes include Attribution, Background, Cause, Com-

parison, Contrast, Explanation; and for instance, the Explanation class includes the

relations of evidence, argumentative explanation and reason. They also used the

presence of discourse markers indicating explanation as binary features. The dis-

course markers included because, as a result of, which explains why. Later, Jansen

et al. (2014) extended their discourse markers model. They used a more complete list

of markers, and each answer was searched for these markers. Each marker divided

the answer into two discourse arguments. They labelled every argument with either

QSEG indicating a substantial overlap between the argument and the question or

OTHER otherwise. Thus, their features partially lexicalised with the discourse mark-

ers (e.g. QSEG by OTHER) were more expressive than the binary features of Verberne

et al. (2007). Moreover, they also assigned values to each feature using a lexical

semantics model provided by tf-idf representations or averaged skip-gram (Mikolov

et al., 2013b) representations. We use these model in Section 7.2 and describe them

in more detail there. Jansen et al. (2014) also used discourse parse trees in their

model, following (Verberne et al., 2007), although they use the automatic discourse

parser of Feng and Hirst (2012).
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Study
Ques-
tions

Task Features
Predic-
tor

Data Size/Split

Higashinaka
and Isozaki
(2008)

Why AR
Gaz, SRL,
Synt SMVRank

WHYQA 1000Q, c-v

Verberne
et al. (2010)

Why AR
Synt, Para,
Gaz

LR
Webclopedia,
Wikipedia

186Q, c-v

Verberne
et al. (2011)

Why AR
Synt, Gaz,
Sim

SVM-
Rank,
SVR, LR,
GA, NB

Webclopedia,
Wikipedia

186Q, c-v

Surdeanu
et al. (2011)

How AR

POS, Synt,
Rel, NE,
Gaz, Sem,
SMT, Cooc,
Dens

RP,
SVM-
Rank
over
BM25
results

Yahoo!
Answers

142.6K QA
pairs,
60/20/20
split

Hieber and
Riezler
(2011)

How AR

Sim, SMT,
Read, POS,
Gram,
Entropy

ranking
SVM
with
SGD

Yahoo!
Answers

142.6K QA
pairs,
60/20/20

Toba et al.
(2014)

factoid,
opinion,
proce-
dure,
reason,
yes-no

AQ

Synt, Sim,
Stats, Stop,
POS, SMT,
Link, Sent,
Dens

Hierarchy
of SVM
and LR
classifiers

Yahoo!
Answers

5854Q, c-v

Jansen et al.
(2014)

How,
Why

AR
Sim, Disc,
Synt, Emb

SVM-
Rank

Yahoo!
Answers;
Biology Text
Book Why

10K,
50/25/25;
185 how +
193 why, c-v

Fried et al.
(2015)

How AR
Sim, Synt,
SMT, Emb

SVM-
Rank

Yahoo!
Answers

10K,
50/25/25

Barrón-
Cedeño et al.
(2015)

CQA AQ
Meta, Sim,
Synt

SVM,
SVMhmm,
CRF,
LOR

Qatar Living
Forum

2.6K/300/
329 QA

Jenders et al.
(2016)

CQA AR Meta, Stat RF, NB
openHPI
forum

835Q, c-v

Table 4.1: Summary of some of the related work. Task: AR - answer ranking/selection,
AQ - answer quality prediction. Features: Sim - lexical similarity features; Stats -
statistical features; Stop - stop words; Dens - density features; Cooc - co-occurrences
statistics; Para - paraphrases; POS - features based on POS tags; Synt - features based
on syntactic trees; NE - named entities; Disc - discourse features; Gaz - Gazetteers and
dictionaries including WordNet; Sem - Semantic Roles; Meta - meta-information; SMT
- statistical machine translation techniques; Sent - sentiment polarity; Link - presence
of links or emails; Readability - scores of readability models; Gram - grammaticality,
punctuation, OOV words; Entropy - entropy of the character or word distributions; Emb
- word embeddings; TM - topic modelling features. Predictor: LR - logistic regression,
GA - genetic algorithm (Goldberg and Holland, 1988), NB - Naive Bayes, RP - ranking
perceptron, LOR - logistic ordinal regression, RF - random forest classifier. Split: Q -
question, c-v - cross-validation.
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4.1.3.6 Translation Probabilities:

Several studies including Riezler et al. (2007); Surdeanu et al. (2008, 2011); Hieber

and Riezler (2011) and Toba et al. (2014) suggest to bridge the lexical chasm between

questions and answers by applying machine translation techniques, i.e. computing

word alignment between questions and answers. Hieber and Riezler (2011) and

Surdeanu et al. (2011) estimate the probability of the question Q being a translation

of the answer A using IBM Model 1 (Brown et al., 1993):

P (Q|A) =
∏
q∈Q

P (q|A) (4.3)

P (q|A) = (1− λ)Pml(q|A) + λPml(q|C) (4.4)

Pml(q|A) =
∑
a∈A

(T (q|a)Pml(a|A)) (4.5)

where C is the entire collection of the answers, λ is a smoothing parameter, Pml

are estimated using maximum likelihood, and T (q|a) refers to the word alignment

usually computed by applying the Expectation-Maximisation (EM) (Dempster et al.,

1977) algorithm implemented in the GIZA++ tool (Och and Ney, 2003). Hieber and

Riezler (2011) estimate the translation probability (Eq. 4.3) on a lexical level, while

Surdeanu et al. (2011) estimate this probability not only on a lexical level but also

over labelled syntactic dependencies as well as over labelled semantic dependencies.

These probabilities are then used as features in their ranking models. Riezler et al.

(2007) use the translation model to get most probable translations for question words

and use them for query expansion. Fried et al. (2015) estimate the alignments

T (q|a) for each pair of words in the vocabulary, and obtain the following vector

representations for each word in the vocabulary:

www = (T (w|w1), T (w|w2), ..., T (w|wV ))
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where V is the vocabulary size. Then they compare a pair of words by calculating

Jensen-Shannon divergence, a finite and symmetric variation of KL divergence. In

order to estimate the similarity between the question and the answer, they estimate

average, minimum, and maximum pairwise similarities between their words. These

similarities are then used as features.

4.1.3.7 Statistical and Non-Textual Features

A number of studies use various sentence-level, word-level and character-level statis-

tical features including question and answer lengths in terms of words (Toba et al.,

2014) or sentences (Yi et al., 2015); the number of capitalised words (Hou et al.,

2015), whether the answer contains an image (Nakov et al., 2016a).

Many studies rely on the forum’s meta-information. For instance, Jenders et al.

(2016) in their study of answering questions on a forum of a platform for online

courses, use the number of courses visited by the author of the answer as a feature.

Nakov et al. (2016a) and Tymoshenko et al. (2016a) check whether the answer is

written by the same author as the question, as it is unlikely for a user to answer

their own question. Agichtein et al. (2008) use the answer author’s user profile to

estimate how likely this user is to post a good answer; Barrón-Cedeño et al. (2015)

use the question category, e.g. Socialising, Travel.

4.1.4 Feature-Based Predictors

Having in mind the problem of non-factoid question answering with CQAs, i.e.

answering a question with the best possible user-provided answer, we formulate the

problem of answer ranking as a ranking task, following Surdeanu et al. (2008, 2011);

Jansen et al. (2014); Fried et al. (2015). However, it is also possible to address

this problem as a classification task, i.e. predicting whether an answer is good or

bad (Barrón-Cedeño et al., 2015) or whether the answer is of a high, medium or low

quality (Agichtein et al., 2008).

Several feature-based studies report that their approach is agnostic to the choice
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of the ranking method (Surdeanu et al., 2008, 2011; Higashinaka and Isozaki, 2008)

as their main contribution is in the features. Most approaches to NF AR that are

not using CQAs usually use small manually built datasets where efficiency is not a

big concern. They use a supervised predictor such as SVMRank (Joachims, 2006) or

a logistic regression classifier directly on the feature representations of the candidate

answers (Higashinaka and Isozaki, 2008; Verberne et al., 2007, 2010, 2011). Table 4.1

summarises some of the related work on this task.

4.1.5 Beyond Feature-Based Approaches

In the previous section we reviewed various feature-based approaches to non-factoid

answer ranking, i.e. the ranking was achieved due to powerful handcrafted feature

representations. In this section we will review the approaches that achieve the

ranking by learning representations for questions and answers instead of relying on

handcrafted features. These representations are used in combination with a super-

vised predictor. The representations and the ranking (or labels) are often trained

simultaneously. These approaches usually use neural networks to learn representa-

tions and/or the ranking, and so we will refer to them as neural or the deep learning

approaches, as opposed to the feature-based ones.

As deep learning is a relatively recent trend in the NLP community, there have

been only a few neural approaches focusing on the particular task of non-factoid

answer ranking or selection. Moreover, neural approaches usually do not rely on

handcrafted features, it makes them applicable to other tasks. In this section, we will

review neural systems for answer selection, including some of the neural approaches

to factoid answer selection.

Most deep learning systems to answer selection, for both factoid and non-factoid

questions, include all or some of the following components, that we illustrate in

Figure 4.2:

Unsupervised Pretraining of the Word Embeddings: The question and the
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Figure 4.2: Illustration of a typical deep learning architecture for answer ranking.
The question and the answer are represented as word embeddings that are optionally
pretrained. Then an encoder is used to convert the embeddings into a fixed-sized
vector. The same or two different encoders can be used for the question and the
answer. Then a similarity scorer is used on the obtained vectors.

answer are usually represented as word embeddings (e.g. (Severyn and Mos-

chitti, 2015a; Tang et al., 2015b; Tan et al., 2015; dos Santos et al., 2016)).

Shen et al. (2015); dos Santos et al. (2016); Tymoshenko et al. (2016a) use the

word2vec tool (the skip-gram and continuous bag-of-words models, described

in Chapter 2) for pretraining; Amiri et al. (2016) use GloVe (Pennington et al.,

2014), a count-based analogue of the word2vec models, that normalises and

factorises the word co-occurrence matrix in order to obtain low-dimensional

embeddings.

Encoder: The encoder transforms the word or character embeddings representa-

tions (not necessarily pretrained) of a text into a fixed-length vector. In factoid

answer selection, convolutional neural networks were extremely popular (e.g.
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Severyn and Moschitti (2015a); Tymoshenko et al. (2016a); Yu et al. (2014)),

as CNNs are efficient and effective in encoding short texts. For non-factoid an-

swer selection and answer selection in CQAs, LSTMs are often used to encode

questions and answers (e.g. Tan et al. (2015); dos Santos et al. (2016)). Amiri

et al. (2016) use a stacked denoising autoencoder (Vincent et al., 2010) to ob-

tain representations of the questions and the answers. dos Santos et al. (2016)

incorporate attention mechanisms into their encoder which could be either a

recurrent or a convolutional neural network. This allows them to learn repre-

sentations of text pairs that are aware of their similarity to one another. Shen

et al. (2015) encode the question-answer pair into one vector simultaneously by

first, calculating a word embedding pairwise similarity matrix for the question

and the answer, and then, encoding this matrix with a convolutional neural

network, similar to the one of Krizhevsky et al. (2012) designed for images.

We could also mention the feature-based approaches here, as representing the

text as a vector of handcrafted features is also a type of encoding.

Similarity Prediction: Several studies use cosine similarity on the representations

of the question and the answer (e.g. dos Santos et al. (2016); Tan et al. (2015)).

Another way to estimate the similarity or relevance between the question and

the answer is to predict it using a feedforward neural network over their rep-

resentations (Severyn and Moschitti, 2015a; Tymoshenko et al., 2016a; Nakov

et al., 2016a). We will follow the latter approach, which will be described in

Section 4.2.

Additional Features: Using an additional neural predictor over the representa-

tions instead of using the cosine similarity directly on the vector representa-

tions supports the incorporation of additional features. For instance, Severyn

and Moschitti (2015a) add word overlap features, as well as calculate the simi-

larity between the encodings. They address the task of factoid answer selection

and use the TREC QA dataset (Wang et al., 2007), where the word overlap
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is very high between the question and its correct answers (e.g. Who founded

the Black Panther organization? and The Black Panther party was founded by

Seale and Huey Newton). Other neural studies also use word overlap informa-

tion when using this dataset (Amiri et al., 2016; Tymoshenko et al., 2016a).

We use additional discourse features of Jansen et al. (2014); this approach is

described in Chapter 7.2.

We present a comparative summary of the neural approaches to CQA-related tasks

in Table 4.2. Please note that this is not a complete description of these studies,

as most of these studies use other features and/or explore other approaches and/or

tasks. For example, Amiri et al. (2016) and Lau and Baldwin (2016) evaluate

their approaches on the tasks of word similarity and semantic textual similarity

respectively. We only summarize the contributions related to answer selection and

question similarity.

Some approaches span both the feature-based and the neural categories. For

instance, Nakov et al. (2016a) take a feature-based approach that uses a feedforward

neural network as a predictor. Tymoshenko et al. (2016a) combine tree kernels with

convolutional neural networks. In Chapter 6.1 we also combine the neural approach

with the approach based on discourse information. Bonadiman et al. (2017) use a

multitask learning approach to jointly learn the answer ranking (both to the same

and to related questions) and question-question similarity tasks. A CNN is used

to encode the question and the answers, and then separate MLPs are used for

prediction, depending on the task.

4.2 Methodology

We take a supervised learning to rank approach to answer reranking for community

question answering. In the following sections we give a brief overview of learning to

rank techniques and then introduce our approach to answer reranking.
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Study Task Dataset
Pretrain-
ing

Encoder Sim

Shen et al.
(2015)

CQA
AS

Baidu
Zhidao

skip-gram
CNN over S-matrix
(cosine sim between
embeddings)

MLP

Bogdanova
et al. (2015)

QD
Ask
Ubuntu

skip-gram CNN
cosine

Severyn and
Moschitti
(2015a)

Factoid
AS

Trec QA skip-gram CNN + word overlap MLP

dos Santos
et al. (2015)

QD

Ask
Ubuntu;
English
Stack
Exchange

skip-gram
CNN; weighted
BOW

cosine
(combi-
nation)

Tan et al.
(2015)

AS
TrecQA;
Insurance
QA

word2vec?
LSTM; LSTM+CNN
with attention over
the question

cosine

Tymoshenko
et al. (2016a)

Factoid
AS; AS

TrecQA;
WikiQA

skip-gram
CNN (combined with
SVM CTK using LR)

MLP

Bogdanova
and Foster
(2016)

CQA
AS;

Yahoo!
Answers

DBOW
Paragraph Vector
model (Chapter 6)

MLP

dos Santos
et al. (2016)

Factoid
AS; NF
AS;

Trec QA;
WikiQA;
Insur-
anceQA

skip-gram
Attentive pooling
RNNs and CNNs

cosine

Lei et al.
(2016)

QD
Ask
Ubuntu

Encoder-
decoder
over similar
questions;
Denoising
body into
title.

RCNN, a variation of
CNN with an
additional gate to
downweight certain
bigrams;

cosine

Amiri et al.
(2016)

QD;
Factoid
AS

Ask
Ubuntu;
Trec QA

GloVe;
Layerwise
pretraining

Stacked denoising
autoencoder with
context. Context is
encoded from word
matrix

cosine

Lau and
Baldwin
(2016)

QD
CQADup-
Stack

skip-gram
Paragraph Vector Le
and Mikolov (2014)

cosine

Bogdanova
et al. (2017)

CQA
AS;

Yahoo!
Answers;
Ask
Ubuntu

-
GRU + discourse
features

MLP

Table 4.2: Comparative Summary of Neural Approaches in CQA. Papers we
(co)authored are in bold. Abbreviations: NF - non-factoid; AS - answer selec-
tion; QD - question duplication; ? - not clear from the paper what model is used.
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4.2.1 Learning to Rank Answers

Let xxxi ∈ Rd, i = 1, ...,m be a list of elements to be ranked. For example, given a

query q, the elements are the documents that should be ranked according to their

relevance to the query q. The number of elements m could be different for each

query. Let xxxi .xxxj denote that xxxi is preferred over xxxj and xxxi�xxxj denote that xxxi is

preferred over or equally preferred to xxxj. xxxi ∼ xxxj states that xxxi and xxxj are equally

preferred (/ and � are defined similarly).

The binary relation of preference is usually assumed to define a partial order

in Rd, i.e. the following statements are true:

1. Reflexivity: ∀aaa : aaa� aaa

2. Transitivity: aaa� bbb and bbb� ccc⇒ aaa� ccc

3. Antisymmetry: aaa� bbb and bbb� aaa⇒ aaa ∼ bbb

Usually, the ranking task assumes the relation to define a total order: the prefer-

ence relation is defined for all possible pairs, i.e. all elements are comparable to

each other in terms of preference:

4. Totality: ∀aaa, bbb : aaa� bbb or bbb� aaa

Learning-to-rank methods are supervised machine learning methods that learn a

ranking model given a training set, for which the ranking is known, i.e. the preference

relation is defined for all possible pairs. Ranking models usually assume that there

exists a ranking function f : Rd → R, such that f(aaa) > f(bbb) ⇐⇒ aaa . bbb.

Supervised learning to rank methods are usually trained by minimising a loss

function L on the training set. There are three main approaches to learning to rank

depending on the type of loss function they use:

pointwise ranking methods usually consider each xxxi independently, and transform

the ranking problem into either a regression or a classification task. The

pointwise loss function treats every instance independently: L : Rd → R
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pairwise methods consider pairs of instances and transform the task into a pairwise

classification, with the loss function defined for each pair of instances:

L : Rd × Rd → R

listwise methods represent a more straightforward approach to learning to rank, as

they take the list of instances as an input and predict a permutation, i.e. the

ranking of those instances. The listwise loss function is defined for any number

of instances: L : Rd×Rd×Rd× ...×Rd → R In practice, representing listwise

loss functions is challenging. Cao et al. (2007) suggest to represent the output

of the ranking as a probability distribution, and thus, the listwise loss can be

defined as any metric on two probability distributions, e.g.cross-entropy.

Let us reformulate the problem of ranking for the task of answer ranking. For

each question q asked on a user forum or a CQA, let [xxxi ∈ Rd, i = 1, ...,m] be a

list of its user-provided answers. The number of answers m could differ for each

question. We assume that for each question q there exists the best answer, i.e.

∃k : xxxk . xxxi ∀i ∈ [1,m], i 6= k. In reality, some questions asked online have no

answers of desirable quality, however, in the datasets we use this property always

holds.

In contrast to the traditional learning to rank setting, in answer ranking the

preference binary relation is not always defined for all answer pairs, i.e. the relation

defines only a partial order, not a total order. However, in those cases where not

only the information about the best answer but the scores for all the answers are

available, the relation of the total order is defined. The number of answers to be

ranked could vary from two to dozens or possibly hundreds. This makes training the

listwise approaches rather cumbersome. We focus on the pointwise learning to rank

methods, as the order is not always defined for all possible pairs of answers. The

pointwise learning to rank approach casts the ranking problem as a classification or

regression task. In the next section we describe our approach more in detail.
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Figure 4.3: Our general approach to answer ranking. The blue boxes are components
that can learn from data. The features component can, for instance, be an RNN
encoder that is trained together with the MLP.

4.2.2 Answer Ranking with Multilayer Perceptron

In most of our experiments we use a simple fully-connected feedforward neural net-

work, i.e. a multilayer perceptron described in Chapter 2.3.1, to predict the best

answer. As we choose to take the pointwise learning to rank approach, given a

question, we consider each of its answers independently and use the MLP to predict

the probability of the answer being correct. As shown in Figure 4.3, the question

and the answer are first represented as features. Here we use the word features in a

broad sense of a vector representation, meaning that these features could not only

be extracted but learnt. For instance, one way to obtain them is to run a recurrent

neural network on the question-answer pair. Then these features are passed as the

input to the MLP, which predicts a score, i.e. the probability of this answer being

correct for this question. If a neural network, such as an RNN, is used to learn the

features, it is trained together with the MLP. The training is done by minimising

the cross-entropy on the training set.

90



4.2.3 Data Representation

Our approach requires the question-answer pairs to be represented as a fixed-size

vector that is received by an MLP. We consider several different ways to represent

the question-answer pair as a vector:

Paragraph Vector: We learn representations for the question and the answer us-

ing the Paragraph Vector model (Le and Mikolov, 2014), a simple unsupervised

technique for learning distributed representations of documents. See Chapter 5

for details.

Recurrent Neural Networks: These networks described in Section 2.3.3 can en-

code a variable length text as a fixed-length vector. We usually run separate

RNNs for the question and the answer and then concatenate the obtained en-

codings. The MLP and the RNNs are trained together. See Chapter 6 for

details.

Convolutional Neural Networks: Just like the RNNs, this type of networks can

be used to encode a variable length text as a fixed-length vector. We also use

separate CNNs for the question and the answer, concatenate them and pass

the obtained representation to the MLP. See Chapter 6 for details.

Combination of Recurrent and Convolutional Networks We first encode the

question with a forward and a backward RNN and then use the outputs of the

RNNs and the word embeddings as three input channels of a CNN, which

encodes the question. The answer is encoded in the same way. The rest of the

configurations is the same as when only an RNN or only a CNN is used for

encoding. See Chapter 6 for details.

Discourse Features: Jansen et al. (2014) describe a system where discourse-

related features were combined with distributed representations of words ob-

tained with the skip-gram model (Mikolov et al., 2013a). This system per-

formed well in the task of answer reranking. See Chapter 7 for details.
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4.3 Resources

Community question answering websites provide us the labelled data we need for

training our models. In particular, we assume that the answer selected by the

users as the best one is the true gold label, and the rest are negative examples.3

An example of a question posted on Yahoo! Answers (YA) website is shown in

Figure 4.1.

In our experiments, we use two datasets from different CQAs. For comparability

with previous research, we use the dataset created by Jansen et al. (2014). It

contains 10K how questions from Yahoo! Answers. 50% of it is used for training,

25% for development and 25% for testing. This dataset was sampled from a corpus

of how questions initially created by Surdeanu et al. (2011). The original dataset

was created in two steps:

1. They selected questions that have the best answer chosen and match the fol-

lowing regular expression:

how (to|do|did|does|can|would|could|should).

2. Questions and answers with fewer than five words were removed. This heuristic

is supposed to remove questions and answers of low quality, e.g. How to be

great? and I don’t know.

The 10K dataset contains only questions that had at least four user-generated an-

swers. Yahoo! Answers allows users to select a category when posting a question.

The questions in the YA dataset contain the category information. There are 283

distinct categories present in the training set, including South Africa, Allergies and

Non-Alcoholic Drinks. We only use this information in error analysis in Section 7.4.

Some examples from this dataset can be found in Table 4.3.

To evaluate our approach on a more technical domain, we create a dataset of

questions from the Ask Ubuntu (AU)4 community. The dataset contains 13K ques-

3This assumption is not always true. We will discuss this in Chapter 7.
4http://askubuntu.com/
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Question: how do you cut onions without crying?

Gold: Use a sharp knife because if the onions are cut cleanly instead of slightly
torn (because of a dull knife) they will release less of the chemical that makes you
cry. Lighting a candle also helps with this, ( ... ) I hope this helps.

Other Answers:
- Watch a comedy.
- Put onion in the chop blender
- close ur eyes...
- Sprinkle the surrounding area with lemon juice.
- Choose one of the followings after cutting the head and tail of the onion, split in
half and peel off the skin. 1. Keep on chopping with your knife 2. Cut in quarters
and put in choppers.

Table 4.3: Example question and answers from the Yahoo! Answers dataset.

tions, of which 10K are used for training, 0.5K for development and 2.5K for testing.

We create the AU dataset in the same way as the YA dataset was created: for each

question, we only rank the answers provided in response to this question, the answer

labelled as the best by the question’s author is considered the correct answer. We

make sure that the dataset contains only questions that have at least three user-

provided answers, have the best answer selected, and this answer has a non-negative

score. Example questions from this dataset can be found in Table 4.4

Question: Can’t shutdown through terminal. When ever i use the following sudo

shutdown now; sudo reboot; sudo shutdown -h my laptop goes on halt ( ... )
is there something wrong with my installation?

Gold: Try the following code sudo shutdown -P now ( ...) -P Requests that
the system be powered off after it has been brought down. -c Cancels a running
shutdown. -k Only send out the warning messages and disable logins, do not
actually bring the system down.

Other Answers:
- Try sudo shutdown -h now command to shutdown quickly.
- Try init 0 init process shutdown all of the spawned processes/daemons as
written in the init files

Table 4.4: Example question and answers from the Ask Ubuntu dataset.

The datasets have significant differences – see Table 4.5 for more information.

While the Yahoo! Answers dataset has very short questions (10.8 on average) and

relatively long answers (50.5 words), the Ask Ubuntu questions can be very long,
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Dataset Avg question Avg question Avg answer Vocabulary
title length body length length size

Yahoo! Answers 10.9 - 50.5 63.6K
Ask Ubuntu 8.74 112.14 95.04 144.9K

Table 4.5: Comparative statistics on the datasets used in the answer reranking
experiments.

as they describe non-trivial problems rather than just ask questions. The average

length of the Ask Ubuntu questions is 112.14 words, with the average answer being

about 95 words.

4.4 Experimental Setup

4.4.1 Baselines

Following Jansen et al. (2014) and Fried et al. (2015), we implement three baselines:

Random Baseline: this baseline selects the best answer randomly.

Candidate Retrieval Baseline (CR): this system uses the same scoring as in

Jansen et al. (2014): (1) the questions and the candidate answers are repre-

sented using tf-idf (Salton and McGill, 1986) over lemmas; (2) the candidate

answers are ranked according to their cosine similarity to the respective ques-

tion.

Chronological Baseline: This baseline ranks answers using the date and time

when they were originally posted, i.e. selects the first posted answer as the

best. The YA dataset does not have information on when the answers were

posted, thus, we only evaluate this approach on the AU dataset.

On the YA dataset, we also compare our results to the ones reported previously

on the same dataset:

Jansen et al. (2014) describe answer reranking experiments on the YA dataset

using a diverse range of features incorporating syntax, lexical semantics and
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discourse. In particular, they show how discourse information (obtained either

via a discourse parser or using shallow techniques based on discourse markers)

can complement distributed lexical semantic information.

Fried et al. (2015) improve on the lexical semantic models of Jansen et al. (2014)

by exploiting indirect associations between words using higher-order models.

4.4.2 Evaluation Metrics

We follow Jansen et al. (2014) and Fried et al. (2015) and in most experiments we

evaluate our reranking systems using two information retrieval metrics:

Precision-at-1 (P@1): In information retrieval, precision at n (P@n) is the pro-

portion of relevant documents retrieved among the top n results. We always

have only one relevant document, i.e. the best answer, for each query, i.e. ques-

tion. The best answer should be ranked first, that is why we use P@1 as the

main metric. The P@1 in case of answer reranking is the proportion of best

answers ranked first, i.e.

P@1 =
best is first

|Q|
(4.6)

where best is first is the number of best answers ranked first, and |Q| is the

total number of questions. This metric could take any real value between 0

and 1, with 1 being the perfect score.

Mean Reciprocal Rank (MRR): The reciprocal rank (RR) is the reciprocal of

the position at which the first relevant document was retrieved. For example,

if the first relevant document is ranked first, the RR is 1. If it appears at

the third position (with the first and the second being irrelevant), the RR is

1
3
. MRR is the RR averaged for all queries. MRR is usually used when there

is only one relevant document, which is exactly the case of answer reranking.
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We calculate the MRR as follows:

MRR =
1

|Q|

|Q|∑
i=1

1

best ranked as
(4.7)

where best ranked as is the rank of the best answer and |Q| is the number

of questions. As we have only one relevant answer for each question, MRR

becomes equivalent to Mean Average Precision (MAP).

We will report both the P@1 and the MRR in percent (0-100) to make the results

better readable and avoid confusion when comparing our results to the previous

work that reported these measures in this way (Jansen et al., 2014; Fried et al.,

2015).

We test statistical significance with one-tailed bootstrap resampling with 10,000

iterations as in Graham et al. (2014).

4.4.3 Data Preprocessing

For the AU dataset, we keep the code the posts contain within a code tag. For

both the YA and the AU datasets, we only perform very shallow preprocessing: we

tokenise the texts with the tokeniser which is packaged with the Stanford parser5.

We lowercase the tokenised data and exclude words that occur five times or fewer in

the training set. This results in 14829 and 37530 distinct words for the YA dataset

and the AU datasets respectively. All other words are mapped to an <UNK> tag.

4.5 Summary

This chapter introduced answer ranking in Community Question Answering web-

sites, the task that we will deal with throughout the following three chapters.

We presented an overview of the previous work on the task and related tasks,

roughly dividing the approaches into feature-based ones, i.e. the ones where the

5we used version 3.6.0 http://nlp.stanford.edu/software/stanford-parser-full-2015-
12-09.zip
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ranking/classification performance is achieved due to the quality of the features

representing question-answer pairs; and neural approaches that achieve the ranking

performance due to the representation capacity of the neural architecture. We de-

scribed our approach to the problem, which is a pointwise learning to rank approach,

where we use a neural system with a multilayer perceptron serving as the final pre-

dictor. We introduced the two datasets we use in most experiments: the dataset of

how questions from Yahoo! Answers and the dataset of Ask Ubuntu questions. We

also presented our experimental setup and the evaluation metrics.
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Chapter 5

Answer Ranking with Paragraph

Vector

Most previous approaches to non-factoid answer ranking were feature-based. In this

chapter we explore one of the most straightforward ways to avoid feature engineer-

ing. In particular, we use the Paragraph Vector models (Le and Mikolov, 2014)

to obtain question and answer representations in an unsupervised manner from a

large unlabelled corpus. We then use these representations in combination with a

multilayer perceptron, as described in Chapter 4. Only the parameters of the multi-

layer perceptron are updated during training, while the representations learnt with

Paragraph Vector model remain the same.

Paragraph Vector (PV) model (Le and Mikolov, 2014) is a model for learning

distributed representations for documents (the document can be a sentence, a para-

graph or a piece of text of an arbitrary length, we will refer to it as a document in this

section). The PV is an extension of the skip-gram and the continuous bag-of-words

models that we described in Chapter 2.5. It simply treats the document as if it were

another token shared across all the word windows in it, and thus can learn a vector

representation for it using the CBOW and the skip-gram models. The PV consists

of two models: a Distributed Memory (DM) model and a Distributed Bag-of-Words

(DBOW) model. The DM and the DBOW models differ in the way they train
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these representations. The DM model trains them similarly to the CBOW model

with the following difference: for every word window, when predicting the word,

the document representation is concatenated or averaged with all the word vectors.

The document vector stays the same for all the word windows. The DBOW model

is trained similarly to the skip-gram model: given a document vector, the DBOW

model is trained to predict the words in this document. In both PV models the

word vectors are shared across the documents, just like in the original CBOW and

skip-gram models. In the next paragraphs we explain the differences between these

models and the word embedding models presented in Chapter 2.5 more formally.

This chapter is structured as follows: first we describe the distributed memory

(DM) model in Section 5.1.1 and the distributed bag-of-words (DBOW) model in

Section 5.1.2. We present answer ranking experiments where question and answer

representations are obtained with the Paragraph Vector model in Section 5.2. In

particular, Section 5.2.2 compares the performance of the DBOW and the DM mod-

els. Section 5.2.3 investigates the impact of the representation dimensionality on the

answer ranking performance. Section 5.2.4 evaluates two settings: when the ques-

tions and answers were obtained by including them in the pretraining corpus versus

when their representations were inferred using a trained model. In Section 5.2.5 we

experiment with inferring the vectors using an in-domain versus an out-of-domain

corpora. Finally, we summarise the answer ranking results obtained with the Para-

graph Vector representations in Section 5.3.

5.1 Paragraph Vector

5.1.1 Distributed Memory Model

Just as every word is represented by a row in a word embedding matrix WWW of size

V × d, where V is the vocabulary size and d is the desired dimensionality of the

embeddings (see Chapter 2.5.1), every document is represented by a row in a matrix

DDD of size N × d, where N is the number of documents in the training corpus. We
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Figure 5.1: Illustration of the DM model for the word panda in context the panda
eats.

illustrate the DM model in Figure 5.1. The only difference from the CBOW model

described in Chapter 2.5.1 is that the vector hhh is obtained not only by averaging (or

concatenating) the word vectors but also a document vector, i.e:

hhh =
1

C + 1
(vvvw1 + ...+ vvvwC

+ vvvd) (5.1)

where vvvwi
is the embedding of the i-th context word and vvvd is the document vector.

The document vector is shared across all word windows in the document. Consider

an example document that consists of only the sentence The panda eats shoots and

leaves and let us assume its id to be PAR 12. Let us also assume the word window

to be equal to one, i.e. we consider one word to the left and one word to the right.

The DM’s training instances will include:
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input=[the, eats, PAR 12 ], label=panda

input=[panda, shoots, PAR 12 ], label=eats

input=[eats, and, PAR 12 ], label=shoots

input=[shoots, leaves, PAR 12 ], label=and

5.1.2 Distributed Bag-of-Words

This model is similar to the skip-gram model for learning word embeddings. Given

a document vector as an input, the model learns to predict words randomly sampled

from this document. Figure 5.2 illustrates the DBOW model for the example from

the last section. The only difference from the skip-gram model is that the vector hhh

is now the embedding of the input document:

hhh = DDD>dididi (5.2)

where dididi is a one-hot encoding of the document’s id.

Given the example from the above paragraph, the DBOW’s training instances

will include:

input=[PAR 12 ], label=panda

input=[PAR 12 ], label=the

input=[PAR 12 ], label=shoots

input=[PAR 12 ], label=and

input=[PAR 12 ], label=leaves

Both the DM and the DBOW models are trained in the same way as the CBOW

and the skip-gram models, e.g. using negative sampling or the hierarchical softmax

(see Section 2.5.1 for details).

In the paper that originally presented the PV model (Le and Mikolov, 2014),

the DBOW model is reported to be inferior to the DM model, and the authors

encourage the use of DM or its combination, i.e. concatenation, with the DBOW

representations.
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Figure 5.2: Illustration of the DBOW model for learning a vector representation of
the sentence The panda eats

5.2 Experiments

To obtain the representations for the YA questions and answers, we train the PV

models on the questions1 from the L6 Yahoo! Answers Comprehensive Questions

and Answers corpus obtained via Webscope.2 This dataset contains about 4.5M

questions from Yahoo! Answers along with their user-generated answers, and was

provided as training data at the recent TREC LiveQA competition (Agichtein et al.,

2015), the goal of which was to answer open-domain questions coming from real users

in real time.3 The YA dataset prepared by Jansen et al. (2014) and described in

Section 4.3, was initially sampled from this larger dataset. The YA dataset was

added to the L6 corpus before the training.

To obtain the representations for the AU dataset, we train the PV on the January

1The gensim implementation of doc2vec available at the time we conducted the experiments
required that all the vector representations were stored in RAM, and we did not have a machine
with enough RAM available, that is why the corpus was enriched with 4.5M questions only. This
was improved in later versions of gensim.

2http://webscope.sandbox.yahoo.com/
3https://sites.google.com/site/trecliveqa2015/
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Corpus # of documents # of tokens Vocabulary size
L6 Yahoo! Answers 4.5M 60M 1M
Ask Ubuntu dump 1.4M 97M 183K

Table 5.1: Details on the corpora used to train the Paragraph Vector models.

2015 Ask Ubuntu dump4, from which the AU dataset was sampled. In most of our

experiments the test set is also included in the pretraining corpus, in Section 5.2.4

we also explore how the model performs when the test set is not available at the

pretraining time, and the test representations are inferred. We want to emphasise

that the L6 and the large AU datasets are only used for unsupervised pretraining –

no meta-information is used in our experiments. We report the statistics about the

two corpora in Table 5.1.

The PV models are trained for twenty epochs with an initial learning rate of

0.025, at each epoch the learning rate was decreased by 0.001. We use the window

size of three (i.e. three words to the left, and three words to the right). The models

are trained with negative sampling using ten contrastive examples. The mean of

the context word representations is used in training the DM model. We use the

gensim (Řeh̊uřek and Sojka, 2010) implementation of PV also know as doc2vec to

train the models.5

The question and the answer are represented as separate documents, and their

representations are obtained during pretraining and are then concatenated before

being passed to a multilayer perceptron that predicts the score for the answer. As

shown in Figure 5.3, the first layer transforms question-answer pairs into their PV

representations, i.e. the vector representation for a question-answer pair (q, a) is a

concatenation of the distributed representations q and a for the question and the

answer respectively. Each representation is a real-valued vector of a fixed dimension-

ality d, which is a parameter to be tuned. The MLP is trained with SGD. We only

update the weights and biases of the MLP during the training, the PV representa-

tions remain fixed. We use early stopping on the development set. We regularise

4https://archive.org/download/stackexchange/askubuntu.com.7z
5https://radimrehurek.com/gensim/models/doc2vec.html
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Figure 5.3: Illustration of the method based on the Paragraph Vector and an MLP.

the MLP with L2 weight decay with a 10−6 regularisation rate.

5.2.1 Ask Ubuntu Question Representation

Recall that in the AU dataset the questions have a title which usually briefly sum-

marises the problem and a body that explains the problem in detail. In order to

decide if we use the title, the body or the concatenation of both as the input to

MLP, we evaluate the approach with the three possible representations on the de-

velopment set: (1) representing the question as its title (2) representing the question

as its body and (3) concatenating the two representations. Table 5.2 reports the

development performance of the 200-dimensional DBOW model with an MLP with

256, 128, 64, 32 and 16 hidden units. The results suggest that using the concatena-

tion of the title and the body of the question as its representation leads to a better

performance in terms of P@1 than when only the title or only the body is used.

However, using the body only provides better results than when using the title only.

In the following experiments we will use the concatenation of the title and the body
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Question Representation dev P@1 dev MRR

title 42.40 64.34
body 43.20 64.97

title + body 44.00 64.88

Table 5.2: Development performance of the 200-dimensional DBOW model on the
AU dataset with different question representations; title means that only question
title was used, body means only question body was used; title+body means that a
concatenation of both the title and the body was used. An MLP with 256, 128, 64,
32 and 16 hidden units was used.

as the representation of the Ask Ubuntu questions.

5.2.2 DBOW versus DM

We first evaluate the DBOW model versus the DM model on the task of answer

ranking, i.e. the vectors for the questions and the answers are obtained by pre-

training one of these models on a large corpus, and these vectors are passed to an

MLP. We evaluate representations with 100 and 200 dimensions. Note, that if the

dimensionality of the PV representations is 100, the input layer of the MLP has 200

dimensions, as we concatenate the question and the answer vectors before passing

them to the network.6 As the original Paragraph Vector paper (Le and Mikolov,

2014) suggests, we also evaluate the concatenation of the representations obtained

by separately training the DBOW and the DM models. We refer to this approach

as DBOW-DM in Table 5.3.

We select the best parameters for the DM, the DBOW and the DBOW-DM

models on the development set, and apply these models to the test set. For com-

parison with recent work in answer ranking (Jansen et al., 2014; Sharp et al., 2015),

we also evaluate the averaged word embedding vectors obtained with the skip-gram

model (Mikolov et al., 2013c) (henceforth referred to as the SkipAvg model). Ta-

ble 5.3 presents the experimental results. On both datasets, the distributed repre-

sentations, including the SkipAvg model, beat both random and candidate retrieval

6or 300 for the AU dataset, if the body and the title of a question and represented as separate
vectors. We experiment with this in Section 5.2.1
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baselines by a large margin. On the AU dataset, the SkipAvg model performs at the

same level as the chronological baseline. On the YA dataset, its performance falls in

between the models of Jansen et al. (2014) and Fried et al. (2015). Paragraph Vec-

tor representations clearly outperform the averaged word representations on both

datasets. Both paragraph vector models – DBOW and DM – provide similarly high

performance, however the DBOW model provides a slightly better P@1 on both

datasets. We gain an additional small improvement over the DBOW performance

by concatenating DBOW and DM representations.

Yahoo! Answers

Model P@1 MRR

DBOW-DM 37.37* 57.05
DBOW 37.01* 56.88
DM 35.61* 55.58

SkipAvg 31.25 52.56

Random baseline 15.74 37.40
CR baseline 22.63 47.17

Jansen et al. (2014) 30.49 51.89
Fried et al. (2015) 33.01 53.96

Ask Ubuntu

Model P@1 MRR

DBOW-DM 41.44* 64.37
DBOW 41.24*† 63.96
DM 41.12* 63.98

SkipAvg 37.68 61.90

Random baseline 26.60 53.64
CR baseline 35.36 60.17
Chronological baseline 37.68 60.06

Table 5.3: Results of the PV-MLP system on the AU dataset. *The improvements
over the baselines are statistically significant with p < 0.05. The improvements
of the DBOW over the DM model on the YA dataset is statistically significant
(p < 0.05); †The improvement of the DBOW over the DM on the AU dataset is
not statistically significant (p > 0.05). All significance tests are performed using
one-tailed bootstrap resampling with 10,000 iterations.

The DM is reported to be superior to the DBOW in the original Paragraph

Vector paper by Le and Mikolov (2014), as the DM can account for the word order
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and the DBOW cannot. Our experiments, on the contrary, show that the DBOW

model outperforms the DM model on the YA dataset and performs at the same level

on the AU data. As the evaluation of the PV models by Lau and Baldwin (2016)

suggests, the DBOW might perform better than the DM because the latter needs

much longer to converge. Lau and Baldwin (2016) report that whilst the optimal7

number of training epochs for the DBOW was 20, the DM model needed to be

trained for 600 epochs to achieve its optimal performance on the task of duplicate

question detection. In our experiments we trained both models for twenty epochs.

Training the DM model significantly longer might boost its performance.

Figure 5.4: Development P@1 and test P@1 for the DBOW model with 50, 100,
200, 300 and 400-dimensional representations on the YA dataset.

5.2.3 The Impact of the Paragraph Vector Size

We trained several DBOW models with the same parameters except for the dimen-

sionality of the representations. The optimal dimensionality of the representations

usually depends on the task and the amount of training data. Figure 5.4 reports

7on the task of duplicate question detection
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the best development P@1 and the test P@1 on the YA dataset for the models with

50, 100, 200, 300 and 400 dimensions. As Figure 5.4 shows, the performance in-

creases when increasing the representation dimensionality from 50 to 100 and from

100 to 200 dimensions. However, increasing the dimensionality beyond 200 seems

to decrease the performance slightly.

Yahoo! Answers

Model Representations P@1 MRR

DBOW extracted 37.01† 56.88
DBOW inferred 36.45 56.13

DM extracted 35.61* 55.58
DM inferred 34.53 54.36

Jansen et al. (2014) 30.49 51.89
Fried et al. (2015) 33.01 53.96

Random baseline 15.74 37.40
CR baseline 22.63 47.17

Ask Ubuntu

Model Representations P@1 MRR

DBOW extracted 41.24 63.96
DBOW inferred 41.48† 64.33

DM extracted 41.12* 63.98
DM inferred 38.88 62.70

Random baseline 26.60 53.64
CR baseline 35.36 60.17
Chronological baseline 37.68 60.06

Table 5.4: Comparison of the MLP performance using the extracted PV representa-
tions versus using the inferred PV representations. *The improvements of the DM
model with extracted vectors over the DM model with inferred vectors is statistically
significant (p < 0.05). †The improvements of the DBOW model are not statistically
significant (p > 0.05).

5.2.4 Paragraph Vector Representations for New Documents

In the experiments reported above, we obtained the PV representations for questions

and answers by including them in the corpus that was used to train the PV models.

The representations for the development and the test sets were obtained in the
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same way. The same has been done in the original PV paper (Le and Mikolov,

2014). However, in a real-world case scenario, including the test documents in

the pretraining corpus might not be always possible, as it may not be available

at that stage, e.g. when performing online question answering. An alternative to

this approach is to infer the vector representation for a document using a trained

PV model. This is done using gradient descent, similarly to the training phase

described in Section 5.1.1 for the DM model and in Section 5.1.2 for the DBOW

model, with the only difference being that the weights of the model and the word

vectors remain fixed, i.e. only the document vector is updated. For every word in

the new document, the model is trained to predict this word given the document

vector. Only the document vector is updated during the training, the word vectors

and the weights of the model remain fixed. Any words that were not present during

the original training are ignored.

In order to see how well the PV models perform in the answer ranking task

when the dataset is not available at pretraining time, we use the same models to

infer vectors for all the instances in our dataset, including the training set. We infer

the vectors for 500 iterations with an initial learning rate of 0.01 and final learning

rate of 0.0001, as these settings were found optimal by Lau and Baldwin (2016) for

the tasks of duplicate question detection and text semantic similarity. Table 5.4

reports the results for the YA and AU datasets respectively.

The results suggest that the inferred DBOW representations provide comparable

(YA dataset) or even slightly better (AU dataset) performance on the task of answer

ranking versus when the data is included in the pretraining corpus (extracted).

However, these differences are not statistically significant. For the DM model, the

inferred representations are significantly inferior to the extracted ones, although

these representations still beat all the baselines.
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5.2.5 The Impact of the Pretraining Corpus

In order to compare the performance of the model when pretrained on in-domain

versus out-of-domain data, we infer the vectors for the two datasets using a DBOW

model trained by Lau and Baldwin (2016). This model was trained on the English

Wikipedia: each paragraph was treated as a separate document, resulting in 32M

documents. We compare the answer ranking performance of the models where the

vectors were inferred using in-domain (L6 Yahoo! Answers for the YA dataset, and

Ask Ubuntu data dump for the AU dataset) versus the ones that used the vectors

inferred using the model trained on Wikipedia.

Yahoo! Answers

Model Corpus P@1 MRR

DBOW in-domain 36.45† 56.13
DBOW Wikipedia 35.61 56.05

Jansen et al. (2014) 30.49 51.89
Fried et al. (2015) 33.01 53.96

Random baseline 15.74 37.40
CR baseline 22.63 47.17

Ask Ubuntu

Model Corpus P@1 MRR

DBOW in-domain 41.48* 64.33
DBOW Wikipedia 40.20 63.57

Random baseline 26.60 53.64
CR baseline 35.36 60.17
Chronological baseline 37.68 60.06

Table 5.5: Comparison of the MLP performance using the DBOW representations in-
ferred using a model trained on in-domain data versus the one trained on Wikipedia.
†On the YA dataset, the improvement is not statistically significant (p > 0.05). *On
the AU dataset, the improvement is statistically significant (p < 0.05).

Table 5.5 reports the results. The representations inferred using the model pre-

trained on an in-domain corpus provide better answer ranking results for both

datasets. On the YA dataset, the improvement of the model pretrained on in-

domain data over the model pretrained on Wikipedia is not significant, however, it

is significant on the AU dataset. This indicates that for a highly technical domain,
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like the one of the AU dataset, it is more important to have in-domain data for

pretraining. Even though the performance of the models that use vectors inferred

with the model trained on Wikipedia is not as high as when in-domain data is used,

they still outperform all the baselines, even for the AU dataset, which is highly

technical. This result suggests that a pretrained general purpose Paragraph Vector

model could be used to infer vectors for answer ranking.

5.3 Summary

Our general approach to answer ranking requires vector representations of question-

answer pairs. In this chapter we used general purpose distributed document repre-

sentations provided by Paragraph Vector models to represent question-answer pairs.

The main findings of our experiments are:

- representing the question-answer pair with Paragraph Vector model is clearly

superior to the use of averaged word vectors;

- the use of the DBOW model is more favourable than the DM model in the

task of answer ranking, especially when inferring the representations using a

pretrained model;

- a smaller amount of unlabelled data taken from a similar source as the dataset

is more useful for training representations than a larger out-of-domain set.

In the experiments reported in this chapter we did not perform an extensive hy-

perparameter search. Although the results could potentially be improved by better

hyperparameter tuning, it is clear that the Paragraph Vector provides document

representations suitable for the task of answer ranking.
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Chapter 6

Learning Representations for

Answer Ranking

In the last chapter we performed answer ranking using the pretrained general pur-

pose Paragraph Vector representations of Le and Mikolov (2014) for questions and

answers. In this chapter instead of using pretrained representations, we learn them

together with the task itself. To do this, we use two encoder networks that are

trained together with the final MLP predictor. In contrast to the approach based

on the Paragraph Vector model, learning the representations together with the rank-

ing does not require pretraining and allows us to learn from the training set only.

However, the models we describe here can be pretrained, and we will explore this in

Chapter 7.

We use recurrent and convolutional neural networks (described in Chapter 2)

as the encoder, i.e. the network that converts an object, which in our case is, a

question or an answer, into a fixed-length vector. We compare the answer ranking

performance of two widely used RNN architectures, the Long Short Term Mem-

ory networks (Hochreiter and Schmidhuber, 1997) and the Gated Recurrent Net-

works (Cho et al., 2014b) (usually abbreviated as GRU for Gated Recurrent Unit).

We also compare the recurrent neural networks with the convolutional networks for

the purposes of encoding questions and answers for answer ranking and propose a
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novel architecture that combines the benefits of the two types of encoders.

This chapter is structured as follows: Section 6.1 introduces an approach to an-

swer ranking that uses recurrent neural networks to encode questions and answers.

Section 6.2 explores an approach where convolutional neural networks are used in-

stead of recurrent ones. In Section 6.3 we describe our Multi-Channel Recurrent

Convolutional Neural Network (MC-RCNN), a novel architecture for text encoding,

that combines the recurrent and the convolutional architectures, and evaluate it on

the task of answer ranking. Finally, we summarise the results and draw conclusions

in Section 6.4.

6.1 RNN Encoder for Answer Ranking

We follow Bahdanau et al. (2014) and Cho et al. (2014b), and use a bidirectional1

RNN as an encoder, i.e. a network that learns fixed-length vector representations

of objects. Given a question-answer pair, we use two separate RNNs with either an

LSTM or a GRU cell to encode the question and the answer. Let (wwwq1,www
q
2, ...,www

q
k)

be the sequence of question word embeddings and (wwwa1,www
a
2, ...,www

a
p) be the sequence

of answer word embeddings. The first RNN encodes the sequence of question words

into the sequence of context vectors (hhhq1,hhh
q
2, ...,hhh

q
k), i.e.

f qRNN(wwwqi , θθθq) = hhhqi (6.1)

where θθθq denote the trainable parameters of the network. The bidirectional RNN

consists of two RNNs: the forward RNN that reads the question starting from

the first word until the last word and encodes it as a sequence of forward context

vectors (
−→
hhhq1,
−→
hhhq2, ...,

−→
hhhqk), and the reverse RNN that encodes the question starting from

the last word until the first word: (
←−
hhhqk,
←−−
hhhqk−1, ...,

←−
hhhq1). The resulting context vectors

are concatenations of the forward and reverse context vectors at each step, i.e.

1We initially experimented with a unidirectional RNN too, and the bidirectional was clearly
superior, so we only report the results when the bidirectional RNN is used.
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hhhqi = [
−→
hhhqi ,
←−
hhhqi ].

As the encoded vector representation of the question, we use the concatenation

of the last context vector of the forward RNN, i.e. corresponding to the last word,

and the last context vector of the backward RNN, i.e. corresponding to the first

word, as is usually done in the encoder-decoder architecture (Bahdanau et al., 2014):

encencencq = [
−→
hhhqk,
←−
hhhq1] (6.2)

The second bidirectional RNN encodes the answer in the same way:

faRNN(wwwai , θθθa) = hhhai (6.3)

encencenca = [
−→
hhhap,
←−
hhha1] (6.4)

where θθθa denote the trainable parameters of the network. Figure 6.1 illustrates the

RNN-MLP system.

6.1.1 Prediction and Training

The score for the given question-answer pair is predicted with an MLP:

y = fMLP ([encencencq, encencenca], θθθs) (6.5)

where θsθsθs denote the trainable parameters of the network.

The network is trained by minimizing cross-entropy:

L(y,θθθ) = −ȳ log(y)− (1− ȳ) log(1− y)

where θθθ are all network’s parameters, i.e. θθθq, θθθa, θθθs and ȳ is the true label (0 or 1):

ȳ =


1 if a is the best answer of the question q

0 otherwise
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Figure 6.1: RNN-MLP model for answer ranking. Given a question-answer pair, two
separate RNNs are used to encode the question and the answer, and the encodings
are concatenated and passed to an MLP. All three networks are trained together.

6.1.1.1 Hyperparameters

For this set of experiments we set the dimensionality of word embeddings and the

dimensionality of RNN states to 100. The MLP has five hidden layers. We set the

number of units in each hidden layer depending on the number of inputs to that

layer: for a hidden layer i = 0, 1, 2, 3, 4 with m inputs we set the number of units to:

num units = min(m/2, 212−i) (6.6)

This means that if an RNN has a 100-dimensional state, the question encoding

and the answer encodings have 200 dimensions, as we use a bidirectional RNN.

Then, the input to the MLP for the RNN-MLP-last system has 400 dimensions, and

the hidden layers have 200, 100, 50 and 25 units.

The lengths of questions and answers in our dataset vary. To handle this, we
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use the dynamic bidirectional RNN2, which can handle sequences of variable length.

However, we still need to pad the questions and answers. As we use mini-batch

training, we pass mini-batches as three-dimensional arrays, thus, within a mini-

batch all sequences should be of the same length. We also specify the lengths of all

instances, allowing the RNN to ignore whatever is further than the length of that

instance, i.e. padding. We train the model using SGD. The mini-batch size is set to

100. The L2 regularisation rate and dropout probability after initial tuning were set

to 10−7 and 0.2 for the YA datasets and to 10−6 and 0.3 for the Ask Ubuntu dataset,

as the number of parameters is higher on the latter (see Table 6.1). We evaluate

the model on the development set every 500 iterations, and stop the training if the

development loss does not decrease for 10 consecutive evaluations.

RNN cell Yahoo Ask Ubuntu

GRU 1.83M 4.10M
LSTM 1.91M 4.18M

Table 6.1: Number of trainable parameters of the RNN-MLP model with the maxi-
mal question lengths set to 15 and 150 for the YA and the AU datasets, the answer
lengths are set to 100. The word embeddings and the RNN state dimensionalities
are set to 100. The size of the MLP is calculated as in Equation 6.6.

6.1.2 LSTM versus GRU for Answer Ranking

In Chapter 2 we described two variants of recurrent neural networks that use the

gating mechanism: long short term memory (LSTM) networks and gated recurrent

networks (GRU for Gated Recurrent Units). The gating mechanism enables the

ability to represent long-term dependencies, hence the popularity of LSTMs and

GRUs in language processing where capturing long-term dependencies is of high

importance. The essential difference between the two cells is that the LSTM has

three gates and a separate memory state and a hidden state, while the GRU has

only two gates and also merges the two states into one, and thus, has fewer trainable

parameters. In Table 6.1 we report the number of trainable parameters of the full

2implemented as a part of the tensorflow library: http://www.tensorflow.org
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Yahoo! Answers

Encoder P@1 MRR

LSTM 37.45† 58.12
GRU 36.73 57.06

Paragraph Vector 37.37 57.05

Random baseline 15.74 37.40
CR baseline 22.63 47.17

Jansen et al. (2014) 30.49 51.89
Fried et al. (2015) 33.01 53.96

Ask Ubuntu

Encoder P@1 MRR

LSTM 42.64† 65.28
GRU 41.96 64.87

Paragraph Vector 41.48 64.33

Random baseline 26.60 53.64
CR baseline 35.36 60.17
Chronological baseline 37.68 60.06

Table 6.2: Performance of the GRU and the LSTM encoders versus the baselines
for answer ranking. The improvement of the LSTM model over the GRU model is
not statistically significant (p > 0.05).

network including the two encoders and the MLP predictor. Several studies have

compared the two variants on various tasks, and most have found they perform

similarly well and outperform the vanilla tanh RNN (Chung et al., 2014; Jozefowicz

et al., 2015).

Table 6.2 compares the performances of the GRU and the LSTM encoders against

the baselines on the task of answer ranking. On both datasets, the two encoders

outperform most baselines, with the only exception being the Paragraph Vector

model on the YA dataset, where it performs at the level of the LSTM encoder

and outperforms the GRU encoder. This is an interesting observation, that the

PV model trained in an unsupervised fashion, makes a very strong baseline able to

compete with much more sophisticated encoders. This is probably due to its ability

to leverage the large amounts of unlabelled data to obtain powerful representations

of the documents.
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Comparing the performance of the LSTM and the GRU encoders, we can see

from the experimental results, that they provide similar results, with the LSTM

providing an insignificant improvement over the GRU model.

6.1.3 Augmenting the Representations

In the set of experiments described above we used two separated encoders for the

question and the answer. We do not directly pass any information about the ques-

tion, while encoding the answer and vice versa and let the final deep MLP decide

how relevant the encoded answer is to the encoded question, i.e. the interactions

between the question and the answer are implicit, as we train the three networks

(the encoders and the MLP) together. In order to make the interactions between

the question and the answer more direct, we adopt the attention mechanism of

Bahdanau et al. (2014). This mechanism was introduced for the encoder-decoder

architecture for the task of machine translation. We use this mechanism in the

following way: (1) the question is encoded using an LSTM as in Equation 6.1:

f qRNN(wwwqi , θθθq) = hhhqi (6.7)

(2) while encoding the answer, we use the attention over the context vectors of the

question encoder, as described in Chapter 2 (Section 2.3.3.4):

faRNN(wwwai , θθθa,hhh
q
i ) = hhhai (6.8)

Similar attention mechanisms were used by dos Santos et al. (2016). The intuition

behind using attention in this architecture is that certain parts of the answer may

be aligned to certain parts of the question, which happens often in factoid answer

selection, see an example from the TREC QA dataset in Figure 6.2.

We also explore a much simpler way to explicitly encode the interaction between

the question and the answer. Instead of using the output of the question encoder
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Figure 6.2: Example of a factoid question from TREC QA dataset with its correct
answer and a possible alignment between them. Note that attention mechanisms
define a soft alignment rather than the precise alignment represented here.

when encoding the answer, we encode them separately and then apply the interaction

transformation to the context vectors. More specifically, let HHHq denote the matrix

composed of the outputs of the question encoder RNN:

HHHq =



hq1,1 hq1,2 · · · hq1,k

hq2,1 hq2,2 · · · hq2,k
...

...
. . .

...

hqd,1 hqd,2 · · · hqd,k


and HHHa denote the matrix composed of the outputs of the answer RNN:

HHHa =



ha1,1 ha1,2 · · · ha1,p

ha2,1 ha2,2 · · · ha2,p
...

...
. . .

...

had,1 had,2 · · · had,p


d is a dimensionality parameter to be experimentally tuned. We calculate the sim-

ilarity matrix SSS between HqHqHq and HaHaHa, so that each element sij of the SSS matrix is a

dot product between the corresponding encodings:

sij = hhhqi · hhhaj

The similarity matrix SSS is unrolled and passed to the multilayer perceptron along
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with the question and answer encodings:

y = fMLP ([encencencq, encencenca,SSS], θθθs) (6.9)

This approach requires us to pad all questions and answers to the same length. This

is illustrated in Figure 6.3.

Figure 6.3: RNN-MLP model for answer ranking that uses the interaction features.
Given a question-answer pair, two separate RNNs are used to encode the question
and the answer, and the encodings are concatenated and passed to an MLP, as well
as the similarity matrix calculated as the pairwise dot product of the question and
the answer encodings. All three networks are trained together.

In Table 6.3 we compare the performance of a standard LSTM versus the LSTM

that uses the attention and the LSTM that uses the interaction transformation.

The attention mechanism we borrowed from the encoder-decoder architecture does

not improve the performance of a plain LSTM encoder. Unlike the neural machine

translation settings, there is no actual alignment between the question and the

answer, and a more suitable attention mechanism may be needed for this task. The
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interaction transformation also does not improve the performance of the LSTM. A

possible reason for that is the varying lengths of the questions and the answers,

that require the questions and the answers to be padded in order to apply the

transformation, thus, a lot of zeros are passed to the MLP.

Yahoo! Answers

Encoding P@1 MRR

standard 37.45 58.12
S-matrix 36.42 56.62
attention 37.22 58.04

Ask Ubuntu
Encoding P@1 MRR
standard 42.64 65.28
S-matrix 40.36 64.22
attention 40.64 63.91

Table 6.3: Comparison of variations of encodings with LSTMs for answer ranking.
Standard encoding uses the last outputs of the forward and the backward LSTMs;
S-matrix adds the interaction transformation features to the standard encoding;
attention adapts the attention mechanism of Bahdanau et al. (2014)

6.2 Answer Ranking with Convolutional Neural

Networks

In the previous section we reported answer ranking experiments, where we used an

RNN to encode questions and answer, i.e. represent them as fixed-sized vectors.

Besides an RNN, a convolution neural network (CNN) can also be used to encode a

text. Initially designed for computer vision tasks, the CNNs became very popular in

the area of NLP and were applied to answer selection (Severyn and Moschitti, 2015a;

Tymoshenko et al., 2016a; dos Santos et al., 2016), sentiment analysis (Kim, 2014;

dos Santos and Gatti, 2014; Kalchbrenner et al., 2014) and question type classifica-

tion (Kim, 2014; Kalchbrenner et al., 2014). We have already used a convolutional

architecture in Chapter 3 for the task of semantically equivalent question detection.

In this chapter, we use an extended version of this architecture, i.e. we use various
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filter sizes, and use a better regularisation. We use a convolution architecture similar

to the one presented by Kim (2014). Let x be a text, e.g. a question or an answer,

and xxxi ∈ Rk the embedding of the i-th word in the text, i.e.

x = (xxx1,xxx2, ...,xxxn)

A filter of size h is a vector www ∈ Rhk which is applied to a word window of size h

and produces a feature ci:

ci = f(www[̇xxxi, ...,xxxi+h−1] + b) (6.10)

where b ∈ R is a bias and f is a non-linear function, such as the ReLU or the

hyperbolic tangent. The filter is applied to every possible word window of size h,

and the vector of the produced features is called a feature map:

ccc = (c1, c2, ..., cn−h+1) (6.11)

After that, a max-pooling operation takes the maximum from each feature map:

ĉ = max(c1, c2, ..., cn−h+1) (6.12)

The intuition behind the max-pooling operation is to capture the most important

information from each feature map (Kim, 2014). Usually, not just one but a number

of filters m is applied to each window, i.e.:

ccci = f(WWW>[xxxi, ...,xxxi+h−1] + bbb) (6.13)

where WWW is a matrix of size hk×m and bbb ∈ Rm is a bias vector. The representation

of the text x is obtained with max-pooling:

eee = (max(ccc1), ...,max(cccm)) (6.14)
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Figure 6.4 illustrates the CNN that we use to encode a question or an answer.

The main difference from the architecture used in Chapter 3 is the use of various

filters, i.e. word window, sizes instead of using only one filter of a fixed size. We

also train the system differently. We use two separate CNNs to encode the question

and the answer, then the representations are concatenated and passed to an MLP.

The network is trained in the same way as the RNN-based system described in

Section 6.1, i.e. by minimising cross-entropy on the training set.

Figure 6.4: Illustration of a CNN encoder for answer ranking. First, words are
represented as word embeddings. Second, a convolution with multiple filter sizes is
applied to the word embeddings. Finally, max-pooling is applied to the output of
the convolutions.
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6.2.1 Hyperparameters

We experiment with filter (word window) sizes from one to five, and set the number

of filters of each size to 100. The dropout probability was set to 0.2 for the CNN

and the MLP, and the L2 regularisation rate was set to 10−7 on the YA dataset,

and to 0.3 and 10−6 on the AU dataset. The model was trained with SGD with a

mini-batch of size 100 and evaluated on the development set every 500 steps. The

training was stopped if there was no improvement on the development set for 10

consecutive evaluations.

Yahoo! Answers
Encoder Test P@1 Test MRR

LSTM 37.45* 58.12
CNN 35.45 55.98
Paragraph Vector 37.37 57.05
Random baseline 15.74 37.40
CR baseline 22.63 47.17
Jansen et al. (2014) 30.49 51.89
Fried et al. (2015) 33.01 53.96

Ask Ubuntu
Encoder Test P@1 Test MRR

LSTM 42.64* 65.28
CNN 34.76 59.96
Paragraph Vector 41.48 64.33
Random baseline 26.60 53.64
CR baseline 35.36 60.17
Chronological baseline 37.68 60.06

Table 6.4: Answer ranking performance when using the RNN versus the CNN en-
coder. *The improvement is statistically significant (p < 0.05).

6.2.2 CNN versus RNN for Answer Ranking

We apply the CNN with the hyperparameters providing the highest development

P@1 to the test set. Table 6.4 reports the performance of the CNN versus the

best performing RNN-based system described in the previous section. On the YA

dataset, the CNN proves competitive with the RNN, although, the LSTM produces

significantly better results. However, on the AU dataset, the CNN performs simi-
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larly to the candidate retrieval baseline and is far below the RNN-based systems.

The explanation for this is that the AU dataset contains much longer questions and

answers. The CNNs are in some sense similar to the n-gram model: they encode

local features. Unlike the RNNs, they lack the ability to represent long-term depen-

dencies that is essential when encoding long texts. Nonetheless, the CNNs succeed

in encoding sentences (dos Santos and Gatti, 2014; Kim, 2014) or short texts, e.g.

Twitter data (Severyn and Moschitti, 2015b; Kalchbrenner et al., 2014). A two-level

CNN like the one presented by Denil et al. (2014) that first composes words into

sentences and then, sentences into documents, might be a better variation of a CNN

architecture for longer texts.

6.3 Multi-Channel Recurrent Convolutional Neu-

ral Network

In the previous sections of this chapter, we have explored RNNs and CNNs as the

encoders in the task of answer ranking. Previous studies on non-factoid answer

ranking found that discourse information, i.e. the information on the boundaries of

possible discourse segments, helps to match the question and the answer (Jansen

et al., 2014; Verberne et al., 2007). While the RNNs provide powerful text repre-

sentations their recurrent nature does not allow them to detect clause boundaries.

On the other hand, the CNNs may be more suitable to encode discourse segments,

as the convolution captures every possible word window of determined sizes. How-

ever, the CNNs fail to represent long-term dependencies. In this section we propose

a novel architecture called Multi-Channel Recurrent Convolutional Neural

Network (MC-RCNN) that is aimed to overcome these drawbacks of the two

models by combining them. It first uses a forward and a backward RNN to en-

code the sequence, and then applies a multi-channel CNN treating each direction’s

output as a channel. In other words, the first channel on the CNN consists of the

outputs of the forward RNN encoder, its second channel consists of the outputs of
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the backward RNN encoder, the third channel receives word embeddings like in a

typical CNN encoder setup. The last states of each of the two RNNs and the output

of the CNN are then passed to a multilayer perceptron. Figure 6.5 illustrates this

architecture.

More formally, the word embeddings (www1,www2, ...,wwwn) are encoded into a sequence

of forward output vectors using a forward RNN:

fforwRNN(www1,www2, ...,wwwn, θθθforw) = (
−→
hhh1,
−→
hhh2, ...,

−→
hhhn) (6.15)

and into a sequence of backward output vectors using a backward RNN:

fbackRNN(www1,www2, ...,wwwn, θθθback) = (
←−
hhhn,
←−
hhh n−1, ...,

←−
hhh1) (6.16)

where θθθforw and θθθback are trainable parameters of the networks.

Then the word embeddings, the forward output vectors and the backward output

vectors represent the three channels of the CNN input layer, and the encoding is

produced is follows:

fCNN([www1,www2, ...,wwwn],

[
−→
hhh1,
−→
hhh2, ...,

−→
hhhn],

[
←−
hhhn,
←−
hhh n−1, ...,

←−
hhh1], θθθCNN) = encencencCNN

(6.17)

The final MLP predictor then receives both the encoding produced by the CNN

and the encodings produced by the RNNs, i.e.

fMLP (encencencCNN ,
−→
hhhn
←−
hhh1, θθθMLP ) = yyy (6.18)

We train this model in the same way as described in Section 6.1. As we can see

from Table 6.5, the MC-RCNN performs at the level of the RNN models on the YA

dataset, bringing only an insignificant improvement when a GRU cell is used. On

the contrary, on the AU dataset, the MC-RCNN architecture with either the LSTM
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Figure 6.5: Illustration of MC-RCNN model. First, the input sequence is encoded
with a forward RNN and a backward RNN. The outputs of the two RNNs and the
original word embeddings are the three inputs channels of a CNN. The CNN outputs
is then passed to an MLP that predicts a score.

or the GRU cell outperforms the RNN and the CNN encoders. This shows that this

model is particularly suitable for longer texts.

6.4 Summary

In this chapter we explored recurrent and convolutional neural networks for the pur-

poses of encoding the question and the answer for answer ranking. We have also

proposed a novel architecture called multi-channel recurrent convolutional neural

network, that applied a three-channel CNN to the original word embedding rep-

resentation as well as the outputs of the forward and the backward RNNs. Our

experiments show that:
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Yahoo! Answers
Model Cell P@1 MRR
MC-RCNN LSTM 36.25 56.66
MC-RCNN GRU 37.62† 57.60
RNN LSTM 37.45 58.12
RNN GRU 36.73 57.06
CNN - 35.45 55.98

Ask Ubuntu
Model Cell P@1 MRR

MC-RCNN LSTM 43.56 66.14
MC-RCNN GRU 44.36* 66.39
RNN LSTM 42.64 65.28
RNN GRU 41.96 64.87
CNN - 34.76 59.96

Table 6.5: Performance of the system with a MC-RCNN encoder versus the RNN and
the CNN-based systems. *The improvement over the RNN and CNN based systems
on the AU dataset is statistically significant (p < 0.05). †The improvement over
the RNN and CNN based systems on the YA dataset is not statistically significant
(p > 0.05).

- LSTMs generally perform slightly better than GRUs when combined with

an MLP for the task of answer ranking however the improvements are not

statistically significant;

- Incorporating the attention mechanism of Bahdanau et al. (2014) which is

successful in neural machine translation, into the LSTM-based answer ranking

does not improve the performance. This is probably due to the fact that the

question and the answer are not aligned unlike in machine translation.

- CNNs perform comparably to RNNs when the questions and answers are rel-

atively short. However, they are not suitable for encoding long questions and

answers.

- MC-RCNN outperforms the CNNs and in most cases the LSTMs too. The

improvement is more remarkable on the Ask Ubuntu dataset which has more

complex questions and answers.

- MC-RCNN performs better in combination with the GRU, unlike the RNN

that achieves better results when using the LSTM cell. This needs further

investigation.
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Chapter 7

Further Analysis of Answer

Ranking

In previous chapters we explored different ways to represent questions and answers

for the task of answer reranking. Firstly, in Chapter 5 we evaluated the Paragraph

Vector model (Le and Mikolov, 2014). This approach is simple and achieves good

results, but requires a big in-domain corpus for pretraining and either assumes that

the test data is available at pretraining time, or requires inference with a gradient-

based method at test time. Next, in Chapter 6 we learned the representations for

questions and answers with RNNs, CNNs and MC-RCNNs as part of the task.

In this chapter, we rather briefly explore various aspects of answer ranking that

we did not discuss in previous chapters. In particular, we focus on the following

questions: (1) can the performance of a neural system can be improved by inclusion

of tried-and-tested features? (2) can character-level representations help to overcome

the specificity of noisy user-generated content? (3) can unsupervised pretraining

improve the performance of the proposed neural systems? (4) do the models trained

and tuned on the YA and AU datasets perform well on a different dataset?

This chapter is structured as follows: We experiment with character-level em-

beddings instead of word-level embeddings in Section 7.1. In Section 7.2 we combine

the RNN and the CNN-based approaches with the discourse features that were in-
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troduced by Jansen et al. (2014). In Section 7.3 we empirically investigate the

impact of pretrained word embeddings on the performance of our models. In Sec-

tion 7.4 we provide an error analysis of the best performing systems. In Section 7.5

we evaluate our neural models on the dataset of the SemEval 2016 shared task on

answer ranking. Finally, we discuss some open questions and draw conclusions in

Section 7.6.

7.1 Character-level versus Word-level Embeddings

Many state-of-the-art models in NLP rely on character-level embeddings instead of

(Kim et al., 2016) or as well as (dos Santos and Zadrozny, 2014) word embeddings.

The main intuition behind using character-level embeddings is that they can capture

morphological information and better deal with out-of-vocabulary and misspelled

words. The use of character embeddings instead of word embeddings also obviates

the need to tokenise the data. At the same time, it slows down the RNN training

significantly, as the sequences become much longer, i.e. the number of RNN steps

increases. Consider the following example: I shot an elephant in my pyjamas. A

word-level RNN would need seven steps to encode it, whereas a character-level RNN

would need 32 steps. Another drawback of the character-level representations is that

they do not have explicit knowledge of word boundaries, and this makes them usually

less effective than similar word-level models (Sutskever et al., 2011).

We set the dimensionality of character embeddings to 20, all other hyperpa-

rameters remain the same as when training a word-level model. We compare the

performance of several of the presented models with character-level instead of word-

level embeddings in Table 7.1. The performance of all RNN-based models drops

significantly when using character-level representations. However, when a CNN is

used to encode questions and answers, its performance drops less notably on the YA

data and even increases on the AU dataset. Moreover, on character-level represen-

tations the CNN proves superior to RNN. However, its performance is still below
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Yahoo
Encoder Representation P@1 MRR

CNN word 35.45* 55.98
CNN char 32.01 53.53

GRU word 35.77* 56.97
GRU char 30.21 52.15

LSTM word 37.45* 58.12
LSTM char 30.57 52.52

Ask Ubuntu
Encoder Representation P@1 MRR
CNN word 34.76 56.96
CNN char 38.40* 62.33

GRU word 41.96* 64.87
GRU char 37.12 61.08

LSTM word 42.64* 65.28
LSTM char 37.04 61.10

Table 7.1: Answer reranking performance of different models when using word-level
versus character-level embeddings. For the GRU and LSTM we use the last encoding
for faster training. *All improvements are statistically significant.

the ones of the RNN-based word-level systems.

7.2 Injecting Discourse Features into the Neural

System

We propose to enrich the neural model presented in Section 6.1 with additional

features. In the systems described in the previous chapter, the encoded vectors

produced by an RNN, a CNN or an MC-RCNN are concatenated and passed to an

MLP. We suggest concatenating these encodings with additional external features,

e.g. discourse features, and then passing them to the MLP. More specifically, the

score is now predicted by the following function (compare to Equation 6.5).

y = fMLP ([encencencq, encencenca,xxxext], θθθs) (7.1)

where xxxext is the vector of additional features. Figure 7.1 illustrates the model

with the additional discourse features. An RNN, a CNN or a MC-RCNN can be
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Figure 7.1: Illustration of the architecture that incorporates additional features.
The question encoder can be, for instance, an RNN, a CNN or a MC-RCNN. As
the additional features, in our experiments we use the features produced by the
discourse marker model presented in Jansen et al. (2014), however, other features
can also be incorporated.

used as a question and an answer encoder. In the following sections we present

experiments where the model is enriched with discourse features produced by the

discourse marker model of Jansen et al. (2014).

7.2.1 Discourse Features

Based on the intuition that modelling question-answer structure goes beyond sen-

tence level, Jansen et al. (2014) propose an answer ranking model based on dis-

course markers combined with lexical semantic information. We inject the features

produced by their discourse marker model (DMM) combined with their lexical se-

mantics model (LS) into the neural system we described in previous chapters. The

DMM model is based on the findings of Marcu (1997), who showed that certain cue

phrases indicate boundaries between elementary textual units with sufficient accu-

racy. These cue phrases are further referred to as discourse markers. For English,

these markers include by, as, because, but, and, for and of – the full list can be
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Figure 7.2: Feature generation for the discourse marker model of Jansen et al. (2014):
first, the answer is searched for the discourse markers (in bold). For each discourse
marker, there are several features that represent whether there is an overlap (QSEG)
with the question before and after the discourse marker. The features are extracted
for sentence range from 0 (the same range) to 2 (two sentences before and after).

found in Appendix B in Marcu (1997).

We illustrate the feature extraction process of Jansen et al. (2014) in Figure 7.2.

First, the answer is searched for discourse markers. Each marker divides the text into

two arguments: preceding and following the marker. Both arguments are searched

for words overlapping with the question. Each feature denotes the discourse marker

and whether there is an overlap with the question (QSEG) or not (OTHER) in the two

arguments defined by the marker. The sentence range (SR) denotes the length (in

sentences) of the marker’s arguments. For example, QSEG by OTHER SR0 means that

in the sentence containing the by marker there is an overlap with the question before

the marker and there is no overlap with the question after the marker. This results

in 1384 different features. To assign values to each feature, the similarity between

the question and each of the two arguments is computed, and the average similarity

is assigned as the value of the feature. Jansen et al. (2014) use cosine similarity

over tf.idf and over the vector space built with a skip-gram model (Mikolov et al.,

2013b).

7.2.1.1 Results: discourse features

In Table 7.2 we report the results for the systems enhanced with the discourse

features and the discourse features on their own with an MLP (MLP-Discourse). The

MLP-Discourse outperforms the random and the CR baselines for both datasets. It
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also perform better than the approach of Jansen et al. (2014) who used SVMrank

with a linear kernel. This might be due to the ability of the MLP to model non-linear

dependencies. However, this model’s performance is below the RNN, the CNN and

the MC-RCNN performances on their own without any external features.

The inclusion of the discourse features improves the performance of the LSTM,

the GRU and the CNN encoders on both datasets. However, on the YA dataset, the

improvements are not statistically significant. On the AU dataset, the improvements

are statistically significant with p < 0.05. The improvement is especially notable

when the CNN encoder is used on the AU dataset. The CNN encoder performed

poorly on its own on this dataset, but its performance was drastically improved by

inclusion of the discourse features. This is possibly because the discourse information

helps the CNN to overcome its inability to account for long-term dependencies.

The performance of the MC-RCNN is improved by the inclusion of the discourse

features only when the LSTM cell is used, and the improvement is not statistically

significant. The MC-RCNN does not seem to benefit from the discourse information,

suggesting that the discourse features do not provide any extra information that is

not captured already by the model. However, this may also mean that some sort

of feature normalisation is required, e.g. normalising the discourse vector and the

output of the encoder separately and then, perhaps, normalising the concatenation.

Manual error analysis shows that the improvement brought by the discourse

features to most models is due to a better handling of the questions with long

answers. In certain cases, where the best answer is relatively long, the RNN model

assigned a higher score to a shorter answer.

7.3 The Impact of Pretrained Word Embeddings

All the RNN and CNN-based models for answer reranking we experimented with in

Chapter 6 did not use any external corpora for pretraining the word embeddings,

i.e. the word embeddings were initialised by sampling from the random uniform

134



Yahoo
Encoder Discourse P@1 MRR
CNN No 35.45 55.98
CNN Yes 35.73† 55.91
LSTM No 37.45 58.12
LSTM Yes 38.02† 58.26
MC-RCNN No 37.62† 57.60
MC-RCNN Yes 37.21 57.50

MLP-Discourse 32.72 53.54
Ask Ubuntu

Encoder Discourse P@1 MRR
CNN No 34.76 59.96
CNN Yes 41.72* 64.59
LSTM No 42.64 65.28
LSTM Yes 43.80* 66.20
MC-RCNN No 44.36† 66.39
MC-RCNN Yes 43.36 65.80

MLP-Discourse 37.80 61.75

Table 7.2: Experimental results on the test set for different encoders with and
without discourse features.

Corpus Number of tokens Vocabulary size
Google News 100B 692K
L6 Yahoo! Answers 1.9B 1.2M
Ask Ubuntu dump 97M 183K

Table 7.3: Details on the corpora used to pretrain the skip-gram model.

distribution around zero. It has been shown that unsupervised pretraining helps

deep learning due to its ability to provide better initialisation and also serve as a

regulariser and prevent overfitting (Erhan et al., 2010). In Section 5 we also showed

that distributed representations for documents obtained in an unsupervised manner

using the Paragraph Vector model were useful for the task of answer reranking.

In this section we compare the best performing neural models on the YA and AU

datasets when the word vectors are (1) initialised randomly and (2) pretrained using

the skip-gram model (Mikolov et al., 2013a) on (2a) in-domain data and (2b) out-

of-domain data. To train domain-specific embeddings we use the L6 dataset of

Yahoo! Answers questions and the Ask Ubuntu September 2014 data dump. The

YA and the AU datasets were originally sampled from these two corpora respectively.
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To evaluate the impact of pretraining on out-of-domain data, we choose to use

publicly available word vectors trained on about 100 billion words from Google

News created by Mikolov et al. (2013b). Some statistics on the corpora are presented

in Table 7.3. Before training the models, we tokenise the data with the tokeniser

packaged with Stanford parser and lowercase the tokenised data. We use the original

word2vec implementation1 of the skip-gram model. We subsample frequent words,

as suggested by Mikolov et al. (2013b): every word is sampled with the following

probability:

P (w) = 1−

√
t

f(w)
(7.2)

where f(w) is the frequency of the word w and t is the subsampling rate. We set

the subsampling rate to 10−4. Words with fewer than five occurrences were ignored.

The models were trained for 15 iterations using negative sampling with 25 negative

examples. The word window was set to 5.

We select the best performing models on the YA and the AU datasets, i.e. the

LSTM-MLP with and without the additional discourse features on the YA dataset

and the MC-RCNN model with the GRU cell for the AU dataset and compare

their performances with the word embeddings randomly initialised versus the ones

pretrained with the skip-gram model, as described above.

Table 7.4 shows the performance of these models. Surprisingly, the unsuper-

vised pretraining did not improve the performance of the best model (LSTM-MLP-

discourse for the YA dataset and MC-RCNN model for the AU dataset) on either

of the datasets. However, pretraining on domain-specific data does improve the

performance of the LSTM-MLP model when no extra features are used. On the AU

dataset, pretraining on in-domain data does not improve the performance but nei-

ther does it worsen it significantly, as it remains almost the same as with randomly

initialised embeddings.

When pretraining on out-of-domain data (Google News) the performance on

1https://code.google.com/archive/p/word2vec/
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Yahoo: LSTM-MLP
Embeddings P@1 MRR
Random 37.45 58.12
Yahoo 38.70 59.14
Google 36.69 57.25

Yahoo: LSTM-MLP-discourse
Embeddings P@1 MRR
Random 38.02 58.26
Yahoo 38.02 58.24
Google 37.15 57.10

Ask Ubuntu: MC-RCNN (GRU)
Embeddings P@1 MRR
Random 44.36 66.39
Ask Ubuntu 44.04 66.22
Google 38.80 61.96

Table 7.4: Performance of the best performing models with random and pretrained
embeddings.

the YA dataset slightly decreases, however, on the AU dataset it drops drastically.

This is probably due to significant differences between the AU dataset, which is a

technical CQA and the pretraining corpus sampled from Google News. Apparently,

the YA data differs from the newswire less dramatically and the differences might

be slightly mitigated by the large amounts of data in the Google News corpus.

Overall, our results suggest that unsupervised pretraining does not help the

hybrid model and the LSTM-MLP model that uses the discourse information. It

does improve the performance of the LSTM-MLP model with no extra features but

only when in-domain data is used for pretraining. This suggests that the extra

discourse features do not allow us to benefit from unsupervised pretraining. This

needs further investigation: scaling the features and the embeddings is one possible

technique to try.

Another possible reason for unsupervised pretraining bringing no improvement

might be in the use of the ReLU activations: Glorot et al. (2011) previously found

that unsupervised pretraining does not help when the ReLU activation is used (with

ReLU performing better than other activations even with unsupervised pretraining).

The dropout regularisation could be yet another reason. As Srivastava et al. (2014)
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state, “the stochastic nature of dropout might wipe out” the pretraining information.

All in all, our results suggest that pretrained word embeddings (1) do not always

improve the performance of neural answer reranking systems, and (2) should only be

used when suitable corpora are available, as pretraining on an out-of-domain corpus

could decrease the performance drastically (as in the last row of Table 7.4).

7.4 Analysis

By conducting an error analysis on the YA dataset we were able to pinpoint the

main causes of errors as follows:

1. Despite containing only how questions, the dataset contains a large amount of

questions asking for an opinion or advice , e.g. How should I do my eyes?,

How do I look? or How do you tell your friend you’re in love with him? rather

than information, e.g. How do you make homemade lasagna? and how do

you convert avi to mpg? About half of the questions where the best system

was still performing incorrectly were of the opinion-seeking nature. This is

a problem for automatic answer reranking, since the nature of the question

makes it very hard to predict the quality of the answers.

2. The choice of the best answer relies purely on the user. Inspection of the

data reveals that these user-provided gold labels are not always reliable. In

many cases the users tend to select as the best those answers that are most

sympathetic (see Q1 in Table 7.5) or funny (see Q2 and Q3 in Table 7.5),

rather than the ones providing more useful information.

In order to gain more insight into the reasons behind the errors on the YA data,

we calculated average P@1 per category.2 Figure 7.3 shows average P@1 of the

LSTM-MLP-Discourse system versus the Random baseline for the most common

categories. From this figure it is clear that the most challenging category for answer

2We first mapped the low-level categories provided in the dataset to the 26 high-level YA
categories. We only consider categories that contained at least 100 questions.
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(Q1) How does someone impress a person during a conversation that u are as
good as an oxford/harvard grad.?

(Gold) i think you’re chasing down the wrong path. but hell, what do i know?

(Prediction) There are two parts. Understanding your area well, and being
creative. The understanding allows you the material for your own opinions to
have heft and for you to analyse the opinions of others. After that, it’s just
good vocabulary which comes from reading a great deal and speaking with
others. Like many other endeavors practice is what makes your performance
improve.

(Q2) How to get my mom to stop smoking?

(Gold) Throw a glass of water on her every time she sparks one up

(Prediction) Never nag her. Instead politely insist on your right to stay free of
all the risks associated with another person’s
smoking. For example, do not allow her to smoke inside the car, the house or
anywhere near you ( ... )

(Q3) How do i hip hop dance??!?!?

(Gold) Basically, you shake what your mother gave you.

(Prediction) Listen to previous freestyle flows and battles by great artists ( ... )
Understand the techniques those
artists use to flow and battle ( ... )

Table 7.5: Example incorrect predictions of the system on the Yahoo! Answers
dataset.

reranking is Family & Relationships. This category is also the most frequent in

the dataset, with 494 out of 2500 questions belonging to it. Our system achieves

about 4% lower P@1 on the questions from the Family & Relationships category

than on the whole test set, while the random baseline performs as well as on the

whole test set (the average number of answers per question in this category does

not differ much from the dataset average). The low P@1 on this category is related

to the reasons pointed out above: most questions in this category are of an opinion-

seeking nature: How do I know if my boyfriend really loves me?, How do I fix my

relationship?, How do I find someone that loves me?, making it hard to assess the

quality of the answers.

The Ask Ubuntu dataset is rather different. In contrast to the YA dataset,

which contains many subjective questions, most Ask Ubuntu questons relate to a

complex technology and usually require deep domain knowledge to be answered.
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(Q1) How do I add the kernel PPA? I can get Ubuntu mainline kernels from
this kernel PPA - is there a way to add it to my repository list the same as
regular Launchpad PPAs?

(Gold) Warning : This answer is outdated. As of writing this warning
(6.10.2013) the kernel-ppa used here is no longer updated. Please disregard this
answer. sudo apt-add-repository ppa:kernel-ppa/ppa sudo apt-get

update sudo apt-get install PACKAGENAME

(Prediction) Since the kernel ppa is not really maintained anymore, here’s a
semi-automatic script: https://github.com/medigeek/kmp-downloader

(Q2) Which language is ubuntu-desktop mostly coded in? I heard it is Python

(Gold) Poked around in Launchpad: ubuntu-desktop to and browsed the source
for a few mins. It appears to be a mix of Python and shell scripts.

(Prediction) I think the question referred to the language used to write the
applications running on the default installation. It’s hard to say which language
is used the most, but i would guess C or C++. This is just a guess and since all
languages are pretty equal in terms of outcome, it doesn’t really matter.

Table 7.6: Example incorrect predictions of the system on the Ask Ubuntu dataset.

Figure 7.3: Average P@1 of the LSTM-MLP-Discourse versus the Random baseline
on the test questions from most common YA categories.

Moreover, many questions and answers contain code, screenshots and links to exter-

nal resources. Reliably reranking such answers based on textual information alone

might be an unattainable goal. The technical complexity of the questions can give

rise to ambiguity. For instance, in Q2 in Table 7.6 it is not clear if the question
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Train Dev Test
# questions 2669 500 700
# comments 17900 2440 3270

good 6651 818 1329
bad 8139 1209 1485
potentially useful 3110 413 456

Table 7.7: Details about Semeval 2016 Task 3 Subtask A data.

refers to the metapackage ubuntu-desktop or to ubuntu default packages in general.

Another potential source of difficulty comes from the fact that the technologies be-

ing discussed on Ask Ubuntu change rapidly: some answers selected as best might

be outdated (see Q1 in Table 7.6).

7.5 Experiments on SemEval Data

SemEval has been organising a shared task on community question answering since

2015: Task 3 in 2015 and 2016. This shared task contains several subtasks including

Subtask A: Question-Comment Similarity. Given a question from a user forum and

ten comments from the same forum thread, the goal is to rank these comments

according to their relevance to the question. Every comment is labelled as good,

bad or potentially useful. All good comments should be ranked before bad and

potentially useful. A question can have several or no good answers. The dataset was

created using the Qatar Living forum.3 Table 7.7 shows the number of questions and

comments in training, development and test sets. The official score of the shared

task is Mean Average Precision (MAP).

We evaluate the models we described in Sections 6.1, 6.2 and 6.3 on this subtask’s

data. We tune the learning rate on the development set (see Table 7.8). All systems

use dropout of 0.5 and weight decay of 10−5. We set question length to 100 and

answer length to 250.

We apply the three models with a learning rate of 0.001 to the test set. Table 7.9

presents the results obtained with the official scorer. The three systems provide

3http://www.qatarliving.com/forum
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System/Encoder Learning Rate Dev MAP
CNN 0.001 63.54
CNN 0.01 61.36

LSTM 0.001 65.67
LSTM 0.01 45.77

MC-RCNN 0.001 64.96
MC-RCNN 0.01 62.91

Table 7.8: MAP on the Semeval 2016 Task 3 Subtask A development set.

System/Encoder MAP AvgRec MRR P R F1 Acc

CNN 74.85 85.52 82.12 71.77 70.55 52.45 60.16
LSTM 75.42 85.95 83.16 66.61 63.36 64.94 72.20
MC-RCNN 75.04 85.93 82.10 70.19 59.89 64.64 73.36

Chronological Baseline 59.53 72.60 67.83 - - - -
Random Baseline 52.80 66.52 58.71 40.56 74.57 52.55 45.26
Filice et al. (2016) 79.19 88.82 86.42 76.96 55.30 64.36 75.11

Table 7.9: Performance on the Semeval 2016 Task 3 Subtask A test set. Calculated
using the official scorer.

similar performance in terms of MAP and outperform the baselines by a substantial

margin. The best performing system (Filice et al., 2016) at Subtask A achieved

a MAP of 79.19, which is about 3.8% better than the LSTM-MLP system. The

system of Filice et al. (2016) uses an SVM classifier with tree kernels and task-

specific heuristic features that were previously proposed by Barrón-Cedeño et al.

(2015). These heuristic features include the following binary features: whether

a certain word (yes, no, sure, can, neither, okay, sorry, etc.) or a symbol (e.g.

? or @) is present in a comment; whether the comment starts with yes ; meta-

information on whether the comment has been posted by the same user as the one

who posted the question; whether the comment contains an acknowledgment (words

containing thank). In contrast, neither of our systems uses any features. Perhaps

the performance could be improved by incorporating them in a similar way to how

the discourse features were incorporated.
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7.6 Summary

In this chapter we continued to study the task of answer ranking. We suggested a

way to combine our neural system with external features. We tested the discourse

features produced by the Discourse Marker Model of Jansen et al. (2014). We

estimated the impact of unsupervised pretraining on the neural model, and also

compared the performance of the models that use character-level embeddings versus

when they use word-level embeddings. We evaluated some of our model on the

Semeval 2016 Task 3 data. Finally we provided some error analysis. Our main

findings are:

- The use of character-level embeddings only is not as beneficial as when the

word embeddings are used;

- Discourse features on their own provide a good baseline, and in most cases

injecting them into a neural system improves the performance. They seem

particularly helpful for longer texts;

- The CNN-based systems for encoding long texts benefit from the inclusion of

the discourse information;

- Combining the MC-RCNN model with the discourse features does not improve

its performance;

- Unsupervised pretraining of the word embeddings only slightly improves the

performance of the neural systems, when no external features are used;

- Pretraining of word embeddings using an out-of-domain corpus can negatively

affect the performance (when using the newswire embeddings with Ask Ubuntu

data);

- On the YA dataset, the main source of error is the subjectivity of some of the

questions and the choice of best answer;
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- On the AU dataset, the main source of error is the complexity and the changing

nature of the subject matter;
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Chapter 8

Conclusion

In this thesis we explored CQAs as a source of labelled data for machine learning

approaches to two different tasks, i.e. detection of semantically equivalent questions

and answer ranking, with the latter being the main focus of this thesis. We primarily

addressed the tasks using deep learning approaches. We explored the use of various

architectures including feedforward, convolutional and recurrent neural networks

and their combinations. Our experiments showed that this family of approaches

provides good performance on the two tasks. In this chapter we first revisit the

research questions we posed in Chapter 1, before outlining several directions for

future work.

The first two research questions of this thesis concerned the limits of the neural

approaches to the tasks of community question answering. In particular, the first

question concerned the task of semantically equivalent question detection:

1. Is it possible to predict semantically equivalent questions in community ques-

tion answering websites using a deep learning system and relying on textual

information only?

In Chapter 3 we approached this task by using a convolutional neural network.

We presented experiments on a dataset of questions from the Ask Ubuntu com-

munity. We compared the system based on the CNN architecture with an SVM

baseline and a system for duplicate detection based on shingling. Our exper-
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iments showed that the neural approach outperforms the baselines by a large

margin. Our experiments also showed that the use of word embeddings pre-

trained on an in-domain corpus, e.g. Ask Ubuntu data, is more beneficial than

using embeddings pretrained on a general domain data, e.g. English Wikipedia,

even if the size of the out-of-domain dataset is significantly larger. Finally, we

investigated the impact of the training set size on the performance of the con-

volutional approach versus the SVM baseline. The experiments showed that

the CNN-based system performs well even with limited amounts of training

data, while the performance of the SVM baseline drops significantly when the

amount of training data is reduced. In short, our findings show that it is

possible to predict semantically equivalent questions using a neural system.

The second question concerns the limits of deep learning methods for the task

of answer ranking in CQA:

2. Can we rank answers to questions in community question answering websites

without relying on handcrafted features?

In Chapter 5 we represented the questions and the answers using Paragraph

Vector model (Le and Mikolov, 2014), and in Chapter 6 we explored other ways

of representing questions and answers, including recurrent and convolutional

neural networks. Passing these representations to a multilayer perceptron that

is used for scoring them, we achieved better performance than the feature-

based baselines of Jansen et al. (2014) and Fried et al. (2015) that provided

previous state-of-the-art results on the same data.

The rest of the research questions concerned the neural approaches to the task

of answer ranking. In particular, the third research question aimed to explore sev-

eral neural architectures for the task of answer ranking including convolutional and

recurrent neural networks:

3. Which neural architectures are most suitable for encoding questions and an-

swers in answer ranking?
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In Chapter 6 we compared the performance of the two most common vari-

ants of recurrent neural networks, Long Short Term Memory networks and

Gated Recurrent Networks. Our experiments showed that they provide sim-

ilar performance, with the LSTMs producing marginally better results. We

also investigated the use of the attention mechanism of Bahdanau et al. (2014)

for encoding questions and answers, and compared it to a simpler attention-

like mechanism aiming to spot alignment between questions and answers. Our

experiments found that incorporating the attention mechanism does not im-

prove the ranking results, probably due to the absence of the actual alignment

between questions and answers, unlike the case of machine translation, for

which these mechanisms were designed. We also compared recurrent neu-

ral networks and convolutional neural networks for encoding questions and

answers. We observed that when encoding short texts, CNNs provide perfor-

mance which is competitive to RNNs. However, the CNNs are not suitable

for encoding long documents. Finally, we combined the two architectures and

proposed a novel neural architecture that we call Multi-Channel Convolutional

Recurrent Neural Network. This architecture combines the benefits of recur-

rent and convolutional architectures. Experimental results showed that the

novel architecture achieves state-of-the-art performance in answer ranking. In

Chapter 7 we investigated the use of character-level instead of word-level word

embeddings, and found that the representing the documents on character-level,

i.e. using only character-level embeddings, usually provides worse performance

than when word embeddings are used.

Our fourth research question concerned the possibility of combining traditional

feature-based and the neural approaches:

4. Can feature-based and neural approaches be successfully combined for the task

of answer ranking? Do neural systems for answer ranking benefit from the

inclusion of tried-and-tested features for this task?
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In Chapter 7 we enriched the neural system with the discourse features in-

troduced by Jansen et al. (2014). Despite their simplicity, these features were

part of the previous state-of-the-art system. On their own, they provide a good

baseline. Our experiments showed that the neural approach benefits from the

inclusion of these features. The improvement is especially notable on longer

documents or when a convolutional neural network is used as an encoder.

Since we focus on CQAs, that do not restrict questions to any particular type,

we investigate which questions are the most challenging from the point of view of

automatic answer ranking:

5. What kinds of questions pose the greatest challenge for the automatic answer

ranking systems?

The error analysis of our systems presented in Chapter 7 showed that there

are several types of questions that make automatic answer ranking and ques-

tion answering challenging. Firstly, this is due to opinion-seeking questions

common in social CQAs like Yahoo! Answers. Questions containing images

and videos are yet another challenge for text-based systems like the ones we

explored. We discuss in more detail about different types of questions in the

next section.

8.1 Future Work

8.1.1 Creation of Gold Standards

In this study we assumed that CQAs provide natural annotation of the data, i.e.

the community-provided best answers were treated as the gold best answers. Our

experiments show that the machine learning approach can perform well on this task.

However, an error analysis reveals that many of the errors are due to the subjective

nature of the CQA data: first, a question could ask for an opinion, and second,

the choice of the best answer depends on the author of the question. Hoogeveen
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et al. (2016) performed an analysis of duplicate questions in the CQADupStack

dataset (Hoogeveen et al., 2015) containing duplicate questions from various Stack

Exchange communities. They have found that some duplicate questions lacked the

necessary label. Similar findings were reported by Lei et al. (2016) for the Ask

Ubuntu community.

Community-produced data is somewhat similar to the data produced by crowd-

sourcing, as the annotations are produced by non-experts. With the advance of

such services as Amazon Mechanical Turk and Crowdflower, many research stud-

ies (Snow et al., 2008; Munro et al., 2010; Callison-Burch and Dredze, 2010) explored

using non-expert annotations produced using crowdsourced data in various natural

language processing tasks including word similarity prediction (Snow et al., 2008),

recognising textual entailment (Munro et al., 2010; Snow et al., 2008), question gen-

eration (Heilman and Smith, 2010) and word sense disambiguation (Snow et al.,

2008). Crowdsourced data is considered to be a cheap way to obtain data, in con-

trast to expert annotations. Nonetheless, it has been shown that it is possible to

obtain data of a similar quality to expert annotations via crowdsourcing (Snow et al.,

2008; Munro et al., 2010). Natural labelled data of CQAs that we explored in this

thesis is a free source of data. Perhaps future research should consider verifying

community labelled data via crowdsourcing and expert annotations. For instance,

for weakly moderated communities like Yahoo! Answers question quality can be as-

sessed, with non-information seeking questions being labelled. For Stack Exchange

communities, the best answer labels can be verified by domain experts. This would

help determining the upper bound for the CQA-based methods and creating more

reliable gold standards for the CQA tasks.

8.1.2 Developing Interpretable Neural Architectures

We have shown that the neural approach in general performs well on the task of

answer ranking. We have also empirically shown that some architectures and settings

work better for the task than others, e.g. LSTMs outperform CNNs when both use
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word-level information. Even though there is empirical evidence that some neural

architectures perform well for certain tasks, many questions about their performance

remain open and are being actively studied (Li et al. (2016), Collins et al. (2016)

and Jozefowicz et al. (2015)). Even though deep learning aims to minimise the

need for feature engineering, the uncertainty and uninterpretability of the neural

systems cause the need for architecture engineering, i.e. searching for the best neural

architecture, as we did in the chapters devoted to answer ranking. In many cases

there are no clear answers to why one neural architecture performs well.

8.1.3 Developing Strategies for Hyperparameter Tuning

Typical neural architectures, like the ones we used in our experiments, have many

hyperparameters and exploring all of them is unfeasible. For most models, we tuned

only the learning rate, setting most hyperparameters based on our intuition, i.e.

commonsense and experience, both ours and other researchers. A very thorough

hyperparameter tuning for recurrent neural networks is presented by Collins et al.

(2016), and yet they do not suggest an optimal strategy for hyperparameter settings.

The main reasons are that the optimal sets of hyperparameters often depend on

the task and the particular neural architecture. Even when using the same set of

hyperparameters, performance may vary due to random initialisation.

8.1.4 Question Answering Evaluation

One of the main challenges of developing a live question answering system is the

absence of means of automatic evaluation. This limits even the model selection

process, which is important when building a neural system.

Several studies made attempts to address these issues by proposing metrics for

automatic evaluation of question answering. For instance, Soricut and Brill (2004)

used n-gram overlap to automatically evaluate answers to frequently asked ques-

tions. Lin and Demner-Fushman (2005) proposed a metric for automatic evalua-
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tion of answers to definition questions called POURPRE. Definition questions were

questions that are often expressed as Tell me interesting things about X, and can be

rephrased as a set of factoid questions that are not known in advance, i.e. Who is

X? Where was he born? What is he famous for? What was his occupation? etc.

Their evaluation metric was inspired by nugget-based manual evaluation: a nugget

is a fact for which an assessor can make a binary decision on whether it is included

in the answer or not. The nuggets are divided into vital and okay. The POURPRE

metric is based on the amount and the density of both vital and okay nuggets in the

response. A nugget is considered to be in the answer if the normalised word overlap

between the nugget and the answer exceeds a threshold. This measure showed a

good correlation with the human judgements.

Keikha et al. (2014) suggested to evaluate web question answering using metrics

for automatic evaluation of summarisation, i.e. ROUGE (Lin and Och, 2004), how-

ever, the correlation with human judgements was not very high. Moreover, the use

of ROUGE to evaluate summarisation has been recently criticised, as it makes it im-

possible to achieve the perfect score and the relative perfect scores are unattainable

by humans (Schluter, 2017). Several studies used the BLEU machine translation

evaluation metric (Papineni et al., 2002) to evaluate answers to questions (Pérez

et al., 2004; Noorbehbahani and Kardan, 2011). This approach, however, imposes

restrictions on the types of questions that can be evaluated, i.e. there should only be

one well defined correct answer. Future research should focus on developing methods

for automatic evaluation of question answering systems.

8.1.5 Question Type Classification

In this thesis, we treated all questions in the same way, without looking closely

at question types, assuming that CQA questions are of a non-factoid nature. In

order to develop an end-to-end live question answering system, one has to make

sure it is able to deal with different types of questions. Question type classification

could be done as the first step, and different approaches could be taken depending
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on the question type. For instance, opinion seeking questions and social questions

would need to be addressed separately. Factoid questions and even some non-factoid

questions may require access to a knowledge base in order to be answered.

We analysed questions of Text Retrieval Evaluation Conference (TREC) 2015

LiveQA track (Agichtein et al., 2015).1 The TREC LiveQA track, unlike previous

TREC QA tracks, involved answering real questions from Yahoo! Answers in real

time. Each participant needed to submit a web service application that receives a

question and responds with an answer. The questions, being sampled from a stream

of real Yahoo! Answers questions, were much more diverse than in previous TREC

QA tracks. The questions were not filtered by the organisers and included manner,

opinion, advice and many other types of questions. Here we outline the main types

of questions:

yes/no questions: questions that require either yes or no as an answer, e.g. Are

insects animals? A binary classifier can be trained to answer these questions.

factoid questions: these are questions that can be answered with a named or a

numerical entity, e.g. Who is the president of Brazil? or When was the first

smartphone invented? We discussed these questions in Chapter 1. These

questions can be answered using a knowledge base (Berant et al., 2013) or

using an information retrieval based approach Kwok et al. (2000).

non-factoid information-seeking questions: these are information-seeking ques-

tions that cannot be answered with a named or numerical entity but can be

answered with a paragraph, these are usually manner (how) and reason (why)

questions, e.g. How can I remove stains from my carpet? A web-based ap-

proach (Wang and Nyberg, 2015) or a CQA-based approach combining can-

didate retrieval with answer ranking methods like the ones we discussed in

Chapters 4-7 can be applied.

1https://www.sites.google.com/site/trecliveqa2015/
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reasoning questions: these questions require commonsense reasoning to be an-

swered (Rajpurkar et al., 2016; Weston et al., 2015b) For instance, how much

Indian am I if my grandmother on my father’s side was 3/4 indian and my

grandmother on my mother’s side was half-indian? To answer this kind of

question, one would require not only commonsense reasoning but also knowl-

edge of genetics and probability.

conversational questions: these are questions that do not seek information, but

rather look for a conversation, e.g. Do you like dogs? or I am so bored, please

help me. While these are legitimate questions to a chatbot system, these

questions are usually not the focus of question answering systems, which are

mostly oriented towards information seeking questions.

opinion seeking questions: Similarly to the previous category, these questions

are not looking for information but rather need an opinion, e.g. How should I

do my hair today? or What is your opinion of Thailand?.

question containing images/video: A few questions had images and video in

them, e.g. Is this burn or an infection? What is this? [image] or How old do

i look considering this drawing? [image]

Some questions fall into several of the above categories. For instance, some

reasoning, opinion-seeking or multimodal questions are also yes/no questions. On

CQAs, we can also observe many questions that are rather sets of related questions

rather then one single question, e.g. Why is the farmland divided in Très Riches

Heures? Which class of feudal society is shown working the fields around the Manor?

What visual elements assist you in identifying their class?

8.1.6 End-to-End Live Question Answering

We have only addressed the tasks of classifying semantically equivalent questions

and answer ranking. However, in order to build an end-to-end non-factoid questions
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answering system, we need a question retrieval module. dos Santos et al. (2015)

present an extension of the system we presented in Chapter 3, which uses the same

convolutional neural network in combination with bag-of-words scoring. A similar

system can be incorporated in a non-factoid question answering system.

Rücklé and Gurevych (2017) have recently presented a service architecture for

an end-to-end non-factoid question answering system. The system can be built from

any attention-based answer ranking model. They present a user interface visualising

the attention on the selected answers, that allows the user to compare different

attention-based answer selection mechanisms interactively.

An ideal question answering system should be able to answer all kinds of ques-

tions including factoid, non-factoid, reasoning questions and questions containing

multi-modal information. One way to approach this task is to build various models,

each of which would be able to answer a particular type of question, e.g. ques-

tions about images, yes/no questions, questions requiring domain knowledge of the

Ubuntu operating system etc. Then, the question answering can be performed using

a dialogue system, the natural language understanding component of which would

convert the question into its semantic representation, and the dialogue manager

component would be responsible for making a decision on whether to ask for clari-

fications or to answer the question and which one of the available models should be

used in the latter case.

Developing a question answering system that would be able to deal with all

sorts of questions is a very challenging task which goes to the core of real Natural

Language Understanding and Artificial Intelligence and has many possible avenues

for further research.
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Nakov, P., Màrquez, L., and Guzmán, F. (2016a). It takes three to tango: Tri-

angulation approach to answer ranking in community question answering. In

Proceedings of the 2016 Conference on Empirical Methods in Natural Language

Processing, pages 1586–1597, Austin, Texas.

Nakov, P., Màrquez, L., Moschitti, A., Magdy, W., Mubarak, H., Freihat, A. A.,

Glass, J., and Randeree, B. (2016b). Semeval-2016 task 3: Community question

answering. Proceedings of SemEval, 16.

Nicosia, M., Filice, S., Barrón-Cedeño, A., Saleh, I., Mubarak, H., Gao, W., Nakov,

P., Da San Martino, G., Moschitti, A., Darwish, K., Màrquez, L., Joty, S., and
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