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Spanning Treeswith generalized degree
constraintsarising in the design of wireless
networks

Luis Gouveia, Pedro Moura, Amaro de Sousa

Abstract In this paper we describe a minimum spanning tree problemgéneral-
ized degree constraints which arises in the design of vesatetworks. The signal
strength on the receiver side of a wireless link decreaststine distance between
transmitter and receiver. In order to work properly, theiférence on the receiving
part of the link must be under a given threshold. In order targntee this con-
straint, for each node we impose a degree constraint thandspon the "length”
of the links adjacent to the corresponding node, more peBcinodes adjacent to
long links must have a smaller degree and vice-versa. ThHaemois complicated
by considering different signal strengths for each linkcreéasing the strength in a
link increases the cost of the link. However, it also redubesmaximum allowed
degree on its end nodes. We create two models using adegtsitd sariables, one
may be considered an extended version of the other, ane rélain a theoretical
perspective, the corresponding linear programming réilaxs.

1 Introduction

In this paper we consider a wireless network design probtatgeneralizes a prob-
lem previously defined and studied in [4] (see also [2, 3])eSéhproblems also
generalize the well-known degree constrained spannimgpreblem (see [1] and
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the references inside) in the sense that they consider regleel dependent costs
and more complicated degree constraints (the constraithieotiegree of a node de-
pends on the edges adjacent to it in the solution). Secti@s2ritbes and motivates
the new problem. Section 3 describes several models forrtigegm.

2 Description and motivation of the problem

In point-to-point wireless networks, each network conimeds implemented through
a point-to-point wireless transmission system (wirelags for short) composed by
a pair of transmitter/receiver antennas and signal praugssits (one at each side
of the connection) working on a frequency channel, chosem fa possible set of
channels. Thus, consider an undirected gréph (V,E) whereV = {1,...,n} is
the set of network nodes areiC V? is the set of edge$i, j}, representing each
network connection. A network node with wireless links faffetent neighbour
nodes must use different frequency channels. In most gsetchnologies, due to
the scarcity of the spectrum, there is a limited set of alb#ldrequency channels
and many of them are partially overlapped between each.dtherefore, in a node
using partially overlapped channels to different neighbwdes, part of the trans-
mitted signal on one channel is added as interference tcettedvied signal on the
other channel. Note that the signal strength on the recsiderof a wireless link
decreases with the distance between transmitter and ez@itennas due to atten-
uation and other propagation effects. In order to work prigpthe received signal
must be such that the signal-to-interference-and-not&e (&INR) on the receiver
is above a required threshold. Therefore, the coverage dfedess link, i.e., the
maximum distance between antennas that make the link wopeply, depends on
the amount of interference introduced by the other frequehannels on its end
nodes. When a given wireless link cannot meet the requird®$threshold, we can
consider three possible cases.

Case 1 Several costs / A single maximum degree paramétehis case, we as-
sume that pairs of nodes with higher distance have more skmewire-
less links, with a higher power transmission, in order tseahe SINR
over the required threshold. A parameleis set as the maximum degree
for each node (based on the available frequency channeals¥@neach
pair of nodes andj with a distance equal tj, a cost valuey; j;, which
depends ouwij, is defined as the least cost wireless link that can still pro-
vide the required SINR whatever the degree of its end nod&sis is the
case adopted in [4] where 3 types of wireless links were clemsd, each
one with a different coverage and cost.

Case 2 A single cost / Several maximum degree parameterthis case, we as-
sume that there is only one type of wireless link with an aisged cost
valuec and such that it is not used when the required SINR threshaoldti
met. For each pair of nodésind j with a distance equal tdjj, a degree
parameteDy; j;, which depends ouij, is defined as the maximum de-
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gree of both andj such that interference does not jeopardize the required
SINR threshold for the wireless link to work properly.

Case 3 Several costs / Several maximum degree paramdtethis case, we as-
sume that there afE types of wireless links with associated (increasing)
costsfi,1 <t < T, and the degree of its endnodes depends on the type
of link installed. Consider a pair of nodeand j with a distance equal to
dij. We defineDt{i,j}, which depends odij, as the maximum degree on
both nodes and j, if we install a wireless link of typé between these
two nodes. Then, we can install a higher cost wireless lilawéng both
nodes to have higher degrees, or install a lower cost widlek con-
straining the degrees of nodesnd j to be lower. That is, we have a
cost model for a wireless link to be installed between twoesgidand j,
which not only depends on the distance between those twoshbdealso
depends on the degree that nodesid j will have in the solution of the
problem. Then, for each pair of nodieand j we define a cost'{?,j}, which
gives the cost of the cheapest cost wireless link that casée, assuming
thatmis the maximum of the degrees of nodemsd|.

Note that cases 1 and 2 are particular cases of case 3. Inffag,consider just
one type of wireless link we obtain case 2. Also, case 1 is ticp#ar case of case
3 when we assume that all types of wireless links allow theekegf its end nodes
to be the maximum degrde i.e., the degree parametelh%yj} are equal tdD for
all pairs of nodes and j and all typed of wireless links. In the next section we
describe several models for this more general case 3.

3 Formulations

In this section we describe two integer linear formulatifmrdhe problem. Consider

binary variables; j, indicating whether edgéi, j} € E is selected, as well as bi-
nary variablesy{j indicating whether nodec V has degree equal the {1,...,D}

in the solution. These variables were used in the modeledntred in the works

[2, 3, 4] where problems with non linear costs associateiembde degrees were
studied. The two models studied in this paper use the prewigo sets of variables.

They differ, however, on the set of variables that char@ehe type of links to be

installed.

3.1 Model (Py)

Besides the two sets of variabbeandy, model(P;) also uses binary variablq%' i

indicating whether the eddg, j} € E is selected and the maximum degree between
nodes andj is m (with m=2,... D). Clearly, these variables are not defined for
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m= 1, since we cannot have an edge where the degree of both atsljsatqual to
1. The problem can then be formulated(&s) (we denote byE(i) C E the set of
edges incident on nodg The objective cost function is straightforward.

Py) mi A 1
(P) min {i%En;C{u} L) (1)
sto: {{i j} €EiXxgj =1} isaSpTree (2)
d-yl = : eV 3)
dzl ey ™
dny‘:l icV (4)
=1
D
Xiijy = szr{?,j} {i,jit€E (5)
Vi SV YT {i,j}€E;m=2,....D (6)
z.VEVJ}SdZ(y?+y‘jj) {i,jteEim=2,....D-1 (7)
=1
Xiijy € {Oa 1} {Ia J} €k (8)
Vi jy €{0.1} {i,j}eE;m=2,...,D 9)
v e {0,1} ievid=1,....D (10)

Constraints (2), stating that the solution is a Spanning,Taee given in a generic
form and can be written in several ways (see [5]). ConssdBitand (4) define the
degree variable‘,tqd and guarantee thaE = 1iff the number of edges adjacent to
nodei is equal tod. Constraints (5) link the two sets of edge variableg;, and
v’{'i‘J}, stating that, if edgéi, j} is selected, then the maximum between the degrees
of its endnodes must be a value{i, .. D}. Constraints (6) and (7) link the node
variablesy? with the edge varlable\ﬁf,m : for a given edg€i, j}, constraints (6)
guarantee that Wm =1 then one of the nodeér j must have a degree equal to
m, and constramt (7) guarantees that neither one of thesesritas a degree greater
thanm. Constraints (8)-(10) define the domain of the variables.

The vanablesrm jyare sufficient to describe the objective function of the jeob
since the extra mdex indicates the maximum degree of thpants associated to
each edge. In the next subsection we create a model with edigdles having two
extra indexes, associated to the degrees of each endpa@nuilAshow that these
extra variables, although leading to a model with more e permit us to write a
model with fewer constraints since it is easier (we need f@wastraints) to relate
the new variables with the degree variabjs Furthermore, with the new set of
variables we can derive, hopefully strong, valid ineqiesit
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3.2 Moded (Pz)

Besides the; j, andy? variables, mode(P,) also uses binary variable%‘?j}, indi-
cating whether the eddf, j} € E is selected and degrép€ p and degreg( = g.
Again, these variables are not defined fprq) = (1,1). Before describing the new
model, we note that the two sets of edge varlablg§} andz{ i can be related as
follows

m
Vi) :q; iy + Zz{u} {i.i}eEm=2...D (1)

D
(P2) min {; Z%}'(Z (1.1} sz}> 42

i, fEEM=2

sto: {{i,j} €E:xgj =1}isaSpTree (2)
D
;d-yﬁ’: ; X(i j) icv (3)
=1 {i,iteE()
D
dny’:l iev (4)
- D D o
p-yP = ; {IJ} ieV;p=1,...,D (14)

{i.j

X(i,jy € {07 1} {Ia J} €k (8)
yd e {0,1} iev,d=1,...,D (10)
ZE?J}E{Oal} {IaJ}EEvpaqzlvaD (15)

The objective function follows straightforwardly from tl®jective function of the
previous model and the linking constraints (11). Note thest@ints (14) linking
the degree variables with the new link variables, which atelmeasier to write
in this model. These constraints state that, if the degremdéi is p then, in the
solution, exactlyp edges are incident in that node, whatever the degree of pisde
(for p= 1, the summation oqg starts at 2). Note that under (13), constraints (3) for
a given node, can be obtained by adding constraints (14) forpa# 1,...,D and
for the same. Thus constraints (14) are a disaggregation of (3) and tter lean be
omitted from the integer model. However, we will come backiago the weaker
constraints (3) since we will see later that we can obtairffarént valid model for
the problem where we can use the weaker but more compact)sattidr than the
stronger but less compact set (14). For the moment, we alsb @at that there is
no dominance relationship between the linear programnataxations of the two
models(P;) and(P»).
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As we have stated before, another advantage of using the aables is that
we can write, hopefully strong, valid inequalities such as,

D
=1

The valid inequalities (16) state that if ed@ej} is in the solution and nodie
has degree equal fo, whatever the degree on noglés, then the corresponding
variable associated to nod@nd degreg must be equal to 1. We do not need to
consider inequalities (16) fgp = 1 because these are implied by constraints (14)
for nodei andp = 1.

Denoting by(P;) the model obtained by adding the inequalities (16) to m¢Bgl
as well as the definitional constraints (11) (these do notawgpthe linear program-
ming bound) we can prove the following result.

Proposition 1. The projection of the set of feasible solutions of the lingagram-
ming relaxation of P;) on the subspace defined by the variables x, y and v is con-
tained in the set of feasible solutions of the linear progmaing relaxation of the
model(Py).

In the proof of Proposition 1 (not presented here), we didnake use of con-
straints (14) of mode(P;). In fact, it is not difficult to see that, in the presence of
the new constraints (16), we still obtain a valid model byiagsinly the weaker con-
straints (3) instead of both (3) and (14) constraints. Weotkehy (P;*) this model.
Our results show that this model is of interest only from aotleécal perspective,
since what we gain by reducing im- D the total number of constraints does not
compensate the weakening of the corresponding linear @noging relaxation.
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