Rend. Sem. Mat. Univ. Pol. Torino Vol. 48°, 2 (1990) Dynamical Systems and O.D.E.

V. Staicu

ON THE EXISTENCE OF SOLUTIONS TO A CLASS OF DIFFERENTIAL INCLUSIONS

Abstract. We prove the local existence of solutions to the Cauchy problem for the differential inclusion $\dot{x} \in -\partial V(x) + F(x) + f(t,x)$ where ∂V is the subdifferential of a lower semicontinuous proper convex function V. F is a cyclically upper semicontinuous multifunction and f satisfies Carathèodory conditions.

1. Introduction

Bressan, Cellina and Colombo have proved in [4] the existence of solutions of the Cauchy problem

(1.1)
$$\dot{x}(t) \in F(x(t)) \subset \partial V(x(t)), \ x(0) = x_0$$

where F is a monotonic upper semicontinuous (non necessarily convexvalued, hence not maximal) map contained in the subdifferential of a lower semicontinuous proper convex function, and x is in a finite dimensional space. This result has been generalized by Ancona and Colombo [1] to cover perturbations of the kind

$$\dot{x}(t) \in F(x(t)) + f(t, x(t))$$

with f satisfying Carathéodory conditions. In the joint paper with Cellina [8] we have proved the local existence of solutions for a Cauchy Problem of the form

(1.2)
$$\dot{x}(t) \in -\partial V(x(t)) + F(x(t)), \ F(x) \subset \partial W(x), x(0) = x_0$$

where V is a lower semicontinuous proper convex function (hence ∂V is a maximal monotone map), W is a lower semicontinuous proper convex function and F is an upper semicontinuous compact valued map defined over some neighborhood of x_0 .

Purpose of the present paper is to prove the (local) existence of solutions of a Cauchy problem of the form

$$\dot{x}(t) \in -\partial V(x(t)) + F(x(t)) + f(t, x(t)), x(0) = x_0$$

where V and F are as in the problem (1.2) and f satisfies Carathéodory conditions. This result unifies the results in [1], [4] and [8] and its proof follows the one in [8].

2. Assumptions and the Statement of the Main Result

Consider on \mathbb{R}^n the Euclidean norm $|| \cdot ||$ and the scalar product $\langle ... \rangle$. For $x \in \mathbb{R}^n$ and r > 0 set: $B(x,r) = \{y \in \mathbb{R}^n : ||y-x|| < r\}$, $B[x,r] = \{y \in \mathbb{R}^n : ||y-x|| \le r\}$, and for a closed subset A of \mathbb{R}^n , $B(A,r) = \{y \in \mathbb{R}^n : d(y,A) < r\}$, where $d(x,A) = \inf \{||y-x|| : y \in A\}$. Denote by cl A the closure of A, and if A is a closed and convex subset of \mathbb{R}^n , then by m(A) we denote the element of minimal norm of A, i.e., such that

$$||m(A)|| = \inf \{||y|| : y \in A\}$$
.

We consider the Cauchy problem

(2.1)
$$\dot{x}(t) \in -\partial V(x(t)) + F(x(t)) + f(t, x(t)), x(0) = x_0$$
,

under the following assumptions:

138

(H₁) $V: \mathbb{R}^n \to (-\infty, +\infty]$ is a proper convex lower semicontinuous function, $\partial V: \mathbb{R}^n \to 2^{\mathbb{R}^n}$ is the subdifferential of V defined by

$$\partial V(x) = \{\xi \in \mathbb{R}^n : V(y) - V(x) \ge <\xi, y - x >, \forall y \in \mathbb{R}^n\}$$

 $x_0 \in D(\partial V)$ and $D(\partial V) := \{x \in \mathbb{R}^n : \partial V(x) \neq \emptyset\}.$

- (H_2) $F: \mathbb{R}^n \to 2^{\mathbb{R}^n}$ is an upper semicontinuous multifunction (i.e. for every x and for every $\varepsilon > 0$ there exists $\delta > 0$ such that $y \in B(x, \delta)$ implies $F(y) \subset B(F(x), \varepsilon)$), with closed nonempty values and there exists a proper convex lower semicontinuous function $W: \mathbb{R}^n \to (-\infty, +\infty]$ such that $F(x) \subset \partial W(x)$ for every $x \in \mathbb{R}^n$, where $\partial W(.)$ is the subdifferential of W.
- (H₃) $f : R \times R^n \to R^n$ is a Carathéodory function, i.e.: for every $x \in R^n$ $t \to f(t,x)$ is measurable, for a.e. $t \in Rx \to f(t,x)$ is continuous and there exists $k \in L^2(R,R)$ such that $||f(t,x)|| \le k(t)$ for a.e. $t \in R$ and for all $x \in R^n$.

Remark that since for any compact set K containing x_0 there exists $x^* \in K$ such that $\inf \{V(x) : x \in K\} = V(x^*)$ and since the subdifferential of the function $x \to V(x) - V(x^*)$ coincides with the subdifferential of V(.), we can assume in what follows that $V \ge 0$.

DEFINITION 2.1. Let $h \in L^2([0,T], \mathbb{R}^n)$ and $x_0 \in D(\partial V)$. By solution of the problem

$$(P_h) \qquad \dot{x}(t) \in -\partial V(x(t)) + h(t), \ x(0) = x_0$$

we mean any absolutely continuous function $x : [0,T] \to \mathbb{R}^n$ such that $x(0) = x_0$, and for a.e. $t \in [0,T]$:

$$x(t) \in D(\partial V)$$
 and $\dot{x}(t) \in -\partial V(x(t)) + h(t)$.

DEFINITION 2.2. A function $x : [0,T] \to \mathbb{R}^n$ is called a solution of the Cauchy problem (2.1) if there exists $g \in L^2([0,T],\mathbb{R}^n)$, a selection of $F(x(\cdot))$ (i.e. $g(t) \in F(x(t))$ for a.e. $t \in [0,T]$), such that x is a solution of the problem (P_h) , with h(t) = g(t) + f(t,x(t)).

Our main result is the following:

140

THEOREM. Let V, F and f satisfy assumptions $(H_1) - (H_3)$. Then for every $x_0 \in D(\partial V)$ there exist T > 0 and $x : [0,T] \to \mathbb{R}^n$ a solution of the Cauchy problem

$$\dot{x}(t) \in -\partial V(x(t)) + F(x(t)) + f(t,x(t)), \quad x(0) = x_0$$

3. Proof of the Main Result

We shall use the following known results:

LEMMA 3.1. ([2], Theorems 1.2. and 1.3.) Let V(.) satisfy assumptions (H_1) . Then for every $x_0 \in D(\partial V)$ and $h \in L^2([0,T], \mathbb{R}^n)$ there exists a unique solution $x^h: [0,T] \to \mathbb{R}^n$ of the problem

$$(P_h) \qquad \dot{x}(t) \in -\partial V(x(t)) + h(t), x(0) = x_0.$$

Moreover: $\frac{dx^h}{dt} \in L^2([0,T], \mathbb{R}^n), t \to V(x^h(t))$ is absolutely continuous (hence almost everywhere differentiable) on [0,T],

(3.1)
$$\left\|\frac{dx^{h}(t)}{dt}\right\|^{2} = -\frac{d}{dt}V(x^{h}(t)) + \langle h(t), \frac{dx^{h}(t)}{dt} \rangle$$

and

(3.2)
$$\left[\int_0^T \left\|\frac{dx^h(t)}{dt}\right\|^2 dt\right]^{1/2} \leq \left(\int_0^T ||h(t)||^2 dt\right)^{1/2} + \sqrt{V(x_0)} \, .$$

If $g, h \in L^2([0,T], \mathbb{R}^n)$ and $x^g(.), x^h(.)$ are the corresponding solutions then for any $0 \le s \le t \le T$:

(3.3)
$$||x^{g}(t) - x^{h}(t)|| \leq ||x^{g}(s) - x^{h}(s)|| + \int_{s}^{t} ||g(u) - h(u)|| ds$$

Let $x^0 : [0,\infty) \to \mathbb{R}^n$ be the unique solution of the problem (P_h) with h = 0. Then, by Theorem 3.2.1. in [3], for any T > 0 and a.e. $t \in$

 $(0,T): \frac{d}{dt}x^0(t) = -m(\partial V(x(t)))$ and $t \to ||m(\partial V(x^0(t)))||$ is nonincreasing. Therefore, for any $t \in [0,T]$,

$$|x^{0}(t) - x_{0}|| = ||\int_{0}^{t} \dot{x}^{0}(s)ds|| \leq \int_{0}^{t} ||m(\partial V(x^{0}(s)))||ds$$
$$\leq \int_{0}^{t} ||m(\partial V(x^{0}(0)))||ds ,$$

hence

$$(3.4) ||x^0(t) - x_0|| \le t ||m(\partial V(x_0))||, \text{ for any } t \in [0,T].$$

Let \mathcal{L} be the σ -algebra of Lebesgue measurable subsets of the interval [0, T]. A multivalued map $G : [0, T] \to 2^{\mathbb{R}^n}$ is called *measurable* if for any closed subset C of \mathbb{R}^n the set $\{t \in [0, T] : G(t) \cap C \neq \emptyset\}$ belongs to \mathcal{L} .

LEMMA 3.2. ([8], Lemma 3.2.) Let $\{\delta_n(\cdot) : n \in N\}$ be a sequence of measurable functions, $\delta_n : [0,T] \to \mathbb{R}^n$ and assume that there exists a function $\alpha \in L^1([0,T],\mathbb{R}^n)$ such that for a.e. $t \in [0,T]$

$$||\delta_n(t)|| \leq \alpha(t)$$

Let

$$\psi(t) = \bigcap_{i \in N} \left[cl(\bigcup_{n \ge i} \left\{ \delta_n(t) \right\}) \right].$$

Then:

- (i) for a.e. $t \in [0,T]$, $\psi(t)$ is a nonempty compact subset of \mathbb{R}^n and $t \to \psi(t)$ is measurable.
- (ii) If $G: [0,T] \to 2^{\mathbb{R}^n}$ is a multifunction with closed nonempty values such that $d(\delta_n(t), G(t)) \to 0$ for $n \to \infty$ then $\psi(t) \subset G(t)$.

Proof of the theorem. Let $x_0 \in D(\partial V)$ and let $W : \mathbb{R}^n \to (-\infty, +\infty]$ satisfy (H_2) . Then, as in [4], there exist r > 0 and $M < \infty$ such that W is Lipschitzean with Lipschitz constant M on $B(x_0, r)$ and, since $F(x) \subset \partial W(x)$ it follows that F is bounded by M on $B(x_0, r)$. Let $m(\partial V(x_0))$ be the element of minimal norm of $\partial V(x_0)$ and let T > 0 be such that

(3.5)
$$\int_0^T (k(s) + M + ||m(\partial V(x_0))||) ds \le r ,$$

where k(.) is given by (H_3) . Our purpose is to prove that there exists $x:[0,T] \to B[x_0,r]$, a solution to the Cauchy problem (2.1).

Let $n \in N, t_0^n = 0$ and, for k = 1, ..., n, let $t_k^n = k \frac{T}{n}$ and $I_k^n = (t_{k-1}^n, t_k^n]$. Take $y_0^n \in F(x_0)$ and define $h_1^n : I_1^n \to R^n$ by $h_1^n(t) = y_0^n + f(t, x_0)$. Since $h_1^n \in L^2(I_1^n, R^n)$, by Lemma 3.1, there exists $x_1^n : I_1^n \to R^n$, the unique solution of the problem

$$(P_1^n) \dot{x}(t) \in -\partial V(x(t)) + h_1^n(t), \ x(0) = x_0.$$

Then by (3.3) we obtain that for any $t \in [t_0^n, t_1^n]$,

$$||x_1^n(t) - x^0(t)|| \le \int_0^t ||h_1^n(s)|| ds \le \int_0^t (M + ||f(s, x_0)||) ds \le \int_0^t (M + k(s)) ds$$

and by using (3.4) and (3.5) we obtain

$$||x_1^n(t) - x_0|| \le \int_0^t (M + ||m(\partial V(x_0))|| + k(s)) ds \le r$$
.

Analogously for k = 2, ..., n take $y_{k-1}^n \in F(x_{k-1}^n(t_{k-1}^n))$; define $h_k^n: I_k^n \to \mathbb{R}^n$ by $h_k^n(t) = y_{k-1}^n + f(t, x_{k-1}^n(t_{k-1}^n))$ and set $x_k^n: I_k^n \to \mathbb{R}^n$ to be the unique solution of the problem

$$(P_k^n) \qquad \dot{x}(t) \in -\partial V(x(t)) + h_k^n(t), \ x(t_{k-1}^n) = x_{k-1}^n(t_{k-1}^n).$$

Then by (3.3), (3.4) and (3.5) we obtain that, for $t \in [t_{k-1}^n, t_k^n]$,

$$\begin{aligned} ||x_{k}^{n}(t) - x_{0}|| &\leq ||x_{k}^{n}(t) - x^{0}(t)|| + ||x^{0}(t) - x_{0}|| \leq ||x_{k}^{n}(t_{k-1}^{n}) - x^{0}(t_{k-1}^{n})| \\ &+ \int_{t_{k-1}^{n}}^{t} ||h_{k}^{n}(s)||ds + t||m(\partial V(x_{0}))|| \\ &\leq \int_{0}^{t_{k-1}^{n}} [M + k(s)]ds + \int_{t_{k-1}^{n}}^{t} [M + k(s)]ds + t||m(\partial V(x_{0}))|| \\ &= \int_{0}^{t} (M + ||m(\partial V(x_{0}))|| + k(s))ds \leq r \end{aligned}$$

Define for $t \in [0, T]$:

$$x_n(t) = \sum_{k=1}^n x_k^n(t) \chi_{I_k^n}(t), \ h_n(t) = \sum_{k=1}^n h_k^n(t) \chi_{I_k^n}(t), \ a_n(t) = \sum_{k=1}^n t_{k-1}^n \chi_{I_k^n}(t),$$
$$g_n(t) = h_n(t) - f(t, x_n(a_n(t))).$$

By the construction we have

(3.6)
$$\dot{x}(t) \in -\partial V(x_n(t)) + h_n(t)$$
 a.e. on $[0,T], x_n(0) = x_0$

(3.7)
$$x_n(t) \in D(\partial V) \cap B(x_0, r) \text{ a.e. on } [0, T]$$

(3.8)
$$g_n(t) \in F(x_n(a_n(t)))$$
 a.e. on $[0,T]$

and by (3.6) and (3.2) we obtain

$$\left(\int_0^T \left\|\frac{dx_n(t)}{dt}\right\| dt\right)^{1/2} \leq \left(\int_0^T (M+k(s))^2 dt\right)^{1/2} + \sqrt{V(x_0)} =: N.$$

Therefore $\left\|\frac{dx_n}{dt}\right\|_{L^2} \leq N$ and since $||x_n||_{\infty} \leq r + ||x_0||$, we can assume that (x_n, \dot{x}_n) is precompact in $C([0,T], \mathbb{R}^n) \times L^2([0,T], \mathbb{R}^n)$, the first space with the sup norm and the second with the weak topology. Then there exists a subsequence (again denote by) x_n and an absolutely continuous function $x: [0,T] \to B[x_0,r]$ such that

(3.9)
$$x_n$$
 converges to x uniformly on compact subsets on $[0,T]$

(3.10) \dot{x}_n converges weakly in L^2 to \dot{x} .

Since $||g_n(t)|| \leq M$ on [0,T], we can assume that

(3.11) g_n converges weakly in L^2 to some g.

Since $a_n(t) \to t$ uniformly and $x \to f(t, x)$ is continuous, we obtain that $f(t, x_n(a_n(t)))$ converges to f(t, x(t)) uniformly with respect to t on compact subsets on [0, T]. Moreover since

 $d((x_n(t), g_n(t)), \operatorname{graph} F) \leq ||x_n(a_n(t)) - x_n(t)||$

we have that

 $d((x_n(t), g_n(t)), \text{ graph } F))$ converges to 0 for $n \to \infty$.

and by the Convergence theorem ([3], p. 60) it follows that

(3.12)
$$g(t) \in coF(x(t)) \subset \partial W(x(t))$$

where co stands for the convex hull, and,

(3.13)
$$\dot{x}(t) \in -\partial V(x(t)) + g(t) + f(t, x(t)).$$

Since $g(t) \in \partial W(x(t))$ by Lemma 3.3 in ([5], p. 73) we obtain that $\frac{d}{dt}W(x(t)) = \langle \dot{x}(t), g(t) \rangle$, hence,

(3.14)
$$\int_0^T \langle \dot{x}(s), g(s) \rangle ds = W(x(T)) - W(x_0).$$

By the definition of ∂W ,

$$W(x_n(t_k^n)) - W(x_n(t_{k-1}^n)) \ge \langle y_{k-1}^n, \int_{t_{k-1}^n}^{t_k^n} \dot{x}_n(s) ds \rangle$$

= $\int_{t_{k-1}^n}^{t_k^n} \langle g_n(s), \dot{x}_n(s) \rangle ds$.

and by adding for $k = 1, \ldots, n$ we obtain

(3.15)
$$W(x_n(T)) - W(x_0) \ge \int_0^T \langle g_n(s), \dot{x}_n(s) \rangle ds.$$

Using the lower semicontinuity of W in x(T) and the convergence of x_n to x, by (3.14) and (3.15) it follows

(3.16)
$$\limsup_{n\to\infty}\int_0^T \langle \dot{x}_n(s), g_n(s)ds \rangle \leq \int_0^T \langle \dot{x}(s), g(s) \rangle ds.$$

On the other hand by (3.6) and (3.1) we obtain

$$\left\|\frac{dx_n(t)}{dt}\right\|^2 = -\frac{d}{dt}V(x_n(t)) + < h_n(t), \frac{dx_n(t)}{dt} > \\ = -\frac{d}{dt}V(x_n(t)) + < g_n(t) + f(t, x_n(a_n(t)), \frac{dx_n(t)}{dt} >$$

hence

(3.17)

$$\int_0^T ||\dot{x}_n(s)||^2 ds = \int_0^T \langle g_n(s), \dot{x}_n(s) \rangle ds$$

+ $\int_0^T \langle f(s, x_n(a_n(s))), \dot{x}_n(s) \rangle ds$
- $V(x_n(T)) + V(x_0)$.

Analogously, by (3.13) and (3.1) it follows that

(3.18)
$$\int_0^T ||\dot{x}(s)||^2 ds = \int_0^T \langle g(s), \dot{x}(s) \rangle ds$$
$$+ \int_0^T \langle f(s, x(s)), \dot{x}(s) \rangle ds$$
$$- V(x(T)) + V(x_0) .$$

and by (3.17), (3.16), the continuity of $x \to f(t,x)$ the lower semicontinuity of V and (3.18) we obtain

$$\limsup_{n \to \infty} ||\dot{x}_n||_{L^2} \le ||\dot{x}||_{L^2}.$$

Since, by the weak convergence of \dot{x}_n to \dot{x} , $\lim_{n\to\infty} \inf ||\dot{x}_n||_{L^2} \leq ||\dot{x}||_{L^2}$ we have that

$$\lim_{n\to\infty} ||\dot{x}_n||_{L^2} = ||\dot{x}||_{L^2}.$$

Therefore \dot{x}_n converges to \dot{x} in L^2 -norm, hence (Theorem IV.9 in ([6], p. 58)) a subsequence (denoted again by) \dot{x}_n converges pointwise almost everywhere on [0,T] to \dot{x} and there exists $\lambda \in L^2([0,T], \mathbb{R}^n)$ such that $||\dot{x}_n(t)|| \leq \lambda(t)$.

Now, as in [8], we apply Lemma 3.2. for δ_n given by $\delta_n(t) = f(t, x_n(a_n(t))) + g_n(t) - \dot{x}_n(t)$ and $G(t) := F(x(t)) - \dot{x}(t) + f(t, x(t))$. By construction, $\delta_n(t) \in F(x_n(a_n(t))) - \dot{x}_n(t) + f(t, x_n(a_n(t)))$, hence $||\delta_n(t)|| \le M + \lambda(t) + k(t) =: \alpha(t)$, and

$$d(\delta_n(t), G(t)) = d(\delta_n(t) + \dot{x}(t) - f(t, x(t)), F(x(t)) \le ||\dot{x}_n(t) - \dot{x}(t)|| + ||f(t, x_n(a_n(t))) - f(t, x(t))|| + d^*(F(x_n(a_n(t))), F(x(t))),$$

where $d^{*}(A, B) = \sup \{d(a, B) : a \in A\}.$

Since $\dot{x}_n(t) \to \dot{x}(t), x_n(a_n(t)) \to x(t)$, the map $x \to f(t,x)$ is continuous and F is upper semicontinuous we have that

$$d(\delta_n(t), G(t)) \to 0$$
 for $n \to \infty$.

146

Then Lemma 3.2. implies that

$$\psi(t) := n \bigcap_{n \in N} cl(\bigcup_{n \ge i} \{\delta_n(t)\})$$

is nonempty, compact, contained in G(t) and $t \rightarrow \psi(t)$ is measurable.

Taking $G^*(t) = \partial V(x(t)) \cap B(0, \alpha(t))$ we have that $\delta_n(t) \in \partial V(x_n(t)) \cap B(0, \alpha(t))$ and since $x \to \partial V(x) \cap B(0, \alpha(t))$ is upper semicontinuous, it follows that

$$d(\delta_n(t), G^*(t)) \to 0 \text{ for } n \to \infty$$

hence, by Lemma 3.2., $\psi(t) \subset \partial V(x(t)) \cap B(0, \alpha(t))$.

Let $\sigma(\cdot)$ be a measurable selection of $\psi(\cdot)$ and set $h(t) := \dot{x}(t) + \sigma(t) - f(t, x(t))$. Then $\sigma(\cdot)$, and also h(.), belong to $L^2([0, T], \mathbb{R}^n)$, and by definition of G, we have that $h(t) \in F(x(t))$.

Therefore $\dot{x} = -\sigma(t) + h(t) + f(t, x(t)) \in -\partial V(x(t)) + h(t) + f(t, x(t))$ and the proof is complete.

REFERENCES

- Ancona F., Colombo G., Existence of solutions for a class of non-convex differential inclusions, to appear on Rend. Sem. Mat. Univ. Padova, 83 (1990), 71-76.
- [2] Attouch H., Damlamian D., On multivalued evolution equations in Hilbert spaces, Isr. J. Math. 12 (1972), 373-390.
- [3] Aubin J.P., Cellina A., Differential inclusions, Berlin: Springer, 1984.
- [4] Bressan A., Cellina A., Colombo G., Upper semicontinuous differential inclusions without convexity, Proc. A.M.S. 106 (1989), 771-775.
- [5] Brezis H., Operateurs maximaux monotones et semigrouppes de contractions dans les espaces de Hilbert, Amsterdam : North-Holland, 1973.
- [6] Brezis H., Analyse fonctionnelle, théorie et applications, Paris: Masson, 1983.
- [7] Castaing C., Valadier M., Convex Analysis and measurable multifunctions, Lecture Notes in Math. 580. Berlin: Springer, 1977.
- [8] Cellina A., Staicu V., On evolution equations having monotonicities of opposite sign, J. Differ. Equat. 90 (1991), 71-80.

[9] Yosida K., Functional Analysis, Berlin: Springer, 1980.

Vasile STAICU

International School for Advanced Studies, Strada Costiera 11, 34014 Trieste, Italy.

Lavoro pervenuto in redazione il 9.10.90 e, in forma definitiva, il 5.12.90

148