V. Staicu

ON THE EXISTENCE OF SOLUTIONS TO A CLASS OF DIFFERENTIAL INCLUSIONS

Abstract

We prove the local existence of solutions to the Cauchy problem for the differential inclusion $\dot{x} \in-\partial V(x)+F(x)+f(t, x)$ where ∂V is the subdifferential of a lower semicontinuous proper convex function $V . \quad F$ is a cyclically upper semicontinuous multifunction and f satisfies Carathèodory conditions.

1. Introduction

Bressan, Cellina and Colombo have proved in [4] the existence of solutions of the Cauchy problem

$$
\begin{equation*}
\dot{x}(t) \in F(x(t)) \subset \partial V(x(t)), x(0)=x_{0} \tag{1.1}
\end{equation*}
$$

where F is a monotonic upper semicontinuous (non necessarily convexvalued, hence not maximal) map contained in the subdifferential of a lower semicontinuous proper convex function, and x is in a finite dimensional space. This result has been generalized by Ancona and Colombo [1] to cover perturbations of the kind

$$
\dot{x}(t) \in F(x(t))+f(t, x(t))
$$

with f satisfying Carathéodory conditions. In the joint paper with Cellina [8] we have proved the local existence of solutions for a Cauchy Problem of the form

$$
\begin{equation*}
\dot{x}(t) \in-\partial V(x(t))+F(x(t)), F(x) \subset \partial W(x), x(0)=x_{0} \tag{1.2}
\end{equation*}
$$

where V is a lower semicontinuous proper convex function (hence ∂V is a maximal monotone map), W is a lower semicontinuous proper convex function and F is an upper semicontinuous compact valued map defined over some neighborhood of x_{0}.

Purpose of the present paper is to prove the (local) existence of solutions of a Cauchy problem of the form

$$
\dot{x}(t) \in-\partial V(x(t))+F(x(t))+f(t, x(t)), x(0)=x_{0}
$$

where V and F are as in the problem (1.2) and f satisfies Carathéodory conditions. This result unifies the results in [1], [4] and [8] and its proof follows the one in [8].

2. Assumptions and the Statement of the Main Result

Consider on R^{n} the Euclidean norm $\|\cdot\|$ and the scalar product $<,,>$. For $x \in R^{n}$ and $r>0$ set: $B(x, r)=\left\{y \in R^{n}:\|y-x\|<r\right\}$, $B[x, r]=\left\{y \in R^{n}:\|y-x\| \leq r\right\}$, and for a closed subset A of R^{n}, $B(A, r)=\left\{y \in R^{n}: d(y, A)<r\right\}$, where $d(x, A)=\inf \{\|y-x\|: y \in A\}$. Denote by cl A the closure of A, and if A is a closed and convex subset of R^{n}, then by $m(A)$ we denote the element of minimal norm of A, i.e., such that

$$
\|m(A)\|=\inf \{\|y\|: y \in A\}
$$

We consider the Cauchy problem

$$
\begin{equation*}
\dot{x}(t) \in-\partial V(x(t))+F(x(t))+f(t, x(t)), x(0)=x_{0} \tag{2.1}
\end{equation*}
$$

under the following assumptions:
$\left(H_{1}\right) V: R^{n} \rightarrow(-\infty,+\infty]$ is a proper convex lower semicontinuous function, $\partial V: R^{n} \rightarrow 2^{R^{n}}$ is the subdifferential of V defined by

$$
\partial V(x)=\left\{\xi \in R^{n}: V(y)-V(x) \geq<\xi, y-x>, \forall y \in R^{n}\right\}
$$

$x_{0} \in D(\partial V)$ and $D(\partial V):=\left\{x \in R^{n}: \partial V(x) \neq \emptyset\right\}$.
$\left(H_{2}\right) F: R^{n} \rightarrow 2^{R^{n}}$ is an upper semicontinuous multifunction (i.e. for every x and for every $\varepsilon>0$ there exists $\delta>0$ such that $y \in B(x, \delta)$ implies $F(y) \subset B(F(x), \varepsilon))$, with closed nonempty values and there exists a proper convex lower semicontinuous function $W: R^{n} \rightarrow(-\infty,+\infty]$ such that $F(x) \subset \partial W(x)$ for every $x \in R^{n}$, where $\partial W($.$) is the subdifferential$ of W.
$\left(H_{3}\right) f: R \times R^{n} \rightarrow R^{n}$ is a Carathéodory function, i.e.: for every $x \in R^{n}$ $t \rightarrow f(t, x)$ is measurable, for a.e. $t \in R x \rightarrow f(t, x)$ is continuous and there exists $k \in L^{2}(R, R)$ such that $\|f(t, x)\| \leq k(t)$ for a.e. $t \in R$ and for all $x \in R^{n}$.

Remark that since for any compact set K containing x_{0} there exists $x^{*} \in K$ such that inf $\{V(x): x \in K\}=V\left(x^{*}\right)$ and since the subdifferential of the function $x \rightarrow V(x)-V\left(x^{*}\right)$ coincides with the subdifferential of $V($.$) , we$ can assume in what follows that $V \geq 0$.

DEFINITION 2.1. Let $h \in L^{2}\left([0, T], R^{n}\right)$ and $x_{0} \in D(\partial V)$. By solution of the problem
(P_{h})

$$
\dot{x}(t) \in-\partial V(x(t))+h(t), x(0)=x_{0}
$$

we mean any absolutely continuous function $x:[0, T] \rightarrow R^{n}$ such that $x(0)=x_{0}$, and for a.e. $t \in[0, T]:$

$$
x(t) \in D(\partial V) \text { and } \dot{x}(t) \in-\partial V(x(t))+h(t) .
$$

DEFINITION 2.2. A function $x:[0, T] \rightarrow R^{n}$ is called a solution of the Cauchy problem (2.1) if there exists $g \in L^{2}\left([0, T], R^{n}\right)$, a selection of $F(x(\cdot))$ (i.e. $g(t) \in F(x(t))$ for a.e. $t \in[0, T])$, such that x is a solution of the problem $\left(P_{h}\right)$, with $h(t)=g(t)+f(t, x(t))$.

Our main result is the following:

THEOREM. Let V, F and f satisfy assumptions $\left(H_{1}\right)-\left(H_{3}\right)$. Then for every $x_{0} \in D(\partial V)$ there exist $T>0$ and $x:[0, T] \rightarrow R^{n}$ a solution of the Cauchy problem

$$
\dot{x}(t) \in-\partial V(x(t))+F(x(t))+f(t, x(t)), \quad x(0)=x_{0}
$$

3. Proof of the Main Result

We shall use the following known results: "
LEMMA 3.1. ([2], Theorems 1.2. and 1.3.) Let $V($.$) satisfy assumptions$ $\left(H_{1}\right)$. Then for every $x_{0} \in D(\partial V)$ and $h \in L^{2}\left([0, T], R^{n}\right)$ there exists a unique solution $x^{h}:[0, T] \rightarrow R^{n}$ of the problem

$$
\begin{equation*}
\dot{x}(t) \in-\partial V(x(t))+h(t), x(0)=x_{0} \tag{h}
\end{equation*}
$$

Moreover: $\frac{d x^{h}}{d t} \in L^{2}\left([0, T], R^{n}\right), t \rightarrow V\left(x^{h}(t)\right)$ is absolutely continuous (hence almost everywhere differentiable) on $[0, T]$,

$$
\begin{equation*}
\left\|\frac{d x^{h}(t)}{d t}\right\|^{2}=-\frac{d}{d t} V\left(x^{h}(t)\right)+\left\langle h(t), \frac{d x^{h}(t)}{d t}\right\rangle \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left[\int_{0}^{T}\left\|\frac{d x^{h}(t)}{d t}\right\|^{2} d t\right]^{1 / 2} \leq\left(\int_{0}^{T}\|h(t)\|^{2} d t\right)^{1 / 2}+\sqrt{V\left(x_{0}\right)} \tag{3.2}
\end{equation*}
$$

If $g, h \in L^{2}\left([0, T], R^{n}\right)$ and $x^{g}(),. x^{h}($.$) are the corresponding solutions then$ for any $0 \leq s \leq t \leq T$:

$$
\begin{equation*}
\left\|x^{g}(t)-x^{h}(t)\right\| \leq\left\|x^{g}(s)-x^{h}(s)\right\|+\int_{s}^{t}\|g(u)-h(u)\| d s \tag{3.3}
\end{equation*}
$$

Let $x^{0}:[0, \infty) \rightarrow R^{n}$ be the unique solution of the problem $\left(P_{h}\right)$ with $h=0$. Then, by Theorem 3.2.1. in [3], for any $T>0$ and a.e. $t \in$
$(0, T): \frac{d}{d t} x^{0}(t)=-m(\partial V(x(t)))$ and $t \rightarrow\left\|m\left(\partial V\left(x^{0}(t)\right)\right)\right\|$ is nonincreasing. Therefore, for any $t \in[0, T]$,

$$
\begin{aligned}
\left\|x^{0}(t)-x_{0}\right\| & =\left\|\int_{0}^{t} \dot{x}^{0}(s) d s\right\| \leq \int_{0}^{t}\left\|m\left(\partial V\left(x^{0}(s)\right)\right)\right\| d s \\
& \leq \int_{0}^{t}\left\|m\left(\partial V\left(x^{0}(0)\right)\right)\right\| d s,
\end{aligned}
$$

hence

$$
\begin{equation*}
\left\|x^{0}(t)-x_{0}\right\| \leq t\left\|m\left(\partial V\left(x_{0}\right)\right)\right\|, \text { for any } t \in[0, T] . \tag{3.4}
\end{equation*}
$$

Let \mathcal{L} be the σ-algebra of Lebesgue measurable subsets of the interval $[0, T]$. A multivalued map $G:[0, T] \rightarrow 2^{R^{n}}$ is called measurable if for any closed subset C of R^{n} the set $\{t \in[0, T]: G(t) \cap C \neq \emptyset\}$ belongs to \mathcal{L}.

LEMMA 3.2. ([8], Lemma 3.2.) Let $\left\{\delta_{n}(\cdot): n \in N\right\}$ be a sequence of measurable functions, $\delta_{n}:[0, T] \rightarrow R^{n}$ and assume that there exists a function $\alpha \in L^{1}\left([0, T], R^{n}\right)$ such that for a.e. $t \in[0, T]$

$$
\left\|\delta_{n}(t)\right\| \leq \alpha(t)
$$

Let

$$
\psi(t)=\bigcap_{i \in N}\left[c l\left(\bigcup_{n \geq i}\left\{\delta_{n}(t)\right\}\right)\right] .
$$

Then:
(i) for a.e. $t \in[0, T], \psi(t)$ is a nonempty compact subset of R^{n} and $t \rightarrow \psi(t)$ is measurable.
(ii) If $G:[0, T] \rightarrow 2^{R^{n}}$ is a multifunction with closed nonempty values such that $d\left(\delta_{n}(t), G(t)\right) \rightarrow 0$ for $n \rightarrow \infty$ then $\psi(t) \subset G(t)$.

Proof of the theorem. Let $x_{0} \in D(\partial V)$ and let $W: R^{n} \rightarrow(-\infty,+\infty]$ satisfy $\left(H_{2}\right)$. Then, as in [4], there exist $r>0$ and $M<\infty$ such that W is Lipschitzean with Lipschitz constant M on $B\left(x_{0}, r\right)$ and, since $F(x) \subset \partial W(x)$ it follows that F is bounded by M on $B\left(x_{0}, r\right)$. Let $m\left(\partial V\left(x_{0}\right)\right)$ be the element of minimal norn of $\partial V\left(x_{0}\right)$ and let $T>0$ be such that

$$
\begin{equation*}
\int_{0}^{T}\left(k(s)+M+\left\|m\left(\partial V\left(x_{0}\right)\right)\right\|\right) d s \leq r \tag{3.5}
\end{equation*}
$$

where $k($.$) is given by \left(H_{3}\right)$. Our purpose is to prove that there exists $x:[0, T] \rightarrow B\left[x_{0}, r\right]$, a solution to the Cauchy problem (2.1).

Let $n \in N, t_{0}^{n}=0$ and, for $k=1, \ldots, n$, let $t_{k}^{n}=k \frac{T}{n}$ and $I_{k}^{n}=\left(t_{k-1}^{n}, t_{k}^{n}\right]$. Take $y_{0}^{n} \in F\left(x_{0}\right)$ and define $h_{1}^{n}: I_{1}^{n} \rightarrow R^{n}$ by $h_{1}^{n}(t)=y_{0}^{n}+f\left(t, x_{0}\right)$. Since $h_{1}^{n} \in L^{2}\left(I_{1}^{n}, R^{n}\right)$, by Lemma 3.1 , there exists $x_{1}^{n}: I_{1}^{n} \rightarrow R^{n}$, the unique solution of the problem

$$
\begin{equation*}
\dot{x}(t) \in-\partial V(x(t))+h_{1}^{n}(t), x(0)=x_{0} . \tag{1}
\end{equation*}
$$

Then by (3.3) we obtain that for any $t \in\left[t_{0}^{n}, t_{1}^{n}\right]$,

$$
\left\|x_{1}^{n}(t)-x^{0}(t)\right\| \leq \int_{0}^{t}\left\|h_{1}^{n}(s)\right\| d s \leq \int_{0}^{t}\left(M+\left\|f\left(s, x_{0}\right)\right\|\right) d s \leq \int_{0}^{t}(M+k(s)) d s
$$

and by using (3.4) and (3.5) we obtain

$$
\left\|x_{1}^{n}(t)-x_{0}\right\| \leq \int_{0}^{t}\left(M+\left\|m\left(\partial V\left(x_{0}\right)\right)\right\|+k(s)\right) d s \leq r
$$

Analogously for $k=2, \ldots, n$ take $y_{k-1}^{n} \in F\left(x_{k-1}^{n}\left(t_{k-1}^{n}\right)\right)$; define $h_{k}^{n}: I_{k}^{n} \rightarrow R^{n}$ by $h_{k}^{n}(t)=y_{k-1}^{n}+f\left(t, x_{k-1}^{n}\left(t_{k-1}^{n}\right)\right)$ and set $x_{k}^{n}: I_{k}^{n} \rightarrow R^{n}$ to be the unique solution of the problem

$$
\dot{x}(t) \in-\partial V(x(t))+h_{k}^{n}(t), x\left(t_{k-1}^{n}\right)=x_{k-1}^{n}\left(t_{k-1}^{n}\right)
$$

Then by (3.3), (3.4) and (3.5) we obtain that, for $t \in\left[t_{k-1}^{n}, t_{k}^{n}\right]$,

$$
\begin{aligned}
& \left\|x_{k}^{n}(t)-x_{0}\right\| \leq\left\|x_{k}^{n}(t)-x^{0}(t)\right\|+\left\|x^{0}(t)-x_{0}\right\| \leq\left\|x_{k}^{n}\left(t_{k-1}^{n}\right)-x^{0}\left(t_{k-1}^{n}\right)\right\| \\
& +\int_{i_{k-1}^{n}}^{t}\left\|h_{k}^{n}(s)\right\| d s+t\left\|m\left(\partial V\left(x_{0}\right)\right)\right\| \\
& \leq \int_{0}^{t_{k-1}^{n}}[M+k(s)] d s+\int_{t_{k-1}^{n}}^{t}[M+k(s)] d s+t\left\|m\left(\partial V\left(x_{0}\right)\right)\right\| \\
& =\int_{0}^{t}\left(M+\left\|m\left(\partial V\left(x_{0}\right)\right)\right\|+k(s)\right) d s \leq r
\end{aligned}
$$

Define for $t \in[0, T]$:

$$
\begin{aligned}
& x_{n}(t)=\sum_{k=1}^{n} x_{k}^{n}(t) \chi_{I_{k}^{n}}(t), h_{n}(t)=\sum_{k=1}^{n} h_{k}^{n}(t) \chi_{I_{k}^{n}}(t), a_{n}(t)=\sum_{k=1}^{n} t_{k-1}^{n} \chi_{I_{k}^{n}}(t), \\
& g_{n}(t)=h_{n}(t)-f\left(t, x_{n}\left(a_{n}(t)\right)\right) .
\end{aligned}
$$

By the construction we have

$$
\begin{equation*}
\dot{x}(t) \in-\partial V\left(x_{n}(t)\right)+h_{n}(t) \text { a.e. on }[0, T], x_{n}(0)=x_{0} \tag{3.6}
\end{equation*}
$$

$$
\begin{equation*}
x_{n}(t) \in D(\partial V) \cap B\left(x_{0}, r\right) \text { a.e. on }[0, T] \tag{3.7}
\end{equation*}
$$

$$
\begin{equation*}
g_{n}(t) \in F\left(x_{n}\left(a_{n}(t)\right)\right) \text { a.e. on }[0, T] \tag{3.8}
\end{equation*}
$$

and by (3.6) and (3.2) we obtain

$$
\left(\int_{0}^{T}\left\|\frac{d x_{n}(t)}{d t}\right\| d t\right)^{1 / 2} \leq\left(\int_{0}^{T}(M+k(s))^{2} d t\right)^{1 / 2}+\sqrt{V\left(x_{0}\right)}=: N .
$$

Therefore $\left\|\frac{d x_{n}}{d t}\right\|_{L^{2}} \leq N$ and since $\left\|x_{n}\right\|_{\infty} \leq r+\left\|x_{0}\right\|$, we can assume that (x_{n}, x_{n}) is precompact in $C\left([0, T], R^{n}\right) \times L^{2}\left([0, T], R^{n}\right)$, the first space with the sup norm and the second with the weak topology. Then there exists a subsequence (again denote by) x_{n} and an absolutely continuous function $x:[0, T] \rightarrow B\left[x_{0}, r\right]$ such that
(3.9) $\quad x_{n}$ converges to x uniformly on compact subsets on $[0, T]$

$$
\begin{equation*}
\ddot{x}_{n} \text { converges weakly in } L^{2} \text { to } \dot{x} . \tag{3.10}
\end{equation*}
$$

Since $\left\|g_{n}(t)\right\| \leq M$ on $[0, T]$, we can assume that

$$
\begin{equation*}
g_{n} \text { converges weakly in } L^{2} \text { to some } g . \tag{3.11}
\end{equation*}
$$

Since $a_{n}(t) \rightarrow t$ uniformly and $x \rightarrow f(t, x)$ is continuous, we obtain that $f\left(t, x_{n}\left(a_{n}(t)\right)\right)$ converges to $f(t, x(t))$ uniformly with respect to t on compact subsets on $[0, T]$. Moreover since

$$
d\left(\left(x_{n}(t), g_{n}(t)\right), \text { graph } F\right) \leq\left\|x_{n}\left(a_{n}(t)\right)-x_{n}(t)\right\|
$$

we have that

$$
\left.d\left(\left(x_{n}(t), g_{n}(t)\right), \text { graph } F\right)\right) \text { converges to } 0 \text { for } n \rightarrow \infty .
$$

and by the Convergence theorem ([3], p. 60) it follows that

$$
\begin{equation*}
g(t) \in \operatorname{coF}(x(t)) \subset \partial W(x(t)) \tag{3.12}
\end{equation*}
$$

where co stands for the convex hull, and,

$$
\begin{equation*}
\dot{x}(t) \in-\partial V(x(t))+g(t)+f(t, x(t)) \tag{3.13}
\end{equation*}
$$

Since $g(t) \in \partial W(x(t))$ by Lemma 3.3 in ([5], p. 73) we obtain that $\frac{d}{d t} W(x(t))=<\dot{x}(t), g(t)>$, hence,

$$
\begin{equation*}
\int_{0}^{T}<\dot{x}(s), g(s)>d s=W(x(T))-W\left(x_{0}\right) \tag{3.14}
\end{equation*}
$$

By the definition of ∂W,

$$
\begin{aligned}
& W\left(x_{n}\left(t_{k}^{n}\right)\right)-W\left(x_{n}\left(t_{k-1}^{n}\right)\right) \geq<y_{k-1}^{n}, \int_{t_{k-1}^{n}}^{t_{k}^{n}} \dot{x}_{n}(s) d s> \\
&=\int_{t_{k-1}^{n}}^{t_{k}^{n}}<g_{n}(s), \dot{x}_{n}(s)>d s
\end{aligned}
$$

and by adding for $k=1, \ldots, n$ we obtain

$$
\begin{equation*}
W\left(x_{n}(T)\right)-W\left(x_{0}\right) \geq \int_{0}^{T}<g_{n}(s), \dot{x}_{n}(s)>d s . \tag{3.15}
\end{equation*}
$$

Using the lower semicontinuity of W in $x(T)$ and the convergence of x_{n} to x, by (3.14) and (3.15) it follows

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \int_{0}^{T}<\dot{x}_{n}(s), g_{n}(s) d s>\leq \int_{0}^{T}<\dot{x}(s), g(s)>d s \tag{3.16}
\end{equation*}
$$

On the other hand by (3.6) and (3.1) we obtain

$$
\begin{aligned}
\left\|\frac{d x_{n}(t)}{d t}\right\|^{2} & =-\frac{d}{d t} V\left(x_{n}(t)\right)+\left\langle h_{n}(t), \frac{d x_{n}(t)}{d t}\right\rangle \\
& =-\frac{d}{d t} V\left(x_{n}(t)\right)+\left\langle g_{n}(t)+f\left(t, x_{n}\left(a_{n}(t)\right), \frac{d x_{n}(t)}{d t}\right\rangle\right.
\end{aligned}
$$

hence

$$
\begin{align*}
\int_{0}^{T}\left\|\dot{x}_{n}(s)\right\|^{2} d s & =\int_{0}^{T}<g_{n}(s), \dot{x}_{n}(s)>d s \\
& +\int_{0}^{T}<f\left(s, x_{n}\left(a_{n}(s)\right)\right), \dot{x}_{n}(s)>d s \tag{3.17}\\
& -V\left(x_{n}(T)\right)+V\left(x_{0}\right)
\end{align*}
$$

Analogously, by (3.13) and (3.1) it follows that

$$
\begin{align*}
\int_{0}^{T}\|\dot{x}(s)\|^{2} d s & =\int_{0}^{T}<g(s), \dot{x}(s)>d s \\
& +\int_{0}^{T}<f(s, x(s)), \dot{x}(s)>d s \tag{3.18}\\
& -V(x(T))+V\left(x_{0}\right)
\end{align*}
$$

and by (3.17), (3.16), the continuity of $x \rightarrow f(t, x)$ the lower semicontinuity of V and (3.18) we obtain

$$
\limsup _{n \rightarrow \infty}\left\|\dot{x}_{n}\right\|_{L^{2}} \leq\|\dot{x}\|_{L^{2}} .
$$

Since, by the weak convergence of \dot{x}_{n} to $\dot{x}, \liminf _{n \rightarrow \infty}\left\|\dot{x}_{n}\right\|_{L^{2}} \leq\|\dot{x}\|_{L^{2}}$ we have that

$$
\lim _{n \rightarrow \infty}\left\|\dot{x}_{n}\right\|_{L^{2}}=\|\dot{x}\|_{L^{2}} .
$$

Therefore \dot{x}_{n} converges to \dot{x} in L^{2}-norm, hence (Theorem IV. 9 in ([6], p. 58)) a subsequence (denoted again by) \dot{x}_{n} converges pointwise almost everywhere on $[0, T]$ to \dot{x} and there exists $\lambda \in L^{2}\left([0, T], R^{n}\right)$ such that $\left\|\dot{x}_{n}(t)\right\| \leq \lambda(t)$.

Now, as in [8], we apply Lemma 3.2. for δ_{n} given by $\delta_{n}(t)=$ $f\left(t, x_{n}\left(a_{n}(t)\right)\right)+g_{n}(t)-\dot{x}_{n}(t)$ and $G(t):=F(x(t))-\dot{x}(t)+f(t, x(t))$. By construction, $\delta_{n}(t) \in F\left(x_{n}\left(a_{n}(t)\right)\right)-\dot{x}_{n}(t)+f\left(t, x_{n}\left(a_{n}(t)\right)\right)$, hence $\left\|\delta_{n}(t)\right\| \leq$ $M+\lambda(t)+k(t)=: \alpha(t)$, and

$$
\begin{aligned}
d\left(\delta_{n}(t), G(t)\right) & =d\left(\delta_{n}(t)+\dot{x}(t)-f(t, x(t)), F(x(t)) \leq\left\|\dot{x}_{n}(t)-\dot{x}(t)\right\|\right. \\
& +\left\|\delta\left(t, x_{n}\left(a_{n}(t)\right)\right)-f(t, x(t))\right\|+d^{*}\left(F\left(x_{n}\left(a_{n}(t)\right)\right), F(x(t))\right),
\end{aligned}
$$

where $d^{*}(A, B)=\sup \{d(a, B): a \in A\}$.
Since $\dot{x}_{n}(t) \rightarrow \dot{x}(t), x_{n}\left(a_{n}(t)\right) \rightarrow x(t)$, the map $x \rightarrow f(t, x)$ is continuous and F is upper semicontinuous we have that

$$
d\left(\delta_{n}(t), G(t)\right) \rightarrow 0 \text { for } n \rightarrow \infty
$$

Then Lemma 3.2. implies that

$$
\psi(t):=n \bigcap_{n \in N} c l\left(\bigcup_{n \geq i}\left\{\delta_{n}(t)\right\}\right)
$$

is nonempty, compact, contained in $G(t)$ and $t \rightarrow \psi(t)$ is measurable.
Taking $G^{*}(t)=\partial V(x(t)) \cap B(0, \alpha(t))$ we have that $\delta_{n}(t) \in \partial V\left(x_{n}(t)\right) \cap$ $B(0, \alpha(t))$ and since $x \rightarrow \partial V(x) \cap B(0, \alpha(t))$ is upper semicontinuous, it follows that

$$
d\left(\delta_{n}(t), G^{*}(t)\right) \rightarrow 0 \text { for } n \rightarrow \infty
$$

hence, by Lemma 3.2., $\psi(t) \subset \partial V(x(t)) \cap B(0, \alpha(t))$.
Let $\sigma(\cdot)$ be a measurable selection of $\psi(\cdot)$ and set $h(t):=\dot{x}(t)+\sigma(t)-$ $f(t, x(t))$. Then $\sigma(\cdot)$, and also $h($.$) , belong to L^{2}\left([0, T], R^{n}\right)$, and by definition of G, we have that $h(t) \in F(x(t))$.

Therefore $\dot{x}=-\sigma(t)+h(t)+f(t, x(t)) \in-\partial V(x(t))+h(t)+f(t, x(t))$ and the proof is complete.

REFERENCES

[1] Ancona F., Colombo G., Existence of solutions for a class of non-convex differential inclusions, to appear on Rend. Sem. Mat. Univ. Padova, 83 (1990), 71-76.
[2] Attouch H., Damlamian D., On multivalued evolution equations in Hilbert spaces, Isr. J. Math. 12 (1972), 373-390.
[3] Aubin J.P., Cellina A., Differential inclusions, Berlin: Springer, 1984.
[4] Bressan A., Cellina A.; Colombo G., Upper semicontinuous differential inclusions without convexity, Proc. A.M.S. 106 (1989), 771-775.
[5] Brezis I., Operateurs maximaux monotones et semigrouppes de contractions dans les espaces de Hilbert, Amsterdam : North-Holland, 1973.
[6] Brezis II., Analyse fonctionnelle, théorie et applications, Paris: Masson, 1983.
[7] Castaing C., Valadier M., Convex Analysis and measurable multifunctions, Lecture Notes in Math. 580. Berlin: Springer, 1977.
[8] Cellina A., Staicu V., On evolution equations having monotonicities of opposite sign, J. Differ. Equat. 90 (1991), 71-80.
[9] Yosida K., Functional Analysis, Berlin: Springer, 1980.

Vasile STAICU

International School for Advanced Studies, Strada Costiera 11, 34014 Trieste; Italy.

Lavoro pervenuto in redazione il 9.10.90 e, in forma definitiva, il 5.12 .90

