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V. Staicu

ON THE EXISTENCE OF SOLUTIONS TO A CLASS
OF DIFFERENTIAL INCLUSIONS

Abstract. We prove the local existence of solutions to the Cauchy problemn for
the differential inclusion £€—8V (z)+F(x)+f(t,z) where 3V is the subdifferential
of a lower semicontinucus propef convex function V. F is a cyclically upper

semicontinuous multifunction and f satisfies Carathéodory conditions.

1. Introduction

Bressan, Cellina and Colombo have proved in [4] the existence of
solutions of the Ca,uchy problem |

Ly (1) € Fla(t)) C OV(x(1)), 2(0) = 2o

where F is a monotonic upper semicontinuous {non necessarily convex-
valued, hence not maximal) map contained in the subdifferential of a lower
semicontinuous proper convex function, and z is in a finite dimensional
space. This result has been generalized by Ancona, and Colombo [1] to cover
perturbations of the kind -

z(t) € F(z(t)) + f(t,2(1))
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W;th f s'a.t|Sfying Carathéodory conditions. In the joint paper with Cellina [8]
we have proved the local existence of selutlons for a Ca.uehy Problem of the
'_form ' '

(12) 1) € -0V(=(0) + F(0), F(z)cawm,xm)-mo, .

where V is a lower semicontinuous proper convex function (hence 3V is a
maximal monotone ma.p), W is a lower semicontinuous proper convex function
and F is an upper semicontinuous compact valued map deﬁned over some
nelgh borhood of zg. ' - -

' Purpose of the present paper is to prove the (local) existence of solutions
of a Cauchy problem of tlie form '

(1) € ~0V(a(1) + F(a(t) + (4, 2(1),2(0) = 20,

where V and F are as in the problem (1.2) and f satisflies Carathéodory
‘conditions. This result unifies the results in [1], [4] and [8] and its proof
follows the one in [8]

2. Assumptlons and the Statement of the Main Result

Consider. on R”" the Euclidean norm || - || and the scalar product
< .,.>. Forz € R" and r > 0 set: B(z,v) = {y € R* : |ly - z|| < 7},
o -B[::: r] - {y € R" : lly — z|] < r}, and for a closed subset A of R®,
B(A,7) = {y € R* : d(y, A) < r}, where d(z,A) = in{ {lly - z|| 1 y € A}.
" Denote by ¢l A the closure of A, and if A is a closed and convex subset of R®,
then by m(A) we denote the element of minimal norm of A, i.e., such.that

im(A)| = inf {|lyll : y € 4} .
: We censider the Ca.uchy problem.
L@ a1 € ~V(a() + F(a() + J(ta(t)),2(0) = 20,

'un_der the fe'llc)wing assumptions:
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(Hy) V:R" = (—oo +400] is a proper convex lower semicontinuous function, |
AV : R* = 28" is the subdifferential of V defined by -

V(z)={€¢€ R" :V(y) - V() 2< &,y — = >, Vy € R™) |

20 € D(V) and D(8V) := {z € R : 0V(x) # 0}.
(Hy) F:R" - 2" is an upper semicontinuous multifunction (i.e. for every
z and for évery £ > 0 there exists & > 0 such that y € B(:c 6) implies

F(y) C B(F(z),c)), with closed nonempty values and there exists a
proper convex lower semicontinuous function W : R* — (—o00, +0o0] such

that F(z) C 8W(z) for every 2 € R®, where 8W[ ) is the subdifferential
of W. _ :

(H3) fiRXx R" — R"™ is a Ca.ratheodory functlon i.e.: for every z € R™
t — f(i,x) is measurable, for a.e. 1 € Rz — f(1,z) is continuous

and there exists k € L%(R, R) such that Hf(t z)|| < k( ) for a.e. t€ R

and for all z € R _ . |

- Remark that since for any compact set K contaiﬁin'g o there exists
z* € K such that inf {V(z) : z € K} = V(2*) and since the subdifferential of
the function ¢ — V(z) — V(z*) coincides with the subdifferential of V(.), we
can assume in what follows that V > 0.

'DEFINITION 2.1. Let h € L?([0,T], R") and =g € D(8V). By solution of . -
the problem | o |
(Pr) . &(t) € —0V(2(1)) + h(1), 2(0) = =9

we mean any absoluteif continuous function z : [0,T] _} R" such that
(0)—-:(:0, and for a.e. t € [0, T] | |

a:(t) € D(BV) and a:(t) € -V (a(t)) + h(t)

DEFINITION 2.2. A function z : [0,T] — R® is called a solution of the
Cauchy problem (2.1) if there exists g € L*([0,T], R™), a selection of F(z(-))
(i.e. g(t) € F(z(1)) for a.e. t € [0,T)), such that z is a solution of the problem
APn), with h(t) = g(2) + f(t,z(t)).

- Our main result is the following:
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THEOREM Let V,F a.nd f satisfy a.ssumptlons (Hi) - (H3) Then for every
Ty € D(@V) there exist T > 0 and z : [0 T] — R™ a solution of the Cauchy

: pmblem '

50 € OV(=(0) + Fs0) + S 5(0), 5(0) = 0.

3. Proof of the Main R'es-l"l.l_t'
* We shall use the folldwi_i}'g known results: -

LEMMA 3.1.  ([2], Thedrems 1.2. and 1. 3.) Let V( ) satisfy dssumptlons

| (H,). Then for every 9 € D(8V) and h € L%([0,T); R™) there exists a

unique solutlon z* : [0, T] R* of the problem
(Pr) | 2(t) € —V(2(1)) + h(t),2(0) = 2o .

. h
Moreover %——- € L%([0,T],R™),t — V(a:"(t)) is a.bsolutely continuous (hence

almost everywhere d]ﬁerentla.ble) on [0,T],

o oh oh
(3.1) d y t@ V(z"(t))+ < h(1), —-2 d (t)
-and

dxh(t)

3. 2) [ [ ]m < <(/[ Tnh(twdz) 1,_2 + VV(E0) -

If g, h € Lz([O T],R“) and :.':9( ),z*(.) are the correspondmg solutions then

'fora,ny0<s<t<T

(B3 llef(t) - SOl < [1o%e) - Pl + [ Hlo(w) ~ u)lds

Let z° : [0,00) — R"™ be the uhique solution of the problem (Ph)

| with & = 0. Then, by Theorem 3.2.1. in [3], for any T > 0 and ae. 1€
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(0, T) %mo(t) —.—m(aV(:n(t))) and ¢ — ||m(3V(a:°(t)))|| is nomncrea.smg |
'Therefore, for any t € [0, 7], -

a ,- -¢ o
110t - ol = Il jﬂ #(s)ds|| < [] [m(@V (2%(s)))lIds
: o |
P
< [ Im(ov s, _
hence
34)  ||l2%) = 20|l € tim(BV (o)), for any ¢ € [o,_:r] . m

Let £ be the o-algebra of Lebesgue measura.ble subsets of the interval [0, T].
A multivalued map G : [0,T] — 2R is called measurable if for any closed
subset C of R" the set {t € [0,T}: G(t) N C # 0} belongs to L.

LEMMA 3.2. ([8), Lemma 3.2.) Let {6a(") : n € N} be a sequence: of
measurable functions, &, : [0,T] — R™ and assume that there exists a function
a € LY([0,T], R*) such that for a.e. ¢ € [0,T]

16a(D)I] < e(t) -
Let
’l)(i) ﬂ [C’(U {5n(1)})]

Then:

(i) fora.e. t € [0,7), w(t) is a nonempty compa,ct subset of R™ and t — (1)
is measurable.

(i) G : [O,T] — 21" s a multifunction with closed nonempty values such
that d(8,(t),G(t)) — 0 for n — oo then (1) C G(i). |
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Proof of the theorem. Let :cg € D(@V) and let W : R® — (=00, +400]
satisfly (Ha). Then, as in [4], there exist r > 0 and M < oo such that W is
" Lipschitzean wrth Lipschitz constant M on B(zg,r) and, since F(z) C dW(z)
it follows that F is bounded by M on B(zg,r). Let m(é?V(:co]) be the element
of mmlma.l norn of 9V (zg) and let T >0be such that

(35 || (ks + M+ im@VzoDs <

'wher.e.k(.) is given by (H;;)' Qur purposé is to prove that there exists
- x:{0,T) - Blzg,r], a solutlon to the Cauchy problem (2 1).

Let n € N, .=0a,nd,fork.__l R lett"z kn and I} = (1_,1E).

Take y§ € F(zg) and define hY : If = R" by AT(t) = y§ + f(t,z0). Since
h} € L*(I7,R"), by Lemma 31 there exists =7 : I} — R™, the unique
solution of the problem . |

(Pi") | | i(t)e--—avt (1) + h}(1), 2(0) = zo.

Then by (3. 3) we obtain that for any te [tg,t“]
- ¢ - ¢ | | t
") -0 ' n :
et - () < /0 I45(eids < /D (1 + e 20))ds < [ + k(o
| émlnd.b_y using (34) a,nci_ (35) we obtain'
nwl () - moll < ] (M + llm(@V (o)) + k(s))ds < .

Aﬁalogously'for k=2,...,ntakey; ;€ F'(a:k (tE_1)); define hY : I} — R™
by h(t) = vi_, + f(4, a:k 1(t§_y)) and set z} : I} — R"™ to be the unique
solutlon of the problem

(). t(t) € 8V(m(t)) + hi(t), z(1}_ l) =zp_(t13_,)-
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Then by (3 3), (3.4) and (3. 5) we obtam that, for t € [t,c e o
113(8) = woll < lief(t) = 2l + 1a%(e) = 2oll < ll2f(e1) ~ 2°CR_)ll
+ [ I @llds + lm(@V (zo))|
-1 .-'. t - o .
< [ 4 Ko+ [ DM+ K@)ds + dim(@V (ao)
0 _ -1 _
= [ (M +1m(@V @)l + ks < v

Define for ¢ € [O,T]:

() = Za;k(t)xp.(t), ha(t) = ):h (s)xp.(:), an(t) = Ztk ixip ()

k=1

gn(t) = ha(t) - f(t ‘“n(an(t)))

By the constructmn we ha.ve

(3.6) #(2) € ~0V(zn(t)) + ha(l) a.e. on [0,T],z4(0) = :;;0
: (3.7 | | zn(t) € D(8V) N B(zg,7) a.e. on [0,T] |
(3.8) gn(t) € F(zn(an())) ae. on [0,7]

and by (3.6) and (3.2) we obtain

(F

d:z:n(f)
dt

’ )1/2- < ('/DT(M + k(s.))th) e +. VV(zg) =: N.
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Therefore |l <N a,nd since ||znjoo < 'r 4+ {|zol|, we can assume that
72
(Tn;En) is precompa.ct in C([0, T] R") X Lz([O T], R™), the first spa.ce with
the sup. norm and the second with the weak topology. Then there exists

a subsequence (aga,m denote by) z, and an a.bsolutely continuous functlon
z :[0,T] — B[zg,r] such that |

(3.9) | Ty converges to -3 mi‘i_formly on compact subsets on {0, T

(3.10) | in cbneerges weakly in L% to & .
~ Since ||gn(t)|l £ M on [0,T], we can assume that
. ('3..11) gn converges weakly in L_2 to some ¢ .

~ Since an(t) — t uniformly and = — f(t z) is continuous, we obtain that
| -f(t zn(an(t))) converges to f(¢,2(t)) uniformly with respect to ¢ on compact
subsets on [0, 7). Moreover since . : .

U(onl0)s (0, groph F) < [fon(an(®) — 2 0]

| '_We ha,ye that | | -
d((sjn(t),gn(t)), graph F}) converges to 0 for n — 00,

a,nd.By the Convergence theerem ([3],-p. 60) it fOlloxes that

(3.12) 4(t) € coF(a(t)) C W (x(t))

wh.er'e. co stands for the convex hull, and,

(313) ()€ -aV(a(t)) + g(t) + J(t,2(2)).
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Since g(t) € OW(z(1)) by Lemma 3.3 in ([5], p- 73) we obtain I_;ha,f |
%W(z(t_)) =< #(1),g(t) >, hence, |

@314 / < #(3),9(s) > ds = W(2(T)) — W (o).
R By the definition of W,

i
W (@a(t})) - W(an(t} D) 2< L [ dalords>

-1
£y o
= / < gn(s),Za(s) > ds.
I
and by adding for k = 1,...,n we obtain
(3.15) W(zn(T)) - W(:co) > / < gn(8)y@n(s) > ds.
0

Using the lower semicontinuity of W in z(T) and the convergence of zyn to 2,
by (3.14) and (3.15) it follows
T T o
(3.16) limsup | < i:n(.s),gn(s)ds >< / < #(8),9(8) > ds.
0 0 :

n-—+00

On the other hand by (3.6) and (3.1) we obtain

dm&'fi_) IV (aal) < ha(t), 22
V(xn(t))-l- < gn(t)+ f(, xn(an(t)), dmn(t)
hence | |
T . - T
[ teatoids = [ < ga(s)bnts) > ds
0 0
(3.17)

T
+/0 < f(8,2n(@n(8))), &n(s) > ds

= V(an(T) + V(20).
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Analogously, by (3.13) and (3.1) it follows that

. /0 .||_-‘53(A9)|-|2¢is = '/0 <g(s),:c(8) > ds
(3.18) + /0 < f(s,2(8)), &(s) > ds
- V(x(T)) + V(zg) .

~ and by (3. 17) (3.16), the continuity of z — f(t,z) the lower semlcontmulty
- of V and (3 18) we obtain

lim sup |alfz2 < Il g2 -

n—o0

Since, by the weak convergence of &, to , lim inf lEnllz2 < |l2]|]72 we have
: n—00
that
lim ”fi’ﬂ”L2 = ||#lig2 .

Therefore & converges to & in L2-norm; hence (Theorem 1V.9 in ([6], p. 58))
“a subsequence (denoted a,ga,m by) &y converges. pointwise almost everywhere
on [O fI] to & and there exists A € Lz([O T), R"™) such that ||:r:,,(t)|[ < A1).
Now, as in [8], we apply Lemma 3.2.. for §p given by 6,(t) =
J(t, zn(an(1))) + ga(t) — &n(t) and G(t) := F(z(t)) - #(t) + f(t,z(t)). By
construction, 8, (t) € F(zq(an(t))) — £2(1) + f(t,2n(an(l))), hence 8,()|| <

. M+ X(t) + k(t) =: aft), and

d(é,,(t) G(f)) = d(6n(t) + (1) - f(t, f(f)) F(z(1)) < llmn(t) — a0
+I/(, ‘Bn(an(t))) S,z + d*(F(mn(an(t))) F(z(2))),
where d*(A, B) = sup {d(a, B) a € A.}.

“Since &p(t) = (1), zp(an(t)) — 2(1), the map z — f(t,z) is continuous
and F' is upper semicontinuous we have that

d(8p(1),G(t)) = 0 for n — oo .
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Then Lemma 3.2. im plies that
Y(t)i=n ﬂ cl( U {5,,(!)})

is nonempty, compact, contained in G(t) and t — 1,!;(:‘,_) is measurable.
~ Taking G*(t) = aV(z(t)) N B(0,(t)) we have that §.(t) € OV (za(t)) N
B(0,a(t)) and since z — 8V (z)N.B(0, (1)) is upper semicontinuous, it follows -
that | o o | o
d(8a(1), G¥(t)) = 0 for n = 00
hence, by Lemma 3.2., ¥(t) C aV(z(t)) N B(0,a(t)).

Let o(-) be a measurable selection of ¥(-) and set h( ) i= 2(t) +o(t) -

f(t,2(1)). Then o(-), and also h(.), belong to L([0,T], R™), and by definition
of G, we have that h(t) € F(z(1)).

Therefore & = —o(t) + A(t) + (1, x(t)) € 3V(x(t)) + hit) + f(t z(1))
and the proof is complete. =
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