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Abstract In this paper we describe a minimum spanning tree problem with general-
ized degree constraints which arises in the design of wireless networks. The signal
strength on the receiver side of a wireless link decreases with the distance between
transmitter and receiver. In order to work properly, the interference on the receiving
part of the link must be under a given threshold. In order to guarantee this con-
straint, for each node we impose a degree constraint that depends on the ”length”
of the links adjacent to the corresponding node, more precisely, nodes adjacent to
long links must have a smaller degree and vice-versa. The problem is complicated
by considering different signal strengths for each link. Increasing the strength in a
link increases the cost of the link. However, it also reducesthe maximum allowed
degree on its end nodes. We create two models using adequate sets of variables, one
may be considered an extended version of the other, and relate, from a theoretical
perspective, the corresponding linear programming relaxations.

1 Introduction

In this paper we consider a wireless network design problem that generalizes a prob-
lem previously defined and studied in [4] (see also [2, 3]). These problems also
generalize the well-known degree constrained spanning tree problem (see [1] and
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the references inside) in the sense that they consider node degree dependent costs
and more complicated degree constraints (the constraint onthe degree of a node de-
pends on the edges adjacent to it in the solution). Section 2 describes and motivates
the new problem. Section 3 describes several models for the problem.

2 Description and motivation of the problem

In point-to-point wireless networks, each network connection is implemented through
a point-to-point wireless transmission system (wireless link, for short) composed by
a pair of transmitter/receiver antennas and signal processing units (one at each side
of the connection) working on a frequency channel, chosen from a possible set of
channels. Thus, consider an undirected graphG = (V,E) whereV = {1, . . . ,n} is
the set of network nodes andE ⊆ V2 is the set of edges{i, j}, representing each
network connection. A network node with wireless links for different neighbour
nodes must use different frequency channels. In most wireless technologies, due to
the scarcity of the spectrum, there is a limited set of available frequency channels
and many of them are partially overlapped between each other. Therefore, in a node
using partially overlapped channels to different neighbour nodes, part of the trans-
mitted signal on one channel is added as interference to the received signal on the
other channel. Note that the signal strength on the receiverside of a wireless link
decreases with the distance between transmitter and receiver antennas due to atten-
uation and other propagation effects. In order to work properly, the received signal
must be such that the signal-to-interference-and-noise ratio (SINR) on the receiver
is above a required threshold. Therefore, the coverage of a wireless link, i.e., the
maximum distance between antennas that make the link work properly, depends on
the amount of interference introduced by the other frequency channels on its end
nodes. When a given wireless link cannot meet the required SINR threshold, we can
consider three possible cases.

Case 1 Several costs / A single maximum degree parameter: In this case, we as-
sume that pairs of nodes with higher distance have more expensive wire-
less links, with a higher power transmission, in order to raise the SINR
over the required threshold. A parameterD is set as the maximum degree
for each node (based on the available frequency channels) and, for each
pair of nodesi and j with a distance equal todi j , a cost valuec{i, j}, which
depends ondi j , is defined as the least cost wireless link that can still pro-
vide the required SINR whatever the degree of its end nodes is. This is the
case adopted in [4] where 3 types of wireless links were considered, each
one with a different coverage and cost.

Case 2 A single cost / Several maximum degree parameters: In this case, we as-
sume that there is only one type of wireless link with an associated cost
valuec and such that it is not used when the required SINR threshold is not
met. For each pair of nodesi and j with a distance equal todi j , a degree
parameterD{i, j}, which depends ondi j , is defined as the maximum de-
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gree of bothi and j such that interference does not jeopardize the required
SINR threshold for the wireless link to work properly.

Case 3 Several costs / Several maximum degree parameters. In this case, we as-
sume that there areT types of wireless links with associated (increasing)
costs ft ,1 ≤ t ≤ T, and the degree of its endnodes depends on the type
of link installed. Consider a pair of nodesi and j with a distance equal to
di j . We defineDt

{i, j}, which depends ondi j , as the maximum degree on
both nodesi and j, if we install a wireless link of typet between these
two nodes. Then, we can install a higher cost wireless link, allowing both
nodes to have higher degrees, or install a lower cost wireless link con-
straining the degrees of nodesi and j to be lower. That is, we have a
cost model for a wireless link to be installed between two nodes,i and j,
which not only depends on the distance between those two nodes, but also
depends on the degree that nodesi and j will have in the solution of the
problem. Then, for each pair of nodesi and j we define a costcm

{i, j}, which
gives the cost of the cheapest cost wireless link that can be used, assuming
thatm is the maximum of the degrees of nodesi and j.

Note that cases 1 and 2 are particular cases of case 3. In fact,if we consider just
one type of wireless link we obtain case 2. Also, case 1 is a particular case of case
3 when we assume that all types of wireless links allow the degree of its end nodes
to be the maximum degreeD i.e., the degree parametersDt

{i, j} are equal toD for
all pairs of nodesi and j and all typest of wireless links. In the next section we
describe several models for this more general case 3.

3 Formulations

In this section we describe two integer linear formulationsfor the problem. Consider
binary variablesx{i, j} indicating whether edge{i, j} ∈ E is selected, as well as bi-
nary variablesyd

i indicating whether nodei ∈V has degree equal tod ∈ {1, . . . ,D}
in the solution. These variables were used in the models introduced in the works
[2, 3, 4] where problems with non linear costs associated to the node degrees were
studied. The two models studied in this paper use the previous two sets of variables.
They differ, however, on the set of variables that characterize the type of links to be
installed.

3.1 Model (P1)

Besides the two sets of variablesx andy, model(P1) also uses binary variablesvm
{i, j}

indicating whether the edge{i, j} ∈ E is selected and the maximum degree between
nodesi and j is m (with m= 2, . . . ,D). Clearly, these variables are not defined for
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m= 1, since we cannot have an edge where the degree of both endpoints is equal to
1. The problem can then be formulated as(P1) (we denote byE(i) ⊆ E the set of
edges incident on nodei). The objective cost function is straightforward.

(P1) min ∑
{i, j}∈E

D

∑
m=2

cm
{i, j} ·v

m
{i, j} (1)

s.to : { {i, j} ∈ E : x{i, j} = 1} is a SpTree (2)
D

∑
d=1

d ·yd
i = ∑

{i, j}∈E(i)

x{i, j} i ∈V (3)

D

∑
d=1

yd
i = 1 i ∈V (4)

x{i, j} =
D

∑
m=2

vm
{i, j} {i, j} ∈ E (5)

vm
{i, j} ≤ ym

i + ym
j {i, j} ∈ E;m= 2, . . . ,D (6)

2 ·vm
{i, j} ≤

m

∑
d=1

(yd
i + yd

j ) {i, j} ∈ E;m= 2, . . . ,D−1 (7)

x{i, j} ∈ {0,1} {i, j} ∈ E (8)

vm
{i, j} ∈ {0,1} {i, j} ∈ E;m= 2, . . . ,D (9)

yd
i ∈ {0,1} i ∈V;d = 1, . . . ,D (10)

Constraints (2), stating that the solution is a Spanning Tree, are given in a generic
form and can be written in several ways (see [5]). Constraints (3) and (4) define the
degree variablesyd

i and guarantee thatyd
i = 1 iff the number of edges adjacent to

nodei is equal tod. Constraints (5) link the two sets of edge variables,x{i, j} and
vm
{i, j}, stating that, if edge{i, j} is selected, then the maximum between the degrees

of its endnodes must be a value in{2, . . . ,D}. Constraints (6) and (7) link the node
variablesyd

i with the edge variablesvm
{i, j}: for a given edge{i, j}, constraints (6)

guarantee that ifvm
{i, j} = 1 then one of the nodesi or j must have a degree equal to

m, and constraint (7) guarantees that neither one of these nodes has a degree greater
thanm. Constraints (8)-(10) define the domain of the variables.

The variablesvm
{i, j} are sufficient to describe the objective function of the problem

since the extra index indicates the maximum degree of the endpoints associated to
each edge. In the next subsection we create a model with edge variables having two
extra indexes, associated to the degrees of each endpoint. We will show that these
extra variables, although leading to a model with more variables, permit us to write a
model with fewer constraints since it is easier (we need fewer constraints) to relate
the new variables with the degree variablesyd

i . Furthermore, with the new set of
variables we can derive, hopefully strong, valid inequalities.
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3.2 Model (P2)

Besides thex{i, j} andyd
i variables, model(P2) also uses binary variableszpq

{i, j}, indi-
cating whether the edge{i, j} ∈ E is selected and degree(i) = p and degree(j) = q.
Again, these variables are not defined for(p,q) = (1,1). Before describing the new
model, we note that the two sets of edge variables,vm

{i, j} andzpq
{i, j}, can be related as

follows

vm
{i, j} =

m

∑
q=1

zmq
{i, j}+

m−1

∑
p=1

zpm
{i, j} {i, j} ∈ E;m= 2, . . . ,D (11)

(P2) min ∑
{i, j}∈E

D

∑
m=2

cm
{i, j} ·

(

m

∑
q=1

zmq
{i, j}+

m−1

∑
p=1

zpm
{i, j}

)

(12)

s.to : { {i, j} ∈ E : x{i, j} = 1} is a SpTree (2)
D

∑
d=1

d ·yd
i = ∑

{i, j}∈E(i)

x{i, j} i ∈V (3)

D

∑
d=1

yd
i = 1 i ∈V (4)

x{i, j} =
D

∑
p=1

D

∑
q=1

zpq
{i, j} {i, j} ∈ E (13)

p ·yp
i = ∑

{i, j}∈E(i)

D

∑
q=1

zpq
{i, j} i ∈V; p= 1, . . . ,D (14)

x{i, j} ∈ {0,1} {i, j} ∈ E (8)

yd
i ∈ {0,1} i ∈V;d = 1, . . . ,D (10)

zpq
{i, j} ∈ {0,1} {i, j} ∈ E; p,q= 1, . . . ,D (15)

The objective function follows straightforwardly from theobjective function of the
previous model and the linking constraints (11). Note the constraints (14) linking
the degree variables with the new link variables, which are much easier to write
in this model. These constraints state that, if the degree ofnodei is p then, in the
solution, exactlyp edges are incident in that node, whatever the degree of nodej is
(for p= 1, the summation onq starts at 2). Note that under (13), constraints (3) for
a given nodei, can be obtained by adding constraints (14) for allp= 1, . . . ,D and
for the samei. Thus constraints (14) are a disaggregation of (3) and the latter can be
omitted from the integer model. However, we will come back again to the weaker
constraints (3) since we will see later that we can obtain a different valid model for
the problem where we can use the weaker but more compact set (3) rather than the
stronger but less compact set (14). For the moment, we also point out that there is
no dominance relationship between the linear programming relaxations of the two
models(P1) and(P2).
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As we have stated before, another advantage of using the new variables is that
we can write, hopefully strong, valid inequalities such as,

D

∑
q=1

zpq
{i, j} ≤ yp

i i ∈V,{i, j} ∈ E(i); p= 1, . . . ,D (16)

The valid inequalities (16) state that if edge{i, j} is in the solution and nodei
has degree equal top, whatever the degree on nodej is, then the correspondingy
variable associated to nodei and degreep must be equal to 1. We do not need to
consider inequalities (16) forp = 1 because these are implied by constraints (14)
for nodei andp= 1.
Denoting by(P∗

2 ) the model obtained by adding the inequalities (16) to model(P2)
as well as the definitional constraints (11) (these do not improve the linear program-
ming bound) we can prove the following result.

Proposition 1. The projection of the set of feasible solutions of the linearprogram-
ming relaxation of(P∗

2 ) on the subspace defined by the variables x, y and v is con-
tained in the set of feasible solutions of the linear programming relaxation of the
model(P1).

In the proof of Proposition 1 (not presented here), we did notmake use of con-
straints (14) of model(P∗

2 ). In fact, it is not difficult to see that, in the presence of
the new constraints (16), we still obtain a valid model by using only the weaker con-
straints (3) instead of both (3) and (14) constraints. We denote by(P∗∗

2 ) this model.
Our results show that this model is of interest only from a theoretical perspective,
since what we gain by reducing inn ·D the total number of constraints does not
compensate the weakening of the corresponding linear programming relaxation.

Acknowledgements Sponsored by FCT, research grants POCTI-ISFL-1-152 and
PTDC/EIA/64772/2006.

References

1. Cunha, A., Lucena,A.: Lower and upper bounds for the Degree-constrained Minimum Span-
ning Tree Problem. Networks50(1), 55–66 (2007)

2. Duhamel, C., Gouveia, L., Moura, P., Souza, M.: Models andHeuristics for thek-degree
constrained minimum spanning tree problem with node-degree costs.to appear inNetworks
(2011)

3. Gouveia, L., Moura, P.: Spanning Trees with Node Degree Dependent Costs and Knapsack
Reformulations. Electronic Notes in Discrete Mathematics36,985–992 (2010)

4. Gouveia, L., Moura, P., Sousa, A.: Prize collecting Steiner trees with node degree dependent
costs. Computers & Operations Research38(1), 234–245 (2010)

5. Magnanti, T., Wolsey, L.: Optimal Trees. In: Ball, M.O., Magnanti, T.L., Monma, C.L.,
Nemhauser, G.L. (eds.) Handbooks in Operational Research and Management Science (1995)

6. Martin, R.K.: Using Separation Algorithms to Generate Mixed Integer Model Reformula-
tions. Operations Research Letters10(3), 119–128 (1991)


