
Universidade de Aveiro
Departamento de
Electrónica, Telecomunicações e Informática.

2010

Carlos Miguel
Martins de Campos

Sobre-Reserva em Redes com Controlo
Centralizado e Distribuído





Universidade de Aveiro
Departamento de
Electrónica, Telecomunicações e Informática.

2010

Carlos Miguel
Martins de Campos

Sobre-Reserva em Redes com Controlo
Centralizado e Distribuído

Dissertação apresentada à Universidade de Aveiro para cumprimento
dos requisitos necessários à obtenção do grau de Mestre em Enge-
nharia Electrónica, realizada sob a orientação científica da Professora
Doutora Susana Isabel Barreto de Miranda Sargento, Professora Au-
xiliar do Departamento de Electrónica, Telecomunicações e de Infor-
mática (DETI) da Universidade de Aveiro, e co-orientação do Professor
Doutor Augusto José Venâncio Neto, Professor adjunto do Instituto de
Informática da Universidade Federal de Goiás, Brasil, e colaborador no
Instituto de Telecomunicações de Aveiro.





o júri / the jury

presidente / president Professor Doutor Aníbal Manuel Oliveira Duarte
Professor Catedrático do Departamento de Electrónica, Telecomunicações e
Informática da Universidade de Aveiro

vogais / examiners committee Professora Doutora Susana Isabel Barreto de Miranda Sargen to
Professora Auxiliar do Departamento de Electrónica, Telecomunicações e In-
formática da Universidade de Aveiro

Professor Doutor Rui Pedro de Magalhães Claro Prior
Professor Auxiliar do Departamento de Ciências e Computadores da Facul-
dade de Ciências da Universidade do Porto





agradecimentos /
acknowledgements

Quero agradecer de forma especial aos meus pais, que sempre me
apoiaram e ajudaram. É devido ao esforço deles que hoje acabo esta
etapa da minha vida. Agradeço também à minha avó, pelo carinho
e apoio que deu sempre, ao longo da vida. Aos meus irmãos, que
estiveram sempre presentes, muito obrigado.

Agradeço carinhosamente à minha namorada pela sua enorme paciên-
cia, compreensão e encorajamento. Por me apoiar nos momentos difí-
cies e por me fazer ver os meus erros, nunca deixando de estar sempre
do meu lado.

Quero agradecer à minha orientadora, Prof. Dra. Susana Sargento,
pela sua permanente disponibilidade e por me mostrar sempre o me-
lhor caminho. Agradeço ao Tiago Condeixa pela importante ajuda dada
com o simulador usado neste trabalho. Sem ele, teria tido muitas di-
ficuldades adicionais. Agradeço em especial ao Evariste Logota pela
grande ajuda e motivação que me deu. O bom planeamento da parte
teórica que ele fez, contribuiu para melhorar a plataforma final desta
dissertação. Aprendi muito com ele, tanto a nivél técnico como pes-
soal. Foi muito importante para a realização deste trabalho.

Agradeço a todos os meus amigos, não só pela ajuda e preocupação
extra neste último ano, mas por tudo ao longo deste “nosso” percurso
académico. Foram e continuarão a ser uma parte importante da minha
vida.





palavras-chave SOMEN, COR, A-COR, QoS, CoS, controlo distribuído, sobre-reserva

resumo As redes de futura geração são esperadas vir a suportar novas
funcionalidades (escalonamento, qualidade de serviço, muticast) so-
bre tecnologias de transporte heterogéneas, com suporte para muitos
utilizadores simultaneamente e a um custo razoável. Neste sentido,
esforços de investigação recentes afirmam que o uso de mecanis-
mos de sobre-reserva em redes com classes de serviço é promissor,
pois permite a optimização do desempenho global da rede, uma vez
que possibilita tratar agregados de fluxos simultaneamente. No en-
tanto, as propostas existentes enfrentam vários problemas de eficiên-
cia, onde existe desperdício de largura de banda e, portanto, o au-
mento desnecessário da probabilidade de bloqueio da sessão.

Por outro lado, a crescente utilização da Internet, faz com que me-
canismos centralizados fiquem sobrecarregados, ocorrendo cada vez
mais falhas. Embora os mecanismos centralizados possam ser mais
fáceis de gerir, deixam muito a desejar em comparação com sistemas
distribuídos. A descentralização permite a execução simultânea de o-
perações em entidades diferentes através de uma rede, conseguindo
um melhor desempenho. No entanto, exige a sincronização de infor-
mações de controlo para evitar decisões erradas e incompatíveis.

Esta dissertação implementa e testa uma plataforma que usa mecan-
ismos de sobre-reserva de recursos dinamicamente (COR, A-COR),
que permitem gerir agregados de fluxos assegurando requisitos de
qualidade de serviço, tanto num cenário de controlo centralizado como
distribuído, e suporte para multicast e balanceamento de carga. Par-
ticularmente, estes mecanismos levam em consideração a partilha de
interfaces pelos diversos caminhos da rede, melhorando a distribuição
de recursos disponíveis pelas diversas classes. Mais importante, tudo
é feito de forma dinâmica e apenas quando necessário para cada
interface na rede, melhorando a prestação global do serviço. Self-
Organization of Multiple Edge Nodes (SOMEN) opera de uma forma
distribuída permitindo que pontos chave na rede (CDP) operem em
conjunto para controlar os recursos da rede mantendo um nível baixo
de mensagens e processamento.
Os resultados obtidos por simulação demonstram que sobre-reserva
de recursos pode prevenir a violação dos requisitos de qualidade de
serviço enquanto minimiza significativamente a probabilidade de blo-
queio da sessão. Demonstram também que a distribuição do con-
trolo da rede é escalável para redes futuras, mantendo baixos níveis
de mensagens de sincronização.





keywords SOMEN, COR, A-COR, QoS, CoS, distributed control, Over-
provisioning

Abstract Future Networks are expected to support new features and capabili-
ties (scalability, Quality of Service (QoS), multicast) in order to provide
support for value added sessions (e.g. multimedia, personalized, hap-
tics, etc.) over heterogeneous transport technologies to many users
simultaneously, and at reasonable cost. Hence, recent research efforts
claim that class-based network resource over-provisioning is promis-
ing, since it allows minimizing undesired QoS control states, proces-
sing and signaling overheads to improve system overall performance.
However, existing proposals mostly waste bandwidth and therefore in-
crease session blocking probability unnecessarily while incurring QoS
violation. Besides, the increasing dependence on IT technologies is
making central controllers more and more bottlenecked while the net-
work infrastructures are subject to frequent failures. As an alternative,
decentralization allows simultaneous operations at distributed entities
throughout a network, achieving better performance. Nevertheless, it
must be correctly designed to assure a cost-effective synchronization
of the distributed decision points to prevent wrong and incompatible de-
cisions.
Keeping this in mind, this dissertation implements and provides a plat-
form to assess new mechanisms for dynamic aggregate QoS over-
reservations in both centralized and decentralized architectures with
support for multicasting and load balance. In particular, the mecha-
nisms improve the control of aggregated resources by taking commu-
nication paths correlation patterns and sessions requests into account
and efficiently distribute the shared surplus of reservations among exis-
ting Classes of Service (CoSs). More importantly, this is performed in
a dynamic manner for every outgoing interface inside a network upon
need, in a way that effectively allows system overall performance op-
timization. Moreover, a decentralization control approach, assuring an
efficient Self-Organization of Multiple Edge Nodes (SOMEN) has also
been evaluated. Hence, multiple distributed network Control Decision
Points (CDPs) are enabled to cooperate and self-manage keeping low
control signaling, states and processing load.

The simulation results prove that efficient bandwidth over-reservation
can effectively prevent QoS violation while significantly minimizing the
waste of bandwidth and the unnecessary increase of session blocking
probability. Further, they show a cost-effective decentralization of the
control in current and future networks with low synchronization signa-
ling loads.





Contents

Contents i

List of Tables iii

List of Figures v

Acronyms vii

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 1

1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 2

1.3 Document Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 2

2 State of The Art 5
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 5

2.2 Multicast . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5

2.3 QoS Model and Bandwidth Over-Provisioning . . . . . . . . . . .. . . . . . . . . . 7

2.4 Network Decentralization Control . . . . . . . . . . . . . . . . . .. . . . . . . . . 9

3 Architecture 11
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 11

3.2 Distributed Architecture Overview . . . . . . . . . . . . . . . . .. . . . . . . . . . 12

3.3 Centralized Architecture Overview . . . . . . . . . . . . . . . . .. . . . . . . . . . 13

3.4 Functionalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 14

3.4.1 Dynamic Filtering Functions (DFF) . . . . . . . . . . . . . . . .. . . . . . 14

3.4.2 Dynamic Threshold Synchronization Functions (DTSF). . . . . . . . . . . 19

3.4.3 Flow Re-Routing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21

3.5 Bandwidth Over-Reservation Algorithms . . . . . . . . . . . . .. . . . . . . . . . 24

3.5.1 COR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.5.2 A-COR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.6 Centralized Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 30

3.7 Distributed Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 32

3.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 35

i



4 Implementation 37
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 37

4.2 NS2 Simulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 37

4.3 Centralized Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 38

4.3.1 Network Initialization Phase . . . . . . . . . . . . . . . . . . . .. . . . . . 38

4.3.2 Normal Operation State . . . . . . . . . . . . . . . . . . . . . . . . . .. . 41

4.3.3 Admission Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 43

4.4 Distributed Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 45

4.4.1 Network Initialization Phase . . . . . . . . . . . . . . . . . . . .. . . . . . 45

4.4.2 Normal Operation State . . . . . . . . . . . . . . . . . . . . . . . . . .. . 46

4.5 Bandwidth Over-Reservation Algorithms . . . . . . . . . . . . .. . . . . . . . . . 48

4.6 Reservation Enforcement . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 49

4.7 Flow Re-Routing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 50

4.8 Multicast Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 53

4.9 Other Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 55

4.9.1 Releasing Request . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 55

4.9.2 Create Traffic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55

4.9.3 Compute Remaining BW . . . . . . . . . . . . . . . . . . . . . . . . . . . .56

4.9.4 Save Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 57

4.9.5 Auxiliary Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 57

4.10 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 57

5 Results 59
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 59

5.2 Simulation Scenario Details . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 59

5.3 Centralized Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 63

5.4 Distributed Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 71

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 82

6 Conclusion / Future Work 83

Bibliography 87

ii



List of Tables

2.1 IP Address Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 6

3.1 PATHS TableCDP1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 TOPOLOGY TableCDP1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3 CORRELATIONS TableCDP1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.4 LISTS TableCDP1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.5 VOPRS TableCDP1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.1 TCL Request Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 41

4.2 Relevant variables from methodFlowReRoute(). . . . . . . . . . . . . . . . . . . . 50

4.3 APT2 Table Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 53

4.4 MRIB for path 1–3–5–6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 54

4.5 MRIB for path 1–3–5–4–5–6 . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 54

4.6 Used BW Information in Temporary File . . . . . . . . . . . . . . . .. . . . . . . . 56

5.1 TCL Request Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 61

5.2 Constant Simulation Parameters . . . . . . . . . . . . . . . . . . . .. . . . . . . . 63

5.3 Constant Parameters – traffic simulations . . . . . . . . . . . .. . . . . . . . . . . 66

iii



iv



List of Figures

2.1 Unicast Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 7

2.2 Multicast Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 7

2.3 Centralized Network Diagram . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 9

2.4 Distributed Network Diagram . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 10

3.1 Example 1 Network Topology . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 13

3.2 Flow Re-Routing flow chart . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 23

3.3 COR flow chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27

3.4 A-COR flow chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 29

3.5 Centralized Scenario Normal Operation . . . . . . . . . . . . . .. . . . . . . . . . 31

3.6 Global SOMEN Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 34

4.1 NS2 C++ Otcl structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 38

4.2 Store Initialization Information . . . . . . . . . . . . . . . . . .. . . . . . . . . . . 40

4.3 Build dataBase command . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 41

4.4 CDP Normal Operation (simple) . . . . . . . . . . . . . . . . . . . . . .. . . . . . 42

4.5 Admission control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 44

4.6 Global SOMEN Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 46

4.7 Flow Re-Routing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 51

4.8 Network Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 54

5.1 Topology 1 – 10Mbps Links . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 61

5.2 Topology 2 – Low Correlation (1Gbps links) . . . . . . . . . . . .. . . . . . . . . . 62

5.3 Topology 3 – High Correlation (1Gbps links) . . . . . . . . . . .. . . . . . . . . . 62

5.4 Cen. - Requests Denied While Resources Were Available . .. . . . . . . . . . . . . 63

5.5 Cen. - Reservation Re-computation Events . . . . . . . . . . . .. . . . . . . . . . . 64

5.6 Cen. - Total Load of Reservation Enforcement Messages . .. . . . . . . . . . . . . 64

5.7 Cen. - Remaining BW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 65

5.8 Cen. - Waste BW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65

5.9 T1 - Cen. Mean Packet Drops . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 67

5.10 T1 - Cen. COR – Mean Delay per CoS . . . . . . . . . . . . . . . . . . . . .. . . . 68

5.11 T1 - Cen. A-COR – Mean Delay per CoS . . . . . . . . . . . . . . . . . . .. . . . 68

v



5.12 T1 - Cen. MARA – Mean Delay per CoS . . . . . . . . . . . . . . . . . . . .. . . 69

5.13 T1 - Cen. Mean Overall Network Delay . . . . . . . . . . . . . . . . .. . . . . . . 69

5.14 T1 - Cen. Mean Remaining Bandwidth . . . . . . . . . . . . . . . . . .. . . . . . . 70

5.15 T1 - Cen. Mean Wasted Bandwidth . . . . . . . . . . . . . . . . . . . . .. . . . . 70

5.16 T3 - Total Denies While Resources Were Available . . . . . .. . . . . . . . . . . . 71

5.17 T3 - Reservation Enforcement Events . . . . . . . . . . . . . . . .. . . . . . . . . 72

5.18 T3 - Total RE messages Load . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 72

5.19 T3 - Number of VOPR Exhausted Events . . . . . . . . . . . . . . . . .. . . . . . 72

5.20 T3 - Total VOPR Messages Load . . . . . . . . . . . . . . . . . . . . . . .. . . . . 73

5.21 T3 - VOPR Load per Message Type . . . . . . . . . . . . . . . . . . . . . .. . . . 73

5.22 T3 - Mean Remaining Bandwidth . . . . . . . . . . . . . . . . . . . . . .. . . . . 73

5.23 T3 - Mean Wasted Bandwidth . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 73

5.24 T3 - Total Load With and Without Filtering Functions . . .. . . . . . . . . . . . . . 74

5.25 T3 - Load without minus Load with, Filtering Functions .. . . . . . . . . . . . . . 74

5.26 T2 - Total Load With and Without Filtering Functions . . .. . . . . . . . . . . . . . 75

5.27 T2 - Load without minus Load with, Filtering Functions .. . . . . . . . . . . . . . 75

5.28 T2 - Total Denies While Resources Were Available . . . . . .. . . . . . . . . . . . 75

5.29 T2 - Number of VOPR Exhausted Events . . . . . . . . . . . . . . . . .. . . . . . 76

5.30 T2 - Total VOPR messages Load . . . . . . . . . . . . . . . . . . . . . . .. . . . . 76

5.31 T2 - VOPR Load per message type . . . . . . . . . . . . . . . . . . . . . .. . . . . 76

5.32 T2 - Reservation Enforcement Events . . . . . . . . . . . . . . . .. . . . . . . . . 77

5.33 T2 - Total Reservation Enforcement messages Load . . . . .. . . . . . . . . . . . . 77

5.34 T2 - Mean Remaining BW . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 77

5.35 T2 - Mean Wasted Bandwidth . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 77

5.36 T1 - Mean Packet Drops . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 79

5.37 T1 - COR – Mean Delay per CoS . . . . . . . . . . . . . . . . . . . . . . . . .. . . 79

5.38 T1 - A-COR – Mean Delay per CoS . . . . . . . . . . . . . . . . . . . . . . .. . . 80

5.39 T1 - MARA – Mean Delay per CoS . . . . . . . . . . . . . . . . . . . . . . . .. . 80

5.40 T1 - Mean Overall Network Delay . . . . . . . . . . . . . . . . . . . . .. . . . . . 81

5.41 T1 - Mean Remaining Bandwidth . . . . . . . . . . . . . . . . . . . . . .. . . . . 81

5.42 T1 - Mean Wasted Bandwidth . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 81

vi



Acronyms

IP Internet Protocol

IPTV Internet Protocol Television

CoS Class of Service

QoS Quality of Service

NS Network Simulator

OSMAR Overlay for Sourcespecific Multicast in Asymmetric Routingenvironments

STDOUT Standard Output

MRIB Multicast Routing Information Base

RIB Routing Information Base

NetCIB Network Context Information dataBase

CDP Control Decision Point

VOPR Virtual Over PRovisioning

SOMEN Self Organizing Multiple Edge Nodes

SOMEN-E SOMEN Edge

SOMEN-C SOMEN Core

COR Class-based bandwidth Over-Reservation

A-COR Advanced Class-based bandwidth Over-Reservation

MARA Multi-user Aggregated Resource Allocation

BW bandwidth

DFF Dynamic Filtering Functions

DTSF Dynamic Threshold Synchronization Functions

SRF System Resilience Functions

vii



IGMP Internet Group Management Protocol

TCP Transmission Control Protocol

UDP User Datagram Protocol

BGRP Border Gateway Reservation Protocol

RTP Real-Time Transport Protocol

SRM Scalable Reliable Multicast

PIM Protocol Independent Multicast

ISP Internet Service Provider

CPU Central Processing Unit

CBR Constant Bit Rate

SSM Source Specific Multicast

Cen. Centralized Scenario

viii



Chapter 1

Introduction

1.1 Motivation

Nowadays, the need for various and attractive services overthe Internet is increasing rapidly.
These services include, but not limited to, the informationsharing, video streaming, IPTV, Mobile
Gaming, video conferencing and personalized services. YouTube is a good reference to illustrate this
reality.

It is also expected that the Internet integration should be exploited to enhance connectivity for
mission-critical information exchange among users in domains where life may be at risk such as
emergency and crisis intervention. In the research community, it is argued that multicasting and
context-awareness together will exploit situations in which users share the same interests and request
similar services to improve the effectiveness of session and network control for many users simulta-
neously with lesser amount of the network resource.

On one hand, the context-awareness is considered to allow the collection and delivery of infor-
mation on mobile terminals, network and environment, so that dynamic events can trigger session
and network reactions, such as service and network reconfiguration, multiparty session content deliv-
ery and re-negotiation, and seamless context-aware mobility. On the other, multicasting consists of
sending the same copy of packet to many users simultaneouslyand therefore allows optimizing the
network resource utilization.

However, the context-aware networks pose serious scalability problems since any change to con-
text, such as, location, mobility, velocity, preferences,presence, etc., can change the overall services
and network environments, requiring completely restructuring of the network and multicast sessions
in a very dynamic way. Attempt to overcome these issues becomes even more demanding due to the
fact that communication networks are subject to frequent failures, mostly being unintentional such as
natural disasters, human errors while many failures are nowoften the result of intentional interruptions
(e.g. malicious attacks). Moreover, applications and services must be provided over emerging het-
erogeneous technologies in a way that assures acceptable Quality of Service (QoS) while the current
Internet is mainly best-effort based. Hence, as the IP Multicast works on the Internet, much research
has been done in recent years for the support of QoS in multicast networks, both with fixed and mobile
users.

Even today, existing mechanisms to provide multicast services are still very static, being without
taking into account the user’s mobility and their preferences (context). Further, the use of a central
control element that takes decisions in such dynamics networks for the immense variety of context

1



information and service demands is not scalable.

Considering the heterogeneity and the dynamics of next generation networks, there are many chal-
lenges that still deserve special attention. A primary challenge is to develop dynamically configurable
context-aware and QoS-enabled networks with support for multicasting to be highly available to allow
access to information anywhere and anytime.

Hence, this Dissertation aims to evaluate new mechanisms for the control of the network and
propose improvements in accordance with the results. In particular, two novel Class-based bandwidth
Over-Reservation algorithms, Class-based bandwidth Over-Reservation (COR) [14] and Advanced
COR [12], are evaluated and compared with a state-of-the-art solution, the Multi-user Aggregated Re-
source Allocation (MARA) [19]. The evaluations are carriedout in both centralized and decentralized
architectures which introduce each, new control functionalities to effectively allow a cost-effective
control of the network, keeping low control signaling, states and processing overheads.

1.2 Objectives

The main objective of this dissertation is to evaluate, in the Network Simulator (NS), new mech-
anisms for the control of the network resources, COR and Advanced COR, in both a centralized
network architecture and in a distributed network architecture, using Self Organizing Multiple Edge
Nodes (SOMEN). Several reasons justify the use of this simulator over other exiting softwares. Most
of the reasons come from the fact that this simulator is open source and widely used in the scien-
tific community. Moreover, some related works (e.g. MARA[19]) have been implemented in this
simulator.

The SOMEN mechanism focuses on distributed network control, but the changes needed to make
it operate in a centralized way were justifiable to implementa centralized approach as well. Also, it
contributes to a more promising work once we can compare results between both approaches. The
evaluation of SOMEN is them divided into two main architectures: one with centralized control and
another with distributed control.

Both SOMEN architectures and all its composing mechanisms had to be fully programmed in
C++ for the referred simulator.

By means of simulation we compare the efficiency and performance of both COR and A-COR
with a state of the art proposal, the Multi-user Aggregated Resource Allocation (MARA) [19].

The metrics for evaluation are mainly based on how effectively each over-provisioning algorithm
uses the underlying network resources, the amount of wastedbandwidth (BW), the total singling load
and the number of blocked sessions per algorithm.

1.3 Document Outline

In chapter 2 an overview about the fundamental aspects of thework is given, with emphasis
on QoS, multicast, and distributed network control. Some ofthe main difficulties are explored and
solutions are discussed.

The following chapter, chapter 3, will detail the solutionsmentioned in chapter 2.

The centralized scenario is presented and their inner workings are explored. Next, the distributed
approach is explained with emphasis on its main advantages and drawbacks. As an important part of
this work, the different reservation algorithms are discussed later in the same chapter.

2



Chapter 4 is the description of the work done. The context in which it was developed, as well
as the trade-offs made are discussed and explained. An introduction to the simulator is given, some
implementation specific details are described, and a full explanation about the work is performed.

In Chapter 5 we discuss the simulation results obtained. These results shall validate the initial
goals and reveal the potential of the algorithms discussed.

At last but not least, chapter 6 presents the conclusions on the implemented algorithms, mecha-
nisms and performance, based on the attained results. Finally, several suggestions are made on how
improvements could be done in the future.

3



4



Chapter 2

State of The Art

2.1 Introduction

The new trend of social, economic and technological merging, strongly requires QoS-aware sca-
lable and robust network architectures.

Today, though it is widely accepted that redundancy and multi-homing in decentralized networks
would better support scalability, reliability, availability and fast responsiveness, there is a serious lack
of standard and solutions in this field.

The organization of this chapter is as follows.

Section 2.2 introduces the multicast basic functionality mechanism, as well as the involvement in
this work.

In section 2.3 we deeply discuss the operations and trade-offs of over-provisioning schemes as
well as some of the arguments that make this type of approach so promising.

Section 2.4 aims at emphasizing the benefices of distributednetwork control over the centralized
one.

2.2 Multicast

Multicast can be useful if there is information that should be transmitted to various hosts. One
common situation in which it is used is when distributing real time audio and video to the set of hosts
which have joined a certain multicast group.

Multicast is much like Radio or Television in the sense that only those who have tuned their
receivers, receive the information. Instead of frequencies, we have the Internet Protocol (IP) as a
base, precisely IP addresses. The IP addressing scheme already reserves some addresses for this
purpose. [27]

The usual practice in multicast is to use User Datagram Protocol (UDP), as Transmission Control
Protocol (TCP) requires the feedback mechanisms support. However, research is taking place in order
to develop some new multicast transport protocols. Severalof these protocols have been implemented
and are being tested. Giving descriptions of those multicast protocols is out of the scope of this
section, but to give an example: Real-Time Transport Protocol (RTP) is concerned with multi-partite
multimedia conferences, Scalable Reliable Multicast (SRM) is used by the web. Several multicast
protocols can be found.

5



# Class Address Range Supports
A 1.0.0.1 to 126.255.255.254 Supports 16 million hosts on each of 127 networks
B 128.1.0.1 to 191.255.255.254Supports 65,000 hosts on each of 16,000 networks
C 192.0.1.1 to 223.255.254.254Supports 254 hosts on each of 2 million network
D 224.0.0.0 to 239.255.255.255Reserved formulticast groups
E 240.0.0.0 to 254.255.255.254Reserved for future use

Table 2.1: IP Address Range

The standard work of a multicast protocol is as follows. An IPmulticast group address is used by
sources and receivers to send and receive multicast messages. Sources use the group address as the IP
destination address in their data packets. Receivers use this group address to inform the network that
they are interested in receiving packets sent to that group.

There is usually a command join to start receiving packets ina certain group, as well as a leave
message to stop. The protocol typically used by receivers tojoin a group is based on the Internet
Group Management Protocol (IGMP).

To deliver the packets to several hosts multicast trees are built, adding information to the router’s
routing tables, Multicast Routing Information Base (MRIB). The protocol most widely used for this
is Protocol Independent Multicast (PIM). There are variations of PIM implementations: Sparse Mode
(SM), Dense Mode (DM), Source Specific Mode (SSM). In this work the later, SSM, is of relevance
because it builds trees that are rooted in just one source, offering a more secure and scalable model.
As so, it will be presented an overview of this technology.

When a source desires to start a transmission, IGMP protocolis used to inform its neighbor router
that it will send data to a certain group. Then, when a user is interested in receiving this group data,
it uses the same protocol to send a message to its neighbor router informing that he wishes to join the
group.

After the router receives this message, it will send a PIM join message to all the other PIM routers,
notifying them about the join of this user. The propagation of this PIM join message will enable the
creation or the extension of the multicast delivery tree of the desired group from the source until the
user. Routers maintain information about the interfaces they should forward packets belonging to this
group.

Later, if the user aims to stop receiving the data flow, it leaves the group sending again a IGMP
message to the neighbor router. If there are no more listeners in this sub-network, the router will
send a PIM prune message to its above routers informing them to stop forwarding these packets in
his direction. The same way, if at any time the source wishes to stop the transmission, it will also
send an IGMP message to its neighbor router to communicate its decision, terminating the multicast
communication to all the hosts.

The evolution to IGMPv3 became possible to users to specify the source, or group of sources, from
which they want to receive data. To make this possible, new multicast protocols were developed to
communicate between routers, as the PIM-SSM. This version has as main advantages the fact of being
easily implemented, avoiding the necessity of configuring one router as Rendez-Vous Point, which in
the former versions of PIM act as a confirmation point for all the requests, making this approach even
more scalable than the prior versions.

As referred, each multicast group is represented by an IP address from a well-defined range (Ta-
ble 2.1).

6



Figure 2.1: Unicast Diagram Figure 2.2: Multicast Diagram

Nevertheless, the integrated deployment of class-based QoS and IP multicast is not trivial, once
the first permits an implementation of QoS in a scalable form and the second economizes bandwidth
in the network. Moreover, QoS achieves scalability by pushing the complexity to edge routes, IP
multicast operates on a per flow basis throughout the network. Simple PIM-SSM is not enough.
The solution presented in the paper [22], is envisioned to overcome the lack of adaptation of the
existing multicast protocols to asymmetric routing. Thus the Overlay for Sourcespecific Multicast in
Asymmetric Routing environments (OSMAR) approach was designed to be used as an overlay for
source-specific multicast protocols as PIM-SSM, empowering them to provide content distribution
considering QoS and handle network asymmetries.

OSMAR aims to be used as an overlay for source-specific multicast protocols, like PIM-SSM,
enabling them to deal with network asymmetries and to provide QoS-aware content distribution, while
maintaining their specifications and state machine.

To accomplish this, OSMAR changes the values of the Multicast Routing Information Base
(MRIB) tables, used by the multicast routing protocol to build the multicast tree, and considers the
path from source to receivers. The updated MRIBs will then beused to build optimal trees based
on the path that data really uses. In opposition, the normal operation of multicast protocols creates
trees following the data path from receivers to the source. Therefore, OSMAR enabled multicast
branches are created taking into consideration the connectivity (e.g. unidirectional links) and QoS
characteristics configured for each source-receiver data path.

Later on, we’ll see that this approach was not enough for thiswork mainly due to its limitation of
only one path may exist between any two source – destination pair of nodes. To overcome this limita-
tion, additional code had to be written and modified for the OSMAR NS 2.31 existing implementation
support multiple paths.

2.3 QoS Model and Bandwidth Over-Provisioning

The future networks are expected to support new features to provide value added sessions (e.g.
multimedia, personalized, etc.) over heterogeneous transport technologies with acceptable service
quality. However, the current packet-based technologies cannot allow data transport beyond best-
effort, narrowing session flows to experience undesired delay, jitter, and even packets losses.

Hence, there is the need to allocate bandwidth and deploy signaling to install, maintain, or remove
resource reservation for sessions, with schedulers on nodes to ensure that each session receives the
amount of bandwidth allocated to it, the bandwidth reservation mechanisms.

Although QoS control approaches are known as indispensableto maximize the value of future

7



networks, per-flow reservation approach such as IntServ[4], introduces excessive states, processing
and signaling overheads and therefore raise serious scalability problems. Hence, QoS models based
on Class of Services (CoSs) appeared suitable to prevent theperformance degradations of per-flow
approaches. In class-based networks (e.g. DiffServ [1]), flows are classified into a set of services CoSs
at network borders (e.g. ingress routers) or central stations, based on predefined policies regarding
QoS, protocols, etc.

Hence, in per-class QoS control, the reservation states aremaintained per CoS and not per-flow,
allowing to reduce the control overheads. However, the per-class reservation mechanisms driven by
per-flow signaling approaches [17] still confront scalability issues since the QoS control operations
are triggered with the increasing number of session demands.

In other words, the excessive control messages placed by per-flow signaling strategies, not only
put heavy processing load on core router’s Central Processing Unit (CPU), but also consume more
bandwidth, memory and energy, while they affect the sessionsetup time.

Alternatively to per-flow QoS control signaling approaches, aggregated over-provisioning tech-
niques envision reserving to each CoS more bandwidth than currently required. This way, multiple
flows can be accepted without signaling the network nodes, aslong as resources are still available in
order to optimize the network overall performance.

However, previous solutions mostly waste resources, increase session blocking probabilities un-
necessarily while they incur QoS violation. Perhaps more importantly, they even fail to properly
operate in completely decentralized networks with multiple distributed control decision points (e.g.
ingress routers).

In the literature, the over-reservation technique used in Border Gateway Reservation Protocol
(BGRP)[21] for aggregate flows destined to a certain domain –a Sink-Tree-Based Aggregation Proto-
col, is too static and therefore fails to efficiently utilizethe network resources. Besides, the Dynamic
Aggregation of Reservations for Internet Services (DARIS)[2] over-reserves bandwidth for aggregate
flows over several domains.

However, DARIS focuses on reservation aggregations and signaling performances to improve
system scalability. The Simple Inter-Domain QoS SignalingProtocol (SIDSP)[23] system over-
provisions the so-called virtual trunks of aggregate flows.However, bandwidth over-reservation based
on predictive algorithm (e.g. based on past history) without any mechanism to dynamically control
the shared resource between existing trunks is not efficient, as it can lead to waste of bandwidth.

The recently patented Multi-user Aggregated Resource Allocation (MARA)[19] distinguished
itself from the previous solutions by dynamically configuring and reconfiguring bandwidth over-
reservation parameters for CoSs. Moreover, MARA deals withwasting bandwidth by attempting
to grant a congested CoS with a portion of residual bandwidthover-reservation of remaining classes,
taking into account current resource demand and session requirements.

However, MARA confronts serious efficiency problems in its over-reservation control mechanism,
by wasting bandwidth especially when the network is near to congestion, while the signaling load is
not too minimized. Moreover, MARA does not provide any information on how this approach could
work in dynamic scenarios with unpredictable cross-trafficsuch as in decentralized networks.

As described in [14], communication paths happen to correlate by sharing link(s), meaning that
a CoS on a shared link is used by all paths on which it lies, while traffic loads in different paths are
unpredictable.

Hence, the dynamics of bandwidth utilization in various CoSs on shared links make over-reservation
approach very challenging. In other words, an efficient dynamic bandwidth over-reservation mecha-

8



nism strongly requires appropriate functions to:

(a) take communication paths correlation patterns and cross traffic into account;

(b) compute appropriate bandwidth to over-reserve for eachClass of Service (CoS);

(c) deal with residual bandwidth (reserved but unused) to reduce the waste of bandwidth and prevent
CoS starvation.

The COR scheme introduced novel techniques to over-allocate bandwidth to CoSs, in a way that
avoids QoS violation while significantly minimizing the waste of bandwidth and the session blocking
probability.

In this Dissertation, the capabilities of COR and A-COR algorithms are evaluated in both cen-
tralized and decentralized architectures through the Network Simulator, version 2, or NS-2[20]. The
evaluation is performed in comparison with MARA, which represents the stat of the art.

2.4 Network Decentralization Control

The increasing dependence on IT technologies is making central controllers bottlenecked while
the networks are subject to frequent failures. The performance aspects of centralized mechanisms are
shortcoming, mainly in terms of system scalability, robustness and availability.

Today, most of the major architecture designs are centralized-based such as TISPAN, 3GPP and
even the European Context Casting C-CAST project despite their well-known scalability and single
point of failure problems.

!"# Link$%&'

Figure 2.3: Centralized Network Diagram

Usually there is one central node (Control Decision Point (CDP)) that is responsible for taking all
the decisions, and communicating the results to the edge nodes, for enforcement. The increase in the
network complexity, being more information and larger databases to be processed leads to scalability
and processing load issues.

As an alternative, decentralized approaches fit better in large-scale environments than centralized
solutions. Decentralization allows the support of simultaneous operations at entities throughout a net-
work, achieving better performance. However, it requires the synchronization of control information
of multiple distributed decision points to avoid wrong and incompatible decisions.

9



Today, the inexistence of standards for decentralization forces each distributed system to deploy
its own control strategies. As a result, Internet’s complexity increases even more by the addition
of new protocols and mechanisms. More importantly, the synchronization signaling overheads pose
serious problems in existing decentralization designs such as in peer-to-peer networks [11], in Ad hoc
networks [6], etc.

!"#$ Link

Figure 2.4: Distributed Network Diagram

This is due to the fact that exceeding control signaling consumes too much resource in terms
of bandwidth, memory, CPU and energy. Therefore, decentralization must be correctly designed to
prevent network performance degradations.

In the literature today, it is widely researched that knowledge of network topology and links state
information, mainly the available resources on bottleneckoutgoing interfaces and their location on
paths, are of relevant importance for researchers and Internet Service Providers (ISPs) to improve
system overall performance.

Indeed, current designs mostly enable a single control decision point in a network to maintain
knowledge of underlying network topology in terms of nodes,paths bottleneck interfaces capabilities,
list of on-path outgoing interfaces, and so on.

In this sense, the Self Organizing Multiple Edge Nodes (SOMEN) [13] work, introduced a new
decentralization control approach which effectively allows keeping low synchronization control load
while assuring multiple distributed Control Decision Points (CDPs) to cooperate and self-manage to
optimize the network overall performance. Perhaps more importantly, the solution provides effective
support for aggregate resource over-reservation in dynamic and distributed network environments.

Hence, this Dissertation implements three major aggregateover-provisioning schemes such as
MARA [14], COR [14] and Advanced Class-based bandwidth Over-Reservation (A-COR) in the
SOMEN architecture and evaluate the control performance mainly in terms of signaling load, waste
of resources and session blocking issues in decentralized scenarios.

10



Chapter 3

Architecture

3.1 Introduction

This chapter introduces the different control mechanisms evaluated in this dissertation. The work
provides a mechanism for the support of decentralized network control operations for the current and
future Internet, the Self Organizing Multiple Edge Nodes (SOMEN). In this chapter, the SOMEN
protocol will be presented and explained, and the control mechanisms will be described, applied in
both centralized and distributed SOMEN architecture.

SOMEN was designed to operate in a distributed fashion, but amodified version of the protocol
was later adapted to allow it to operate in a centralized manner. Both approaches are described, with
an overview in Sections 3.3 and 3.2 and a more detailed operation can be found in Sections 3.6 and 3.7.

The main functionalities used by SOMEN are described in Section 3.4. Moreover, we present
and discuss the two reservation algorithms COR and A-COR. The MARA is not a new proposal, and
hence it is not explained in detail.

There are however, some important key words and definitions that the reader should be familiar
with. For instance, all network scenarios take for granted some configurations. We consider that the
network is composed of a certain number of nodes that fall within three distinct categories:

Ingress Nodes:Network border nodes where packets can be injected into the network.

Egress Nodes:Network border nodes where packets can leave the current network, e.g. to another
Autonomous System.

Core Nodes: All nodes except the two types above. They forward packets, enforce QoS parameters
and make possible the existence of multiple paths.

The network implements a Class of Service (CoS) based system. The number of classes may vary
from three to seven for different network scenarios, but must be constant within the same network.
An example network is given using 4 CoSs. Packet flow is generated by the means of well formulated
requests that can come at any given time, for any givenIngressnode only.

11



The parameters a request must have are the following:

Ingress The point of entry in the network.

Egress The destination

BW Amount of bandwidth (BW) to use

CoS The required Class of Service (CoS)

In this work, a multicast channel is configured per path in order to force every packet (merged into
a path) to follow the same path associated.

Section 3.8 presents a summary of the chapter.

3.2 Distributed Architecture Overview

Self Organizing Multiple Edge Nodes (SOMEN) operation consists of enabling multiple dis-
tributed network Control Decision Points (CDPs) that dynamically exploit network appropriate con-
text information to infer accurate cross traffic loads in each Class of Service (CoS) on every outgoing
interface within a network without probing the related communication paths. This way, every CDP is
able to obtain detailed information about each outgoing interface within a network with low signaling
overheads. The network context information of interest includes, but not limited to, paths correlation
patterns, network topological information (e.g. list of on-path outgoing interfaces, etc.) and traffic
load dynamics in various CoSs on the existing paths within the network.

For this purpose, SOMEN introduces several functions that enable CDPs (e.g. network borders
nodes), operating in a decentralized manner, to cooperate,exchange appropriate control information,
and quickly adapt to changes in network and the related resource states, keeping low signaling load.
These functions include:

(a) Dynamic Filtering Functions DFFs: which allow each CDP to minimize the decentralization
control signaling load by filtering not only the informationto advertise to other cooperating CDPs,
but also by advertising only the CDPs which are really interested in the information to be adver-
tised (the correlated CDPs);

(b) Dynamic Threshold-based Synchronization Functions DTSFs!s: based on which, each CDP
significantly minimizes the decentralization control signaling load by means of dynamically con-
trollable threshold (VOPR) which allows avoiding per-flow or per-change advertisement (a.k.a.
synchronization) messages exchanges between the CDPs.

(c) System Resilience Functions SRFs:with the purpose of assuring system availability and relia-
bility in presence of network dynamics such as nodes or linksfailures. These functionalities are
not implemented in this Dissertation and therefore will notbe described later.

The SOMEN operations are implemented by two control agents:SOMEN Edge (SOMEN-E) and
SOMEN Core (SOMEN-C) agents. SOMEN-E is a state-full agent deployed by CDPs and imple-
ments the main SOMEN functions such as the DFF, the DTSF and the SRF functions. SOMEN-C
is a lightweight-state agent deployed by control decision enforcement points (e.g. core routers), and
simply implements appropriate functions to properly interpret and process control signaling messages

12



(e.g. resource control, message forwarding, etc.). Thus, SOMEN pushes control complexity to CDPs
and leaves other nodes simple for scalability purposes.

In Figure 3.1 nodes0, 1,and2 would be configured as SOMEN-E agents, while interior routers
configured as SOMEN-C agents. Note that this figure will serveas an example network for the
description of both the distributed and the centralized SOMEN mechanisms. The link connecting
node 8 to the network is a dashed line because in the distributed scenario, node 8 doesn’t exist, the
control is not centralized. In the centralized scenario this node is the responsible for all key decisions,
as the next section will introduce.

1

0

2

7

5

6

3

4

8

1

2 3

4

5

6

7

8

9

10

11

12

Ingress

Ingress

Ingress

Egress

Egress

CDP (exists for centralized scenario only)

Figure 3.1: Example 1 Network Topology

3.3 Centralized Architecture Overview

In a centralized scenario, there is only one node that contains the complete information about the
whole network. This node is considered to be the Control Decision Point (CDP). In Figure 3.1 we
have a possible network topology were the CDP is running the centralized version of SOMEN.

For this purpose, the CDP implements (partially) the Dynamic Filtering Functions (DFF) men-
tioned in the previous section. There is no need for this nodeto have the Dynamic Threshold Syn-
chronization Functions (DTSF) since these functions have been designed especially to support dis-
tributed network control. In a centralized scenario, the CDP has on a real time basis the complete
information about every link, and CoS in the network and can admit or deny requests directly based
on available BW.

We say that it implements the filtering functions partially,because it does not need all of them.
Some of these functionalities include techniques to lower message exchange when theIngressnodes
need to exchange context information. This exchange of information does not exist in a centralized
scenario.

13



3.4 Functionalities

In this section it is explained the functionalities of the Network Context Information dataBase
(NetCIB) and how the tables are constructed. The NetCIB is the database used by the SOMEN
protocol. It is composed of six main tables:

• Global Paths: all the known Paths to allEgresses

• PATHS: selected Paths to admit requests

• CORRELATIONS: Paths that share links with one another

• TOPOLOGY : all links from all Paths along with respective QoS requirements (used, available,
reservation BWs etc. )

• VOPRS: respective Virtual Over PRovisioning (VOPR) values for allCoSs, all links, for each
Path

• LISTS: CDP’s addresses that should be advertised about changes foreach Path

• SESSIONS:flows or requests already admitted and the relevant information stored (path se-
lected, BW, mapped CoS, etc. )

3.4.1 Dynamic Filtering Functions (DFF)

The SOMEN DFF functions are responsible for enabling each ofthe distributed CDPs to maintain
a good knowledge of the network paths correlations patterns, the network topology and the related
resource status.

In order to obtain a good knowledge of the underlying networktopology, at system initialization
when no session is running yet, each CDP deploys appropriatesignaling protocol, creates many edge-
to-edge paths, and maintains the best ones for service delivery.

The best paths selection can base on, but not limited to, the delay, the number of hops and the
available bandwidth on the created paths, which can be defined according to specific design purposes.
Afterwards, the CDPs exchange appropriate context information about the selected paths (e.g. path
IDs, list of outgoing interfaces on the paths). Thus, each distributed CDP is allowed to build its own
control database called Network Context Information dataBase (NetCIB) to store and maintain the
network topology, the resource status in each CoS on each outgoing interface, the paths correlations
patterns, and so on.

A flooding-based technique is used for the paths creation, during system initialization phase. Each
Ingress node composes control signaling messages, well flagged for the network initialization, and
sends them throughout all its own interfaces. Every SOMEN-Cagent will save its address in the
header and forward these messages out all its interfaces, only if it’s address is not already there,
meaning that a loop has occurred and the packet is discarded.When one of these packets reaches an
Egressnode, the later will build and send to the respectiveIngress, a response message advertising a
new path discovered.

This way, after a few seconds, every CDP is able to obtain all the possible paths from itself to any
other CDP within the network. All the paths that have been discovered are saved into a table in each
CDP local database. This table is called the PATHS Table.

14



As these initialization messages flow, the QoS requirementsare installed on every link for all CoSs
defined. A share of bandwidth (the initial reservations) is reserved for each CoS accordingly to the
reservation algorithm defined. These algorithms are discussed later in Section 3.5.

The QoS parameters taken into account are:

• χ Reservation threshold

• B Reserved Bandwidth

• U Used bandwidth

• Av Available bandwidth (B − U )

After the system initialization is over, all CDPs have the information about all the possible paths
to all Egress nodes, and all the initial over-reservation parameters are implemented in the network
links.

Notice however that this information is still local, for instance, node 0 knows nothing about paths
node 1 has discovered. This information needs to be exchanged. In order to do so, each CDP advertises
all others with information about all of its own selected paths. The advertisement messages includes
the selected paths’ IDs, the list of the IDs of the outgoing interfaces that compose each path and the
capacity of each outgoing interface. Thus, upon receiving the advertisement messages from others,
every CDP is able to build it’s own local SOMEN Network Context Information dataBase (NetCIB).

The NetCIB of a CDP is composed of appropriate tables such as the CORRELATIONS, the
TOPOLOGY, thePATHS, theVOPRS, theLISTSand theSESSIONStables, introduced by SOMEN
functions to store network key control information in a way to effectively improve system performance
with low control load.

To facilitate the understanding of the DFF functions for oneCDP, the Ingress node 1 in Figure 3.1
is used. Consider that the network has 4 CoSs implemented, being one of them saved for protocol
specific control signaling messages leaving 3 CoSs available for data traffic.

After initialization phase, the respectivePATHSTable for node 1 would be Table 3.1. Each path
is described here as being a list of nodes that compose it (last column). For each class there is also
the initial QoS parameters defined. TheU,A,V refer respectively to the used, available and VOPR
BWs values, on the bottleneck link of the path. Each path is given an unique path ID, that is used by
the protocol to identify one specific path. This way, the control messages can carry only this number
which minimizes overhead. The first column identifies the destination of the path, the node it goes to.

By saving the used BW every CDP is able to record the accurate amount of bandwidth being
used by its active sessions (sessions running through itself) in each CoS on each of its selected paths.
Besides, the available bandwidth parameter inPATHStable, represents the total amount of bandwidth
reserved but unused inCoSi on the bottleneck outgoing interface of the pathPn i.e. the minimum
available bandwidth in the path. Further, the Virtual Over PRovisioning (VOPR) parameter in the
PATHS table is a dynamically controllable threshold of aCoSi on the bottleneck outgoing interface
of a pathPn. More details on how the available bandwidth and the VOPR parameter are maintained
in thePATHStable of a CDP are provided later in the document.

Besides thePATHStable, node 1 builds itsTOPOLOGYtable to store the links and respective
detailed QoS parameters for each CoS. This table is very important once thePATHStable can only
support information about the bottleneck link,TOPOLOGYhas information for all the links.

TheTOPOLOGYtable for nodeCDP1 is as Table 3.2 represents. For each known link, we store
the capacity and for each CoS store all the parameters to ensure QoS. These values come from the

15



respective reservation algorithm being used and correspond to the initial reservation values.B,U,A,X
mean respectively reserved, used, available, threshold BWvalues. Notice thatX does not exist if the
reservation algorithm is A-COR.

TheCORRELATIONStable can be built based on the previous ones, theTOPOLOGYandPATHS
Tables. The algorithm will check for all the paths that use common links, and save that information,
building the table. It is generated by running the algorithm3.4.1.

TheCORRELATIONStable is used to store the paths correlation patterns for each of the interfaces
that compose its own selected paths. In the rest of this document, the interfaces composing a CDP’s
own selected paths are called own interfaces.

In this sense, theCORRELATIONStable of node 1 shown in Table 3.3, stores the following control
information: Link IDs, sharing factor (W ) and a list of paths. For each link in theTOPOLOGYtable,
we have a list of paths that use that link. The total number of paths that use it is called the sharing
factor (W ). This away each CDP has a way to identify which information needs to be updated if a
requests is mapped in a given path.

Algorithm 3.4.1: BUILD CORRELATIONS TABLE(void)

comment: For all Paths

for j ← 1 to number of paths

do





getPathj from PATHSTable
comment:For all On Path Links

for i← 1 to number of links

do





getLinki from TOPOLOGYTable
if link Li belongs toPathj

then recordPj ID and the corresponding CDP address

Furthermore, theLISTSTable shown in Table 3.4 is built based on thePATHSandCORRELA-
TIONSTables. TheLISTStable stores for each own selected pathPj , a list of the CDPs whose paths
happen to correlate with the pathPj . Hence, theLISTStable, allows each CDP to easily retrieve the
correlated CDPs to advertise about changes in path upon need. This way, the SOMEN DFF functions
prevent broadcasting advertisement messages to all CDPs unnecessarily.

Algorithm 3.4.2: BUILD L ISTS TABLE(void)

comment: For all Paths

for j ← 1 to number of paths

do





get list of links fromPathsj
comment:For all Links in the list

for i← 1 to number of links

do





get allPathsthat uselinki from CORRELATIONStable
for k ← 1 to number of Paths

do
{

store thisPath IngressID to a list –Ig_list
Remove duplications from theIg_list
Associate thisIg_list to the currentPathj as a new entry in theLISTStable

16



# Ig-Eg Path ID CoS 1 (U:A:V) CoS 2 (U:A:V) CoS 3 (U:A:V) Path Links
0 1-3 191 0:1.65:0.165 0:1.65:0.165 0:1.65:0.165 1→ 7→ 3
1 1-4 207 0:1.65:0.165 0:1.65:0.165 0:1.65:0.165 1→ 5→ 6

→ 4
2 1-3 227 0:1.65:0.165 0:1.65:0.165 0:1.65:0.165 1→ 5→ 6

→ 7→ 3
3 1-3 199 0:1.65:0.165 0:1.65:0.165 0:1.65:0.165 1→ 5→ 7

→ 3
4 1-4 203 0:1.65:0.165 0:1.65:0.165 0:1.65:0.165 1→ 7→ 6

→ 4
5 1-4 216 0:1.65:0.165 0:1.65:0.165 0:1.65:0.165 1→ 5→ 7

→ 6→ 4
6 1-4 221 0:1.65:0.165 0:1.65:0.165 0:1.65:0.165 1→ 7→ 5

→ 6→ 4

Table 3.1: PATHS TableCDP1

# Link ID Capacity CoS 1 (B:U:A:X) CoS 2 (B:U:A:X) CoS 3 (B:U:A:X)
0 0-5 10 1.65:0:1.65:3.30 1.65:0:1.65:3.30 1.65:0:1.65:3.30
1 0-6 10 1.65:0:1.65:3.30 1.65:0:1.65:3.30 1.65:0:1.65:3.30
2 0-7 10 1.65:0:1.65:3.30 1.65:0:1.65:3.30 1.65:0:1.65:3.30
3 1-5 10 1.65:0:1.65:3.30 1.65:0:1.65:3.30 1.65:0:1.65:3.30
4 1-7 10 1.65:0:1.65:3.30 1.65:0:1.65:3.30 1.65:0:1.65:3.30
5 2-6 10 1.65:0:1.65:3.30 1.65:0:1.65:3.30 1.65:0:1.65:3.30
6 5-6 10 1.65:0:1.65:3.30 1.65:0:1.65:3.30 1.65:0:1.65:3.30
7 5-7 10 1.65:0:1.65:3.30 1.65:0:1.65:3.30 1.65:0:1.65:3.30
8 6-4 10 1.65:0:1.65:3.30 1.65:0:1.65:3.30 1.65:0:1.65:3.30
9 6-5 10 1.65:0:1.65:3.30 1.65:0:1.65:3.30 1.65:0:1.65:3.30
10 6-7 10 1.65:0:1.65:3.30 1.65:0:1.65:3.30 1.65:0:1.65:3.30
11 7-3 10 1.65:0:1.65:3.30 1.65:0:1.65:3.30 1.65:0:1.65:3.30
12 7-5 10 1.65:0:1.65:3.30 1.65:0:1.65:3.30 1.65:0:1.65:3.30
13 7-6 10 1.65:0:1.65:3.30 1.65:0:1.65:3.30 1.65:0:1.65:3.30

Table 3.2: TOPOLOGY TableCDP1

17



# Link ID W List of Correlated Paths (Ingress,Path ID)
0 0-5 4 (0,156) ; (0,123) ; (0,97) ; (0,132)
1 0-6 3 (0,69) ; (0,92) ; (0,101)
2 0-7 3 (0,88) ; (0,117) ; (0,73)
3 1-5 4 (1,199) ; (1,227) ; (1,207) ; (1,216)
4 1-7 3 (1,191) ; (1,203) ; (1,221)
5 2-6 3 (2,270) ; (2,279) ; (2,283)
6 5-6 6 (0,105) ; (0,117) ; (0,132) ; (1,227) ; (1,207) ; (1,221)
7 5-7 6 (0,123) ; (0,97) ; (0,101) ; (1,199) ; (1,216) ; (2,283)
8 6-4 10 (0,69) ; (0,88) ; (0,105) ; (0,117) ; (1,123) ; (1,207) ;

(1,203) ; (1,216) ; (1,221) ; (2,270)
9 6-5 2 (0,101) ; (2,283)
10 6-7 4 (0,92) ; (0,132) ; (1,227) ; (2,279)
11 7-3 10 (0,73) ; (0,92) ; (0,97) ; (0,101) ; (0,132) ; (1,191) ;

(1,199) ; (1,227) ; (2,279) ; (2,283)
12 7-5 2 (0,117) ; (1,221)
13 7-6 4 (0,88) ; (0,123) ; (1,203) ; (1,216)

Table 3.3: CORRELATIONS TableCDP1

# Path ID List of CDPs to advertise
0 191 0,2
1 207 0,2
2 227 0,2
3 199 0,2
4 203 0,2
5 216 0,2
6 221 0,2

Table 3.4: LISTS TableCDP1

18



In this exampleCDP1 has to advertise bothCDP0 andCDP2 for all paths, but this may not be
the case for other network topologies. This happens becausethere are few core nodes which make
for a strong paths correlation. If we consider a larger network with more core nodes theLISTStable
would have different lists of nodes for different paths, butthe number of paths would grow very fast,
and this example would become complicated to present due to the large size of theTOPOLOGYand
PATHStables.

In order to further minimize the distributed network control overhead, SOMEN introduces the
Dynamic Threshold Synchronization Functions (DTSF) to dynamically minimize the advertisement
frequency in a way to assure a proper synchronization of the CDPs with low control messages over-
heads. The DTSF functions are detailed in the subsequent sub-section.

It is important to recall that the initial SOMEN NetCIB database, is created at the system initial-
ization phase when no session is running yet. Therefore the related processing load is not seen as
a burden in the network. More importantly, the NetCIB is designed in order to allow keeping low
control processing and maintenance load during the networkoperation phase.

3.4.2 Dynamic Threshold Synchronization Functions (DTSF)

The SOMEN DTSF introduce a dynamically controllable function called Virtual Over PRovisioning
(VOPR), aiming to prevent per-flow or per-change advertisement messages between the distributed
CDPs. By deploying the DTSF functions, the CDPs are able to dynamically minimize the synchro-
nization signaling load in a network.

The basic idea of VOPR is to enable every CDP within a network to dynamically control a certain
amount of resources, the virtual resources, for each CoS on the bottleneck outgoing interface of each
of its own selected path. This is done in a way that allows every CDP to admit new sessions/requests,
to readjust the QoS requirements or to terminate an active session in a CoS on any of its own se-
lected path without being required to advertise others as long as the associated VOPR threshold is not
exhausted.

The VOPR value is computed accordingly to equation 3.1 for each link, for each CoS within the
network. All values for VOPR are stored in theVOPRSTable and similar to other tables, each CDP
has it’s own. This table can be built by running algorithm 3.4.3. An example of the initial table for
node 1 of network in Figure 3.1 can be found in Table 3.5. TheVOPRTable is built by computing the
VOPR values for each CoS for all links onPathi for all possible Paths.

vopr = U +
Av

W
(3.1)

WhereU andAv are respectively, the current Used (at system initialization is zero) and Available
BWs for the given link withsharing factorW – number of Paths that use the link. These variables

19



can be collected by accessing the localTOPOLOGYandCORRELATIONStables.

Algorithm 3.4.3: BUILD VOPRTABLE(void)

comment: For all Paths inPATHSTable

for j ← 1 to number of paths

do





get list of links fromPathsj
comment:For all Links in the list

for i← 1 to number of links

do





getlinki
for k ← 1 to number of CoSs

do

{
compute and store new VOPR value forlinki , CoSk in VOPRtable
comment:VOPR computed accordingly to equation (3.1)

# Path ID On-path Links and Related VOPRs (CoS 1 to 3)
0 191 1-7(0.550 : 0.550 : 0.550)→ 7-3(0.165 : 0.165 : 0.165)
1 199 1-5(0.412 : 0.412 : 0.412)→ 5-7(0.275 : 0.275 : 0.275)→ 7-3(0.165 : 0.165 : 0.165)
2 227 1-5(0.412 : 0.412 : 0.412)→ 5-6(0.275 : 0.275 : 0.275)→ 6-7(0.412 : 0.412 : 0.412)

→ 7-3(0.165 : 0.165 : 0.165)
3 207 1-5(0.412 : 0.412 : 0.412)→ 5-6(0.275 : 0.275 : 0.275)→ 6-4(0.165 : 0.165 : 0.165)
4 203 1-7(0.550 : 0.550 : 0.550)→ 7-6(0.412 : 0.412 : 0.412)→ 6-4(0.165 : 0.165 : 0.165)
5 216 1-5(0.412 : 0.412 : 0.412)→ 5-7(0.275 : 0.275 : 0.275)→ 7-6(0.412 : 0.412 : 0.412)

→ 6-4(0.165 : 0.165 : 0.165)
6 221 1-7(0.550 : 0.550 : 0.550)→ 7-5(0.825 : 0.825 : 0.825)→ 5-6(0.275 : 0.275 : 0.275)

→ 6-4(0.165 : 0.165 : 0.165)

Table 3.5: VOPRS TableCDP1

This table has the Path ID and the on path links with the respective VOPR values for each CoS
separated by colons. Thus, by using theVOPRStable, a CDP obtains the VOPR of every CoS on the
bottleneck interface of each own selected paths, being the minimum VOPRs of the CoS among the
interfaces that compose the path, and stores it in itsPATHStable.

Whenever aCDPj receives an authorized session request to aCoSi on a pathPj , it locally checks
the resource availability in theCoSi on the pathPj using itsPATHSTable. In particular, it uses the
VOPR of theCoSi on the bottleneck interface ofPj and the respective used bandwidth. If the sum of
the used BW and the request BW is not above the value of VOPR, itis said that VOPR is available,
otherwise is is said that VOPR is exhausted.

Then, when the CDP realizes that the VOPR of theCoSi on the bottleneck interface of the path
Pj is available, it simply processes the request and updates its local NetCIB accordingly, without
issuing any advertisement message to the correlated CDPs. Only when VOPR exhausts, there is an
advertisement event.

This means that the CDP would admit a new session, readjust the QoS requirements, or terminate
a session in a pathPj without triggering any advertisement messages to the correlated CDPs of the
path provided that the related VOPR is available. In other words, the DTSF functions provide means

20



to effectively hide the dynamics of sessions and network resource states changes from the CDPs.
Thus, SOMEN allows avoiding per-flow or per-change synchronization signaling messages while as-
suring the accuracy of the databases. Therefore, the advertisement signaling load can be significantly
reduced, depending on the values of the VOPRs, the used bandwidth and the demands of incoming
sessions or requests. This approach is promising for a better control of the future Internet which
envisions a ever growing network capacity.

3.4.3 Flow Re-Routing

The SOMEN mechanism envisions a way to balance traffic load among the several paths. This
mechanism is called flow re-routing and is explained in this section. In both centralized or distributed
scenarios the algorithm is the same, note only that in SOMEN decentralized networks, the available
bandwidth of a CoS in a path should be seen as the VOPR of the CoSin the path.

When all paths are congested, meaning that none of them meetsthe requirements of the requestr,
then the flow re-routing is triggered. The basic idea of the flow re-routing here is to efficiently re-route
the running flows between the paths such that requests can be admitted as long as possible, in a way
that maximizes system throughput as well as resource utilization efficiency.

To help on understanding this re-routing algorithm, a path from which certain flows are re-routed
is calledmainPathand those into which flows are mapped are calledassistingPaths. Moreover, letui
be the used bandwidth of a flowi andavj be the available bandwidth in a given pathj. A flow chart
in Figure 3.2 represents the steps that compose the algorithm, and the enumeration below explains in
detail flow re-routing.

1. Sort all the paths between A and B in a decreasing order of their available bandwidth, and index
the paths asP1, P2, . . . ,Pn with n the total number of the paths. This set of paths is stored in a
table calledSPT– Selected Paths Table. Then, go to(2)

2. Select the pathPi from SPTwhich has the highest available bandwidth (e.g.P1 at first iteration)
asmainPath. All other paths ofSPTareassistingPathsand are copied into a second table called
APT – Assisting Paths Table. Then, go to(3)

3. Update a variable calledmainListso that is contains a list of all the active flows in themainPath
(flows that belong to the requestedCoSk). These information can be found using theSESSIONS
table. Then, filter themainListby removing the flows whose used bandwidthui is superior or
equal to the available bandwidth of theassistingPathwhich has the highest available bandwidth
among theassistingPaths(e.g.P2 at first iteration). These are the flows that cannot be re-routed
because there is not enough resources in theassistingPathsto accommodate them. So, if the
mainListis empty, go to(5), else, go to(4)

4. Select the flow which has the highest used bandwidthui in the mainListas a Candidate flow
to be re-routed frommainPathinto theassistingPathwhich currently has the highest available
bandwidth. Then, bind this flow to thatassistingPathand delete the former from themainList.
Compute the sumS of all the selected Candidate flows for re-routing frommainPathto the
assistingPaths. If the sum ofS and the available bandwidthav of the mainPathis higher or
equal to the request (S + av ≥ r), re-route the selected Candidate flows into their respective
assistingPathsand admit the requestr into themainPath. Then, update the relevant context
information in local database for all the correlated paths accordingly and end the admission
process. The algorithm has been successful (box 6 in the flow chart 3.2).

21



Else, if (S + a < r), update the available bandwidth of the currentassistingPathstaking into
account the used bandwidthui of all the selected Candidate flows for re-routing (box 7). Tem-
porary variables are used during the process to prevent intermediate changes from affecting the
system (e.g. updating available bandwidth ofassistingPaths). This means that the changes are
applied only after the final decision. Then, go to(3).

5. If i 6= n with Pi the index of the currentmainPath, then select the path with the next index
(Pi + 1) asmainPathand go to(3). Else, if i = n, meaning that there are no more thats to
explore, return failure. The re-routing algorithm cannot find any possible re-routing that would
be useful. The request should be processed according to local policies, that is, the request might
be denied or mapped to a CoS with lower QoS requirements.

22



4

more mainPaths 

to explore
MainList Empty

Yes

No

Yes

Impossible to re-route

No

• Associate the flow with max Used BW to APT(1)

• Delete that flow from MainList

• Compute Total Used of associated flows so far

T(used) + Av. > 

Req BW

Yes

No

• Build SPT

• Sort and index SPT 

by Av. resources

1

• Update temporary database 

with APT2

• Update Used in APT7

• Apply current re-routing for flows in 

APT2

• Return mainPath

6

• Sort APT by Av. resources

• Create MainList

3

• Get mainPath

• Build APT

2

5

Figure 3.2: Flow Re-Routing flow chart

23



3.5 Bandwidth Over-Reservation Algorithms

The main objective of this section is to present the resourceover-reservation algorithms that were
implemented in the architectures (centralized/distributed) described earlier in this chapter. This reser-
vation scheme includes three different Reservation Algorithms, namely, Class-based bandwidth Over-
Reservation (COR), Advanced Class-based bandwidth Over-Reservation (A-COR) and Multi-user
Aggregated Resource Allocation (MARA). The purpose, is to better evaluate the impact of different
algorithms on a given network.

The first two, COR and A-COR, are the new proposals being evaluated in the simulation process
in comparison with MARA, which represents the state of the art. Therefore, only COR and A-COR
are clearly described here, as details about MARA can be found in the literature [19].

As discussed in section 2.3, over-provisioning techniquesenvision reserving more bandwidth to
each CoS than currently required, in order to minimize signaling messages and control load. This
way, multiple flows can be accepted without signaling the network nodes, as long as resources are still
available.

In order to facilitate the understanding of the descriptionbelow, consider that the network hask
CoSs configured on each link and a fraction of link capacity isassigned to each CoS. Such fraction of
aCoSi is denoted the weightαi, with 1 ≤ i ≤ k such that:

k∑

i=1

αi = 1 (3.2)

One common hypothesis is to set all CoSs to the same weight, following:

αi =
1

k
1 (3.3)

For simplicity reasons, the weight of eachCoSi is defined as equation 3.3 dictates.

3.5.1 COR

A flow chart following the operation of the algorithm is present in Figure 3.3 at the end of this
section. To start explaining the algorithm, let’s us go overthe QoS parameters defined by COR for
each CoS:

• χ Reservation threshold

• B Reserved Bandwidth

• U Used bandwidth

• Av Available bandwidth (B − U )

At system initialization phase, COR initializes the reservationBi of eachCoSi with a minimum
share of bandwidth,1/2 of the maximum reservation thresholdχi of theCoSi. Considering that a
capacityC is destined to thek CoSs, COR initializes the maximum reservation thresholdχi of each
CoSi according to its weightαi as:

1Done during system bootstrap

24



χi = αi × C (3.4)

So, the system administrator defines theαi values, that will give theχi and the respectiveBi

values, for all CoSs.

During system running phase, whenever a QoS decision point (e.g. QoS Broker, ingress router,
etc.) realizes that the reservation of aCoSj (1 ≤ j ≤ k) is insufficient to admit a new request
Reqj (Bj < Uj + Reqj) , whereUj is the used bandwidth inCoSj, COR computes new bandwidth
allocation patterns to be readjusted for all CoSs along the related path.

If the maximum reservation threshold ofCoSj is not exhausted (χj ≥ Uj + Reqj) , the new
over-reservationγj is computed as in MARA by:

γj =
Uj

χj

(χj − Uj −Reqj) (3.5)

If (B̂j +Reqj + γj < χj), the new reservation parameterBj of CoSj is updated as deprecated in
equation (3.6), otherwise accordingly to equation (3.7). WhereB̂j is the old reservation to be updated
for CoSj.

Bj = B̂j +Reqj + γj (3.6)

Bj = χj (3.7)

However, when the maximum reservation threshold ofCoSj is exhausted(χj < Uj + Reqj),
COR exploits the weights of each CoS and redistributes the total unused bandwidth on the link to all
CoSi, with 1 ≤ i ≤ k, in a balanced way to better control congestion probabilitywithin the CoSs.

∆T =

k∑

i=1

(χi − Ui) (3.8)

ηi = αi ×∆T (3.9)

Hence, the total unused bandwidth∆T on the link is computed by in equation (3.8) and the amount
of unused bandwidthηi to allocate to eachCoSi is obtained by equation (3.9).

If the bandwidthηj to allocate to theCoSj is sufficient to admit the new request (Reqj ≤ ηj ),
the maximum reservation thresholdsχi of all CoSi for 1 ≤ i ≤ k are readjusted as:

χi = Ui + αi ×∆T (3.10)

Consequently, the reservationBj of CoSj is updated as in equations (3.6) and (3.7), and the
reservationsBi of otherCoSi with i 6= j are readjusted accordingly to equation (3.11) ifB̂i+Reqj+

γi < χi , or else accordingly to equation (3.12). WherêBj is the old reservation to be updated for
CoSj.

Bi = B̂i +Reqj + λi (3.11)

Bi = χi (3.12)

However, if the bandwidthηj to allocate toCoSj is insufficient to admit the requestReqj
( Reqj > ηj ), COR first compares the requestReqj to the total unused resource∆T of equation (3.8).

25



Hence, whenReqj ≤ ∆T , ∆T is allocated toCoSj, and the session can be admitted to avoid wasting
bandwidth and therefore avoid increasing session blockingprobability.

The reservation and the maximum reservation threshold ofCoSj are updated as:

χj = Uj +∆T Bj = Uj +∆T (3.13)

χi = Ui Bi = Ui (i 6= j) (3.14)

The request is denied only if the total unused bandwidth on the link is not enough:Reqj > ∆T

There cannot be waste of resources.

26



Get link to 

process

More Links to 

process

Yes

No

Reservation 

Enforcement

χj = Uj +∆T | Xi = Ui

Bj = Uj +∆T | Bi = Ui

Yes

Deny 

Request

No
Reqj ≤ ∆T =

k∑

i=1

χi − Ui

Bj = χjBj = B̂j +Reqj + γi

γj =
Uj

χj

(χj − Uj −Reqj) χi = Ui + αi ×∆T

Yes

No

Yes

NoReqj ≤ αj ×∆Tχj ≥ Uj +Reqj

B̂i +Reqj + γi < χi

Yes No

B̂j +Reqj + γj < χj

Yes No

Figure 3.3: COR flow chart

27



3.5.2 A-COR

Advanced Class-based bandwidth Over-Reservation (A-COR)is an improvement of COR. As
can be seen from the flow chart in Figure 3.4 it is considerablesimpler as well. The purposes and
the goals of both algorithms are the same, but A-COR proves tobe better than COR. One of the
main differences is that theχ (reservation threshold) is eliminated being all computations done based
on B, the reserved bandwidth. So the the QoS parameters defined byA-COR for each CoS are the
following:

• B Reserved Bandwidth

• U Used bandwidth

• Av Available bandwidth (B − U )

At system bootstrap, the startup values forB for all CoSi are set as:

Bi = αi × C (3.15)

WhereC is the link capacity, andαi the weights set by the network administrator for each CoS. Once
again theα values must sum to one, as equation (3.2) describes.

In A-COR the QoS requirements of Reserved Bandwidth (Bi), Used Bandwidth (Ui), Available
bandwidth (Avi = Bi − Ui) are maintained for eachCoSi (1 ≤ i ≤ k) on each network link, that
belongs to a Selected Path.

In this sense, the total unused bandwidth for a given link (∆T ) can be computed by equation 3.16
(similar to equation (3.8)):

∆T =

k∑

i=1

(Bi − Ui) (3.16)

Upon receiving a request for a givenCoSj, that cannot be accommodated immediately2 the A-
COR mechanism re-computes new Reservation values in an attempt to make it possible to admit the
request.

It only makes sense to compute new Reservation values if the bottleneck link on PathPn has
enough unused BW (∆T ) such that,Reqj ≤ ∆T , otherwise it is physically impossible to admit the
request.

In this case3 the reservation values must change for all links (Lp) of the Path. To a given linkLp

if theReqj ≤ αi ×∆T we compute new values with equation (3.17), otherwise with equation (3.19).

Bi = Ui + αi ×∆T (3.17)

Bj = Uj +Reqj + αi × (∆T −Reqj) (3.18)

Bi = Ui + αi × (∆T −Reqj) 1 ≤ i ≤ k, (i 6= j) (3.19)

2BW requested (Reqj) is higher than the minimum amount of Available BW min(Avj ;Pn) for CoSj , in all possible
Paths -Pn

3Reqj ≤ ∆T for all links onPn

28



The process is repeated for allLp links on PathPn. The new values are stored, and passed to be
enforced on the network. The request can now be accommodatedwithout signaling.

The request is denied only if the total unused bandwidth on the link is not enough:Reqj > ∆T

There cannot be waste of resources.

Deny

No

Get link to 

process

Yes

Yes No

More Links to 

process

Yes No New 

Parametrs

Bi = Ui + αi ×∆T
Bi = Ui + αi × (∆T −Reqj) 1 ≤ i ≤ k, (i $= j)
Bj = Uj +Reqj + αi × (∆T −Reqj)

Reqj ≤ αi ×∆T

Req > Av.
Req > ∆T =

k∑

i=1

Bi − Ui

No

Figure 3.4: A-COR flow chart

29



3.6 Centralized Scenario

In this scenario there is only one CDP that is responsible fortaking all the relevant decisions
about what traffic comes into the network and what is denied, as well as to defined the respective QoS
parameters and enforce them.

At system initialization, the network administrator has a strong influence on the booting up of the
network. He must configure all nodes to implement the correctagents and define the CoS weights (αi

values for al CoS. At system bootstrap, when no session is running yet, the unique CDP triggers all
the Ingress nodes (Ig) under its control to create edge-to-edge paths to any Egress nodes (Eg). This
triggers the flooding mechanism briefly described in Section3.4.1.

The objective is to find all possible paths between eachIngressand eachEgresson the network
as well as to discover all relevant topology information, for instance, every link’s delay and capacity.
The flooding mechanism was originally used in the MARA implementation, but it was adapted for
this work and so the final C++ code is different from the one in the original version. It works as in the
following.

Each Ingress node, sends out of each one of it’s own interfaces a well flagged message that will
be forwarded by all nodes. At the same time paths are being discovered, initial resources are being
reserved for each CoS at each link in the network. This message is responsible for triggering the initial
reservation of resources for all CoSs (accordingly to the reservation algorithm defined by the network
administrator) for all links it goes trough. Each node ID is stored in a vector (Path vector), that will
later become the new path discovered.

Upon receiving such a message each type of node takes different actions. In the case the current
node is anIngressnode, the received packet is discarded, meaning that a loop on the network has
occurred. In the case that this node is aCore node it looks into thePath vectorcontained in the
message. If it doesn’t find its own address there, then adds it, and forwards the message out all
of it’s own interfaces, except the interface at which the message was received. It also fulfills the
respective data fields for links bandwidth and delay with thecorrect values (not done in the initial
MARA implementation). This way the information about the network topology is gathered. If it
finds its own address there, this means a loop has occurred andthe message is discarded, avoiding
devastating loops. The last possibility is that the receiving node is anEgressnode. In this case, a
response message is built and all the information gathered copied, and sent back to theIngressnode
that generated it. The response follows the exact path done in the reverse order, to correctly build the
multicast tree, using source routing.

When a response message reaches theIngress, it is forwarded to the CDP node that will store the
information. After a given time, all the possible responseshave been received, meaning that all links
and CoSs initial reservations are done, as well as all multicast groups created.

The CDP receives all of these messages and builds its database, composed of theTOPOLOGY,
CORRELATIONSand PATHStables, as described earlier in the document. Locally it deduces the
initial reservation parameters for each CoS on each interface, once it knows all links capacity. This
way,the signaling messages does not need to carry the initial reservations parameters and therefore
avoid increasing signaling message size unnecessarily.

Notice that in the centralized scenario there is no need for theVOPRandLISTS, tables because
there is only one CDP and it has all the information it needs. VOPR is only useful to avoid signal-
ing between distributed control points, and theLISTStable useful to know which nodes should be
advertised for changes in a given link or set of links.

30



At this point, initialization phase is over, and requests can be parsed. The local database is built
and initialized. All requests will be received by the CDP where it will process and map requests into
a certain Path that meets the QoS requirements. The process that regulates this decision is called
Admission control. To help understand these mechanism a flowchart is presented in Figure 3.5.

CDP
New Request

Req < Av. BW
• Update used BW

• Create Traffic

Yes

No

Try Resource Re-computation 

for Path P

RR successful
Yes No

More Paths to 

explore

Get next Path

Try Flow Re Routing

No

NoYes

Re Route 

successful

• Re Route Flows

• Admit Request

• Update NetCIB

Deny 

Requesst

• Update NetCIB:

• Admit Request

• Create traffic

Yes

Reservation Enforcement

Figure 3.5: Centralized Scenario Normal Operation

The first step to parse the request is to make a selection of allthe possible paths that connect
the Ig − Eg pair, the candidate Paths. Then, compare the request BW to the amount of available
bandwidth in the Path with highest available BW. This amountis heavily influenced accordingly the
the reservation algorithm used (and dependent on network usage, of course).

If the request BW is lower than the highest available bandwidth, the request is admitted into that
Path. The CDP’s database is updated, and packets start flowing trough the pre-configured multicast
group, as we can see in the flow chart mentioned above.

In the centralized approach, requests are admitted based onavailable resources, because the CDP
has all the information at any given point in time. If the request cannot be immediately admitted then,
new values for the CoS reservation need to be computed. This is done accordingly to the reserva-
tion algorithm defined, and is explained in section 3.5. The computations are performed for all the
candidate paths until they are successful in one. In this case the request can be mapped to it.

Before the packets can start flowing, we need to make sure thatthe calculations made by the CDP
are enforced in the correct path. To do this, the CDP builds a message – Reservation Enforcement
Message (RE) – containing these new computed parameters. The message gets the on-Path nodes
addresses and travels trough the network using source routing.

At each node, the QoS requirements are updated, and the packet forwarded. Eventually, the

31



message reaches the end of the path in anEgressnode. This node sends an acknowledgement back
to the CDP which can admit the request into the network. Again, the CDP’s database is updated, and
packets start flowing trough the pre-configured multicast group.

In the case that no reservation re-computation is successful for any path, a mechanism called flow
Re-routing is called. It aims at re-mapping existing flows from one path into another in order to free
enough resources to accommodate the new request. This mechanism is explained further in section
3.4.3 once it is far from trivial.

If it is not possible to re-route any traffic, the request is denied. This mechanism repeats itself for
every request and ensures that no QoS violation occur and that the network resources are capable of
being fully used (no waste of resources).

3.7 Distributed Scenario

Self Organizing Multiple Edge Nodes (SOMEN) provides a mechanism to minimize the impact
in network performance of decentralized network control incurrent and future Internet scenarios.
It consists of enabling multiple network CDPs (e.g., network borders), operating in a decentralized
manner, to cooperate, and quickly adapt to changes in the network and the related resource states,
keeping low control, processing and signaling load.

We consider that requests (with a given BW) can come at any time to any CDP node. The CDP
must decide on its own if the request can be accepted into the network or not, without degrading the
QoS requirements of any active flow.

In the distributed scenario there are several CDPs that can accommodate requests. To synchronize
the information on the several CDPs, information exchange is going to be mandatory. The challenge
is how to exchange the least amount of information, the leastnumber of times, but still allow for the
best network performance possible.

The straight forward way is to make each CDP send a message to all other CDPs each time a new
request is admitted. The so calledPer-Flow signaling. This is far from meeting the requirements of
low control, processing, and signaling load. In this sense,a dynamically controllable variable called
Virtual Over PRovisioning (VOPR), is introduced.

The main idea of VOPR is to enable CDPs to dynamically define and exploit virtual resource for
each Path based on links that lie on it. The VOPR of a CoS in a Path is represented by the VOPR on the
bottleneck link of the Path. Every CDP can utilize the virtual resources defined for own Paths without
issuing advertisement messages, and more importantly, without damaging system performance (while
significantly reducing advertisement overhead). Moreover, functions to determine which CDPs should
be advertised about specific information and the ones who don’t, are taken into account assuring the
least amount of messages are sent (Based on theLISTSTable).

At system initialization phase, each CDP finds all the possible paths between itself, and all others
border routers (exit points –Egresses). This information is stored in a table,Global Paths Table, in
each CDP’s own NetCIB. This uses the same flooding mechanism describe in the previous section.

In large networks, the number of paths can grow very fast, which may affect computation time. To
take this into account, a Path selection mechanism is implemented to copy some Selected Paths from
theGlobal Paths Table, to aPATHS Table(the table being used for all computations). The mechanism
that defines which Paths should be Selected can be based in several parameters: the number of hops,
the available bandwidth, the cost, the correlation patterns, delay, etc. For simplicity reasons, the
selection implemented is based on delay alone, being one Path selected if it’s delay is below 500ms

32



(default value, can be modified). Hence, after selecting allits best paths according to the local policies
defined by the operator, a CDP advertises all the other CDPs within the network about its selected
paths and the related context information.

The information to be exchanged includes the Paths IDs, the list of the IDs of the outgoing inter-
faces that compose each Path and the capacity of each outgoing interface. Thus, upon receiving this
information from others CDPs, every CDP is able to build the rest of it’s own NetCIB.

The NetCIB database of a CDP is composed of several control information tables such as the
CORRELATIONS, TOPOLOGY, PATHS, VOPR, LISTStables. How these tables are build is explained
section 3.4.

System initialization phase is similar to the centralized scenario, using the same mechanism for
initial Path creation (flooding). The main difference is based on the type of database being built, and
that the information gathered is exchanged between acsSOMEN-E agent instead of being sent to a
central CDP.

After initialization phase all CDPs have their database built, and are able to accept requests. To
easy the understanding of the normal operation, consider the flow chart presented in Figure 3.6. Any
CDPi can accept requests, i.e., any SOMEN-E agent, so these termsare interchangeable. In the flow
chart SOMEN-E refers to the same node asCDPi in the text.

When a request comes atCDPi, the agent immediately checks if the request BW plus the used
BW is lower than the highest available VOPR in any possible Path. If true, it is said that VOPR is
available and the request is admitted into the network without signaling. The local NetCIB can then be
updated by adding the amount of requested BW to the correct CoS in the mapped path in thePATHS
table, after that theCDPi returns to normal operation state. Therefore, the per-flow synchronization
signaling is avoided without negatively affecting the accuracy of NetCIB and the system performance
can be optimized, as long as VOPR is said to be available.

In the case there is not enough VOPR to accept the request (VOPR exhausted),CDPi builds
an advertisement message with the ID’s of all possible Pathsand advertises other correlated CDP’s.
These nodes to advertise are obtained from theLISTSTable. The message is called1st ADVERTISE-
MENT VOPR exhausted parameter 03. This advertisement takes intoaccount the information in the
LISTSTable, to ensure that only the CDPs that have relevant information receive the control message.

Upon receiving such advertisement, each other CDP retrieves their own links and own paths,
which correlate with the advertised paths using theCORRELATIONSTable, and reply to the ad-
vertiserCDPi with the IDs of own correlated paths and the used bandwidth ineach CoS of each
correlated path – theAggregated UsedBW information. The message is calledResponse to1st AD-
VERTISEMENTmessage, parameter 05.CDPi waits until it receives all these messages and updates
its NetCIB accordingly.

At this pointCDPi has on its local NetCIB the real description of the network. It can take all the
decisions by himself, and send the results back to others in the end.

After the database is updated, new reservation parameters are computed for all advertised paths,
accordingly the algorithm being run4. The request is admitted in the first Path that has enough re-
sources accordingly to the new reservation parameters. In this case, the database is updated with the
requested BW value, added an entry to theSESSIONStable, and the new parameters computed en-
forced in the respective path. The enforcement is done the same way as in the centralized scenario.
New values for VOPR are computed for all Paths, so that the number of requests admitted without
signaling has higher probability of occur.

4COR, A-COR or MARA

33



SOMEN-E
New Request

vopr available
• Update used 

BW in PATHS

• Create Traffic

Yes

No

Send Advertisement vopr 

Exhausted to other CDPs
Wait for 

Responses

All Responses 

arrived

Yes NoUpdate local NetCIB with the 

Aggregated Used from all 

Responses

Try Resource Re-computation 

for Path P
RR successful

More Paths to 

explore

Get next Path

No

Yes

Try Flow Re Routing

No

Re Route 

successful

• Re Route Flows

• Admit Request

• Update NetCIB

Deny 

Requesst

Yes No
• Update NetCIB:

• Admit Request

• Create traffic

• Send Advertisement to other 

CDPs

⁃ used BW in PATHS

⁃ Re-compute VOPRs table

⁃ Update PATHS vopr and Av. BWs

Yes
Reservation Enforcement

Figure 3.6: Global SOMEN Operation

34



Finally a well flagged message is built to carry these new reservation parameters and sent to the
same list of CDPs nodes so that they can update their local NetCIBs as well. This message is called
2nd ADVERTISMENTmessage, parameter 06. System returns to normal operation state.

If it is not possible to accept the request at any given path, all reservation computations fail, a
mechanism called flow re-routing is called. This mechanism attempts to re-map existing flows from
congested paths into other paths in such a way that makes it possible to free enough resources in some
path so that the request can be admitted. The operation of this mechanism is complex and explained
further, in section 3.4.3.

If flow Re-routing is successful the database is updated withthe request used BW value, added an
entry to theSESSIONStable, new values for VOPR are computed for all Paths.

Once flow Re-routing only considers active flows accepted throughCDPi there is no need to build
a message to advertise other CDPs about all the changes in thenetwork. Only an acknowledgement
is sent so that other CDPs may return to normal operation state. This is due to the fact that new
reservation parameters were not successfully computed forany path, so they stay with their old values.
Values that are identical to he ones on all CDPs NetCIBs. The information that is different is the
amount of used bandwidth for some paths, but that does not violate the respective VOPR values
for any CDP. So, if some CDP VOPR exhausts, the whole process is triggered and the respective
information updated.

Only when flow Re-routing fails the is request denied.

3.8 Conclusion

This chapter described the main features and functionalities of the proposals in order to facilitate
the understanding of the implementations, as well as the results obtained. Therefore, the algorithms
and mechanisms were explained from a theoretical point of view.

The centralized and distributed scenarios were presented,with a small discussion about the general
operation of each one.

A special effort was made to explain the operations of the reservation algorithms used.

This dissertation continues with chapter 4 that will dwell in the implementation trade-offs and
restrictions, as well as giving an insight into the simulation environment used.

35



36



Chapter 4

Implementation

4.1 Introduction

The implementation of the discussed proposals in chapter 3 is done using the well known Network
Simulator (NS) version 2.31, that will be described in section 4.2.

All the code was written in C++[5], and in TCL [25] for the running scripts. This chapter will
deeply present and explain the developed work, describing the mechanisms implemented to support
the referred proposals. [8][5][25]

In section 4.2 we analyze the simulator used, and give a little insight about its design and capabil-
ities.

In section 4.3 it’s presented the work related to the centralized scenario.

Section 4.4 is the core of this work, the distributed architecture running SOMEN.

In section 4.8 are discussed the modifications done to the current multicast implementation in
order to support multiple paths between the same A, B pair or nodes. It is fundamental for this work.

Finally a summary of the work can be found in Section 4.10.

4.2 NS2 Simulator

The Network Simulator (NS) (also commonly called NS-2, in reference to its version) is a discrete
event network simulator. NS is popularly used in the simulation of routing and multicast protocols,
among others, and is heavily used in ad-hoc networking research. It supports most of the popular
network protocols, offering simulation results for wired and wireless networks alike.

Due to its open source model, it is specially popular in academia. However, in general, modeling
is a very complex task, given the need to learn scripting, programming, modeling etc.

The basic design of the simulator consists in a split objectsmodel. NS was built in C++ and
provides a simulation interface through OTcl, an object-oriented dialect of Tcl. The user describes
a network topology by writing OTcl scripts, and then the mainNS program simulates that topology
with specified parameters. Objects created in OTcl have a corresponding object in C++, as shown in
Figure 4.1.

This automatically raises one question:Why two languages?

The answer lies in the kind of things it needs to do. On one hand, detailed simulation of protocols
requires a system programming language which can efficiently manipulate bytes, packet headers, and

37



Figure 4.1: NS2 C++ Otcl structure

implement algorithms that run over large data sets. For these tasks run-time speed is important and
turn-around time (run simulation, find bug, fix bug, recompile, re-run) is less important.

This is handled with C++ code. C++ is fast to run but slower to change, making it suitable for
detailed protocol implementation.

On the other hand, a large part of network research involves varying parameters and configura-
tions, or quickly exploring several different scenarios. In these cases, iteration time (change the model
and re-run) is important. Since configuration runs once (at the beginning of the simulation), run-time
is not very important.

This part is done with OTcl scripts. OTcl runs much slower butcan be changed very quickly (and
interactively), making it ideal for simulation configuration.

However, the user must master two completely different languages, that involve different princi-
ples, ideas, and syntaxes.

4.3 Centralized Scenario

The already existing implementation of the whole MARA platform was initially taken as a starting
point. The first step was to run a few scripts and get used to theMARA platform. However, the plat-
form was very low commented, very confusing, difficult to understand the meaning of the variables,
and TCL configuration was very static making the program crash often due to small details.

The initial idea was to adapt the existing implementation bymodifying only what is needed to im-
plement SOMEN. After several months and several modifications and many lines of code written/re-
written, it was getting barely impossible to move forward. We decided to leave the existing imple-
mentation and build a new one from a blank page, using the existing one as a reference for specific
details.

Basically not much was reused from the initial code apart from the initial paths discovery mecha-
nism, based on flooding. Therefor, the SOMEN platform is mostly developed independently.

4.3.1 Network Initialization Phase

Initialization Phase has several purposes. It is responsible for paths discovery, initial DataBase
construction, topology information gathering, among other functionalities, that will allow the system
to work.

38



At the very beginning of the simulation, instances of all classes are created (nodes, links, queues,
etc.) accordingly to the TCL script file. This is responsiblefor creating all Agents and nodes, variables
initialization, links, queues, etc.

One C++ Agent Class calledLightAgentmust be attached to each node in the simulation. This
class implements the basic functions of theSOMEN-Cdescribed in the chapter 3, like message for-
warding, and information gathering, among others. Anotherclass,cdp_Agentclass is attached only at
the CDP node. This implements all the functionalities of theCDP node.

After this simulation is running. At this point, we define thebeginning of the system Initialization
Phase.

In the TCL script, the command“setupInterfaces”must be called in the first place for allLight-
Agentsin the network. After that, the command“corInitialization” must be called at allLightAgents
that are alsoIngresses. The later, will start the flooding mechanism for path discovery, and information
gathering (every link’s delay and bandwidth).

The flooding mechanism follows MARA implementation, although once the purposes of this work
and MARAs are different, additional code had to be written and/or modified.

The objective is to find all possible paths between eachIngressand eachEgresson the network.
So,“corInitialization” builds and sends a message out all its own interfaces (or links). This message
goes with the headerhdr_mrrpstruct fieldsflag_iandmsg_typeset to 1 (true/active) and toRESERVE,
respectively. This message is received at eachLightAgentfunction recv(). By looking at the previous
header flags, through an if structure it callstreatInitialization().

This function checks its own agent type:Ingress, Core or Egressnode. In case this agent is an
Ingressthe received packet is discarded, meaning that a loop on the network has occurred. In case this
agent is anCorenode it then looks into the path vector on thehdr_mrrpfield reserve_path. If it doesn’t
find its own address there, then it adds it, and forwards the message out to all its own interfaces, except
the interface at which the message was received in the first place. Additionally, also fills the respective
data fields for links bandwidth and delay with the correct values, obtained dynamically trough TCL
interaction (not done in the initial MARA implementation).

If it finds its own address there, this means a loop has occurred and the message received is
discarded, current function is terminated and this node returns to normal operation state. This avoids
all possibilities that some packets would indefinitely run through the network in loops, devastating
performance.

The last option, this agent is anEgressnode. In this case a new path has been found. A response
message is built, and sent to theIngressnode, by following the path in reverse direction. The response
message carries a vector with all the nodes it has gone trough, as well as all the links bandwidths and
delay values. This information is used to build the system DataBase.

Another functionality of this flooding mechanism, is that itinitializes all CoS information for all
links on the network. This has to be done for every link, for every CoS, accordingly to the Reservation
Algorithm used. The Reservation Algorithm got from TCL is used by theCore nodes to correctly
compute these values. To avoid reserving resources twice, or overwrite existing data, this computation
is assured to be done only once. Initially all values are set to zero by the Agent class constructor. Upon
receiving a flooding message, if the agent verifies that the CoS information is zeroed out, fulfills it,
by computing the correct values according to the Reservation Algorithm. On the other hand, if those
fields already have some value, it means that computation hasbeen done and the agents skips this
step.

The computations discussed in the previous paragraph are performed by the method

39



CoS_startUP_Reservation(interface)that takes one interface as input parameter. The computed va-
lues are enforced in the simulator environment upon successful computation. The command
addQueueWeightsis used. This command receives one CoS and a percentage value(p) as input
parameters, then makes the given CoS have the weightp.

At some point, the flooding messages being propagated by theCorenodes get to anEgressnode.
As referred before, this means that a new path has been found and the Egress must build aRESPONSE
message. ThisRESPONSEmessage follows the reverse path through eachCorenode until theIngress
node that generated it. As it goes trough each node, the function treatResponseMessage()creates
and fills the MRIB routing tables and performs the required actions in the simulator environment to
enforce the correct multicast tree creation. One multicasttree is created by each different path. The
address of each multicast tree is defined as a variable value in the NS simulator as a string. Once
there is no need to define and store a real IP address (similar to a node’s IP being integer) the Path
ID value is used as the multicast tree address. This value corresponds to the unique number that
identifies each message in the simulator. It’s used because in this way we uniquely map the address of
a multicast tree to the respective Path ID, so when creating traffic sources the destination can be set to
the correct multicast address, that will undoubtedly make packets follow the desired path. This way
also simplifies a little the DataBase Paths table once there is no need to store the respective multicast
address for each path (it is the path ID value).

The multicast tree creation is done in the reserve path to avoid sending another message in each
path to build the MRIB tables. It cannot be done in the forwarding flooding because at that time the
paths are not known and message loops may occur. By doing it inthe return message we solve this
problem.

TheRESPONSEmessage is eventually received at theIngressthat automatically sends the infor-
mation to the CDP node. A response message is built, and sent to the CDP node of which the address
is know at first hand given by the TCL script file. TheRESPONSEmessage carries a vector with all
the nodes it has gone through (the Path), as well as all the links bandwidths and delay values.

Upon reception on the CDP, therecv()function callsstoreInitializationInformation()which parses
the information on the received packets and adds the new paths and links information to the respective
database’s tables. The flow chart 4.2 describes this process.

Idle
New Initialization Message 

Received

Store Information

Add Links to NLT
Add Path to NPT
storeInitializationInformation()

Figure 4.2: Store Initialization Information

40



4.3.2 Normal Operation State

The CDP normal operation state is defined as being the state after initialization phase where the
CDP is idle, waiting for requests to come. It begins right after all the flooding messages are over, and
all paths have been found. The CDP has no way to know when this happens, so the initial TCL script
comes in to play another role. After calling“corInitialization” at all Ingressesthe user must give a
time out (usually 1 second is more than enough, but it dependson the size of the network and on the
defined delay values for each link) and then call“Build_Database” at the CDP node in the referred
TCL script. This will trigger three functions at thecdpAgent. One to build the Selected Paths Table1,
another to build the Correlated Paths Table2 and a last one to fill CoS information into the Network
Links Table3.

This gets the database built. The follow flow chart of Figure 4.3 also represents this mechanism.

After this point requests can be parsed. One remark to be doneis the detail in building the Selected
Paths Table. This table gets all the Paths from the Network Paths Table, that has all possibilities.
However, some of those possibilities may not be of interest in large networks (several hundreds of
paths), because they may increase unnecessarily the computation time of the algorithm, among other
avoidable problems. Some filtering needs to be done. This canbe done in several ways, but it is not
the focus of this work. We have done filtering based on total Path delay alone. By copying from the
Network Paths Table to the Selected Paths Table only the Paths whose total delay is below a certain
threshold (500msby default).

Idle Build DB Command Received

Compute CoS values in NLT
Selected Paths Table: delay<500ms

BuildDB()

RecomputeCoS();
Correlations Table; For all links, store list of Paths that 

use that Link

Figure 4.3: Build dataBase command

Now lets go over the interesting part of this work – parsing requests. All the above steps are done
and the CDP is in normal operation state ready to accept a new request. From a code point of view,
this is just another TCL script function being called with several parameters, as Table 4.1 describes.

Ingress Egress CoS BW Kbps Sid Fid Traffic Duration

source destination class bandwidth Session ID Flow ID Exponential seconds
CBR
Pareto

Table 4.1: TCL Request Parameters

1Build_Selected_Paths_Table()
2Build_Correlated_Paths_Table()
3Recompute_CoS()

41



The entry and exit points of the requested traffic (IngressandEgressnodes) are given to the CDP,
as well as the bandwidth requested and the CoS. A session ID and flow ID are passed and checked to
be unique in the C++ code to prevent overlapping values or repetitions. The duration of the request
in seconds is given. The CDP agent uses this value to automatically schedule in the NS the call of
the method“ReleasingRequest()”(Section 4.9.1) so that this specific traffic ends after the given time.
This method will stop the traffic in the simulation environment and update the database by removing
the request bandwidth from the mapped path, and correlated paths. This variable can also take the
value−1 meaning that the specific request will last until the end of the simulation.

The traffic type may be one of following: Exponential distribution, Constant Bit Rate (CBR),
Pareto distribution. The traffic type parameter in used in the method described in Section 4.9.2 that
generates the traffic in the simulation environment. This leads to a more realistic scenario of the
network utilization by mixing these types of packet generation together. All three of them are natively
supported by the simulator.

!��� New Request

validate Data
get Data from TCL script file

IncomingRequest()

 0 < CoS < nCoSs
 BW > 0
 Ig, Eg valid (known adresses)
 Ig, Eg known adresses
 Sid, Fid not repeatedAdmission Control

Path ID 

Valid
Deny Request

Update Session State Table

Create Traffic in NS2

Yes

No Yes

Figure 4.4: CDP Normal Operation (simple)

Once the TCL request command runs,IncomingRequest()is called by thecdp_Agentclass, as
shown in the Figure 4.4. This function will get all the data from the TCL and bind it to C++ local
variables, then validate that data and callAdmissionControl()mechanism.

The validation of the data assures that a validIngress–Egresspair is given by checking the CDP
database, that no negative values for Bandwidth are passed,that the CoS given is within the correct
bounds and that the pairSid–Fid is not already stored in the Session State Table. If any of thecondi-
tions above fail, the request is considered invalid and ignored, printing a warning tostdout(the screen,
or the log file).

If the request is considered to be valid, Admission Control performs as will be described in 4.3.3
and returns aPathvariable. If that variable has a negative value (-1) means that Admission Control

42



has found that the request cannot be accepted (not enough resources). The request is then denied,
another warning is printed tostdoutand the CDP returns to normal operation state.

In the best case scenario Admission Control returns a valid Path and the request is added to Session
State Table. The database is updated and the traffic with the given parameters is generated in the
simulator with the function described in 4.9.2.

CDP returns to normal operation state, ready to parse another request. The following flow chart
describes the discussed mechanism.

4.3.3 Admission Control

Can the given request be admitted?

Admission control does only one thing: answer the question above. It’s everything but an easy
task. In the C++ files the admission control is implemented asa member ofcdp_Agent, with the same
name,AdmissionControl( ). It takes some input parameters of the pending request, likeCoS and BW.

The steps performed can be followed by looking at the flow chart presented in Figure 4.5. First,
the candidate paths between the requestedIngressandEgressare collected into a temporary table.
This table is calledTemporary Selected Paths Table– or for shortSPT – and sorted by Available
bandwidth in a decreasing order.

The temporary table is needed to compute the required operations without jeopardizing the orig-
inal information in the database. The process may fail, and the original information should be pre-
served.

The Path with highest Available bandwidth (index 0after sorting) is tested to see if the request can
be mapped into it. In the best case scenario, the request can be admitted (bandwidth below Available
value) and admission control returns the current Path, to update local database and start traffic in the
simulator. This situation is calledAdmission Without Signaling.

In some situations, the request cannot be admitted so easily. In the case the bandwidth requested
is higher than the highest Available value, re-computationof the CoSs limits are done for all paths,
one by one, until the first re-computed values are enough to accommodate the request. In that case, a
message is built with the new computed information for Pathi and sent through all the links of Pathi

using multicast.

The resource re-computation can be done in three distinct ways:

• Class-based bandwidth Over-Reservation (COR) – section 3.5.1

• Advanced Class-based bandwidth Over-Reservation (A-COR) – section 3.5.2

• Multi-user Aggregated Resource Allocation (MARA) – [19]

The resource reservation mechanism must be defined in the initial TCL script by setting the vari-
able ReservationAlgorithmof both thecdpAgentand all LightAgent’s to 1, 2 or 3 respectively for
COR, A-COR or MARA. Omitting this option from the TCL script will result in running the default
value, COR algorithm, and a warning message being print to the Standard Output (STDOUT).

Still, the CoS re-computation may fail for all possible paths. This tends to happen more when
network is near full utilization. In the event of such situation, theAdmission Controlmechanism calls
Flow Re-routing, to search for the possibility of re-routing some flows from one Path to another in

43



riggered by
IncomingRequest()

Sort by Available BW (given CoS)
get All paths between Ig, Eg

AdmissionControl()

Select Path with highest Available BW

Rbw > Av.

Update DB
Create Traffic

A. w/out Sig.

Update DB:
- SPT
- NLT

Return Path;

NoFor all Paths in SPT, try 
Resource Re-Computation ( )

Based on RA:
• COR
• A-COR
• MARA

RR succeeds
in Path i

Send RE();
Update DB:

-SPT
-NLT

Return Path i;

No

Yes

All paths 
tested

No

get next path

Yes

Try FR on all 
paths

FR 
succeeds

Yes

Retun path ID -1;

No

Yes

Figure 4.5: Admission control

44



order to get enough free space in some Path that will allow thesystem to accommodate the pend-
ing request. The complex behavior of it is described in the section 3.4.3 (general algorithm) and in
Section 4.7 (the implementation).

From a black box point of view, theFlow Re-routingalgorithm will return a valid Path if it suc-
ceeds. This path is returned byAdmission Controland the request is admitted into it and the database
updated. Similar to anAdmit without Signalingevent. AlsoFlow Re-routingguaranties that all the
re-routing of the flows and the corresponding database updates are done before returning.

If Flow Re-routingreturns an invalid path, it means it has failed and the request should be denied.
CDP returns to normal operation state, ready to parse another request.

4.4 Distributed Scenario

4.4.1 Network Initialization Phase

The initialization process is almost the same as described in section 4.3.1. In this scenario there
is no central CDP node, so the final information is not sent anywhere, it is stored in eachIngress
database, the NetCIB.

The agents attached to each node in the TCL script file are different from the ones in the centralized
scenario. We attach aLightAgentto all nodes and theSOMENAgentclass to theIngresses. The later,
implements the functionalities of the SOMEN-E described inchapter 3.

As in the centralized scenario, the TCL script file must call the command“setupInterfaces”for
all LightAgentsand the command“corInitialization” for the nodes running theSOMENAgent(In-
gresses). They perform the same functions as in the centralized scenario, the former gets information
about Link Bandwidth, delay, among other variables, dynamically from the simulator, and the latter
starts the flooding mechanism for path discovery.

The methodstoreInitializationInformation()receives the initialization packets sent by theEgresses
and adds the information to the respective tables (new linksto the Topology Table, new paths to the
Global Paths Table). The mechanisms for path discovery, MRIB creation and information gathering
are the same as in the centralized scenario.

The only remark to be made in this part is that, in order for allCDPs to be aware of all the Paths,
the Igressessend their own Paths to all otherIngresses.

TheIngresseshave no way to know if any information about a path will come inthe future, so they
cannot finish initialization phase and build the rest of the NetCIB on their own. The same situation
was solved in the centralized scenario by issuing a command from the TCL script file.

In the distributed scenario, the command“Build_NetCIB” is invoked a timeout after both the
commands“setupInterfaces”and“corInitialization” are called. Note that once eachIngresshas it’s
own local database (NetCIB),“Build_NetCIB” must be issued for allIngressnodes.

The command“Build_NetCIB” runs several methods from theSOMENAgentclass, namely to
build PATHS, CORRELATIONS, LISTSandVOPRtables. Finally, it computes and fills thePATHS
table with current Available and VOPR bandwidth values.

After the NetCIB is built, Initialization Phase is over, andthe systems enters normal operation
state.

45



4.4.2 Normal Operation State

The normal operation state is defined as being the state afterinitialization phase where all CDPs
are idle, waiting for requests to come. AllIngressesare considered CDPs because all run theSOMEN-
Agent.

Requests come as TCL commands, basically with the same structure as in the centralized scenario
(see Table 4.1). The difference is that the command can be issued to any of the SOMEN awareIngress
nodes, instead of being issued to the only centralized CDP.

The behavior that allows the request to be accepted or not, isvery distinct from the centralized
scenario. The flow chart of Figure 4.6 represents the actionstaken upon receiving a request.

Following the flow chart referred, the general operation will be further explained. For the remain-
ing of this section, letCDP0 refer to the SOMEN Agent that received the request, andCDPi all the
SOMEN Agents that will be advertised.

SOMEN-E
New Request

vopr available
• Update used 

BW in PATHS

• Create Traffic

Yes

No

Send Advertisement vopr 

Exhausted to other CDPs
Wait for 

Responses

All Responses 

arrived

Yes NoUpdate local NetCIB with the 

Aggregated Used from all 

Responses

Try Resource Re-computation 

for Path P
RR successful

More Paths to 

explore

Get next Path

No

Yes

Try Flow Re Routing

No

Re Route 

successful

• Re Route Flows

• Admit Request

• Update NetCIB

Deny 

Requesst

Yes No
• Update NetCIB:

• Admit Request

• Create traffic

• Send Advertisement to other 

CDPs

⁃ used BW in PATHS

⁃ Re-compute VOPRs table

⁃ Update PATHS vopr and Av. BWs

Yes
Reservation Enforcement

Figure 4.6: Global SOMEN Operation

TheCDP0 is idle and a new request comes. The method,IncomingRequest()is called. It parses
the variables passed through the TCL command and validates them (non-negative CoS and BW values,
existingEgressnode,Sid–Fidnot repeated). Then, the Admission control mechanism is called.

For all possible paths to the givenEgressnode, admission control compares the sum of the re-
quested BW and the used BW inPathi to the respective VOPR value ofPathi (for the requested

46



CoS), as follows:

request+ used > vopr in Pathi

If the sum is above the VOPR value, admission control returnsa negative number, meaning VOPR
exhausted, otherwise returnsPathi.

This Path is selected to accommodate the request and the NetCIB is updated (request BW summed
to used BW forPathi ). Traffic is generated in the simulation by calling the method CreateTraffic()
4.9.2, identical to the one in the centralized scenario. Thesystem returns to idle state, and is able to
parse another request. This is calledAdmit Without Signaling.

In the case Admission Control returns a negative value (−1), then other nodes must be advertised
for the local NetCIB to be updated. This is called aVOPR exhausted event.

TheCDP0 searches it’s localLISTStable and gets all the nodes it needs to advertise (allCDPi),
i.e., all the nodes that have at least one link that correlates with any of the possible paths. Then, for
each node that must be advertised, a packetVOPR_EXHAUSTEDis built that carries a vector with all
Path ID’s betweenCDP0 and theEgressnode in the request (destination). By using theLISTStable
it’s assured that only the nodes that need to be advertised are so, hence minimizing signaling load.

Upon receiving such a message, eachCDPi computes their Aggregated Used and builds aRES-
PONSEmessage, carrying the result of that computation. It sends this information to the CDP that
originated theVOPR_EXHAUSTEDmessage.

The aggregate used is the sum of all used BW from all previously admitted requests for all paths
advertised, in each CoS. The involvedCDPi replies toCDP0 with its used bandwidth in each CoS
on each of its own paths which correlates with the advertisedpaths. This data will be used to correctly
update the database ofCDP0 to the current network utilization state. We can see this in theWait for
Responsesbox in the flow chart of Figure 4.6.

In the C++ the method responsible for this computation isComputeAggregatedUsed(PathID_s)
that belong to theSOMENAgentclass. It receives a vector of path ID’s and returns a vector of Ag-
gregated Used, built as being all the on-path links and respective used BW per CoS. This Aggregated
Used is an instance of a class calledtuple_Link_Aggthat saves a link ID and a vector of used BWs,
one per CoS.

TheCDP0 receives all of the above messages, as described in the flow chart. Then, it will update
its NetCIB with the information received from all messages.

This mechanism is implemented in the methodVOPRexhausted(). The temporary Aggregate Used
from eachCDPi is saved in a static vector –All_AggUsed_s. This needs to be done because each time
a node receives a packet, the NS triggers this node’srecv()method. The SOMEN Agentrecv() then
callsVOPRexhausted()each time a packet comes. The static variable ensures that information is kept
between calls of the method. Another static variable is usedto save which nodes have already replied
and which ones are pending. WhenVOPRexhausted()has received all responses it starts the NetCIB
update using the information from the aggregate used saved in the static vectorAll_AggUsed_s. The
methodUpdateTopolyTable(All_AggUsed_s)does this update for theTOPOLOGYTable.

After the update, theCDP0 database describes the current state of the full network utilization
concerning the used bandwidth for all paths. Therefore it can make all the decisions alone, and send
the result later to othersCDPi.

The next step is to try resource re-computation for all pathsadvertised. The algorithm can be
COR, A-COR or MARA, as defined in the TCL script. For each path,the active algorithm runs, by
calling the methodReservationComputation(path,Rbw,CoS)(Section 4.5). If any of the paths CoS

47



parameters can be successfully re-computed to accommodatethe pending request, this mechanism is
over, and we proceed to the database update and traffic generation in the simulator. No other path is
tested for resource re-computation.

One important step to be done is the reservation enforcementi.e., create a message with the new
computed CoS parameters and enforce them along thePathi. This will re-configure the queues along
all links onPathi in the simulation environment, done by method explained further in Section 4.6,
ReservationEnforcement(PATH,Links_Parameter_s).

The Update of the database takes into account the new computed QoS parameters (χ,B,etc) and
is performed by methodUpdateNetCIB(LinkParameter_s). LinkParameter_sis a vector of the links
that compose the path in which resource re-computation was successful, it is returned by method
ReservationComputation(path,CoS).

After this, system returns to idle state and can parse another request.

In the event that all Paths have been explored and resource re-computation is not possible, the
algorithm triesflow re-routing. This mechanism is described in the flow chart of Figure 4.7 and in
Section 4.7.

Flow re-routing will check if it is possible to re-route someflows from a givenPathi to any
another Path, in order to free enough resources to accommodate the pending request. It is a complex
mechanism, but if it succeeds, the traffic is re-routed in thesimulation and the method returns a Path
variable, meaning that the request should be accepted in that Path.

If re-mapping is not possible, the method returns a negativevalue (−1) meaning failure, and the
request is denied. If the simulation runs COR or A-COR this means that it is physically impossible
to accept that request, i.e, request BW is higher than the available resources. There is no wasted
bandwidth.

After this, system returns to idle state and can parse another request.

4.5 Bandwidth Over-Reservation Algorithms

The mechanisms of the reservation algorithms: COR, A-COR and MARA are all implemented in
the same method. Whenever reservation re-computation is needed the following method is called:

ReservationComputation(path,Rbw,CoS)

There is an implementation of the method in theSOMENAgentclass as well as in thecdp_Agent
class. The method receives three parameters: one path ID, a value of BW and a CoS.

The method will try the active reservation algorithm (COR, A-COR or MARA) for the given path,
in the given CoS, to see if the amount of BW given is possible toaccommodate.

The active reservation algorithm is set by the TCL scrip by defining the TCL variable“Reserva-
tionAlgorithm” to a value of 1, 2 or 3 corresponding respectively to COR, A-COR or MARA. That
TCL variable is bound to the C++ global variable“ReservationAlgorithm”present in bothSOMEN-
Agentandcdp_Agentclasses.

By checking the value of it with anIF statement the methodReservationComputation()applies
the correct calculations, as defined in Section 3.5. Only in this method does the reservation algorithm
needs to be checked. The code was written in such a way that allthe decisions and computations are
independent of the reservation algorithm defined.

48



In case the reservation algorithm is set to three (MARA), another method by the name of
MrrpReservationComputation(path,request_bw,CoS)is called. It was done this way once the MARA
algorithm was re-used from an existing implementation, andall of it’s code written inside this method.
Changes were performed so that there was no variables in conflict and that the correct data was passed
to the algorithm, retrieving it from the NetCIB. The method receives the same data passed toReserva-
tionComputation()and returns the same data structure as well, a vector of links– Links_Parameter_s.

If the reservation algorithm is not MARA, then the computations are done as described in Sec-
tion 3.5.1 for the COR algorithm, or as described in Section 3.5.2 for A-COR algorithm.

The details of the variables and data structures used are notneeded to be fully explained, once
one may read the implementation code and understand them with the help from comments and the
respective Dissertation sections. Explaining them here would be repetitive once they follow very
closely what has been defined in sections 3.5.1 and 3.5.2.

To be noticed however, is once A-COR does not need the threshold variable (χ), this variable is
set to be−1 in the code. This way, if it’s value is accessed while it shouldn’t, it will lead to a negative
value of resources, immediately identifying the problem.

The returned value of the described method (a vector of linksas referred above) is composed by
all the on-path links of the given path, with the QoS variables (χ,B,Av,etc) re-calculated and updated.

4.6 Reservation Enforcement

Both thecdp_Agentand theSOMENAgenthave the same implementation of:

ReservationEnforcement(path,Links_Parameter_s)

This method is responsible to apply the QoS requirements computed along a certain path.

The parameters it receives are the path to which the changes should be applied, and a vector of
on-path links with all the information per link attached: threshold (χ), reservation (B), available (Av),
used (U ) BWs. In other other words, the value returned by method
ReservationComputation(path,Rbw,CoS), described in Section 4.5.

Reservation Enforcement starts by parsing the informationstored in theLinks_Parameters_svec-
tor into an appropriate format for the header of theRESERVEmessage. The appropriate format is a
vector calledReservation_Parameter_sthat is composed of instances of classtuple_Rsv_Prm(tuple
Reservation Parameters). This class stores one link (node A, node B variables) and two vectors, one
for threshold’s (χ), another for reservation’s (B) values. Both have size equal to the number of CoSs
in the current simulation.

After the message is filled with these informations, we use multicast to propagate it along a path
(once the multicast groups are created per path). The information of nodeA, nodeB is used for this
purpose as well, so that no separate vector of nodes/links isneeded. This message passes through all
of the nodes running theLightAgentin the respective Path. Each one of them will read the information
inside the header and update the simulation environment accordingly.

The method responsible is theLightAgent::treatCoreReserve(packet). It starts by checking its own
agent type which can beIngress, Core, or Egressnode. If agent type isIngressor Core, information
should be updated. If agent type isEgress, it has no information to update, but has to send a response
back to the CDP saying that Update has been complete, sendAcknowledgmentmessage.

In case it is anIngressor Corenodes the information is updated by calling the command:

49



$Q addQueueWeights $CoS $percent

This command will update the needed variables and information in the simulation environment
by setting the CoS ($CoS) of the link $Q with the correct percentage ($percent) of the total link
bandwidth. This percentage is computed has being the Reservation (B) divided by the total link

capacity times one hundred (percent =
B

TBW

× 100).

4.7 Flow Re-Routing

The main objective of this algorithm is to try to re-route some flows from one path (mainPath) into
other paths (assinting paths), in order to free enough resources in themainPathso that the pending
request can be admitted.

The SOMENflow re-routing implementation (both centralized and distributed scenarios) ex-
plained in Section 3.4.3 is described here. In both scenarios the algorithm is the same, and imple-
mented by methodFlowReRoute(). Note only that in SOMEN decentralized networks, the available
bandwidth of a CoS in a path should be seen as the VOPR of the CoSin the path. Remember that there
is no re-routing taking flows from different CoS into account. Only flows that belong to the requested
CoS are considered for re-routing.

The method receives some parameters including the tuple ofIngress – Egressnodes, the CoS and
the request BW:

FlowReRoute(Ig–Eg, CoS, Rbw)

Some important variables to take into account are describedin Table 4.2 for an easier reading.
These variables will be addressed upon need by it’s short name. The short name corresponds to the
C++ code names used.

Short Name Full name Description

SPT Selected Paths Table Store the Paths that linkIg – Eg

SPT2 Selected Paths Table 2 Copy of SPT that stores temporarycomputation values

APT Assisting Paths Table A copy of SPT without the currentmainPath

APT2 Structure is totally different from APT. This one stores a
tuple of pathID – list of flows. It is used to compute the
re-mapping of flows

MainList MainList List composed by the Flows that belong to the requested
CoS in themainPath. Changes with each iteration

mainPath mainPath currentmainPathbeing processed

Table 4.2: Relevant variables from methodFlowReRoute()

At first an SPT variable (Selected Paths Table) is built by copying from themain database the
Paths that haveorigin – destinationthe Ingress – Egressaddresses received. If this table as only one
possible path, the algorithm terminates, as it is impossible to re-route anything because there are no
other possible paths.

50



The tableSPT is sorted by means of VOPR (or available BW in the centralizedscenario) and
indexed. This way, the first path has the highest available resources and is set to be the current
mainPath. TheSTPtable remains constant throughout all computations.

In order to make the C++ code jump back to the correct places accordingly to the flow chart in
Figure 4.7 a somewhat complex loop structure was need. It consists of aFORloop, and inside it aDo
While loop. TheFOR loop runs all paths ofSPT. TheDo While loop tries to re-map as many flows
as needed, one per iteration, until there are enough free resources inmainPathor until all possibilities
have been tested. After the above steps are taken, theFOR loop starts.

�

more mainPaths 

to explore
MainList Empty

Yes

No

Yes

Impossible to re-route

No

• Associate the flow with max Used BW to APT(1)

• Delete that flow from MainList

• Compute Total Used of associated flows so far

T(used) + Av. > 

Req BW

Yes

No

• Build SPT

• Sort and index SPT 

by Av. resources

1

• Update temporary database 

with APT2

• Update Used in APT7

• Apply current re-routing for flows in 

APT2

• Return mainPath

6

• Sort APT by Av. resources

• Create MainList

3

• Get mainPath

• Build APT

2

5

Figure 4.7: Flow Re-Routing

51



All paths except the currentmainPathin STPare copied to another table calledAPT – Assisting
Paths Table. These are the paths into which the algorithm will try to re-route the flows from the
mainPath. APT is sorted by available resources.

The variableMainList is created, composed by all the active flows of themainPath. Then, we
delete the flows whose used BW is higher than the available resources in the index 1 ofAPT– APT(1)
– because these flows can never be re-routed. Note thatAPT(1) is the assisting Path with highest
available resources, if any flow cannot be mapped into this path it cannot be mapped into any other.

When removing flows from theMainList it may be empty, meaning that no candidate flows to be
re-routed exist, so we check this with anIF statement. If theMainList is empty, we should get the next
path inSPT to be the nextmainPath, and resume computation. SoIF MainList is empty,continue,
which will break the currentFOR iteration and start over in the next iteration. All variables are local
to theFOR loop and therefore, are deleted. No need to worry about clearing the tables and so on.

The process repeats until there is at least one flow inMainList that can be re-routed. In this case
theDo Whileloop starts.SPT2is created as being a copy ofSPT. It is sorted by available resources.
APT2table is created as well. These variables are local to the while loop so that there is no need to
clear information between any two iterations, as done for the FOR loop.

To create theAPT2table we copy the first assisting path (APT(1)) and to that path we associate
the flow with highest used BW from theMainList. That flow is deleted from the MainList.

Then we assume that all the flows ofAPT2where actually re-routed. So we update the information
of theSPT2table as if the re-routing as taken place, used BW changes forthe paths in question and
available resources are re-calculated. Remember thatSPT2is temporary so if re-routing fails, the real
database is still un-changed. Updated tables are sorted again for available resources.

Based on this we try to accommodate the request into themainPath. This is done by computing the
total used bandwidth of all the flows taken out of themainPathplus the available resources that already
existed, and compare it to the requested BW. For example,mainPathhas 3 flows:F1(100Kbps),
F2(200Kbps)andF3(300Kbps). Suppose that the incoming request is450Kbpsand the remaining
available BW in mainPath is50Kbps(meaning that the total capacity is650Kbps, in this example). So
if we re-routeF1 andF3 we free100Kbps plus 300Kbps– the total used is400Kbps. By comparing
the total used plus the available resources (450Kbps) we see that there are now enough resources in
themainPathto accommodate the request. Temporary changes should be implemented and the new
request admitted.

Now, if the incoming request would be of500kbps, for instance, this would not be enough and the
while loop would run one more time and try to re-mapF2 as well. This would result in a total used of
600kbpsplus the already available makes650Kbpsthat is enough to accommodate the500Kbps.

This is what the flow chart decision boxTused + Av. ≥ ReqBW aims to do. In the case this
condition comes to true the flows in theAPT2are re-routed, and the real database is updated with
the information of theSPT2Table. ThemainPathis returned (it is guaranteed that there are enough
resources to accommodate the pending request) and used byAdmission Controlto accept the request.
The request is not accepted inside theFlowReRouting()method.

In the case that the condition proves to be false we need to getmore flows out of themainPath
so theDo Whilegoes to next iteration and the process repeats. Remember that if Mainlist becomes
empty at any point acontinuecommand is issued ending the while loop and running the nextFOR
iteration. Also, if all paths have been tested, theFOR loop will quit, meaning failure, and the method
will return an invalid Path, with value−1. This will let Admission Control know that the request must
be denied.

52



In order to update the real database, the mechanism is different for centralized and distributed
scenarios. In the distributed scenario it’s a little simpler once we just need to update the used BW for
all paths in thePATHStable. This is done by copying the correct value of used BW from APT2, for
all paths, all CoS.

Consider the Table 4.3 as beingAPT2 table for the example presented above, in the case the
request is500Kbps. Flows 1 and 3 where re-mapped to path 197 and flow 2 to path 207.

Assisting Path List of Flows

Path 197 F1(100Kbps)• F3(300Kbps)
Path 207 F2(200Kbps)

Table 4.3: APT2 Table Example

So the update of the real database must add400kbpsto used BW on path 197 and200kbpsto
used BW on path 207, all for the CoS in question (there is no re-routing between different CoSs). As
well, 600kbpsmust be decreased in the used BW of themainPathonce flows were taken from it and
re-mapped. No other table needs to be updated once SOMEN usesVOPR and if it is exhausted, an
advertisement event will be triggered, other nodes will be advertised, the database (several tables) will
be updated and new VOPR values computed. In the distributed scenario theTOPOLOGYtable is only
updated after the next advertisement event is triggered.

In the centralized scenario it’s more complicated, once theTOPOLOGYandPATHStables must
be updated. So, for all paths inAPT2, for all on-path links, we sum the total used (400kbps) to the
used BW value of each link. For the links in themainPath, we decrease600Kbpsin used BW.

Then, the easiest way to update thePATHStable is to re-use the methods that update all the
correlated paths. Again, for all pathsPi in APT2, we get a list of paths that correlate withPi (share at
least one link). For all of those paths we re-compute the usedBW values and respective available BW,
taking the information of the recently updatedTOPOLOGYtable into account. This way thePATHS
table gets it’s values of used and available bandwidth (BW) updated.

The only loose end left to explain is how the re-routing is really done in the simulator environment.
For this it may be useful reading Section 4.9.2 that explainshow traffic is created.

Again, for all paths inAPT2 the records of each flow in theSESSIONStable are modified as
some flows are now present in other paths. Then, for each flow that is updated inSESSIONStable, the
command“flow_name stop”is called to stop the traffic in the simulator and the methodCreateTraffic()
is called with the required parameters taken from the stopped flow. This will effectively stop the on-
going packets and start them up again in another path, hence re-mapping the flow.

4.8 Multicast Trees

The multicast trees referred in section 4.3.1 did not exist natively in the network simulator and
were modified to work as needed. The multicast implementation used is also a non standard one,
Overlay for Sourcespecific Multicast in Asymmetric Routingenvironments (OSMAR) ([22]).

One limitation of the OSMAR implementation is that only one MRIB table could exist in the
simulation. In our scenario we needed a MRIB table per path. To better explain this limitation, let us
go through the MRIB table.

ConsiderNN to be the number of nodes on a given simulation (number ofIngress, Egressand

53



Corenodes summed). So, accordingly to network Figure 4.8,NN = 6. One MRIB table is created
as being a square matrix ofNN lines byNN columns. In each position of the matrix is the next hop
information.

1

2

3

4

5 61

2

3

4 5

6

7

Ingress

Ingress

Egress

Figure 4.8: Network Example

For instance, if the packet is at node 1, and its destination is node 6, at position (1,6) there is, let’s
say, 3. That means the next hop between 1 and 6 is the node 3. At node 3, the next hop should be
5, for instance. So the field (3,6) is 5, and so on until the message get’s to node 6. In the following
tables, 4.4 corresponds to the path: 1,3,5,6 and table 4.5 topath 1,3,4,5,6.

1 2 3 4 5 6
1 - 0 0 0 0 3
2 0 - 0 0 0 0
3 0 0 - 0 0 5
4 0 0 0 - 0 0
5 0 0 0 0 - 6
6 0 0 0 0 0 -

Table 4.4: MRIB for path 1–3–5–6

1 2 3 4 5 6
1 - 0 0 0 0 3
2 0 - 0 0 0 0
3 0 0 - 0 0 4
4 0 0 0 - 0 5
5 0 0 0 0 - 6
6 0 0 0 0 0 -

Table 4.5: MRIB for path 1–3–5–4–5–6

As we can see, the position (3,6) has two different values fortwo different paths between the same
source–destination pair of nodes. This limitation comes from the fact that MARA only takes into
account one possible path for each pair, and this system was based on the original MARA implemen-
tation code. These path restrictions are no longer the case.Having only one table in the network is
not enough.

The solution implemented was building one table per path. Although not being the most efficient
way, its the way less changes into the code are needed, and once there is already one working platform
–OSMAR – we are able to use it.

To make the simulation run with several tables, the functions to build them were modified to
receive one input parameter, the table name. This name is thePath ID value, explained in section
4.3.1. To access one table one must specify its name as well. After making the changes for these
methods, and to call them with the correct modified versions,the system works.

One more remark to be done is that these example tables are filled with zeros in all non-relevant
positions to explain the limitations of the initial implementation. In a real simulation this zeros get
the values from the standard routing information got from NSwith command“get-route-logic”. The
construction of these tables is done in the methodmrib_update()of theLightAgentclass.

54



4.9 Other Functions

4.9.1 Releasing Request

A request has begun, and there must be a way so it can end.

The running traffic must have a name, there cannot be two equalnames in the simulation at the
same time. The problem is how to give traffic variables a unique name and later be able to find that
name to call the stop command at any given time. To solve this problem one should look into the
format of theRequestcommand and its input parameters 4.1.

We quickly notice that the value of theIngressand the pairSid–Fiduniquely identify one request,
because no two requests coming from the same node can have thesameSid–Fidvalues. To uniquely
name the traffic and be able to identify which name belongs to which request, the names of the traffic
variables contain these three input parameters:“trf_IngressSidFid‘”; examples:trf_014, trf_010 or
trf_317.

This way we can call back the name of the traffic for any particular request that’s running. So, the
commandReleasetakes the three input parameters discussed above:Ingressand pairSid–Fid.

To stop the packet flow the function confirms within theSESSIONSTable the existence of the
specified request. In the event the request is not found, the release command is terminated, effectively
doing nothing but printing a warning message tostdout.

Upon success finding the request in the database the simulator is instructed to stop the ongoing
traffic and the active flow is deleted from theSESSIONSTable. The database is updated by decreasing
the used bandwidth in the TOPOLOGY and PATHS Tables accordingly.

4.9.2 Create Traffic

There are three types of traffic that can be generated. All aresupported natively by the simulator,
namely:

• CBR –constant bit rate

• EXP –exponential distribution

• PTO –pareto distibution

The CBR traffic creates packets at a constant rate that is given in Kilo bytes per second, between
the specifiedsourceanddestination. The EXP traffic creates a CBR traffic type during a setON time
and pauses during a setOFF time4. The Pareto traffic also takes into account the value set in theshape
parameter to modify the packet flow rate.

There are more parameters that can be tuned like packet size for instance, but those are out of this
scope and one can consult the NS documentation [9] to know more about the supported traffic types.

TheCreateTrafficfunction receives all the information from the request command and executes
the needed commands in the simulator environment to start the traffic.

The destination field of any traffic is set as the multicast address for the selected path. This way it
is assured that all packets follow the desired path.

4There parameters are set to vary randomly between 10 and 50 ms

55



4.9.3 Compute Remaining BW

At the end of the simulation, it is important to collect the remaining BW for all paths. It is an
important parameter to evaluate the performance of the algorithms. One that is able to use more of
the total resources available is far better than one that uses less. For this, one could simple go trough
all the lines of the PATHS table in each Ingress, get the Available BW for each path.

This is not correct. In SOMEN the CDPs will not have the database synchronized and as so, the
Available BW values will not be correct. This lack of knowledge of the current network resources is
not a problem during normal operation because we use VOPR. Due to this we must force a synchro-
nization and update at least one NetCIB of a CDPs before trying to compute the remaining BW.

The solution implemented for this problem is as follows. At the call ofSaveStatistics()( section
4.9.4) each CDP saves their own statistics as described, plus a temporary file containing the local used
BW for each path, for each CoS in a tabular form, Table 4.6.

Address Path ID Used BW per CoS (Mbps)

0 521 354.24 528.65 0.00
0 826 370.24 540.65 10.20
1 901 0.00 59.65 203.12
2 204 68.87 700.65 34.10
2 413 890.24 34.65 0.00

Table 4.6: Used BW Information in Temporary File

All CDPs append information to this temporary file. As theSaveStatistics()must be called for all
ingresses, all paths used BW will be saved in that file. After this, a method will be called to parse the
file and build a new database that has the latest information.

From the user point of view, all that needs to be done is calling the command“Compute Remaining
BW” from the TCL script file, after calling“Save Statistics”for all ingresses. This command will
load the file, and based on theCORRELATIONStable re-builds a Global Paths Table (all network
paths) and with the later re-build aTOPOLOGYtable with the correct information from the underling
network. After the newTOPOLOGYTable has been built we can now compute the remaining BW,

56



accordingly to algorithm 4.9.1.

Algorithm 4.9.1: COMPUTE REMAINING BW(void)

comment: For all Paths inGlobal PathsTable

for j ← 1 to number of paths

do





get list of links fromPathj
comment:For all Links in the list

for i← 1 to number of links

do





getlinki
for k ← 1 to number of CoSs

do
{

sum Used BW value forlinki , CoSk

freeBW ← linkCapacity − sumUsed
comment:Store the minimum amount of freeBW in Path

if freeBW ≤ remaining
then remaining ← freeBW

• Save the Remaining along with respective path ID into a file

4.9.4 Save Statistics

This function is called at last in the TCL script file to save all the CDP specific data of the simula-
tion into log files. Parameters like the number of requests parsed, or how many times Flow Re-routing
has run successfully, etc, are saved. This data is used to plot the results.

4.9.5 Auxiliary Functions

For non-critical functions like printing a vector of a certain data type, or save some string to
a text file, a new file to accommodate all of this code was written – AuxiliaryFunctions.h. All of
those functions are declared inside it and are very useful tohide some lines of code from the main
implementation, leaving it less confusing and more readable.

4.10 Conclusion

This chapter described the main aspects of the implementation. The key methods and relevant
flow charts were introduced for a better understanding of thework mechanism.

In Section 4.2 we introduced the simulation software used. Also, the simulation environment was
detailed deeper and the requirements for running a simulation were presented.

Sections 4.3 and 4.4 described the implementation for the centralized and distributed approaches.
The main key points and methods were explained. We introduced in particular the implementation of
the reservation algorithms in Section 4.5 and the way reservation enforcement is done in the simulator,
Section 4.6.

The implementation of the Flow Re-routing algorithm is alsodiscussed in Section 4.7. In Sec-
tion 4.8 the multicast implementation is detailed, once it was a difficult part of this work and not so

57



trivial to achieve. Nevertheless, it is of uttermost importance once it assures that packets flow in the
desired path.

Some minor, but useful methods, were described in Section 4.9, Other Functions.

The next chapter will present and discuss the results obtained from simulation.

58



Chapter 5

Results

5.1 Introduction

This chapter exposes the performance evaluation of the different over-provisioning schemes ana-
lyzed in this work, in both the centralized and distributed approaches.

Section 5.2 explains the simulation setup and the parameters involved, focusing on the TCL con-
figuration file.

Section 5.3 relates to the centralized network results and Section 5.4 to the distributed scenario
running SOMEN.

The following sections provide the results and conclusionsof different evaluations for several
simulation parameters.

5.2 Simulation Scenario Details

For the simulation setup we used three different topologies, Topology 1, Topology 2 and Topology
3. These topologies are shown by figures: Figure 5.1, Figure 5.2 and Figure 5.3. Topology 2 and 3
have 1Gbps links and Topology 1 has 10Mbps links. Topology 1 is used to get the data related to QoS
specifications, such as packets drops and mean delay. This topology has the same layout as Topology
3, but has 10Mbps links instead of 1Gbps links.

The reason for this is that when running the simulations, if link capacity is high packet numbers
are high, and as the simulator treats packets individually,processing time and log file size become
enormous. So, to make the file size and simulation times reasonable, we have decreased the links
capacity. Nevertheless, for results related to the performance (e.g. number of events, load, etc.), we
do not need traffic flowing. We can make all the computations assuming traffic is created, but then do
not issue the command to actually create the packets. So, without data traffic on the network (just the
protocol messages) simulation time and logs size is again small and can therefore be done.

The advantage is that we evaluate the work in a more realist network with 1Gbps links than in a
network with 10Mbps links. When presenting the plots, each one will have the abbreviated topology
run in the title, T1, T2 or T3.

All simulations run from two possible TCL script files, one file for the centralized scenario, an-
other for the distributed. These files are responsible for configuring all the simulation parameters
in NS, from the number of nodes and topology details, to the agents each node implements and the

59



different events throughout the simulation. The reason whytwo different files are needed is that se-
veral changes are done in order to correctly simulate each one of the scenarios. This is easier done in
separate files than all in one.

One can also specify the reservation algorithm to use or the number of requests. If those va-
lues are set, simulation uses the values given, otherwise runs with standard defined values, being the
reservation mechanism set to COR and the number of requests to a random number between 50 and
100.

Two types of seeds are used for the random generation. One of them affects mainly the network
creation, i.e., BW requested, arrival time, etc. This seed can be named TCLseedonce it influences
the pseudo-random functions in the TCL environment. Another seed, the NSseed, affects the pseudo-
random functions inside the simulator meaning that packet arrival times, delays (and so on) change if
the seed is changed.

Although the TCL script written can create a pseudo-random network topology given the number
of Ingress, EgressandCorenodes, we end up not using this functionality once the main objective is
to compare behavior. For that we need a well structured topology, that remains the same through out
several runs.

In this evaluation, we use two fixed topologies for the distributed scenario (T2 and T3). The two
may seem similar, although they share the same number of nodes, they differ in the number of links.
Topology 2 represents a network with low path correlation (few links) and topology 3 a high path
correlation (more links). This will influence the way nodes advertise one another, hence the impact
of load, particularly this will show the impact of the filtering mechanism implemented by the use of
the LISTS table. We run the centralized scenario using topology 3 so that we can compare with the
distributed architecture.

The TCL script starts by creating the number of nodes required and building a connection matrix.
This matrix (m) hasN ×N size beingN the total number of nodes. In each positionm(i, j) there is
a0 or a1. If a 1 is present then nodei connects to nodej, if a zero is present there is no connection.
The generation of the matrix can be pseudo-random, based on the TCLseed. If so, it also takes some
restrains into account like allIngressandEgressnodes must have at least one connection to aCore
node, and a maximum of 3 different connections. TheCorenodes must connect between them at least
2 times (avoid router on a stick situation) and up to a maximumof 4 links. Ingressesare not allowed
to directly connect toEgresses, neither a node is allowed to connect to itself.

As said before, we are not using this random matrix but instead running fixed topologies, so by
changing each position of the matrixm(i, j) to the desired value (1 or 0), we enforce the creation of
the desired network.

Based on this matrix, the links are created dynamically. Thecapacity of each link is set to be the
value in the variableLinkBWso that all links have equal capacity. This value is1Gbpsby default, but
can be modified, for instance, this becomes10Mbpsfor the topology 1. All the Links delay need to
be set in the simulator, and are random generated between 1 and 5 milliseconds.

The number of CoS can be defined (by default is 3) as well as the reserved bandwidth for the sig-
naling class, set by default to100Kbps. TheSOMENor cdp_Agentclasses are attached to the correct
nodes, and parameters needed by those agents are configured,based on the file being run (centralized
or distributed version). The scheduling models for the queues and polices are defined dynamically
accordingly to the connections matrix. It was consideredWeighted Fair Queuingdiscipline.

The commands for the simulation must be set before simulation start. For instance, the commands
for database creation, request processing, and for information printing and saving are set in the end of

60



the TCL file.

Requests have all their parameters random generated like the source and destination addresses,
the individual BW, the CoS, duration time, etc. All the parameters can be found in Table 5.1.

Finally the simulation is set to run.

In order to show more accurate results, every simulation is run 10 times with different TCL and NS
seeds each time. Then, the mean values are plotted with the corresponding 90% confidence intervals.

The simulations were run from a bash script file, that calls the TCL configuration file and the NS
simulator automatically to obtain all the results. We set the number of seeds, the topology, the number
of requests, so on, and the bash runs all the simulations and saves the output files organizing them into
folders. Then, we use Matlab[15] to parse those files inside the folders and obtain the plots shown in
this chapter.

Time Arrival time at the Ingress node
Source Valid Ingress Address
Destination Valid Egress Address
CoS Required Class of Service
BW Required bandwidth
Sid, Fid Pair Session ID, Flow ID
Traffic Type CBR, Exponential or Pareto distribution
Duration Duration time in seconds

Table 5.1: TCL Request Parameters

0

1

2

3

4

5

6

9

11

12

14

16

10

13

15

18

17

7

8

1

2

3
4
5
6

7

8

27

9

10
11

12
13

14

25

26

30

28 29

18

21

23

Ingresses Core Egresses

Figure 5.1: Topology 1 – 10Mbps Links

61



0

1

2

3

4

5

6

9

11

12

14

16

10

13

15

18

17

7

8

1

2

3
4
5
6

7

8

9

10
11

12
13

14

Ingresses Core Egresses

Figure 5.2: Topology 2 – Low Correlation (1Gbps links)

0

1

2

3

4

5

6

9

11

12

14

16

10

13

15

18

17

7

8

1

2

3
4
5
6

7

8

27

9

10
11

12
13

14

25

26

30

28 29

18

21

23

Ingresses Core Egresses

Figure 5.3: Topology 3 – High Correlation (1Gbps links)

62



5.3 Centralized Scenario

The simulations below were done with the parameters on Table5.2 fixed.

We aim to analyze the different reservation algorithms by varying the network utilization ratio.
We are interested in the number of re-computation events, total message load, and resource utilization
efficiency for each algorithm.

The requests are set to an infinite time, meaning that once traffic is admitted it will stay active
until the end of the simulation. This makes it easier to compute the approximate value of network
utilization ratio. By changing the total number of requests, were in fact analyzing the behavior of the
reservation algorithms from a low network utilization to high network utilization ratios.

Topology Links Data CoS Mean Request BW Number of Requests

3 1Gbps 3 5Mbps(500K to 10M range) from 600 to 2600 (400 step)

Table 5.2: Constant Simulation Parameters

We start by looking at the number of requests denied while resources were available, Figure 5.4.
We say that a request is denied while resources were available if at the time a request is denied, the
total amount of free BW in a possible path is more than the request amount. These events lead to
waste of resources and bad network utilization efficiency and therefore should be avoided.

The total number of denied requests is not much relevant because when it is impossible to admit
traffic to an already congested path, a high number of denied requests would not translate to a good
or bad efficiency of the reservation algorithm. It would simple mean that there are no more resources
in the physical network.

COR and A-COR have a zero probability of denying a request if the network has enough resources.
As shown in Figure 5.4, the MARA algorithm denies several requests while there is enough BW in
the network and therefore wastes resources.

500 1000 1500 2000 2500 3000
0

100

200

300

400

500

600

700

800

900
Number of Denied Requests While Resources Were Av.

Number of Requests

D
en

ie
d

 

 
COR
ACOR
MARA

Figure 5.4: Cen. - Requests Denied While Resources Were Available

63



Figure 5.5 represents the number of times (events) that reservation re-computation took place.
On this plot is important to notice the behavior of A-COR, that distinguishes itself from others, by
having very few re-computation events at low network utilization. This means a more balanced way
of distributing resources among existing CoSs.

An algorithm that has more re-computation events, needs more messages in the network to enforce
the changes. So for each event triggered, a message flows along the given path to enforce the new
QoS parameters.

Figure 5.6 exhibits the respective load for the total numberof the events. A-COR has less load
than others, being COR the algorithm that has more overhead,mainly because it triggers more events
as well. The different between COR and A-COR is simply because A-COR has less re-computation
events and therefore sends less messages.

500 1000 1500 2000 2500 3000
0

20

40

60

80

100

120
Number of QoS Re−computation Events

Number of Requests

E
ve

nt
s

 

 
Cor
A−Cor
Mara

Figure 5.5: Cen. - Reservation Re-computation
Events

500 1000 1500 2000 2500 3000
0

0.5

1

1.5

2

2.5
x 10

4 Reservation Enforcement Message Load

Number of Requests

B
yt

es

 

 
COR
A−COR
MARA

Figure 5.6: Cen. - Total Load of Reservation En-
forcement Messages

As we have seen before in figure 5.4 MARA has a non-zero blocking probability even with low
network utilization ratios. It means that some requests aredenied even when resources are available.
For the other algorithms this cannot happen. As a consequence of this fact, it is useful to plot the BW
wasted. Figure 5.8 exhibits the mean BW wasted, computed as being the available resources when a
request is denied when it should have been admitted. For all the denied requests in this situation, the
mean waste and respective confidence interval (at 90%) are shown below.

COR and A-COR do not show waste of bandwidth (always zero). MARA wastes some resources,
that decrease as network utilization ratio increases. Waste of resources is a major concern and an
algorithm that can fully use the network infra-structure have a big advantage once it allows more
traffic into the network (more revenue for network operators).

Another very important variable to take into account is the amount of free resources at the end of
the simulation. This is computed as being the remaining BW ineach path for all seeds simulated, and
then the mean and confidence intervals are computed and depicted in Figure 5.7.

Opposed to MARA, A-COR and COR make a better use of the networkinfrastructure as they
allow allocating all the free resources.

64



500 1000 1500 2000 2500 3000
0

100

200

300

400

500

600

Requests Parsed

M
bp

s

Remaining BW

 

 
Cor
A−Cor
Mara

Figure 5.7: Cen. - Remaining BW

500 1000 1500 2000 2500 3000
0

50

100

150

200

250

300

Requests Parsed

M
bp

s

Waste BW

 

 
Cor
A−Cor
Mara

Figure 5.8: Cen. - Waste BW

65



The last plots to be analyzed are the ones for the QoS requirements: delay and packet drops. For
these simulations, the network parameters are different, and defined in Table 5.3. The links capacity
has been reduced from 1Gbps to 10Mbps in order to put traffic into the network. Recall that if we
used 1Gbps links and put data packets flowing, the simulationtime would be to high and the log files
size would be huge, hence the reduction. The total number of requests was reduced to be from 50 to
100 requests and the mean BW per request was also decreased.

Topology Links Data CoS Mean Request BW Number of Requests

1 10Mbps 3 1Mbps(100K to 2.1M range) from 50 to 100 (10 step)

Table 5.3: Constant Parameters – traffic simulations

The values plotted are obtained for 10 simulations varying only the NS seed. In the simulations
before, we varied the TCL and NS seeds once we wanted requestsand configurations to change. Now,
we are interested in measuring delay for exactly the same setof requests but with different reservation
algorithms, hence we keep the TCL seed constant and vary the NS seed, so that the events in the
simulator will still be random (packets arrival and departure times in queues, etc.).

The delay calculations only take into account the data packets, once these are the ones of interest
to ensure QoS requirements. The time a packet spends in the network is computed as the time a given
data packet reaches anEgressnode (Tend) minus the time that the same packet was sent by theIngress
node (Tstart). Each packet has a unique number in the simulator log file (the trace file) that is used to
correctly identify the packet in question to get the times mentioned. So, the overall network delay is
computed as equation 5.1 describes.

D =

∑N
i=1

(Tend(i)− Tstart(i))

N
(5.1)

WhereD is the delay result attained,N is the total number of packets accounted for, andTend and
Tstart the times explained above.

To compute the mean delay per CoS we used the same procedure but only considered packets for
the specific CoS. The simulator log file (the trace file) has theCoSs each packet was mapped to. To
compute the total number of drops, we just run the trace file for each simulation and count the number
of drops.

Plot 5.9 shows the number of packet drops for all reservationalgorithms. As we have said before,
SOMEN ensures that no packets are dropped, so if there are no resources no traffic is admitted, hence
no packet is dropped, independently of the reservation algorithm.

The weights of each CoS are equal (the alpha values referred in chapter 3, Section 3.5), so all
CoSs should have the same treatment, hence similar delays. Plots Figure 5.10 and Figure 5.11, that
represent COR and A-COR respectively, show similar delays between the different CoSs. However,
there is a slight longer delay for CoS 3. This may be related tothe fact that the requests are random
and so is the class and the amount of BW. Therefore, it is possible that for class 3 more request exist,
hence more packets, and longer delay (queues more full). Recall that the TCL seed in kept constant
so that all the algorithms (COR, A-COR and MARA) have the sameset of requests, fact which plots
in Figure 5.10 and in Figure 5.11 agree since both have higherdelay for class 3.

This would also mean that MARA (Figure 5.12) should have higher delay for class 3, although
the behavior of MARA is very different from the behavior of the other algorithms and that heavily
influences the paths into which each request is mapped. Therefore, delay is going to be different.

66



Another aspect to take in consideration is that MARA denies more requests and so has less traffic in
the network. Consider plots of Figure 5.14 and Figure 5.15 that represent the remaining and the waste
bandwidths. We see that MARA accepts less requests and this means that less packets are flowing.

Considering the overall network delay, found in Figure 5.13, we see that it increases as the network
utilization increases, as expected. The MARA values are lower because fewer requests are accepted
(final network utilization is less than 70%) and so, less packets are on the network which in turn
contribute for lower delays.

40 50 60 70 80 90 100 110
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Packt Loss

Requests Parsed

N
um

be
r 

of
 D

ro
ps

 

 

COR
A−COR
MARA

Figure 5.9: T1 - Cen. Mean Packet Drops

67



40 50 60 70 80 90 100 110
8

9

10

11

12

13

14

15
COR − Delay per CoS

Requests Parsed

D
el

ay
 (

m
s)

 

 

CoS 1
CoS 2
CoS 3

Figure 5.10: T1 - Cen. COR – Mean Delay per CoS

40 50 60 70 80 90 100 110
8

9

10

11

12

13

14

15
A−COR − Delay per CoS

Requests Parsed

D
el

ay
 (

m
s)

 

 

CoS 1
CoS 2
CoS 3

Figure 5.11: T1 - Cen. A-COR – Mean Delay per CoS

68



40 50 60 70 80 90 100 110
8

9

10

11

12

13

14

15
MARA − Delay per CoS

Requests Parsed

D
el

ay
 (

m
s)

 

 

CoS 1
CoS 2
CoS 3

Figure 5.12: T1 - Cen. MARA – Mean Delay per CoS

40 50 60 70 80 90 100 110
8

9

10

11

12

13

14

15
Overall Network Delay

Requests Parsed

D
el

ay
 (

m
s)

 

 

COR
A−COR
MARA

Figure 5.13: T1 - Cen. Mean Overall Network Delay

69



40 50 60 70 80 90 100 110
0

1

2

3

4

5

6

7

8

9

10

Requests Parsed

M
bp

s

Remaining BW

 

 
Cor
A−Cor
Mara

Figure 5.14: T1 - Cen. Mean Remaining Bandwidth

40 50 60 70 80 90 100 110
0

1

2

3

4

5

6

7

8

9

10

Requests Parsed

M
bp

s

Waste BW

 

 
Cor
A−Cor
Mara

Figure 5.15: T1 - Cen. Mean Wasted Bandwidth

70



5.4 Distributed Scenario

For the next set of tests, all the results were simulated having the parameters defined in Table 5.2
constant.

We analyze Topology 3 results first. The number of requests was increased at each run so that
the point of network congestion is achieved. The simulations were repeated for each reservation
algorithm. This way we can compare and evaluate the influenceof the reservation algorithm.

First we look at the number of requests denied while resources were available, Figure 5.16. We
say that a request is denied while resources were available if at any time a request is denied, the total
amount of free BW in a possible path is more than the request. Ideally, this should not happen as it
leads to waste of resources and bad network utilization efficiency.

We can see that as the number of request increases MARA deniesmore and more while it has
resources available. COR and A-COR do not have this design problem and therefore it is impossible
for those two algorithm to deny while there are resources available.

500 1000 1500 2000 2500 3000
0

200

400

600

800

1000

1200

1400

1600

1800

2000
Number of Denied Requests While Resources Were Av.

Requests Parsed

D
en

ie
d

 

 
COR
ACOR
MARA

Figure 5.16: T3 - Total Denies While Resources Were Available

While MARA denies more, it also re-computes QoS parameters more often, as we can see in
Figure 5.17. In this figure we plot the total number of resource re-computation events and the number
of successful ones. The number of tries is growing at a steadypace after the network is fully congested
(around 1700 requests). We also see that the percentage of successful re-computations is very low in
MARA, and so it leads to a very high waste of resources, as we will see later on. Moreover, we can
notice that there is an improvement of A-COR in relation to COR. A-COR is able to admit the same
amount of requests using less re-computation events. This contributes to less signaling load.

The load plot in Figure 5.18 brings no surprises once the algorithm with more successful re-
computations has more load.

Every time an algorithm needs to re-compute QoS requirements, it must trigger a VOPR Ex-
hausted event. We look into the number of VOPR exhausted events now, in Figure 5.19. As expected
from the previous figures, MARA has the highest VOPR exhausted events triggered and A-COR the
lowest, although this does not translate directly into the total load of Figure 5.20.

71



500 1000 1500 2000 2500 3000
0

500

1000

1500

2000

2500
Number of QoS Enforcement Events

Requests Parsed

E
ve

nt
s 

R
E

 

 
Cor OK
COR Tries
A−Cor OK
A−COR Tries
Mara OK
Mara Tries

Figure 5.17: T3 - Reservation Enforcement Events

500 1000 1500 2000 2500 3000
0

5

10

15
x 10

4 Total QoS enforcement load (RE)

Requests Parsed

B
yt

es

 

 

Cor
A−Cor
Mara

Figure 5.18: T3 - Total RE messages Load

In Figure 5.21 we can se the load per message type to make clearthat each message type has a
different impact on the sum. Remember that there are 3 types of messages, VOPR exhausted, VOPR
Response and Re-Computation ACK. So although MARA uses moreVOPR exhausted events, it also
fails much more, hence the size of the first message (color blue) is bigger but the size of the responses
messages (color green) is lower. The latter have much more impact on the total load. Hence, MARA
has less total load than COR but still behaves worse.

The plot in Figure 5.20 is the sum of all the bars. This total load is achieved by summing together
the size of all the messages exchanged. This figure is the mostimportant regarding load, since it
represents the overall overhead.

500 1000 1500 2000 2500 3000
0

500

1000

1500

2000

2500
Number of VOPR Exhausted Events

Rquests Parsed

E
ve

nt
s 

V
O

P
R

 E
xh

au
st

ed

 

 
Cor
A−Cor
Mara

Figure 5.19: T3 - Number of VOPR Exhausted Events

Figure 5.22 and Figure 5.23 represent the network utilization efficiency. We analyze the wasted
BW and the total remaining BW in all Paths. These plots take into account the mean for all paths,

72



500 1000 1500 2000 2500 3000
0

1

2

3

4

5

6
x 10

6 Total VOPR Messages Load

Rquests Parsed

B
yt

es

 

 

Cor
A−Cor
Mara

Figure 5.20: T3 - Total VOPR Messages Load

600 1000 1400 1800 2200 2600
0

1

2

x 10
6 COR

Requests Parsed

B
yt

es

 

 

VOPR Exhausted
VOPR Response
Re−computation ACK

600 1000 1400 1800 2200 2600
0

1

2

x 10
6 A−COR

Requests Parsed

B
yt

es

 

 

VOPR Exhausted
VOPR Response
Re−computation ACK

600 1000 1400 1800 2200 2600
0

1

2

x 10
6 MARA

Requests Parsed

B
yt

es

 

 

VOPR Exhausted
VOPR Response
Re−computation ACK

Figure 5.21: T3 - VOPR Load per Message Type

for all seeds simulated. It’s obvious that MARA has a huge waste. This is due to the high number
of denied requests. It’s clear that MARA is not fit for a distributed network control. It was designed
having centralized control in mind. From Figure 5.22 we can see that both COR and A-COR are
capable of using the total amount of network resources, a major advantage.

500 1000 1500 2000 2500 3000
0

100

200

300

400

500

600

Requests Parsed

M
bp

s

Remaining BW

 

 
Cor
A−Cor
Mara

Figure 5.22: T3 - Mean Remaining Bandwidth

500 1000 1500 2000 2500 3000
0

100

200

300

400

500

600

700

Requests Parsed

M
bp

s

Waste BW

 

 
Cor
A−Cor
Mara

Figure 5.23: T3 - Mean Wasted Bandwidth

73



An important aspect of the platform studied is the impact of load minimization techniques. For
instance, the use of theLISTStable greatly minimizes the total overall load in the network. The use of
theCORRELATIONStable also allows the mechanism to send only the paths IDs instead of link IDs
in all the messages exchanged. This reduces message size. With these mechanisms toggledON and
OFF we re-run the previous simulations and obtain the followingplots of Figure 5.24 and Figure 5.25.

Figure 5.24 we can see the minimization obtained. This minimization is obtained using a topology
with high correlation patterns (Topology 3). Hence, when one node needs to advertise others about a
change in some path, it needs to send the advertisements to several CDPs, generating several responses
and so on. If the network is not heavily correlated, then the impact of filtering is much more noticeable,
as we will see in Figure 5.26 and Figure 5.27 (using Topology 2).

500 1000 1500 2000 2500 3000
0

1

2

3

4

5

6
x 10

6 Filtering ON and OFF total Load

Requests Parsed

B
yt

es

 

 

COR off
ACOR off
MARA off
COR on
ACOR on
MARA on

Figure 5.24: T3 - Total Load With and Without
Filtering Functions

500 1000 1500 2000 2500 3000
0

0.5

1

1.5

2

2.5

3
x 10

5 Message Load Difference

Requests Parsed

S
av

ed
 B

yt
es

 

 

Cor
A−Cor
Mara

Figure 5.25: T3 - Load without minus Load with,
Filtering Functions

This sums up the topology 3 (Figure 5.3) results, a network with high correlation. We can now
look into topology 2, the low correlation network (Figure 5.2).

The plotted data for this network is the same as the one for network topology 3, and as such will
not be explained thorough. The graphics are presented and the interpretation is similar to the ones
above. However, it is important to notice the significant advantage of using Filtering techniques in
topology 2, as shown by Figure 5.26 and Figure 5.27.

From Figure 5.26 we can see the minimization is much higher than for topology 3, Figure 5.24,
as well the total difference is bigger and we save resources.

Notice that this is a SOMEN functionality and does not dependon the reservation algorithm used.
The filtering functions are part of SOMEN and not part of the reservation algorithms. Nevertheless,
the algorithm has an important role because if it trigger’s less events then, we have less load.

As a small conclusion, the filtering impact may be described in two sentences. The use of the
LISTSandCORRELATIONStables allows SOMEN to minimize the total signaling load. This differ-
ence in load is closely related to the path correlation patterns in the network.

74



500 1000 1500 2000 2500 3000
0

0.5

1

1.5

2

2.5

3

3.5
x 10

6 Filtering ON and OFF total Load

Requests Parsed

B
yt

es

 

 

COR off
ACOR off
MARA off
COR on
ACOR on
MARA on

Figure 5.26: T2 - Total Load With and Without
Filtering Functions

500 1000 1500 2000 2500 3000
0

0.5

1

1.5

2

2.5

3
x 10

6 Message Load Difference

Requests Parsed

S
av

ed
 B

yt
es

 

 

Cor
A−Cor
Mara

Figure 5.27: T2 - Load without minus Load with,
Filtering Functions

500 1000 1500 2000 2500 3000
0

100

200

300

400

500

600

700

800
Number of Denied Requests While Resources Were Av.

Requests Parsed

D
en

ie
d

 

 
COR
ACOR
MARA

Figure 5.28: T2 - Total Denies While Resources Were Available

75



500 1000 1500 2000 2500 3000
0

200

400

600

800

1000

1200

1400

1600

1800

2000
Number of VOPR Exhausted Events

Rquests Parsed

E
ve

nt
s 

V
O

P
R

 E
xh

au
st

ed

 

 
Cor
A−Cor
Mara

Figure 5.29: T2 - Number of VOPR Exhausted Events

500 1000 1500 2000 2500 3000
0

1

2

3

4

5

6
x 10

5 Total VOPR Messages Load

Rquests Parsed

B
yt

es

 

 

Cor
A−Cor
Mara

Figure 5.30: T2 - Total VOPR messages Load

600 1000 1400 1800 2200 2600
0

1

2

x 10
5 COR

Requests Parsed

B
yt

es

 

 

VOPR Exhausted
VOPR Response
Re−computation ACK

600 1000 1400 1800 2200 2600
0

1

2

x 10
5 A−COR

Requests Parsed

B
yt

es

 

 

VOPR Exhausted
VOPR Response
Re−computation ACK

600 1000 1400 1800 2200 2600
0

1

2

x 10
5 MARA

Requests Parsed

B
yt

es

 

 

VOPR Exhausted
VOPR Response
Re−computation ACK

Figure 5.31: T2 - VOPR Load per message type

76



500 1000 1500 2000 2500 3000
0

200

400

600

800

1000

1200

1400

1600

1800

2000
Number of QoS Enforcement Events

Requests Parsed

E
ve

nt
s 

R
E

 

 
Cor OK
COR Tries
A−Cor OK
A−COR Tries
Mara OK
Mara Tries

Figure 5.32: T2 - Reservation Enforcement Events

500 1000 1500 2000 2500 3000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

4 Total QoS enforcement load (RE)

Requests Parsed

B
yt

es
 

 

Cor
A−Cor
Mara

Figure 5.33: T2 - Total Reservation Enforcement
messages Load

500 1000 1500 2000 2500 3000
0

100

200

300

400

500

600

Requests Parsed

M
bp

s

Remaining BW

 

 
Cor
A−Cor
Mara

Figure 5.34: T2 - Mean Remaining BW

500 1000 1500 2000 2500 3000
0

50

100

150

200

250

300

350

400

Requests Parsed

M
bp

s

Waste BW

 

 
Cor
A−Cor
Mara

Figure 5.35: T2 - Mean Wasted Bandwidth

77



The last plots to be analyzed are the ones for the QoS requirements: delay and packet drops.
For these simulations, the network parameters are the same as the ones for the centralized scenario
topology 1, and defined in Table 5.3. The links capacity has been reduced from1Gbpsto 10Mbpsin
order to put traffic into the network. Recall, as mentioned inthe centralized scenario, that if we used
1Gbpslinks and put data packets flowing, the simulation time wouldbe too high, hence the reduction.
The total number of requests was reduced and the mean BW per request was also decreased.

The values plotted are obtained for 10 simulations as well, varying the NS seed. We keep the TCL
seed constant and vary the NS seed, so that the events in the simulator will still be random (packets
arrival and departure times in queues for example).

The delay calculations only take into account the data packets, and the overall network delay is
computed as equation 5.1 describes. To compute the mean delay per CoS, we used the same procedure
as for the centralized version and to compute the total number of drops, we just run the trace file for
each simulation and count the number of drops.

Plot 5.36 shows the number of packet drops for all reservation algorithms. As we have said before,
SOMEN ensures that no packets are dropped. If there are no resources then no traffic is admitted,
hence no packet is dropped, independently of the reservation algorithm.

As for the mean delay per CoS, the weights of each class are equal (alpha values referred in
chapter 3, Section 3.5) so they should all have the same treatment, hence similar delays. This is what
we see from plots Figure 5.37 and Figure 5.38, that representCOR and A-COR respectively. However,
there is a slight longer delay for CoS 2 due to the number of packets in that class. The requests are
random and as well as the class and the amount of BW. So it is possible that for class 2 more request
exist, or that the existing requests represent larger BW than in other classes, hence more packets and
longer delay (queues more full). Recall that the TCL seed in kept constant so that all the algorithms
(COR, A-COR and MARA) have the same set of requests, however the requests are randomly picked
in that set.

This would also mean that MARA (Figure 5.39) should have higher delay for class 2, although
the behavior of MARA in a distributed scenario with1Gbpslinks was already very poor, and in the
10Mbpslinks it is even worse. If we look at the last plots, that represent the remaining bandwidth
and the waste (Figure 5.34 and Figure 5.35), we see that MARA barely accepts any request. This
means that its behavior is far from acceptable and hence no direct conclusion can be taken because
the algorithm cannot be considered to perform correctly.

Regarding the overall network delay, found in plot 5.40, we see that it increases as the network
utilization increases, as expected. The MARA values are lower because very few requests are accepted
(final usage is less than 10% network capacity) and so, very few packets are on the network, which in
turn contribute for lower delays.

78



40 50 60 70 80 90 100 110
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Packt Loss

Requests Parsed

N
um

be
r 

of
 D

ro
ps

 

 

COR
A−COR
MARA

Figure 5.36: T1 - Mean Packet Drops

40 50 60 70 80 90 100 110
8

9

10

11

12

13

14

15
COR − Delay per CoS

Requests Parsed

D
el

ay
 (

m
s)

 

 

CoS 1
CoS 2
CoS 3

Figure 5.37: T1 - COR – Mean Delay per CoS

79



40 50 60 70 80 90 100 110
8

9

10

11

12

13

14

15
A−COR − Delay per CoS

Requests Parsed

D
el

ay
 (

m
s)

 

 

CoS 1
CoS 2
CoS 3

Figure 5.38: T1 - A-COR – Mean Delay per CoS

40 50 60 70 80 90 100 110
2

4

6

8

10

12

14
MARA − Delay per CoS

Requests Parsed

D
el

ay
 (

m
s)

 

 

CoS 1
CoS 2
CoS 3

Figure 5.39: T1 - MARA – Mean Delay per CoS

80



40 50 60 70 80 90 100 110
3

4

5

6

7

8

9

10

11

12
Overall Network Delay

Requests Parsed

D
el

ay
 (

m
s)

 

 

COR
A−COR
MARA

Figure 5.40: T1 - Mean Overall Network Delay

40 50 60 70 80 90 100 110
0

1

2

3

4

5

6

7

8

9

10

Requests Parsed

M
bp

s

Remaining BW

 

 
Cor
A−Cor
Mara

Figure 5.41: T1 - Mean Remaining Bandwidth

40 50 60 70 80 90 100 110
0

1

2

3

4

5

6

7

8

9

10

Requests Parsed

M
bp

s

Waste BW

 

 
Cor
A−Cor
Mara

Figure 5.42: T1 - Mean Wasted Bandwidth

81



5.5 Conclusion

This chapter presented the main results achieved with the implementation of the algorithms des-
cribed and introduced by chapter 3.

In the centralized scenario, all the algorithms tested behave in similar ways with respect to overall
performance. Still, the waste of resources in MARA is a considerable flaw that both COR and A-COR
have solved. This leads to a better network utilization by the latter two algorithms.

The load in A-COR is the lowest and in COR it is the highest. However, it is of paramount
importance to notice that the MARA algorithm is implementedin SOMEN architecture and therefore,
the periodic refreshing messages deployed in MARA, every30 seconds, are not included in the total
load generated by MARA. This means that the accurate MARA’s load is supposed to be higher than
that shown, as it should take the refreshing message load into account.

As for the distributed scenario, it is shown that A-COR has the best performance by far, followed
by COR. It is the best algorithm in terms of control signalingminimization, and resource utilization
efficiency. MARA is not suitable for distributed control andcannot be implemented with satisfactory
results.

We demonstrate that the SOMEN mechanism effectively gives the network operator the possibility
to enforce and take advantage of QoS requirements without any violation and no packet drops.

82



Chapter 6

Conclusion / Future Work

The main goal of this Dissertation’s work, the implementation of the mechanisms described in
chapter 3, was achieved. The platform developed (SOMEN) behaves as expected. Both COR and
A-COR implementations have promising performances, beingA-COR a more balanced and refined
approach.

This work addresses some of the issues inherent to over-reservation schemes, with three diffe-
rent algorithms being implemented and tested. An overview about the fundamental aspects of over-
reservation, with emphasis about QoS, multicast, and distributed network control was done, being it
an integrant part of this work. The main challenges were explored and some of the arguments that
make this type of approach promising were discussed.

A special effort was made in explaining the operations of thereservation algorithms used. The
main aspects of the implementation were discussed. The key methods and relevant flow charts were
introduced with the intent of providing the reader with an enhanced knowledge of the main imple-
mentation. The simulation environment was deeply described as well.

As for the results attained, COR and A-COR algorithms behaveas expected. Regarding MARA,
this algorithm is more inefficient in the distributed scenario than in the centralized one. This may be
related to the way the algorithm distributes the available resources among the CoSs, as referred in
chapter 5.

In terms of comparison between the reservation algorithms,it is shown that A-COR has the best
performance by far, followed by COR. A-COR is the best algorithm in terms of network usage,
minimizing control signaling, and resource utilization efficiency.

We demonstrate that the SOMEN mechanism effectively gives the network operator the possibility
to enforce and take advantage of QoS requirements without any violation and packet drops, all in a
distributed fashion, increasing scalability of the underlying network and keeping low control overhead.

With respect to future work, some functionalities were implemented in this platform but have
not been discussed as they were not fully tested yet. These functionalities include an Advertisement
Minimization technique that allows overall signaling loadto be considerable minimized when network
is near full utilization ratio, and an alternative Admission Control mechanism for the centralized
scenario integrating an enhanced version of the flow re-routing. Hence, this work will be tested and
evaluated in the near future. Moreover, the platform will include the System Resilience Functions
(SRF) intended to improve system robustness.

Moreover, the path selection algorithm needs to be improvedin order to take more parameters
into account (e.g. delay, loss, jitter). For instance, traffic patterns could be analyzed and the paths that

83



would tend to high utilization could have more restrictionsto admit requests.

84



“I never did anything by accident, nor did any of my inventions
come by accident; they came by work. ”

— Thomas A. Edison

85



86



Bibliography

[1] Blake, S., D. Black, M. Carlson, E. Davies, Z. Wang, and W.Weiss:An Architecture for Differ-
entiated Services. In IETF RFC 2475.

[2] Bless, R.:DARIS - Dynamic Aggregation of Reservations for Internet Services. In Proc. 10th
Int. Conf. on Telecommunication. Systems –Modeling and Analysis (ICTSM), 2002.

[3] Bless, R.:Dynamic Aggregation of Reservations for Internet Services. In Proc. 10th Int. Conf.
on Telecommunication. Systems –Modeling and Analysis (ICTSM’10), 2002.

[4] Braden, R., L. Zhang, S. Berson, and S. Herzog:Resource ReSerVation Protocol (RSVP) –
Version 1 Functional Specification. In RFC 2205, 1997.

[5] C++: Programming Language, November 2010.http://www.cplusplus.com.

[6] Clausen, T. and P. Jacquet:Optimized Link State Routing Protocol (OLSR). In RFC 3626, 2003.

[7] Doxygen.org: Generate documentation from source code, January 2010.
http://www.stack.nl/dimitri/doxygen/index.html.

[8] Eckel, Bruce:Thinking In C++, Second Edition. Electronic Book in www.bruceeckel.com.

[9] Fall, Kevin and Kannan Varadhan:The ns Manual (formerly ns Notes and Documen-
tation). In The VINT Project, UC Berkeley, LBL, USC/ISI, and Xerox PARC, 2000.
http://www.isi.edu/nsnam/ns/ns-documentation.html.

[10] Greis, Mark: Tutorial for the Network Simulator NS, March 2010.
http://www.isi.edu/nsnam/ns/tutorial.

[11] Liang, S.H.L.:A New Fully Decentralized Scalable Peer-to-Peer GIS Architecture. In ISPRS
XXIth Congress, 2008.

[12] Logota, Evariste, Susana Sargento, and Augusto Neto:A New Method and Apparatus for
Advanced Class-based bandwidth Over-Reservation (ACOR) Control. Submitted Patent No.
20101000072940 (Portugal), September 2010.

[13] Logota, Evariste, Susana Sargento, and Augusto Neto:A New Strategy for Efficient Decentral-
ized Network Control. In IEEE Global Telecommunications Conference, (IEEE GLOBECOM),
2010.

[14] Logota, Evariste, Susana Sargento, and Augusto Neto:COR: an Efficient Class-based Resource
Over-pRovivioning Mechanism for Future Networks. In IEEE symposium on Computers and
Communications (ISCC), Riccione, Italy, 2010.

87

http://www.cplusplus.com
http://www.stack.nl/dimitri/doxygen/index.html
http://www.isi.edu/nsnam/ns/ns-documentation.html
http://www.isi.edu/nsnam/ns/tutorial


[15] MathWorks:Matlab vs7.9, November 2010.http://www.mathworks.com/products/matlab/.

[16] Netoet al.: Scalable Resource Provisioning for Multi-User Communications in Next Generation
Networks. In Global Telecommunications Conference, 2008.

[17] Neto, A., E. Cerqueira, A. Rissato, E. Monteiro, and P. Mendes:A Resource Reservation Proto-
col Supporting QoS-aware Multicast Trees for Next Generation Networks. In Proc. 12th IEEE
Symp. on Computers and Communications, 2007.

[18] Neto, A., S. Sargento, E. Logota, J. Antoniou, and F.C Pinto: Multiparty Session and Network
Resource Control in the Context Casting (C- CAST) project. In Second International Workshop
on Future Multimedia Networking (FMN 2009), 2009.

[19] Neto, Augusto José Venâncio:Multi-service Resource Allocation in the Next Generation of Net-
works. PhD thesis, University of Coimbra, 2008.

[20] NS2.31:Main web site, January 2010.http://www.isi.edu/nsnam/ns/.

[21] Pan, P., E. Hahne, and H. Schulzrinne:BGRP: A Tree-Based Aggregation Protocol for Inter-
domain Reservations. In Trans. of Communications and Networks Journal, 2000.

[22] Pereira, V., E. Monteiro, and P. Mendes:Evaluation of an Overlay for Source- Specific Mul-
ticast in Asymmetric Routing environment. In IEEE Global Telecom- munications Conference
(GLOBECOM), 2007.

[23] Pinto, P., A. Santos, P. Amaral, and L. Bernardo:SIDSP: Simple Inter-domain QoS Signaling
Protocol. In Proc. IEEE Military Communications Conference, 2007.

[24] Sargento, Susana and Rui Valadas:Accurate estimation of capacities and cross-traffic of all links
in a path using ICMP timestamps. In Telecommunication Systems Journal, 2006.

[25] TCL: Script Language, November 2010.http://wiki.tcl.tk/.

[26] TISPAN, ETSI:Telecommunications and Internet converged Services and Protocols for Ad-
vanced Networking, July 2010.www.etsi.org/tispan/.

[27] TLDP.org:Multicast over tcp, July 2010.http://tldp.org/HOWTO/Multicast-HOWTO.html.

88

http://www.mathworks.com/products/matlab/
http://www.isi.edu/nsnam/ns/
http://wiki.tcl.tk/
www.etsi.org/tispan/
http://tldp.org/HOWTO/Multicast-HOWTO.html

	Contents
	List of Tables
	List of Figures
	Acronyms
	Introduction
	Motivation
	Objectives
	Document Outline

	State of The Art
	Introduction
	Multicast
	QoS Model and Bandwidth Over-Provisioning
	Network Decentralization Control

	Architecture
	Introduction
	Distributed Architecture Overview
	Centralized Architecture Overview
	Functionalities
	Dynamic Filtering Functions (DFF)
	Dynamic Threshold Synchronization Functions (DTSF)
	Flow Re-Routing

	Bandwidth Over-Reservation Algorithms
	COR
	A-COR

	Centralized Scenario
	Distributed Scenario
	Conclusion

	Implementation
	Introduction
	NS2 Simulator
	Centralized Scenario
	Network Initialization Phase
	Normal Operation State
	Admission Control

	Distributed Scenario
	Network Initialization Phase
	Normal Operation State

	Bandwidth Over-Reservation Algorithms
	Reservation Enforcement
	Flow Re-Routing
	Multicast Trees
	Other Functions
	Releasing Request
	Create Traffic
	Compute Remaining BW
	Save Statistics
	Auxiliary Functions

	Conclusion

	Results
	Introduction
	Simulation Scenario Details
	Centralized Scenario
	Distributed Scenario
	Conclusion

	Conclusion / Future Work
	Bibliography

