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Three Nontrivial Solutions for p-Laplacian Neumann
Problems with a Concave Nonlinearity Near the Origin

Sergiu Aizicovici, Nikolaos S. Papageorgiou, and Vasile Staicu

Abstract. We consider a nonlinear Neumann problem driven by the p-
Laplacian, with a right-hand side nonlinearity which is concave near the
origin. Using variational techniques, combined with the method of upper-lower
solutions and with Morse theory, we show that the problem has at least three
nontrivial smooth solutions, two of which have a constant sign (one positive
and one negative).

1. Introduction

Let Z ⊆ Rn be a bounded domain with a C2 boundary ∂Z. In this paper we
study the following nonlinear Neumann problem:

(1.1)




−4px (z) + β |x (z)|p−2

x (z) = f (z, x (z)) a.e. on Z,
∂x

∂n
= 0 on ∂Z.

Here 4px (z) = div
(
‖Dx (z)‖p−2

RN Dx (z)
)

, 2 ≤ p < ∞, is the p-Laplacian differen-
tial operator, β > 0 and f (z, x) is a Carathéodory nonlinearity. The aim of this
work is to prove a three solutions theorem for problem (1.1) , when the nonlinearity
f (z, .) exhibits a (p− 1)-sublinear behavior near the origin (concave nonlinearity).

Recently, there have been some multiplicity results for Neumann problems
driven by the p-Laplacian differential operator. We mention the works of Anello [4],
Binding-Drabek-Huang [6], Bonanno-Candito [7], Faraci [11], Filippakis-
Gasinski-Papageorgiou [12], Motreanu-Papageorgiou [20], Ricceri [24] and
Wu-Tan [28]. In Anello [4], Bonanno-Candito [7], Faraci [11] and Ricceri [24],
the authors consider nonlinear eigenvalue problems and prove the existence of mul-
tiple solutions when the nonlinearity is oscillating and the parameter belongs to
an open interval in R+. In these works, the key assumption is that p > N (low
dimensional problem), which implies that the Sobolev space W 1,p (Z) is embedded

2000 Mathematics Subject Classification. 35J25, 35J70, 58E05.
Key words and phrases. p-Laplacian, concave nonlinearity, critical groups, Poincaré-Hopf
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compactly in C
(
Z

)
. The approach in all these papers is essentially similar, and

is based on an abstract variational principle due to Ricceri [23]. In Wu-Tan [28],
it is again assumed that p > N and the approach (which is variational) is based
on the critical point theory. Binding-Drabek-Huang [6] considered problems with
a particular right-hand side nonlinearity, of the form λa (z) |x|p−2

x + b (z) |x|q−2
x,

with a, b ∈ L∞ (Z) , λ ∈ R, 1 < p < N and 1 < q < p∗, where p∗ is the critical
Sobolev exponent given by

(1.2) p∗ =





Np

N − p
if p < N

+∞ if p ≥ N.

They prove the existence of one or two positive solutions.
Finally, we should also mention the recent work [1], which is concerned with

problem (1.1) with a p-superlinear potential F (z, x) =
∫ x

0
f (s, x) ds (where f (z, .)

satisfies the Ambrosetti-Rabinowitz condition). The authors prove multiplicity the-
orems, providing precise information about the sign of the solutions.

None of the aforementioned works treats nonlinearities which are concave near
the origin. Problems with concave nonlinearities were considered in the context of
semilinear problems (i.e., p = 2) or Dirichlet problems, by de Paiva-Massa [10],
Li-Wu-Zhou [16], Perera [21] and Wu-Yang [27]. For Dirichlet problems with
the p-Laplacian, we mention the work of Garcia Azorero-Manfredi-Peral Alonso
[13], where a nonlinear eigenvalue problem is considered, with a nonlinearity of
the form λ |x|r−2

x + |x|q−2
x, with λ > 0 and 1 < r < p < q < p∗ (concave-

convex nonlinearity). Their work extended earlier results for the semilinear case by
Ambrosetti-Brezis-Cerami [3].

Our approach here is different from all of the above works. It combines varia-
tional techniques with the method of upper-lower solutions and with Morse theory
(in particular, critical groups).

The rest of the paper is organized as follows. In Section 2 we present some
background material and some general auxiliary results, which we will need in the
sequel. In Section 3, employing variational arguments in combination with the
method of upper-lower solutions, we produce two nontrivial smooth solutions of
constant sign (one positive and the other negative). Finally, in Section 4, using
suitable tools from Morse theory, we establish the existence of a third nontrivial
smooth solution.

2. Background material

In the analysis of problem (1.1) we will use the following two spaces:

W 1,p
n (Z) =

{
x ∈ W 1,p (Z) : xk → x in W 1,p (Z) , xk ∈ C∞

(
Z

)
,
∂xk

∂n
= 0 on ∂Z

}

and

C1
n

(
Z

)
=

{
x ∈ C1

(
Z

)
:

∂x

∂n
= 0 on ∂Z

}
,

where by Z we denote the closure of the domain Z. Both are ordered Banach spaces,
with order cones given by

W+ =
{
x ∈ W 1,p

n (Z) : x (z) ≥ 0 a.e. on Z
}
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and, respectively,

C+ =
{
x ∈ C1

n

(
Z

)
: x (z) ≥ 0 for all z ∈ Z

}
.

We know that intC+ 6= ∅ (where int stands for the interior), with

intC+ =
{
x ∈ C+ : x (z) > 0 for all z ∈ Z

}
.

In what follows, by ‖.‖p we denote the norm of Lp (Z) (or Lp
(
Z,RN

)
), and by ‖.‖

the norm of W 1,p (Z) . The norm of W 1,p
n (Z) is also denoted by ‖.‖ .

The next result, (see, e.g., [1]), compares C1
n

(
Z

)
and W 1,p

n (Z)-local minimizers
for a large class of energy functionals. It extends to earlier results of Neumann
problems by Brezis-Nirenberg [8] (for p = 2) and by Garcia Azorero-Manfredi-Peral
Alonso [13] (for p 6= 2), which were concerned with Dirichlet boundary conditions.

So, consider a nonlinearity f̂ : Z × R→R satisfying the following hypotheses:

(H0) (i) for all x ∈ R, z → f̂ (z, x) is measurable;
(ii) for almost all z ∈ Z, x → f̂ (z, x) is continuous;

(iii) for almost all z ∈ Z and all x ∈ R,
∣∣∣f̂ (z, x)

∣∣∣ ≤ â (z) + ĉ |x|r−1
,

where â ∈ L∞ (Z)+, ĉ > 0 and 1 < r < p∗, with p∗ defined by (1.2) .

Let F̂ (z, x) =
∫ x

0
f̂ (z, s) ds and consider the functional ϕ̂ : W 1,p

n (Z) → R
defined by

ϕ̂ (x) =
1
p
‖Dx‖p

p −
∫

Z

F̂ (z, x (z)) dz for all x ∈ W 1,p
n (Z) .

Evidently ϕ̂ ∈ C1
(
W 1,p

n (Z)
)
.

Proposition 1. Let (H0) be satisfied. If x0 ∈ W 1,p
n (Z) is a local C1

n

(
Z

)
-

minimizer of ϕ̂, i.e., there exists ρ1 > 0 such that

ϕ̂ (x0) ≤ ϕ̂ (x0 + h) for all h ∈ C1
n

(
Z

)
, ‖h‖C1

n(Z) ≤ ρ1,

then x0 ∈ C1
n

(
Z

)
and it is a local W 1,p

n (Z)-minimizer of ϕ̂, i.e., there exists ρ2 > 0
such that

ϕ̂ (x0) ≤ ϕ̂ (x0 + h) for all h ∈ W 1,p
n (Z) , ‖h‖ ≤ ρ2.

Next let us recall the notions of upper and lower solutions for problem (1.1) .

Definition 1. (a) An upper solution for problem (1.1) is a function x ∈ C1
(
Z

)
such that

∂x

∂n
≥ 0 on ∂Z

and ∫

Z

‖Dx‖p−2
RN (Dx,Dh)RN dz + β

∫

Z

|x|p−2
xhdz ≥

∫

Z

f (z, x)hdz

for all h ∈ W+. We say that x is a strict upper solution for problem (1.1) , if it is
an upper solution but it is not a solution of (1.1) .

(b) A lower solution for problem (1.1) is a function x ∈ C1
(
Z

)
such that

∂x

∂n
≤ 0 on ∂Z
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and ∫

Z

‖Dx‖p−2
RN (Dx,Dh)RN dz + β

∫

Z

|x|p−2
xhdz ≤

∫

Z

f (z, x)hdz

for all h ∈ W+. We say that x is a strict lower solution, if it is a lower solution but
it is not a solution of (1.1) .

Now, let us recall some basic notions and results from Morse theory, which we
will need to produce the third nontrivial smooth solution for problem (1.1) .

Let X be a Banach space and ϕ ∈ C1 (X) . For every c ∈ R, we set

ϕc = {x ∈ X : ϕ (x) ≤ c} , (the sublevel set of ϕ at c),

K = {x ∈ X : ϕ′ (x) = 0} , (the critical set of ϕ),
and

Kc = {x ∈ K : ϕ (x) = c} (the critical set of ϕ at level c ∈ R).
Let Y be a subspace of a Hausdorff topological space V and let n ≥ 0 be an integer.
By Hn (V, Y ) we denote the nth-singular homology group of the pair (V, Y ) with
integer coefficients. If x0 ∈ X is an isolated critical point of ϕ with ϕ (x0) = c, then
the critical groups of ϕ at x0 are defined by

Cn (ϕ, x0) = Hn (ϕc ∩ U, (ϕc ∩ U) \ {x0}) , n ≥ 0,

where U is a neighborhood of x0 such that K ∩ ϕc ∩ U = {x0} . By the excision
property of the singular homology theory, we infer that the above definition of
critical groups is independent of U (see Chang [9], and Mawhin-Willem [18]).

In what follows, we assume that ϕ satisfies the usual PS-condition. Namely, if
{xn}n∈N ⊆ X is a sequence such that |ϕ (xn)| ≤ M for some M > 0 and all n ≥ 1,
and ϕ′ (xn) → 0 in X∗, then {xn}n∈N has a strongly convergent subsequence (see
[9, p. 20], [14, p. 611], and [18, p. 81]).

Assume that −∞ < inf ϕ (K) and let c < inf ϕ (K) . Then, the critical groups
of ϕ at infinity are defined by

Cn (ϕ,∞) = Hn (H, ϕc) for all n ≥ 0,

(see Bartsch-Li [5]). The deformation lemma (see, for example, [9, p. 21]) implies
that this definition is independent of the choice of c. If ϕ ∈ C1 (X) and K = {x0} ,
then Morse theory implies that

Cn (ϕ, x0) = Cn (ϕ,∞) for all n ≥ 0.

In particular, if x0 is an isolated critical point of ϕ and Cn (ϕ, x0) 6= Cn (ϕ,∞) for
some n ≥ 0, then ϕ must have another critical point, distinct from x0. Moreover,
if K is finite, then the Morse type numbers of ϕ are defined by

Mn =
∑

x∈K

rank Cn (ϕ, x) , n ≥ 0,

and the Betti-type numbers of ϕ, are defined by

βn = rank Cn (ϕ,∞) , n ≥ 0.

By Morse theory (see Bartsch-Li [5], Chang [9], and Mawhin-Willem [18]), we have
the Poincaré-Hopf formula

(2.1)
∑

n≥0

(−1)n
Mn =

∑

n≥0

(−1)n
βn.
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The next result is useful in the computation of critical groups at infinity. It is
related to Lemma 2.4 of Perera-Schechter [22], where X is a Hilbert space.

Proposition 2. Let (X, ‖.‖) be a Banach space of dual (X∗, ‖.‖∗) and let
(t, x) → ϕt (x) be a function in C1 ([0, 1]×X) , such that x → ϕ′t (x) and x →
∂tϕt (x) are both locally Lipschitz. (Here by ϕ′t (x) we denote the Frechet derivative
of x → ϕt (x) and by ∂tϕt the derivative of t → ϕt (x) .) If we can find R > 0 such
that

(2.2) inf {‖ϕ′t (x)‖∗ : t ∈ [0, 1] , ‖x‖ > R} > 0

and

(2.3) ξR := inf {ϕt (x) : t ∈ [0, 1] , ‖x‖ ≤ R} > −∞,

then for all c < ξR, the set ϕc
0 is homemorphic to a subset of ϕc

1.

Proof. Note that by virtue of (2.2) , for every t ∈ [0, 1] , we have

(2.4) Kt = {x ∈ X : ϕ′t (x) = 0} ⊆ BR,

with BR = {x ∈ X : ‖x‖ ≤ R} . Because of (2.4) and since by hypothesis ϕ ∈
C1 ([0, 1]×X), it follows (see, for example, [18, p. 127]) that there exists a pseudo-
gradient vector field v̂ = (v0, v) : [0, 1]× (

X\BR

) → [0, 1]×X corresponding to ϕ.
Recalling the construction of the pseudogradient vector field in Chang [9, p. 19],
we see that we can take v0 (t, x) = ∂tϕt (x) . By definition, the map (t, x) → vt (x)
is locally Lipschitz and in fact, for every t ∈ [0, 1] , vt is a pseudogradient vector
field corresponding to the function ϕt (see Chang [9, p. 19]). Hence, for every
(t, x) ∈ [0, 1]× (

X\BR

)
, we have

(2.5) 〈ϕ′t (x) , vt (x)〉 ≥ ‖ϕ′t (x)‖2∗ ,

where by 〈., .〉 we denote the duality brackets for the pair (X∗, X) . The map
w : [0, 1]× (

X\BR

) → X given by

(2.6) wt (x) = −|∂tϕt (x)|
‖ϕ′t (x)‖2∗

vt (x) ,

is well-defined and locally Lipschitz. Because of (2.3) , we can fix c ∈ R,

(2.7) c < inf {ϕt (x) : t ∈ [0, 1] , ‖x‖ ≤ R} ,

such that ϕc
0 6= ∅ or ϕc

1 6= ∅. (If no such c can be found, then

Cn (ϕ0,∞) = Cn (ϕ1,∞) = δn,0Z

and so we are done). Without any loss of generality, we may assume that ϕc
0 6= ∅

(the argument is similar if ϕc
1 6= ∅). Let y ∈ ϕc

0 and consider the Cauchy problem

(2.8)
d

dt
η (t) = wt (η (t)) for all t ∈ [0, 1] , η (0) = y.
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From the local existence theorem (see Gasinski-Papageorgiou [14, p. 618]), we know
that (2.8) , admits a local flow η (t) . On account of (2.5) , (2.6) and (2.8), we have

d

dt
ϕt (η (t)) =

〈
ϕ′t (η (t)) ,

d

dt
η (t)

〉
+ ∂tϕt (η (t))

= 〈ϕ′t (η (t)) , wt (η (t))〉+ ∂tϕt (η (t))

≤ − |∂tϕt (η (t))|+ ∂tϕt (η (t))
≤ 0.

Therefore, t → ϕt (η (t)) is decreasing and so we have ϕt (η (t)) ≤ ϕ0 (η (0)) =
ϕ0 (y) ≤ c (recall that y ∈ ϕc

0). Because of (2.7) , we have that ‖η (t)‖ > R.
Consequently, ϕ′t (η (t)) 6= 0 and so the flow η is in fact global. Moreover, it can be
reversed by replacing ϕt by ϕ1−t. Therefore, η (1) is a homeomorphism between ϕc

0

and a subset of ϕc
1. ¤

Let us recall the following notion from nonlinear operator theory. Let X be
a Banach space, X∗ its topological dual and as before, let 〈., .〉 denote the duality
brackets for the pair (X∗, X) .

Definition 2. A map A : X → X∗ is said to be of type (S)+ , if for every
sequence {xn}n≥1 ⊆ X such that xn

w−→ x in X and

lim sup
n→∞

〈A (xn) , xn − x〉 ≤ 0,

one has
xn → x in X.

(Here and in the sequel, we use “ w−→” to denote weak convergence).

Let X = W 1,p
n (Z) , X∗ = W 1,p

n (Z)∗ and consider the nonlinear operator
A : W 1,p

n (Z) → W 1,p
n (Z)∗ defined by

(2.9) 〈A (x) , y〉 =
∫

Z

‖Dx‖p−2
RN (Dx, Dy)RN dz for all x, y ∈ W 1,p

n (Z) .

The following result is well-known; see, e.g., [1].

Proposition 3. The nonlinear operator A : W 1,p
n (Z) → W 1,p

n (Z)∗ defined by
(2.9) is bounded, continuous, monotone and of type (S)+ .

Remark 1. In particular, A is maximal monotone and so, pseudomonotone,
as well (see Gasinski-Papageorgiou [14, p. 334]).

3. Solutions of constant sign

In this section, using variational techniques together with the method of upper-
lower solutions, we produce two nontrivial smooth solutions of constant sign, one
positive and the other negative. For this, we do not need the restriction p ≥ 2. So,
in this section, 1 < p < ∞.

The hypotheses on the nonlinearity f (z, x) are the following:
H (f) : f : Z × R→ R is a function such that f (z, 0) = 0 a.e. on Z and

(i) for all x ∈ R, z → f (z, x) is measurable;
(ii) for almost all z ∈ Z, x → f (z, x) is continuous;
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(iii) for every ρ > 0, there exists aρ ∈ L∞ (Z)+ such that

|f (z, x)| ≤ aρ (z) for a.a. z ∈ Z and all |x| ≤ ρ;

(iv) there exists θ ∈ L∞ (Z)+ such that θ (z) ≤ β a.e. on Z, with strict
inequality on a set of positive measure, and if F (z, x) =

∫ x

0
f (z, s) ds,

then

lim sup
|x|→∞

pF (z, x)
|x|p ≤ θ (z) uniformly for a.a. z ∈ Z;

(v) there exist δ > 0, r ∈ (1, p) and c0 > 0 such that

c0 |x|r ≤ F (z, x) for a.a. z ∈ Z and all |x| ≤ δ;

(vi) for almost all z ∈ Z, we have

f (z, x)x ≥ 0 for all x ∈ R (sign condition)

and

pF (z, x)− f (z, x) x > 0 for all x 6= 0.

Remark 2. Hypothesis H (f) (v) implies that the nonlinearity f (z, .) exhibits
an (r − 1)-sublinear growth near the origin (concave nonlinearity near the origin).
For example, the nonlinearity

f (x, x) = θ (z) |x|p−2
x + |x|r−2

x

with 1 < r < p and θ ∈ L∞ (Z)+ as in assumption H (f) (iv) satisfies hypotheses
H (f) .

First, we will produce a strict upper solution of (1.1) . By virtue of hypotheses
H (f) (iii) , (iv) and (vi) , given ε > 0, we can find ξε ∈ L∞ (Z)+ , ξε 6= 0 and ηε > 0
such that

(3.1) (θ (z) + ε)xp−1 + ξε (z)− f (z, x) ≥ ηε > 0 for a.a. z ∈ Z and all x ≥ 0.

To produce a strict upper solution for problem (1.1) , we will need the following
lemma, which underlines the significance of the nonuniform resonance hypothesis
H (f) (iv) .

Lemma 1. If θ ∈ L∞ (Z)+ , θ (z) ≤ β a.e. on Z, with strict inequality on a set
of positive measure, then there exists ξ̂0 > 0 such that

ψ (x) = ‖Dx‖p
p + β ‖x‖p

p −
∫

Z

θ (z) |x (z)|p dz ≥ ξ̂0 ‖x‖p for all x ∈ W 1,p (Z) .

Proof. Note that ψ ≥ 0. We argue by contradiction. So, suppose that the
lemma is not true. Exploiting the p-homogeneity of ψ, we can find a sequence
{xn}n∈N ⊆ W 1,p (Z) such that

‖xn‖ = 1 and ψ (xn) ↓ 0.

By passing to a suitable subsequence we may assume that

xn
w−→ x in W 1,p (Z) and xn → x in Lp (Z) .

Then we have
‖Dx‖p

p ≤ lim inf
n→∞

‖Dxn‖p
p , β ‖xn‖p

p → β ‖x‖p
p
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and ∫

Z

θ (z) |xn (z)|p dz →
∫

Z

θ (z) |x (z)|p dz.

So, in the limit as n →∞, we obtain

‖Dx‖p
p + β ‖x‖p

p ≤
∫

Z

θ (z) |x (z)|p dz.

Hence

(3.2) ‖Dx‖p
p ≤

∫

Z

(θ (z)− β) |x (z)|p dz ≤ 0,

therefore
x ≡ c ∈ R.

If c = 0, then ‖Dxn‖p → 0 and so xn → 0 in W 1,p (Z) , a contradiction to the fact
that ‖xn‖ = 1 for all n ≥ 1. So, c 6= 0. From (3.2) , we have

0 ≤ |c|p
∫

Z

(θ (z)− β) dz < 0,

again a contradiction. This proves the lemma. ¤

Proposition 4. If hypotheses H (f) hold, then problem (1.1) admits a strict
upper solution x ∈ intC+.

Proof. Consider the nonlinear operator K̂p : Lp (Z) → Lp′ (Z)
(

1
p + 1

p′ = 1
)

defined by
K̂p (x) (.) = |x (.)|p−2

x (.) for all x ∈ Lp (Z) .

Clearly K̂p is continuous and bounded (i.e., it maps bounded sets to bounded ones).
Moreover, by virtue of the compact embedding of W 1,p (Z) into Lp (Z) , it follows
that

Kp = K̂p |W 1,p(Z): W 1,p (Z) → W 1,p (Z)∗

is completely continuous (i.e., it is sequentially weakly-strongly continuous). There-
fore, by Remark 1, the map V : W 1,p (Z) → W 1,p (Z)∗ defined by

V (x) = A (x) + βKp (x)− (θ (.) + ε) Kp (x)

is pseudomonotone. Also, for every x ∈ W 1,p (Z) , we have

(3.3) 〈V (x) , x〉 = ‖Dx‖p
p + (β − ε) ‖x‖p

p −
∫

Z

θ (z) |x (z)|p dz ≥
(
ξ̂0 − ε

)
‖x‖p

(see Lemma 1). Choosing 0 < ε < ξ̂0, from(3.3) we infer that V is coercive. But
a pseudomonotone coercive operator is surjective (see Gasinski-Papageorgiou [14,
p. 336]). Therefore, we can find x ∈ W 1,p (Z) such that

(3.4) V (x) = A (x) + βKp (x)− (θ + ε)Kp (x) = ξε,

where ξε is as in (3.1) . Since ξε 6= 0, (3.4) implies that x 6= 0. Recall that

x = x+ − x−, with x+ = max {x, 0} and x− = −min {x, 0} .

On (3.4) we act with the test function −x− ∈ W 1,p
n (Z) and we obtain

∥∥Dx−
∥∥p

p
+ β

∥∥x−
∥∥p

p
−

∫

Z

θ (z)
∣∣x− (z)

∣∣p dz − ε
∥∥x−

∥∥p ≤ 0,
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hence

(3.5)
(
ξ̂0 − ε

) ∥∥x−
∥∥p ≤ 0

(see Lemma 1). Inasmuch as ε < ξ̂0, from (3.5) it follows that x− = 0, hence
x ≥ 0, x 6= 0. On account of (3.4) and the nonlinear Green identity (cf. Motreanu-
Papageorgiou [20]), we get

(3.6)





−4px (z) + βx (z)p−1 = (θ (z) + ε)x (z)p−1 + ξε (z) a.e. on Z,

∂x

∂n
= 0 on ∂Z.

From (3.6) and Theorem 7.1, p. 286 of Ladyzhenskaya-Uraltseva [15], we deduce
that x ∈ L∞ (Z) . Then, invoking Theorem 2 of Lieberman [17], we infer that
x ∈ C+.

Note that (3.6) implies

4px (z) ≤ βx (z)p−1 a.e. on Z.

Hence, by virtue of the nonlinear strong maximum principle of Vazquez [25], we
obtain x (z) > 0 for all z ∈ Z. Suppose that for some z0 ∈ ∂Z, we have x (z0) = 0.
Then, from Vazquez [25] (Theorem 5), it follows that

∂x

∂n
(z0) < 0,

which contradicts (3.6) . This proves that x (z) > 0 for all z ∈ Z, i.e., x ∈ intC+.
Because of (3.1) , we see that x ∈ intC+ is a strict upper solution for problem (1.1)
in the sense of Definition 1(a). ¤

Let g ∈ L∞ (Z) and consider the following Neumann problem

(3.7)




−4px (z) + β |x (z)|p−2

x (z) = g (z) a.e. on Z,
∂x

∂n
= 0 on ∂Z.

From the maximal monotonicity and coercivity of the operator x → A (x)+βKp (x) ,
we infer that the problem (3.7) has a solution S (g) ∈ W 1,p

n (Z) , which is unique
due to the strict monotonicity of the operator. Moreover, the nonlinear regularity
theory implies that S (g) ∈ C1

n

(
Z

)
. We examine the monotonicity properties of the

map g → S (g) .

Lemma 2. The map S : L∞ (Z) → C1
(
Z

)
is increasing, i.e., if g1 ≤ g2 in

L∞ (Z) , then S (g1) ≤ S (g2) in C1
(
Z

)
.

Proof. Suppose that g1, g2 ∈ L∞ (Z) and assume that g1 ≤ g2 in L∞ (Z)
(i.e., g1 (z) ≤ g2 (z) a.e. on Z). Set x1 = S (g1) , x2 = S (g2) . Then

A (x1) + βKp (x1) = g1 and A (x2) + βKp (x2) = g2.

We have〈
A (x2)−A (x1) , (x1 − x2)

+
〉

+ β

∫

{x1>x2}

(
|x2|p−2

x2 − |x1|p−2
x1

)
(x1 − x2) dz

=
∫

Z

(g2 − g1) (x1 − x2)
+

dz

≥ 0;
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hence ∫

{x1>x2}

(
‖Dx2‖p−2

RN Dx2 − ‖Dx1‖p−2
RN Dx1, Dx1 −Dx2

)
Rn

dz

+ β

∫

{x1>x2}

(
|x2|p−2

x2 − |x1|p−2
x1

)
(x1 − x2) dz(3.8)

≥ 0.

But, due to the strict monotonicity of the map RN 3 ξ → ‖ξ‖p−2
RN ξ and R 3 y →

|y|p−2
y, the left hand side of (3.8) is strictly negative, a contradiction unless

|{x1 > x2}|N = 0,

where by |.|N we denote the Lebesgue measure on RN . Hence x1 ≤ x2. ¤

Note that x ≡ 0 is a solution of the problem (1.1) . We truncate the nonlinearity
f (z, x) at the pair {0, x} , namely, we introduce

f̂+ (z, x) =





0 if x ≤ 0

f (z, x) if 0 ≤ x ≤ x (z)

f (z, x (z)) if x (z) ≤ x.

Evidently, f̂+ (z, x) is a Carathédory function, i.e., for all x ∈ R, z → f̂+ (z, x) is
measurable and for almost all z ∈ Z, x → f̂+ (z, x) is continuous. We set

F̂+ (z, x) =
∫ x

0

f̂+ (z, s) ds

(the primitive of f̂+ (z, .)) and consider the functional ϕ̂+ : W 1,p
n (Z) → R defined

by

ϕ̂+ (x) =
1
p
‖Dx‖p

p +
β

p
‖x‖p

p −
∫

Z

F̂+ (z, x (z)) dz for all x ∈ W 1,p
n (Z) .

We also consider ϕ : W 1,p
n (Z) → R, the Euler functional for the problem (1.1) ,

defined by

ϕ (x) =
1
p
‖Dx‖p

p +
β

p
‖x‖p

p −
∫

Z

F (z, x (z)) dz for all x ∈ W 1,p
n (Z) .

Clearly, ϕ̂+, ϕ ∈ C1
(
W 1,p

n (Z)
)
.

Proposition 5. If hypotheses H (f) hold, then problem (1.1) admits a solution
x0 ∈ intC+, which is a local minimizer of ϕ.

Proof. Exploiting the compact embedding of W 1,p
n (Z) into Lp (Z) , we can

easily check that ϕ̂+ is sequentially weakly lower semicontinuous. Moreover, note
that we can find M1 > 0 such that∣∣∣∣

∫

Z

F̂+ (z, x (z)) dz

∣∣∣∣ ≤ M1 for all x ∈ W 1,p
n (Z) .

Hence ϕ̂+ is coercive. Invoking the theorem of Weierstrass (see [14, p. 711]), we
can find x0 ∈ W 1,p

n (Z) such that

(3.9) ϕ̂+ (x0) = inf
{
ϕ̂+ (x) : x ∈ W 1,p

n (Z)
}

.



NEUMANN PROBLEMS WITH A CONCAVE NONLINEARITY NEAR THE ORIGIN 11

We claim that x0 6= 0. To this end, let δ > 0 be as in hypothesis H (f) (v) and let
c ∈ (0, δ] . Then

ϕ̂+ (c) =
β

p
cp |Z|N −

∫

Z

F (z, c) dz

≤ β

p
cp |Z|N − c0c

r |Z|N (see hypothesis H (f) (v))(3.10)

= |Z|N cr

(
β

p
cp−r − c0

)
.

Since p > r, if we choose c ∈ (0, δ] small, then from (3.10) and (3.10) it follows that

ϕ̂+ (x0) ≤ ϕ̂+ (c) < 0;

hence

(3.11) x0 6= 0.

From (3.9) , we have
ϕ̂′+ (x0) = 0;

hence

(3.12) A (x0) + βKp (x0) = N̂+ (x0) ,

where N̂+ (x) (.) := f̂+ (., x (.)) for all x ∈ W 1,p
n (Z) . On (3.12) , we act with the

test function −x−0 ∈ W 1,p
n (Z) and obtain

γ0

∥∥x−0
∥∥ ≤ 0 with γ0 = min {β, 1} ;

hence
x−0 = 0, i.e., x0 ≥ 0, x0 6= 0 (see (3.11)).

From (3.12) it follows that

(3.13)




−4px0 (z) + βx0 (z)p−1 = f̂+ (z, x0 (z)) a.e. on Z,
∂x0

∂n
= 0 on ∂Z.

The nonlinear regularity theory implies that x0 ∈ C+. Due to the sign condition
(see hypothesis H (f) (vi)), we have

(3.14) f̂+ (z, x0 (z)) ≥ 0 a.e. on Z.

From (3.13) and (3.14) it follows that

4px0 (z) ≤ βx0 (z)p−1 a.e. on Z,

which, by virtue of the nonlinear maximum principle of Vazquez [25], implies that

x0 ∈ intC+.

From Proposition 4 we know that x ∈ intC+ is a strict upper solution for problem
(1.1) . So, according to Definition 1(a), we have

(3.15) A (x) + βKp (x) > N (x) = N̂+ (x0) in W 1,p
n (Z)∗ ,

where N (x) (.) = f (., x (.)) for all x ∈ W 1,p
n (Z) . From (3.12) and (3.15) we obtain

(3.16) A (x)−A (x0) + β (Kp (x)−Kp (x0)) > N̂+ (x)− N̂+ (x0) in W 1,p
n (Z)∗ .
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On (3.16) , we act with the test function (x0 − x)+ ∈ W 1,p
n (Z) . Then, arguing as

in the proof of Lemma 2, we infer that

|{x0 > x}|N = 0,

therefore
x0 ≤ x.

Hence (3.13) becomes


−4px0 (z) + βx0 (z)p−1 = f (z, x0 (z)) a.e. on Z,
∂x0

∂n
= 0 on ∂Z.

Let 0 < δ < minZ x and consider vδ = x− δ ∈ intC+. Then

(3.17) −4pvδ (z) + βvδ (z)p−1 ≥ −4px (z) + βx (z)p−1 − σ (δ) ,

with σ ∈ C (R+) , σ ≥ 0 and σ (δ) → 0+ as δ → 0+. Choosing δ > 0 small and
using (3.1) , we have

(3.18) (θ (z) + ε)x (z)p−1 + ξε (z)− σ (δ) ≥ f (z, x0 (z)) +
ηε

2
for a.a. z ∈ Z.

From (3.6) , (3.17) and (3.18) , it follows that for δ > 0 small, we have

hδ (z) = −4pvδ (z) + βvδ (z)p−1(3.19)

> f (z, x0 (z)) = −4px0 (z) + βx0 (z)p−1 a.e. on Z.

Since hδ, f (., x0 (.)) ∈ L∞ (Z) , from (3.19) and Lemma 2 we infer that for δ > 0
small

x0 (z) ≤ vδ (z) for all z ∈ Z.

Hence
x (z)− x0 (z) ≥ δ > 0 for all z ∈ Z,

therefore
x− x0 ∈ intC+.

Inasmuch as x0 ∈ intC+, we can find r > 0 small such that

ϕ̂+ |
B

C1
0(Z)

r (x0)
= ϕ |

B
C1

0(Z)
r (x0)

;

hence x0 ∈ intC+ is a local C1
n

(
Z

)
-minimizer of ϕ. Invoking Proposition 1, we

conclude that x0 ∈ intC+ is a local W 1,p
n (Z)-minimizer of ϕ, and of course it solves

problem (1.1) . ¤
We repeat the same process on the negative half-axis. So, because of hypotheses

H (f) (iii) , (iv) and (vi) , given ε > 0, we can find γε ∈ L∞ (Z)+ , γε 6= 0 and η̂ε > 0
such that

(3.20) (θ (z) + ε) |x|p−2
x− γε (z) ≤ f (z, x)− η̂ε for a.a. z ∈ Z and all x ≤ 0.

We consider the following auxiliary Neumann problem

(3.21)





−4pv (z) + β |v (z)|p−2
v (z)

= (θ (z) + ε) |v (z)|p−2
v (z)− γε (z) a.e. on Z,

∂v

∂n
= 0 on ∂Z.

Arguing as in the proof of Proposition 4, we can find v ∈ − intC+, a solution of
problem (3.21) . By virtue of (3.20) , we see that v is a strict lower solution for
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problem (1.1) . Then, truncating the nonlinearity f (z, .) at the points {v (z) , 0}
and reasoning as in the proof of Proposition 5, we obtain:

Proposition 6. If hypotheses H (f) hold, then problem (1.1) admits a solution
v0 ∈ − intC+ which is a local minimizer of ϕ

Combining Propositions 5 and 6, we can summarize the results of this section
in the following Theorem.

Theorem 1. If hypotheses H (f) hold, then problem (1.1) admits two constant
sign smooth solutions x0 ∈ intC+ and v0 ∈ − intC+, which are local minimizers of
the Euler functional ϕ.

4. A third smooth solution

In this section, using Morse theory, we produce a third nontrivial smooth solu-
tion for problem (1.1) . Note that the Euler functional ϕ satisfies the PS-condition,
as one can easily verify.

In view of Theorem 1 and recalling the characterization of the critical group
of a C1-functional at a local minimizer (see Chang [9, p. 33] and Mawhin-Willem
[18, p. 175]), we have:

Proposition 7. If hypotheses H (f) hold, then Ck (ϕ, x0) = Ck (ϕ, v0) = δk,0Z
for all k ≥ 0.

Next we compute the critical groups of ϕ at x = 0. Our approach is inspired
by the semilinear works of Moroz [19] and Wang [26].

Proposition 8. If hypotheses H (f) hold, then Ck (ϕ, 0) = 0 for all k ≥ 0.

Proof. By virtue of hypotheses H (f) (iii) , (v) and (vi) , we have

(4.1) F (z, x) ≥ c1 |x|r − c2 |x|p for a.a. z ∈ Z and all x ∈ R,

with c1, c2 > 0. Then for t > 0 and x ∈ W 1,p
n (Z) , x 6= 0,

ϕ (tx) =
tp

p
‖Dx‖p

p +
tpβ

p
‖x‖p

p −
∫

Z

F (z, tx (z)) dz(4.2)

≤ tp

p
γ1 ‖x‖p + tpc2 ‖x‖p

p − trc1 ‖x‖r
r

with γ1 = max {β, 1} (see (4.1)). Because r < p, from (4.2) it follows that there
exists t0 = t0 (x) ∈ (0, 1) such that

(4.3) ϕ (tx) < 0 for all t ∈ (0, t0) .

Next we show that for every x 6= 0

(4.4)
d

dt
ϕ (tx) >

p

t
ϕ (tx) for all t > 0.
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To this end, we remark that

d

dt
ϕ (tx) = 〈ϕ′ (tx) , x〉

= 〈A (tx) , x〉+ βtp−1

∫

Z

|x|p dz −
∫

Z

f (z, tx) xdz

= tp−1
(
‖Dx‖p

p + β ‖x‖p
p

)
− 1

t

∫

Z

f (z, tx) txdz

=
p

t

[
tp

p

(
‖Dx‖p

p + β ‖x‖p
p

)
− 1

p

∫

Z

f (z, tx) txdz

]

>
p

t

[
tp

p

(
‖Dx‖p

p + β ‖x‖p
p

)
−

∫

Z

F (z, tx) dz

]
(see H (f) (vi))

=
p

t
ϕ (tx) ,

which proves (4.4) .
We assume that the origin is an isolated critical point of ϕ, or otherwise we

have a whole sequence of distinct solutions of (1.1), and so, we are done. Let ρ > 0
be small such that K∩Bρ = {0} , where K =

{
x ∈ W 1,p

n (Z) : ϕ′ (x) = 0
}

and Bρ ={
x ∈ W 1,p

n (Z) : ‖x‖ < ρ
}

. We show that for any x ∈ ϕ0∩Bρ, we have tx ∈ ϕ0∩Bρ

for all t ∈ [0, 1] (recall that ϕ0 =
{
x ∈ W 1,p

n (Z) : ϕ (x) ≤ 0
}
). We argue indirectly.

So, suppose that for some t0 ∈ (0, 1), we have ϕ (t0x) > 0. Then, by continuity, there
exists t1 ∈ (t0, 1] such that ϕ (t1x) = 0. We take t1 = min {t ∈ [t0, 1] : ϕ (tx) = 0} .
Hence, ϕ (tx) > 0 for all t ∈ [t0, t1) and so

(4.5)
d

dt
ϕ (tx) |t=t1≤ 0.

From (4.4) and (4.5) , we have

0 =
p

t1
ϕ (t1x) <

d

dt
ϕ (tx) |t=t1≤ 0,

a contradiction. This proves that for all x ∈ ϕ0∩Bρ and all t ∈ [0, 1] , tx ∈ ϕ0∩Bρ.
Therefore, for every t ∈ [0, 1] , the map x → h (t, x) = (1− t) x maps ϕ0 ∩ Bρ into
itself. Clearly, (t, x) → h (t, x) is continuous and h (0, x) = x for all x ∈ ϕ0 ∩ Bρ.
Hence h is a continuous deformation of ϕ0 ∩ Bρ to itself and so, we conclude that
ϕ0 ∩Bρ is contractible into itself.

Next, we show that
(
ϕ0 ∩Bρ

) \ {0} is contractible in itself. For this purpose,
we introduce the map T : Bρ\ {0} → (0, 1] by

T (x) =
{

1 if x ∈ (
ϕ0 ∩Bρ

) \ {0}
t if x ∈ Bρ\ {0} with ϕ (tx) = 0, t ∈ (0, 1) .

From (4.3) and (4.4) it is clear that the map T is well-defined and, if ϕ (x) > 0,
then there exists a unique T (x) ∈ (0, 1) such that ϕ (tx) < 0 for all t ∈ (0, T (x)) ,
ϕ (T (x)x) = 0 and ϕ (tx) > 0 for all t ∈ (T (x) , 1] . Also, we have

d

dt
ϕ (tx) |t=T (x)>

p

T (x)
ϕ (T (x)x) = 0 (see (4.4)).
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Invoking the implicit function theorem, we infer that x → T (x) is continuous. Let
ĥ : Bρ\ {0} →

(
ϕ0 ∩Bρ

) \ {0} be defined by

ĥ (x) =
{

T (x)x if x ∈ Bρ\ {0} , ϕ (x) ≥ 0
x if x ∈ Bρ\ {0} , ϕ (x) < 0.

The continuity of T implies the continuity of ĥ (note that T (x) = 1 for all x ∈
Bρ\ {0} with ϕ (x) = 0). Clearly ĥ |ϕ0∩Bρ

= id |ϕ0∩Bρ
, hence ĥ is a retraction and

so
(
ϕ0 ∩Bρ

) \ {0} is a retract of Bρ\ {0} . Because W 1,p
n (Z) is infinite dimensional,

Bρ\ {0} is contractible in itself. Recall that retracts of contractible spaces are
contractible too. Therefore, we infer that

(
ϕ0 ∩Bρ

) \ {0} is contractible in itself.
Consequently, from Mawhin-Willem [18, p. 172], we have

Ck (ϕ, 0) = Hk

(
ϕ0 ∩Bρ,

(
ϕ0 ∩Bρ

) \ {0}) for all k ≥ 0.

¤

Next, using Proposition 2, we will compute the critical groups at infinity for
the functional ϕ. Here we will need the restriction p ≥ 2.

Proposition 9. If hypotheses H (f) hold and 2 ≤ p < ∞, then

Ck (ϕ,∞) = δk,0Z for all k ≥ 0.

Proof. We consider the functions

(t, x) → ϕt (x) =
1
p
‖Dx‖p

p +
β

p
‖x‖p

p − (1− t)
∫

Z

F (z, x (z)) dz,

for all (t, x) ∈ [0, 1] × W 1,p
n (Z) . Clearly x → ∂tϕt (x) is locally Lipschitz. Also

ϕ′t (x) = Ax+βKp (x)−tN (x) . Since we assume 2 ≤ p < ∞, we see that x → ϕ′t (x)
is locally Lipschitz too. In order to apply Proposition 2 we need to verify (2.2)
and (2.3) . Clearly, (2.3) holds. So, it remains to check (2.2) . We proceed by
contradiction. So, suppose that (2.2) is not true. Then we can find sequences
{tn}n≥1 ⊆ [0, 1], {xn}n≥1 ⊆ W 1,p

n (Z) such that

tn → t, ‖xn‖ → ∞ and ϕ′tn
(xn) → 0 in W 1,p

n (Z)∗ .

Then ∣∣〈ϕ′tn
(xn) , u

〉∣∣ ≤ εn ‖u‖ for all u ∈ W 1,p
n (Z) , with εn ↓ 0.

Let yn = xn

‖xn‖ , n ≥ 1. By passing to a suitable subsequence if necessary, we may
assume that

yn
w−→ y in W 1,p

n (Z) and yn → y in Lp (Z) .

We have

(4.6)

∣∣∣∣∣〈A (yn) , u〉+ β
∫

Z
|yn|p−2

ynudz − (1− tn)
∫

Z

N (xn)
‖xn‖p−1 udz

∣∣∣∣∣
≤ εn ‖u‖ for all u ∈ W 1,p

n (Z) .

Hypotheses H (f) (iii) , (iv) imply that
{

N(xn)

‖xn‖p−1

}
n≥1

⊆ Lp′ (Z) ( 1
p + 1

p′ = 1) is

bounded. So, setting u = yn − y in (4.6) , we have

β

∫

Z

|yn|p−2
yn (yn − y) dz → 0 and

∫

Z

N (xn)
‖xn‖p−1 (yn − y) dz → 0 as n →∞.
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From (4.6) it follows that

lim
n→∞

〈A (yn) , yn − y〉 = 0.

Invoking Proposition 3 we have that

(4.7) yn → y in W 1,p
n (Z) ,

hence

(4.8) ‖y‖ = 1 and so y 6= 0.

Reasoning as in the proof of Proposition 14 in Aizicovici-Papageorgiou-Staicu [2],
we can show that

(4.9) hn =
N (xn)
‖xn‖p−1

w−→ h in Lp′ (Z) , with h = g |y|p−2
y, g ∈ L∞ (Z)+ , g ≤ θ.

Passing to the limit as n →∞ in (4.6) and using (4.7) and (4.9) , we obtain

(4.10) 〈A (y) , u〉+ β

∫

Z

|y|p−2
yudz = (1− t)

∫

Z

g |y|p−2
yudz.

Since u ∈ W 1,p
n (Z) is arbitrary, from (4.10) it follows that

A (y) + βKp (y) = (1− t) gKp (y) .

Because tg ≤ θ, using Lemma 1, we have

ξ̂0 ‖y‖p ≤ 0, hence y = 0,

a contradiction to (4.8) . Therefore (2.2) holds for some R > 0. Applying Proposi-
tion 2, we can say that for c < ξR, ϕc

0 is homeomorphic to a subset of ϕc
1. But note

that by virtue of hypothesis H (f) (vi) , ϕ0 ≤ ϕ1, hence ϕc
1 ⊆ ϕc

0. Therefore, ϕc
0 and

ϕc
1 are homeomorphic, and so

(4.11) Ck (ϕ0,∞) = Ck (ϕ1,∞) for all k ≥ 0.

Note that

ϕ0 (x) = ϕ (x) and ϕ1 (x) =
1
p
‖Dx‖p

p +
β

p
‖x‖p

p for all x ∈ W 1,p
n (Z) .

Clearly, ϕ1 has only one critical point x = 0 and it is a global minimizer. Hence

(4.12) Ck (ϕ1,∞) = Ck (ϕ1, 0) = δk,0Z for all k ≥ 0.

Since ϕ0 = ϕ, from (4.11) and (4.12) , we conclude that

Ck (ϕ,∞) = δk,0Z for all k ≥ 0.

¤

Now we are ready for the three solutions theorem for problem (1.1) .

Theorem 2. If hypotheses H (f) hold and 2 ≤ p < ∞, then problem (1.1) has at
least three nontrivial smooth solutions x0 ∈ intC+, v0 ∈ − intC+ and y0 ∈ C1

n

(
Z

)
.

Proof. From Theorem 1, we already have two nontrivial smooth solutions of
constant sign, namely, x0 ∈ intC+ and v0 ∈ − intC+. Suppose that 0, x0 and v0

are the only critical points of ϕ. Then from the Poincaré-Hopf fomula (see (2.1))
and Propositions 7, 8 and 9, we have

(−1)0 + (−1)0 = (−1)0 ;
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hence (−1)0 = 0, a contradiction. This shows that there must be a fourth critical
point y0 ∈ W 1,p

n (Z) of ϕ, distinct from 0, x0 and v0. Evidently, y0 is a solution of
(1.1) , and as before, the nonlinear regularity theory implies that y0 ∈ C1

n

(
Z

)
. ¤

Remark 3. In fact, with some additional effort, our work can be extended to
the case when in (1.1), the p-Laplacian is replaced by a more general operator of
the form div a (z, Dx (z)) , with a (z, y) = DyG (z, y) , where G : Z × RN → R is
measurable in z ∈ Z, of class C1 and convex in y ∈ RN , and satisfies (for all z ∈ Z,
y ∈ RN )

(a (z, y) , y)RN ≤ p G (z, y) and G (z, y) ≥ c ‖y‖p for some c > 0.

Details will appear in a forthcoming paper.
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