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Abstract. Object oriented (OO) programming techniques can be applied to equational
specification logics by distinguishing visible data from hidden data (i.e., by distinguishing
the output of methods from the objects to which the methods apply), and then focusing
on the behavioral equivalence of hidden data in the sense introduced by H. Reichel in
1984. Equational specification logics structured in this way are called hidden equational
logics, HEL’s. The central problem is how to extend the specification of a given HEL to
a specification of behavioral equivalence in a computationally effective way. S. Buss and
G. Roşu showed in 2000 that this is not possible in general, but much work has been done
on the partial specification of behavioral equivalence for a wide class of HEL’s. The OO
connection suggests the use of coalgebraic methods, and J. Goguen and his collaborators
have developed coinductive processes that depend on an appropriate choice of a cobasis,
a special set of contexts that generates a subset of the behavioral equivalence relation. In
this paper the theoretical aspects of coinduction are investigated, specifically its role as a
supplement to standard equational logic for determining behavioral equivalence. Various
forms of coinduction are explored. A simple characterization is given of those HEL’s
that are behaviorally specifiable. Those sets of conditional equations that constitute a
complete, finite cobasis for a HEL are characterized in terms of the HEL’s specification.
Behavioral equivalence, in the form of logical equivalence, is also an important concept
for single-sorted logics, e.g., sentential logics such as the classical propositional logic. The
paper is an application of the methods of the extensive work that has been done in this
area to HEL’s, and to a broader class of logics that encompasses both sentential logics
and HEL’s.
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1. Introduction

Equational logic serves as the underlying logic in many formal approaches to program
specification. The algebraic data types specified in this formal way can be viewed as
abstract machines on which the programs are to be run. This is one way of giving a
precise algebraic semantics for programs, against which the correctness of a program
can be tested. Object oriented (OO) programs however present a special challenge for
equational methods. A more appropriate model for the abstract machine in the case of an
OO program is, arguably, a state transition system: like a state of such a system, a state
of an OO program can be viewed as encapsulating all pertinent information about the
abstract machine when it reaches the state during execution of the program. As a way of
meeting this challenge the standard equality predicate can be augmented by behavioral
equivalence; in this way many of the characteristic properties of state transition systems
can be grafted onto equational logic.

In this approach the data are partitioned into visible and hidden parts, with the latter
representing the objects in the object-oriented paradigm. Procedures that take hidden
data as input (the methods associated with an object) are assumed to output only visible
data. Hidden data can be only indirectly compared by comparing the outputs of the
procedures. Two hidden data elements are behaviorally equivalent if every procedure
returns the same value when executed with either of the data elements as input. In
formalizing the equational logic intended to specify behavioral equivalence, only equations
and conditional equations between visible terms are used in axiomatizing the logic since
only visible data are used to define behavioral equivalence. Such logics are referred to as
hidden equational logics, or HEL’s. Here we follow (Goguen and Malcolm 2000) in the
choice of the descriptive term “hidden”.

The central problem is how to specify behavioral equivalence in a computationally
effective way, more precisely, how to do this for behavioral validity. An equation is said to
be behaviorally valid over a given HEL L if its left- and right-hand sides are behaviorally
equivalent under all possible interpretations in the models of L. A natural extension of
this idea gives a corresponding notion of the behavioral validity of a conditional equation.
It is known that this problem is not solvable in general. More specifically, (Buss and Roşu
2000) give an example of a hidden equational logic defined by a finite number of equations
and conditional equations with the property that the set of behaviorally valid equations
(and hence in particular the set of behaviorally valid conditional equations) fails to be
either recursively enumerable (RE) or co-RE. So attention has been focused on partial
solutions to the problem.

The analogy between hidden equational logic and state-transition systems suggests the
use of coalgebraic methods in the verification of behavioral validity, and indeed various
forms of coinduction in combination with standard techniques of equational logic have
been developed for this purpose. See (Bouhoula and Rusinowitch 2002; Goguen and
Malcolm 1999; Goguen and Malcolm 2000; Roşu 2000; Roşu and Goguen 2000; Roşu and
Goguen 2001; Goguen et al. 2002). More abstract studies of the behavioral equivalence
and validity relations can be found in (Bidoit and Hennicker 1996; Hennicker 1997).

Research in the area has generally focused on computationally effective coinductive
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and specialized rewriting techniques that can serve as the basis of special languages that
support automated behavioral reasoning. (Bouhoula and Rusinowitch 2002) propose an
automatic method for proving behavioral validity of conditional equations in conditional
specifications based on the fact that there are specifications for which a small set of
contexts, called critical contexts is sufficient to determine behavioral validity. This is the
genesis of the SPIKE language (Berreged et al. 1998), which uses context induction
(see http://www.loria.fr/bouhoula/spike.html). The language CafeOBJ was de-
veloped by (Diaconescu and Futatsugi 1998) (http://www.ldl.jaist.ac.jp/Research
/CafeOBJ/). It implements behavioral rewriting to make behaviorally sound reductions
of terms, and is based on a behavioral version of the well known efficient method of
rewriting for automated theorem proving.

Joseph Goguen and his collaborators have developed coinductive algorithms that de-
pend on an appropriate choice of a cobasis, a special set of contexts that generates a
subset of the behavioral equivalence relation. Those algorithms have been implemented
in the language BOBJ (Lin et. al. 2000). (Roşu and Goguen 2001) present a new tech-
nique which combines behavioral rewriting and coinduction (see also (Lin et. al. 2000)).
The most recent version is CCCRW, called conditional circular coinductive rewriting with
case analysis (Goguen et al. 2002).

In contrast our work is more theoretical, like that of (Buss and Roşu 2000; Bidoit and
Hennicker 1996; Hennicker 1997). We investigate the theoretical aspects of coinduction
and its role as a supplement to standard equational logic for determining behavioral
equivalence. We explore the various forms coinduction can assume and how they interact
with the deductive process of standard equational logic. In order to do this properly
we must first describe in some detail the underlying logical formalism and precisely
define within that context what behavioral equivalence is. Although the work here may
eventually lead to computationally effective ways of determining behavioral equivalence
in practical situations, this is not one of our goals and we do not explore the possibility.

There are some consequences of this aspect of our work, setting it apart from others
in the area, that we feel compelled to mention because they have proved somewhat
controversial. Various examples of HEL’s and other kinds of logics are given illustrating
our theoretical results, and we have purposely chosen simple, some would say trivial,
examples because these best serve our purpose. The example of stacks of natural numbers
is one whose familiarity seems to have bred contempt in some quarters, but it is just this
familiarity that makes it well suited for our purpose. More complex examples would be
appropriate only if we were presenting case studies for specific deductive algorithms.

Another controversial aspect of our work is the requirement that axioms refer only to
visible data. For example, in axiomatizing stacks of natural numbers we chose the infinite
set of visible axioms top(popn+1(push(x, s))) ≈ top(popn(s)), for all natural numbers
n, instead of the familiar single, hidden axiom pop(push(x, s) ≈ s. Given the object
oriented paradigm guiding us, this is the only coherent choice. Hidden objects can only
be specified in terms of the data the applicable methods return, and these are necessarily
visible. A simpler axiomatization can of course be obtained by replacing the infinitely
many hidden equations with the single hidden one, but to assure this replacement is
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sound, the behavioral validity of pop(push(x, s) ≈ s must first be verified by some means
using the original axiom system.

The authors came to this project with a background in algebraic logic, more precisely
abstract algebraic logic, an area of mathematical logic that has been quite active recently.
(For surveys of the subject see (Font et al. 2003; Pigozzi 2001).) Roughly speaking abstract
algebraic logic (AAL) is the study of the relation between logical assertion (i.e, asserting
that a sentence is logically true) and logical equivalence (asserting that two sentences
are logically equivalent). Historically logics, like the classical propositional logic (CPL),
have been formalized as one-sorted assertional systems, i.e., sentential logics, and it turns
out that in such systems logical equivalence can be characterized precisely as behavioral
equivalence. In CPL behavioral (i.e., logical) equivalence is defined by a explicit logical
connective, the biconditional ↔, but in arbitrary sentential logics it has to be captured
by other means, and this essentially is the subject matter of AAL. In this paper we apply
the methods of AAL to HEL’s and to a broader class of logics that encompasses both
sentential logics and HEL’s.

The special feature of this approach is the characterization of behavioral equivalence as
a congruence relation on the term algebra of a special kind (called the Leibniz congruence
in AAL). This congruence has been used before in hidden equational logic (Roşu and
Goguen 2000; Roşu and Goguen 2001), but plays a greatly expanded role in our work.
The role that algebraic data structures traditionally play in hidden equational logic is in
large part supplanted by the theory of the Leibniz congruence. This this gives our work
a distinctive combinatorial flavor that, in our view, adds much to the understanding of
the subject.

1.1. Description of contents of paper

A large part of our theory applies to a much more general class of logical systems than
hidden equational logics. In the first part of Section 2 we define the notion of a hidden
k-logic. The elementary part of its semantics is developed in Section 2.2.

Hidden k-logics encompass not only the hidden and standard equational logics, but
also Boolean logics (i.e., multi-sorted logics with a Boolean sort in place of equality pred-
icates). They also comprehend sentential logics, the purview of abstract algebraic logic.
In Section 2.3 we specialize to the hidden equational logics (HEL’s) and present several
representative examples of HEL’s and an example of a hidden 3-logic (Example 2.11).

The standard definition of behavioral equivalence of elements of an hidden algebra
(in terms of contexts), is given in Section 2.4, and followed by the generalization of the
notion to k-data structures, the natural models of hidden k-logics. The next section, 2.5,
is a brief detour into abstract algebraic logic where we define the Leibniz congruence and
develop some of its basic properties. We also present in this section a general version of
the completeness theorem for HEL’s that involves some special hidden algebras that are
defined in terms of the Leibniz congruence.

The core of the paper is found in Section 3. We give precise definitions of behaviorally
valid equations and conditional equations over a hidden k-logic and as a special case a
HEL. In the main lemma of the paper, (Theorem 3.4), behavioral validity is characterized
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in terms of combinatorial properties of Leibniz congruences on the term algebra; this
characterization can be viewed as the most abstract form of coinduction for conditional
equations, and all subsequent results of the paper derive from it.

In Section 3.1 we prove that all members of a set of conditional equations E are behav-
iorally valid over a HEL if and only if every conditional equation with visible consequent
that is derivable using E as a set of additional inference rules is already derivable without
the aid of E (Theorem 3.10). This gives an alternative form of coinduction for conditional
equations that uses only standard equational logic. It generalizes in a natural way a sim-
ilar result in (Leavens and Pigozzi 2002, Theorem 3.18) for equations. As a consequence
(Corollary 3.13) we get that the set of conditional equations that are behaviorally valid
over a HEL is closed under equational consequence in the sense that any conditional
equation that is derivable using any set of behaviorally valid conditional equations as
additional rules is itself behaviorally valid. Thus coinduction (in either one of its two
alternative forms mentioned above) remains sound as well as complete with respect to
behavioral validity when augmented by the standard deductive apparatus of equational
logic. This turns out to be especially useful in the case of behaviorally specifiable HEL’s
(see following paragraph) for which there are just a few behaviorally valid equations and
conditional equations that, once their behavioral validity is verified in some way, for ex-
ample by coinduction, can be used to derive all other behavioral validities by means of
standard equational logic. An example of the use of this technique for establishing the
behavioral validity of equations can be found in (Leavens and Pigozzi 2002).

In Section 3.2 we apply the results of the previous sections to the theory of cobases.
Roughly speaking, a cobasis (in the sense of (Roşu and Goguen 2001)) is a collection
of possibly infinite conditional equations (i.e., each conditional equation has possibly
an infinite number of conditions), that when adjoined as new inference rules to those
of a specifiable HEL is sound with regard to behavioral validity; a cobasis is called
finite if each conditional equation has only a finite number of conditions. As indicated
earlier in the Introduction, the search for effective cobases has played an important part
in the research on behavioral equivalence. We call a HEL, more generally any hidden
k-logic, behaviorally specifiable if there is a finite cobasis that is complete, as well as
sound, for the HEL. According to (Buss and Roşu 2000), not every specifiable HEL is
behaviorally specifiable. The main result of Section 3.2 is a simple characterization of
those HEL’s that are behaviorally specifiable. More specifically, we characterize, entirely
in terms of the underlying equational logic of the HEL, those sets of conditional equations
that constitute a complete, finite cobasis. (See Theorems 3.19, 3.20, and the remarks
following Definition 3.21.) These such cobases turn out to be the analogue of so-called
finite equivalence systems of abstract algebraic logic.

If L has an equivalence system, then every conditional equation can be transformed into
a set of visible conditional equations with possibly infinitely many conditions such that
the original conditional equation is behaviorally valid if and only if each of its transforms
is derivable in L; in the case of a finite equivalence system, the set of transforms is finite
and each is a standard conditional equation (Theorem 3.22). This result can be useful in
practice since many HEL’s have equivalence systems and even finite equivalence systems.
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2. Hidden Logics

From the beginning, we distinguish visible and hidden data by separating the set of sorts
in two parts, visible and hidden, in the definition of signature.

A hidden (sorted) signature is a triple

Σ =
〈
SORT,VIS, 〈OPτ : τ ∈ TYPE〉 〉,

where SORT is a nonempty, countable set whose elements are called sorts, VIS is a subset
of SORT, called the set of visible sorts, TYPE is a set of nonempty sequences S0, . . . , Sn

of sorts, called types, and, for each τ ∈ TYPE, OPτ is a countable set of operation
symbols of type τ . Those sorts in SORT \ VIS, that are not visible, are called hidden
sorts. The set of hidden sorts is denoted by HID. A hidden signature Σ is said to be
standard if there is a ground term of every sort.

From each hidden signature Σ we obtain the associated un-hidden signature Σuh by
making all sorts of Σ visible.

Σuh =
〈
SORT, SORT, 〈OPτ : τ ∈ TYPE〉 〉.

By a SORT-sorted set, or just a sorted set when SORT is clear from context, we mean

a sequence A = 〈AS : S ∈ SORT 〉 indexed by SORT. A sorted set A is locally countable
(finite), if for every sort S, AS is a countable (finite) set.

A Σ-algebra is a pair
〈
A, 〈σA : τ ∈ TYPE, σ ∈ OPτ 〉

〉
,

where A is SORT-sorted set and σA is an operation on A of type τ . As customary we
use the same symbol to denote an algebra and the the carrier of the algebra. We assume
in addition that the domain AS is nonempty for each sort S. This simplifies the logical
arguments, and all results of the paper extend mutatis mutandis to the more general case.
An algebra A is locally countable (finite) if its carrier set is locally countable (finite). To
simplify notation and terminology we occasionally identify, when no confusion seems
likely, an sorted set such as 〈AS : S ∈ SORT 〉 with the corresponding unsorted set⋃

S∈SORT AS .
Let X = 〈XS : S ∈ SORT〉 be a fixed locally countable sorted set of variables. We

define the sorted set TeΣ(X) of terms over the signature Σ as usual. We use the lower
case Greek letters ϕ,ψ, ϑ, . . . to represent terms, possibly with annotations to indicated
sort and variables. Specifically, writing ϕ in the form

ϕ(x1 :T1, . . . , xn :Tn):S (1)

indicates that ϕ is of sort S and that the variables that actually occur in ϕ are included
in the list x1, . . . , xn of sort T1, . . . , Tn, respectively.

We define, in the usual way, operations over TeΣ(X) to obtain the term algebra over
the signature Σ (also denoted by TeΣ(X)). It is well known that TeΣ(X) has the universal
mapping property over X in the sense that, for every Σ-algebra A and every sorted map
h : X → A, called an assignment, there is a unique sorted homomorphism h∗ : TeΣ(X) →
A, which extends h. In the sequel we will not distinguish between these two maps. If ϕ
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is the term (1), and ai ∈ ATi
, we write ϕA(a1, . . . , an) for the image h(ϕ) under any

homomorphism h such that h(xi) = ai for all i.
A map from X to the set of terms, and its unique extension to an endomorphism

of TeΣ(X), is called a substitution. Substitutions are represented by the Greek letters
σ, τ, . . . . Since X is assumed fixed throughout the paper, we normally write TeΣ in place
of TeΣ(X).

To provide a context that allows us to deal simultaneously with specification logics that
are assertional (for example ones with a Boolean sort but no equality) and equational,
we introduce the notion of a k-formula for any nonzero natural number k. A k-formula
of sort S over Σ is a sequence of k Σ-terms all of the same sort S. We indicate k-formulas
by overlining, so ϕ̄ :S = 〈ϕ0 :S, . . . , ϕk−1 :S〉. When we do not need to make the common
sort S of each term of ϕ̄ :S explicit, we simply write it as ϕ̄. Tek

Σ is the sorted set of all
k-formulas over Σ. Thus Tek

Σ = 〈(TeΣ)k
S : S ∈ SORT〉. The set of all visible k-formulas

(Tek
Σ)VIS is the VIS-sorted set 〈(TeΣ)k

V : V ∈ VIS〉. More generally, for any subset S of
sorts and any sorted set A, AS denotes the S-sorted set 〈AS : S ∈ S〉.

The paradigm for 1-formulas are Boolean terms over an arbitrary hidden signature with
a Boolean sort (the only visible sort). The main examples of 2-formulas are the equations
of free hidden equational logic over any hidden signature Σ (free HELΣ) considered below
(Definition 2.6); here the equation φ ≈ ψ is identified with the 2-formula 〈φ, ψ〉. Higher
dimension formulas are less common but not unnatural. For example, in a signature for
reasoning about certain kinds of sets, the set containment relation ϑ ∈ [ϕ,ψ] can be
identified with the 3-formula 〈ϑ, ϕ, ψ〉.

If A is a Σ-algebra and ϕ̄(x1 :T1, . . . , xn :Tn) is a k-formula and a1 ∈ AT1 , . . . , an ∈ ATn ,
then we denote by ϕ̄A(a1, . . . , an) the value ϕ̄ takes in A when the variables x1, . . . , xn

are interpreted respectively by a1, . . . , an. More precisely, if

ϕ̄(x1, . . . , xn) = 〈ϕ1(x1, . . . , xn), . . . , ϕk(x1, . . . , xn)〉,
then ϕ̄A(a1, . . . , an) = h(ϕ̄) = 〈h(ϕ1), . . . , h(ϕk)〉, where h is any homomorphism from
TeΣ to A such that h(xi) = ai for all i ≤ n.

Definition 2.1. A visible k-data structure over the hidden signature Σ is a pair A =
〈A,F 〉, where A is a Σ-algebra and F ⊆ Ak

VIS := 〈Ak
V : V ∈ VIS〉.

In the sequel, we normally omit the term “visible” and we simply say a k-data struc-
ture. An example of a 2-data structure is any model of the free hidden equational
logic over Σ. The standard model of the free HELΣ is of the form 〈A, idAVIS〉, where
A is a Σ-algebra and idAVIS is the identity relation on the visible part of A, but one
gets more general 2-data structures as models by taking any congruence relation on
the visible part of A in place of idAVIS . By a congruence relation on the visible part
of A, or simply a VIS-congruence, we mean a VIS-sorted set 〈FV : V ∈ VIS 〉 such
that, for every V ∈ VIS, FV is an equivalence relation on AV , and for every term
ϕ(x1 :V1, . . . , xn :Vn, y1 :H1, . . . , ym :Hm):V with V1, . . . , Vn, V ∈ VIS and H1, . . . , Hm,∈
HID, if 〈ai, bi〉 ∈ FVi for all i ≤ n, then for all cj ∈ AHj j ≤ m

〈ϕA(a1, . . . , an, c1, . . . , cm), ϕA(b1, . . . , bn, c1, . . . , cm) ∈ FV .
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The admission of equality, or more generally equivalence, only between visible elements
in the specification of the data structure reflects the basic premise of hidden logic, namely
that only properties of visible elements can be known a priori : hidden data elements are
equal or equivalent just when they have the same visible properties in a sense made
precise below.

We can also consider the free Boolean logic over Σ, provided Σ has a Boolean sort. Here
the standard models are the 1-data structures 〈A, {true}〉, where A is a Σ-algebra such
that AVIS is the two-element Boolean algebra. In a general model, AVIS is an arbitrary
Boolean algebra and {true} is replaced by an arbitrary Boolean filter on AVIS.

2.1. Consequence

For our purposes it is convenient to define a hidden k-logic as an abstract consequence
relation on the set of k-formulas, independently of any specific choice of axioms and rules
of inference. Let S be a subset of SORT. By a consequence relation, or closure relation, on
(Tek

Σ)S we mean a binary relation ` ⊆ P(Tek
Σ)S × (Tek

Σ)S between subsets of k-formulas
and individual k-formulas of sort S ∈ S satisfying the following conditions. (a) Γ ` γ̄ for
each γ̄ ∈ Γ; (b) Γ ` ϕ̄, and ∆ ` γ̄ for each γ̄ ∈ Γ, imply ∆ ` ϕ̄.

The consequence relation is finitary (or compact) if Γ ` ϕ̄ implies ∆ ` ϕ̄ for some
globally finite subset ∆ of Γ (note that a set ∆ of formulas is said to be globally finite
if

⋃
S∈SORT ∆S is finite). It is substitution-invariant if Γ ` ϕ̄ implies σ(Γ) ` σ(ϕ̄) for

every substitution σ : X → TeΣ. The relation ` has a natural extension to a relation,
also denoted by `, between subsets of (Tek

Σ)S . It is defined by Γ ` ∆ if Γ ` ϕ̄ for each
ϕ̄ ∈ ∆ (i.e., ϕ̄ ∈ ∆S , for some S ∈ S).

Definition 2.2. A hidden k-logic over a hidden signature Σ is a pair L = 〈Σ,`L〉,
where `L is a substitution-invariant consequence relation on the set (Tek

Σ)VIS of visible
k-formulas. A hidden k-logic is specifiable if `L is finitary (this terminology will soon be
justified).

By a un-hidden k-logic over Σ we mean a hidden k-logic over Σuh. A hidden k-logic
(without reference to a signature) can mean either a hidden or un-hidden logic over some
unspecified hidden signature Σ.

Meseguer (Meseguer 1989) presents a similar general notion of logic, which is also
defined as a consequence relation. Meseguer’s system is called entailment system and
combines a consequence relation with the notion of institution (see also (Fiadeiro and
Sernadas 1988)).

Hidden k-logics are useful mainly because they encompass not only the 2-dimensional
hidden and un-hidden equational logics, but also Boolean logics; these are 1-dimensional
multisorted logics with Boolean as the only visible sort, and with equality-test operations
for some of the hidden sorts in place of equality predicates. They also include all asser-
tional logics, the purview of abstract algebraic logic. By this way we obtain a unified
theory for a variety of logical systems. In this paper we are mainly concerned with a
special hidden 2-logic, the hidden equational logic (see Section 2.3).

Normally a specifiable hidden k-logic is presented by a set of axioms (visible k-formulas)
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and inference rules of the general form

ϕ̄0 :V0, . . . , ϕ̄n−1 :Vn−1

ϕ̄n :Vn
, (2)

where ϕ̄0, . . . , ϕ̄n are all visible k-formulas. A visible k-formula ψ̄ is directly derivable from
a set Γ of visible k-formulas by a rule such as (2) if there is a substitution h : X → TeΣ

such that h(ϕ̄n) = ψ̄ and h(ϕ̄0), . . . , h(ϕ̄n−1) ∈ Γ. ψ̄ is derivable from Γ by a given set
of axioms and rules of inference if there is a finite sequence of k-formulas ψ̄0, . . . , ψ̄n−1

such that ψ̄n−1 = ψ̄, and for each i < n either (a) ψ̄i ∈ Γ, or (b) ψ̄i is a substitution
instance of an axiom, or (c) ψ̄i is directly derivable from {ψ̄j : j < i} by one of the rules
of inference.

It is well known, and straightforward to show, that a hidden k-logic L is specifiable if
and only if there exists a (possibly) infinite set of axioms and rules of inference such that,
for any visible k-formula ψ̄ and any set Γ of visible k-formulas, Γ `L ψ̄ iff ψ̄ is derivable
from Γ by the given set of axioms and rules.

Let L be a (not necessarily specifiable) hidden k-logic. By a theorem of L, we mean
a (necessarily visible) k-formula ϕ̄ such that `L ϕ̄, i.e., ∅ `L ϕ̄. The set of all theo-
rems is denoted by Thm(L). A rule such as (2) is said to be a derivable rule of L if
{ϕ̄0, . . . , ϕ̄n−1} `L ϕ̄n.

A set of visible k-formulas T closed under the consequence relation, i.e., T `L ϕ̄

implies ϕ̄ ∈ T , is called a theory of L. The set of all theories is denoted by Th(L). It is
closed under arbitrary intersection, i.e., {Ti : i ∈ I } ⊆ Th(L) implies

⋂
i∈I Ti ∈ Th(L).

Moreover, if L is specifiable, then Th(L) is closed under unions of upward directed sets,
i.e., if {Ti : i ∈ I } ⊆ Th(L) and for every i, i′ ∈ I, there is a j ∈ I such that Ti∪Ti′ ⊆ Tj ,
then

⋃
i∈I Ti ∈ Th(L).

The set of all L-consequences of Γ ⊆ (Tek
Σ)VIS, { ϕ̄ ∈ (Tek

Σ)VIS : Γ `L ϕ̄}, is the
smallest theory that includes Γ. It is denoted by CnL(Γ). So a hidden k-logic is completely
determined by its set of theories.

The restriction to axioms and rules of inference involving only visible k-formulas is
natural in view of the special role visible data play in hidden logic. Axioms and rules
involving hidden data can also play an important part as well, as we shall see, but only
in an auxiliary role.

2.2. Semantics

Definition 2.3. Let K be a class of k-data structures over a hidden signature Σ.

(i) A visible k-formula ϕ̄:V is said to be a valid consequence of a set of visible k-formulas
Γ in K, in symbols Γ ²K ϕ̄, if,

(∀ 〈A,F 〉 ∈ K)(∀ h :X → A)
[(

(∀ ψ̄ :W ∈ Γ) (h(ψ̄) ∈ FW )
) ⇒ h(ϕ̄) ∈ FV

]
.

(ii) A visible k-formula ϕ̄ is valid in K if h(ϕ̄) ∈ FV for every 〈A, F 〉 ∈ K and every
assignment h:X → A, i.e., if it is a valid consequence of the empty set of k-formulas,
in symbols ²K ϕ̄.

(iii) A rule such as (2) is a valid rule of K, if {ϕ̄0, . . . , ϕ̄n−1} ²K ϕ̄n.
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For simplicity, we write Γ ²A ϕ in place of Γ ²{A} ϕ for a single k-data structure A.
It is easy to see that ²K is a substitution-invariant consequence relation on the set

of k-formulas. It is not however in general finitary; hence the associated hidden k-logic
〈Σ, ²K〉 is not in general specifiable.

Definition 2.4. A k-data structure A is a model of a hidden k-logic L if every L-
consequence is a semantic consequence of A, i.e., Γ `L ϕ̄ always implies Γ ²A ϕ̄. The
class of all models of L is denoted by Mod(L).

If L is a specifiable hidden k-logic, then A is a model of L iff every axiom is valid in
A and every inference rule is a valid rule of A.

The proof of the following theorem is straightforward and can be found in (Martins
2004). For sentential logics the result is well known; see for example (Wójcicki 1988).

Theorem 2.5 (Completeness of Hidden k-logics (Martins 2004)). For any hidden
k-logic L,

`L = ²Mod(L),

i.e., for every set of k-formulas Γ and any k-formula ϕ̄, Γ `L ϕ̄ iff Γ ²Mod(L) ϕ̄.

Strictly speaking, this completeness theorem only holds when the models of L are re-
stricted to k-data structures with a nonempty domain of each sort. In the sequel we
assume all k-data structures have this property.

2.3. Hidden equational logic

In the present context hidden equational logic is a special class of 2-logics in which a
2-formula 〈t, s〉 is intended to represent an equation, which we denote by t ≈ s, and a

rule
〈t0, s0〉, . . . , 〈tn−1, sn−1〉

〈tn, sn〉 represents a conditional equation, denoted by

t0 ≈ s0, . . . , tn−1 ≈ sn−1 → tn ≈ sn.

Since the basic premise of hidden logics is that only visible data can be compared
directly, in hidden equational logic there is no way of directly asserting the quality of
terms of hidden sort. In fact no representation of the equality predicate between elements
of the hidden domains exists in the object language, and in reasoning about hidden data,
only visible properties expressible in the form of conditional equations are admitted. The
rationale behind this restriction was discussed in the introduction. Of course the equality
of hidden elements can be inferred indirectly by comparing their visible behavior, and
it is convenient for this purpose to consider an expanded class of equational logics, the
so-called un-hidden equational logics admitting equality predicates over hidden domains.

Definition 2.6 (Free hidden and un-hidden equational logic). Let Σ be a hidden
signature and VIS its set of visible sorts.

(i) The free hidden equational logic over Σ (or the free HELΣ) is the specifiable hidden
2-logic presented as follows.
Axioms:
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x :V ≈ x:V , for all V ∈ VIS

Inference rules: for each V, W ∈ VIS,

(IR1) x:V ≈ y :V → y :V ≈ x:V ,

(IR2) x:V ≈ y :V, y :V ≈ z :V → x:V ≈ z :V ,

(IR3) ϕ:V ≈ ψ :V → ϑ(x/ϕ):W ≈ ϑ(x/ψ):W, for every ϑ ∈ TeW and every
x ∈ XV .

(ii) The free un-hidden equational logic over Σ (or the free UHELΣ) contains an equality
predicate for each sort, visible and hidden. The axioms and inference rules are the
same as those of the free HELΣ, except that V and W are now allowed to range over
all sorts. Thus UHELΣ = HELΣuh .

We assume here that the set of variables associated with each term coincides with the set
of variables that actually occur in the term. As a consequence, in Theorem 2.25 below
we must assume that all the sort domains of each model are nonempty.

As indicated earlier, the models of the free HELΣ are the 2-data structures A = 〈A,F 〉
where A is an arbitrary Σ-algebra and F is a VIS-congruence on A, i.e., a congruence
on the visible part of A. The theories of the free HELΣ are the VIS-congruences on the
term algebra.

The models of the free UHELΣ are the 2-data structures 〈A, F 〉 where F is a congruence
on the entire algebra A; the theories are the congruences on the term algebra.

For every congruence F of A, whether on the visible part or entire algebra, we write
a ≡ a′ mod FS , or simply a ≡ a′ (FS) or a ≡FS a′, alternatively for 〈a, a′〉 ∈ FS ; we also
may omit explicit reference to the sort S in these expressions if no confusion is possible.
If A is the term algebra and ϕ,ϕ′ are terms, we might also write ϕ ≈ ϕ′ ∈ FS .

An applied hidden equational logic over Σ, called simply a HELΣ, is any hidden 2-logic
L over Σ that satisfies all axioms and rules of inference of the free hidden equational
logic over Σ; an applied un-hidden equational logic over Σ is defined similarly and it is
simply called an UHELΣ; the subscript Σ may be omitted if it is clear from the context.
We almost always are interested exclusively in those applied hidden equational logics L
that are specifiable, that is, that are obtained from the free logic by adding new, so-called
extra-logical axioms and inference rules to the logical axioms and rules of Definition 2.6.
In view of the completeness theorem (Theorem 2.25 below) they correspond respectively
to the identities and conditional identities of the class of models of L. In particular, the
visible conditional equation

t0(x̄) ≈ s0(x̄), . . . , tn−1(x̄) ≈ sn−1(x̄) → tn(x̄) ≈ sn(x̄) (3)

is a valid rule of a model A = 〈A,F 〉 of the free HELΣ (free UHELΣ) if, for every
assignment ā of the elements of A to x̄ (of the appropriate sorts),

tAn (ā) ≡F sA
n (ā) if tA0 (ā) ≡F sA

0 (ā), . . . , tAn−1(ā) ≡F sA
n−1(ā).

The applied un-hidden equational logics we deal with are, on the contrary, normally
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unspecifiable since they come from the behavioral equivalence of hidden equational logics
and more general hidden k-logics.

We give several examples of specifiable hidden logics. We have purposely chosen simple,
well-known ones that allow us to illustrate the basic ideas without burdening the reader
with irrelevant detail. The first two illustrate how the logic of a particular data structure
can be alternatively formalized as a Boolean 1-logic and as an equational 2-logic, a HEL.
The flag logics provide two different ways of specifying semaphores, which are commonly
used in scheduling resources (Goguen and Malcolm 1999).

Example 2.7. (Flags as a Boolean 1-logic)
Consider the hidden signature Σflag :

SORT = {flag , bool}, with bool the unique visible sort and the following operation
symbols:

up : flag → flag ; rev : flag → flag ;
dn : flag → flag ; up? : flag → bool ,

and the operation symbols for the Boolean part: ¬,∧,∨, true, false. The Boolean bicon-
ditonal ϕ ↔ ψ is an abbreviation for the compound operation (¬ϕ ∨ ψ) ∧ (¬ψ ∨ ϕ).

The Boolean logic of flags, Lbflag , is the 1-logic with the following extra-logical axioms:

up?(up(F )) up?(rev(F )) ↔ ¬(up?(F ))
¬up?(dn(F ))

and including usual logical axioms for the classical propositional logic. There are no
extra-logical rules of inference. ♦
Example 2.8. (Flags as a HEL) The signature is the same as above.

The equational logic of flags, Leflag , is the HELΣflag
with the following extra-logical

axioms:

up?(up(F )) ≈ true up?(rev(F )) ≈ ¬(up?(F ))
up?(dn(F )) ≈ false

and including the usual logical axioms for Boolean algebra. There are no extra-logical
rules of inference. ♦

As expected, Lbflag and Leflag are equivalent. Precisely,
ϕ1 ↔ ϕ′1, . . . , ϕn ↔ ϕ′n

ψ ↔ ψ′
is a

derivable rule of Lbflag iff
ϕ1 ≈ ϕ′1, . . . , ϕn ≈ ϕ′n

ψ ≈ ψ′
is a derivable rule of Leflag .

Example 2.9. (Stacks of Natural Numbers as a HEL) As in the standard speci-
fication of the logic of stacks, only the natural numbers are visible. Consequently, the
axioms and rules of inference can only reference “numerical behavior” of stacks rather
than the stacks themselves. In particular there can be no axiom or rule involving equal-
ity between stacks. Because of this we get an infinite number of axioms, where in the
standard formalizations, where assertions about the equality of stacks are allowed, the
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axiomatization is finite and on its face conceptually simpler. We have more to say about
this later.

The specification differs from the usual one in another regard. The top of the empty
stack is zero and pushing zero on the empty stack gives the empty stack. This is done
to simplify the specification logic and agrees with what is done in (Goguen and Malcolm
2000).

Consider the hidden signature Σstacks :

SORT = {nat , stack}, with nat the unique visible sort and the following operation
symbols:

empty : → stack top : stack → nat
zero : → nat pop : stack → stack
push : nat , stack → stack s : nat → nat

The specification logic of stacks, Lstacks , is the logic with hidden signature Σstacks and
the following axioms and inference rules:

Extra-logical axioms:

top(popn(empty)) ≈ zero, for all n;

top(push(x, y)) ≈ x;

top(popn+1(push(x, y))) ≈ top(popn(y)), for all n.

Extra-logical inference rule:

s(x) ≈ s(y) → x ≈ y. ♦
Example 2.10. (Sets) This example is the usual specification of sets (see (Bouhoula
and Rusinowitch 2002)). There are three sorts: set, elt and bool , with elt and bool as the
visible sorts. The visible operations are the operations for the Booleans: true, false, ¬,
∧ and ∨. And the hidden operations are the constant empty to represent the empty set;
and ∪, & and neg to represent the set theoretical union, intersection and complement,
respectively. The action of adding an element to a set is represented by add, and in is
the operation symbol used to test whether an element belongs to a set, i.e., in(e,X)
expresses that “e is in X”.

Consider the hidden signature Σsets:

SORT = {set , bool , elt}, with {bool , elt} the set of visible sorts and the following op-
eration symbols:

empty : → set; neg : set → set in : elt, set → bool ;
& : set, set → set; add : elt, set → set.

and the operation symbols for the Boolean part: ¬,∧,∨, true, false.

The extralogical axioms are the axioms of the Boolean algebra and the following ones:

in(n, empty) ≈ false in(n, (∪(x, y))) ≈ in(n, x) ∨ in(n, y)
in(n, neg(x)) ≈ ¬(in(n, x)) in(n, (&(x, y)) ≈ in(n, x) ∧ in(n, y)
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And the extralogical inference rules are:

in(z, x) ≈ in(z, y) → in(z, add(n, x)) ≈ in(z, add(n, y));

m ≈ n → in(z, add(m, x)) ≈ in(z, add(n, x)). ♦
Example 2.11 (Interval Sets). We now give an example of a hidden 3-logic that
formalizes the sets of intervals of an abstract ordered set. The 3-formula 〈x, y, z〉 may be
thought of as the ternary partial ordering relation x ≤ y ≤ z, although there is no formal
representation of the binary relation ≤. A set s is the interval [ n, m ] = {x : n ≤ x ≤ m }
of numbers in the partial ordering, where n,m are respectively the lower bound (lb(s))
and the upper bound (ub(s)) of the interval.
SORT = {set ,num}, where num is the only visible sort.

Operations.

lub, glb :num,num → num,
ub, lb :set → num,
elt-of :set → num,
∪, &:set , set → set .

Axioms.

〈x, x, x〉,
〈glb(x, y), x, lub(x, y)〉,
〈glb(x, y), y, lub(x, y)〉,
〈lb(s), elt-of(s), ub(s)〉,
〈glb(lb(s), lb(t)), elt-of(∪(s, t)), lub(up(s), ub(t)〉,
〈lub(lb(s), lb(t)), elt-of(&(s, t)), glb(up(s), ub(t)〉.

Rules of Inference.
〈x, y, w〉, 〈y, z, w′〉

〈x, y, z〉 ,

〈w, x, y〉, 〈w′, y, z〉
〈x, y, z〉 ,

〈x, z, x′〉, 〈y, z, y′〉
〈lub(x, y), z, glb(x′, y′)〉 . ♦

A theory of a HEL L is also called an L-congruence on the term algebra. For any set
E of equations, the theory of L generated by E, CnL(E), is the smallest L-congruence
that contains the pair 〈t, t′〉 for each equation t ≈ t′ in E.

A visible conditional equation (3) is a quasi-identity of a Σ-algebra A if it is a valid
rule of 〈A, idAVIS〉, or of 〈A, idA〉 if it is of arbitrary sort. Models of the free HELΣ

(the free UHELΣ) of the form 〈A, idAVIS〉 (〈A, idA〉) are called equality models. The class
of all equality models of a HELΣ (or an UHELΣ) L is denoted by Mod=(L). Since
every equality model is uniquely determined by its algebraic reduct, we shall not bother
distinguishing them in the sequel. Thus, for every HELΣ L we identify Mod=(L) with
{A : 〈A, idAVIS〉 ∈ Mod=(L) }, and similarly for the equality models of an UHELΣ.
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2.4. Behavioral equivalence

In hidden equational logic, two hidden data elements of the same sort are behaviorally
equivalent if, roughly speaking, any visible procedure returns the same value when exe-
cuted with either of the two objects as input. The notion arises from the alternative view
of a data structure as a transition system in which the hidden data elements represent
states of the system and the operations (i.e., the methods) that return hidden, as opposed
to visible, elements induce transitions between states.

In the formalism of HEL, the concept of procedure takes the form of a context. For-
mally, a S-context over a hidden signature Σ is a term

ϕ(z :S, u1 :T1, . . . , um :Tm):U (4)

with a distinguished variable z of sort S and parametric variables u1, . . . , um of arbitrary
(visible or hidden) sort. It is a visible context if the sort U of ϕ is visible.

Definition 2.12. Let A be a Σ-algebra and let S be a arbitrary sort. Then, a, a′ ∈ AS

are behaviorally equivalent in A, in symbols a ≡beh
A a′, if for every visible S-context

ϕ(z :S, u1 :T1, . . . , um :Tm) and for all b1 ∈ AT1 , . . . , bm ∈ ATm ,

ϕA(a, b1, . . . , bm) = ϕA(a′, b1, . . . , bm).

Variants of this notion of behavioral equivalence have occurred in the literature. For
example, Goguen and Malcolm (Goguen and Malcolm 2000) restrict the set of contexts
to the ones built from a predefined set of observational operational symbols (see the
Conclusion section for more details).

To generalize the notion of behavioral equivalence to apply to hidden k-logics we first
generalize the notion of context. A (k, S)-context over a hidden signature Σ is a k-term

ϕ̄(z :S, u1 :T1, . . . , um :Tm):U

=
〈
ϕ1(z :S, u1 :T1, . . . , um :Tm), . . . , ϕk(z :S, u1 :T1, . . . , um :Tm)

〉
:U (5)

with a distinguished variable z of sort S and parametric variables u1, . . . , um. It is a
visible context if the sort U of ϕ̄ is visible.

Definition 2.13. Let A = 〈A,F 〉 be a k-data structure over a hidden signature Σ. Two
elements a, a′ of A of arbitrary sort S are said to be behaviorally equivalent in A, in
symbols a ≡beh

A a′, if for every visible (k, S)-context ϕ̄(z :S, u1 :T1, . . . , um :Tm):V and
for all b1 ∈ AT1 , . . . , bm ∈ ATm ,

ϕ̄A(a, b1, . . . , bm) ∈ FV iff ϕ̄A(a′, b1, . . . , bm) ∈ FV . (6)

This notion does indeed generalize behavior equivalence in equational logic, since, as a
consequence of Theorem 2.23 below, we have that a and a′ are behaviorally equivalent
in a Σ-algebra A iff they are behaviorally equivalent in the 2-dimensional equality data
structure 〈A, idAVIS〉 in the sense of Definition 2.13.
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2.5. Leibniz congruence

Behavioral equivalence over a k-data structure turns out to be a congruence relation
on the underlying algebra of the data structure with special properties. In the 1-sorted,
1-data structures (called matrices) that constitute the natural models of sentential logic,
the detailed combinatorial analysis of this congruence constitutes the basis of a branch
of mathematical logic called abstract algebraic logic. Our intention here is to extend this
analysis to the behavioral congruences of arbitrary multi-sorted k-data structures and in
particular to the models of hidden equational logic.

Let A = 〈A,F 〉 be a k-data structure. A congruence relation Θ on A is VIS-compatible
(or simply compatible) with F if for all V ∈ VIS and for all ā, ā′ ∈ Ak

V the following
condition holds.

if ai ≡ a′i(ΘV ) for all i ≤ k then, ā ∈ FV iff ā′ ∈ FV ;

that is, each FV is the union of a cartesian product of ΘV -classes i.e.,

FV =
⋃

ā∈FV

(a1/ΘV )× (a2/ΘV )× · · · × (ak/ΘV ).

Lemma 2.14. Let A = 〈A,F 〉 be a k-data structure. There is a largest congruence
relation on A compatible with F .

Proof. Let Φ and Ψ be two congruences on A compatible with F . The relative product
Φ ◦Ψ, defined for each S ∈ SORT by

(Φ ◦Ψ)S :=
{〈a, b〉 ∈ A2

S : ∃c ∈ AS

(〈a, c〉 ∈ ΦS and 〈c, b〉 ∈ ΨS

)}
,

is also compatible with F . Since the join Φ∨Ψ, in the lattice of congruences, is defined by⋃
i<ω Φ◦i Ψ, where Φ◦0 Ψ = ∆A and Φ◦i+1 Ψ = (Φ◦i Ψ)◦ (Φ◦Ψ), we have that Φ∨Ψ is

also compatible with F . Hence, the set of all congruence relations on A compatible with
F is directed in the sense that, for any pair of congruences compatible with F , there is
a third congruence with the same property that includes both of them. We can conclude
from this that the union of all compatible congruences is again a compatible congruence.
Therefore, the largest congruence compatible with F always exists.

Definition 2.15. Let A = 〈A,F 〉 be a k-data structure. The largest congruence relation
on A compatible with F is called the Leibniz congruence of F on A and is denoted by
ΩA(F ).

The Leibniz congruence plays a central role in abstract algebraic logic when restricted
to single-sorted, k-data structures; see for example (Pigozzi 2001) and (Font et al. 2003).
The term was introduced in (Blok and Pigozzi 1989), but the concept appeared much
earlier. The motivation behind the choice of the term Leibniz will become clear after the
next theorem.

A systematic study of the Leibniz congruence in hidden k-logics can be found in (Mar-
tins 2004) — in particular a proof of the following characterization. In the case of single-
sorted 1-data structures, this result was well known in the literature of sentential logic;
see for example (Blok and Pigozzi 1989).
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Theorem 2.16. Let Σ be a hidden signature and let A = 〈A,F 〉 be a k-data structure
over Σ. Then, ≡beh

A = ΩA(F ), i.e., for every S ∈ SORT and for all a, a′ ∈ AS , a ≡beh
A

a′ iff a ≡ a′ (ΩA(F )S).

Proof. It is easy to see that ≡beh
A is an equivalence relation on A. To see that it is a

congruence relation, let O be an operation symbol of type T1, . . . , Tn → S and suppose
ai ≡beh

A a′i, 1 ≤ i ≤ n. We must show that, for any visible (k, T )-context ϕ̄(z :S, ū:Q̄):V ,
with the designated variable z :S, and for all parameters b̄ ∈ AQ̄, we have

ϕ̄A
(
OA(ā), b̄

) ∈ FV iff ϕ̄A
(
OA(ā′), b̄

) ∈ FV . (7)

Consider any i ≤ n. Using the assumption ai ≡beh
A a′i, and taking xi as the designated

variable, x1, . . . , xi−1, xi+1, . . . , xn, u1, . . . , un as parametric variables, and a1, . . . , ai−1,

a′i+1, . . . , a
′
n, b1, . . . , bm as parameters we have

ϕ̄A
(
OA(a1, . . . , ai−1, ai, a

′
i+1, . . . , a

′
n), b̄

) ∈ FV

iff ϕ̄A
(
OA(a1, . . . , ai−1, a

′
i, a

′
i+1, . . . , a

′
n), b̄

) ∈ FV .

Since this equivalence holds for all i ≤ n, (7) holds, and hence ≡beh
A is a congruence on

A.
To see that ≡beh

A is compatible with F , consider ā, ā′ ∈ Ak
V such that ā

(≡beh
A

)k

V
ā′.

Consider the k-sequence of pairwise distinct variables x̄ = 〈x1 :V, . . . , xk :V 〉 (called a
k-variable, a special k-formula). For each i, 1 ≤ i ≤ k, view x̄ as a (k, V )-context with
designated variable xi and treat a1, . . . , ai−1, a

′
i+1, . . . , a

′
k as parameters. Then from the

assumption ai

(≡beh
A

)
V

a′i we conclude that

〈a1, . . . , ai−1, ai, a
′
i+1, . . . , a

′
n〉 ∈ FV iff 〈a1, . . . , ai−1, a

′
i, a

′
i+1, . . . , a

′
n〉 ∈ FV .

So ā ∈ FV iff ā′ ∈ FV . Thus ≡beh
A is compatible with F .

Finally, we must show that ≡beh
A is the largest congruence on A compatible with F .

Let Θ be any congruence on A that is compatible with F . Assume a ≡ a′ (ΘS). Let
ϕ̄(z :S, ū :Q̄):V be a visible (k, S)-formula with designated variable z :S, and let b̄ ∈ AQ̄

be a system of parameters. By the congruence property, ϕ̄A(a, b̄) ≡ ϕ̄A(a′, b̄)
(
Θk

)
. So by

the compatibility of Θ with F we have ϕ̄A(a, b̄) ∈ FV iff ϕ̄A(a′, b̄) ∈ FV . Thus Θ ⊆ ≡beh
A .

So ≡beh
A is a congruence relation on the whole algebra A. Thus, for any k-data structure

A over the hidden signature Σ, the associated 2-data structure 〈A,≡beh
A 〉 is a model of

the free UHELΣ.
According to Leibniz’s famous criterion, two objects in the universe of discourse are

equal if they share all properties that can be expressed in the language of discourse. In the
universe represented by a k-data structure A = 〈A, F 〉, the condition that two elements
a, a′ of A have the same properties is expressed exactly by the equivalence (6), and hence,
in view of the last theorem, by the equivalence a ≡ΩA(F ) a′. This is the motivation for
the choice of the term Leibniz congruence for ΩA(F ).
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Definition 2.17.

(i) A k-data structure A = 〈A,F 〉 is reduced if two elements are behaviorally equivalent
only if they are equal, i.e. (in view of Theorem 2.16), if ΩA(F ) = idA.

(ii) The class of all reduced models of a hidden k-logic L is denoted by Mod∗(L).

The reduced models of one-sorted k-logics, in particular sentential logics, play an im-
portant role in abstract algebraic logic. For instance, the reduced models of the classical
propositional calculus are exactly the Boolean algebras, which constitute just a small
part of the class of all models.

The reduced models of a hidden k-logic can be obtained by taking the quotient of an ar-
bitrary model by its Leibniz congruence. IfA = 〈A,F 〉 is a k-data structure over Σ, we can
form the quotient structure A/ΩA(F ) = 〈A,F 〉/ΩA(F ) = 〈A/ΩA(F ), F/ΩA(F )〉, where
A/ΩA(F ) is the quotient of A by ΩA(F ), and F/ΩA(F ) = { 〈a1/ΩA(F ), . . . , ak/ΩA(F )〉 :
〈a1, . . . , ak〉 ∈ F }. The quotient A/ΩA(F ) is called the reduction of A and is denoted by
A∗ = 〈A∗, F ∗〉.
A∗ is indeed always reduced. To see this we will need the following technical lemma. But

first we introduce some convenient shorthand notation. Let h : B → A be a mapping
between sets. For every k-sequence b̄ = 〈b1, . . . , bk〉 over B, we write h(b̄) for the k-
sequence 〈h(b1), . . . , h(bk)〉 over A; and for every k-sequence ā = 〈a1, . . . , ak〉 over A,
h−1(ā) denotes the set of all k-sequences over B that map onto ā, i.e, h−1(ā) = { b̄ ∈
Bk : h(b̄) = ā }.
Lemma 2.18. Let A = 〈A,F 〉 be a k-data structure over Σ, and let B be a Σ algebra
and h : B → A a surjective homomorphism (i.e., a homomorphism such that h(BS) = AS

for every sort S of Σ. Then

h−1(ΩA(F )) = ΩB(h−1(F )). (8)

Proof. It is not difficult to see that h−1(ΩA(F )) is a congruence on B. It is an equiv-
alence relation since the inverse image of any equivalence relation is one. To verify the
congruence property, let ϕ(x1 :S1, . . . , xn :Sn):T be a Σ-term, and let bi, b

′
i ∈ BSi such

that bi ≡h−1(ΩA(F )) b′i, for all i, 1 ≤ i ≤ n. Then h(bi) ≡ΩA(F ) h(b′i) for all i, and hence,
since h is a homomorphism and ΩA(F ) is a congruence,

h(ϕB(b1, . . . , bn)) = ϕA(h(b1), . . . , h(bn)) ≡ΩA(F ) ϕA(h(b′1), . . . , h(b′n)) = h(ϕB(b′1, . . . , b
′
n)).

Moreover, h−1(ΩA(F )) is compatible with h−1(F ). To see this suppose b̄ = 〈b1, . . . , bk〉 ∈
h−1(F ) and b̄ ≡ b̄′

(
h−1(ΩA(F )k)

)
. Then h(b̄) ∈ F and h(b̄) ≡ h(b̄′)

(
ΩA(F )k

)
. Thus

h(b̄′) ∈ F , since ΩA(F ) is compatible with F , and hence b̄′ ∈ h−1(ΩA(F )).

So h−1(ΩA(F )) ⊆ ΩB(h−1(F )), by definition of the Leibniz congruence. To prove
the reciprocal inclusion, it suffices to prove that h(ΩB(h−1(F ))) ⊆ ΩA(F ). For if this
inclusion holds, then ΩB(h−1(F )) ⊆ h−1h(ΩB(h−1(F ))) ⊆ h−1(ΩA(F )). Let Θ be the
congruence generated by h(ΩB(h−1(F ))). Since h is surjective, Θ is the transitive closure
of h(ΩB(h−1(F ))). Hence it is enough to prove that h(ΩB(h−1(F ))) is compatible with
F .

Let ā, ā′ ∈ Ak
S such that ā ∈ FS and ā ≡ ā′

(
h(ΩB(h−1(F ))k

S

)
. Let b̄, b̄′ ∈ Bk

S such
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that b̄ ≡ b̄′
(
ΩB(h−1(F ))k

S

)
and h(b̄) = ā and h(b̄′) = ā′ Then b̄ ∈ h−1(FS). Hence

b̄′ ∈ h−1(FS) since ΩB(h−1(F )) is compatible with h−1(F ). So ā′ ∈ FS .

Theorem 2.19. The reduction of any k-data structure is reduced.

Proof. Let 〈A,F 〉 be a k-data structure. Let h : A → A/ΩA(F ) be the natural homo-
morphism and note that ΩA(F ) is the kernel of h. By Lemma 2.18, h−1

(
ΩA/ΩA(F )(F/ΩA(F ))

)
=

ΩA

(
h−1(F/ΩA(F ))

)
= ΩA(F ). So Ω

(
F/ΩA(F )

)
is the identity congruence on A/ΩA(F ).

As a corollary we have that, if A is reduced, then A∗ is isomorphic to A, and, up to
isomorphism, Mod∗(L) = {A∗ : A ∈ Mod(L) }.

In the next theorem we see that Mod∗(L) forms a complete set of models of L. This
is a consequence of a more general result that proves useful in other contexts.

Definition 2.20. Let A = 〈A,F 〉 and B = 〈B, G〉 be k-data structures over the same
hidden signature Σ. B is said to be a strict homomorphic image of A, in symbols A < B,
if there exists a surjective homomorphism h:A → B of algebras such that h−1(G) = F .

Theorem 2.21. Let A = 〈A,F 〉 and B = 〈B,G〉 be two k-data structures. If A < B,
then ²A = ²B, i.e., for any set Γ ∪ {ϕ̄} of visible k-formulas, we have Γ ²A ϕ̄ iff Γ ²B ϕ̄.

Proof. Let h :A → B be a strict homomorphism. Since h−1(G) = F , we have that, for
every visible k-formula ψ̄(x̄ :S̄),

for all ā ∈ AS̄ , ψ̄A(ā) ∈ F iff ψ̄B(h(ā)) = h
(
ψ̄A(ā)

) ∈ G.

Then, letting S̄ be the list of all variables occurring in Γ ∪ {ϕ̄}, we have that, for all
ā ∈ AS̄ ,
(∀ γ̄ ∈ Γ (γ̄A(ā) ∈ F )

)
=⇒ ϕ̄A(ā) ∈ F iff

(∀ γ̄ ∈ Γ (γ̄B(h(ā)) ∈ G
)

=⇒ ϕ̄B(h(ā)) ∈ G.

Since h is surjective, h(ā) ranges over all b̄ ∈ BS̄ as ā ranges over all of AS̄ . Thus
Γ ²A ϕ̄ iff Γ ²B ϕ̄.

As in the case of Theorem 2.5, the following theorem, and the completeness theorem
for hidden equational logic given below (Theorem 2.25), are valid in general only under
the assumption that all sort domains of all models are nonempty.

Theorem 2.22 (Reduced Completeness of Hidden k-logics). For any hidden k-
logic L,

`L = ²Mod∗(L),

i.e., for every set of k-formulas Γ and any k-formula ϕ̄, Γ `L ϕ̄ iff Γ ²Mod∗(L) ϕ̄.

Proof. In view the Completeness Theorem (2.5) and the fact that, by Theorem 2.19,
Mod∗(L) = {A∗ : A ∈ Mod(L) }, it suffices to prove that, for any k-data structure
A = 〈A,F 〉, ²A = ²A∗ . Thus, by Theorem 2.21, it suffices to show that A∗ is a strict
homomorphic image of A.

Let h :A → A∗ be the natural homomorphism. We must show h−1(F ∗) = F , so suppose
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ā ∈ A and h(ā) ∈ F ∗ = F/ΩA(F ). This means that ā ≡ ā′ (ΩA(F )k) for some ā′ ∈ F .
Thus, since ΩA(F ) is compatible with F , ā ∈ F .

When applied to hidden equational logics, Theorem 2.16 takes a more natural form in
terms of 1-dimensional contexts as we now see.

Theorem 2.23. Let Σ be an hidden signature and let A = 〈A,F 〉 be a model of the free
HELΣ, i.e., F is a VIS-congruence on A. Then, for every S ∈ SORT and all a, a′ ∈ AS ,
a ≡Ω(F )S

a′ iff, for every visible S-context ϕ(z :S, u1 :Q1, . . . , um :Qm):V and for all
b1 ∈ AQ1 , . . . , bm ∈ AQm

,

ϕA(a, b1, . . . , bm) ≡ ϕA(a′, b1, . . . , bm) mod FV . (9)

Proof. By Theorem 2.16, a ≡Ω(F )S
a′ iff, for every (2,S)-context 〈ϕ(z :S, ū:Q̄), ψ(z :S,

ū :Q̄)〉 of sort V , and every b̄ ∈ AQ̄,

ϕA(a, b̄) ≡ ψA(a, b̄) mod FV iff ϕA(a′, b̄) ≡ ψA(a′, b̄) mod FV . (10)

Suppose (9) holds for every S context ϕ(z, ū) and every b̄ ∈ AQ̄. If ϕA(a, b̄) ≡FV ψA(a, b̄),
then

ϕA(a′, b̄) ≡ ϕA(a, b̄) ≡ ψA(a, b̄) ≡ ψA(a′, b̄) mod FV

(the first and third equivalences hold because F is a VIS-congruence). Thus (10) holds
for every pair of S-contexts and every sequence of parameters b̄, i.e., a ≡Ω(F )V

a′.
Conversely, assume a ≡Ω(F )V

a′. Let ϕ(z :S, ū:Q̄):V be an arbitrary visible S-context,
where ū:Q̄ = 〈u1 :Q1, . . . , um :Qm〉. Let un+1 be a new parametric variable of sort V ; the
single term un+1 can be viewed as a visible S-context with designated variable z (which
does not actually occur) and parametric variables ū+ := 〈u1, . . . , un, un+1〉. ϕ can also be
viewed as an S-context with the same parametric variables. Let 〈b1, . . . , bn〉 be any system
of parameters of sort Q̄, and extend it to a system b̄+ := 〈b1, . . . , bn+1〉, where bn+1 =
ϕA(a, b̄). Thus ϕA(a, b̄+) = bn+1 = uA

n+1(a, b̄+). So by (10), ϕA(a′, b̄+) ≡FV uA
n+1(a

′, b̄+).
But uA

n+1(a
′, b̄+) also equals bn+1. So ϕA(a, b̄) ≡FV ϕA(a′, b̄). Thus (9) holds for every S

context ϕ(z, ū) and every b̄ ∈ AQ̄.

Applying this result to equality models, we get that a and a′ are behaviorally equivalent
in the sense of Definition 2.12 iff a ≡ a′

(
ΩA(idAVIS)

)
; hence behavioral equivalence over

k-data structures does indeed generalize the familiar notion of behavioral equivalence
over a sorted algebra. This result was obtained independently by Goguen and Malcolm
(Goguen and Malcolm 2000).

For hidden equational logics the Leibniz relation has the following useful property; this
also can be found in (Goguen and Malcolm 1999; Goguen and Malcolm 2000) for the case
of equality models.

Corollary 2.24. Let A = 〈A, F 〉 be a model of the free HELΣ. Then ΩA(F ) is the
largest congruence in A whose visible part is F .

Proof. Suppose a ≡ a′
(
ΩA(F )V

)
with V ∈ VIS. Let z be a variable of sort V . Then z

is a visible V -context and hence a = zA(a) ≡ zA(a′) = a′ mod FV . Thus ΩA(F )VIS ⊆ F .
Conversely, assume a ≡ a′ mod FV . Then for every V -context ϕ(z, ū) and every choice
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of parameters b̄ ∈ AQ̄, we have ϕA(a, b̄) ≡ ϕA(a′, b̄) mod FV . Thus a ≡ a′ (ΩA(F )V )
and hence ΩA(F )VIS = F . If Θ is any other congruence on A such that ΘVIS = F , then
Θ is compatible with F , and hence Θ ⊆ ΩA(F ).

As a special case we have that ΩA(idAVIS)VIS = idAVIS , i.e., two visible elements of a
Σ-algebra are behaviorally equivalent only if they are equal.

The following completeness theorem for hidden and unrestricted equational logic is
special case of Theorems 2.5 and 2.22. Recall that Mod=(L) is the set of all equality
models of a HEL or UHEL L.

Theorem 2.25 (Completeness Theorem for Equational Logic). Let L be a HELΣ

or a UHELΣ. Then the following are equivalent for every visible conditional equation ξ

in the HEL case and every arbitrary conditional equation ξ in the UHEL case.

(i) ξ is a derivable rule of L;
(ii) ξ is a valid rule of Mod(L);
(iii) ξ is a quasi-identity of Mod=(L);
(iv) ξ is a quasi-identity of Mod∗(L).

In particular, a visible or unrestricted equation ψ is a theorem of L iff it is a validity
of Mod(L) iff it is an identity of Mod=(L) iff it is an identity of Mod∗(L).

Proof. The equivalence of items (i), (ii), and (iv) follows immediately from Theo-
rem 2.5. The equivalence of these with (iii) is an immediate consequence of the fact that
Mod∗(L) ⊆ Mod=(L) which follows from Corollary 2.24.

As in the case of the completeness theorems for hidden k-logic, this theorem is valid in
general only under the assumption that all sort domains of models are nonempty. If this
restriction is lifted, then a more complex formalization of equational logic is required;
see for example (Ehrig and Mahr 1985). For single-sorted equational logics the theorem
is well known; see for example (Gorbunov 1998).

It is commonplace in the literature of hidden equational logic to restrict attention
exclusively to equality models that are not necessarily reduced; see for instance (Goguen
and Malcolm 2000). The completeness theorem shows that this is justified.

3. Behavioral Reasoning

The concept of a behaviorally valid consequence (Definition 3.1 below) was introduced
in order to reason effectively about behavioral equivalence. It has been a useful device
for importing the techniques and intuitions of transition systems into the equational
paradigm. In the present context it takes the form of an un-hidden and normally non-
specifiable HEL associated with every k-logic. The basis of behaviorally valid consequence
proof theory has been coinduction, in some form, in combination with ordinary equational
deduction.

The behavioral validity for equations and conditional equations was introduced by
Reichel in 1984 (Reichel 1985). These notions and their proof theory have been studied
by a number of researchers: Goguen, Malcolm and Roşu (Goguen and Malcolm 1999;
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Goguen and Malcolm 2000; Roşu and Goguen 2000; Roşu 2000; Roşu and Goguen 2001);
Bidoit and Hennicker (Bidoit and Hennicker 1996; Hennicker 1997); Leavens and Pigozzi
(Leavens and Pigozzi 2002).We concentrate here on the behavioral validity of conditional
equations and the methods by which this validity can be established. Following the
abstract algebraic logic approach, we take as the basis for our investigations Leibniz
congruences on the term algebra and their combinatorial properties.

Our particular characterization of behavioral validity of a conditional equation is given
in Theorem 3.4. The use of un-hidden equational logic in verifying behavioral validity
of conditional equations is addressed in Theorem 3.10. As a corollary we get that the
set of all behaviorally valid conditional equations is closed under un-hidden equational
deduction (Corollary 3.13).

In the last part of the section we consider the important problem of determining when
a HEL L has specifiable behavior, i.e, when there exists a set of axioms and rules in the
form of equations and conditional equations respectively such that an equation t ≈ s

(of arbitrary sort) is a behaviorally valid consequence of a set E of equations iff t ≈ s

is derivable from E in standard equational using the given axioms and rules. Several
characterizations of this property are obtained. Possibly the most interesting deals with
the notion of a cobasis. This concept, introduced in (Roşu and Goguen 2001), has served
as the principal method of partially verifying the behavioral validity of hidden equations
in a large class of HEL’s. We show that the behavior of a HEL is specifiable just in case
it has a cobasis of a very special kind (Theorem 3.20).

The definition of a behaviorally specifiable HEL is given in Definition 3.14. In Theo-
rem 3.19 those HEL’s that are behaviorally specifiable are characterized in terms of the
consequence of the HEL. As a consequence, in Theorem 3.22 we obtain for behaviorally
specifiable HEL’s a characterization of behaviorally valid conditional equations.

Definition 3.1. Let K be a class of k-data structure over the hidden signature Σ.

(i) An equation t ≈ t′ of arbitrary sort is said to be a behaviorally valid consequence of a
set E of equations (of arbitrary sorts) over K, in symbols E ²beh

K t ≈ t′, if, for every
A ∈ K and every assignment h : X → A, h(t) ≡beh

A h(t′) whenever h(s) ≡beh
A h(s′)

for every equation s ≈ s′ in E.
(ii) An equation t ≈ t′ is behaviorally valid over K if ²beh

K t ≈ t′, and a conditional
equation t0 ≈ t′0, . . . , tn−1 ≈ t′n−1 → tn ≈ t′n is behaviorally valid over K if {t0 ≈
t′0, . . . , tn−1 ≈ t′n−1} ²beh

K tn ≈ t′n.

We write ²beh
A for ²beh

{A}.

By Theorem 2.16 the behavioral equivalence relation over a k-data structure A =
〈A,F 〉 coincides with the Leibniz congruence ΩA(F ). So the 2-data structure 〈A,≡beh

A 〉
is a model of the free UHELΣ. Moreover, ²beh

K coincides with the valid consequence
relation ²K′ (Definition 2.3), where K ′ = { 〈A, ΩA(F )〉 : 〈A, F 〉 ∈ K }. So 〈Σ, ²beh

K 〉 is
an UHELΣ. In this way we can associate a generally un-specifiable UHEL with every
hidden k-logic L by taking the behavioral consequence relation determined by the class
of models of L.

Definition 3.2. Let L be a hidden k-logic over a hidden signature Σ.
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(i) An equation t ≈ t′ is said to be a behaviorally valid consequence of a set E of
equations over L, in symbols E ²beh

L t ≈ t′, if E ²beh
Mod(L) t ≈ t′.

(ii) An equation or conditional equation is behaviorally valid over L if it is behaviorally
valid over Mod(L).

One of the central problems of hidden k-logic is specifying in some effective way the
behavioral validities of a given L. This can sometimes be facilitated by isolating a subclass
K of Mod(L) with special properties such that is behaviorally complete for L in the sense
that ≡beh

L = ≡beh
K . A Lindenbaum model of L (the term comes from abstract algebraic

logic) is a model whose underlying algebra is the term algebra, i.e., a model of the form
〈TeΣ, T 〉 (so T is a theory of L). In the sequel, the Leibniz congruence over a theory T on
TeΣ will be denoted by Ω(T ) instead of ΩTeΣ(T ). To show that the Lindenbaum models
are behaviorally complete for L we require the following technical lemma.

A k-data structure B = 〈B,G〉 is a substructure of a k-data structure A = 〈A,F 〉 over
the hidden signature Σ if B is a subalgebra of A and G = F ∩ Bk, that is, the sorted
intersection of F = 〈FS : S ∈ SORT 〉 and Bk = 〈Bk

S : S ∈ SORT 〉. It is easy to see
that B ∈ Mod(L) whenever A ∈ Mod(L). It is also easy to see that the inverse image of
a model under an algebra homomorphism is also a model. More precisely, if L ∈ Mod(L)
and h :B → A is a homomorphism of algebras, then 〈B, h−1(F )〉 ∈ Mod(L). In particular,
σ−1(T ) is a theory of L for every theory T and every substitution σ :X → TeΣ. This fact
is used in the proof of Corollary 3.6 below.

Lemma 3.3. Let A = 〈A,F 〉 be an arbitrary k-data structure over a hidden signature
Σ. Let t ≈ t′ be any equation and E any set of equations (all of arbitrary sort). If
E ²beh

B t ≈ t′ for every locally countable substructure B of A, then E ²beh
A t ≈ t′.

In particular, if a conditional equation is behaviorally valid in every locally countable
substructure of A, then it is behaviorally valid in A.

Proof. Assume E 6²beh
A t ≈ t′. Then there is an assignment g : X → A such that

g(s) ≡beh
A g(s′) for all s ≈ s′ in E, but g(t) 6≡beh

A g(t′). Let S be the common sort of t

and t′. Then by the definition of behavioral equivalence there is a visible (k, S)-context
ϕ̄(z :S, ū :T̄ ):U , with ū:T̄ = 〈u1 :T1, . . . , um :Tm〉 and b̄ ∈ AT1 × · · · × ATm such that
ϕ̄A(g(t), b̄) ∈ FU and ϕ̄A(g(t′), b̄) /∈ FU or vise-versa.

Let B = 〈B, F ∩ Bk〉 be the subalgebra of A generated by g(X) ∪ b̄; B is locally
countable since X is locally countable and b̄ is finite. Then g(t), g(t′) ∈ B for all t ≈ t′

in E, and ϕ̄B(g(t), b̄) = ϕ̄A(g(t), b̄) ∈ F ∩ Bk and ϕ̄A(g(t′), b̄) = ϕ̄B(g(t′), b̄) /∈ F ∩ Bk,
or vise-versa. So g(t) 6≡beh

B g(t′).
On the other hand, for each s:S ≈ s′ :S in E, g(s), g(s′) ∈ B and hence, for every visible

(k, S)-context ψ̄(z :S, ū:Ū):W and all c̄ ∈ BŪ , we have ψ̄B(g(s), c̄) = ψ̄A(g(s), c̄) ∈ F∩Bk

iff ψ̄B(g(s′), c̄) = ψ̄A(g(s′), c̄) ∈ F ∩Bk. So g(s) ≡beh
B g(s′) for each s ≈ s′ in E.

Thus E 6²beh
B t ≈ t′

The following theorem may be viewed of as a form of coinduction for conditional
equations. It gives a characterization, in terms of combinatorial properties of Leibniz
congruences on the term algebra, for a conditional equation to be behaviorally valid in
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a given hidden k-logic. It should be compared with the coinduction rule in (Roşu and
Goguen 2000) for verifying the behavioral validity of equations in HEL’s.

Theorem 3.4. Let L be a hidden k-logic. Then the Lindenbaum models of L are be-
haviorally complete for L. More precisely:

(i) Let t ≈ t′ be an equation and E a set of equations (all of arbitrary sort). Then
E ²beh

L t ≈ t′ iff

∀T ∈ Th(L)
((∀ (s ≈ s′ ∈ E) (s ≡Ω(T ) s′)

) ⇒ t ≡Ω(T ) t′
)
. (11)

(ii) A conditional equation

t0 ≈ t′0, . . . , tn−1 ≈ t′n−1 → tn ≈ t′n. (12)

is behaviorally valid over L iff

∀T ∈ Th(L)
((∀ i < n (ti ≡Ω(T ) t′i)

) ⇒ tn ≡Ω(T ) t′n
)
.

Proof. (i): Assume E ²beh
L t ≈ t′. Let T ∈ Th(L) such that s ≡Ω(T ) s′ for all s ≈ s′

in E. Let A = 〈TeΣ, T 〉; A ∈ Mod(L) by definition of theory. Thus s ≡beh
A s′ for all s ≈ s′

in E by Theorem 2.16. It follows that t ≡beh
A t′ by the assumption E ²beh

L t ≈ t′. So the
condition (11) holds

Conversely, assume (11) holds. By Lemma 3.3(ii) it suffices to show that E ²beh
A t ≈ t′

for every locally countable model of L.
Without loss of generality we assume that, for each sort S there are a countable number

of variables of sort S that are not contained in t ≈ t′ or in any of the equations in E;
if this were not the case, then by replacing variables uniformly on a one-to-one basis we
can obtain t̂ ≈ t̂′ and Ê = { ŝ ≈ ŝ′ : (s ≈ s′) ∈ E } with this property and such that
Ê ²beh

L t̂ ≈ t̂′ iff E ²beh
L t ≈ t′.

Let A = 〈A,F 〉 ∈ Mod(L) be locally countable, and let h : X → A be an arbitrary
assignment such that h(s) and h(s′) are behaviorally equivalent in A, i.e., h(s) ≡ΩA(F )

h(s′), for every s ≈ s′ in E. If h (more precisely, its unique extension h∗ : TeΣ → A) is
not surjective, it is clear that it can be replaced by an assignment that is surjective and
such that t and t′ take the same value, and also s and s′ take the same value for each
s ≈ s′ in E. (This uses the assumption that for each sort S there are a countable number
of variables of sort S that are not contained in t ≈ t′ or in any of the equations in E.)
Thus we may assume h itself is surjective without loss of generality.

Let T = h−1(F ). Then T is a theory of L and, by Lemma 2.18, ΩTeΣ(T ) = h−1(ΩA(F )).
Thus, s ≡Ω(T ) s′ for each s ≈ s′ in E. So by hypothesis, t ≡Ω(T ) t′. Hence, h(t) ≡Ω(F )

h(t′), by Lemma 2.18.

(ii) is an immediate consequence of part (i).

In application to hidden equational logic, this result takes a simpler form, but this
requires the notion of an extension of a k-logic by additional axioms and rules of inference.

Definition 3.5. Let L be a HELΣ and E a set of equations and conditional equations
of arbitrary, possibly un-hidden, sort. We define Luh[E] as the natural extension of L by
E to a UHEL over the same signature.



Behavioral Reasoning for Conditional Equations 25

If L is specifiable, Luh[E] is the specifiable UHEL whose extra-logical axioms and
inference rules are obtained by adjoining E to those of L. For an arbitrary L, Luh[E] is
the UHEL whose theories are the congruence relations Θ on the entire term algebra TeΣ

such that

• ΘVIS ∈ Th(L);
• Θ is closed under the equations and conditional equations of E in the following sense.

For every equation t ≈ t′ ∈ E and substitution σ :X → TeΣ, σ(t) ≈ σ(t′) ∈ Θ, and
for every conditional equation t0 ≈ t′0, . . . , tn−1 ≈ t′n−1 → tn ≈ t′n in E and every
σ :X → TeΣ, if h(ti) ≈ σ(t′i) ∈ Θ for all i < n, then σ(tn) ≈ σ(t′n) ∈ Θ.

Luh is the extension of L to a UHEL with no additional axioms and rules of inference; its
theories are the congruences on TeΣ whose visible part is a theory of L. If E is a set of
visible equations and conditional equations, then L[E] is the HEL obtained by adjoining
E as new axioms and rules of inference.

For each theory T of L we have Ω(T )VIS = T by Corollary 2.24. Thus Ω(T ) ∈ Th(Luh).
More generally, it follows easily from Corollary 2.24 that, if 〈A,F 〉 ∈ Mod(L), then
〈A,Ω(F )〉 ∈ Mod(Luh).

Corollary 3.6. Let L be a HEL, and let E be a set of equations and conditional equa-
tions of arbitrary type. Then every equation and conditional equation in E is behaviorally
valid over L iff for every T ∈ Th(L), Ω(T ) ∈ Th(Luh[E]).

Proof. Assume each conditional equation of E is behaviorally valid over L. (For sim-
plicity we treat equations as conditional equations with an empty set of antecedents.)
Let T ∈ Th(L). As we have previously observed, Ω(T ) ∈ Th(Luh). Thus to show
Ω(T ) ∈ Th(Luh[E]) it suffices to show that Ω(T ) is closed under each conditional equa-
tion in E. Let ξ ∈ E be of the form (12) and let σ : X → TeΣ be a substitution such that,
for all i < n, σ(ti) ≡ σ(t′i)

(
Ω(T )

)
, i.e., ti ≡ t′i

(
σ−1(Ω(T ))

)
. Assume for the time being

that σ is surjective (as an endomorphism of the term algebra). Then, for each i < n,
ti ≡ t′i

(
Ω(σ−1(T ))

)
by Lemma 2.18. Thus, since σ−1(T ) ∈ Th(L) and ξ is behaviorally

valid over L by assumption, we have by Theorem 3.4 that tn ≡ t′n
(
σ−1(Ω(T ))

)
, i.e.,

σ(tn) ≡ σ(t′n)
(
Ω(T )

)
.

Suppose now that σ is not surjective. Let τ : X → TeΣ be a surjective substitution
such that τ(x) = σ(x) for each variable occurring in ξ; this is possible since there are only
finitely many of these variables. Then τ(ti) ≡ τ(t′i)

(
Ω(T )

)
for each i < n, since τ(ti) =

σ(ti) and τ(t′i) = σ(t′i). So by the first part of the proof, σ(tn) = τ(tn) ≡Ω(T ) τ(t′n) =
τ(tn). Thus Ω(T ) is closed under ξ for every ξ ∈ E, and hence Ω(T ) ∈ Th(Luh[E]).

For the implication in the other direction, assume Ω(T ) ∈ Th(Luh[E]) for each T ∈
Th(L). Let T ∈ Th(L), and let ξ be a conditional equation in E of the form (12). Suppose
that, for all i < n, ti ≡ t′i

(
Ω(T )

)
. Then tn ≡ t′n

(
Ω(T )

)
since Ω(T ) ∈ Th

(Luh[E]
)

by
assumption. So ξ is behaviorally valid over L by Theorem 3.4.

As a special case of this result we have that an equation t ≈ t′ is behaviorally valid
over L iff t ≡ t′

(
Ω(Thm(L)

)
.

In the following corollaries we give two simpler characterizations for conditional equa-
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tions of a special kind to be behaviorally valid in a HEL L; in the first case the antecedents
are all visible and in the second it is the consequent that is visible.

If the antecedents of the conditional equation (12) are all visible then condition (ii)
of Theorem 3.4 can be simplified since, in this case, ti ≡ t′i

(
Ω(T )

)
iff ti ≡ t′i (T ) by

Corollary 2.24. Thus we get the following result. Recall that, for any set of E equations,
CnL(E) is the intersection of all theories of L that include E.

Corollary 3.7. Let L be a HEL. A conditional equation (12) with visible antecedents
is behaviorally valid over L iff tn ≡ t′n

(
Ω(CnL{ ti ≈ t′i : i < n })).

Furthermore, if the antecedents of the conditional equation are visible ground terms,
then condition (ii) of Theorem 3.4 can be written in the form

tn ≡ t′n
(
Ω(Thm(L[{ ti ≈ t′i : i < n }]))). (13)

For this it is enough to note that CnL{ ti ≈ t′i : i ≤ n} is the set of all theorems of the
HEL L[{ ti ≈ t′i : i < n }]. This result can be found in (Roşu 2000), where it is called the
Deduction Theorem.

If the consequent tn ≈ t′n of the conditional equation (12) is visible, then the charac-
terization of behavioral validity given in Theorem 3.4 can be simplified in the following
way.

Corollary 3.8. Let L be a HEL. A conditional equation (12) with a visible consequent
is behaviorally valid over L iff

tn ≡ t′n
(
CnL(

⋃
i<n{ϕ(ti, x̄) ≈ ϕ(t′i, x̄) : ϕ an appropriate context for ti, t

′
i })

)
.

Proof. Let

G = CnL(
⋃

i<n{ϕ(ti, x̄) ≈ ϕ(t′i, x̄) : ϕ an appropriate context for ti, t
′
i }).

Assume (12) is not behaviorally valid over L. Then by Theorem 3.4 there is a theory
T of L such that

ti ≡ t′i (Ω(T )), for all i < n, and tn 6≡ t′n (Ω(T )). (14)

From the first condition we conclude by Theorem 2.23 that ϕ(ti, x̄) ≡ ϕ(t′i, x̄) (T ) for
each i < n, and hence, by definition of G, that G ⊆ T . Since tn, t′n are visible, from the
second condition of (14) we conclude that tn 6≡ t′n (T ). So tn 6≡ t′n (G).

Assume now that (12) is behaviorally valid over L. G ∈ Th(L) and, by definition of
G, ti ≡ t′i (Ω(G)). Hence, by Theorem 3.4, we get that tn ≡ t′n (Ω(G)). Thus tn ≡ t′n (G)
since tn, t′n are visible.

The next corollary states another straightforward consequence of Theorem 3.4, the
theorems of the UHEL-expansion Luh of L are all behaviorally valid over L, and, what
is more interesting, the same is true for any extension of Luh obtained by adjoining a
behaviorally valid conditional equation as a new inference rule.

Corollary 3.9. Let L be a HELΣ, and let ξ be a conditional equation (of arbitrary sort)
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which is behaviorally valid over L. Then for every Σ-equation s ≈ s′ (of arbitrary sort),
`Luh[ξ] s ≈ s′ implies that s ≈ s′ is behaviorally valid over L.

Proof. We want to show that s ≡ s′
(
Thm(Luh[ξ])

)
implies s ≡ s′

(
Ω(Thm(L)

)
. But

Thm(Luh[ξ]) ⊆ Ω(Thm(L)) because Ω(Thm(L)) is a theory of Luh, and hence also a
theory of Luh[ξ] since, by Theorem 3.4 , it is closed under ξ as an inference rule.

3.1. Closure of behavioral validity under equational consequence

Intuitively, since the terms of a behaviorally valid equation have exactly the same visible
properties, adjoining it as a new axiom should not result in the provability of any new
visible equations. And it was shown (Leavens and Pigozzi 2002, Theorem 3.18) that, not
only is this indeed the case, but the property serves to actually characterize behaviorally
valid equations. In the next theorem this result is generalized in a natural way to con-
ditional equations. This gives another characterization of the conditional equations that
are behaviorally valid over a given HEL entirely by means of standard equational logic,
and it can be viewed as an alternative form of coinduction for conditional equations.

Theorem 3.10. Let L be a HEL, and let E be a set of (unrestricted) conditional equa-
tions. Then every rule in E is behaviorally valid over L iff every conditional equation
with visible consequent that is a derivable rule of Luh[E] is already a derivable rule of
Luh, i.e., for every conditional equation s0 ≈ s′0, . . . , sm−1 ≈ s′m−1 → sm ≈ s′m with a
visible consequent,

{s0 ≈ s′0, . . . , sm−1 ≈ s′m−1} `Luh[E] sm ≈ s′m
implies {s0 ≈ s′0, . . . , sm−1 ≈ s′m−1} `Luh sm ≈ s′m. (15)

Proof. Assume that each rule in E is behaviorally valid over L. Assume in addition
that

{s0 ≈ s′0, . . . , sm−1 ≈ s′m−1} `Luh[E] sm ≈ s′m (16)

with sm ≈ s′m visible. Let G be any theory of Luh such that si ≡ s′i (G) for all i < m.
GVIS is a theory of L and Ω(GVIS) is a theory of Luh[E] by Corollary 3.6, and since
G ⊆ Ω(GVIS), we have that si ≡ s′i (Ω(GVIS)) for each i < m. So by the assumption
(16), sm ≡ s′m (Ω(GVIS)). But then sm ≡ s′m (GVIS) since sm ≈ s′m is visible. Thus
{s0 ≈ s′0, . . . , sm−1 ≈ s′m−1} `Luh sm ≈ s′m. This verifies (15).

Assume now that (15) holds for every conditional equation s0 ≈ s′0, . . . , sm−1 ≈
s′m−1 → sm ≈ s′m with visible consequent. By Corollary 3.6 it suffices to show that

Ω
(
Th(L)

) ⊆ Th(Luh[E]). (17)

Suppose T ∈ Th(L), and let G = CnLuh[E]

(
Ω(T )

)
, the Luh[E]-theory generated by Ω(T ).

We claim that GVIS = T . To see the inclusion from left to right, assume s, s′ are visible
terms such that s ≡ s′ (G). Since G is generated as a Luh[E]-theory by Ω(T ), there
are equations s0 ≈ s′0, . . . , sm−1 ≈ sm−1 such that si ≡ s′i

(
Ω(T )

)
, for i < m, and

{s0 ≈ s′0, . . . , sm−1 ≈ s′m−1} `Luh[E] s ≈ s′. Thus, by assumption, {s0 ≈ s′0, . . . , sm−1 ≈
s′m−1} `Luh s ≈ s′. Hence s ≡ s′

(
Ω(T )

)
, since Ω(T ) is a Luh-theory as previously
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observed. But s ≈ s′ is visible, so s ≡ s′ (T ). Thus GVIS ⊆ T . Since the opposite
inclusion is obvious, we have verified the claim. Then Ω(T ) = Ω(GVIS) ⊇ G; but obviously
Ω(T ) ⊆ G. So Ω(T ) = G ∈ Th

(Luh[E]
)
. Hence (17) holds and thus every rule in E is

behaviorally valid over L by Corollary 3.6.

Considering the analogous characterization of behavioral validity of equations (see
(Leavens and Pigozzi 2002)), one might expect to be able to characterize the behavioral
equivalence of the set E of conditional equations by the condition that any completely
visible conditional equation that is a derivable rule of Luh[E] is already a derivable rule of
Luh, i.e., by the weaker version of (15) where the antecedents s0 ≈ s′0, . . . , sm−1 ≈ s′m−1

are all required to be visible. However, the following counterexample shows that the
condition (15) in its full strength is necessary.

Consider the Flags example and the conditional equation

rev(rev(F )) ≈ F → dn(F ) ≈ F. (18)

On one hand, since rev(rev(F )) ≈ F is behaviorally valid while dn(F ) ≈ F is not, this
is not a behaviorally valid conditional equation. On the other hand, the weaker version
of (15), where the conditional equations are restricted to be visible, holds. This follows
from the easily verified fact that no substitution instance of rev(rev(F )) ≈ F can be
deduced from a visible set of equations; this implies that in deducing a visible equation
from a set of visible equations, the inference rule (18) can never be applied.

Note that if the set of derivable (visible) conditional equations of L is recursive, then
the set of behaviorally valid conditional equations over L is co-RE. This gives:

Corollary 3.11. Let L be a HEL. If the set of derivable rules of L is recursively enu-
merable (RE) then the set of behaviorally valid conditional equations over L is at level∏0

2 in the arithmetical hierarchy.

It is shown in (Buss and Roşu 2000) that there are HEL’s with a finite presentation
for which the set of behavioral valid equations is

∏0
2-complete.

The following obvious consequence of Theorem 3.10 shows that the converse of Corol-
lary 3.9 holds for visible equations.

Corollary 3.12. Let L be a HEL and let ξ be a behaviorally valid conditional equation
over L. Then, for every s, s′ ∈ (TeΣ)VIS,

`Luh[ξ] s ≈ s′ iff `L s ≈ s′. (19)

In the final result of this subsection we show that the set E of all conditional equations
that are behaviorally valid over a HEL L is closed under equational consequence in the
sense that any conditional equation that is a derivable rule of Luh[E] is already a member
of E.

Corollary 3.13. Let L be a HEL and let E be the set of all conditional equations that
are behaviorally valid over L. Then any conditional equation that is a derivable rule of
Luh[E] is itself behaviorally valid over L and hence a member of E.
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Proof. Let ξ be a conditional equation that is a derivable rule of Luh[E]. Clearly then

`Luh[ξ] ⊆ `Luh[E] . (20)

Then, applying Theorem 3.10, we get that ξ is behaviorally valid. In fact, let s0 ≈
s′0, . . . , sm−1 ≈ s′m−1 → sm ≈ s′m be any conditional equation with visible consequent,
and suppose that {s0 ≈ s′0, . . . , sm−1 ≈ s′m−1} `Luh[ξ] sm ≈ s′m. Then, by (20), {s0 ≈
s′0, . . . , sm−1 ≈ sm−1} `Luh[E] sm ≈ s′m. Hence, applying Theorem 3.10 we get {s0 ≈
s′0, . . . , sm−1 ≈ sm−1} `L sm ≈ s′m. Applying the theorem again, this time in the other
direction and with {ξ} in place of E, we conclude that ξ is behaviorally valid over L.

This result can lead to a greatly simplified specification of a HEL L by allowing hidden
equations and conditional equations in the specification. But one must first verify that the
new hidden axioms and rules are behaviorally valid over L (with its original specification).
Because only then can one be assured, by Corollary 3.13, that the new specification is
sound in the sense that it does not lead to behaviorally invalid conditional equations. This
process is illustrated in the canonical case of stacks where the infinite list of visible axioms
can be replaced by a finite number of hidden axioms. It is shown below in Example 3.24
that the following equations are behaviorally valid over Lstacks .

pop(push(x, S)) ≈ S and pop(empty) ≈ empty . (21)

Thus these equations can be added to the specification of stacks, as new axioms, without
having unexpected behavioral consequences. Moreover, each of the infinite number of
the axioms of the original specification is an equational consequence of the equations
pop(push(x, S)) ≈ S and pop(empty) ≈ empty together with top(push(x, S)) ≈ x. Hence,
they can be replaced by these three simple equations.

3.2. The specification of behavioral validity

Recall that a k-logic is behaviorally specifiable if its behavioral consequence relation can
be axiomatized in standard equational logic by a possibly infinite set of equations and
conditional equations. Several characterizations of the behavioral specifiability of HEL’s
are presented in this subsection, one of which (the existence of a finite equivalence system)
can be useful in practice. The behavioral specification problem for arbitrary k-logics is
more complicated and will not be treated here; see (Martins 2004).

Definition 3.14. Let L be a k-logic. We say that L is behaviorally specifiable if there is
a specifiable UHEL L′, over the same signature, such that ²beh

L = `L′ i.e., for every set
of equations E ∪ {t ≈ t′} (of arbitrary sort) we have E ²beh

L t ≈ t′ iff E `L′ t ≈ t′. We
call L′ a behavioral specification of L.

The theory off behavioral specifiability simplifies considerably when restricted to hid-
den equational logic, and that is what we shall do in this subsection, with only an
occasional reference to general k-logics.

If a HEL L is behaviorally specifiable, then it must be specifiable in the standard
sense, i.e., its consequence relation `L is finitary in the sense that E `L t ≈ s implies
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E′ `L t ≈ s for some finite subset E′ of E. To see this let L be a behavioral specification
of L. Then, since the equations are all visible, E `L t ≈ s iff E ²beh

L t ≈ s iff E `L′ t ≈ s

iff for a finite E′ ⊆ E such that E `L′ t ≈ s iff E′ `L t ≈ s.

Theorem 3.15. Let L be a HEL. A UHEL L′ over the same signature is a behavioral
specification of L iff Ω

(
Th(L)

)
= Th(L′).

To prove this theorem it is useful to first establish some properties of Ω as an abstract
mapping from the set of theories of L into the set of congruences of the term algebra
TeΣ.

• Ω is monotonic, i.e., if T, G ∈ Th(L) and T ⊆ G, then Ω(T ) ⊆ Ω(G).

Note that Ω(T ) is compatible with G. Indeed, suppose t, t′, s, s′ are visible terms such that
t ≡G s, t ≡Ω(T ) t′, and s ≡Ω(T ) s′. Since the terms are all visible and Ω(T )VIS = T ⊆ G,
we have that t ≡G t′ and s ≡G s′. Hence, t′ ≡G s′. Consequently, Ω(T ) ⊆ Ω(G) since
Ω(G) is the largest congruence of TeΣ compatible with G.

In abstract algebraic logic a logical system with the property that Ω is monotonic is
said to be protoalgebraic. Although every HEL is protoalgebraic, not every hidden k-logic
is. The characterization of behaviorally specifiable HEL’s given in Theorem 3.20 can only
be naturally generalized to protoalgebraic k-logics.

• For any, possibly infinite, set {Ti : i ∈ I } of L-theories, we have Ω
(⋂

i∈I Ti

)
=⋂

i∈I Ω(Ti).

In fact, we have that Ω
(⋂

i∈I Ti

) ⊆ Ω(Ti) for each i ∈ I by the monotonicity of Ω.
Thus Ω

(⋂
i∈I Ti

) ⊆ ⋂
i∈I Ω(Ti). But

⋂
i∈I Ω(Ti) is a congruence compatible with each Ti

and hence with
⋂

i∈I Ti. So Ω
(⋂

i∈I Ti

) ⊇ ⋂
i∈I Ω(Ti).

Proof of Theorem 3.15. By Theorem 3.4 the condition that Ω
(
Th(L)

)
= Th(L′) is

clearly sufficient for L′ to be a behavioral specification of L. To see that it is necessary,
assume L′ is a behavioral specification of L. By Theorem 3.4 we have that, for each
T ∈ Th(L), Ω(T ) is closed under behaviorally valid consequence in L, and hence Ω(T ) ∈
Th(L′). Conversely, suppose G ∈ Th(L′). Let K = {T ∈ Th(L) : G ⊆ Ω(T ) }. Then by
Theorem 3.4 again we have G =

⋂
T∈K Ω(T ). Hence G = Ω

(⋂
T∈K T

)
. So G ∈ Ω

(
Th(L)

)
.

Lemma 3.16. Let L be a behaviorally specifiable HEL and L′ a behavioral specification.
If G ∈ Th(L′) is finitely generated, then GVIS is also finitely generated as an L-theory.

Proof. Let K = {T : T ∈ Th(L), T is finitely generated, and T ⊆ GVIS }. Since GVIS

is itself an L-theory, GVIS =
⋃

T∈K T . We show that G =
⋃

T∈K Ω(T ). We first show
that

⋃
T∈K Ω(T ) is an L′-theory. K is obviously upward directed since any finite subset

K ′ of K is included in the theory generated by the union of the set of finite generating
sets of the members of K ′. Thus {Ω(T ) : T ∈ K } is an upward directed set of L′-
theories since Ω is monotonic. So

⋃
T∈K Ω(T ) is an L′ theory, since L′ is specifiable.(⋃

T∈K Ω(T )
)
VIS

=
⋃

T∈K Ω(T )VIS =
⋃

T∈K T = GVIS. Thus, since
⋃

T∈K Ω(T ) is an
L′-theory,

⋃
T∈K Ω(T ) = Ω

(
(
⋃

T∈K Ω(T ))VIS)
)

= Ω(GVIS) = G.
Assume now that G is finitely generated, say by a finite set of equations E. So there
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is a finite subset K ′ of K such that E ⊆ ⋃
T∈K′ Ω(T ), and hence, since Ω(K) is upward

directed, there is an T ∗ ∈ K such that E ⊆ ⋃
T∈K′ Ω(T ) ⊆ Ω(T ∗) ⊆ G. Since Ω(T ∗) is an

L′-theory and contains a generating set of G, it must equal G. Hence GVIS = Ω(T ∗)VIS =
T ∗, and GVIS is finitely generated.

Many HEL’s that arise in practice are behaviorally specifiable, Leflag for example (see
Examples 2.7 and 2.8). However, many are not; for example, Lstacks is not behaviorally
specifiable (see (Martins 2004)). Our characterization of those HEL’s that are behav-
iorally specifiable is based on the concept of an equivalence system.

Let Σ be an arbitrary hidden signature. By a pre-equivalence system over Σ we mean
a double sorted set

E :=
〈 〈ES,H(x:H, y :H, ū:Q̄) : S ∈ SORT 〉 : H ∈ HID

〉
,

where ES,H(x :H, y :H, ū:Q̄) is a possibly infinite set of equations of the form

ϕ(x:H, ū : Q̄) ≈ ϕ(y :H, ū : Q̄), (22)

where ϕ(z :H, ū:Q̄) is an S-context and x, y are variables distinct from the parametric
variables ū:Q̄ := u1 :Q1, u2 :Q2, u3 :Q3, . . . . To simplify notation we assume that this
sequence is the same for all of the equations of E, so it may be infinite since there may
be an infinite number of equations; any given equation (22) can of course contain only
a finite number of them. We also assume that the distinguished variables x and y of
(22) and all variables substituted for them in the sequel are distinct from the parametric
variables. To assure this is possible we assume that ū :Q̄ excludes an infinite number of
variables of each sort in SORT.

An pre-equivalence system E is visible if all the equations (22) of E are visible, i.e.,
ES,H = ∅ for each S ∈ HID. In this case we think of EH as a VIS-sorted set and write
E in the form

E :=
〈 〈EV,H(x:H, y :H, ū:Q̄) : V ∈ VIS 〉 : H ∈ HID

〉
.

In the sequel all pre-equivalence systems are assumed to be visible unless explicitly indi-
cated otherwise. If

EH(x:H, y :H, ū :Q̄) := 〈EV,H(x:H, y :H, ū:Q̄) : V ∈ VIS〉
is globally finite for each H ∈ HID (i.e.,

⋃
V ∈VIS EV,H is finite), E is said to be locally

globally finite. As we have done before in similar situations we sometimes abuse notation
by identifying the VIS-sorted set EH with its union

⋃
V ∈VIS EV,H .

The following definition of an equivalence system for hidden equational logics is a
special case of a more general notion of arbitrary hidden k-logics given in (Martins
2004).

Definition 3.17. A (visible) pre-equivalence system E = 〈EH(x:H, y :H, ū:Q̄) : H ∈
HID〉 is called an equivalence system for a HEL L if the following conditions hold for
every H ∈ HID.

(i) `L EH(x:H, x:H, ū:Q̄);
(ii) EH(x:H, y :H, ū:Q̄) `L EH(y :H, x:H, ū:Q̄);
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(iii) EH(x:H, y :H, ū:Q̄), EH(y :H, z :H, ū:Q̄) `L EH(x:H, z :H, ū:Q̄);
(iv) For each operation symbol O of type S0, . . . , Sn−1 → Sn,

(a) If Sn /∈ VIS then
⋃

i<n

{ESi(xi :Si, yi :Si, ū:Q̄) : Si ∈ HID } ∪ {xi ≈ yi : Si ∈ VIS }

`L ESn
(O(x0, . . . , xn−1):Sn, O(y0, . . . , yn−1):Sn, ū:Q̄);

(b) If Sn ∈ VIS then
⋃

i<n

{ESi
(xi :Si, yi :Si, ūi :Q̄i) : Si ∈ HID } ∪ {xi ≈ yi : Si ∈ VIS }

`L O(x0, . . . , xn−1) ≈ O(y0, . . . , yn−1).

For technical reasons it is convenient sometimes to think of an equivalence system as
a SORT-sorted set E where EV = {x:V ≈ y :V } for each visible sort V .

If a HEL L has an equivalence system then it is called equivalential. Moreover, if E

is locally globally finite (i.e.
⋃

V ∈VIS EV,H is finite for each H ∈ HID), then L is called
finitely equivalential.

Not every HEL is equivalential, a counter-example can be found in (Martins 2004).
Also see this reference for details with regard to the following two examples.

Example 3.18.

I - Flags. The specification of flags Leflag is finitely equivalential with finite system
E = 〈Ebool , Eflag〉, where Ebool(x:bool , y :bool) = {x ≈ y} and

Eflag(x:flag , y :flag) = {up?(x) ≈ up?(y)}.
II - Stacks. The specification of stacks Lstacks is equivalential with equivalence system

E = 〈Enat, Estack 〉 where Enat(x:nat, y :nat) = {x ≈ y} and
Estack (x :stack , y :stack) = {top(popn(x)) ≈ top(popn(y)) : n ≥ 0} . However, Lstacks

is not finitely equivalential.

♦
Note that neither of the two above equivalence systems contains a parametric variable.
This is not an uncommon situation. If a HEL is (finitely) equivalential, then it has a
(finite) equivalence system without parametric parameters, provided its signature has the
property that every sort contains a ground term. For any (finite) equivalence system with
parameters can be converted into one without parameters by replacing each parametric
variable by an arbitrary ground term of the same sort.

Theorem 3.19. Let L be a HEL and E a pre-equivalence system over the same signa-
ture. Then E is an equivalence system for L iff, for every H ∈ HID and every pair of
H-terms t, t′,

EH(t, t′, ū) ²beh
L t ≈ t′. (23)
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Proof. Suppose E is an equivalence system for L. Let T be an arbitrary L-theory, and
define G(T ) = 〈G(T )S : S ∈ SORT 〉 as follows.

G(T )H := { 〈t, t′〉 : EH(t, t′, ū) ⊆ T } for H ∈ HID, and G(T )VIS := T .

The claim is that G(T ) = Ω(T ). It is easy to see directly from the definition of equivalence
system that G(T ) is a congruence on TeΣ. To see that it is the largest congruence with
visible part T , let Θ be any congruence on TeΣ whose visible part is T . Assume that t ≡
t′ (ΘH). Then for every V ∈ VIS and every equation ϕ(x :H, ū :Q̄):V ≈ ϕ(y :H, ū:Q̄):V
in EV,H , we have ϕ(t, ū) ≡ ϕ(t′, ū) (ΘV ) by the congruence property of Θ, and hence
ϕ(t, ū) ≡ ϕ(t′, ū) (TV ) since ΘV = TV . Therefore, EH(t, t′, ū) ⊆ T , i.e., t ≡ t′ (G(T )H).
Thus Θ ⊆ G(T ). Hence G(T ) = Ω(T ) as claimed.

We have shown that, for every T ∈ Th(L) and H ∈ HID,
((∀ϕ(t, ū) ≈ ϕ(t′, ū) ∈ EH(t, t′, ū)

) (
ϕ(t, ū) ≡T ϕ(t′, ū)

)) ⇐⇒ t ≡Ω(T ) t′. (24)

Thus EH(t, t′, ū) ²beh
L t ≈ t′ by Theorem 3.4.

Conversely, suppose now that (23) holds for all H ∈ HID and t, t′ ∈ (TeΣ)H . Applying
Theorem 3.4 (and the fact the equations ϕ(t, ū) ≈ ϕ(t′, ū) are all visible) we get the
equivalence (24) for every T ∈ Th(L), i.e.

Ω(T )H = { 〈t, t′〉 : EH(t, t′, ū) ⊆ TH } for every H ∈ HID.

The properties of Ω(T ) as a congruence now translate directly into properties that define
E as an equivalence system. For example, condition 3.17(iii) can be established in the
following way. Let T ∈ Th(L) and suppose EH(t, t′, ū), EH(t′, t′′, ū) ⊆ T . Then t ≡ t′ ≡
t′′ (Ω(T )). Hence t ≡ t′′ (Ω(T )) by transitivity of Ω(T ), i.e., EH(t, t′′, ū) ⊆ T . Since this
is true for every T , 3.17(iii) holds

Note that in the course of the proof it has been shown that, as a consequence of
Theorem 3.4, the theorem can be alternatively expressed in the following way.

E is an equivalence system for L iff, for every T ∈ Th(L) and every sort H ∈ HID,

Ω(T )H = { 〈t, t′〉 : EH(t, t′, ū) ⊆ TH }.

We are finally ready to give the promised characterization of behaviorally specifiable
HEL’s.

Theorem 3.20. A specifiable HEL L is behaviorally specifiable iff it is finitely equiv-
alential.

Proof. Assume E = 〈EH(x:H, y :H, ū:Q̄ : H) ∈ HID 〉 is an equivalence system for L
such that EH is globally finite for each H ∈ HID. Define L′ to be the UHEL obtained
from L by adding, for each hidden sort H, the new inference rule

ϕ1(x, ū) ≈ ϕ1(y, ū), . . . , ϕn(x, ū) ≈ ϕn(y, ū) → x ≈ y, (25)

where EH(x :H, y :H, ū:Q̄) = {ϕ1(x, ū) ≈ ϕ1(y, ū), . . . , ϕn(x, ū) ≈ ϕn(y, ū)}, and x, y are
variable of sort H distinct from all the variables in ū. To see L is a behavioral specification
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of L it suffices by Theorem 3.15 to show that

{Ω(T ) : T ∈ Th(L) } = Th(L′).
Let T ∈ Th(L). We have already seen that Ω(T ) ∈ Th(Luh), so in order to get Ω(T ) ∈

Th(L′) it is enough to show that Ω(T ) is closed under the new inference rules (25). Let
t, t′ be H-terms such that ϕi(t, ū) ≡ ϕi(t′, ū) (Ω(T )) for i ≤ n. Then t ≡ t′ (Ω(T )) by
Theorem 3.19.

To prove the other inclusion, let G ∈ Th(L′). Since G ∈ Th(Luh), GVIS ∈ Th(L), and
hence G ⊆ Ω(GVIS) because Ω(GVIS) is the largest congruence whose visible part is GVIS.
Suppose t ≡ t′

(
Ω(GVIS)H

)
. Then by the congruence property ϕi(t, ū) ≡ ϕi(t′, ū) (GVIS)

for all i ≤ n. Using the inference rule (25) we conclude that t ≡ t′ (GH). Hence Ω(GVIS) ⊆
G, and thus G = Ω(GVIS).

Therefore, L′ is the behavioral specification of L.

Suppose that L is behaviorally specifiable and let L′ be its behavioral specification.
Let H be a fixed but arbitrary hidden sort, and let x, y be two distinct variables of sort
H. Let G be the L′-theory generated by the pair 〈x, y〉, i.e., G = CnL′({〈x, y〉}). Then
GVIS is generated by the set

{ 〈ψ(x:H, ϑ̄:R̄), ψ(y :H, ϑ̄:R̄)〉 : ψ ∈ CH , ϑ̄ ∈ (TeΣ)R̄

}
, (26)

where CH is the set of all visible H-contexts ψ(z :H, ū:R̄). Indeed, if T is the L-theory
generated by this set of equations, then x ≡ y (Ω(T )) by Theorem 2.23, and hence,
since Ω(T ) is an L′-theory (Theorem 3.15), we have G ⊆ Ω(T ). It follows that GVIS ⊆
Ω(T )VIS = T . On the other hand, T ⊆ GVIS since G obviously includes the set of
generators (26) of T . So T = GVIS.

GVIS is finitely generated by Lemma 3.16 since G is finitely generated. So there is a
finite subset of (26) that generates it. (If a theory is finitely generated, then any set of
generators must include a finite generating subset.) Let

{〈ψi(x:H, ϑ̄i(ū:Q̄):R̄i), ψi(y :H, ϑ̄i(ū :Q̄):R̄i)〉 : i ≤ m
}

be such a subset, where ū:Q̄ is a finite list of all variables different from x or y that
occur in this set of equations. For simplicity we write ψi(x :H, ϑ̄i(ū :Q̄)) in the form
ϕi(x:H, ū:Q̄). Then

{
ϕi(x:H, ū:Q̄) ≈ ϕi(y :H, ū:Q̄) : i ≤ m

}

`L ψ(x :H, ϑ̄:R̄) ≈ ψ(y :H, ϑ̄:R̄) for every ψ ∈ CH and ϑ̄ ∈ (TeΣ)R̄. (27)

Consider any t, t′ ∈ (TeΣ)H and any ϑ̄ ∈ (TeΣ)R̄. By the substitution invariance of `L
we have

{
ϕi(t:H, ū:Q̄) ≈ ϕi(t′ :H, ū:Q̄) : i ≤ m

}

`L ψ(t :H, ϑ̄:R̄) ≈ ψ(t′ :H, ϑ̄:R̄) for every ψ ∈ CH and ϑ̄ ∈ (TeΣ)R̄. (28)

Let

E :=
〈 {

ϕi(x:H, ū:Q̄) ≈ ϕi(y :H, ū:Q̄) : i ≤ m
}

: H ∈ HID
〉
.
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E is an pre-equivalence system over Σ with EH globally finite for each H ∈ HID,
and from (28) we conclude by Theorem 2.23 that, for every H ∈ HID and every pair of
H-terms t, t′,

EH(t, t′) ²beh
L t ≈ t′.

So E is a finitary equivalence system for L by Theorem 3.19.

Roşu and Goguen in (Roşu and Goguen 2001) introduced the concept of cobasis that
is closely related to our notion of equivalence system.

Definition 3.21. Let L be a HEL over the signature Σ. By a cobasis for L we mean a
not necessarily visible pre-equivalence system

E :=
〈 〈ES,H(x:H, y :H, ū:Q̄) : S ∈ SORT 〉 : H ∈ HID

〉

with the following property. For every H ∈ HID and every pair of H-terms t, t′,

EH(t, t′, ū) ²beh
L t ≈ t′.

Strictly speaking, a cobasis in the sense of Roşu and Goguen is the set of S-contexts
ϕ(z : H, ū) that are used to form the equations of ES,H .

In light of Theorem 3.19, an equivalence system is a cobasis where all the equations
are visible. While a non-visible finite cobase can be useful in establishing behavioral
equivalence, Theorem 3.20 shows that if it is complete in this regard, then it must be
visible, or at least some visible finite cobasis must exist.

The following theorem gives us a method of verifying that a conditional equation
is behaviorally valid over an equivalential HEL L entirely in terms of its consequence
relation `L.

Theorem 3.22. Let L be an equivalential HEL with equivalence system E. Then the
following are equivalent.

(i) The conditional equation

t0 :S0 ≈ t′0 :S0, . . . , tn−1 :Sn−1 ≈ t′n−1 :Sn−1 → tn :Sn ≈ t′n :Sn

is behaviorally valid over L;
(ii)

⋃{ESi(ti :Si, t
′
i :Si) : i < n } `L ESn(tn :Sn, t′n :Sn).

Furthermore, if L is finitely equivalential, i.e., if EH is globally finite for each H ∈ HID,
then both conditions are equivalent to the following:

(iii) For every s ≈ s′ in ESn(tn :Sn, t′n :Sn), the visible conditional equation
⋃
{ESi(ti :Si, t

′
i :Si) : i < n } → s ≈ s′

is a derivable rule of L.

Proof. (i) ⇒ (ii) Define G = CnL
(⋃{ESi(ti :Si, t

′
i :Si) : i < n}). For each i < n,

ti ≡ t′i (Ω(G)) by Theorem 3.19. Then, from Theorem 3.4 and (i) we get tn ≡ t′n (Ω(G)).
So, applying Theorem 3.19 again, we get ESn(tn, t′n) ⊆ G, i.e., (ii) holds.

(ii) ⇒ (i) Let T ∈ Th(L). Suppose that ti ≡ t′i (Ω(T )) for each i < n. Then, by
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Theorem 3.19,
⋃{ESi

(ti :Si, t
′
i :Si } ⊆ T . Hence, by (ii),

ESn(tn :Sn, t′n :Sn) ⊆ T , and thus tn ≡ t′n (Ω(T )).
The equivalence of (ii) and (iii) is immediate if E is globally finite.

It follows easily from this theorem that, if a HEL L is equivalential and some equiv-
alence system for it is RE, in particular if L is finitely equivalential, then the set of
conditional equations that are behaviorally valid over L is RE. Moreover, in view of
the remarks following Theorem 3.10, the set is recursive if the set of derivable (visible)
conditional equations of L is recursive.

Many HEL’s encountered in practice are equivalential, and in these cases Theorem 3.22
seems to be a useful way of verifying that a conditional equation is behaviorally valid.
The following two examples illustrate this phenomenon.

Example 3.23. (Flags) We will use Theorem 3.22 to prove that rev(G) ≈ F →
rev(F ) ≈ G is behaviorally valid in Leflag . Using the equivalence system given in Example
3.18, together with condition (ii) of Theorem 3.22, it is enough to prove that

up?(rev(G)) ≈ up?(F ) `Leflag
up?(rev(F )) ≈ up?(G). (29)

We have the following deduction in Leflag :

up?(rev(G)) ≈ up?(F )

¬(up?(G)) ≈ up?(F ) (axiom and IR2)

¬(¬(up?(G))) ≈ ¬(up?(F )) (IR3)

up?(G) ≈ ¬(up?(F )); (¬¬x ≈ x and IR2)

up?(G)) ≈ up?(rev(F )) (axiom and IR2)

So, (29) is proved. Hence, rev(G) ≈ F ²beh
Leflag

rev(F ) ≈ G. ♦
Example 3.24. (Stacks) Using the equivalence system given in Example 3.18, in order
to shown

S ≈ push(n, S′) ²beh
LStacks

pop(pop(S)) ≈ pop(S′),

it is enough to prove that

{top(popn(S)) ≈ top(popn(push(n, S′))) : n ≥ 0} `LStacks

{top(popn(pop(pop(S)))) ≈ top(popn(pop(S′))) : n ≥ 0}
This is a straightforward consequence of the axioms and rules for Lstacks given in

Example 2.9.
The equivalence system can also be used to show that the two hidden equations (21), at

end of section 3.1, are behaviorally valid. Substituting the two terms of the first equation
pop(push(x, S)) ≈ S into the equations of the equivalence system we get, for every n ≥ 0,

top
(
popn

(
pop(push(x, S))

)) ≈ top
(
popn(S)

)
.

But this is just an instance of the axiom top(popn+1(push(x, y))) ≈ top(popn(y)). The
second equation of (21), pop(empty) ≈ empty , is verified similarly using the axiom
top(popn(empty)) ≈ zero. ♦
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It is shown in (Martins 2004) that Lstacks is not finitely equivalential, hence it is not
behaviorally specifiable. However, the above equivalence system is clearly RE (indeed
recursive), since the set of derivable rules of Lstacks is recursive (this is easily seen), we
have that the set of behaviorally valid conditional equations of Lstacks is recursive.

4. Conclusion

In this paper a generalization of the theory of behavioral equivalence in abstract algebraic
logic was presented that encompasses multi-sorted signatures and the ”visible-hidden”
dichotomy. It establishes a new bridge between AAL and the specification and verification
theory of programs that provides an efficient way of applying the powerful machinery
of abstract algebraic logic to the behavioral specification domain. We specialized to the
study of HEL’s. Our method is novel in that it relies almost exclusively on combinatorial
properties of the theories over an arbitrary HEL and their Leibniz congruences.

We investigated the behavioral validity of conditional equations in hidden equational
logics, HEL’s; these are multi-sorted equational logics that contain a formal representa-
tion of equality only between visible data. We obtained characterizations of behavioral
validity of conditional equations, some of which can be viewed as alternative methods
of coinduction, and we showed how a HEL remains sound for behavioral validity when
any number of behaviorally valid conditional equations are adjoined as new inference
rules. This can be an effective way of verifying the behavioral validity of equations and
conditional equations in many practical situations.

On a more theoretical note, we presented a pair of syntactical conditions that individ-
ually are both necessary and sufficient for the behaviorally valid conditional equations
of a given HEL to be specifiable by some (non-hidden) equational logic. The conditions
are simple enough to be useful in deciding in many cases whether or not the behavior
of a HEL is specifiable. We also applied this generalized theory of AAL to the theory of
cobases (see Section 3.2). We explained how they are closely related to the well known
notion of equivalence systems in the AAL field. In Theorem 3.20 we characterized the
HEL’s that have a complete finite cobasis.

Generalizations of the notion of behavioral equivalence have been considered in the
literature. Some authors require that each context contains only one occurrence of the
distinguished variable z; however, they generate exactly the same behavioral equivalence
relation. Another generalization is due to Goguen et al. who consider Γ-behavioral equiva-
lence, with Γ a subset of the set of all operation symbols in the signature. A Γ-congruence
is a relation compatible with all interpretations of the operation symbols in Γ. The Γ-
behavioral equivalence is defined analogously to ordinary behavioral equivalence; it is
also the largest Γ-congruence with the identity as the visible part. Our approach can
be easily extended to accommodate Γ-behavioral equivalence. In fact, one needs only to
change the definition of hidden equational logic by considering; precisely in the infer-
ence rule (IR3) of Definition 2.6, the term t ranging among the ones generated using the
operations symbols in Γ. Clearly, the notions of Leibniz congruence Ω(F ) and the equiv-
alence system have to be redefined to develop a parallel theory to ours. Some interesting
questions arise in this context, such as the study of the compatibility of some operation
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symbols outside of Γ with respect to Γ-behavioral equivalence. This problem has been
studied in (Diaconescu and Futatsugi 2000) and (Bidoit and Hennicker 1999).
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