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resumo 
 
 

Impulsionado pelo interesse em conhecer as propriedades intrínsecas dos
compostos SrBi2Ta2O9 (SBT) e SrBi2Nb2O9 (SBN) que se apresentam como os 
materiais mais promissores para substituir o titanato de zircónio e de chumbo
(PZT) nas memórias ferroeléctricas de acesso aleatório, surgiu a necessidade 
de monocristais destes compostos com dimensões e qualidade adequadas à
medição de propriedades. No presente trabalho, fizeram-se crescer cristais 
simples de SBT e de SBN com qualidade e dimensões elevadas, usando um 
método de solução a alta temperatura, com um fluxo de Bi2O3 modificado com 
B2O3 e uma razão molar de 60/40 entre SBT (ou SBN) e fluxo (35 % em peso
de Bi2O3 e 5 % em peso de B2O3). Primeiramente optimizaram-se as condições 
de processamento, testando-se diferentes perfis de temperatura para 
promover o crescimento e melhorar a qualidade dos cristais de SBT. As
condições identificadas como óptimas foram usadas para fazer crescer cristais
de SBN. Os cristais obtidos evidenciaram um hábito lamelar com morfologia de 
plaquetas com dimensões típicas de ∼ 7 × 5 × 0.2 e 5 × 5 × 0.4 mm3 para SBT 
e SBN, respectivamente. De acordo com as análises de topografia e de
difracção de raios-X, ambos os cristais se apresentaram naturalmente
orientados com a direcção [001] (eixo c) perpendicular à face de maior área do 
cristal e lados paralelos à direcção [110] da fase ortorrômbica (inclinação de
45º relativamente a ambos os eixos a e b). 

 
As primeiras medidas fiáveis sobre estrutura de domínios de cristais de SBT

de boa qualidade foram realizadas no presente trabalho por microscopia de
força piezoeléctrica. Ambos os domínios ferroeléctricos de 180º e
ferroelásticos de 90º foram observados à temperatura ambiente após
tratamento térmico dos cristais a 750 ºC, durante 10 horas. Os domínios 
apresentaram uma estrutura em “espinha” com paredes de domínios de 90º
predominantemente planas. As paredes de domínios de 90º mostraram-se 
paralelas às arestas laterais do cristal [110], o que se coaduna com a
orientação preferencial observada. A largura dos domínios de 90º situa-se 
entre 0,7 e 1,5 µm ao passo que a dos domínios de 180º varia entre 250 e 500
nm. A formação deste complexo padrão de domínios é atribuída a um
processo de transição de fases em duas etapas, ou seja, a ocorrência não 
simultânea das transições de fase ferroelástica e ferroelétrica em SBT. 

 
A qualidade dos cristais de SBT e SBN foi também confirmada por medidas

diélectricas, ferroelétricas e piezoeléctricas realizadas paralelamente ao eixo c
(direcção [001]) e paralelamente ao plano ab (segundo a direcção [110])
demonstrando-se a elevada anisotropia das propriedades intrínsecas de
ambos os cristais, i.e., a razão entre o valor médio de permitividade dieléctrica
medida paralelamente ao plano ab e o valor medido paralelamente ao eixo c
foi de cerca de 10 à temperatura de Curie, TC, diminuindo para 2 à temperatura 
ambiente. As baixas perdas dieléctricas acima e abaixo de TC (tanδ < 0.04) 
indicaram uma baixa concentração de defeitos nos cristais. 

 



 
  

 
 
 
 
 
 
 
 
 
 

  
 

 Observaram-se ciclos de histerese saturados quando se aplicou um campo
eléctrico alterno paralelamente ao plano ab do cristal SBT. A polarização
espontânea segundo o eixo ferroeléctrico a foi estimada em cerca de
≈ 20 µC/cm2 para o SBT. Porém, no caso dos cristais de SBN, não foi possível 
obter ciclos de histerese saturados mesmo aplicando um campo eléctrico com
o valor máximo de 100 kV/cm. O coeficiente piezoeléctrico d33 medido segundo 
a direcção [100] (eixo polar) é de ≈ 30 e de 62 pm/V para o SBT e o SBN, 
respectivamente. 

 
Os materiais ferroeléctricos com estrutura em camadas de bismuto

(compostos BLSF) apresentam grande interesse para aplicações
piezoeléctricas de elevada temperatura embora seja necessário prepará-los na 
forma texturizada devido à sua elevada anisotropia. O presente trabalho 
estuda a possibilidade de usar os cristais de SBT como sementes para induzir
a texturização de cerâmicos de SBT pela via de template grain growth (TGG).
Produziram-se cerâmicos de SBT texturizados com propriedades dieléctricas e 
ferroeléctricas melhoradas, usando sementes anisométricas e de morfologia
lamelar, com tamanho médio de ~ 40 × 40 × 8 µm3. Dispersou-se uma pequena 
quantidade de sementes anisométricas de SBT numa matrix de partículas finas
de SBT contendo um excesso de Bi2O3 para formar fase líquida e alinharam-se 
essas sementes por prensagem unidireccional. Avaliaram-se os efeitos de 
vários parâmetros de processamento tais como o excesso de Bi2O3, as 
sementes de SBT, as condições de prensagem e de sinterização, tentando 
obter-se cerâmicos densos, com elevada textura e propriedades melhoradas.
Correlacionou-se a evolução da microestructura dos cerâmicos com as
condições de processamento recorrendo a uma análise estereológica. 

 
Demonstrou-se a existência de anisotropia nas propriedades dieléctricas e 

no ciclo de histerese e a sua dependência do grau de textura. Mediram-se 
propriedades dieléctricas e ferroeléctricas melhoradas segunda uma direcção
perpendicular à da prensagem unidirecional, observando-se valores de 
permitividade e de polarização acima dos apresentados pelos cerâmicos sem
sementes. Mostrou-se que esta melhoria de propriedades resultou da
orientação do grão, da anisotropia de propriedades dos monocristais e do grau
de textura dos cerâmicos. Apresentou-se um modelo para descrever a 
polarização espontânea máxima de cerâmicos de SBT com orientação de grão
aleatória ou com textura, em função do grau de textura, usando uma análise
de textura baseada na distribuição da orientação dos grãos grandes e
anisométricos. Seleccionou-se a equação de March-Dollase para descrever os 
dados experimentais referentes à distribuição de orientação e discutiu-se a 
distribuição espacial do vector polarização em grãos lamelares de materiais
BLSF. A aplicação do referido modelo aos cerâmicos texturizados de SBT 
permitiu a comparação dos valores de polarização espontânea previstos pelo
modelo com os valores experimentais obtidos a partir do ciclo de histerese
ferroeléctrica dos mesmos cerâmicos. 
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abstract 
 

The interest in the understanding of the intrinsic properties of SrBi2Ta2O9
(SBT) and SrBi2Nb2O9 (SBN), which are the most promising materials for
substituting lead zirconate titanate in non-volatile ferroelectric random access 
memories, arouse the need of single crystals of these compounds with suitable
size and quality for the properties measurement. In this work, high-quality SBT 
and SBN single crystals were successfully grown by a high-temperature self-
flux solution method, using a B2O3 modified Bi2O3 flux and a molar ratio of 
60/40 of SBT (or SBN) powder to flux (35 wt% Bi2O3 and 5 wt% B2O3). The 
processing conditions were optimized by testing different thermal profiles to
increase the size and improve the quality of the grown SBT crystals. The
optimized conditions were then applied for the growth of SBN crystals. The
grown crystals showed a layered habit with a platelet morphology and typical 
sizes of ∼ 7 × 5 × 0.2 and 5 × 5 × 0.4 mm3 for SBT and SBN, respectively. 
According to x-ray diffraction and topography analyses, both crystals were
naturally oriented with [001] direction (c-axis) perpendicular to the major face 
and edges parallel to [110] direction (45º to both a- and b-axes) of the 
orthorhombic phase. 

 
The first reliable measurements of the domain structure of high-quality SBT 

single crystals were performed in this work by piezoelectric force microscopy. 
Both ferroelectric 180º domains and ferroelastic 90º domains (twins) were
revealed at room temperature after annealing the crystals at 750 ºC for 10 h.
The coexisting domains form a well-defined “herringbone” structure with mostly 
flat 90º walls. The ferroelastic 90º walls were parallel to the single crystal edges
[110], which agree with the observed preferential orientation. The width of 90º
domains (twins) lies in the range of 0.7 - 1.5 µm, while that of 180º domains, 
which were oriented parallel to the [100] direction (polar axis), exhibited a
periodicity of about 250 to 500 nm. Formation of the observed complex domain
pattern was attributed to a two-stage process associated with the presence of 
separate ferroelastic and ferroelectric phase transitions in SBT. 

 
The high quality of the grown SBT and SBN single crystals was confirmed by

dielectric, ferroelectric and piezoelectric measurements, which were performed
in the ab-plane (along the [110] direction) and along the c-axis (the [001] 
direction), demonstrating the large anisotropy in the intrinsic properties of both
crystals, i.e., the ratio between average permittivity along the [110] (ab-plane) 
and the [001] direction (c-axis) was about 10 at TC and decreased to ~ 2 at 
room temperature. The low dielectric losses above and below TC (tanδ < 0.04) 
indicate a low concentration of defects in the crystals. 

 



 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
 

 Saturated hysteresis loops were observed for switching in the ab-plane of the 
SBT single crystal and the spontaneous polarization along the ferroelectric 
a-axis was estimated to be PS ≈ 20 µC/cm2 for SBT. However, for SBN crystals, 
saturated hysteresis loops were not obtained for a maximum electric field of
100 kV/cm. The longitudinal piezoelectric coefficient d33 was measured along 
the [100] direction (polar-axis) in both crystals, and was estimated as ≈ 30 and 
62 pm/V for SBT and SBN, respectively. 

 
Bi-layer structured ferroelectric (BLSF) materials like SBT present significant

interest for high-temperature piezoelectric applications, though they are 
required to be prepared in a textured form due to their high anisotropy. This
work studies the possibility of using the grown SBT crystals as seeds for the
fabrication of textured SBT ceramics by templated grain growth (TGG). Seeded 
SBT ceramics with improved dielectric and ferroelectric properties were
produced by using plate-like anisometric SBT templates with average sizes of 
~ 40 × 40 × 8 µm3. A small amount of the anisometric SBT templates was
distributed in a fine-grained matrix of SBT powder containing Bi2O3 excess as 
liquid phase, and then aligned by conventional uniaxial pressing. Several
processing parameters, e.g., the Bi2O3 excess, the amount of templates, or the 
processing and sintering conditions including the uniaxial pressure, the 
sintering temperature and time, were examined in order to produce textured
SBT ceramics with enhanced properties. The ceramics microstructure evolution
was correlated with the processing parameters via a stereological analysis. 

 
Anisotropy in the dielectric and ferroelectric properties of the seeded SBT

specimens and its dependence on the degree of texture were demonstrated.
Enhanced properties were measured perpendicularly to the uniaxial pressing
direction revealing permittivity and polarization values above those of unseeded 
SBT ceramics. Such improved properties were shown to result from the grain
orientation, anisotropy of single crystal properties, and degree of texture of the
sintered ceramics. A quantitative model was presented for predicting the 
maximum spontaneous polarization, PS, of randomly oriented and textured SBT 
ceramics as a function of the degree of texture, using a texture analysis
accomplished via the orientation distribution of large anisometric grains. The 
March-Dollase equation was selected to fit the measured orientation 
distribution, and the spatial distribution of polarization vector in platelet grains of
BLSF materials was discussed. The results were applied to the case of
textured SBT ceramics, and the predicted PS values as a function of the degree 
of texture were compared with those measured from the hysteresis loops. 
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 3

Nowadays, the terms smart materials and functional materials have become common 

within the materials science and engineering community. Smart materials are those 

materials which undergo transformations (e.g., changes in the shape, size, etc.) throughout 

physical interactions, sensing a change in its environment and adapting to correct such 

change through the use of a feedback system, whereas functional materials cover a broader 

range of materials whose physical and chemical properties are sensitive to changes in the 

environment, such as temperature, pressure, electric field, magnetic field, etc., having the 

ability of performing a certain “function” under a determined stimulus.1 Ferroelectric and 

piezoelectric materials are examples of functional materials whose sensing and actuating 

capabilities account for a large number of applications that span most industrial sectors.2 

Ferroelectric materials can be used as bulk ceramics or films depending on the 

relative ease with which they can be adapted to the requirement of the application, thus 

making reliable devices.3 Although there always will be a large demand for bulk devices, 

mainly in piezoelectric and electrostrictive applications, there is also an increasing trend 

today for the device miniaturization, which is accompanied by a growing demand of 

functional thick and thin film devices. 

Ferroelectric thin film capacitors have been combined with Si integrated circuits to 

provide, probably, the most important application of ferroelectric thin films: non-volatile 

ferroelectric random access memories (FeRAMs), which are currently being considered as 

a strong alternative to other types of memories, e.g., non-volatile semiconductor Flash 

memory. The most popular ferroelectric material and primary candidate for non-volatile 

FeRAMs is lead zirconate titanate (PZT), which has been investigated for that purpose 

since the middle 80s.4 However, besides lead toxicity issues, PZT memories with platinum 

(Pt) electrodes suffer from aging, retention, imprint and, most importantly, fatigue, which 

makes the switchable polarization to decline after ∼ 108 read/write cycles.5 

The interest in Bi-layer structured ferroelectrics (BLSF) for substituting PZT in non-

volatile FeRAMs appeared in the middle 90s, when it was understood that, along with the 

high switching polarization, low dc leakage currents, and sufficiently low coercive field, 

some BLSF materials, namely SrBi2Ta2O9 (SBT) and SrBi2Nb2O9 (SBN), are immune to 
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ferroelectric fatigue on Pt electrodes (at least up to 1012 cycles at saturation).6-8 Since then, 

a large amount of work has been focused on thin films, where dramatic improvement of the 

ferroelectric properties has been achieved using modern deposition techniques. However, 

these achievements have not been followed by the corresponding understanding of the 

fundamental properties of these compounds that are obviously obscured by the texture, 

insufficient quality, polycrystallinity and interface problems of the investigated films.9 

For thin film technology, the knowledge of the single crystal fundamental properties, 

such as the high dielectric, ferroelectric and piezoelectric anisotropy, is prerequisite for the 

understanding of the distinct effects observed to date. Besides, from the fundamental 

science point of view, single crystal data are also required for the thermodynamic analysis 

of the phase transitions in these technologically important materials, where many important 

physical, chemical and structural properties remain to be further investigated. 

In the end of the 60s, Cummins and Cross could demonstrate for the first time highly 

anisotropic optical and electrical properties in one of the most popular BLSF compositions, 

Bi4Ti3O12.10 In the last decade, Miyayama et al. have renewed the interest for the growth 

and characterization of BLSF materials in a single crystal form with the ultimate goal of 

comparing their properties with those of polycrystalline materials of identical composition, 

and studied the anisotropy of the ferroelectric and dielectric properties.11-15 To perform 

such measurements, large single crystals of sufficiently high quality should be grown with 

a single domain state or at least a controlled domain configuration. 

Although SBT has been a key material for FeRAMs,16 a detailed study of its intrinsic 

ferroelectricity, dielectric anisotropy, domain structure and phase transitions has not been 

achieved in single crystal form, due mainly to the low quality of the SBT crystals obtained 

so far.17-19 Only recently, Sih et al. have successfully grown large SBT crystals using the 

high-temperature self-flux solution method using a B2O3 modified Bi2O3 flux, but the 

dielectric and ferroelectric properties could not be successfully measured.20 On the other 

hand, to the best of our knowledge, the SBN intrinsic properties have not been reported yet 

in the scientific literature, due also to the lack of SBN single crystals, contrary to SBT and 

SBN ceramics and thin films which have been extensively studied for a long time. 
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In addition, to improve the thin films functionality and accelerate SBT-FeRAMs 

device development, a detailed investigation of the domain configuration in single crystals 

is desirable. Several papers on the presence of domains in SBT thin films and ceramics 

have been published, but the direct observation of domains in single-crystalline SBT has 

been studied only by optical and transmission electron microscopy.21,22 

Therefore, the first general objective of the present work is to study the optimization 

of the processing conditions for growing large and high-quality SrBi2Ta2O9 and 

SrBi2Nb2O9 single crystals via high-temperature self-flux solution method. 

For this purpose some specific goals will be pursued: 

• To study the effects of the processing parameters on the morphology and quality of 

the SBT and SBN grown crystals and to evaluate the crystallographic quality via the 

x-ray diffraction (XRD) and x-ray topography analyses. 

• To investigate the domain configuration of the high-quality SBT single crystals using 

XRD and piezoelectric force microscopy (PFM) studies. 

• To investigate the anisotropy in the dielectric, ferroelectric and piezoelectric 

properties of the high-quality SBT and SBN single crystals, and to correlate them 

with the crystallographic orientations. 

On the other hand, in response to the improved piezoelectric properties reported for 

several relaxor-based ferroelectric single crystals, especially in perovskite systems such as: 

Pb(Zn1/3Nb2/3)O3-PbTiO3 (PZN-PT)23 or lead free Na1/2Bi1/2TiO3-BaTiO3 (NBT-BT),24 

several research groups in this area are attempting to lower the costs of growing such 

single crystals by flux techniques. Actually, the piezoelectric and electromechanical 

coupling coefficients of these crystals are significantly greater than those of randomly 

oriented ceramics. However, these routes of crystal growth require a long period of time at 

high temperature and a careful control of the growth process, thus the cost of ferroelectric 

single crystals for piezoelectric applications remains high and the geometries that can be 

achieved are limited. 
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The development of texture in ferroelectric ceramics is an alternative strategy for 

increasing the piezoelectric response of these materials due to the inherent anisotropy in 

the material properties. Such approach has allowed achieving properties lying between 

those of single crystals and those of randomly oriented ceramics. The intensity of the 

enhanced response depends on the material crystallographic orientation, and thus can not 

be fully exploited in randomly oriented polycrystalline materials. Consequently, textured 

ceramics of piezoelectric materials are being considered of a special scientific and 

commercial interest.25 

Following the current trend of developing lead-free piezoelectric components, BLSF 

materials have also emerged as promising candidates for high-temperature piezoelectric 

applications due mainly to its high Curie temperatures.26 However, it is difficult to achieve 

high piezoelectric response in randomly oriented BLSF polycrystalline materials because 

of the two-dimensional character of the ferroelectric switching. Therefore, the study of 

textured BLSF ceramics is of fundamental importance for tailoring their piezoelectric, 

ferroelectric and dielectric properties, thus improving the sensing and actuating capabilities 

of various devices. 

One of the promising routes for the controlled texture development is the templated 

grain growth (TGG).27 Briefly, this process consists of the ceramic sintering mediated by a 

small amount of well-oriented anisometric template particles distributed in a fine-grained 

matrix. The template particles grow at the expense of the fine randomly oriented powder 

ensuring a large volume fraction of highly oriented grains. Being based on a standard 

powder processing and sintering, TGG achieves texture at a significantly lower cost as 

compared to other techniques used for texturing like hot forging or hot pressing. 

Highly textured ferroelectric ceramics, including some BLSFs such as Bi4Ti3O12,28 

have been fabricated by TGG with piezoelectric properties similar to those of single 

crystals in the texture direction.27 An obstacle to the low-cost processing of TGG-derived 

materials is the difficulty of producing large amounts of template particles with controlled 

particle size and aspect ratio, e.g., the anisotropic seeds that control texture development. 

Because of the complexity of SBT single crystal synthesis, to the best of our knowledge, 

this technique has not been used for SBT so far. 
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Therefore, the second general objective of the present work is to study the production 

of textured SrBi2Ta2O9 ceramics with improved performances by TGG using anisometric 

SBT template particles (the grown SBT single crystals previously referred). Some specific 

goals included in this study are: 

• To study the effects of the initial processing parameters (e.g., Bi2O3 excess, amount 

of templates, uniaxial pressure and sintering conditions) on the microstructure 

evolution and texture development. 

• To study and evaluate the effects of the degree of texture on the anisotropy of the 

dielectric and ferroelectric properties. 

• To model the spatial distribution of the polarization in BLSF materials and to predict 

the theoretical spontaneous polarization of randomly oriented and partially textured 

SBT ceramics as a function of the degree of texture. 

The present thesis is organized in four chapters. Chapter 1 is dedicated to literature 

revision aiming at to update the reader with the state of the art regarding the following 

issues: the fundaments of the ferroelectric and piezoelectric phenomena, description of the 

BLSF materials, especially SBT and SBN, methods for growing single crystals (high-

temperature self-flux solution method) and processing textured ceramics (templated grain 

growth), and finally the advantages, disadvantages and current functionality of BLSF 

materials on memory and piezoelectric applications. 

In Chapter 2, the experimental procedures used for growing SBT and SBN single 

crystals, for processing SBT textured ceramics, and for characterizing the single crystals 

and the textured ceramics are detailed. 

The obtained results are presented, analyzed and discussed in the next two chapters. 

In Chapter 3, the results regarding the study of the processing conditions for growing large 

and high-quality SBT single crystals and their application to the growth of SBN single 

crystals are discussed. In both cases, the crystal morphology is analyzed based on their 

crystalline structure. Structural, dielectric, ferroelectric and piezoelectric characterization 

data are used to describe the intrinsic anisotropy of both SBT and SBN single crystals. 
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Chapter 4 discusses the effects of the processing parameters on the microstructure 

and degree of texture of both seeded and unseeded SBT ceramics. The microstructure 

evolution is analyzed and correlated with the processing parameters via a stereological 

analysis. The anisotropy of the dielectric and ferroelectric behaviors of the textured 

samples and its dependence on the degree of texture is demonstrated. Finally, a 

quantitative model relying on the texture analysis is put forward for predicting the 

spontaneous polarization of SBT ceramics as a function of the degree of texture. 

The last chapter of this thesis is used for presenting the general conclusions of the 

present work and to outline some future work for complementing it. 
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1.1. Introduction 

It is the purpose of this chapter to provide a brief description of the ferroelectric and 

piezoelectric phenomena in ferroelectrics and related materials for electronic and memory 

applications. Firstly, the fundamental issues associated with the ferroelectric phenomena 

such as phase transitions, appearance of domains and switching of polarization vector will 

be outlined, followed by a brief description of the basic physical properties and structures 

of common ferroelectric materials with special attention to the Aurivillius family. 

Single crystals of ferroelectric materials are being received a great attention today, 

mainly due to their elevated ferroelectric, piezoelectric, and dielectric properties. Thus, in 

the following section, several methods for growing ferroelectric crystals, in particular, the 

high-temperature self-flux solution method will be introduced. On the other hand, lead-free 

piezoelectric components, such as bismuth layer structured ferroelectrics, are becoming 

increasingly important for the substitution of lead-based materials for high-temperature 

piezoelectric applications. Therefore, different methods for obtaining textured piezoelectric 

ceramics, in particular, the templated grain growth method will be also described. 

Finally, the basic operation of a memory device and some characteristics of 

piezoelectric components will be provided as briefly as possible, with special focus to the 

functionality of lead-free ferroelectric materials. 

1.2. Ferroelectricity and Piezoelectricity: Basic Definitions 

1.2.1. Ferroelectric phenomena and spontaneous polarization 

Ferroelectricity is a phenomenon that was discovered by Joseph Valasek in 1921 

during his studies of single crystals of Rochelle salt (NaKC4H4O6·4H2O).1 Since then, 

many ferroelectric materials have been discovered and several essential features of the 

phenomenon (accompanied with a number of phenomenological theories) were studied and 

described in several books.2-6 Chronological information on the early study of ferroelectric 

materials with different structure and their relevant properties are presented in Table 1.1. 
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Table 1.1 Chronological list and relevant properties of early ferroelectric crystals.4,5 

Name and chemical 
formula 

Curie 
Temperature 

TC ( ºC ) 

Spontaneous 
Polarization 

PS ( µC/cm2 ) 

Structural 
family 

Year of first 
report 

Rochelle Salt 
NaKC4H4O6·4H2O 23 0.25 Hydrogen 

Bonds 1920 

Potassium Dihydrogen 
Phosphate KH2PO4 (KDP) -150 4.8 Hydrogen 

Bonds 1935 

Barium Titanate 
BaTiO3 

120 26 Perovskite 1945 

Lead Titanate 
PbTiO3 

490 57 Perovskite 1950 

Lead Zirconate Titanate ∗ 
Pb(ZrxTi1-x)O3 (PZT) 

~ 375 > 40 Perovskite 1952 

Strontium Barium Niobate 
(Sr0.5Ba0.5)Nb2O6 

120 30 Tungsten 
Bronze 1960 

Bismuth Titanate 
Bi4Ti3O12 

675 50 Aurivillius 1961 

∗ Polycrystalline ceramics near the morphotropic phase boundary (MPB). 

Ferroelectric materials are characterized by a spontaneous polarization (PS) that can 

be reoriented by the application of an electric field over some temperature range. This 

spontaneous polarization (dipole moment per unit volume) typically arises from the small 

displacements of some of the ions off their centro-symmetric position in the unit cell of 

their crystallographic structure. Some other ordering processes (e.g., order-disorder) can 

also result in a reversible dipole moment. Figure 1.1 illustrates the unit cell of the ABO3 

perovskite-type structure for the BaTiO3 showing the corresponding ionic displacements. 

Since electrical properties are strongly related to the crystal structure, the orientation of 

spontaneous polarization usually coincides with crystallographic axes. Most ferroelectric 

materials posses a transition temperature (Curie point, TC), below which they are polar 

(non-centro-symmetric) and above which they present a centro-symmetric structure and, 

then, lose the spontaneous polarization. In this state the material is termed paraelectric. 
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Figure 1.1 Several views of the unit cell of the ABO3-type perovskite structure for 
BaTiO3.4-6 Above TC the cell is cubic, while below TC the structure is tetragonal with Ba2+ 
and Ti4+ ions displaced relative to the O2- ions. 

The electric displacement (Di) in a dielectric material is related to the applied electric 

field (Ej) by the relation,7 

jjii ED ε=        (1.1) 

where εij (F/m) is the dielectric permittivity of the material. The relative dielectric 

permittivity, εr ij, is defined as, 

jiroji εεε =           (1.2) 

where εo is the dielectric permittivity of the vacuum (8.85 × 10-12 F/m). 
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The expression (1.1) can be written also as, 

iioi PED += ε            (1.3) 

where Pi is the polarization of the material, which includes both the spontaneous (if any) 

and induced contributions. Generally, the dielectric permittivity is obtained from the 

capacitance of the material at a frequency well below mechanical resonances (e.g., 1 kHz). 

The dielectric loss is defined as the tangent of the loss angle, tanδ, e.g., the ratio of the 

imaginary part ε" to the real part ε' of the permittivity,8 

ε
εδ
′
′′

=tan        (1.4) 

The dielectric permittivity and the loss factor of a ferroelectric material are important 

electrical parameters of the device that often have a peak at TC, while the spontaneous 

polarization vanishes at this point (i.e., see Fig. 1.4 for typical 1st and 2nd order phase 

transitions in ferroelectric crystals). 

1.2.2. Piezoelectric coefficients and related properties 

The piezoelectric effect was discovered by Jacques and Pierre Curie in 1880 during 

their study of the effects of pressure on the generation of electrical charge on crystals such 

as quartz, tourmaline and Rochelle salt.9-11 They found that, if certain crystals are subjected 

to a mechanical force, they become electrically polarized and the degree of polarization is 

proportional (i.e., linear) to the applied stress. Piezoelectric materials also show the inverse 

effect, where a geometric strain (deformation) is produced by the application of an electric 

field. For a crystal to exhibit the piezoelectric effect, its crystal structure should also be 

non-centrosymmetric as in the case ferroelectrics. In fact, all ferroelectric materials have to 

be piezoelectrics (see Fig. 1.2 for crystal classification scheme). 

Piezoelectricity is a 3rd rank tensor effect, where the direct and inverse effects can be 

expressed in tensor notation as,7 

kjkjii TdP =   (Direct piezoelectric effect)  (1.5) 

kjikji EdS =   (Inverse piezoelectric effect)  (1.6) 
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where Pi is the polarization produced along the i-axis in response to the applied stress Tjk, 

and dijk (= dkij) is the piezoelectric coefficient. For the inverse effect, Sij is the strain 

generated along a specific orientation of the crystal in response to the applied electric field 

Ek along the k-axis. The units of the d coefficient are (C/N) or (m/V). 

 

Figure 1.2 The crystal classification scheme for 32 point groups.5 

 

Figure 1.3 Directions X, Y and Z and illustration of the shear mode.7,11 

Since piezoelectric materials are anisotropic, their physical constants must depend on 

both the orientation of the applied stress or electric field. Consequently, each constant 

generally has two subscript indices that refer to the directions of the two related quantities 

(i.e., strain and electric field for piezoelectricity, or electric displacement and electric field 

for permittivity). The direction of positive polarization is agreed to coincide with the Z-

axis of a rectangular system of X, Y and Z axes (see Fig. 1.3). Directions X, Y and Z are 

represented by the subscripts 1, 2 and 3, respectively, and the shear displacements about 

these axes are represented by the subscripts 4, 5 and 6, depending on the orientation of 

1(x) 

2(y) 

3(z)

5 
4 

6

- 

+ 

32 Crystal Classes (Point Groups)

11 Centric 21 Non-Centric

20 Piezoelectric 1 Non-Piezoelectric 

10 Pyroelectric Ferroelectric 
If PS is reorientable
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shear plane. Definitions for permittivity and piezoelectric coefficient (the most used 

parameters in this work) are presented in Table 1.2. 

Table 1.2 Definitions of some constants used in this work, dielectric permittivity (ε) and 
piezoelectric coefficient (d).11 

Constant Definition 

ε11 Permittivity for D and E in direction 1 (perpendicular to PS) 

ε33 Permittivity for D and E in direction 3 (parallel to PS) 

 

d33 

Induced polarization in direction 3 (parallel to PS) per unit stress 

applied in direction 3 or induced strain in direction 3 per unit 

electric field applied in direction 3. 

 

d31 

Induced polarization in direction 3 (parallel to PS) per unit stress 

applied in direction 1 (perpendicular to PS) or induced strain in 

direction 1 per unit electric field applied in direction 3. 

 

d15 

Induced polarization in direction 1 (perpendicular to PS) per unit 

shear stress applied about direction 2 (2nd direction perpendicular 

to PS) or induced shear strain about direction 2 per unit electric 

field applied in direction 1 (see Fig. 1.3). 

1.2.3. Ferroelectric phase transitions 

Early research work on ferroelectric phase transitions is summarized in several 

articles by R. E. Nettleton.12 When the temperature decreases through the Curie point, a 

ferroelectric crystal undergoes a structural phase transformation from the paraelectric state 

to the ferroelectric one. If there are two or more ferroelectric phases in a crystal, the Curie 

point only specifies the upper temperature at which the paraelectric-ferroelectric phase 

transition occurs.5 Some ferroelectric crystals, such as GASH (guanidine aluminum 

sulphate hexahydrate), LiH3(SeO3)2 and the BaCoF4 family, do not possess Curie points 

owing to the fact that they remain ferroelectric up to their decomposition temperature.13-15 
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The most important progress in the modern theory of ferroelectric phase transitions is 

the concept of a soft mode, which was proposed on the basis of lattice dynamics by W. 

Cochran in the end of the 1950´s.16 According to the concept of a soft mode, ferroelectric 

order stems from the instability of a transverse vibrational mode, referred to as a soft mode 

or a ferroelectric mode. Detailed lattice dynamic calculations for several ferroelectric 

crystals and more rigorous mathematical treatments of the soft mode in ferroelectrics have 

been reported by Blinc and Zeks.17 Near TC the crystalline lattice is also “soft” and can be 

polarized strongly with a relatively small coercive field. Therefore, the dielectric 

permittivity of many of useful ferroelectrics is very high in the vicinity of TC, and can 

reach 10,000-80,000 at this point. This phenomenon is usually called dielectric anomaly. 

The “softness” of the lattice at temperatures near TC makes dielectric properties and other 

related properties such as elastic, optical and thermal constants, to be temperature 

dependent in a wide range of temperatures around TC.5 In most ferroelectrics, the 

temperature dependence of the dielectric permittivity above TC (in the paraelectric phase) 

can be described by a simple law called the Curie-Weiss law,4,5 

wc
o TT

C
−

+= εε          (1.7) 

which is originated from the temperature dependence of the first coefficient in the 

phenomenological expression for Gibbs free energy in Landau theory.4 In this case, C is 

the Curie-Weiss constant and TCW is the Curie-Weiss temperature, which is generally 

somewhat lower than TC in the case of a first-order phase transition, while for a second-

order phase transition TCW = TC. 

The transition from the paraelectric to the ferroelectric state occurs differently in 

different types of ferroelectric materials. These transitions may be of the first or second 

order in classical proper ferroelectrics.4 The order of the phase transition is defined by the 

discontinuity in partial derivatives of the Gibbs free energy, G, at the phase transition 

temperature.18 By the definition, for an nth-order phase transition, the nth-order derivative of 

G is a discontinuous function at the transition temperature. Thus, spontaneous polarization 

and strain change continuously at TC for a ferroelectric with 2nd-order phase transition, and 

are discontinuous at TC for a ferroelectric with 1st-order phase transition. It should be 
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mentioned that the slope of the reciprocal permittivity versus temperature curve below TC 

is negative and twice that above TC for a 2nd-order phase transition, while the ratio of these 

slopes immediately below TC to that above TC is -8 for a 1st-order phase transition.4,18 

Phenomenological theories (sometimes called thermodynamic theories) are based on 

Landau-Ginsburg-Devonshire models,19 and have been also reviewed in the literature.2-5 

Figure 1.4 summarizes, schematically, the temperature dependence of the dielectric 

permittivity and the spontaneous polarization for different ferroelectric phase transitions.18 

 

Figure 1.4 Schematic representations of ferroelectric phase transitions via temperature 
dependences of the dielectric permittivity ε and the spontaneous polarization PS, for (a) first- 
(b) second-order ferroelectric, and (c) a relaxor ferroelectric.18 

Other ferroelectric materials called relaxors, as exemplified by several perovskite-

type compounds [e.g., Pb(Mg1/3Nb2/3)O3] and tungsten-bronze-type compounds [e.g., (Sr1-x 

Bax)Nb2O6], can be distinguished from normal ferroelectrics such as BaTiO3 and PZT, by 

the presence of a broad, diffused and dispersive dielectric peaks on cooling over the so-

called transition temperature, Tm, at which the permittivity is maximum [see Fig. 1.4(c)].20 

In relaxor ferroelectrics, the Curie-Weiss law is not completely obeyed close to Tm. 

1.2.4. Ferroelectric and ferroelastic domains 

Once the ferroelectric crystal is cooled down across the Curie point, an electrical 

polarization develops. If it develops uniformly throughout the crystal, a depolarizing field 

(Ed) will appear as shown in Fig. 1.5(a).8 To minimize the electrostatic energy associated 

with the polarization interaction with depolarizing field, uniform alignment of electric 

dipoles only occurs in certain regions of the crystal, while in other regions polarization 

may be oriented oppositely, as shown in Fig. 1.5(b). Such regions with uniform 
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polarization value are called ferroelectric domains, and the interface between two adjacent 

domains (with thickness typically of the order of 10-100 Å) is called the domain wall.5 

Ferroelectric domains were first demonstrated in a study of spontaneous birefringence in 

barium titanate single crystals.21 Domain walls that separate different orientations of the 

spontaneous polarization vector are ferroelectric domain walls, while those which separate 

different orientations of the spontaneous strain (associated with mechanical twinning) are 

ferroelastic domain walls. Inside the domain wall the dipole/strain orientation changes 

gradually from one domain orientation to another. 

The configuration of ferroelectric domains depends on the crystal structure. The 

spontaneous polarization in an ideal ferroelectric crystal can be distributed with equal 

probability among several crystallographic directions of the centro-symmetric prototype 

structure (paraelectric phase). In a tetragonal phase, for example, the spontaneous 

polarization can be oriented only along three mutually perpendicular crystallographic 

directions, giving rise to two types of domain walls [see Fig. 1.5(c)]: the walls that separate 

domains with oppositely oriented polarization (called 180°-walls), and those which 

separate domains with mutually perpendicular polarization (called 90°-walls). The 90°-

walls are both ferroelectric and ferroelastic domain walls, because they separate regions 

with different orientation of the polarization and strain. Since the formation of the domain 

walls requires some energy, there is a certain amount of energy (domain wall energy, Wdw) 

associated with them, in addition to the elastic energy (We) due to 90º domains.22 The 

switching of polarization by 180º does not involve elastic deformation, while the switching 

of 90º does involve elastic deformation, and the energy of both should be different. From 

energy considerations, in real crystals, domain patterns depend on many factors, including 

the defect type and concentration, stress and electric history, temperature range relative to 

TC, boundary conditions, and even the history of the crystal growth.4 

From a phenomenological point of view, the multidomain state is not energetically 

favorable if the system is free from other constraints.23 However, in reality, other forces 

(electrical and/or elastic) are always present during crystal growth and preparation. The 

external forces, in addition to the existence of multiple nucleation sites during phase 

transition, prevent the ferroelectric system from reaching a single domain state. The 

presence of a large mechanical stress in a crystal results in the development of non-180º 
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domains wall configured to minimize the strain.22 Thus, the natural state of a ferroelectric 

crystal is generally multidomain configuration rather than single domain. Nevertheless, this 

multidomain state can usually be transformed into a single domain by applying an electric 

field parallel to one of the polar directions. 

 

Figure 1.5 (a) Surface charge and depolarizing field (Ed) associated with spontaneous 
polarization (PS). (b) Formation of 180º domains to minimize the electrostatic energy.  
(c) Schematic representation of 180º and 90º domain walls.7,8 

Ferroelectric properties of any ferroelectric material are largely determined by its 

static domain structure, together with nucleation of new domains and domain wall 

mobility. The way in which the material splits up into domains upon the transition from the 

paraelectric to the ferroelectric phase depends strongly on the mechanical and electrical 

boundary conditions imposed on the sample, as well as on the nature of the sample itself. 
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1.2.5. Polarization switching and hysteresis loop 

As described above, ferroelectric crystal is likely in a polydomain state when it has 

just been grown and cooled down across its Curie point. However, each individual domain 

can be reoriented upon application of the external electric field of high enough strength. 

This dynamic process of domain reversal is called domain (or polarization) switching.5 

The parameters of ferroelectric domains switching are anisotropic and depend on the 

temperature and the strength of the applied electric field.21,24 When the direction of the 

applied electric field is opposite to the polarization direction of a domain, a new domain 

may appear inside the old one by means of nucleation and growth. The motion of the 

domain wall depends not only on extrinsic physical mechanisms but also on the stress 

distribution, space charges and defects in the crystal.5 

When an alternative field of sufficiently high amplitude is applied to a ferroelectric 

material below TC, the polarization shows a hysteretic behavior with the applied electric 

field, as illustrated in Fig. 1.6(a).4,5,9 The observation of the polarization-electric field  

(P-E) hysteresis loop is often used for the identification of ferroelectrics. For a typical 

ferroelectric material, the first term in Eq. 1.3 is negligible, and a D-E loop and P-E loop 

become equivalent. Application of a weak electric field generates a linear P(E) relationship 

because the field is not large enough to disturb or switch any domain and the crystal will 

behave as a normal dielectric material (paraelectric), which can be described as, 

jojiri EP εε=        (1.8) 

At low and at very high electric fields a ferroelectric behaves like an ordinary 

dielectric with a high dielectric constant, but on approaching to the coercive field (EC) the 

domain walls can move from their equilibrium position and domains that are oriented 

favorably with respect to the direction of the electric field grow rapidly at the expense of 

domains with opposite polarization direction, producing a switching of net polarization and 

a large P-E non-linearity. Once most of domains are switched, the material is said to reach 

its saturation polarization, where almost single domain state is attained. If the applied 

electric field is then removed, some of the domains will remain aligned and the crystal will 

have a remanent polarization (Pr). The extrapolation of the high field linear segment of the 

hysteresis loop back to the polarization axis represents the value of the spontaneous 
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polarization (PS), e.g., the polarization of a single domain in the absence of electric field. 

Following the P-E loop, the value of the negative electric field required to return the net 

polarization to zero is again the (negative) coercive field. Further increase of the field in 

negative direction will cause an alignment of the dipoles in this direction and the cycle can 

be completed by reversing the field direction once again. Thus, the relation between P and 

E is represented by the hysteresis loop as shown in Fig. 1.6(a).4,5,9 

In addition to the P-E hysteresis loop, polarization switching by an external electric 

field leads to a strain-electric field (S-E) hysteresis in ferroelectric materials, as shown in 

Fig. 1.6(b).2-5,8,9 The shape resembles that of a butterfly, and thus it is often referred to as 

the butterfly loop. At low electric fields, only a linear strain vs. electric field relationship is 

obtained due to the converse piezoelectric effect. The slope of the S(E) curve near the zero 

electric field represents the piezoelectric modulus (d33 for the longitudinal strain). As the 

field is increased, the strain is no longer linear with the field due to domain switching.2 

 

Figure 1.6 (a) P-E hysteresis and (b) S-E butterfly loops.4,5,9 

1.3. Some Common Ferroelectric Materials 

1.3.1. Ferroelectric perovskites family 

Ferroelectric properties of ABO3 perovskites were first discovered in barium titanate 

by Wul and Goldman in 1945.25 BaTiO3 was considered not only as a model system for 

ferroelectricity, but also as a main material for practical applications. Shortly after that, the 
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whole class of ferroelectric perovskites was discovered by several groups.26-28 Perovskite is 

the mineral name of calcium titanate (see Fig. 1.1 for ABO3 crystal structure). Its simplest 

structure is cubic (space symmetry Pm3m), which is the high temperature form for most 

ABO3 oxides, but transforms to a pseudocubic (tetragonal, rhombohedral or orthorhombic) 

when the temperature decreases below the Curie point.5 For simple perovskites such as 

BaTiO3, the polarization is attributed mainly to the displacement of B-site ion (titanium in 

this case) from the center of BO6 octahedra. 

The most commercially available ferroelectric materials belong to the perovskite 

family, which includes BaTiO3, lead titanate (PbTiO3), potassium niobate (KNbO3) and 

many compositions in the PZT system: lead zirconate-lead titanate (PbZrxTi1-xO3). In fact, 

PZT compositions are now the most widely exploited of all piezoelectric ceramics both in 

research and industry; however, this system is very difficult to obtain in the form of high-

quality single crystals.29,30 ABO3 structure is very tolerant to cation substitution of both A 

and B lattice sites, and hence may lead to more complex compounds, such as 

Pb(Mg1/3Nb2/3)O3, Pb(Zn1/3Nb2/3)O3, (K1/2Bi1/2)TiO3, Pb(Fe1/2Ta1/2)O3, 

Pb(Co1/4Mn1/4W1/2)O3 and, in many cases, to the solid solutions between some of them. 

The substitution of alkaline-earth ions at the perovskite A site by Pb ions induces another 

soft mode, in which the A-site ions contribute to the spontaneous polarization, resulting in 

an enhancement of the ferroelectric polarization.31 On the other hand, Yamashita et al.32,33 

have reported a detailed study of the effect of the molecular mass of B-site ions in the 

electromechanical coupling factors of lead-based perovskite piezoelectric materials. 

1.3.2. Bi-layer structured ferroelectrics (BLSF) 

Ferroelectric materials belonging to the Aurivillius family owe their name to Bengt 

Aurivillius, who found in 1949 a new phase (Bi4Ti3O12) with a laminar structure when 

studying the phase diagram of the bismuth oxide-titanium oxide.34 However, it was not 

until 1959, when Smolensky et al. discovered ferroelectric properties in the PbBi2Nb2O9 

system,35 a representative compound of a large family of Bi-layer structured ferroelectrics 

(BLSF). Later on, the same authors and E. C. Subbarao have confirmed ferroelectric 

properties in a large number of BLSF materials.36-39 The crystal structure of BLSF 
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materials consists of layers of pseudo-perovskite blocks, infinite in two dimensions, 

interleaved with bismuth oxide layers (see Fig. 1.7), having general formula,36-38 

−
+−

+ 2
131

2
22 )()( mmm OBAOBi , (m = 1, 2, …, 5) 

where m denotes the number of BO6 octahedral layers in the perovskite block interleaved 

between two (Bi2O2) layers, A can be mono-, di-, or trivalent ions (Na1+, K1+, Sr2+, Ba2+, 

Ca2+, Pb2+, Bi3+, rare-earth elements) and B represents small ions with high charge such as 

Ti4+, Nb5+, Ta5+ W6+ or some combination of them. Most of these compounds have been 

assumed to be proper ferroelectrics at room temperature with a ferrodistortive paraelectric-

ferroelectric phase transition in the range of 300-700 ºC. Typical examples of the prototype 

structure as a function of the value of m are shown in Fig. 1.7.40 For simplification, only 

half of the unit cell is shown for each case. 

 

Figure 1.7 Aurivillius prototype structures as a function of m.40 

In general, BLSF compounds have been reported to be pseudotetragonal at room-

temperature, with a tetragonal high-symmetry (space group I4/mmm) in the paraelectric 

state transforming to an orthorhombic symmetry in the ferroelectric state.5 As in other 

orthorhombic structures, the a and b-axes are rotated by 45º with respect to the parent 

tetragonal phase (see Fig. 1.8). 
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From the very beginning it was understood that the layered structure of BLSF should 

lead to a high dielectric, ferro-, and piezoelectric anisotropy due to predominantly 2D 

character of ferroelectric switching. But it was only in the end of the 60s, when Cummins 

and Cross could demonstrate highly anisotropic optical and electrical properties of one of 

the most popular BLSF compositions, Bi4Ti3O12.41 In BLSF, the dielectric and ferroelectric 

anisotropy originates from the two-dimensional perovskite-type structure and depends on 

the value of m (mainly on whether m is even or odd).42 The most studied examples of 

BLSF compounds where m is odd are: Bi2WO6 (m = 1), where the A-site does not exist, 

and the above mentioned Bi4Ti3O12 (m = 3). On the other hand, the most studied BLSF 

compounds where m is even are: SrBi2Ta2O9 (SBT), SrBi2Nb2O9 (SBN), Bi3TiNbO9  

(m = 2), and Bi5FeTi3O15, (Ca,Ba,Sr)Bi4Ti4O15 (m = 4). There are, however, more complex 

structures corresponding to the intergrowth of perovskite blocks with different sizes, i.e. 

Bi7Ti4NbO21, where perovskite blocks with m = 2 and 3 intercalate and are separated by 

the (Bi2O2) layers, or SrBi8Ti7O27, where m intercalates between 3 and 4.43-45 

 

Figure 1.8 Illustration of the crystal axes in prototype tetragonal and ferroelectric 
orthorhombic structures.41 

In his original work Aurivillius noted an orthorhombic distortion in this type of 

materials, but failed to observe any weak superstructure reflections and, therefore, 

described the structure with an incorrect space group Fmmm. Subsequently, Newnham  

et al. proposed for the first time that the room-temperature crystal structure of the 

(Sr,Ba)Bi2Ta2O9 system is better described in the orthorhombic space group A21am.46 The 
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room-temperature crystal structure of some BLSF single crystals (with m = 1, 2 and 3) was 

studied by Newnham et al. at the beginning of the 70s, when it was also established that 

the spontaneous polarization vector of these materials lies in the ab-plane of the pseudo-

perovskite blocks.42,46-48 These works were re-refined by Rae et al. at the beginning of the 

90s by introducing new symmetry elements in single-crystal x-ray diffraction studies.49-51 

In the case of Bi4Ti3O12 (m = 3) system, where m is odd, the small component of PS along 

the c-axis was also explained from a crystallographic point of view.50 The ferroelectric 

state is a result of a monoclinic distortion (space group B1a1) rather than of an 

orthorhombic one, and the polarization direction is inclined at a small angle (~ 4.5º) from 

the a-axis in the ac-plane, which can be resolved into two reversible components: a large 

one of ∼ 50 µC/cm2 along the a-axis and a small one of ∼ 4 µC/cm2 along the c-axis.41 
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Figure 1.9 Crystal structure of SrBi2(Ta,Nb)2O9 in the tetragonal prototype phase.53 

As many other BLSF compounds with m = 2 or 4 (even-layers), SBT and SBN 

represent an orthorhombic distortion in the ferroelectric state (space group A21am) of the 

high-symmetry body-centered tetragonal prototype structure (space group I4/mmm) due to 

the consequence of changes in both the bismuth oxide and perovskite layer.51,52 In the 

prototype structure, Sr is coordinated by 12 oxygen atoms, bismuth is bound by 4 oxygen 
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atoms in a square pyramidal geometry, while tantalum (niobium) occupies the typical 6-

fold BO6 position in the perovskite layer (see Fig. 1.9 for the body-centered tetragonal 

prototype phase).53 The continuous O–Nb–O chains expected in a simple perovskite-type 

structure are interrupted along the c-axis not only by the (Bi2O2) layers but also by 

translation of the perovskite plane perpendicular to the c-axis relative to the neighboring 

perovskite planes. On the other hand, unbroken O–Nb–O chains are present in the plane 

perpendicular to the c-axis. 

In this system, Bi2O2 layers are proposed to largely control the electronic response 

(band gap, effective masses, etc.),54 while the dielectric and ferroelectric anisotropy 

originates from the two-dimensional perovskite-like structure, where pseudo-perovskite 

blocks (SrB2O7)2- (with B = Ta, Nb) are composed of double BO6 octahedra with Sr at the 

A sites. In ferroelectric SBT (or SBN), there exist three displacive-type soft modes:51,55,56 

the Γ(B3u) mode, which is the displacive mode of the Sr–Ta(Nb)–O layers relative to Bi–O 

layers along the a-axis in the ac-plane; the Xx(B2u) mode, which is due to rotation of the 

Ta(Nb)O6 octahedra in the bc-plane; and the Xx(B1g) mod, which is due to rotation of the 

Ta(Nb)O6 octahedra in the ab-plane. The only mode that contributes to the spontaneous 

polarization is the Γ(B3u) mode.51 First principle calculations of the electronic structure 

have demonstrated that most of the contribution to the macroscopic spontaneous 

polarization in SBT is due to the displacements of the quasiparaelectric Sr–Ta–O layers 

relative to Bi–O layers along the a-axis in the ac-plane from their corresponding positions 

in the parent tetragonal structure.56,57 Shimakawa et al.58 have confirmed this result from 

the x-ray diffraction Rietveld analysis, where the largest atomic displacements were 

obtained for the Bi3+ on the (Bi2O2) layer and the O2– in the BO6 octahedron in opposite 

directions, playing a transcendental role in the spontaneous polarization of SBT. On the 

other hand, in SBN the Sr–Nb–O layers are not quasiparaelectric and the displacements of 

the six oxygen atoms in the NbO6 octahedra relative to the Bi–O layers also contribute to 

the total spontaneous polarization.56 

Schematic representations of BO6 octahedral distortions in perovskite blocks of 

SrBi2(Ta,Nb)2O9 are shown in Fig. 1.10, where the tilting and rotation of the octahedra as 

projections in the ac- and ab-plane, respectively, can be observed.58-61 For stoichiometric 

SBT, the tilt angle from the c-axis which is defined as α [see Fig. 1.10(a)] is reported to be 
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≈ 8º [O(2)–O(1)–O(2) bond angle: 164º], while the components along the a- and b-axes, 

i.e., in the ac-plane (αx) and bc-plane (αy), are ≈ 0.4º and 7.9º, respectively.59 On the other 

hand, the BO6 octahedra predominantly rotate in the ab-plane accompanied with the whole 

shift of the octahedra along the a-axis, as schematically illustrated in Fig. 1.10(b). The 

average octahedral rotation angle (β) is reported to be ≈ 4.3º.59,61 The spontaneous 

polarization vector, however, lies entirely along the orthorhombic a-axis (polar axis), since 

dipole moments caused by ionic displacements along b- and c-axes, in contrast, are 

cancelled out due to the presence of glide and mirror planes perpendicular to their axes, 

respectively.51,58 This spontaneous polarization can be calculated from the equation,58-60 

∑ ∆××
=

i

iii
s V

xQm
P       (1.9) 

where mi is the site multiplicity, ∆xi is the atomic displacement along the a-axis of the 

corresponding position in the parent tetragonal (I4/mmm) structure, Qi represents the ionic 

charge for the ith constituent ion, and V is the volume of the unit cell. Using this formula 

and the Rietveld refined structure; Rae et al.,51 Shimakawa et al.,58,60 and Noguchi  

et al.59,61 have independently calculated the spontaneous polarization for the stoichiometric 

SBT and obtained PS ≈ 14, 18 and 16 µC/cm2, respectively. For SBN, on the other hand, 

the spontaneous polarization was estimated as PS ≈ 20 µC/cm2 by Shimakawa et al.62 

 

Figure 1.10 Schematic representation of the TaO6 octahedral distortions in perovskite 
blocks of SrBi2(Ta,Nb)2O9.59,61 
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For a long time, an intermediate phase between the high-symmetry tetragonal 

(I4/mmm) and the ferroelectric orthorhombic (A21am) phases has been suggested for some 

BLSF compounds, in particular, for the cases with even m value.42,46 Recently, Onodera et 

al. have proposed the existence of an intermediate phase in SBT based on the anomalous 

change observed in the lattice parameters vs. temperature.63,64 Hervoches et al. suggested 

the Amam space group for this intermediate orthorhombic phase between prototypes 

(I4/mmm) and ferroelectric (A21am) phases in the SBT system.65 This intermediate phase 

has been shown to be ferroelastic and to occur between TC ≈ 300 ºC (ferroelectric-

paraelectric phase transition) and ~ 550 ºC (ferroelastic-paraelastic phase transition).65-69 

The centrosymmetric space group Amam is obtained from I4/mmm by tilting the BO6 

octahedra around 110-type axes, however, such tilting alone is not sufficient to induce 

ferroelectricity.70 The difference between the A21am (ferroelectric) and the Amam 

(paraelectric-ferroelastic) orthorhombic structures is that the displacive mode along the 

polar axis (a-axis) and the rotational mode of the TaO6 octahedra, around de c-axis, of the 

perovskite unit are both freezing out in the Amam space group. 

Even though this intermediate phase (Amam) has been observed in other BLSF 

compounds with even m value, e.g., SrBi4Ti4O15, it has not been observed in all BLSF 

compounds with even m value and its symmetry is still under discussion.70-73 For instance, 

SrBi2Nb2O9 exhibit just one phase transition from ferroelectric (orthorhombic, A21am) to 

paraelectric (tetragonal, I4/mmm) at TC ≈ 440 ºC with no evidence of any intermediate 

phase.72,74 In both cases, the transition temperatures are only approximate and can vary 

strongly with slight variations of the composition, e.g., in Sr-deficient and Bi-excess 

compositions, which is rather flexible in these compounds.58,59,75 

The stability of the perovskite-type unit of Sr(Ta,Nb)2O7, which may explain the 

structural distortion in terms of a lattice mismatch between BO6 and Sr-O planes, can be 

determined by considering the geometrical tolerance factor (t) introduced by V. M. 

Goldschmidt for perovskite structures, which is also valid for Aurivillius-type structures,39 
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where rA, rB and rO are the ionic radii of the A-site, B-site and oxygen ions, respectively. 

The following ionic radii: Sr2+ (CN = 12) = 1.44 Å for the A-site cation, Ta5+ and Nb5+  

(CN = 6) = 0.64 Å for the B-site cation, and O2- (CN = 6) = 1.40 Å, were used.76 The great 

stability of the perovskite-type unit in both SBT and SBN is obtained from t = 0.98, which 

is less than 1 but very close to unity (ideal perovskite lattice). This also means that in the 

orthorhombically distorted structure the BO2 plane is under compressive stress, while the 

Sr–O plane is under tensile stress.60 Nevertheless, contrary to other BLSF compositions 

such as ABi2Ta2O9 (A = Ba, Ca, Sr),60 the tolerance factor is not applicable to explain the 

difference in the ferroelectric properties between SBN and SBT. 

1.4. Single Crystals Growth 

1.4.1. Methods for growing single crystals 

For a long time a term “crystal” was identified with a quartz (meaning rock crystal), 

which was first used by G. Agricola in sixteenth century.77 Nevertheless, it was only 

several hundred years later that the general term crystal was used in a broad sense. Crystal 

growth is a relatively small but important area of modern materials science and many 

useful books dealing with this topic are found in the literature.78-80 The preparation of 

single crystals is more difficult than the preparation of polycrystalline materials. However, 

in polycrystalline materials, boundaries between individual grains are inevitably present, 

which may affect the material properties. 

The preparation of novel materials has contributed to important advances in research 

on lasers, magnetism, semiconductors, ferro- and piezoelectrics, etc. The current interest in 

various single crystals for device applications and fundamental studies has stimulated the 

development of many techniques, in most cases distinguished only by rough boundaries. 

There are a number of methods for crystal growth and their use depends largely on the 

quality of the crystals to be grown and nature of the materials.79 Table 1.3 summarizes 

shortly details, advantages and disadvantages of the most used crystal growth techniques. 

There are not strict rules for the choice of the growth method that might be 

particularly suitable for a given material. However, the universality of a method, its ability 

to produce large and high-quality crystals, requirements for specific equipment, and cost, 
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time and need of previous experience, are some of the criteria that determine its suitability. 

Particular attention has to be paid to the techniques that are relatively simple, easy to 

control, which produce reasonably perfect crystals, and are suitable to a wide range of 

materials to be grown. The optimum method has to be described as a sequence of steps 

including: preparation of raw materials, effective growth and post-growth treatments of 

crystals, etc., which leads to crystals with the required structural and compositional quality. 

Besides, it is also important to know all the possible thermodynamical and thermophysical 

information concerning the material to be grown. 

1.4.2. The high-temperature solution growth method 

As many other ferroelectric systems, BaTiO3 undergoes a structural transition at a 

temperature below its melting point, and because of this the crystal could not be grown 

from the pure melt. The needs of the single crystals of ferroelectrics like BaTiO3 for 

studying intrinsic properties and the nature of the phase transition of such materials has 

lead to the development of various methods for crystal growth, such as high-temperature 

solution (HTS) crystal growth. In recent years, HTS crystal growth has been successfully 

used to grow high-quality, pure and large single crystals for a wide range of materials for 

electronic devices and physical measurement purposes. 

There are several techniques included in HTS crystal growth that are often 

considered separately.78-80 The best known of these related techniques is the flux growth, 

where the solvent is a molten salt or oxide. When the flux contains only the constituents of 

the crystal, the method is called self-flux solution growth. M. Gaudin was the first to use 

the fluxed melt growth to crystallize corundum from silicate fluxes, potassium sulphide and 

sulphate.81 J. P. Remeika successfully employed the fluxed melt technique to grow for the 

first time large platy BaTiO3 crystals from solutions of potassium fluoride.82 It is worth to 

mention that it is rather difficult to define the terms high-temperature exactly. Although 

there are not strict values for the temperature limits, the growth temperatures are typically 

higher than the boiling point of water and lower than 2000º C. 
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Table 1.3 Most used techniques for crystal growth.78-80 

Technique Details Advantages / Disadvantages 

High-quality crystals, where no impurities are introduced except 
possible contamination from the crucible. 

Growth rate is higher than that achieved by other methods. Growth from 
pure melt 

The most important commercial method of crystal 
growth, where the pure material is first fused and 
then resolidified to yield crystals. 

Addition of seed crystals to the system substantially 
increases the power of the method. 

Several materials cannot be crystallised by this method because 
of theirs particular properties. 

The high viscosity lowers significantly the diffusion. 

A large number of organic and inorganic salts, including piezo- 
and ferroelectric materials, are crystallized from aqueous or 
organic solutions. 

Probably the oldest and simplest method to produce highly 
structural perfect crystals. 

Growth from 
solvents 

Single crystals are crystallized from supersaturated 
solutions: aqueous or ionising solvents such as NH3, 
H2S, HF, etc. 

There are many materials which are either chemically unstable 
or do not have an appropriate solubility. 

This technique is not suitable for growing large crystals. 

This is an easy process known as recrystallisation and may be 
carried out by normal sintering or straining and subsequent 
annealing of the material. 

Growth from 
solid state 

Few crystallites in a polycrystalline solid are 
allowed to grow preferentially with the elimination 
of theirs neighbors within the material. Recrystallisation is only possible in the case of materials that are 

stable at the temperature where significant diffusion takes place. 

Small crystals are generally obtained with low quality. 
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Suitable for the materials that are stable only over a narrow 
temperature range in a given flux, thus compromising the 
applicability of slow cooling. 

Molecular beam technique offers an easy control of the growth 
conditions by this method. 

Growth from 
vapour phase 

Widely used for the commercial preparation of thin 
film crystals in the semiconductor industry. 

A reversible reaction is utilised to carry the material 
to be crystallised as a volatile substance (vapour) to 
the region of crystallization. Main problems are to find out a suitable agent for transporting 

the material to be crystallised and the inability to produce large 
crystals because of the involved multinucleation. 

Many semiconductor materials have been grown by this 
method; it is also suitable for other systems such as: γ-Al2O3, 
SiC, etc. 

Crystals are generally dislocation-free. 

Vapour-
liquid-solid 

growth 

In multi-component growth, more than two phases 
may be involved, in this case, vapour-liquid-solid. 
The vapour phase reaction does not directly 
originate the crystal, but a liquid solution from 
which the crystal grows. 

The size of the crystal is not large. 

Enable crystals to grow well below their melting points, being 
particularly suitable for materials which: (a) have incongruent 
melting points, (b) undergo phase transition resulting in strain or 
fracture, (c) have very volatile constituents whose composition 
may change, and (d) are highly refractory. 

High-
temperature 

solution 
growth 

The material gets dissolved at high temperature in a 
suitable solvent and crystallization is allowed 
during the cooling, which makes the solution 
critically supersaturated. 

Low growth rates are observed and final small sized crystals are 
obtained. 
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Although HTS method for crystal growth have not found applications on an industry 

scale, they have been used by many groups to prepare ferroelectric crystals suitable for the 

study of fundamental physical properties, such as dielectric and piezoelectric anisotropy, 

domains configuration, structural phase transitions, etc. Table 1.4 summarizes some of the 

most frequently grown and studied ferroelectric perovskite single crystals. 

The following properties are prerequisite for the HTS and the flux:83 

(1) The material to be grown as a single crystal must be the only stable solid phase under 

the growth conditions. 

(2) The solubility of the crystal and its components in the flux should be high and should 

decrease with temperature. 

(3) The flux should have a low melting point and a low vapour pressure. 

(4) The viscosity of the solution should be low. 

(5) The solution should not attack the growth crucible. 

(6) The residual melt should be easily separated from the crystals. 

Table 1.4 List of recently grown ferroelectric perovskite crystals (with references). 

Chemical Formula Crystal size Habit References 

ABO3 family 
(A = Ba, Sr, Na, K and B = Ti, Nb, Ta) > 25 mm Cubic 84 - 86 

Na1/2Bi1/2TiO3 family < 10 mm Cubic 87, 88 

Pb(B1/3Nb2/3)O3 (B = Zn, Mg) > 10 mm Cubic 89, 90 

Pb(B1/3Nb2/3)O3-PbTiO3 (B = Zn, Mg) ~ 20 mm Cubic 91 - 96 

Pb(B1/2Nb1/2)O3-PbTiO3 (B = In, Sc, Yb) ~ 10 mm Cubic 97, 98 

In the growth of crystals from HTS, the material to be crystallized and the flux are 

put inside a platinum (Pt) crucible sealed with a Pt lid, and crystallization takes place when 

the high temperature solution is allowed to become critically supersaturated by cooling.78-80 

The most commonly used fluxes are basic oxides or fluorides like: PbO, PbF2, Bi2O3, 

B2O3, Na2O, or KF, which choice depends on the composition of the crystal to be grown. 

Supersaturation and supercooling are defined by the phase diagram. Figure 1.11 shows 
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schematically a pseudo-binary system of the flux and the solute, where the three ways to 

achieve the required supersaturation for crystal growth are represented,83 

(1) Crystal growth by slow cooling when the temperature is decreased from A to B and 

growth occurs along the arrow to C at varying growth temperature. 

(2) Crystal growth by flux evaporation when the solvent or a part of it is evaporating and 

the solute concentration increases from D to E at constant growth temperature. This 

method is frequently used for aqueous and organic solutions. 

(3) Crystal growth by vertical temperature gradient transport when the crystal grows in 

a colder region G of the furnace, while the crystallized material is continuously 

replaced at the furnace hotter region F, generally by dissolution of the polycrystalline 

nutrient. Since the growth temperature in each region of the furnace is constant, this 

steady state method is particularly suitable for the growth of solid solutions. 

 

Figure 1.11 Scheme of a pseudo-binary system of flux and solute.83 

The slow cooling is the most commonly applied method, where the required 

supersaturation for crystal growth is created by cooling the melt from the point A slowly 

below the liquidus temperature (T1) into the metastable region (Ostwald-Miers region), as 

demonstrated in Fig. 1.11.83 To reach the temperature of spontaneous – three-dimensional 

– nucleation (Tn) at point B, a larger supersaturation or supercooling (∆T = T1 - Tn) than 
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that required for the growth of a nucleus is necessary. Crystals grow at the lowest 

temperature, which is determined by the unavoidable temperature gradients, whether at the 

bottom of the crucible or near the surface of the melt. The crucible is placed in a muffle 

furnace, then, the temperature is increased well above the liquidus temperature of the flux 

and kept there for a while (soaking time) to achieve complete dissolution of all 

components. The temperature is then lowered just above the liquidus temperature very 

slowly to create the supersaturation for nucleation. In some cases, the temperature is 

increased again somewhat to reduce the number of nuclei (cycling). Heterogeneous 

nucleation is usually obtained at the wall of the platinum crucible which can be reduced by 

a long soak period above the liquids temperature.99 Growth should be terminated at least 

before the solution solidifies, usually performed by a faster cooling. The crystals must be 

separated from the solidified melt as far as possible mechanically, i.e., crystals can be 

separated from the flux at high temperature by inverting the crucible within the furnace, 

using a crucible with a volume twice as large as that of the melt.100,101 

The main advantages of this method is that it can be applied successfully to materials 

which: (a) melt incongruently, i.e., which decompose before melting; (b) undergo a phase 

transition resulting in a severe strain or even fracture; (c) have a very high vapor pressure 

at the melting point; (d) have very volatile components whose composition may change 

when heated at a temperature close to the melting point; and (e) are highly refractory.79 In 

such cases it is desirable to grow crystals at temperatures well below their melting points. 

The advantages of solution growth also include unconstrained growth conditions, no steep 

temperature gradient, low growth temperature, etc. Crystals grown at low temperatures 

compared to the melting point of the solute often have a better quality with respect to point 

defects, dislocation density, etc., than crystals grown directly from their own melt. 

However, HTS growth leads, in general, to substitution or interstitial inclusion of solvent 

ions into the crystal structure, microscopic incorporation of impurities, slow growth rates, 

etc. Thus, crystals obtained from the flux are in general of small size. For industrial 

production, the facetted form of the crystals grown from HTS is a severe disadvantage 

compared to the round boule obtained by pulling a seed crystal from the melt as allowed by 

the well-known Czochralski technique. 
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Nevertheless, the growing interest in the use of ferroelectric and ferromagnetic 

crystals increased the application of the HTS methods, providing a convenient and 

powerful method for obtaining samples for research and technological applications. In 

general, crystal growth from the melt is preferable whenever is possible. However, since 

only small crystals are often needed for basic investigation or measurements, the effort to 

grow these from HTS is not as strong as that from melt techniques. Furthermore, with 

some experience and with the choice of a suitable flux composition and growth methods, 

the disadvantages of the HTS growth can be minimized. 

1.5. Fabrication of Textured Ceramics 

1.5.1. Processing of ferroelectric ceramics and their properties 

The fabrication of most bulk ferroelectric ceramics starts with powder preparation 

(mixing and firing process). The powder is then pressed to the required shape and size, and 

the green sample is thermally processed for their densification and mechanical integrity. 

The most important steps that influence the product characteristics and properties are 

powder preparation, shaping and sintering. Specific information on the preparation and 

properties of ferro- and piezoelectric ceramics can be found in Jaffe et al.9 and Moulson  

et al.,8 among others. There has been a great deal of development in powder processing, 

shaping and sintering that has resulted in further expanding the application of piezoelectric 

ceramics.6-9 Some processing methods that have been traditionally used to fabricate 

electroceramics for piezoelectric applications are: extrusion, die pressing, slip casting, 

injection molding, tape casting, etc. In general, ceramics are formed by randomly oriented 

micrometric grains, which may vary in crystalline structure, composition, size, shape, and 

in term of internal stress to which they are subjected. The interfaces between grains, known 

as grain boundaries, are regions where changes in lattice orientation, composition and/or 

electrical behavior usually occur. The materials properties are basically controlled by the 

grain and/or grain boundary compositions, but will also be affected by the grain size and 

porosity of the sintered sample. 

In ferroelectric ceramics, such grains typically present an initial multidomain 

configuration, as shown in Fig. 1.12(a).5,7,8 Thus, these ceramics which are composed of a 
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random domain orientations are piezoelectrically inactive, i.e., the effects from the 

individual grains cancel each other and no noticeable piezoelectricity is observed. Poling is 

the commonly used method to orient the domains by polarizing the ceramics through the 

application of a static electric field in a specific direction at room or higher temperatures 

depending on the material [see Fig. 1.12(b)]. Even when some monodomain grains are 

obtained, the result will never be the full orientation of all the domains, and thus, the 

polycrystalline ceramic exhibits a remanent polarization lower than that of a single crystal. 

The oriented domain structure is fairly permanent unless the temperature exceeds the phase 

transition temperature or mechanical stress limits, or both. 

 

Figure 1.12 Domain configurations and poling process (b) in a ferroelectric ceramic and (c) 
in a textured ceramic. 

The development of texture in piezoelectric materials offers different routes for 

increasing the available piezoelectric response. In uniaxial ferroelectrics, or in materials 

where the spontaneous polarization is confined to a plane, texturing enables a more 

efficient alignment of the polar vector, increasing in this way the poling efficiency and thus 

the response.102 This is clearly seen if a uniaxial ferroelectric is considered, such as a 

member of the tungsten bronze structural family, in which two antiparallel domain states 

are allowed. In this case, it is very difficult to obtain a high degree of polarization during 

the poling process, as some grains will not have domains states that are possible to align 

with the electric field. Such grains may be completely unable to switch, and may thus 

constrain the switching of adjacent, better-aligned grains.103 In such materials, the 

measured remanent polarization may be substantially lower than the calculated value based 
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on an ensemble of single crystals with the same orientation distribution. A comparable 

situation, but less pronounced, appears in BLSF materials, where the spontaneous 

polarization is confined to a plane. 

In general, the controlled development of texture in electroceramic polycrystalline 

materials is a topic of recent interest in ceramic processing, since it allows improved 

tailoring of physical properties such as: piezoelectric, electrical or mechanical properties, 

approaching them to those of single crystals and enhancing in this way the sensing and 

actuating capabilities of the various devices. In certain materials the grains grow in an 

anisotropic form (whisker, needle or platelet shape) allowing the fabrication of grain-

oriented materials by using special forming techniques such as hot-forging or hot-pressing 

to induce orientation of the anisometric grains by shear-induced plastic deformation of 

grains, coupled with subsequent sintering.102,104-106 In addition, poling the ceramics in a 

preferential direction may also be easier in a textured ceramic, because the axes of the 

crystals are already aligned, as shown in Fig. 1.12(c). One of the most promising routes for 

controlled crystallographic and morphologic texture developments in polycrystalline 

ceramic bodies is the templated grain growth (TGG) process.107 

1.5.2. The templated grain growth (TGG) process 

Early works on TGG include several patents for producing single crystals from 

polycrystalline precursors as well as textured ceramics.108-110 TGG process can be applied 

either to the growth of a large single crystal or a small amount of anisotropically shaped 

particles (e.g., templates) distributed and oriented in a fine-grained matrix.107 In most 

cases, single crystals or textured ceramics are obtained by a homoepitaxial TGG process, 

where the matrix powder has the same composition and crystal structure as the template 

material. In this case, both the crystal layer and the matrix grow by a simple Ostwald 

ripening-type process (i.e., the large grains grow at the expense of the finer matrix 

grains).111 Alternatively, the TGG method is heteroepitaxial when the template material 

has a different composition, but the same crystal structure or the lattice matches with the 

matrix material, e.g., TGG of Pb(Mg1/3Nb2/3)O3-PbTiO3 or BaTiO3 single crystals from a 

SrTiO3 template.112,113 The lattice match ensures that the nucleation of the growing phase 
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to occur on the templates surface, and then further heating drives densification and 

subsequently grain growth in the same way as in the homoepitaxial case. 

To fabricate textured materials by TGG a small amount of anisotropic templates is 

dispersed in a matrix of relatively fine and equiaxed particles. Initially, the template 

particles may be randomly oriented, but become then aligned by a shear gradient imposed 

during forming (e.g., tape-casting, extrusion or uniaxial pressing); after that they are finally 

sintered to produce a dense textured ceramic.107 The template particle must have a high 

aspect ratio morphology (like a whisker or platelet), so that it can be mechanically oriented 

under the applied shear force during green forming. Depending on how the orientation axes 

are controlled, it is possible to obtain either fiber or biaxial (sheet) texture. 

The synthesis of the anisometric template particles and their necessary thermal 

stability during the TGG process are special challenges to the TGG process. The amount of 

grown material depends on the concentration, size, and distribution of the templates, while 

the resulting texture quality (e.g., degree of texture and orientation) depends on the initial 

alignment of the template particles.114 The template particles must have a good lattice 

match with the desired final composition, sufficient stability, and an appropriate driving 

force for growth. For instance, if the purpose of the texturing is to access physical 

properties that are correlated to crystallographic orientation (e.g., thermal conductivity, 

dielectric permittivity, piezoelectricity, etc.), it is preferable that the template axis matches 

the desired crystallographic orientation.107 

On the other hand, the matrix powder particles are of equal importance for successful 

TGG as the templates. In the homoepitaxial case, the matrix powder is already in the final 

phase form, and it is important that its size has to be finer than the template particles after 

densification and it must be sintered to high density (e.g., > 95% theoretical density).115 

When the matrix is a precursor to the final ceramic phase, the template particles can act as 

nucleation sites and control the phase transformation of the matrix. This process is referred 

in the literature to as reactive TGG (RTGG) because the dual role of the templates.116-118 In 

this case, the templates must react with the matrix to obtain the desired final phase, which 

takes the morphological form of the templates. 
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In general, the TGG process occurs in three stages:119-121 densification, rapid radial 

growth of individual template particles until template impingement, and slower growth by 

template thickening, as schematically shown in Fig. 1.13.107 Because the pores restrain the 

boundary motion, a significant template growth can not occur during densification, being 

generally limited until the matrix density is ≥ 90% theoretical density (TD) as observed by 

Messing et al.121-123 and Watanabe et al.124 in Al2O3 and Bi4Ti3O12 ceramics, respectively. 

During heating, the anisotropic template particles grow at the expense of the fine randomly 

oriented powder particles increasing the volumetric fraction of highly oriented material 

with a specific crystallographic orientation. The thermodynamic driving force for the 

migration of the template boundary into the polycrystalline matrix during the thermal 

processing appears from the difference in surface free energies between the advancing 

crystal plane and the matrix grains.107 A large matrix grain growth during sintering can 

reduce the thermodynamic driving force enough so that template growth stops. Therefore, 

the finer the matrix grain size, the higher the driven force for TGG. 
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On the other hand, the large area of low-energy faces on each template provides a 

common surface and influences the rotation of other small grains further from the template 

interface.125 In addition, secondary nucleation of new elongated grains from the matrix 

grains is also possible due to the cooperative arrangement of the matrix grains, resulting in 

a higher degree of texture.119 In almost all the cases of TGG, the kinetics of boundary 

migration is increased by intentionally introducing a liquid phase at the grain boundaries to 

reduce the stress around the templates, thus facilitating the densification and grain 

growth.107,115 Because a small amount of liquid is present during growth, template growth 

occurs by dissolution of the polycrystalline matrix grains and deposition on the lowest 

energy surface in the system, that is the template major face. 

In summary, TGG offers significant opportunities for reducing the cost of single-

crystal-like materials to produce large samples with simple or complex geometries.107 

Being based on a conventional powder processing and sintering, highly oriented ceramics 

can be achieved at a significantly lower cost as compared to other techniques including 

hot-forging and hot-pressing of anisotropically shaped particles, which are too expensive to 

be commercially viable. 

1.5.3. BLSF textured ceramics: Microstructure and properties 

In the last decade a variety of materials have been produced by TGG to yield highly 

oriented textured ceramics or produce single crystals with interesting properties, such as: 

Al2O3
114,115,120-122 and Mullite,119,123 with higher fracture toughness perpendicular to the 

basal surface; Si3N4
126,127 and SiC,128 with interesting fracture characteristics and thermal 

conductivity; and a variety of ferroelectric materials with piezoelectric properties similar to 

those of single crystals, e.g., Pb(Mg1/3Nb2/3)O3-PbTiO3,129-131 Sr0.53Ba0.47Nb2O6,103,132 

(Na1/2Bi1/2)TiO3,117,118 BaTiO3,133,134 and some BLSF, such as Bi4Ti3O12,124,125,135,136 and 

CaBi4Ti4O15.116,137 Recently, the interest in the study of BLSF textured ceramics has 

increased as a way to optimize their piezoelectric properties, approaching them to those of 

single crystals. The increase in the piezoelectric response of textured ceramics appears to 

be more significant in systems with fewer possible orientations for the spontaneous 

polarization.107 Thus, ferroelectrics where the polarization is confined to an axis (e.g., Sr1-x 

BaxNb2O6) or to a plane (e.g., BLSF materials) show larger property improvements on 
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fiber texturing than do the 3-dimensional ferroelectrics such as perovskites. In systems 

where there are few possible directions for the spontaneous polarization, misaligned grains 

may constrain switching of surrounding material, thus greatly reducing the remanent 

polarization and piezoelectric response from values calculated assuming a similar 

distribution of grain orientations, but where each grain is able to switch freely.103 In these 

cases, a critical level of connectivity of the oriented grains for efficient poling is required. 

In BLSF materials, the grains grow in anisometric form showing platelet morphology 

by reproducing their crystalline structure, i.e., the major face of the platelet grains is 

parallel to the ab-plane and perpendicular to the c-axis of the material structure.125 Platelet-

shaped single crystals can be oriented along the c-axis, face-to-face, by an appropriate 

process, e.g., tape-casting. Thus, BLSF ceramics obtained by TGG show anisotropic 

properties because of most of the platelet grains are arranged face-to-face, in such a way 

that the non-ferroelectric c-axis lies perpendicular to the texture direction (non-favorable 

direction of polarization), while the highest piezoelectric and ferroelectric properties are 

achieved on samples cut perpendicular to the texture direction with the ab-plane arranged 

in parallel to the thickness, t, of the sample, as shown in Fig. 1.14. 

 

Figure 1.14 Ideal orientations of platelet grains during TGG.138 

The anisotropy in the dielectric ferro- and piezo-electric properties has been reported 

in Bi4Ti3O12 and other BLSF ceramics, where a degree of orientation higher than 0.95 have 

been reached by TGG (for an ideal textured ceramic a degree of orientation of 1.0 is 

expected).116,135 The main advantage of this kind of processing is the higher values of 

piezoelectric coefficients (e.g., two times higher d33) achieved in textured ceramics with 
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respect to the randomly oriented sample. The arrangement of the grains does not avoid the 

necessity of the poling process, but it allows reaching higher values of remanent 

polarization, and thus, increasing the piezoelectric activity. Nevertheless, due to the high 

electrical conductivity in the ab-plane of BLSF materials, poling of these textured ceramics 

still being a difficult task. This is maybe the main disadvantage today for the applicability 

of textured BLSF materials. 

1.6. Microelectronic and Piezoelectric Applications for BLSF 

1.6.1. Introduction 

The concept of reversible spontaneous polarization as a memory state was one of the 

greatest motivations since the early days of ferroelectric research.139 With the advances in 

thin film technology over the past 20 years, ferroelectric films with improved properties 

have been receiving renewed attention for memory applications.140 The major device type 

under investigation is the nonvolatile ferroelectric random access memory (FeRAM), 

which utilizes the spontaneous (reorientable) polarization of a ferroelectric thin film as a 

memory state.140-150 FeRAM has evolved from a concept on a paper to a memory product 

that is used in a variety of consumer products and industrial applications, such as smart 

cards, power meters, printers and video games, etc.144,145,150,151 The advantage of using 

FeRAM instead of other types of nonvolatile memory, such as electrically erasable 

programmable read-only memory (EEPROM) and battery-backed static random access 

memory (SRAM), varies according to the application. FeRAM exhibits a unique 

combination of performance features, including low power consumption, high read/write 

endurance, a fast read/write access time, long-term retention, and a low-cost embedded 

memory solution that can be scaled to high densities. 

Ferroelectric crystals and ceramics have been studied for a long time in the search of 

new microelectronic and mechatronic devices due to their excellent piezoelectric, 

pyroelectric, ferroelectric and dielectric properties.4-6,9-11 P. Langevin152 was the first who 

developed a piezoelectric ultrasonic transducer during World War I and their success 

opened up new opportunities for piezoelectric materials in underwater applications as well 

as a host of other applications such as ultrasonic transducers, actuators and sensors, etc., 
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which include hydrophones, sonar, accelerometers, power supplies, ultrasonic motors, 

transformers, filters, robotic muscles, and medical ultrasound. In the following two 

sections, a brief description of the basic operation of a FeRAM device and some 

characteristics of piezoelectric devices are provided. Finally, the advantages, disadvantages 

and present functionality of BLSF and other lead-free ferroelectric materials are discussed. 

1.6.2. Non-volatile ferroelectric random access memories (FeRAMs) 

The memory application of ferroelectric materials is based on the hysteretic behavior 

of the spontaneous polarization with electric field, as shown in Fig. 1.6(a).140-150 At zero 

applied electric field there are two states of remanent polarization which are equally stable, 

± Pr. Either of these two polarization sates could be encoded as a "1" or a "0" (the bases of 

digital computing) and since no external field is required to maintain these states once 

reached, the memory device is nonvolatile. Clearly, to switch the state of the device from 

"1" to "0" or vice versa, a threshold field greater than the coercive field is required. 

Additionally, in order to reduce the required applied voltage (to within a 5 V limit) for a 

given EC, the ferroelectric materials need to be processed in the form of thin films. 
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Figure 1.15 Schematic diagrams of high density architecture for non-volatile FeRAMs as 
example of 1T-1C design for use as computer memory. This configuration helps to prevent 
crosstalk between adjacent cells.144 

From a digital point of view, if a voltage is applied to a ferroelectric capacitor in a 

direction opposite of the previous application, the remanent domains will switch, requiring 

compensating charge to flow onto the capacitor plates.153 If the field is applied in the 
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direction of the previously applied field, no switching takes place, and only a linear 

nonswitching response is measured in the form of a voltage across a 10-50 Ohm resistor. 

This property can be used to read the state or write a desired state into the capacitor. A 

sense amplifier and other associated circuitry are used in a FeRAM device to compare 

these responses with that of a reference cell, and thereby, read the state of the device.144 

In general, the basic structure of such high-density memory includes a thin film 

ferroelectric capacitor sandwiched between two chemically stable metal electrodes, 

integrated on a top of semiconductor IC (integrated circuit) fabricated using existing 

CMOS (complementary metal oxide semiconductor) technology, as shown in Fig. 1.15.144 

The design consists of a square matrix array of memory elements and transistors, where 

each memory cell capacitor is isolated from its neighbors by means of a pass-gate 

transistor. Since it has one transistor and one capacitor per bit, this FeRAM architecture is 

called 1T-1C. The need for this transistor arises from the fact that ferroelectrics do not 

exhibit well defined coercive fields or switching voltages, thus creating the so called half-

select disturb-pulse, i.e., the possibility of unintentional switching of cells adjacent to the 

ones being addressed in a large array of memory elements. The selected transistor provides 

electrical isolation to each memory cell, allowing the circuit to select which capacitor is to 

be switched and creating individually addressable bits. 

FeRAM was first demonstrated in 1988 using PbZrxTi1-xO3 (PZT) as the ferroelectric 

material for data storage.154 Since then, many ferroelectric materials have been investigated 

for thin-films FeRAM, but only two families of ferroelectric materials are known to be the 

most important for memory applications: perovskite PZT155-160 compositions and BLSFs, 

namely SrBi2Ta2O9 (SBT),53,161-170 and (Bi,La)4Ti3O12 (BLT).171-175 Their thin-film 

characteristics are summarized in Table 1.5.148 Generally, the following characteristics are 

desired for a ferroelectric thin film to be used as a FeRAM:147 

(1) The remanent polarization should be large, so that a relatively high polarization 

reversal current can be derived from a small-area capacitor. 

(2) The dielectric constant should be sufficiently low, because a high dielectric constant 

material produces a large displacement current (linear response) and hinders 

detection of the polarization reversal current. 
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(3) The coercive field should be as low as possible for low-voltage operation of the 

FeRAM device. 

(4) The Curie temperature should be high, much higher than the storage and operating 

temperature range of the device. 

Table 1.5 Main properties of typical ferroelectric thin-films used for FeRAMs.148 

Materials Pr ( µC/cm2 ) EC ( kV/cm ) 
Crystallization 

Temperature ( ºC ) 

Pb(Zr,Ti)O3 (PZT) 25 60 600 

SrBi2Ta2O9 (SBT) 10 40 750 

(Bi,La)4Ti3O12 (BLT) 15 80 700 

The reliability of a ferroelectric memory is characterized by three main effects: 

fatigue, imprint and retention.176 Fatigue is a term describing the fact that the remanent 

polarization becomes small when a ferroelectric film experiences a large number of 

polarization reversals. Regular US specification, derived from magnetic memory 

parameters, is that the film is fatigue-free for switching over 1015 cycles when a 10-yr 

operation is assumed.148 However, in the present FeRAM technology the actual test cycles 

are about 1012. This number seems to be determined by limited test time as well as an 

expectation that a single cell is not used continuously in the normal use of a memory, but 

various cells are used randomly. The retention time, that is, the time period for which a 

ferroelectric film can retain the polarization sign and magnitude after the write operation, 

must be longer than 10 years. Imprint is a degradation effect, in which the polarization of a 

ferroelectric film and its response to applied voltages of opposite polarity are not 

symmetric. This effect should be as small as possible. It depends upon the prior switching 

history and results in an asymmetry of switching times and incomplete polarity reversal. 

Some of the largest problems with PZT for FeRAMs were fatigue and imprint, which 

were conspicuous with Pt electrodes. Studies on the integration of Pt into ferroelectric 

capacitors yielded devices with FeRAMs-compatible properties, such as large values of 

remanent polarization, film resistivity values higher than 1010 Ωcm and sufficient retention 

characteristics.177,178 Furthermore, the crystallization temperature of PZT films is lower 

than 650 ºC, which is suitable for implementing PZT capacitors on CMOS logic circuits. 
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However, Pt does not prevent oxygen diffusion to the poly-Si plug,179 and these films 

suffered from fatigue and imprint.180 These problems have almost been solved at present 

by the use of oxide electrodes such as IrO2, RuO2 and SrRuO3.157-159,181,182 On the other 

hand, one of the largest advantages of SBT films over PZT is that SBT does not show the 

fatigue phenomenon up to 1013 switching cycles, even if Pt electrodes are used.161-164,144,165 

The imprint and retention characteristics at high temperatures are also known to be 

superior to those of PZT.162-163 On the contrary, the main disadvantages of SBT are the low 

values of remanent polarization and Curie temperature in comparison with PZT thin-films 

(see Table 1.5). In addition, the high crystallization temperatures, generally higher than 

700 ºC, make them incompatible with conventional FeRAM technologies. In some cases 

Nb doping of SBT or SBT-Bi3TaTiO9 (BTT) solid solution have been suggested to 

increase remanent polarization and Curie temperature, while maintaining fatigue-free 

properties.164,183-185 Today, serial 4-256 kbit FeRAM based on PZT with read/write 

endurance ∼1012 cycles and retention time longer than 10 yrs are available in the market.186 

1.6.3. High-temperature piezoelectric applications 

Piezoelectric materials convert electrical energy into mechanical one and vice verse. 

The range of commercial piezoelectric materials, including single crystals and ceramics is 

extensive as needed for the fabrication of various devices such as transducers, actuators, 

surface acoustic wave devices, frequency control devices, sensors, and so on.6,8,11 For high-

performance actuators, the piezoelectric materials must show high strain, high thermal 

stability, low mechanical loss, and weak hysteresis in the strain-field response.6,11,187,188 

Piezoelectric materials for sensors applications should possess high dij and gij coefficients, 

as well as low conductivity. In some applications a high mechanical quality factor (Qm) is 

required. In high-performance transducer applications, e.g., medical, a high electro-

mechanical coupling coefficient (kij) is also required since kij dictates the usable bandwidth 

of the transducer.6,11 The next generation of actuators and transducers requires a significant 

increase in some or all of the typical figure of merit coefficients (dij, kij, Qm). 

Currently, piezoelectric ceramics are the mostly widely used in electromechanical 

conversion devices, since they show the highest generative forces, precise displacements, 

and best high frequency capabilities. The advantages of ferroelectric ceramics over other 
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piezoelectric materials lie in the highest coupling coefficients and in the possibility to 

control, by compositional modifications, various mechanisms which contribute to the 

electromechanical response. There are a great number of ferroelectric materials that are 

potential candidates for high-temperature applications.189 The most important family are: 

firstly, BLSF compositions with transition temperature above 600 ºC (e.g., Bi4Ti3O12,  

TC = 685 ºC or Bi3TiNbO9, TC = 940 ºC); secondly, the strontium niobate family 

(represented by Sr2Nb2O7, TC > Tmelting = 1700 ºC); thirdly, lead metaniobate, PbNb2O6 

with TC = 560 ºC; and finally, lead titanate, PbTiO3, and its modifications (TC ≤ 490 ºC). 

The main disadvantage of ferroelectric ceramics is the high conductivity at elevated 

temperatures.18 Depoling pyroelectric effects, temperature dependence of materials 

parameters, and phase transitions represent additional problems for high-temperature 

applications of many ferroelectric ceramics. 

1.6.4. Functionality of BLSF and other lead-free ferroelectric materials 

PZT-based materials near the MPB are the most widely used ferroelectric materials 

today in room-temperature piezoelectric as well as in memory applications, since no other 

material displays better ferroelectric and piezoelectric properties than the PZT.5-9,11,190 

Under application of a strong electric field during the poling process, the large number of 

thermodynamically equivalent states and field-induced phase transitions allow a high-

degree of alignment of ferroelectric dipoles, resulting in a dramatic enhancement of 

ferroelectric and piezoelectric properties.191 Because of the lead toxicity, however, it was 

forbidden by EU to use lead-based materials in consumer products such as cars, various 

kinds of smart systems and sound generators, for environmental protection. The legislation 

will be enforced in the EU as draft directives on Waste from Electrical and Electronic 

Equipment (WEEE), Restriction of Hazardous Substances (RoHS) and End-of-Life Vehicles 

(ELV).192 Therefore, at present, a research interest related to this environmental problem is 

the developing piezoelectric materials that are environmentally friendly. Another impetus 

for seeking alternatives to lead-based compositions is the need of piezoelectric materials 

for operation at high temperatures and having high-temperature stability. 
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An application of a piezoelectric material at high temperatures (above 300 ºC) 

presents many challenges. The most fundamental limitations are phase transitions, which 

in general, lead to instability of the materials properties with temperature and, under high 

load, may even be responsible for the switching into non piezoelectric phase. Quartz, SiO2, 

is the best known and the most widely used piezoelectric material in a single crystal form, 

due to its excellent stability with electromechanical properties that only weakly depend on 

temperature.193 However, the main disadvantages of this material include low electro-

mechanical and piezoelectric coefficients, and limitation to high-temperature applications 

due to mechanical twinning and a phase transition at 573 ºC that leads to instability in the 

material properties. Other often used piezoelectric crystals are ferroelectric lithium niobate, 

LiNbO3, and lithium tantalate, LiTaO3, which exhibit very interesting properties at room 

temperature, but both materials suffer from high conductivity and strong pyroelectric 

effects at high temperature. Nevertheless, single crystal quartz, lithium niobate and lithium 

tantalate are extensively used in industrial applications as a result of their temperature 

stability, wide operating temperature range, and ease of growing large, defect-free single 

crystals. In recent years, lithium tetraborate, Li2B4O7, langasite, La3Ga5SiO14, gallium 

phosphate, GaPO4, and aluminum nitride, AlN, has been proposed as new alternative high 

temperature piezoelectric materials.193 

Table 1.6 Room temperature piezoelectric and electromechanical properties of selected 
lead-free materials with different structure. TC is the Curie temperature, ε is the permittivity 
for poled samples, d is the piezoelectric strain constant, k is the electromechanical coupling 
coefficient and Qm is the mechanical quality factor.107 

Material Structure TC 
( ºC ) 

ε 
(1 kHz) 

d33     d15 
( pC/N ) k33     k15 Qm 

BaTiO3 Perovskite 120 1500 190   270 0.49 0.48 100 

(Na1/2Bi1/2)TiO3 Perovskite 335 
(FE-AFE) 500 74     19 0.42 0.11 225 

SiO2 
(single crystal) 

α-Quartz 
(Non-FE) 

573 
(α-β) 

4.5 
(ε11) 

2        – 
(d11) 

–        – 100,000 

LiNbO3 
(single crystal) Corundum 1150 27.8 6     ~70 0.23 0.60 10,000 

Na0.5Bi4.5Ti4O15 Aurivillius ~ 600 140 18      – 0.15      – 100 
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Table 1.6 summarizes the room temperature piezoelectric properties of mostly used 

lead-free piezoelectric materials with different crystal structure. These materials exhibit 

transition temperatures of up to 1000 ºC, however, they generally have low permittivity  

(< 500) and small piezoelectric coefficients (d33 < 200 pC/N).194 BaTiO3 and (Na1/2Bi1/2) 

TiO3 are lead-free piezoelectric materials that show relatively large piezoelectric 

coefficients for this class of materials, thus, they are expected for actuator and high power 

applications.194-196 However, these materials have some problems such as low TC, 

difficulties in poling treatment and/or low densities. 

Another important lead-free piezoelectrics are based on the bismuth layered 

structure. BLSF materials are characterized by their low dielectric constant, relatively high 

TC, and large anisotropy in the electromechanical and piezoelectric coefficients, and, as 

such, have been described as promising candidates for lead-free ferroelectric materials to 

reduce environmental damages.193,189,194,196 Pure Bi3Ti4O12 for example, has a high p-type 

conductivity, and despite the large piezoelectric coefficient (ten times larger than in quartz) 

and a high transition temperature, it can not be used at elevated temperatures. Doping with 

small concentration of Nb reduces the conductivity of this system by three orders of 

magnitude.197 Thus, Nb-doped Bi4Ti3O12 is a potential candidate for piezoelectric 

applications at temperatures up to 400 ºC. Other BLSF materials of interest for the same 

temperature range are: SrBi4Ti4O15, SrBi2Ta2O9-Bi3TiTaO9, and Na0.5Bi4.5Ti4O15.193,194,196 

However, the wide use of BLSF family in piezoelectric and memory applications is 

hampered by the limited knowledge of their fundamental characteristics, such as: 

anisotropy, phase transition and domain structure. 
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2.1. Introduction 

SBT and SBN single crystals were grown using the high-temperature self-flux 

solution method described elsewhere.1-3 As mentioned in Chapter 1, during this process the 

material to be crystallized is dissolved at a high temperature in a suitable solvent inside a 

platinum crucible and crystallization is achieved by a controlled cooling, i.e., by making 

the solution critically supersaturated. This chapter is partially devoted to the details of the 

experiment, which include the processing for SBT and SBN single crystals growth, and 

details about the methods used to orient, cut, polish, and electrode the single crystals. 

Besides, detailed descriptions of the experimental techniques for characterizing structurally 

and electrically both single crystals are also included. 

In addition, textured SBT ceramics were produced by templated grain growth using 

the grown SBT single crystals as templates. As described in Chapter 1 (section 1.5.2), to 

fabricate textured materials by TGG a small amount of anisotropic templates has to be 

dispersed and oriented in a matrix of relatively fine and equiaxed particles (polycrystalline 

material), and finally sintered to produce dense textured ceramics.4 The second part of this 

chapter is devoted to the details of the processing of textured SBT ceramics. Texture can 

be evaluated by a number of techniques including relative peaks heights (Lotgering factor), 

pole figures, and stereology. Each texture measurement technique has its strengths and 

weaknesses, which affect the quality of the analysis. All these techniques are used for the 

determination of the texture degree in SBT ceramics and, as such, are described here. 

2.2. SrBi2M2O9 (M = Ta, Nb) Single Crystal Growth 

2.2.1. Solid state reaction of precursors 

The polycrystalline SBT and SBN powders were independently synthesized via 

solid-state reaction using commercial grade SrCO3 (> 99%, Merck), Bi2O3 (> 99.5%, 

Riedel-de Haën), Ta2O5 (99.8%, ABCR), and Nb2O5 (99.9% Alfa Aesar) reagents. Each 

compound (SBT or SBN) was prepared by mixing their corresponding reagents in 

stoichiometric amounts for 2 hours in ethanol, dried at 120 ºC in air, and then placed in a  
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∼ 15 ml platinum crucible tightly sealed with a platinum lid. The platinum crucible was 

then inserted in a larger alumina crucible sealed with alumina cement to minimize the 

evaporation of bismuth oxide, and then placed in a programmable furnace equipped with 

an automatic temperature controller [see Fig. 2.1(a)]. 

Stoichiometric SBT and SBN powders were obtained independently after heating up 

to 950 ºC at 300 ºC/h, soaking at this temperature for 2 hours in air, and finally cooled 

down to room temperature at 300 ºC/h. After the firing process the weight losses were 

evaluated in both cases, representing the amount of CO2 evaporated during the reaction. 

The weight losses were calculated as 4.46 wt% and 5.24 wt% for SBT and SBN, 

respectively, in a good agreement with the theoretical values (4.2 wt% and 5.0 wt% for 

SBT and SBN, respectively) calculated from each reaction equation, 

( ) ( ) 292252323 COONbTaSrBiONbTaOBiSrCO +⇒++    (2.1) 

The powders were ball milled separately in ethanol for 8 hours using zirconia balls in 

polyethylene jars and then mixed with the flux using a molar ratio of 60/40 of SBT(or 

SBN) to flux. The flux used in both cases was a mixture of 35 wt% of Bi2O3 (> 99.5%, 

Riedel-de Haën), which has a melting point of 825 ºC, and of 5 wt% of B2O3 (> 99.9%, 

Merck), with a melting point of 450 ºC. Such flux based on Bi2O3 at high temperature is 

advantageous, because bismuth is also a part of the desired final composition and, 

therefore, the incorporation of foreign ions into the lattice of the grown crystals is avoided. 

Moreover, the melting point may be conveniently reduced by adding other component to 

the flux, e.g., B2O3, resulting in a more stable flux with crystals nucleating in an optimum 

homogeneous and viscous medium.5 

2.2.2. Experimental growth runs and processing variables 

An amount of ∼ 40 gs of the ground SBT(or SBN)/flux homogeneous mixture was 

placed into a 15 ml platinum crucible (base diameter of 2 cm) tightly sealed with a 

platinum lid. The crucible was never filled till the top, to avoid the overpressure inside the 

crucible during heating, thus, the mentioned amount of powder only occupied about ¾ vol. 

parts of the crucible. Figure 2.1(b) shows the crucible design used for the growth of SBT 

and SBN single crystals. The Pt/Al2O3 double crucible sealed with alumina cement was 
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used to prevent the evaporation of the flux at high temperatures, due to the high volatility 

of the Bi2O3, thus avoiding possible damages to the electric furnace. A furnace with a very 

small vertical temperature gradient of ∼ 2 ºC between the top and the bottom of the 

platinum crucible and equipped with a thermocouple located on the top of the crucible was 

used, as schematically illustrated in Fig. 2.1(a). 

 

Figure 2.1 (a) Schematic diagram of the furnace setup used for the growth of SBT and 
SBN single crystals and (b) the double crucible arrangements used to prevent the evaporation 
of the flux at high temperatures. 

First, a premelting was done at 950 ºC for 2 h, followed by the melting, soaking and 

cooling stages using three different temperature profiles, as shown in Fig. 2.2. Each crystal 

batch was performed in an independent run with the crucible placed in the middle of the 

furnace chamber. All these profiles include heating up from room temperature to 1350 ºC 

and soaking at this temperature for 10 hours. After this, a gradually accelerated slow 

cooling process is introduced in order to create the required supersaturation for crystals 

nucleation and growth,6 following one of the three different paths, hereafter TP1, TP2 and 

TP3. These changes in the slow cooling rates enable the study of the effect of different 

supersaturation conditions on the crystal morphology and size. The two first profiles, TP1 

and TP2, lasted ∼ 4 days, being faster than TP3, a longer profile that allowed for slow 

cooling for more than a week. This last profile, TP3, was similar to that used by Sih et al.5 

The TP1 profile included a soaking at 1350 ºC for 10 hours, slow cooling at 5 ºC/h 

down to 1200 ºC, which was then changed to 10 ºC/h down to 1000 ºC, then to 20 ºC/h 
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down to 800 ºC, and finally to 100 ºC/h down to room temperature. The only and very 

important difference appearing in the TP2 profile with respect to the TP1 profile is the 

inclusion of an initial slow cooling rate of 2 ºC/h, after the soaking at 1350 ºC for 10 hours, 

from 1350 ºC down to 1300 ºC. After this, the cooling rate was increased to 5 ºC/h, 

following a parallel path to the TP1 profile. In case of the TP3 profile, an initial slow 

cooling rate as low as 2 ºC/h following the soaking stage is prolonged down to 1100 ºC, 

changing to 10 ºC/h down to 1000 ºC, then to 20 ºC/h down to 800 ºC, and finally to  

100 ºC/h down to room temperature. As mentioned before, this last profile (TP3) was two 

times slower than the two first profiles. After cooling to room temperature the platinum 

crucible was weighed to evaluate the weight loss of contents during heat treatment. 
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Figure 2.2 Illustration of the furnace thermal profiles with several slow cooling rates used 
for the growth of SBT and SBN single crystals. 

These three different thermal profiles were tested for the case of the SBT system in 

an attempt to achieve single crystals having no second phases, being stoichiometric, with 

size greater than 1 × 1 mm2, and of the high optical and crystalline quality. After the 

various growth runs the weight losses were evaluated. In all cases, the weight losses 

fluctuated between 15% and 20% of the initial powder amount (flux plus SBT). Since the 

initial amount of flux was 40 wt% of the total powder, the losses are believed to be 

associated with the flux evaporation out from the platinum crucible during the thermal 

treatment. This fact was also confirmed by the analysis of the alumina crucible after the 
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various growth runs, where some yellowish coloration in the inner side of the alumina 

crucible was observed. However, neither the outer side of the alumina crucible nor the 

alumina cement were found to be visibly colored with yellowish contaminant. In case of 

the SBN system, TP2 profile was only employed, since it resulted in the largest crystals as 

will be stated in the next chapter. 

2.2.3. Separation of grown crystals from the residual flux 

Although flux growth seems to be the most appropriate growth technique for several 

classes of materials, the separation of the crystals from the residual solution is problematic. 

The crystals must be separated from the crucible and the solidified melt as long as possible 

mechanically, i.e., crystals can be separated from the flux at elevated temperature by 

inverting the crucible within the furnace, using a volume of the crucible twice as large as 

that of the melt.7 In our case, the grown SBT and SBN single crystals were separated from 

the flux using a two-step process. First, attempts were made to separate the crystals from 

the platinum crucible by inverting it over a porous ceramic at 1000 ºC (above the flux 

melting point). The flux did not soaked into the ceramics as expected, but the crystals and 

the residual flux were taken off from the crucible as a solidified mass, and then, the 

crystals were separated by leaching in hot HNO3 to dissolve the residual flux while the 

crystals remain intact. This process was too slow and took a few days to completely 

remove the existing flux between the platelet single crystals and to separate them from the 

others. Finally, SBT crystals were leached in a hot water for several hours to dissolve the 

nitric salt and then annealed at 750 ºC for 10 hours. 

2.3. SrBi2Ta2O9 Textured Ceramic Processing 

2.3.1. Solid state reaction of precursors and template preparation 

To produce textured SBT ceramics by templated grain growth (TGG) for the present 

investigation, polycrystalline SBT powder was firstly synthesized via solid-state reaction 

using identical method and reagents similar to those previously described in section 2.2.1. 

That is, ∼ 40 gs of SBT powder was prepared by mixing in stoichiometric amounts for 2 h 

in ethanol, then, placed in a Pt/Al2O3 double crucible sealed with alumina cement to 
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prevent the evaporation of bismuth oxide [see Fig. 2.1(a)], and finally placed in a 

programmable furnace equipped with an automatic temperature controller. Stoichiometric 

SBT crystalline powder was obtained after heating up to 950 ºC at 300 ºC/h, soaking at this 

temperature for 2 hours, and finally cooled down to room temperature at 300 ºC/h. After 

the firing process the weight losses were calculated as 4.4 wt%, in a good agreement with 

the expected theoretical value of 4.2 wt% for SBT. Subsequently, the powder was 

vigorously ball milled in ethanol for 12 hours using a combination of zirconia balls of 4.5 

and 10 mm diameter in a polyethylene jar, until a fine-grained powder with an average 

particle size of ∼ 0.2 µm and a specific surface area of ∼ 20 m2/g was reached. The milled 

SBT powder was dried in an oven at ∼ 120 ºC for several hours, being thus considered 

ready to be used as a matrix for TGG. 

 

Figure 2.3 SEM micrographs of SBT template particles used as seeds for TGG. 

The processing and completion of the template particles is of special interest since 

the degree of texture of the sintered bodies strongly depends on the number, size and 

distribution of the templates.4 In our case, the plate-like SBT crystals, previously obtained 

by high-temperature self-flux solution method, were prepared to be used as seeds for 

homoepitaxial TGG of SBT ceramics. Several big crystals with rectangular shape and the 

[001] direction (c-axis) perpendicular to the major face were crushed in a mortar to pass 

through a 325-mesh sieve (45 µm of nominal aperture size), and then cleaned by leaching 

first in a hot HNO3 and then in a hot water for several hours to dissolve the nitric salt. The 

platelet were separated and washed three more times. Figure 2.3 shows the anisometric 

 

200 µm 
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template particles thus obtained with a plate-like morphology and average size of ~ 40 × 40 

× 8 µm3, which conserve the platelet morphology after crushing and sieving. 

After the matrix powder and templates preparation, different amounts of Bi2O3 

excess (up to 5 wt%) as a liquid phase former were added to the starting SBT powder to 

evaluate the influence of the liquid phase during densification and grain growth in the TGG 

process. Moreover, 3 or 5 wt% of the prepared templates were also added to the SBT 

powder with different amounts of Bi2O3 excess, and then, the powder-template mixtures 

were stirred in ethanol for 2 h until the mixture was homogeneous, and subsequently dried 

in air at 120 ºC. Hereafter the notation for the samples is SBTxBiyT, where x is the amount 

of Bi2O3 excess and y is the amount of templates, both in wt%, in the initial powder 

mixture. The growth of template particles during TGG was investigated as a function of 

the sintering time and sintering temperature for the following compositions: SBT5T 

(seeded sample without liquid phase) and SBT3Bi5T samples. For comparison, unseeded 

SBT ceramics having 3 wt% of Bi2O3 excess were also prepared under similar conditions 

and denoted as SBT3Bi. 

2.3.2. Compaction and sintering 

For the compaction of the green samples, one drop of distilled water per pellet of  

∼ 0.5 gs of powder was used and the pellets were obtained using two different uniaxial 

pressures: 150 and 300 MPa, to highly orient the template particles, followed by cold 

isostatical pressing at ∼ 200 MPa for homogenous compaction of the pellets before the 

thermal treatment. In both cases, the samples were maintained at the selected pressure for  

1 min before starting to decrease the pressure very slowly to avoid the abrupt expansion 

accompanied with the consequent fracture of the samples. Two different values of uniaxial 

pressure were used to evaluate the pressure effects on the texture development. Finally, the 

pellets with dimensions of ∼ 10 mm in diameter and ∼ 1 mm in thickness were dried in an 

oven at ∼ 120 ºC for several hours and the green density was determined by measuring 

their volume and weighing them. 
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Figure 2.4 Processing steps for the fabrication of textured SBT ceramics by TGG. 

After pressing, the samples were covered with SBT powder inside an alumina 

crucible sealed with an alumina lid to minimize the bismuth evaporation and placed in a 

programmable furnace equipped with an automatic temperature controller. Then, the 

samples were heated at 5 ºC/min to the selected sintering temperature, which varied from 
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1150 to 1350 ºC, held for different sintering time from 0 up to 48 hours, and finally cooled 

down to room temperature at 5 ºC/min. All heat treatments were performed in air.  

Figure 2.4 shows the flow chart used in this work for the processing of SBT ceramics. 

After the sintering process, the density of the sintered samples was calculated by 

measuring their volume and weighing them. 

2.4. Experimental Techniques for Single Crystals 

2.4.1. X-ray diffraction analysis 

The crystallographic structure, orientation and quality of both SBT and SBN single 

crystals were first examined by x-rays diffraction (XRD) analysis. Diffraction from a 

perfect crystal may occur either in Bragg (reflection) or Laue (transmission) geometries as 

presented in Fig. 2.5. In both cases, diffraction depends on spacing between lattice planes 

and wavelength (λ) of incident monochromatic x-ray radiation. For a given set of lattice 

planes [see Fig. 2.5(a)], the Bragg’s law relates the spacing between the planes, dhkl, to the 

particular Bragg angle, θhkl, at which reflections from these planes are observed,8-10 

hklhkldn θλ sin2=       (2.2) 

where n is always taken as unity and hkl are the Miller indexes. Bragg’s law indicates that 

diffraction is only observed when a set of planes makes a very specific angle (Bragg angle) 

with the incoming x-ray beam. This angle depends on the inter-plane spacing dhkl, which 

itself depends on the size of the molecules/ions that make up the structure. 

A characteristic pattern for each compound in a powdery form is produced by 

plotting the angular positions and intensities of the resultant diffracted peaks. However, 

with standard diffraction geometries, such as the Bragg geometry, lattice planes that are 

parallel to the sample surface are only measured, thus, this method can not be applied for 

the accurate determination of the crystallographic orientation in a single crystal. 

The XRD measurements were performed in crystals with natural rectangular platelet 

morphology and dimensions of ∼ 2 × 1 × 0.1 mm3, using a SIEMENS D500 diffractometer 

and CuKα radiation (λ = 1.5418 Å) at room temperature. Single crystals were cut and 
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scanned using both reflection and transmission geometries [similar to that shown in  

Fig. 2.5(b,c)], in the 2θ range from 4º to 130º with a step length of 0.02º, while the rocking 

curve was recorded for the (0018) plane reflection. 

 

Figure 2.5 (a) Diffraction condition for a given set of lattice planes. d is the spacing between 
atomic planes and k and k′ are the wave vectors of the incident and diffracted beams, 
respectively.8-10 Diffraction in (b) Bragg reflection and (c) Laue transmission geometries. 

 

Figure 2.6 Schematic illustration of the wide scanning range (WSR) method. The (H0L) 
and (-H0L) plane reflections are obtained by rotating the crystal about the [010] direction for 
a fixed 2θ. 

Crystal 2θ = Const

Detector 
X-Ray 
Source 

(00L) (H0L) (-H0L)

〈001〉 

〈100〉 
θ∆



Chapter 2      Materials Processing and Experimental Techniques 

 77

Furthermore, in order to establish the possibility of twinning planes in SBT single 

crystals, related to the exchange between a- and b-axes along the ab-plane, the extinction 

rules for the space group A21am were investigated using the rocking curves in a wide 

scanning range (WSR) of the (2018), (0218), (1015) and (0115) plane reflections at room 

temperature, as schematically presented in Fig. 2.6. In this case, the x-ray source and 

detector are initially positioned to satisfy the diffraction condition for a given set of planes 

[e.g., (H0L)] in Bragg reflection geometry, and then the crystal is rotated about the [010] 

direction in this case, while keeping fixed 2θ, to obtain the diffraction condition for both 

the (H0L) and the reciprocal planes (-H0L). 

2.4.2. X-ray angular θ-2θ and θ-scanning topography methods 

X-ray diffraction topography is an imaging technique based on a Bragg diffraction 

widely used for the verification of the quality of single crystals. In this technique, the 

detector is replaced by a photographic film, which provides a two-dimensional intensity 

mapping of the beam diffracted by the crystal, as schematically represented in Fig. 2.7(a).10 

This technique gives information about crystal defects (impurities, dislocations, twins, 

etc.), lattice misorientation, change of parameters, and the crystallographic orientation of 

the crystal edges. The evaluation of the structural quality of the grown single crystals was 

performed by x-ray angular θ-2θ and θ scanning topography methods on a standard 

DRON-2 diffractometer (CuKα radiation) at room temperature, and using the (0018) 

reflection for θ-2θ scanning in reflection geometry and the (110) and (200) reflections for 

θ scanning in transmission geometry, as schematically represented in Fig. 2.7(c,d).11 

In these methods, the platelet sample is rotated at an angular rate ω and the 

photographic film, placed directly in front of the x-ray detector and perpendicular to the 

diffracted beam, is rotated at an angular rate 2ω for θ-2θ scanning topography or kept fixed 

for θ scanning topography [see Fig. 2.7(c,d)]. Both methods can be applied either in 

reflection or transmission geometries. The θ-2θ scanning topography method is sensitive to 

misorientation between adjacent section of the crystal, and the misorientation angles are 

related to the angular interval of rotation [see Fig. 2.7(b)]. It allows us to produce images 

from the chosen reflection of all the crystal sections with misorientation less than the scan 

interval. On the other hand, the θ scanning topography does not display the misorientation 
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of the crystallites in the direction of scanning, and only records reflections with different 

parameters of unit cell. Thus, we can determine if the crystal platelet is composed by one 

single crystal or it is a block of several single crystals with different lattice parameters, thus 

confirming the quality of the crystals to be used for domain structure observation and 

ferroelectric measurements. In both cases, θ-2θ and θ scanning topography methods, the 

misorientation between crystal sections around the direction perpendicular to the rotation 

axis of the goniometer is manifested along the vertical direction on the topographs. 

 

Figure 2.7 Basic principle of x-ray topography for (a) a perfect single crystal and for (b) an 
imperfect crystal with some misorientation. Schematic illustrations of the (c) θ-2θ and  
(d) θ scanning topography methods in transmission and reflection geometry, respectively.10,11 
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2.4.3. Electroding and surface preparation for domain observation and 

ferroelectric characterization 

For electrical characterization, naturally rectangular shaped SBT and SBN single 

crystals were polished flat in two directions: parallel to the ab-plane for measurements 

along the [001] direction (c-axis direction), and perpendicular to the ab-plane for 

measurements along the [110] direction, as schematically illustrated in Fig. 2.8. The 

oriented crystals were polished to the desired thicknesses by using several abrasives in the 

following order: a) silicon carbide paper, b) diamond paste (15 µm, 6 µm, 3 µm, 1 µm and 

0.25 µm), and c) colloidal-silica aqueous suspension (∼ 0.05 µm). Submicron polish was 

performed only when required by certain experiments, such as domain studies. The final 

surface area of the polished crystals used in this study varied from 3 × 3 mm2 for 

measurements along c-axis to 3 × 0.2 mm2 for measurements along ab-plane, while the 

final thicknesses were about 100 µm to 200 µm in both cases. Following the polishing 

steps, samples were cleaned in ethanol and dried in air. Gold electrodes were then 

sputtered onto the whole area of the parallel polished facets using a Polaron E5000 

vacuum sputtering system working with argon partial pressure of 0.2 mtorr, acceleration 

voltage of 1.2 kV, and emission current of 12 mA. 

 

Figure 2.8 Schematic representations of the crystal configurations for electrical 
measurements along the (a) [001] and (b) [110] directions. 

For domain observation via piezoelectric force microscopy, only one facet (upper 

facet) of the single crystals was polished similarly to the method previously described, that 

is, until colloidal-silica aqueous suspension (∼ 0.05 µm) was used. Prior to electroding the 

bottom face of the crystals, the samples were annealed at 750 ºC for 10 hours to eliminate 

stresses and domain deformation on the crystal surface during sample preparation steps. 

Then, the whole area of the bottom facet of the crystals was electroded by sputtering a gold 

layer using the Polaron E5000 vacuum sputtering system. 
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2.4.4. Piezoelectric force microscopy (PFM) measurements 

Several scanning force microscopy (SFM) modes are capable to image domain 

patterns at the surface of ferroelectric single crystals, thin films or even ceramics 

materials.12 In this thesis, the examination of the domain structure was carried out via 

piezoresponse force microscopy (PFM), which is a modification of contact SFM specially 

adapted for local piezoelectric measurements. Detailed description of the PFM mode could 

be found elsewhere.12-14 Briefly, PFM mode is based on the detection of local electro 

mechanical vibrations of a cantilever induced by a probing ac electric signal applied 

between the conductive tip of the SFM and the bottom electrode of a ferroelectric sample, 

as schematically illustrated in Fig. 2.9.12 The interaction between the tip and the sample 

can be estimated plotting the cantilever deflection against the elevation above the surface 

of the Z scanner, the so-called force distance curve. The cantilever vibrations are converted 

into an electrical signal by the position sensitive detector of the SFM and extracted from 

the global deflection signal using a standard lock-in technique. 

 

Figure 2.9 Experimental setup used for piezoresponse force microscopy measurements 
operating in contact mode. The tip is brought into contact with the crystal surface and the 
cantilever deformation is measured by the laser deflection onto a four quadrant detector. The 
up/down deflection of the cantilever is fed into a feedback adjusting the static force. 

PFM is capable of detecting not only out-of-plane domains, where the spontaneous 

polarization direction is normal to the crystal plane and which induce vertical vibrations of 

the cantilever [see Fig. 2.10(a)], but also in-plane domains, where the spontaneous 

polarization lies within the plane of the crystal, and where the shear strain induces lateral 

oscillations detected via friction by the torsion of the cantilever [see Fig. 2.10(b)].15 The 

Tube 
Scanner

Sample 

Photo 
detector

Cantilever

Laser

Vac

tV ωsin

Lock-in 
Amplifier 

φcosA( )φω +tAsinBandpass
Filter

Sum

Feedback 

Force 
Setpoint 

left/right up/down



Chapter 2      Materials Processing and Experimental Techniques 

 81

amplitude of these local vibrations is a function of the local piezoelectric coefficient and its 

phase depends on the orientation of the local polarization relative to the applied electric 

field, which allows us to distinguish between different domains as illustrated in Fig. 2.10. 

Figure 2.9 shows the experimental setup used for PFM measurements in the SBT 

single crystals. The vertical and lateral vibrations due to the longitudinal (d33) and the shear 

(d15) piezoelectric effects, respectively, were detected by using a commercial Multimode 

AFM setup (Digital Instruments Nanoscope IIIa) equipped with a standard doped silicon 

conductive tip-cantilever system (FMR, Nanosensors, spring constant about 3 N/m and a 

resonance frequency of 80 kHz). To induce the piezoelectric deformation an external ac 

voltage signal (with amplitude of 10 - 20 V and frequency of 3 kHz) was applied using a 

functional generator (Model FG120, Yokogawa) and an amplifier (Model 7602, Kronh-

Hite Wideband) both connected to the SFM. The amplitude and phase of the induced 

deflection of the cantilever was detected using a lock-in amplifier (SR830, Stanford 

Research System). Finally, the topography and domain images were processed using the 

WSxMbeta6_0 software (Nanotec-2002). 

 

Figure 2.10 Piezoelectric deformations in ferroelectric materials (a) due to d33 for the 
spontaneous polarization aligned parallel to the electric field and (b) due to d15 for the 
spontaneous polarization in the plane of the crystal perpendicularly to the electric field. In 
both cases, the deformation is reversed if the electric field is reversed. 

- PS PS 

E 
- PS PS

E

VdZ 33±=∆

Vertical PFM 

Photodetector 

Z 

Cantilever

Lateral PFM 

VdL 15±=∆

PSE EPS 

Photodetector

L 

Cantilever



Chapter 2      Materials Processing and Experimental Techniques 

 82

2.4.5. Dielectric characterization 

For most applications of ferroelectric materials, dielectric properties, e.g., dielectric 

permittivity (ε) and dielectric loss (tan δ), are important practical parameters which 

provides a great deal of information for understanding the polarization mechanism in 

ferroelectric materials.16-18 In the practice, the dielectric permittivity or dielectric constant 

is obtained from the capacitance measurements under an ac electric field and is a function 

of frequency. Generally, this measurement is performed in the frequency range from 

several Hertz to hundred megahertz or even gigahertz. Thus, assuming that the sample is a 

parallel plane capacitor filled with a dielectric medium (the ferroelectric sample), the 

relative permittivity (εr) can be obtained taking into account the sample thickness (t) and 

the area of the electrodes (A), using the following expression, 

A
tC

o

p
r ε

ε =        (2.3) 

where Cp is the capacitance of the parallel plane capacitor and εo is the dielectric 

permittivity of the vacuum (8.85 × 10-12 F/m). On the other hand, dielectric losses are 

obtained from the ratio of the imaginary part (ε") to the real part (ε' = εr) of the permittivity 

as expressed in Eq. 1.4, being ε" obtained from, 

pCRωε =′′        (2.4) 

where ω is the frequency and R is the parallel resistance. This information is useful to 

verify the quality of the sample and the electrodes. Typically, a tanδ < 0.02 is considered to 

indicate high quality of the sample in terms of loss factor. 

Dielectric properties were measured from room temperature up to 500 ºC at 2 ºC/min 

using a Hewlett-Packard precision LCR Meter (Model HP4284A) connected to a PC via a 

GPIB card and working in the frequency range from 1 kHz to 1 MHz. The temperature was 

controlled using an Eurotherm 2404 controller and a thermocouple positioned very close to 

the sample without touching it, reaching a temperature control with a precision of ± 0.5 ºC. 

Prior each measurement, a correction for the stray capacitance of the sample holder and 
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connecting wires was performed in the LCR Meter which is necessary to separate the 

capacitance of the sample. 

2.4.6. Ferroelectric hysteresis measurements 

To confirm the anisotropy in the ferroelectric properties of the studied single crystals, 

the polarization-electric field (P-E) hysteresis loops were measured at room temperature 

both along c-axis and in the ab-plane (parallel to [110] direction) using a modified Sawyer-

Tower circuit (see Fig. 2.11).16 An alternating voltage is applied across the electrodes on 

the ferroelectric sample (Cx) connected to the horizontal plates of an oscilloscope, hence 

the quantity plotted on the horizontal axis of the oscilloscope (VX) is proportional to the 

electric field across the sample (E), which can be calculated considering the sample 

thickness (t) and the following expression, 

t
VE =         (2.5) 

CO is a linear capacitor with a large capacitance of ∼ 1 µF that is connected in series 

with the ferroelectric material Cx in such a way that most of the voltage drops across the 

sample. The voltage across the linear capacitor CO (VY) is therefore proportional to the 

polarization (P) of the ferroelectric material, which is calculated taking into account the 

area of the electrodes (A), using the following expression,16 

A
VC

P Yo=        (2.6) 

A typical loop for a ferroelectric material is shown in Fig. 1.6(a).The observation of 

the P-E hysteresis loop is still frequently used for the identification of ferroelectrics as well 

as for the determination of the spontaneous (PS) and remanent (Pr) polarizations and the 

coercive field (EC) of the studied material. All these parameters can be computed from the 

recorded hysteresis loop as well as the value of the relative permittivity (εr) calculated 

from the slope of the P-E linear behavior on saturation, 

EP or εε=        (2.7) 
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Electric fields as high as ∼ 100 kV/cm were applied to the samples at the frequency 

of 50 Hz. During P-E hysteresis measurements, the samples were submerged in silicon oil, 

an insulating liquid, to prevent arcing. The hysteresis loop was visualized and recorded 

using a digital oscilloscope (LeCroy LT322) and the acquired data was saved on a floppy 

disk. Once again, because of the small transverse size of the samples, a correction for the 

stray capacitance of the sample holder and connecting wires was necessary to separate the 

P-E hysteresis loop of the sample from the linear contribution due to stray capacitance. 

 

Figure 2.11 Modified Sawyer-Tower circuit used for the P-E hysteresis loop measurements 
in single crystals and ceramics.16 

2.4.7. Piezoelectric characterization 

For piezoelectric applications of ferroelectric materials, several properties such as the 

piezoelectric coefficients, the elastic constant and the electromechanical coupling factor are 

all important to give optimized response for external vibrations, but, probably, the most 

important property of a piezoelectric crystal is determined by their piezoelectric 

coefficients (see section 1.2.2 and Table 1.2 for definitions). A number of techniques are 

used to evaluate the piezoelectric properties of ferroelectric materials at frequencies much 

lower than the fundamental resonance frequency of the sample (which is in the order of the 

hundreds kHz for the most important vibration modes, e.g., length, radial or thickness 

shear modes). In this work, piezoelectric measurements of the ac electric field induced 

strain (converse piezoelectric effect) at low frequencies (from 500 Hz to 5 kHz) were 

performed using an interferometric technique described elsewhere.19 The longitudinal 

piezoelectric coefficient d33 was calculated from the slope of the straight line between the 

strain and the electric field (see Eq. 1.6). 
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Figure 2.12 Schematic of the (a) optical table with the double-beam laser interferometer 
used for piezoelectric measurements and (b) setup for the assembly single crystal-araldite 
holder used for the elimination of bending motion in the single crystals.19 

A double-beam (Mach-Zender) laser interferometer with an active stabilization of the 

working point was used to measure the d33 coefficient of the grown single crystals along 

different crystallographic directions, that is, parallel to [100], [110] and [001] directions. In 

this case, the probing beam reflects from both the front and back faces of the sample and 

the bending contribution to the measured vibrational piezoelectric response is 

automatically eliminated by the optical arrangement.19 The sensitivity of the used 

interferometer was about 3 × 10-4 Å, which has been considerably improved as compared 

to the previous analogous setups, due to the better thermal and acoustical isolation of the 
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active component. Figure 2.12 shows the schematic diagram of the optical arrangement of 

the used double-beam laser interferometer, where L, M and BS are the lens, mirrors and 

beam splitters, respectively. Details of the experimental setup for the interferometric 

measurements were previously reported elsewhere.19 Briefly, the ac electric field induced 

strain in the single crystal is determined by measuring the change in the light intensity on 

the photodetector, which is associated with the optical path-length difference of the laser, 

and is finally sensed using a lock-in amplifier. 

For piezoelectric measurements, the crystals were previously embedded in araldite 

(due to the small thickness) and polished to optical quality in both the front and back faces. 

Gold electrodes were sputtered onto the whole area of the parallel polished facets resulting 

in mirror-like reflection, and the crystals were poled at room temperature with an electric 

field of EP = 60 kV/cm for piezoelectric characterization. The frequency dependence of the 

d33 coefficient and phase of the poled crystals was measured at room temperature using an 

ac voltage of Vac = 100 V (Eac ≈ 3 kV/cm) in the frequency range from 500 Hz to 5 kHz. 

The behavior of the d33 coefficient for different dc poling fields was also measured at 

room temperature as follows: first, a dc poling field is applied to the crystal during 1 min, 

and then the poling field is removed and a weak ac voltage (Vac = 100 V) is applied for 

piezoelectric deformation, which is measured using a lock-in amplifier (Perkin-Elmer 

7265). This process is repeated increasing (and decreasing) the dc poling field in steps of  

∼ 3 kV/cm in both senses for each direction. 

2.5. Experimental Techniques for Textured Ceramics 

2.5.1. X-ray diffraction analysis and Lotgering factor 

Powder x-ray diffraction analysis is perhaps the most widely used XRD technique 

for characterizing materials.8 As the name suggests, the sample to be studied is usually in a 

powdery form, consisting of randomly oriented fine grains (or crystallites). Therefore, 

when a 2D diffraction pattern is recorded, it shows scattering peaks corresponding to the 

various d spacing in the crystal lattice. The positions and the intensities of the peaks are 

used for identifying the underlying structure (or phase) of the studied material. Basic 

details of the XRD technique were previously described in section 2.4.1. 
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This technique is also widely used for studying polycrystalline solids (bulk or thin 

film materials) with standard diffraction geometries such as the Bragg reflection geometry 

[see Fig. 2.5(a)]. When the bulk material is composed of randomly oriented grains, the 

XRD pattern obtained is quite similar to that of the powder material. On the other hand, 

when the polycrystalline solid present a crystallographic texture, the relative intensity of all 

the peaks in the XRD patterns changes significantly with respect to the pattern obtained for 

the randomly oriented material in such a way that the most intense peaks are those 

associated with lattice planes, hkl, perpendicular to the bisectrix between incident and 

diffracted beam, i.e., planes similar to that illustrated in Fig. 2.5(a). 

The degree of orientation of some polycrystalline materials can be determined from 

the XRD pattern by estimating the 〈001〉-texture fraction in terms of the Lotgering factor 

(f), which is a comparison of the relative intensities of (00l) reflections to all reflections 

observed in a powder XRD pattern,20 that is, 
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( )∑ lI 00  is the summation of the XRD peak intensities of all the (00l) peaks (e.g., 002, 

004… for SBT ceramics) in the textured sample pattern, ( )∑ hklI  is the summation of the 

peak intensities of all (hkl) peaks that appear in the XRD pattern, and ( )lo PP 00=  for the 

randomly oriented powder. Po was measured in the randomly oriented powder, because the 

processing of randomly oriented BLSF ceramics is very difficult because the (00l) texture 

naturally forms parallel to the pressing direction in the sintered ceramics. The calculated f 

describes the degree of texture defined by the surface area, which was characterized by 

XRD and ranges from 0 to 100%. 
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Figure 2.13 Schematic design of the samples cut for bulk XRD and SEM analysis. Cross-
sections parallel (//P) and perpendicular (⊥P) to the uniaxial pressing direction. 

The crystallographic texture analysis of the sintered samples was first examined by 

XRD using a conventional Rikagu/New x-ray diffractometer (CuKα radiation) equipped 

with the MDI data_scan3.2 controller software and analyzed using the MDI Jade6.1 

software. The textured SBT ceramics were scanned on the polished cross-sections parallel 

(//P) and perpendicular (⊥P) to the pressing direction, as illustrated in Fig. 2.13. The f 

factor was calculated using the Eq. 2.8 for the (00l) plane reflections in the 2θ scan 

between 4º and 80º in samples scanned ⊥P, using a step length of 0.02º. 

2.5.2. Pole figure measurements with XRD technique 

The most common method of texture evaluation is a pole figure measurement, which 

measures the intensity of a given XRD peak as the sample rotates about two orthogonal 

axes, thus collecting the sum of the lattice plane reflection signals from a large number of 

crystallites in a polycrystalline material.21 The principle is simple, in order to determine the 

orientation of a given lattice plane, hkl, the detector is first set to the proper Bragg angle, 

2θ, of the diffraction peak of interest and then the sample is rotated in a goniometer until 

the lattice plane hkl is in the reflection condition (i.e., the normal to the lattice plane is the 

bisectrix between incident and diffracted beam). Pole figures are characterized by the 

angles ω and β, where ω radial range vary from 0º at the center to 90º at the edge, and β 

azimuthal range vary from 0º to 360º, as illustrated in Fig. 2.14 for the reflection geometry. 

The pole figure is a stereographic projection showing the orientation distribution of a 

certain direction (pole) within the crystallites of the specimen. In polycrystalline materials, 

the intensity recorded at a certain sample orientation is proportional to the volume fraction 

of crystallites with their lattice planes in reflection geometry. A material with randomly 



Chapter 2      Materials Processing and Experimental Techniques 

 89

oriented crystallites will give a pole figure with a uniform pole density whereas crystallites 

with a preferred orientation will make the pole density non-uniform, and show their 

projections in clusters [see Fig. 2.15(a)]. A common symmetry encountered in materials is 

uniaxial or fiber symmetry, where only one sample direction (the symmetry axis) is of 

interest. Figure 2.15(b) shows the pole figure projection of concentric rings usually 

obtained in materials with fiber texture. The texture plot can be also slices of pole figures 

representing intensity versus ω at fixed β. 

 

Figure 2.14 Scheme of the experimental setup for pole figure measurements in reflection 
geometry, showing the sample position and its rotation about ω and β.22 

 

Figure 2.15 Schematic pole figures of specimens with (a) orthorhombic symmetry and 
preferred orientation (projections in clusters) and (b) axial symmetry (axisymmetric texture). 
RD and TD indicate the rolling and transverse directions, respectively.21 
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Pole figure measurements were performed on the polished cross-section ⊥P using a 

four-circle X´Pert MPD diffractometer (CuKα radiation). The samples were mounted with 

the polished cross-section parallel to the Bragg plane, while the (0010), (200) and (115) 

pole figures were achieved with a continuous azimuthal (β) scan in the range 0º ≤ β ≤ 360º 

at various tilt angles in steps of ∆ω = 0.25º and with a scan step time of 3 min/point in the 

range of 0º ≤ ω ≤ 90º. The ω step was relatively small and the azimuthal scan was 

continuous because the specimens typically displayed high level of axisymmetric texture 

(fiber symmetry). An incident area of ~ 1 × 1 mm2 in the specimen was used. Since the 

specimens displayed axisymmetric texture with the (00l) poles preferentially oriented 

toward the symmetry axis, i.e., the crystallographic c-axis is rather oriented parallel to the 

pressing direction, then, the data were averaged over β to produce a distribution of average 

intensity versus ω in the range of -90º ≤ ω ≤ 90º. The measured intensity distribution for 

the (0010) reflection in the textured samples was divided by the measured intensity 

distribution of the same reflection at equivalent angles in the randomly oriented sample to 

correct for changes in illumination area with tilt angle, x-ray absorption and defocusing of 

the beam, and acquire a multiple of a random distribution (MRD). 

2.5.3. Scanning electron microscopy (SEM) measurements 

Scanning electron microscopy (SEM) is a micro-analytical technique, which is able 

to image or analyze materials that cannot generally be observed with the resolution offered 

by optical techniques, thus allowing a detailed analysis of the grain growth and 

morphology of the studied material. During SEM inspection, a fine beam of electrons, also 

referred to as primary electrons, is formed by the source and scanned across the specimen 

surface. The electrons dislodged from the interaction of the primary electron with the 

specimen, also known as secondary electrons, are then collected and displayed on a 

monitor as a function of the position. Magnification is increased by reducing the size of the 

scan area on the sample surface. 

The microstructure of the textured samples was examined by SEM on the cross-

sections parallel (//P) and perpendicular (⊥P) to the pressing direction, as schematically 

shown in Fig. 2.13. In order to measure the grain sizes and grain orientation distributions, 

the ceramics were first cut and polished to a highly quality. The polished process is very 
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important in order to avoid several adversities such as the pull-out of softer regions of the 

material, which is mainly produced by abrasives of particle sizes of the order of the grain 

size, and makes the results false. The ceramics were first inserted in araldite and then 

polished by using several abrasives in the following order: a) silicon carbide paper and 

then b) diamond paste (15 µm, 6 µm, 3 µm, 1 µm and 0.25 µm). Following the polishing 

steps, samples were taken off from the araldite, cleaned in ethanol and dried in air. 

Several thermal treatments on the polished samples were tested in order to reveal the 

grain boundary and grain morphology for SEM observation. The thermal treatments were 

done at high temperatures between 1100 ºC and 1250 ºC for different times from 1 to  

30 min, including quenching from 1200 ºC to room temperature. In all cases, a glassy 

phase deposited over the polished surface during thermal etchings makes difficult the 

observation of the grain morphology in the polished and thermally etched samples. It is 

assumed that this glassy phase appears due to diffusion of Bi2O3 from the bulk to the 

polished surface during thermal etching. Thus, the polished ceramics were chemically 

etched successfully by using a mixture of 50 vol.% of hydrofluoric acid (HF 5% in water) 

and 50 vol.% of hydrochloric acid (HCl 37% in water) for different etching times from 1 to 

60 min, which depend on the sintering condition, i.e., the higher the sintering temperature 

or time, the higher the chemical etching time in order to reveal the grain boundaries. 

For SEM measurements the polished and etched samples were pasted in a special 

sample holder using a conductive carbon paste and dried for 24 hours in an oven at 120 ºC. 

Then, the samples were covered with a thin layer of carbon in order to improve the quality 

of the image. The carbon deposition process was performed using an Emitech K950 carbon 

deposition chamber equipped with a turbo pump. SEM measurements were performed 

using a field emission scanning electron microscope Hitachi S4100 and the images were 

obtained using an electron acceleration field of 25 kV and a filament emission current of 

10 µA, and recorded using a variable magnification. 

2.5.4. Stereological analysis and processing of the SEM images 

Most of the microstructural studies in a large number of materials deals with the 

grain size and pore distributions as well as with the vol.% of second phases. However, 

there are few works using automatic image analysis methods.23 Automatic image analysis 
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of grain size is an alternative method to the manual stereological methods, which can 

provide far more and statistically improved stereological information. In this work, a 

stereological analysis was performed by a semi-automatic method using image analysis 

software (analySIS 3.2).24 At least ∼ 300 large grains in each specimen were analyzed by 

taken several micrographs of the cross-sections //P in each sample. The semi-automatic 

method basically consist of a transformation of a digital image with several gray levels 

obtained from SEM measurement, that is, for each point or pixel it is defined a value of 

gray color between zero (black) and 255 (white), into a digital binary image, that is, black 

and white image, which defines and delimits the measured objects. In this case, the 

measured objects are the anisotropically shaped large grains which grew inside the matrix 

smaller grains, i.e., see Fig. 2.16(a) for the sample SBT3Bi5T sintered at 1250 ºC for 2 h. 

The criterion used to separate the large grains or templates from the matrix grains was to 

select those grains which are greater than the initial size of the templates, that is, greater 

than 40 µm in length. Figure 2.16 shows an example of the initial digital image with level 

of gray and the final binary image with only the studied large grains in black. 

 

Figure 2.16 (a) Initial digital image obtained from the SEM measurement on the cross-
section //P in the sample SBT3Bi5T sintered at 1250 ºC / 2 h, showing levels of gray, and  
(b) the corresponding binary image used in the image analysis software to measure the grain 
sizes, aspect ratio and grain orientation distributions as well as the volume fraction of 
textured material in SBT ceramics. 

The advantages of using this semi-automatic method for image analysis are: first, the 

reduction of the human error in the treatment of the images, where several suppositions are 

often taken in the human criteria making fictitious the results in many cases; and, second, a 

large quantity of objects (or grains in this case) can be thus analyzed in a more precise and 

(a) (b)
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faster way than that used by manual treatment of images, which makes possible a much 

more trustworthy statistical treatment of the images in the semi-automatic method. 

In BLSF materials, the grains grow in anisotropic form showing platelet morphology, 

contrary to circular grains usually studied in isotropic materials, thus, in order to perform 

the stereological analysis of textured SBT ceramics, the chosen characteristic parameters 

related with the grain morphology and platelet orientation have to be defined. Figure 2.17 

shows a typical grain with platelet morphology where some characteristic parameters are 

defined, namely the major and minor Feret lengths termed from now on grain length and 

thickness, respectively.25 The aspect ratio for each platelet grain was also calculated as the 

length/thickness ratio, while the angle between the major Feret length of each platelet and 

the horizontal axis of the micrograph, which is perpendicular to the pressing direction, was 

chosen as the platelet grain orientation angle, as shown in Fig. 2.17. The volume fraction, 

fv, of oriented material was determined by measuring the total area fraction of platelet 

grains, multiplied by the appropriate stereological correction factor. 

 

Figure 2.17 A typical grain with platelet morphology with schematic definitions of the 
major (FMax) and minor (FMin) Feret lengths, as well as the platelet orientation angle, ω. 

Once the corresponding distributions of the grain length, thickness and aspect ratio 

have been measured, it is necessary to make a statistical analysis of the measured values to 

obtain a quantitative characterization of the sample morphology. In order to quantify each 

parameter, the average value and standard deviation of the corresponding distribution were 

obtained from the normal distribution that better adjust the experimental values plotted in 

histogram graphs. Figure 2.18 shows an example of the histogram graphs obtained for the 
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length, thickness and aspect ratio parameters with their corresponding normal distributions 

in the sample SBT3Bi5T sintered at 1250 ºC during 2 hours. The full width at half-

maximum (FWHM), which is commonly used to compare the broadness of different 

distributions, was also determined for the aspect ratio distributions. On the other hand, the 

measured orientation distribution was used for the evaluation of the degree of texture, as 

described in the next section. 

2.5.5. Orientation distribution function 

The texture analysis using the simplest technique (Lotgering factor) does not provide 

enough information about the distribution of platelet orientations in the material, which can 

be fundamental in understanding processing-texture relationships.26 The most complete 

descriptions of texture quantify the probability of given crystalline orientations with 

respect to the reference sample coordinate axes, the so-called orientation distribution 

function (ODF).21 The value of the ODF for a given orientation is the probability of finding 

a crystallite of similar orientation. Based on the evaluation of texture analysis approaches 

described in the literature,27 the XRD pole figure technique and a stereological method 

have been chosen in this work to measure the crystallographic and morphological texture 

in partly textured SBT ceramics. The crystallographic texture, obtained from the pole 

figure technique, reflects the preferred orientation of the crystal lattice in the material, 

while the morphological texture is a measure of the preferred orientation of grains with 

anisotropic morphology and is measured stereologically. 

By fitting the data obtained from pole figure and stereological measurements to a 

suitable model function, properties such as textured fraction and degree of texture can be 

thus evaluated. Fitting ODF to stereological data of plate-like grains was first discussed by 

Sandlin et al.28 using an elliptically symmetric Gaussian distribution function. Later, 

Messing et al.4,27 have proposed the March-Dollase function (Eq. 2.10) as the model 

equation to fit and to quantify the measured texture distributions of platelet grains, because 

its fitting parameters are related to experimentally measurable stereological values,29 
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Figure 2.18 Example of histogram graphs for the length, thickness and aspect ratio 
parameters with their corresponding Gaussian distributions obtained in the sample 
SBT3Bi5T sintered at 1250 ºC for 2 hours. 
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The r parameter (texture factor) characterizes the width of the texture (orientation) 

distribution, taking values in the range 0 ≤ r ≤ 1, while fv is the volume fraction of oriented 

material. Small r indicates a narrow distribution of platelet normal orientations about the 

sample normal; r is 1 for a random oriented sample and tends to 0 for a perfectly textured 

sample. The definition of r and fv remain consistent for both techniques, but the definition 

of ω changes. For pole figure measurements, ω is that defined in section 2.5.2, i.e., the 

angle between the specimen normal (texture axis) and the scattering vector, while for 

stereological measurements, ω is that defined in section 2.5.4, i.e., the angle between the 

specimen normal and the normal to the major facet of the platelets in the cross-section //P, 

as illustrated in Fig. 2.17. 

The March function obtained by setting fv = 1 in Eq. 2.10 was first proposed as a 

probability distribution function to describe the orientation of anisotropically shaped 

particles (platelets or rods) in a compact formed by uniaxial pressing. Dollase chose the 

March equation, among several possible solutions, to adjust for preferred orientation in 

Rietveld refinements, and then extended it to account for microstructures with differently 

textured components, thus producing the March-Dollase equation.29 In the present work, 

two populations of grains in the SBT specimens were studied: one textured (large grains or 

templates) with volume fraction fv and texture factor r and one random (matrix small 

grains). The r value for templates is obtained by fitting the orientation distribution with the 

March-Dollase equation (Eq. 2.10) with fv set equal to 1. Since r and fv can be measured 

using both stereological observations and pole figure measurements, it will allows 

correlations between the fitting parameters obtained from both techniques. 

2.5.6. Dielectric characterization 

Dielectric properties of the textured SBT ceramics were measured from room 

temperature up to 400 ºC at 2 ºC/min using setups and methods previously described in 

section 2.4.5. For dielectric measurements, the specimens were cut and polished in two 

plates: parallel (//P) and perpendicular (⊥P) to the pressing direction. Gold electrodes were 

then sputtered onto the whole area of the polished //P and ⊥P facets in the same way 

described in section 2.4.3 for measuring electrical properties. 
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2.5.7. Ferroelectric hysteresis measurements 

To study the anisotropy in the ferroelectric properties of the textured SBT ceramics, 

the P-E hysteresis loops were measured at room temperature both parallel (//P) and 

perpendicular (⊥P) to the pressing direction using a modified Sawyer-Tower circuit and 

setup described in section 2.4.6. For P-E hysteresis measurements the samples were first 

polished to the final thicknesses of ∼ 200 µm and surface area around 3 × 1 mm2. Electric 

field as high as 150 kV/cm was applied to the samples at the frequency of 50 Hz. 
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3.1. Introduction 

This chapter is focused on the results describing the optimization of the processing 

parameters for growing high-quality SrBi2Ta2O9 (SBT) and SrBi2Nb2O9 (SBN) single 

crystals, as well as on the study of the intrinsic properties of the grown crystals including 

the anisotropy of the dielectric, ferroelectric and piezoelectric properties. Both crystals 

were grown by a high-temperature self-flux solution method using a B2O3 modified Bi2O3 

flux, as described in Chapter 2 (section 2.2). The processing conditions were firstly 

optimized to increase the size and to improve the quality of the SBT single crystals. Then, 

they were applied for the growth of SBN single crystals. The manipulated variables were 

essentially related to the temperature profiles used during growth runs, e.g., cooling rates 

and soaking times, while maintaining fixed the flux composition and concentration. 

The experimental results regarding SBT and SBN single crystals are discussed in 

separate sections of this chapter. Each section is further divided into several subsections 

where the crystals quality is first described based on the x-ray diffraction and topography 

analyses. In the following subsection, a detailed study of the domain configuration is 

reported in the case of SBT single crystals, and discussed based on the presence of separate 

ferroelastic and ferroelectric phase transitions in SBT. Lastly, a separate subsection focuses 

on the evaluation of dielectric, ferroelectric and piezoelectric properties along different 

crystallographic directions, demonstrating the large anisotropy in the intrinsic properties of 

both SBT and SBN single crystals. 

3.2. SrBi2Ta2O9 Single Crystals 

3.2.1. Single crystal growth with optimized processing conditions 

It has been already reported that large SBT single crystals can be obtained by the 

self-flux solution method adding a low amount of B2O3 (boron oxide) to the Bi2O3 

(bismuth oxide) flux.1 Without B2O3 addition, the SBT powder does not melt thoroughly at 

1350 ºC due to the high and incongruent melting point of the SBT phase, resulting in small 

crystals (smaller than 1 mm) of different phases including SBT, SrTa4O11 and Sr2Ta2O7,2-4 



Chapter 3 Growth and Characterization of SrBi2Ta2O9 and SrBi2Nb2O9 Single Crystals 

 102

some of them being formed around the Pt lid in the vapor phase region. The addition of a 

small amount of B2O3 (5 wt% in this case) to the flux improves the crystallization by 

promoting powder melting and leading to a more viscous and stable medium for SBT 

nucleation and growth.1 

Therefore, SBT single crystals were grown using a 60/40 molar ratio of SBT to flux 

(35 wt% Bi2O3 and 5 wt% B2O3), following the results obtained by Sih et al.1 and using 

three different thermal profiles, as described in section 2.2.2. Figure 3.1 shows a top view 

of the solidified mass inside the Pt crucible composed of SBT crystals and flux, obtained 

after the growth experiment using thermal profile TP3. The crystals were stuck together in 

different directions denoting multiple nucleations and the lack of space in the Pt crucible, 

and exhibited an outside yellowish coloration due to the Bi2O3 flux. A similar appearance 

of the solidified mass was observed after the growth experiments using thermal profiles 

TP1 and TP2, except the size of the crystals which seemed to be the first major difference. 

 

Figure 3.1 Solidified mass of SrBi2Ta2O9 crystals and flux inside the Pt crucible (2 cm 
base diameter) after the growth experiment using thermal profile TP3. 

Figure 3.2 shows two micrographs of the typical as-grown and acid cleaned SBT 

crystals obtained using thermal profiles TP2 and TP3. As observed, large and transparent 

SBT single crystals with a layered habit and faceted surfaces were obtained with the boron-

modified flux. The obtained crystal dimensions for the three thermal profiles (TP1, TP2 

and TP3) and a SBT/flux ratio of 60/40 are summarized in Table 3.1. The sizes of the 

crystals are seen to depend on the used temperature profile. For the first profile (TP1), 

small crystals were obtained with major face size smaller than 1 × 1 mm2. In contrast, for 
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the other two profiles (TP2 and TP3), the crystal sizes varied between 5 × 3 × 0.1 mm3 for 

the thermal profile TP3 (dimensions similar to those reported by Sih et al.1 when using a  

2 cm base diameter Pt crucible and the same profile) and 7 × 5 × 0.2 mm3 for the thermal 

profile TP2. 

(a)(a)

  

(b)(b)

 

Figure 3.2 Top views of the as-grown and acid cleaned SrBi2Ta2O9 crystals with platelet 
morphology, grown using thermal profiles: (a) TP2 and (b) TP3 (1 division = 1 mm). 

Table 3.1 Dimensions of SrBi2Ta2O9 crystals for different thermal profiles. 

Flux composition (wt%) 
Bi2O3       B2O3 

Thermal 
profile 

Maximum size 
(mm3) 

35             5 TP1 1 × 1 × 0.02 

35             5 TP2 7 × 5 × 0.2 

35             5 TP3 5 × 3 × 0.1 

It is noteworthy to mention that the biggest crystals were not obtained with the 

longer profile (TP3) having the slowest cooling process, but with rather short thermal 

profile TP2 [see Fig. 3.2(a)]. The thickest crystals (∼ 200 µm in most cases) were also 

obtained with thermal profile TP2. This was a very important achievement in view of the 

later ferroelectric characterization along the ab-plane. Nevertheless, the single crystals of 

the highest quality (with perfectly rectangular shape, transparent and free of cracks) were 

somewhat smaller, typically ∼ 2 × 2 × 0.1 mm3, being preferred for crystallographic and 

ferroelectric characterization. 
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Crystal growth and morphology 

During the cooling process, supersaturation was created and two distinct phenomena 

took place: crystal nucleation and crystal growth. For a fixed amount of starting solution, 

the higher is the number of nuclei, the smaller is the size of the final crystals. For the 

present system, the dependence of the nucleation and growth rates on cooling procedure 

has not been reported so far. The obtained results are likely to result from the competition 

between these two phenomena. The used combination of temperature and time (profile 

TP2) is believed to provide adequate conditions for SBT crystal nucleation and growth, 

since large SBT crystals were indeed obtained. 

If the initial cooling is speed up (as in TP1 profile), smaller resulting crystals are 

obtained. This behavior may be understood assuming that in this case the initial 

supersaturation is higher and thus enhances the nucleation rate, giving rise to a larger 

number of critical nuclei as compared to that formed during TP2 thermal process. Since 

both profiles run in parallel after 1300 ºC, present results also suggest that the temperature 

range 1300-1350 ºC is critical for SBT nucleation. As for TP3 profile, which produced less 

developed SBT crystals as compared to TP2 profile, its early stage of crystallization is 

identical to that of TP2 profile and so the number of nuclei should be similar in both cases. 

The cooling below 1300 ºC distinguishes TP2 and TP3 processes, being faster in TP2 and 

thus promoting in this case a higher initial growth rate of the nucleated crystals.5 The 

slower cooling rate during thermal profile TP3, while allowing a slower crystal growth, is 

prone to the secondary nucleation events which also contribute to the decrease of 

supersaturation of the system, thus limiting crystal growth. To avoid the effect of 

secondary nucleation, temperature cycling has been proposed as an effective procedure to 

dissolve smaller crystals.6 

The growth morphology of a single crystal is the end result of different kinds of 

phenomena:7 (a) external processes operating in the bulk solution (e.g., mass transport, 

chemical reactions, heat transport, etc.), (b) processes occurring at the crystal surface  

(e.g., adsorption and surface migration of growth units followed by integration), and  

(c) system tendency for an equilibrium shape corresponding to a minimum Gibbs energy. 
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The equilibrium shape generally implies that the face with smallest specific surface 

energy is the largest. In the present case, the interplay of the above referred phenomena 

originated a platelet shaped SBT crystal which morphology is largely dominated by [001] 

faces, parallel to the crystallographic ab-plane (see next section 3.2.2 for the details of 

crystallographic study). These macroscopic flat faces which were observed for all the used 

growing conditions are suggested to be those of lowest surface energy. In other comparable 

layered system like YBa2Cu3O7-δ (a CuO2 layered oxygen-deficient perovskite), single 

crystals having well developed dominant [001] faces and similar growth rate anisotropy 

have been experimentally confirmed, which correspond to the lowest surface energy faces.7 

150 µm

[001] face

150 µm150 µm

[001] face

 

Figure 3.3 Micro-morphology of the SrBi2Ta2O9 single crystal major face near the crystal 
edge, showing layered growth steps aligning perpendicular to the [001] direction. 

Figure 3.3 shows the surface micro-photograph of the SBT single crystal major face 

(parallel to [001] plane) near the crystal edge, revealing growth steps aligned perpendicular 

to the [001] direction and suggesting a dominant layer growth mechanism in that face. 

Further studies have to be carried out, aiming at the clarification of the role of the different 

growth parameters (i.e., effects of the supersaturation and/or of the undercooling on the 

interfacial kinetics and on the solute diffusion) for determining the final morphology. 

3.2.2. X-ray diffraction and x-ray topography analysis 

The obtained SBT crystals were characterized by x-ray diffraction (XRD) and x-ray 

topography techniques at room temperature. XRD measurements were firstly performed in 

reflection geometry perpendicular to the major face of platelet-like SBT crystals obtained 

using thermal profile TP3 (see section 2.4.1 and Fig. 2.5 for better understanding). 



Chapter 3 Growth and Characterization of SrBi2Ta2O9 and SrBi2Nb2O9 Single Crystals 

 106

Although diffractions from the {00l} planes of the SBT structure clearly dominate the 

XRD pattern, as shown in Fig. 3.4(a), most of the crystals were not perfectly c-axis 

oriented, since some small reflections of non-(00l) peaks can be also observed in this 

pattern. For comparison, the XRD pattern of the pure SBT powder calcined at 950 ºC for  

3 hours is also included in Fig. 3.4(b). Therefore, these platelets may contain small regions 

with orientations other than (00l), which are probably due to strong bending of the single 

crystal or the blending of two single crystals inside the Pt crucible during growth. 
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Figure 3.4 X-ray diffraction patterns for (a) non-perfectly c-axis oriented SrBi2Ta2O9 
crystal platelets scanned in reflection geometry perpendicular to the crystal major face and 
obtained using thermal profile TP3, where some small reflections of non-(00l) peaks are 
observed, and (b) pure SBT powder calcined at 950 ºC for 3 hours for comparison. 
The Miller indexes for the orthorhombic SBT phase are included. 

Figure 3.5 shows transverse sections by optical microscopy of non-perfectly c-axis 

oriented SBT crystal obtained using thermal profile TP3. As can be seen in Fig. 3.5(a), 

several layers oriented parallel to the major face can be distinguished in the cross-section. 

These layers are possibly associated with several crystals which nucleate over the surface 

of another crystal and thus are stuck together parallel to the ab-plane during growth. On the 

other hand, Figure 3.5(b) shows several layers that are lying at some angle relative to the 
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plane of the crystal face, interfacing with the parallel layers. This seems to be related with 

the blending of two crystals and may be the reason for the XRD results showing some 

reflections other than (00l). Based on the above arguments, these imperfect SBT crystals 

were not considered for domain structure, dielectric and ferroelectric measurements. 

(b)(a)

25 µm

[001]
c - axis

(b)(a)

25 µm25 µm

[001]
c - axis

 

Figure 3.5 Cross-section of a SrBi2Ta2O9 crystal obtained using thermal profile TP3, 
showing several layers lying at some angle relative to crystal major face interfacing with 
layers stuck parallel to the ab-plane. 

On the other hand, the XRD spectra in reflection and transmission geometries for a 

rectangular SBT crystal platelet obtained using thermal profile TP2 is shown in  

Fig. 3.6(a,b), where only (h00) and (00l) plane reflections are observed in the directions 

parallel and perpendicular to the major face, respectively. In this way, highly oriented SBT 

single crystal platelets (with c-axis perpendicular to the major face) were successfully 

produced using thermal profile TP2. 

Pseudo-tetragonal lattice parameters were estimated using the orthorhombic space 

group A21am and the reflections (600) and (0028), where the Cu Kα1 can be completely 

separated from the Cu Kα2, as shown in Fig. 3.7. The results obtained [a,b ≈ 5.508(1) Å 

and c ≈ 25.01(1) Å] are in a good agreement with the reported data.8,9 
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Figure 3.6 X-ray diffraction spectra along the (a) [100] and (b) [001] directions for a 
perfectly c-axis oriented SrBi2Ta2O9 single crystal platelet obtained using thermal profile 
TP2. (c) Rocking curve of the (0018) reflection, where ∆θ is the Full-Width at the Half-
Maximum (FWHM). The Miller indexes for the orthorhombic SBT phase are included. 
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Figure 3.7 X-ray diffraction profiles of the reflections (a) (600) and (b) (0028). Pseudo-
tetragonal lattice parameters were estimated and are included in the graphs. 

X-ray topography measurements were performed on a small and rectangular shaped 

SBT single crystal obtained using thermal profile TP2 with the size of ∼ 2 × 1 × 0.02 mm3. 

The x-ray θ- and θ-2θ-angular scanning topographies are represented in Fig. 3.8(a) and (b), 
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respectively. The θ-angular scanning topograph in Fig. 3.8(a) was obtained using the (110) 

reflection. The uniform contrast was observed over all the surface of the sample 

confirming its perfect orientation. The intensity of this image depends on the thickness of 

the sample and extinction (defect) crystal conditions. Figure 3.8(b) represents the 

diffraction image for θ-2θ-angular scanning topographs using the (0018) reflection. For an 

ideal crystal this image should correspond to the shape of the sample with a linear 

transformation governed by the geometry of the experimental setup.10,11 For the present 

case, the small deviation of the diffraction image in Fig. 3.8(b) from the real shape [see  

θ-angular scanning topograph in Fig. 3.8(a)] can be due to small bending of the crystal 

surface along its major face. Indeed, this deviation is determined by the magnitude of the 

misorientation, being smaller than 1º for this crystal. 

In addition, the crystal quality is better demonstrated through the rocking curves [see 

Fig. 3.6(c)], where the Full-Width at the Half-Maximum (FWHM) of the rocking curve for 

the (0018) reflection was ∆θ = 0.04º, indicating very high quality of the crystals. 

(b)

1º

a
b

(a)

1 mm

(b)

1º

a
b

(b)

1º

a
b

(a)

1 mm

(a)

1 mm

 

Figure 3.8 X-ray (a) θ-scanning and (b) θ-2θ-angular scanning topographies, using the 
(110) and (0018) reflections, respectively, for a small (2 × 1 × 0.02 mm3), rectangular shaped 
and perfect SrBi2Ta2O9 single crystal obtained using thermal profile TP2. 

The crystallographic orientation of the SBT single crystal facets can also be deduced 

from x-ray topography. Figure 3.8(a) illustrates the directions of the main crystallographic 

axes, where the narrow sides of the rectangular shaped crystals are oriented along the [110] 
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and [ 011 ] directions with the [001] direction (c-axis) lying perpendicular to the major 

face. As a matter of fact, the shape of the crystals should be determined by the high-

symmetry tetragonal phase (space group I4/mmm, a = b ≅ 3.85 Å),8 since they were grown 

at high temperature (far above 1000 ºC). It is believed that, when cooled down to room 

temperature, the symmetry of the single crystal transforms from tetragonal into 

orthorhombic one (space group A21am) but its original shape formed at high temperature is 

retained. Apparently, during this transformation, a- and b-axes rotate by 45º relative to 

tetragonal axis and [100] direction in the tetragonal phase becomes [110] direction in the 

orthorhombic phase. It can be thus concluded that the edges of our crystals (directed along 

[110] and [ 011 ] directions at room temperature) originate from the high-symmetry [100] 

and [010] directions of the parent tetragonal structure. 

3.2.3. Ferroelectric domains and twinning 

On cooling from high temperatures, SBT first experiences an improper ferroelastic 

phase transition at TC1 ≈ 550 ºC from the parent tetragonal phase (I4/mmm) to the 

intermediate orthorhombic phase (Amam), and then at TC2 ≈ 350 ºC undergoes the proper 

ferroelectric transition to the low-temperature orthorhombic phase (A21am),12 as previously 

described in section 1.3.2. The structure of the intermediate orthorhombic phase (Amam) 

permits the formation of ferroelastic domains or twins.13 Below the Curie temperature TC2, 

both ferroelastic/ferroelectric 90º domains and purely ferroelectric 180º domains can exist. 

In this section, the first reliable measurements of the domain structure in high-quality SBT 

crystals using PFM are reported. 

Rocking curves in a wide scanning range 

Ferroelastic domains (twins) in SBT single crystals are related to the interchange of 

the crystallographic a- and b-axes in the ab-plane. In order to prove the existence of these 

twins, the extinction rules for the space group A21am were investigated using the XRD 

profiles at room temperature for a couple of parent reflections, e.g., (2018), (0218), (0115) 

and (1015) reflections. 
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For this space group, the extinction rules of possible reflections are,14 

k + l = 2n (n is an integer) for the (h, k, l) reflections, 

and 

h = 2n, l = 2n for the (h, 0, l) reflections, 

which are the same rules as those for the intermediate orthorhombic phase Amam. 

Accordingly, if the SBT single crystal is free of twinning in the ab-plane, it can be 

positioned and rotated in such a way that reflections from the (2018), (0218) and (0115) 

planes are possible, but the (1015) plane reflection is not possible since it is forbidden for 

this space group (see Fig. 2.6 in section 2.4.1 for a better understanding of the measuring 

technique). Hence the occurrence of the (1015) reflections by rotating the crystal by 90º 

about the c-axis from the position where the (0115) reflections are obtained must indicate 

the presence of multiple twins in the SBT single crystal. 
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Figure 3.9 Rocking curves in a wide scanning range (θ-scanning) for the (2018), (0218), 
(0115) and (1015) reflections obtained by rotating the crystal about the [010] direction. 

Figure 3.9 displays the rocking curves in a wide scanning range (θ-scanning) for the 

above mentioned reflections obtained when the crystal is rotated about the [010] direction 
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(see Fig. 2.6 in section 2.4.1 for a better understanding), and considering that reflections 

(2018) and (1015) can be obtained by rotating the single crystal by 90º about the c-axis 

from the position where the reflections (0218) and (0115), respectively, were obtained. The 

same peaks were observed in both pairs of parent reflections after the 90º rotation of the 

crystal about the c-axis. Thus, the presence of the pair of (0115) and (1015) reflections in 

both cases, before and after 90º rotation, indicates that in the studied SBT single crystal the 

a- and b-axes alternate along two possible directions corresponding to the diagonals of the 

(001)-oriented face of the unit cell in the parent tetragonal phase (I4/mmm). Therefore, 

twin walls separating ferroelastic 90º domains should exist in this crystal. However, the 

orientation and density of twin walls cannot be determined from the XRD experiment. 

Piezoelectric force microscopy: 180º domains 

Piezoelectric force microscopy (PFM) measurements were firstly performed onto 

several small areas of the as-grown and acid cleaned SBT single crystal obtained using 

thermal profile TP2. In this case, two different configurations were used to visualize 180º 

domains, i.e., when the cantilever is parallel to ab-plane (major face) of the single crystal 

and when it is positioned normal to ab-plane. In the first case, the in-plane component of 

polarization vector was observed following the lateral deflection of the cantilever, as 

described in section 2.4.4. Since only the in-plane component orthogonal to the cantilever 

contributes to the measured signal (see Fig. 2.10), the cantilever was positioned parallel to 

one of the crystal edges 〈110〉 and the crystal surface was scanned by moving the tip at a 

small rate of 1 µm/s. 

Figures 3.10(a) and 3.10(b) show simultaneously acquired topography and 

piezoresponse images, respectively, using the first configuration (cantilever parallel to the 

ab-plane). The straight lines in the topography image are scratches appearing onto the 

crystal surface due to the submicron polish using a colloidal-silica aqueous suspension 

(particle size ∼ 0.05 µm). Although, crystal surfaces with the roughness smaller than that 

achieved in this case at this submicron scale is very difficult to obtain, the domain patterns 

are not greatly influenced by these scratches and can be clearly visualized in the 

piezoresponse image. The bright and dark stripes observed in the piezoresponse image 

correspond to ferroelectric 180º domains. These domains are visualized as antiparallel 



Chapter 3 Growth and Characterization of SrBi2Ta2O9 and SrBi2Nb2O9 Single Crystals 

 113

stripes with a periodicity of about 350 nm. As expected, the polarization is oriented along 

the [100] direction (a-axis direction), that is, inclined at 45º from the crystal edges 〈110〉 

(the crystal edges 〈110〉 match with the vertical and horizontal sides of these images). 

800nm

(a) (b)

800 nm800nm

(a) (b)

800 nm800 nm
 

Figure 3.10 PFM images on the [001] face of a SrBi2Ta2O9 single crystal obtained using 
thermal profile TP2: (a) topography and (b) lateral piezoresponse images simultaneously 
obtained using the first configuration, that is, the cantilever is parallel to ab-plane. 

(a) (b)

600 nm

(a) (b)

600 nm600 nm
 

Figure 3.11 PFM images on the [100] face of a SrBi2Ta2O9 single crystal obtained using 
thermal profile TP2: (a) topography and (b) vertical piezoresponse images simultaneously 
obtained using the second configuration, that is, the cantilever is normal to ab-plane. 

Figures 3.11(a) and 3.11(b) show simultaneously acquired topography and 

piezoresponse images, respectively, using the second configuration (cantilever normal to 
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the ab-plane). In this case, the measured signal corresponds to the vertical deflection of the 

cantilever and reflects the distribution of out-of-plane component of polarization. Bright 

and dark contrast corresponds to opposite polarization vectors oriented parallel to the  

a-axis. The observed domain pattern is much less regular in this view than in the first 

configuration. It is understood that these 180º domains correspond to the domain structure 

presented in the Fig. 3.10(b) but seen from the bc-plane. 

From this first examination of ferroelectric 180º domains by PFM, it is believed that 

a 3D domain image should consist of rod-like shaped 180º domains oriented along a-axis, 

as schematically shown in Fig. 3.12. 

 

Figure 3.12 Schematic illustration of the 3D arrangement of 180º domains suggested by the 
PFM measurements in a typical c-axis oriented SrBi2Ta2O9 single crystal. 

Piezoelectric force microscopy: 90º domains 

In order to further investigate the possibility of 90º domain walls, corresponding to 

twinning planes, together with the above observed 180º domains, the same SBT single 

crystal was annealed at 750 ºC for 10 hours, that is, above both ferroelastic and 

ferroelectric phase transitions, and then was cooled down very slowly to room temperature 

at ∼ 60 ºC/h. Subsequently, a greater area of the crystal surface was scanned following the 

first configuration, i.e., the cantilever was positioned parallel to both one of the crystal 

edges 〈110〉 and the crystal major face. The PFM measurements were performed at room 

[001] 
c - axis

[010] 
b - axis

[100] 
a - axis 

(Polar axis) 



Chapter 3 Growth and Characterization of SrBi2Ta2O9 and SrBi2Nb2O9 Single Crystals 

 115

temperature to directly image the domain walls in SBT crystals via determination of local 

polarization directions in the ferroelectric phase. 

Simultaneously acquired topography and piezoresponse images are shown in  

Figs. 3.13(a) and 3.13(b), respectively. On the piezoresponse image, the regions with 

bright and dark contrast correspond to ferroelectric domains with the in-plane polarization 

having upward and downward vertical component, respectively. To fully ascertain the 

polarization orientation inside domains, the sample was rotated by 90º about the c-axis and 

then scanned again. The images of similar domains obtained at the initial position of the 

sample [Fig. 3.14(a)] and after its rotation by 90º [Fig. 3.14(b)] are complementary. This 

observation shows that the vertical and horizontal components of the spontaneous 

polarization are comparable in magnitude, which agrees with the expected orientation of 

the polarization, that is, inclined at 45º from the crystal edges 〈110〉. Therefore, the 

extended vertical domain boundaries seen in Fig. 3.13(b) may be attributed to 90º domain 

walls separating domains with orthogonal directions of the polar axis. 

(a) (b)

1 µm

〈110〉(a) (b)

1 µm1 µm

〈110〉

 

Figure 3.13 PFM images on the (001) face of SrBi2Ta2O9 single crystal: (a) topography and 
(b) lateral piezoresponse images simultaneously obtained using the first configuration. 

Such ferroelastic/ferroelectric walls tend to be parallel to the (100) or (010) plane of 

the parent tetragonal phase (I4/mmm), which agrees with the observed preferential 

orientation. The twin boundaries are slightly inclined due to a small angle between the 

crystal edge and the scanning direction. By analyzing several images taken at different 

locations, we found that the widths of 90º domains (twins) forming laminar structures lie in 
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the range of 0.7 - 1.5 µm. Alternating bright and dark stripes inside these twins correspond 

to the ferroelectric 180º domains with the boundaries parallel to the a-axis, as mentioned 

above. The width of these 180º domains varies from 250 to 500 nm. It should be noted that 

individual 90º domains were also observed inside some laminar twins. The comparison 

with previous observation of the ac(bc)-plane of the SBT crystal (see Figs. 3.10 and 3.11) 

allows us confirming that 180º domain walls have rod-like shape parallel to a-axis. 

(a) (b)

300 nm

〈110〉 〈110〉(a) (b)

300 nm300 nm

〈110〉 〈110〉

 

Figure 3.14 Lateral piezoresponse images on the (001) face of SrBi2Ta2O9 crystal. The 
image (b) was acquired after rotating the sample by 90º relative to the initial position in (a). 

Remarkably, the coexisting domains of two types form a well-defined herringbone 

structure (see Fig. 3.15 for the schematic illustration). In contrast to the previous reported 

observations of irregular 90º domain patterns with curved boundaries,15-17 the 90º walls 

were found to be mostly flat in the studied SBT crystals. This is an unexpected result, 

because the bending of ferroelastic walls should be easy in SBT due to a very small 

spontaneous strain So = b/a - 1 (about 7 × 10-4 at room temperature, calculated from  

Rae et al.8). Indeed, the energy associated with the wall bending is proportional to 2
oS .18 

Accordingly, this energy must be much smaller in SBT that in conventional perovskite 

ferroelectrics (by a factor of 100 as compared with BaTiO3). This feature explains the 

earlier observations15-17 of highly curved 90º walls but apparently excludes the existence of 

flat walls. However, the wall bending produces elastic fields of very long range in the 

surrounding material since it leads to the appearance of effective disclinations with a 

density directly proportional to the wall curvature.18 Therefore, even So ∼ 10-3 may be 
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sufficient to stabilize flat walls in high-quality SBT crystals (in contrast to ceramics, films 

and imperfect crystals). 

〈110〉〈110〉

 

Figure 3.15 Reconstructed domain structure of the SrBi2Ta2O9 single crystal. The cross-
section of domain pattern in the ab-plane is depicted. Arrows show polarization directions. 

The herringbone domain pattern observed at room temperature is believed to be 

formed in the following way. First, a laminar twin structure appears during the ferroelastic 

phase transition occurring at TC1 ≈ 550 ºC.13 The twinning of the ferroelastic phase is 

driven by the resulting decrease of the elastic energy associated with the clamping of the 

spontaneous strains.19 These strains are coupled to the structural order parameter Q of the 

improper ferroelastic transition, which is related to the tilting of the oxygen octahedra.20 

Additional ferroelectric 180º domain structure appears in the twinned crystal below the 

ferroelectric transition temperature TC2 ≈ 350 ºC.21 Formation of 180º domains is driven by 

the reduction of the electric energy associated with the presence of polarization charges  

ρ = − div P.22 Since 180º walls are formed in the twinned crystal lattice, they acquire a 

zigzag shape, tending to be parallel to the spontaneous polarization P inside each 90º 

domain to minimize the electric energy. 

The equilibrium width d* of the 90º domains (twins) forming a laminar structure can 

be calculated from the formula,23 

L
SG

d
o
2
90

3

*
γπ

=       (3.1) 
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where γ90 is the energy per unit area of the 90º domain wall, G is the effective shear 

modulus of the crystal, and L is the thickness of a plate-like nucleus of the ferroelastic 

phase clamped by the surrounding parent phase. In crystals experiencing a second-order 

phase transition, the domain-wall energy scales as γ90 ∼ 3
oQ  with the equilibrium value Qo 

of the order parameter.24 At the same time, the coupling between the symmetry-breaking 

strain and the order parameter should be linear-quadratic in improper ferroelastics like 

SBT. Hence for the spontaneous strain is 2~ oo QS . Substituting the above relations into the 

Eq. 3.1, it is obtained that the domain width d* varies as, 

4
1

2
1

~~*
−−

oo SQd      (3.2) 

for a fixed size L. This relationship predicts that smaller values of the spontaneous strain So 

favor larger twin widths in improper ferroelastics like SBT, in contrast to the pseudo-

proper ferroelastics where the coupling between the strain and the order parameter is 

bilinear, so that So ~ Qo. Thus, since in this case γ90 ~ 3
oS ,24 the Eq. 3.1 gives 2

1

~* oSd . 

In addition, the width d* is expected to decrease during the cooling due to the 

increase of So. This prediction agrees with the temperature dependence of the twin width 

observed in the ferroelectric phase of SBT crystals by Kamba et al.13 In the presence of 

two frozen order parameters (Q and P) in the ferroelectric phase, the spontaneous strain So 

is a sum of two contributions, with the second contribution being caused by the 

electrostrictive coupling between strain and polarization. Since the electrostriction in SBT 

is relatively strong, see reports of Kholkin et al.,25 the strain So may change considerably 

on cooling from TC2 to room temperature, owing to the increase of the ferroelectric 

polarization. The fact that the twin-wall density at room temperature is considerably larger 

than near TC2 also demonstrates the ability of 90º domains to nucleate at temperatures 

much lower than the ferroelastic transition temperature TC1. This unusual phenomenon may 

be explained by a very small domain-wall energy γ90 ~ 2
3

oS  in SBT. 
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3.2.4. Dielectric, ferroelectric and piezoelectric properties 

Dielectric characterization 

Dielectric, ferroelectric and piezoelectric characterizations were performed in SBT 

single crystals obtained using thermal profiles TP2, since they exhibit the highest structural 

quality. Figures 3.16(a) and 3.16(b) show the temperature dependence of the dielectric 

permittivity upon cooling at several frequencies (from 1 kHz to 1 MHz) measured in the 

ab-plane (along the [110] direction) and along the c-axis (the [001] direction), respectively 

(see section 2.4.3 and Fig. 2.8 for a better understanding of the crystal configurations for 

electrical measurements). In both cases, the maximum of dielectric permittivity 

corresponding to the ferroelectric-paraelectric phase transition is clearly observed at  

TC ≈ 355 ºC (Curie temperature), in a good agreement with previous reports using other 

techniques on SBT crystals.13,14,26 It is worth noting that the TC’s reported for SBT 

ceramics (~ 300 ºC,27,28 see also results in section 4.4.1) are somewhat lower than that 

obtained for single crystals. Besides, neither a frequency dispersion of the transition 

temperature nor thermal hysteresis upon heating and cooling were observed in the 

permittivity curves along both directions. 

The anisotropy in the temperature dependence of the dielectric permittivity along the 

[110] and the [001] directions can clearly be observed by plotting together both curves at 

the frequency of 10 kHz, as shown in Fig. 3.17. The maximum permittivity for SBT in the 

ab-plane (~ 1500) was about an order of magnitude greater than that along c-axis (~ 135) 

in line with results reported in other BLSF single crystals.29,30 Besides, the values of the 

permittivity in the ab-plane exceed significantly those of bulk ceramics (~ 600 at TC).27,28 

It should be noted that the present measurements in the ab-plane were performed 

along the [110] direction. As such, this corresponds to a dielectric permittivity averaged for 

both a- (ferroelectric polarization direction) and b-axes (non-polar direction), e.g., 

[ ]
( )

2110
ba εε

ε
+

=      (3.3) 
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The in-plane anisotropy (εa and εb) could not be measured due to the ferroelastic 

twinning observed in the entire ferroelectric phase, as discussed in section 3.2.3. 
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Figure 3.16 Temperature dependence of the dielectric permittivity upon cooling at several 
frequencies (from 1 kHz to 1 MHz in the sequence indicating by the arrows) along the (a) 
[110] (ab-plane) and the (b) [001] (c-axis) directions in the SrBi2Ta2O9 single crystal. 
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Figure 3.17 Temperature dependence of the dielectric permittivity upon cooling at 10 kHz 
along the [110] (ab-plane) and the [001] (c-axis) directions in the SrBi2Ta2O9 single crystal. 

Figure 3.18 compares the temperature behavior of the dielectric losses (tanδ) upon 

cooling at 1 MHz in the ab-plane and along c-axis in SBT single crystal. The temperature 

of tanδ peak is also observed at TC ≈ 350 ºC, close to the value corresponding to the 

permittivity peak. The losses at low temperatures are essentially higher in the ab-plane, 

indicating that there exists large contribution from the domain wall motion in SBT 

materials. The loss factor could be measured both below and above TC thus suggesting that 

the dc conductivity that typically disturbs the high-temperature dielectric measurements in 

BLSF is negligible in the present crystals. The low values of tanδ (< 0.04 both above and 

below TC) confirm low defect concentration and high quality of the SBT single crystals. 

From the crystallographic point of view for SBT there should be no coupling 

between the order parameter lying in the ab-plane and the out-of-plane (along c-axis) 

dielectric displacement. The dielectric behavior along c-axis should be mainly determined 

by the paraelectric bismuth oxide layers and the small peak observed around TC is of the 

extrinsic character due to, probably, a slight inclination from the [001] direction during the 

crystal preparation for electrical characterization. 
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Figure 3.18 Temperature dependence of the dielectric losses (tanδ) upon cooling at 1 MHz 
along the [110] (ab-plane) and the [001] (c-axis) directions in the SrBi2Ta2O9 single crystal. 
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Figure 3.19 Linear relationship between inverse permittivity and temperature near TC in 
SrBi2Ta2O9 single crystal along the [110] direction at 1 MHz. C is the Curie constant, TC is 
the Curie temperature and TCW is the Curie-Weiss temperature. 

Figure 3.19 shows a linear relationship between inverse permittivity and temperature, 

both above and below TC, for the curve measured in the ab-plane at 1 MHz in the SBT 

single crystal. This linear relationship in the proximity of TC is well-known as the Curie-
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Weiss law previously described in section 1.2.3 (Eq. 1.7), which should be satisfied in 

most (non-relaxor) ferroelectrics. The Curie constant was determined from the slope of the 

straight line above TC (C = 4.4 × 104 ºC) and TCW was 330 ºC approximately. It is worth 

noting that the C value is slightly lower than that typically reported for displacive-type 

ferroelectric materials, including several BLSFs.27 The slope of 1/ε(T) dependence below 

TC is approximately two times greater than that above TC, which is characteristic of the 2nd-

order phase transition. However, we cannot exclude a possibility of the 1st-order transition 

in this material due to the significant difference between TCW and TC (~ 25 ºC). More data 

are obviously needed to determine the type of the ferroelectric phase transition in SBT. 

Ferroelectric characterization 

To confirm the anisotropy in the ferroelectric properties of the SBT single crystal, 

the room temperature P-E hysteresis loop was measured both along c-axis ([001] direction) 

and in the ab-plane (parallel to [110] direction), in the same way that the permittivity 

measurements. Anisotropy in the P-E hysteresis loops can be clearly observed by 

comparing the two plots. Well-saturated hysteresis loop was observed in the ab-plane 

(solid circles in Fig. 3.20), from which the values of the spontaneous polarization (PS) and 

the coercive field (EC) were estimated as ≈ 14 µC/cm2 and ≈ 22 kV/cm, respectively. On 

the other hand, only a linear P-E behavior with vanishing spontaneous polarization and 

coercive field was obtained for the measurements along the [001] direction (open circles in 

Fig. 3.20). These results confirm that the PS vector in the SBT structure lies entirely in the 

ab-plane and no polarization is obtained perpendicular to the bismuth oxide layers. This 

finding is consistent with that expected for BLSF materials with even number (m) of BO6 

octahedra, where the dipole moments caused by ionic displacements along c-axis are 

cancelled out due to the presence of a mirror plane perpendicular to it (see section 1.3.2).31 

For the SBT crystal the macroscopic spontaneous polarization, which is directed 

along the a-axis, was predicted to be ≈ 18 µC/cm2 from ionic displacements.28 In our 

crystals, the hysteresis loop was measured along the [110] direction, i.e., the spontaneous 

polarization vector is oriented at 45º with respect to the measuring direction (see  

Fig. 2.8 in section 2.4.3). The existence of a combination of ferroelastic twins filled with 

180º domains was also confirmed from piezoelectric force microscopy measurements. 
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Thus, the spontaneous polarization along polar a-axis could be determined as 

)º45(cosS
a

S PP = , considering that all 180º domains are switched under saturation. In this 

way, the spontaneous polarization along the polar direction was estimated to be  

≈ 20 µC/cm2, in a good agreement with the above mentioned calculations.28 
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Figure 3.20 Room temperature P-E hysteresis loops measured along the [110] (ab-plane) 
and the [001] (c-axis) directions in the SrBi2Ta2O9 single crystal. The values for the 
spontaneous polarization (PS) and the coercive field (EC) are indicated. 

Piezoelectric characterization 

Piezoelectric characterization of SBT crystals was performed along two directions in 

the ab-plane, that is, along the [110] and the [100] directions, as well as along the c-axis 

(the [001] direction), to confirm the anisotropy in the longitudinal piezoelectric coefficient 

(d33) along different crystallographic orientations. SBT crystals were previously embedded 

in araldite and poled at EP = 60 kV/cm, as described in section 2.4.7. Figures 3.21(a) and 

3.21(b) show the frequency (f) dependences of the d33 coefficient and phase using an ac 

voltage of Vac = 100 V (Eac ≈ 3 kV/cm) in the frequency range from 500 Hz to 5 kHz, and 

measured along the [110] direction of the SBT single crystal. 
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Figure 3.21 Frequency dependence of the (a) piezoelectric coefficient d33 and (b) phase 
measured along the [110] direction of the SrBi2Ta2O9 single crystal and using an ac voltage 
of Vac = 100 V (Eac ≈ 3 kV/cm). The value estimated for low-frequency d33 is indicated. 

A strong frequency dispersion of the d33 is observed in this frequency range with two 

clear mechanical resonances at 1.5 and 3 kHz (probably consecutive harmonics). The 

observed resonances cannot be associated with common vibration modes appearing in a 

piezoelectric resonator, e.g., length, radial, thickness or shear modes. These should occur at 

much higher frequencies (> 50 kHz). Thus, it is believed that the resonances as well as the 

strong frequency dispersion observed in our experiments can be of extrinsic character due 

to, probably, clamping of the small SBT crystal by the soft araldite used for the 

piezoelectric measurements (see section 2.4.7 and Fig. 2.12(b) for better understanding). 

The SBT crystal together with araldite constitutes a piezoelectric composite which total 

impedance depends on the individual parameters of both materials. This may result in a 
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different equivalent circuit where mechanical resonance may occur at lower frequencies 

(probably, flexural vibrations). In fact, this idea was corroborated by the various resonance 

frequency shifts induced by the different positioning of the SBT crystal - araldite assembly 

on the sample holder. 

Based on the above arguments, the value of d33 coefficient when the measuring 

frequency extrapolates to zero (f → 0) was estimated to be d33 ≈ 27 pm/V for SBT crystals 

along the [110] direction, being the d33 coefficient in a dc mode. Figure 3.22 shows the 

linear relationships between the strain and the amplitude of the applied ac voltage at 

several frequencies, which is expected in piezoelectric crystals when the applied electric 

field is lower than the crystal coercive field. The value of d33 coefficient for each frequency 

is calculated from the slope of the straight line and included in the figure. 
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Figure 3.22 Linear relationships between the strain and the amplitude of the ac voltage at 
different frequencies (0.5, 1, 2 and 5 kHz), measured along the [110] direction in SrBi2Ta2O9 
crystals. The calculated d33 coefficients for different frequencies are indicated. 

Figure 3.23 shows the behavior of the d33 coefficient after different applied dc poling 

field (piezoelectric hysteresis loop), which is obtained by poling the SBT crystal along the 

[110] direction and then measuring the d33 coefficient using a low ac voltage Vac = 100 V 

at 1 kHz, as described in section 2.4.7. The hysteretic behavior of the calculated d33 

coefficient with the dc poling field is confirmed, and the electric field value at which d33 
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vanishes should be close to the conventional coercive field, because approximately at this 

point half of the ferroelectric domains that were previously oriented along the poling field 

direction have switched back from their original states (180º domains) due to the poling in 

the opposite direction. Therefore, the net polarization of the crystal tends to zero and the 

crystal is piezoelectrically inactive, i.e., the effects from the individual domains cancel 

each other and no piezoelectricity is observed. The coercive field was then estimated from 

this experiment as EC ≈ 20 kV/cm, in a good agreement with the result of the P-E 

hysteresis measurements along the [110] direction (see Fig. 3.20). 
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Figure 3.23 Dependence of the piezoelectric coefficient d33 measured at 1 kHz with the dc 
poling field along the [110] direction in SrBi2Ta2O9 crystals. The estimated crystal coercive 
field (EC) is also indicated. 

As referred above, a similar strong frequency dispersion of the d33 coefficient, 

including mechanical resonances, was observed in SBT crystals measured along the [100] 

direction in the same frequency range from 500 Hz to 5 kHz, which were also dependent 

on the positioning of the assembly SBT crystal - araldite on the sample holder. Figure 3.24 

shows the relationships between the d33 coefficient and the dc poling field measured along 

the [100] (loop with solid circles) and the [001] (loop with open circles) directions, using 

an ac voltage Vac = 100 V at 1 kHz. In both cases, the hysteretic behavior of the d33 

coefficient with the dc poling field is also observed, and the value of poling field at which 

d33 vanishes along the [100] direction was also estimated as EC ≈ 20 kV/cm. 
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Figure 3.24 Dependence of the piezoelectric coefficient d33 measured at 1 kHz with the dc 
poling field along the ( ) [100] and the ( ) [001] directions in SrBi2Ta2O9 crystals. 

The value for d33 when the measuring frequency extrapolates to zero (f → 0) was 

estimated to be d33 ≈ 30 pm/V along the [100] direction, which is very close to the value 

previously obtained along the [110] direction. At first view, this result suggests a 

negligible anisotropy of the d33 coefficient when the [100] and the [110] directions are 

being compared, contrary to that expected in BLSF single crystals, where the spontaneous 

polarization vector is oriented along the [100] direction (a-axis), and thus, at 45º with 

respect to the [110] direction. Harnagea et al.32 have proposed a plausible dzz surface for 

BLSF materials, where the maximum dzz is obtained along the [100] direction (a-axis) and 

the minimum along the [010] direction (b-axis). As a result, the d33 coefficient along the 

[110] direction is expected to be somewhat smaller than that along the [100] direction 

(ferroelectric polarization direction). 

It should be noted, that the ferroelastic twinning observed in the ferroelectric phase is 

not considered to be a problem in our measurements along the [100] direction, since for 

high poling fields (e.g., EP ∼ 2EC) it is believed that both kinds of domains (corresponding 

to 180º and 90º domain walls) are fully switched in the direction of the poling field, and the 

maximum expected spontaneous polarization is reached. 
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A possible explanation of this result may be found on the experimental set up used 

for the piezoelectric measurements (see section 2.4.7). The SBT crystals were rigidly 

embedded in an araldite, and thus, they were not free to expand or contract in the direction 

perpendicular to the applied ac voltage, specifically, in the [010] direction (non-polar 

direction) for the crystals measured along the [100] direction. As a result, the measured d33 

coefficient is smaller than the real value for the crystal free of any stress, due to the effect 

of the lateral stress induced in the crystal by the rigid araldite. In other words, the clamping 

of the piezoelectric coefficient d31, i.e., the induced strain in the [010] direction per unit 

electric field applied in the [100] direction, modifies the true d33 coefficient of the 

unclamped crystal (see Ref. 33 for a better understanding). A correction factor should be 

introduced to obtain the true d33 coefficient of SBT crystals (i.e., this correction factor has 

been reported to be about a 10% of the measured clamped d33 in piezoelectric LiNbO3 and 

LiTaO3 crystals).33 Unfortunately, this factor is unknown for SBT crystals. 

On the other hand, a significant anisotropy in the d33 coefficient is clearly observed 

between the [100] and the [001] directions of the SBT crystal. In the second case, very 

small values of d33 coefficient were obtained for all the poling fields (see open circles in 

Fig. 3.24), thus confirming that the PS vector in the SBT structure lies in the ab-plane and 

neither polarization, nor piezoelectric activity, are obtained along the c-axis (perpendicular 

to the bismuth oxide layers), as previously discussed in the P-E hysteresis measurements. 

As mentioned in the dielectric behavior of the SBT crystals, the small values of d33 

coefficient obtained along the [001] direction (c-axis) should be of the extrinsic character 

due to, probably, slight inclination of the crystal from the [001] direction during the crystal 

preparation for piezoelectric characterization. 

3.3. SrBi2Nb2O9 Single Crystals 

3.3.1. Single crystal growth with the optimized processing condition 

It was confirmed in this chapter that large and high-quality SBT single crystals can 

be grown by the self-flux solution method adding a low amount of B2O3 to the Bi2O3 flux 

and using a gradually accelerated slow cooling process (thermal profile TP2), where the 

combination of temperature and time creates proper conditions for crystal nucleation and 
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growth. Therefore, equivalent experimental conditions were used for growing SrBi2Nb2O9 

(SBN) single crystals, including a 60/40 molar ratio of SBN to flux (35 wt% Bi2O3 and  

5 wt% B2O3) and the thermal profile TP2. 

Figure 3.25(a) shows the top view of the solidified mass inside the Pt crucible 

composed of the SBN crystals and flux obtained after the growth experiment using thermal 

profile TP2. The crystals exhibit a uniform multilayered array inside the Pt crucible, 

different from that of SBT crystals, but with a similar outside yellowish coloration 

associated with the Bi2O3 flux. 

(a)(a)

  

(b)(b)

 

Figure 3.25 (a) Solidified mass of SrBi2Nb2O9 crystals and flux inside the Pt crucible (2 cm 
base diameter) after the growth experiment using thermal profile TP2, and (b) Top view of 
the as-grown and cleaned SBN crystals showing platelet morphology (1 division = 1 mm). 

Figure 3.25(b) shows the micrographs of the typical as-grown acid-cleaned SBN 

crystal platelets. As observed, large yellowish SBN single crystals with rectangle shape, 

smooth surfaces and dimensions of ∼ 5 × 5 × 0.4 mm3 were grown for the first time in this 

work, by using the boron-modified flux and thermal profile TP2. The lateral dimensions of 

produced crystals are similar to those observed for SBT (see Table 3.1 for comparison), but 

the thickness of the grown platelets (∼ 400 µm in most cases) is twice the value obtained 

for SBT crystals obtained using the same thermal profile. In addition, SBN crystals are 

translucent and yellowish, a different coloration from that observed in SBT crystals. 

As observed in the case of SBT, the SBN crystals with highest quality, that is, of the 

perfectly rectangular shape and free of cracks, were somewhat smaller, ∼ 2 × 2 × 0.1 mm3. 

These were the ones selected for crystallographic and ferroelectric characterization. 
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Crystal growth and morphology 

Both SBN and SBT single crystals were grown under similar conditions and exhibit 

identical crystal structure with the same space group. They are distinguished by the change 

of Ta by Nb in the BO6 octahedra (see Fig. 1.9 in section 1.3.2). As in SBT, the crystal 

morphology of SBN crystals is also dominated by large [001] facets, which are also 

supposed to correspond to the lowest energy surfaces. This indicates a faster growth of the 

crystals parallel to ab-plane, compared to that along the [001] direction. However, SBN 

crystals achieve a greater thickness as compared to that of SBT crystals, suggesting a 

growth rate along the [001] direction greater than that exhibited by SBT crystals. 

For understanding such growth rate differences, detailed information about the local 

growth mechanism of each face is required. In fact, in spite of the similarities between 

SBT and SBN systems, several parameters affecting the mass transport through the melt 

(e.g., viscosity, solute diffusion coefficients, etc.) and the processes occurring at the crystal 

solution interface (e.g., adsorption coefficients of solute on the crystal surface, surface 

diffusion coefficients of solute, and solute integration energy in the crystal structure) are 

expected to be different, thereby accounting for a different growth behavior. Moreover, 

solubility and consequently supersaturation are probably different in both systems. Further 

studies are indeed necessary for clarifying this issue. 

3.3.2. X-ray diffraction and x-ray topography analysis 

The crystalline structure and crystallographic orientation of the grown SBN single 

crystals were studied by XRD and x-ray topography techniques at room temperature. 

Figure 3.26(b) shows the XRD pattern of a rectangular SBN crystal platelet where only 

(00l) plane reflections are observed in reflection geometry perpendicular to the crystal 

major face (see section 2.4.1 and Fig. 2.5 for better understanding). In this way, highly 

oriented SBN single crystal platelets (with c-axis perpendicular to the major face) were 

successfully produced. 
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Figure 3.26 X-ray diffraction spectra of perfect c-axis oriented (a) SrBi2Ta2O9 and (b) 
SrBi2Nb2O9 single crystal platelets in reflection geometry perpendicular to the crystal major 
face and obtained using thermal profile TP2. The Miller indexes for the (00l) plane 
reflections are included. 

For comparison, the XRD spectrum obtained for the SBT crystal is also included in 

Fig. 3.26(a). Although, similar reflections are observed in both cases, associated with the 

same space group A21am, the relative intensity of some reflections differs from one pattern 

to another, i.e., the (0016) plane reflection is not noticeable in the spectrum for SBT and 

appears in the spectrum for SBN, also the relative intensity of the (006) plane reflection is 

quite different for SBT and SBN, almost vanished in the second case. Therefore, in spite of 

the huge similarity of the XRD patterns of these structurally identical systems, each pattern 

represents a fingerprint for distinguishing SBT from SBN single crystals. Pseudo-

tetragonal lattice parameters were also estimated for the SBN crystals using the 

orthorhombic space group A21am, and the result obtained [a ≈ 5.513(1) Å, b ≈ 5.512(1) Å 

and c ≈ 25.043(4) Å] is in a good agreement with the reported data.34 
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X-ray topography measurements were also performed on small SBN single crystals, 

where the narrow sides of the rectangular shaped crystals were also observed to be oriented 

along the orthorhombic [110] direction [45º to both a- and b-axes] with the [001] direction 

(c-axis) lying perpendicular to the crystal major face, similarly to that obtained in SBT 

single crystals (see section 3.2.2). A uniform contrast was observed over all the surface of 

the SBN crystals with misorientation smaller than 0.5º. 

3.3.3. Dielectric, ferroelectric and piezoelectric properties 

Dielectric characterization 

Figures 3.27(a) and 3.27(b) show the temperature dependence of the dielectric 

permittivity upon cooling at several frequencies (from 1 kHz to 1 MHz) measured in the 

ab-plane (along the [110] direction) and along the c-axis (the [001] direction), respectively, 

in the SBN single crystals. The maximum of dielectric permittivity corresponding to the 

ferroelectric-paraelectric phase transition is clearly observed at TC ≈ 440 ºC in both cases. 

However, contrary to that observed in SBT crystals, the TC obtained in SBN crystals is in a 

good agreement with previous reports in ceramics.27,35 Furthermore, neither a frequency 

dispersion of the transition temperature nor thermal hysteresis upon heating and cooling 

were observed in the permittivity curves along both directions. 

The anisotropy in the temperature dependence of the dielectric permittivity along the 

[110] and the [001] directions can be better seen by plotting together both curves at the 

frequency of 10 kHz, as shown in Fig. 3.28. Similarly to SBT crystals, the maximum 

permittivity of SBN in the ab-plane (~ 2700) is about an order of magnitude greater than 

that along c-axis (~ 220). However, the maximum permittivity obtained for SBN crystals in 

the ab-plane is about twice the value obtained for SBT crystals (see Fig. 3.17 for SBT). On 

the other hand, the maximum permittivity in the ab-plane of the SBN crystals exceeds 

significantly those of bulk SBN ceramics (~ 1100 at TC).27,35 
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Figure 3.27 Temperature dependence of the dielectric permittivity upon cooling at several 
frequencies (from 1 kHz to 1 MHz in the sequence indicating by the arrows) along the  
(a) [110] (ab-plane) and the (b) [001] (c-axis) directions in the SrBi2Nb2O9 single crystal. 

As mentioned above, the measurements in the ab-plane of the SBN crystals were 

performed along the [110] direction, that is, at 45º with respect to the polarization direction 

(a-axis). As such, a dielectric permittivity averaged for both a- (polarization direction) and 

b-axes (non-polar direction) was measured, as described by the Eq. 3.3. Additionally, the 

small peak observed around TC in the temperature dependence of permittivity along c-axis 
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should be of the extrinsic character due to, probably, slight inclination from the [001] 

direction during the crystal preparation for electrical characterization. 
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Figure 3.28 Temperature dependence of the dielectric permittivity upon cooling at 10 kHz 
along the [110] (ab-plane) and the [001] (c-axis) directions in the SrBi2Nb2O9 single crystal. 
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Figure 3.29 Temperature dependence of the dielectric losses (tanδ) upon cooling at 1 MHz 
along the [110] (ab-plane) and the [001] (c-axis) directions in the SrBi2Nb2O9 single crystal. 
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Figure 3.29 compares the temperature behavior of the dielectric losses (tanδ) upon 

cooling at 1 MHz in the ab-plane and along c-axis in SBN single crystals, where a similar 

behavior is observed in both cases. The temperature of tanδ peak is obtained at  

TC ≈ 435 ºC, close to the value observed at the permittivity peak but ∼ 5 ºC lower. The loss 

factor was measured both below and above TC, not revealing significant disturbance due to 

dc conductivity as already observed on the SBT crystals. The low values of tanδ (< 0.04 

both above and below TC) also confirm a low defect concentration and the high quality of 

the SBN crystals. 
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Figure 3.30 Linear relationship between inverse permittivity and temperature near TC in 
SrBi2Nb2O9 single crystal along the [110] direction at 1 MHz. C is the Curie constant, TC is 
the Curie temperature and TCW is the Curie-Weiss temperature. 

Figure 3.30 shows a linear relationship between inverse permittivity and temperature, 

both above and below TC, for the curve measured in the ab-plane at 1 MHz in the SBN 

single crystal. The Curie constant was determined from the slope of the straight line above 

TC (C = 4.7 × 104 ºC) and TCW was 422 ºC, approximately. The Curie constant in SBN 

crystals is of the same order of magnitude as that previously obtained for SBT single 

crystals. The slope of 1/ε(T) dependence below TC is approximately two times greater than 

that above TC, which is characteristic of the 2nd-order phase transition. However, as 

discussed in the case of SBT crystals, the case of SBT, the possibility of the 1st-order phase 
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transition in this material cannot be excluded due to the significant difference between TCW 

and TC (~ 18 ºC). More data are also required to clarify the type of the ferroelectric phase 

transition in SBN. 

Ferroelectric characterization 

The P-E hysteresis loops in SBN crystals were measured both along c-axis ([001] 

direction) and in the ab-plane (parallel to [110] direction), similarly to SBT single crystals. 

Figure 3.31 shows the room temperature P-E hysteresis loop (curve with open circles) 

measured along the [110] direction, where a slim loop with no saturation of the 

polarization was obtained for a maximum applied electric field of ∼ 100 kV/cm. The small 

values for the remanent polarization (Pr ≈ 1.2 µC/cm2) and coercive field (EC ≈ 17 kV/cm) 

thus obtained suggest that the measured hysteresis loop is really far from what it is 

expected in SBN single crystals,35 i.e., the coercive field reported for SBN is much greater 

than that for SBT in ferroelectric thin films,36-38 which was reported to be EC ≈ 22 kV/cm 

for SBT single crystals in section 3.2.4. Thus, higher electric fields seem to be needed for 

domains switching and saturation of the polarization. However, electric fields higher than 

100 kV/cm resulted in the electrical breakdown of the crystals. Therefore, the saturated 

hysteresis loops could not be achieved in SBN crystals. 
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Figure 3.31 P-E hysteresis loops measured along the [110] direction (ab-plane) at ( ) 25 ºC 
and ( ) 100 ºC, as well as along the [001] direction (c-axis), in SrBi2Nb2O9 single crystals. 
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To decrease the energy associated with domains wall switching and to attempt to 

obtain saturated hysteresis in SBN crystals, the measuring temperature was raised to 100 

ºC and the hysteresis loop was measured again (see the loop with solid circles in  

Fig. 3.31). However, even in this case, no saturated hysteresis loops were obtained for the 

same maximum applied electric field of ∼ 100 kV/cm, and the hysteresis show again a slim 

shape with low values of Pr and EC. 

Nevertheless, the anisotropy in the P-E hysteresis of SBN single crystals is clearly 

corroborated by comparing the hysteresis loops along the [001] direction (straight solid 

line in Fig. 3.31) with that parallel to the [110] direction. As observed, only a linear P-E 

behavior with vanishing spontaneous polarization and coercive field was obtained for 

measurements along the [001] direction (c-axis), similarly to that of SBT single crystals. 

Therefore, in spite of the non-saturated hysteresis loop along the [110] direction, this result 

confirms that PS vector in the SBN structure also lies entirely in the ab-plane and no 

polarization is obtained perpendicular to the bismuth oxide layers. 

Piezoelectric characterization 

The piezoelectric characterization of SBN crystals was performed along the [100], 

[110] and [001] directions, after preparing the crystals in a similar way as in the SBT case, 

that is, embedded in araldite and poled at EP = 60 kV/cm, as described in section 2.4.7. 

Figures 3.32(a) and 3.32(b) show the frequency (f) dependence of the longitudinal d33 

coefficient and phase using an ac voltage of Vac = 100 V (Eac ≈ 3 kV/cm) in the frequency 

range from 500 Hz to 5 kHz, and measured along the [100] direction of the SBN single 

crystal. Similarly to that observed in SBT crystals, a strong frequency dispersion of d33 was 

also found in SBN crystals in this frequency range with clear mechanical resonances that 

can not be associated with common vibration modes appearing in a piezoelectric resonator, 

but rather being of the extrinsic character due to, probably, clamping of the small SBT 

crystal with soft araldite used for the piezoelectric measurements, as explained for SBT 

crystals in section 3.2.4. In this case, the resonance frequencies also depend on the way the 

assembly SBN crystal - araldite was positioned in the sample holder. 
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Figure 3.32 Frequency dependence of (a) the piezoelectric coefficient d33 and (b) the phase 
measured along the [100] direction in SrBi2Nb2O9 single crystal using an ac voltage of  
Vac = 100 V (Eac ≈ 3 kV/cm). The value estimated for low-frequency d33 is indicated. 

Taking into account the above arguments, the value of d33 coefficient when the 

measuring frequency extrapolates to zero (f → 0) was estimated to be d33 ≈ 62 pm/V for 

SBN crystals along the [100] direction, that is twice the value obtained for SBT crystals 

along the same direction (see section 3.2.4). Figure 3.33 shows the linear relationships 

between the strain and the amplitude of the applied ac voltage at several frequencies along 

the [100] direction, which is expected in piezoelectric crystals when the applied electric 

field is lower than the crystal coercive field. The value of d33 coefficient for each frequency 

is calculated from the slope of the straight line and included in the figure. 
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Figure 3.33 Linear relationships between the strain and the amplitude of the ac voltage at 
different frequencies (1, 2 and 5 kHz), measured along the [100] direction in SrBi2Nb2O9 
crystals. The calculated d33 coefficients at different frequencies are indicated. 

Similar strong frequency dispersion of the d33 coefficient, including some minor 

mechanical resonances, was observed along the [110] direction in the same frequency 

range from 500 Hz to 5 kHz, depending on the assembly SBN crystal - araldite positioning 

in the sample holder, too. Figure 3.34 shows the behavior of the calculated d33 coefficient 

with the dc poling filed (piezoelectric hysteresis loop), obtained along the [100] (loop with 

open circles) and the [110] (loop with solid circles) directions (see section 2.4.7 for 

experimental details). In both cases, the hysteretic behavior of the d33 coefficient with the 

dc poling field was confirmed. In the case of the crystal measured along the [100] direction 

(open circles) the maximum poling field that could be applied without electrical 

breakdown was even far from the electric field necessary to switch ferroelectric domains, 

thus, the measured d33 values were around that previously reported for the poled crystal 

(see Fig. 3.32) and no hysteresis was observed. On the other hand, the value of poling field 

at which d33 vanishes could be measured satisfactorily along the [110] direction and 

estimated to be EC ≈ 55 kV/cm for SBN crystals. This value can be assumed to be closed to 

the real coercive field of SBN crystals. 

It should be mentioned that it was not possible to measure saturated loops from P-E 

hysteresis loops in SBN crystals, and no reliable data exist for the coercive field of SBN in 
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the literature. However, the coercive field obtained in our measurements for SBN crystals 

is at least more than twice the value obtained for SBT crystals (see section 3.2.4). This is in 

a qualitative agreement with the reported data of SBT and SBN thin films.36-38 
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Figure 3.34 Dependence of the piezoelectric coefficient d33 with the dc poling field along 
the ( ) [100] and the ( ) [110] directions in SrBi2Nb2O9 crystals. The estimated crystal 
coercive field (EC) is also indicated. 

Contrary to that observed in SBT crystals, the value for d33 along the [110] direction 

for SBN single crystals (again in a low-frequency limit, f → 0) was estimated to be  

d33 ≈ 38 pm/V, which is smaller than the value obtained along the [100] direction. This 

confirms the anisotropy expected between the [110] and the [100] directions (ferroelectric 

polarization direction) in the d33 coefficient of BLSF crystals, as suggested by Harnagea  

et al.32 Nevertheless, the differences observed between SBT and SBN crystals require 

further studies with an improved experimental setup. 

Finally, very small values of d33 coefficient were obtained along the [001] direction, 

probably, due to slight inclination of the crystal from the [001] direction during the crystal 

preparation. This confirms that the PS vector in the SBN structure also lies in the ab-plane 

(along the [100] direction) and neither polarization, nor piezoelectric activity, are obtained 

along the [001] direction (c-axis), as discussed earlier for SBT. 
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3.4. Summary 

In summary, this chapter was devoted to the growth and characterization of high-

quality SBT and SBN single crystals, produced by a high-temperature self-flux solution 

method and using a Bi2O3 flux added with a small amount of B2O3. The largest crystals 

with sizes of ∼ 7 × 5 × 0.2 and 5 × 5 × 0.4 mm3 for SBT and SBN, respectively, were 

obtained with an optimized thermal profile that included a gradually accelerated slow 

cooling process. The anisotropic growth morphology of the crystals with layered habit was 

correlated with its crystallographic structure. XRD and x-ray topography analyses reveal 

highly oriented single crystal platelets with the [001] direction (c-axis) lying perpendicular 

to the major face, whereas the narrow sides of the rectangular shaped crystals were 

oriented along the [110] and [ 011 ] directions (45º to both a- and b-axes) of the 

orthorhombic A21am phase. 

The first reliable measurements of the domain structure of high-quality SBT single 

crystals were reported by piezoresponse force microscopy. A domain system of coexisting 

90º and 180º domains in SBT single crystals, forming a well-defined “herringbone” 

structure with mostly flat 90º domain walls oriented along the [110] direction, was clearly 

observed. The widths of 90º domains (twins) forming laminar structures lie in the range of 

0.7 - 1.5 µm, whereas 180º domain walls, oriented parallel to the [100]-direction (polar 

axis), exhibited a periodicity of about 250 to 500 nm. Formation of the observed complex 

domain pattern was attributed to a two-stage phase transition process involving separate 

ferroelastic and ferroelectric phase transitions in SBT. 

The high-quality of the grown SBT and SBN single crystals was also confirmed by 

dielectric, ferroelectric and piezoelectric measurements, which were conducted in the ab-

plane (along the [110] direction) and along the c-axis (the [001] direction), demonstrating 

the large anisotropy in the intrinsic properties of both crystals. Clear ferro-paraelectric 

phase transitions were observed at TC = 355 ºC and 440 ºC for SBT and SBN, respectively. 

The maximum permittivity measured in the ab-plane was about an order of magnitude 

greater than that along c-axis in both cases. The Curie constant ≈ 4.4 × 104 ºC (SBT) and  

≈ 4.7 × 104 ºC (SBN) was derived from the dielectric vs. temperature curve. The low 
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dielectric losses (tan δ < 0.04) in the temperature range from room temperature to ∼ 500 ºC 

confirm low defect concentration and high quality of the single crystals. 

Saturated hysteresis loop was obtained along the [110] direction for SBT crystals, 

from which the values of the spontaneous polarization and the coercive field were 

estimated as ≈ 14 µC/cm2 and ≈ 22 kV/cm, respectively, thus allowing estimation of 

spontaneous polarization ≈ 20 µC/cm2 along the polar axis in this material. However, for 

SBN crystals, saturated hysteresis loop was not obtained even when applying a maximum 

electric field of 100 kV/cm, neither at room temperature, nor at 100 ºC. The loops show 

slim behavior with very low remanent polarization, far from that expected in this material. 

The longitudinal piezoelectric coefficient d33 measured along the [100] direction (polar-

axis) was estimated to be ≈ 30 and 62 pm/V for SBT and SBN, respectively. The coercive 

field for SBN was estimated from the piezoelectric measurements as EC ≈ 55 kV/cm. 
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4.1. Introduction 

The aim of this chapter is to study the processing and characterization of textured 

SrBi2Ta2O9 (SBT) ceramics with improved performances of dielectric and ferroelectric 

properties. Textured SBT ceramics were prepared by templated grain growth (TGG) using 

the grown SBT single crystals as anisometric templates, as described in Chapter 2  

(section 2.3). In fact, the selection and preparation of the template particles is a subject of 

special interest in TGG, since the texture development and the template growth during 

ceramics annealing strongly depends on the liquid phase content as well as on the number, 

size, distribution and initial orientation of the template particles.1 Usually, template 

particles with suitable dimensions to be used as seeds for TGG are obtained by molten salt 

or hydrothermal synthesis methods. However, SBT is very difficult to be obtained by these 

methods and, thus, the large SBT single crystals presented in Chapter 3 were used to 

prepare the required seeds for TGG (see section 2.3.1). 

Several parameters were firstly considered in order to achieve a high degree of 

texture in the seeded SBT ceramics, e.g., the amount of liquid phase, the templates/matrix 

ratio or the processing and sintering conditions like the uniaxial pressure, the sintering 

temperature and time, etc. The importance of all these parameters was carefully examined 

from the literature reports on several materials, including ferroelectric ceramics  

(e.g., perovskites and BLSFs, see section 1.5.3). Two different uniaxial pressures for 

shaping the green samples were selected, for evaluating the effect of the initial template 

orientation on the final texture degree, whereas several sintering conditions were used 

aiming at to produce dense ceramics with high degree of texture and enhanced properties. 

Different amounts of Bi2O3 excess were tested in this work as liquid phase former. In 

absence of liquid phase a negligible template boundary migration into the polycrystalline 

matrix was observed, whereas extensive grain growth with highly textured microstructures 

was demonstrated in ceramics containing a small (3 wt%) amount of Bi2O3 excess. Large 

amount of liquid phase (≥ 5 wt%) resulted in ceramics with high porosity and low density, 

which deteriorates dielectric and ferroelectric properties. Furthermore, a noteworthy 

difference in the template growth was not observed between 3 and 5 wt% of Bi2O3 excess. 
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Therefore, 3 wt% of Bi2O3 as liquid phase was selected as a promising condition for TGG 

of SBT ceramics, being the results of this chapter focused in seeded SBT ceramics with  

3 wt% of Bi2O3. 

The template/matrix ratio was also scanned in the range up to 5 wt% of templates. 

Higher amount of templates as seeds were seen to result in ceramics with lower degree of 

texture and higher porosity, due to the early impingement of the templates. Therefore, the 

seeded SBT ceramics mainly discussed in this chapter were prepared with 5 wt% of 

templates, though other amounts are also considered for comparative purposes. 

The experimental results are discussed in separated sections as follows: first, the 

effect of the initial processing parameters on the final density and degree of texture of 

seeded and unseeded SBT ceramics is discussed. Then, the microstructure evolution is 

analyzed and correlated with the processing parameters via a stereological analysis and 

also using a quantitative texture analysis based on the orientation distribution function of 

the large anisometric templates. The anisotropy in the dielectric and ferroelectric properties 

of the seeded SBT ceramics and its dependence on the degree of texture are demonstrated 

in the next section and compared to those of unseeded SBT ceramics. Finally, the spatial 

distribution of the polarization vector in randomly oriented and textured BLSF materials is 

modeled, and the values of the spontaneous polarization for SBT ceramics are predicted 

from this theoretical approach as a function of the degree of texture. 

4.2. Ceramics Processing and X-Ray Characterization 

4.2.1. Densification results 

Table 4.1 summarizes the density results of unseeded and seeded SBT samples 

prepared with 3 wt% of Bi2O3, and processed under different pressing and sintering 

conditions. In the case of seeded samples, an amount of 5 wt% of templates was used. 

These are the representative specimens of the produced SBT ceramics which showed the 

most prominent microstructure and degree of texture, and hence, they were selected for the 

study of the dielectric and ferroelectric anisotropy. The theoretical density (TD) value of 

8.78 g/cm3 for SBT2 was used to calculate the relative density (ρr) of each sample as the 

ratio of the measured density to the TD. 
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Table 4.1 Final density (ρ) and relative density (ρr)* of the 5 wt% seeded (SBT3Bi5T) 
and unseeded (SBT3Bi) SBT ceramics with 3 wt% of Bi2O3 excess, consolidated under 
different uniaxial pressure and sintered under different conditions. 

Unseeded SBT3Bi 
150 MPa 

Seeded SBT3Bi5T 
150 MPa                     300 MPa 

Sintering 
Temperature 

( ºC ) 

Sintering 
Time 

(hours) 
ρ (g/cm3) ρr (%)* ρ (g/cm3) ρr (%)* ρ (g/cm3) ρr (%)* 

1150 24 8.27 94 8.54 97 8.20 93 
1250 0 8.22 94 8.22 94 8.17 93 
1250 0.25 8.29 94 8.37 95 8.25 94 
1250 1 8.46 96 8.55 97 8.28 94 
1250 2 8.56 97 8.52 97 8.18 93 
1250 24 8.41 96 8.32 95 8.02 91 
1350 24 - - 8.27 94 - - 

* Ratio of the measured density to the theoretical density of SBT, ρTh = 8.78 g/cm3. 

Firstly, it must be pointed out that the higher uniaxial pressure resulted in higher 

green densities in the seeded samples, i.e., the seeded samples uniaxially pressed at  

300 MPa showed higher green densities (∼ 62% TD, density relative to the theoretical 

density), than those uniaxially pressed at 150 MPa (∼ 56% TD). However, no significant 

difference in the green densities of the unseeded and seeded SBT samples was observed 

after the application of the isostatical pressing of ∼ 200 MPa to all the uniaxially pressed 

specimens at the used different uniaxial pressures. The green densities of the samples were 

around 60% TD in all cases. Thus, from the point of view of the packing of the templates 

and of the matrix particles in the green state, apparent comparable starting conditions for 

sintering seemed to be established for all specimens. 

After sintering, densities higher than 90% TD were obtained in all the sintered 

samples (see Table 4.1). The presence of templates in the seeded ceramics does not 

significantly affect the final density of the samples processed under similar sintering 

conditions, as demonstrated by the density values reported for SBT3Bi and SBT3Bi5T 

both pressed at 150 MPa. Moreover, it was also observed that the sintered seeded samples 

(SBT3Bi5T) pressed at 300 MPa exhibit a somewhat lower density than when pressed at 

150 MPa. Table 4.1 shows a trend for a slight decrease of density for long sintering times. 



Chapter 4         Processing and Characterization of Textured SrBi2Ta2O9 Ceramics 

 152

4.2.2. X-ray diffraction analysis and Lotgering factor 

The crystalline phase and degree of texture of the seeded and the unseeded SBT 

ceramics were studied via XRD analysis recorded on the polished cross-sections parallel 

(//P) and perpendicular (⊥P) to the pressing direction, as schematically shown in Fig. 2.13. 

In order to perform the XRD study, most of the sintered samples need to be first polished 

to remove a second phase appearing near the surface due to the evaporation of bismuth by 

sintering at high temperatures. In spite of the 3 wt% of Bi2O3 excess, the prolonged heating 

at 1250 ºC in air was propitious for bismuth losses near the sample surface. Figure 4.1(a) 

shows, as example, the XRD pattern scanned over the as-sintered surface ⊥P for the seeded 

SBT3Bi5T ceramic uniaxially pressed at 150 MPa and sintered at 1250 ºC during 24 hours. 

The reflections obtained in this pattern were indexed and the phase present was identified 

as isostructural to the bismuth-free Sr2.83Ta5O15 tetragonal phase (space group P4mbm).3 
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Figure 4.1 XRD patterns for (a) the as-sintered surface ⊥P and (b) the cross-section ⊥P 
after polishing to remove the second phase of the surface, in the seeded SBT3Bi5T ceramic 
uniaxially pressed at 150 MPa and sintered at 1250 ºC during 24 hours. The dashed lines 
indicate small peaks corresponding to SBT phase. 

Figure 4.1(b) shows the XRD pattern of the polished cross-section ⊥P of the same 

sample after removing the second phase by polishing the specimen at ∼ 100 µm inside the 

bulk and away from the as-sintered surface. As observed, only the peaks corresponding to 



Chapter 4         Processing and Characterization of Textured SrBi2Ta2O9 Ceramics 

 153

the SBT orthorhombic phase (space group A21am)2 were obtained, confirming that the bulk 

phase of the sintered ceramics is pure SBT phase. The dashed lines in Fig. 4.1 indicate 

some small peaks corresponding to the SBT phase which were also observed in the XRD 

pattern of the as-sintered surface. 
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Figure 4.2 XRD patterns scanned on the cross-sections (a) ⊥P and (b) //P, in the seeded 
SBT3Bi5T ceramic uniaxially pressed at 150 MPa and sintered at 1250 ºC during 24 hours. 
(c) The pattern for the unseeded SBT3Bi ceramic processed under similar conditions is also 
included for comparison. 

Figure 4.2(a,b) shows the XRD patterns recorded on the cross-sections ⊥P and //P, 

respectively, in the seeded SBT3Bi5T ceramic uniaxially pressed at 150 MPa and sintered 

at 1250 ºC during 24 hours. For comparison, the XRD pattern of the unseeded SBT3Bi 

ceramic processed under the same conditions is also included in Fig. 4.2(c). The lattice 

planes (hkl) associated to the reflections whose relative intensity changes significantly 

among the patterns are also pointed out. It can be observed that the diffractions from the 

{00l} planes of the SBT structure have a meaningful intensity in the XRD pattern on the 

cross-section ⊥P, while the diffraction peaks from the {hk0} planes, specifically the (200) 
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and (220) lattice planes, are stronger in the XRD pattern scanned on the cross-section //P. 

This result confirms a crystallographic texture in the seeded SBT ceramics. 

Samples pressed at 150 MPa and sintered at different temperatures for 24 hours 

For comparative purposes, Figure 4.3 shows the XRD patterns recorded on the cross-

sections ⊥P of SBT3Bi5T samples pressed at 150 MPa and sintered at 1150 ºC, 1250 ºC 

and 1350 ºC for 24 hours. The lattice planes associated to the reflections whose relative 

intensity changes significantly among the patterns are also pointed out. With increasing 

sintering temperature, diffraction peaks from {00l} planes progressively dominate the 

patterns, accounting for the most intensive peak of the spectrum for the seeded sample 

sintered at 1350 ºC for 24 hours. However, in spite of being a dense ceramic (94% TD), 

this sample showed very low mechanical integrity and thus was not considered for further 

dielectric and ferroelectric characterization. 
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Figure 4.3 XRD patterns scanned on the cross-section ⊥P for seeded SBT3Bi5T ceramics 
uniaxially pressed at 150 MPa and sintered at (a) 1350 ºC, (b) 1250 ºC, and (c) 1150 ºC 
during 24 hours. 
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Samples pressed at 300 MPa and sintered at 1250 ºC for different sintering times 

Aiming at increasing the initial alignment of the template particles inside the powder 

matrix, the ceramics were pressed under a higher uniaxial pressure of 300 MPa, thus 

allowing the pressure effect on the degree of texture to be evaluated. Figure 4.4 shows the 

XRD patterns recorded on the cross-section ⊥P for seeded SBT3Bi5T ceramics uniaxially 

pressed at 300 MPa and sintered at 1250 ºC for 0, 2 and 24 hours. With increasing sintering 

time, diffraction peaks from {00l} planes progressively dominate the patterns, accounting 

for the most intensive peak of the spectrum for the seeded sample sintered at 1250 ºC 

during 24 hours. 
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Figure 4.4 XRD patterns scanned on the cross sections ⊥P for seeded SBT3Bi5T ceramics 
uniaxially pressed at 300 MPa and sintered at 1250 ºC during (a) 24, (b) 2, and (c) 0 hours. 

It has been reported that during densification very little or no template growth 

occurs, at least until the density approach to 90% TD.4 In our ceramics, the values of 

relative density reported in Table 4.1 showed densities above 90% TD in all the sintered 

specimens, thereby indicating that density constrains for TGG process do not exist in such 

samples. Therefore, the continuous increment of the diffractions peaks from the {00l} 

planes observed for sintered seeded ceramics reflects the occurrence of TGG resulting in 
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higher volume fraction of textured material with c-axis parallel to the pressing direction, as 

will be further discussed in the next section 4.3. 

Figure 4.5(a-c) compares the XRD patterns recorded on the cross-section ⊥P of 

unseeded SBT3Bi samples uniaxially pressed at 150 MPa and sintered at 1250 ºC for 0 and 

24 h, with the one corresponding to the seeded SBT3Bi5T ceramic pressed at 300 MPa and 

sintered at 1000 ºC for 1 h. This seeded ceramic has a low density of ∼ 80% TD. The XRD 

patterns are practically indistinguishable, thus indicating that the samples are equivalent 

regarding crystallographic texture, that is, unseeded samples did not suffer significant 

texture modification whereas the seeded sample did not start yet to develop texture. In this 

case, the seeded sample with only 80% TD may be considered at an early stage of the TGG 

process with porosity and a low grain connectivity inhibiting the template growth. 
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Figure 4.5 XRD patterns scanned on the cross sections ⊥P for (a) the seeded SBT3Bi5T 
sample uniaxially pressed at 300 MPa and sintered at 1000 ºC for 1 h, and unseeded SBT3Bi 
ceramics uniaxially pressed at 150 MPa and sintered at 1250 ºC during (b) 24 h and (c) 0 h. 
(d) For comparison the pattern of the SBT powder calcined at 950 ºC for 3 h is included. 
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In the unseeded SBT3Bi specimens [Fig. 4.5(b,c)], a small increase in the (0010) 

peak and a small decrease in the (200) peak with respect to the randomly oriented SBT 

powder [Fig. 4.5(d)] can be observed, suggesting that the sintered unseeded samples are 

not entirely randomly oriented but there exists a weak crystallographic texture, probably 

due to some matrix grains alignment during the consolidation of the green compact by 

uniaxial pressing and later sintering. 

Table 4.2 Lotgering factor, f (%), for unseeded and seeded SBT ceramics with 3 wt% of 
Bi2O3 excess, processed under different uniaxial pressures and sintering conditions. The 

( )lf 00  factors were calculated using Eq. 2.8 for the (00l) plane reflections of the XRD 

patterns taken on the cross sections ⊥P. 

Unseeded 5 wt% Seeded 3 wt% SeededSintering 
Temperature 

( ºC ) 

Sintering 
Time 

(hours) 150 MPa 300 MPa 

1250 0 8.4 11 13 - 
1250 0.25 8.4 13 19 - 
1250 1 8.5 15 27 12 
1250 2 8.6 17 36 18 
1250 24 8.9 25 46 26 

Table 4.2 summarizes the Lotgering factor (f) calculated using Eq. 2.8 for the (00l) 

plane reflections of the XRD patterns obtained on the cross sections ⊥P of seeded and 

unseeded SBT ceramics with 3 wt% of Bi2O3 excess and processed under different 

pressing and sintering conditions. The effect of the initial uniaxial pressure is compared for 

a series of samples pressed at 150 MPa and 300 MPa. 

Influence of the uniaxial pressure on the degree of texture 

Figure 4.6 shows the dependence of the Lotgering factor on the sintering time for 

seeded SBT3Bi5T samples sintered at 1250 ºC, and that of the unseeded SBT3Bi samples, 

for comparison. Whereas unseeded ceramics show a Lotgering factor lower than 10% even 

after 24 hours of sintering time, seeded ceramics reach a maximum f ≈ 25% for samples 

uniaxially pressed at 150 MPa and f ≈ 46% for samples pressed at 300 MPa. For short 

sintering time (0 hours) a similar degree of orientation was obtained in seeded samples 
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corresponding to both pressure conditions, very close to that observed in the early stage of 

the TGG process (seeded SBT3Bi5T sample sintered at 1000 ºC for 1 hour, f ≈ 10%). 

When the sintering time increases, the seeded ceramics exhibit an initial fast texturing rate 

which tends to saturate after 2 hours. 
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Figure 4.6 Effect of the uniaxial pressure on the dependence of the texture development 
(Lotgering factor) with the sintering time of seeded and unseeded SBT3Bi5T ceramics 
sintered at 1250 ºC. The value obtained for the seeded SBT3Bi5T specimen sintered at  
1000 ºC during 1 hour is included as reference. 

The higher is the uniaxial pressure in the green samples, the higher seems to be the 

initial orientation of the templates, resulting in a higher degree of texture in the sintered 

samples. Nevertheless, the f values obtained in this work are lower than those typically 

reported for textured ceramics produced by other more elaborated texturing techniques like 

tape casting or extrusion.5-7 

According to Table 4.2, the 5 wt% seeded SBT ceramics result in a higher degree of 

texture as compared with the 3 wt% seeded SBT samples both pressed at 300 MPa. Higher 

amounts of templates (> 5 wt%) were seen to result in a lower degree of texture. In fact, 

nearly fully textured ceramics have been achieved in other systems using only 5 wt% of 

templates.8 Therefore, based on all these observations, SBT ceramics prepared with 3 wt% 
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of Bi2O3 excess and 5 wt% of templates (SBT3Bi5T) uniaxially pressed at 300 MPa were 

selected for further studies. 

4.2.3. Pole figure analysis 

Pole figure measurements, the most common method to evaluate the distribution of a 

specific crystallographic orientation in bulk materials, were performed in the seeded and 

unseeded SBT ceramics. In this study, the seeded specimens were disks with axisymmetric 

texture about the normal to the disks major face, which is the axis parallel to the pressing 

direction (the texture axis in this case). Here, the preferred orientation direction, i.e., the 

crystal direction preferentially aligned with the texture axis, is the [001] direction. This 

kind of texture development is predictable since the uniaxial pressing can only align the 

basal planes of the SBT templates perpendicular to the pressing direction, thus the 

rotational alignment of the templates in the plane ⊥P should be random. For measuring 

axisymmetric texture under this configuration, the pole figures of diffraction peaks from 

planes normal to the preferred orientation direction [(00l) diffraction planes in this case] 

are usually displayed. 

Figure 4.7(a,b) shows the pole figures of the (115) and (008) diffraction planes, 

respectively, obtained from the cross-section ⊥P of the seeded SBT3Bi5T sample pressed 

at 150 MPa and sintered at 1250 ºC during 24 hours, as the samples rotate about two 

orthogonal axes ω and β (see section 2.5.2 and Fig. 2.14). The (115) diffraction is included 

in this study because it is the most intense reflection in the XRD pattern of a randomly 

oriented SBT material. For comparison, the pole figures of the same diffraction peaks for 

the unseeded SBT3Bi sample processed under similar pressing and sintering conditions are 

presented in Fig. 4.7(c,d). In this case, a uniform pole density with no significant texture is 

observed in both diffractions for the unseeded SBT3Bi specimen [see the small intensity of 

the (008) diffraction in the entire pole figure of Fig. 4.7(d)], which is typical of materials 

with near randomly oriented crystallites. 

On the other hand, a large distribution of (008) diffraction with a maximum of about 

one order of magnitude at the center of the pole figure with respect to the edge is clearly 

observed for the seeded SBT3Bi5T sample [see Fig. 4.7(b)]. Both pole figures [for (008) 
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and (115) diffractions in Fig. 4.7(a,b)] show non-uniform pole density and the increase of 

the (008) intensity supports the idea of having a textured material with axisymmetric 

texture, where the crystallographic c-axis is preferably oriented along the pressing 

direction (texture direction). The difference in the intensity recorded for the (008) 

diffraction plane in Fig. 4.7(b) with respect to that in Fig. 4.7(d) is related with the higher 

volume fraction of templated grains with c-axis preferentially aligned along the texture 

axis and their lattice (00l) planes in reflection geometry in the seeded SBT3Bi5T sample. 

 

Figure 4.7 Pole figures of the (115) and (008) diffraction planes obtained from the cross-
section ⊥P of the (a)-(b) seeded SBT3Bi5T and (c)-(d) unseeded SBT3Bi ceramics, both 
pressed at 150 MPa and sintered at 1250 ºC for 24 hours. 

In order to quantify the texture, the pole figure of materials with axisymmetric 

texture can also be represented as a plot of the intensity versus ω at fixed β, as explained in 

section 2.5.2. In this case, the volume fraction of textured material with preferred 

crystallographic direction at a certain angle with respect to the texture axis is measured. 
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Figure 4.8 shows the angular dependence of the intensity of the (0010) and the (115) 

diffraction planes in the range -90º ≤ ω ≤ 90º for the seeded SBT3Bi5T samples uniaxially 

pressed at 300 MPa and sintered at 1250 ºC for different sintering times. There is an 

evident modification in the widths and on the height of the (0010) diffraction profiles with 

the increase of the sintering time. When the sintering time increases, the intensity of the 

(0010) diffraction in the vicinity of ω = 0º increases, becoming higher than the (115) 

diffraction for 24 hours of sintering time. The orientation distribution profile of the (0010) 

diffraction drops in all cases when increasing ω, reaching the maximum value (M) at  

ω = 0º. This indicates not only that the templates grow in such a way that most of the 

grains are oriented with c-axis within ∼ 20º about the texture axis, but also that the number 

of grains with orientations in the vicinity of the texture axis and contributing to the XRD 

profile for low ω values increases with increasing of the sintering time. 
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Figure 4.8 Angular dependence of the intensity of the (0010) and the (115) diffraction 
peaks in the range -90º ≤ ω ≤ 90º for the seeded SBT3Bi5T specimens pressed at 300 MPa 
and sintered at 1250 ºC during (a) 24, (b) 2 and (c) 0 hours. 

On the other hand, there is a significant difference in the width of the (0010) profiles 

with increasing sintering time. While intensities 5 times smaller (M/5) are reached at  
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|ω| = 15º for the specimens with 0 hours of sintering time, the value of |ω| for M/5 increases 

to 20º and 22º for the specimens with 2 and 24 hours of sintering times, respectively. This 

behavior is related with the orientation distribution of grains in each sample, which will be 

further discussed in the next section 4.3.3, using a stereological analysis. 

Several small peaks were observed in the angular range of |ω| ≤ 20º for the (0010) 

diffraction and 30º ≤ |ω| ≤ 50º for the (115) diffraction. It is believed that the appearance of 

such peaks in these distributions is related to the statistic of the present XRD data, since in 

1 mm2 of incidence region over the sample there exist less than 100 template grains, as will 

be shown in the SEM results. 
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Figure 4.9 Angular dependence of the intensity of the (0010) and (115) diffraction peaks in 
the range of -90º ≤ ω ≤ 90º for (a) the seeded SBT3Bi5T sample pressed at 300 MPa and 
sintered at 1000 ºC for 1 h, and (b) the unseeded SBT3Bi sample sintered at 1250 ºC for 2 h. 

On the other hand, the angular dependence of the intensity of the (0010) and (115) 

diffraction peaks for the unseeded SBT3Bi sample sintered at 1250 ºC for 2 hours (used as 

a standard) and for the seeded SBT3Bi5T sample sintered at 1000 ºC for 1 hour (sample in 

which no significant TGG has occurred) were plotted in Fig. 4.9. The main differences in 

these two plots is the small peak appearing around ω = 0º for the (0010) diffraction and  

|ω| ≈ 50º for the (115) diffraction in Fig. 4.9(a), very close to the angle between the [001] 

and the [115] directions in the orthorhombic structure of SBT. These small peaks are 
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associated to the well-oriented templates in the seeded SBT3Bi5T samples, confirming an 

adequate orientation distribution of the original templates in the green samples. 

In the unseeded SBT3Bi sample, the distributions of intensity of the (0010) and the 

(115) diffraction peaks are in a good agreement with the pole figure shown in Fig. 4.7(c,d). 

That is, uniform pole densities with maximum values at ω = 0º in both cases. When TGG 

occurs in seeded SBT3Bi5T ceramics, the distribution of orientations around ω = 0º for the 

(0010) diffraction start to dominate the profile, being the highest peak for 24 hours of 

sintering time, while the intensity for the (115) diffraction still dominating the profile for 

|ω| > 20º because the intensity of the (115) diffraction peak would have to be maximal 

around |ω| = 52º, which is the angle between the [001] and the [115] directions calculated 

taking into account the orthorhombic symmetry (space group A21am) of the SBT system.2 

For texture higher than those presented in our samples, it should be expected that the (115) 

diffraction shows a concentric ring around |ω| = 52º in the pole figures. 

4.3. Microstructure and Texture Analysis 

4.3.1. Microstructure evolution 

In unseeded SBT ceramics sintered under similar processing conditions as those of 

seeded SBT, that is, uniaxial pressure of 150 MPa and sintering at 1250 ºC from 0 to 24 h, 

a microstructure showing dense platelet grain morphology without significant porosity was 

observed [see Fig. 4.10], in a good agreement with the high densities reported in  

section 4.2.1. Small, anisometric and well-faceted matrix grains were obtained, with a 

maximum length size of ~ 15 µm and thickness of ~ 4 µm, as documented in Fig. 4.10 for 

a sample sintered at 1250 ºC during 24 hours (the micrograph with the scale of 100 µm 

was included for later comparison with those of seeded SBT ceramics). 

Almost all BLSF materials show plate-like grain morphology to minimize the energy 

associated with the grain boundaries.5 As in Bi4Ti3O12, another BLSF crystal, SBT (00l) 

facets develop more extensively during the sintering process, thus indicating to be the ones 

possessing the lower surface energy. As a result, a plate-like grain morphology develops 

with major faces parallel to the (00l) crystal planes. 
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Figure 4.10 SEM micrographs of the polished and acid etched unseeded SBT3Bi specimen 
uniaxially pressed at 150 MPa and sintered at 1250 ºC for 24 hours. 

Figure 4.11(a) shows a cross-section //P of the seeded SBT3Bi5T ceramic uniaxially 

pressed at 300 MPa and sintered at 1000 ºC for 1 hour, in which the matrix is still porous 

and has density around 80% TD. As observed, anisotropic template growth is limited since 

grain connectivity and porosity do not favour the close contact between matrix grains and 

templates.9 As shown before, this sample did not start yet developing a crystallographic 

texture, being this stage regarded as the initial stage of the TGG process, i.e., the matrix 

grains are lower than 1 µm, the template particles are homogeneously distributed, and the 

average template size is ~ 42 µm in length by 8.4 µm in thickness, giving an initial aspect 

ratio (AR) of ∼ 5. 

 

Figure 4.11 SEM micrographs of (a) a cross-section //P of the seeded SBT3Bi5T ceramic 
uniaxially pressed at 300 MPa and sintered at 1000 ºC for 1 hour, and (b) a single SBT 
template surrounded by matrix grains, showing the c-axis orientation. 

Figure 4.11(b) shows an image of a single template surrounded by matrix grains in 

the same cross-section //P, in such a way that the c-axis is aligned parallel (or nearly 
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parallel) to the vertical axis of the micrograph as indicated in the figure. Although there 

exist a few misoriented templates [see Fig. 4.11(a)], most of them display a similar c-axis 

projection, in which their major face is nearly perpendicular to the uniaxial pressing 

direction, and thus, c-axis is aligned parallel to the pressing direction. 

For accessing the influence of the liquid phase on the final microstructure of the 

sintered ceramics, the microstructures of seeded SBT ceramics with and without Bi2O3 

excess were evaluated. Figure 4.12 shows the cross-section //P of the 5 wt% seeded SBT 

ceramic prepared without Bi2O3 excess (liquid phase former), uniaxially pressed at  

300 MPa, and sintered at 1250 ºC for 2 hours. The microstructure of such specimen 

consists of very few large anisometric grains with an average size close to that of the 

original templates [see Fig. 4.11(a) for comparison], which are distributed in a matrix of 

small and randomly oriented grains. A negligible template boundary migration into the 

polycrystalline matrix has thus occurred in this case. 

 

Figure 4.12 SEM micrographs on the polished and acid etched cross-section //P of the 
5 wt% seeded SBT5T ceramic with no Bi2O3 excess, uniaxially pressed at 300 MPa and 
sintered at 1250 ºC for 2 hours. 

Comparing this image to that corresponding to a seeded ceramic produced with the 

same amount of templates and under the same sintering conditions, but added with 3 wt% 

of Bi2O3 excess, a completely different microstructure is observed [see Fig. 4.14(c)]. The 

seeded sample with 3 wt% of Bi2O3 excess has developed a high volume fraction of large 

anisometric grains, which were grown by consuming small and randomly arranged grains 

from the matrix. This Ostwald ripening-type process was allowed by the Bi2O3 excess. The 

dimensions of the large anisometric grains are far above those of the original templates. 
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These results demonstrate that the Bi2O3 excess plays a crucial role as a liquid phase 

medium which enhances mass transfer processes in the TGG of SBT ceramics. 

Samples pressed at 150 MPa and sintered at different temperatures for 24 hours 

Figure 4.13(a,b) shows the textured microstructures of the polished and acid etched 

cross-sections //P that result from seeded SBT3Bi5T samples uniaxially pressed at 150 

MPa and sintered at 1150 ºC and 1250 ºC, respectively, for 24 hours. The microstructures 

thus obtained are quite different from that of the seeded SBT ceramic with no Bi2O3 excess 

[compare Figs. 4.12(a) and 4.13(a,b)]. In this case, a bimodal microstructure dominated by 

a great number of interconnected large and anisometric grains is clearly observed in both 

samples, although its amount is larger in the case of the sample sintered at 1250 ºC. These 

large grains, which were not observed in unseeded SBT3Bi ceramics [see Fig. 4.10(a) for 

comparison], display a plate-like morphology similar to the original template, with a final 

average length of ~ 90 µm and average thickness of ~ 14 µm, for the sample sintered at 

1250 ºC for 24 hours. This is about twice the dimensions of the initial seeds. 

Figure 4.13(c) shows an amplified region of the Fig. 4.13(a), where the matrix grains 

surrounding the large anisometric grains can be observed for the seeded SBT specimen 

sintered at 1150 ºC for 24 hours. These small grains are the matrix grains from which the 

templates are grown. Hence, the large template particles consume the small and randomly 

arranged matrix grains, as reported in many other systems.1,8 

Figure 4.13(d) shows the SEM micrograph of the polished and acid etched ⊥P top 

surface that result from the seeded SBT3Bi5T sample sintered at 1250 ºC for 24 h, for a 

comparative purpose. In this case, a bimodal microstructure is also evidenced, although the 

templates are revealed as square sections of solid grains with dimensions of ~ 90 × 90 µm2. 

Thus, it may be concluded that the large grains are plate-like anisotropic grains, similar to 

the SBT templates, but two times larger than the initial seeds. 

Figures 4.13(a) and 4.13(b) while revealing that the final volume fraction of large 

anisometric grains largely exceeds that of initial templates, also demonstrate that the 

volume fraction of large grains increases with the increasing sintering temperature. As 

discussed before, these phenomena take place in presence of liquid phase but not in its 



Chapter 4         Processing and Characterization of Textured SrBi2Ta2O9 Ceramics 

 167

absence. It is suggested that a decrease in the viscosity of the liquid phase with increasing 

temperature may account for these results since its favors matrix grain rearrangement and 

mass transport, which are considered to be relevant factors for anisometric grain growth in 

TGG processes.8-10 It must be also pointed out that the increasing amount of large 

anisometric grains that follow the increase of sintering temperature is accompanied by an 

increase of the ceramic crystallographic texture as revealed in Fig. 4.3. As reported in 

Table 4.2 and Fig. 4.6, the best Lotgering factor obtained for seeded SBT3Bi5T ceramics 

pressed at 150 MPa was only 25% in spite of the great amount of large grains, due to the 

misorientation of the initial templates. 

 

Figure 4.13 SEM micrographs on the polished and acid etched cross-section //P of the 
seeded SBT3Bi5T ceramic uniaxially pressed at 150 MPa and sintered at (a) 1150 ºC and  
(b) 1250 ºC during 24 hours. (c) Amplified section of the figure (a) showing the small grains 
surrounding the large anisometric grains. (d) SEM micrograph on the polished and acid 
etched ⊥P top surface of the same specimen of figure (b), in this case the pressing direction 
is pointing ⊥ to the figure plane (⊗). 
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Samples pressed at 300 MPa and sintered at 1250 ºC for different sintering times 

In order to increase the initial degree of orientation of the plate-like templates in the 

matrix for improving the degree of texture, a higher uniaxial pressure of 300 MPa was 

applied to the seeded SBT3Bi5T specimens, and the evolution of the microstructure for 

different sintering times at 1250 ºC was followed. Figure 4.14 shows the development of 

the textured microstructure during sintering of seeded SBT3Bi5T ceramics at 1250 ºC, 

after 0, 1, 2 and 24 hours. When increasing the sintering time, the templates particles grow 

significantly along the length direction for short sintering times until template 

impingement, while the matrix grains coarsen gradually. This is in a good agreement with 

results reported for alumina, where TGG was proposed to occur in three stages:9,11,12 

densification, rapid radial growth of individual template particles until impingement, and 

slower growth by template thickening, as schematically represented in Fig. 1.13. 

 

Figure 4.14 SEM micrographs on the polished and acid etched cross-section //P of the 
seeded SBT3Bi5T ceramic uniaxially pressed at 300 MPa and sintered at 1250 ºC for (a) 0 h, 
(b) 1 h, (c) 2 h and (d) 24 hours. 
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The time evolution of the microstructure depicted by Fig. 4.14 also reveals an 

increasing amount of oriented grains with their major faces perpendicular to the uniaxial 

pressing direction. This may explain the observed increasing crystallographic texture with 

the increasing sintering time, as shown in Fig. 4.4. In the present samples, after sintering at 

1250 ºC for 0 h the microstructure shows a few large grains that correspond roughly to the 

initial concentration of seed crystals. However, their average size has significantly 

increased to ~ 74 × 9 µm2 and has been accompanied by the corresponding increase (about 

60%) of the aspect ratio from AR ≈ 5 (initial stage) to AR ≈ 8. Similar to bismuth titanate 

ceramics textured by TGG, the template growth morphology may be ascribed to the 

anisotropy of grain boundary energies.5 Thus, the preferred lateral growth of the templates 

maximizes the area of the faces perpendicular to the c-axis, which appear to be those with 

lower surface energy. Although slowed by matrix coarsening, the template lateral growth 

continues until templates impinge each other after sintering at 1250 ºC for 2 hours (see also 

Table 4.3). At this point the average size of the large anisometric grains is ~ 88 × 11 µm2, 

while the aspect ratio still at AR ≈ 8. 

On the other hand, the comparison of Figs. 4.13(b) and 4.14(d) allows evaluating the 

effectiveness of the uniaxial pressure for conditioning the ceramic texture: it is clearly 

observed that the higher pressure (300 MPa) resulted in a larger amount of anisometric 

grains aligned with their major faces perpendicular to the pressing direction. 

Figure 4.15 illustrates the impingement of several large anisometric grains 

surrounded by small matrix grains in a cross-section //P of the seeded SBT3Bi5T ceramic 

pressed at 300 MPa and sintered at 1250 ºC for 2 hours. The edges of the large grains 

terminate abruptly on the major faces of other large grains. Besides, some of the matrix 

grains that grow too large to be consumed and that still are misaligned with respect to the 

templates also impinge upon the large anisometric grains. For longer sintering times, due 

to impingement, the large anisotropic grains stop to grow along the length direction while 

getting thicker, mainly through the aligned matrix grains, giving place to a decrease of the 

aspect ratio until AR ≈ 6.7. Their average size was of ~ 91 × 13.5 µm2 for the samples 

sintered during 24 hours. At this stage, some porosity concentrated near the template 

particle boundary also limits the grain growth, as observed in Fig. 4.14. 
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Figure 4.15 Cross-section //P of the seeded SBT3Bi5T ceramic uniaxially pressed at  
300 MPa and sintered at 1250 ºC for 2 hours, showing the impingement of several large 
anisometric grains surrounding by small matrix grains. 

4.3.2. Stereological analysis 

The measured values of the average length, thickness and the calculated aspect ratio 

for large and small anisotropic grains in seeded SBT3Bi5T samples sintered at 1250 ºC 

from 0 to 24 hours are reported in Table 4.3. The average length and thickness for small 

and large grains were determined through a stereological analysis by creating the 

corresponding histogram and fitting it with a normal distribution, as explained in the 

section 2.5.4. The aspect ratio for the large anisometric grains was calculated by dividing 

the average length by the average thickness. 

Table 4.3 Microstructure morphology parameters of the seeded SBT3Bi5T ceramics 
uniaxially pressed at 300 MPa and sintered under different conditions: Average length, 
thickness, aspect ratio and volume fraction corresponding to the large anisometric grains, 
and average length and thickness for the matrix grains, determined by stereological analysis. 

Sintering 
Temperature 

( ºC ) 

Sintering 
Time 

(hours) 

Volume 
Fraction 

fv 

Small Grains (µm) 
Length    Thickness 

Large Grains (µm) 
Length    Thickness 

Aspect 
Ratio 

1000 1 0.05 1.0 0.5 42 8.4 5.0 
1250 0 0.09 5.6 1.5 74 9.1 8.1 
1250 0.25 0.14 6.7 1.9 77 9.2 8.3 
1250 1 0.21 7.5 2.1 80 10.1 7.9 
1250 2 0.53 9.7 2.6 88 11.2 7.8 
1250 24 0.62 14.6 3.8 91 13.5 6.7 
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The volume fraction of textured material, fv, has been also included in Table 4.3. For 

calculating fv, the large anisometric grains were considered as textured material while the 

remaining small grains were assumed as randomly oriented. This volume fraction increases 

from ~ 9% after 0 hours to ~ 62% after 24 hours of sintering time. In the case of the seeded 

SBT specimen sintered at 1000 ºC for 1 hour, the calculated volume fraction of large 

anisometric grains was ~ 5%, in a good agreement with the initial amount of templates 

added to the SBT powder for TGG. Therefore, the previous assumption that this sample 

might be assumed to be at the initial stage of the TGG process is confirmed. 
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Figure 4.16 Sintering time dependence of the volume fraction of textured material obtained 
by stereological analysis of SEM images in seeded SBT3Bi5T ceramics pressed at 300 MPa 
and sintered at 1250 ºC. The inset corresponds to the enlargement of the initial curve region. 

Figure 4.16 shows how the volume fraction of textured material changes with the 

sintering time. Due to the template growth, a fast increase in the volume fraction of large 

anisometric grains from ~ 9% after 0 h to ~ 53% after 2 hours is observed, and then, fv stars 

to saturate following a sigmoid function. The anisotropic TGG occurs mainly in the first  

2 hours of sintering time when sintered at 1250 ºC (see inset in Fig. 4.16 for better 

visualization). However, a small amount of this volume fraction corresponds to misaligned 

grains with respect to the texture plane, that is, the plane perpendicular to the pressing 

direction. Nevertheless, most of these grains have a misorientation lower than 20º, as 

obtained from the pole figure measurements, and thus, they are expected to contribute to 
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the improvement of the dielectric and ferroelectric properties measured along any direction 

perpendicular to the pressing direction. 

Nucleation of new large anisometric grains 

Generally it was believed that the texture development during TGG occurs only by 

the growth of the large, anisometric and well-oriented templates throughout the matrix, 

consuming the small and randomly arranged neighbor matrix grains, without contribution 

from the rearrangement or the preferential development of texture in the matrix grains, as 

reported in TGG of textured alumina.11,13 Thus, the limits of the template growth and 

texture development should be controlled by the geometry, concentration and alignment of 

the original templates. According to such assumption, the volume fraction of textured 

material (considering only template particles) should be directly related to the number of 

original templates,11 

Tv VNf =       (4.1) 

where N is the initial number of templates in 1 cm3 and VT the average volume of a single 

template particle in cm3. Therefore, when template growth occurs, VT increases and 

according to Eq. 4.1 fv should increase linearly with VT. 

Figure 4.17 shows the dependence of fv on VT, which was calculated using the 

average length and average thickness of large anisotropic grains reported in Table 4.3 and 

assuming a plate-like morphology for the large grains. The slope of the curve corresponds 

to the number of large anisometric grains per 1 cm3. As observed, instead of a continuous 

linear relation between the volume fraction of textured material and the calculated average 

volume of a single large grain, two distinct slopes are identified in this plot, one for short 

sintering times up to 1 hour and a higher slope for longer sintering times. 

This result suggests that the number of large grains per 1 cm3 in the final stage of the 

TGG process increased with respect to the number of original templates. This can be also 

stated by comparing Fig. 4.14 from (a) to (d), even taking into account the increase of the 

large grains length and thickness. The number of large grains per 1 cm3 obtained from this 

plot was: No ≈ 2.7 × 106 cm-3 for short sintering times and Nf ≈ 1 × 107 cm-3 for longer 
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sintering times (both with correlation coefficient greater than 0.96). Thus, the number of 

large anisometric grains at the late stage of the TGG process is almost 4 times greater than 

the value obtained in the early stage. The number of original templates per 1 cm3 was also 

experimentally evaluated by taking into account the initial average particle dimensions  

(~ 42 × 8.4 µm2) and the original 5 wt% of templates mixed with the initial SBT powder. 

The value thus obtained, N = (3.3 ± 0.5) × 106 cm-3, is in a good agreement with No. 
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Figure 4.17 Correlation between the volume fraction of textured material and the calculated 
average volume of a large anisometric grain in seeded SBT3Bi5T ceramics pressed at  
300 MPa and sintered at 1250 ºC from 0 to 24 h. N is the number of large grains per 1 cm3. 

Therefore, besides the growth of the original templates throughout the polycrystalline 

matrix, new large grains evolve from the matrix and grow after 1 hour of sintering time, 

acquiring similar platelet morphology with a fast growth along the ab-plane and similar 

alignment with their major face nearly perpendicular to the uniaxial pressing direction. A 

mechanism other than the growth of the original templates should operate in this case. 

The study of the aspect ratio distributions for different sintering times gives also 

some information about the existence of new large grains independent of the original 

templates. Figure 4.18 shows several histograms corresponding to the AR distributions of 

large anisometric grains, weighted by their frequency, in the cross-sections //P of the 

seeded SBT3Bi5T ceramics uniaxially pressed at 300 MPa and sintered at 1250 ºC for 
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different sintering times. These histograms were fitted with normal distributions which 

allowed determining the mean AR and the full width at the half-maximum (FWHM) of 

each curve. The mean AR values thus obtained differ from those reported in Table 4.3 for 

the same specimens because the average AR reported in Table 4.3 were calculated dividing 

the average length by the average thickness also reported in this Table. 
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Figure 4.18 Histogram plots of the aspect ratio distribution fitted with a normal distribution 
(solid curve) corresponding to the large anisometric grains of seeded SBT3Bi5T ceramics 
pressed at 300 MPa and sintered at 1250 ºC for (a) 0 h, (b) 1 h, (c) 2 h and (d) 24 hours.  
AR is the aspect ratio, FWHM is the full-width at half-maximum, and ts is the sintering time. 

In spite of the observed difference between the mean and the average AR, both show 

a similar behavior with the increasing sintering time, that is, an approximately constant 

value (mean AR ∼ 7.2) until the large grain impingement occurs at ∼ 2 hours of sintering 

time, and then a decrease to ∼ 5.8 for 24 hours of sintering time. However, the most 

important behavior in these distributions is that, in spite of the constant mean AR value 
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obtained from 0 to 2 hours of sintering time, a considerably broadening of the distribution 

is observed with the increasing sintering time, which is reflected by the increasing FWHM 

value from 5.4 for 0 hours to 7.5 for 2 hours of sintering time. This increase in the FWHM 

value is associated to the intrinsic nucleation and growth of new large grain from the 

matrix before impingement, resulting in a wider distribution of the AR with increasing 

sintering time. Finally, the subsequent growth after impingement occurs mainly by grain 

thickening, resulting now in the narrowing of the distribution for longer sintering times as 

shown in Fig. 4.18(d) for 24 hours of sintering time. 

Figure 4.19 shows two SEM images with small matrix grains between large grains 

and having face-to-face contact in seeded SBT3Bi5T specimens pressed at 300 MPa and 

sintered at 1250 ºC for 0 and 2 hours. This grain alignment may have been originally 

induced by the pressing process itself or, as proposed by Watanabe et al.14 in bismuth 

titanate textured ceramics, by the rearrangement of the small matrix grains. It is suggested 

that the aligned templates induce the alignment of the matrix grains by rotation during the 

early stage of the TGG process. Those small grains that are situated close to the templates 

rotate to share the low-energy surface, that is, the major surface, thus influencing the 

rotation of other matrix grains that are farther from the template interface, as pointed out 

by Horn et al.5 Recently, Sakuma et al.15 have demonstrated this mechanism of matrix 

grain rearrangement assisted by templates with different composition and crystal structure 

from that of the matrix powder in BLSF materials. Sato et al.16 reported as well a similar 

effect in β-SiC materials, where two contacting grains showing a small difference in their 

orientations readjusted to the same orientation and bonded to form an elongated grain. 

The previously discussed results concerning (i) the effect of the presence of Bi2O3 

excess as liquid phase, (ii) the effect of the increasing sintering temperature, and (iii) the 

effect of the increase of the uniaxial pressure indicate that the template alignment and the 

liquid phase characteristics are important parameters governing the nucleation of 

secondary anisometric grains from the matrix. The higher uniaxial pressure (300 MPa) 

combined with a suitable amount of Bi2O3 excess (3 wt%) and sintering temperature  

(1250 ºC) seemed to be the best experimental conditions for improving the initial template 

alignment and induce the matrix grain rearrangement, which, assisted by a liquid phase of 

adequate viscosity, allowed the nucleation of new large anisometric grains. These findings 
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are in line with the proposals of Hong et al.12 for exploring the nucleation of large grains 

from the matrix in textured mullite, and with the suggestions from Suvaci et al.9 that liquid 

phase promotes the rearrangement and alignment of the matrix grains in textured alumina. 

 

Figure 4.19 SEM micrographs of aligned matrix grains acquired on cross-sections //P of 
seeded SBT3Bi5T ceramics pressed at 300 MPa and sintered at 1250 ºC for (a) 0 and (b) 2 h. 

Kinetics of templated grain growth 

As mentioned above, the kinetics of grain boundary migration in TGG is increased 

by introducing a liquid phase in the template boundary. In most cases of TGG, the template 

growth has been suggested to be controlled by a mechanism of mass transport by diffusion 

through the liquid phase,4,10,17 i.e., the polycrystalline matrix grains are dissolved and then 

deposited on the lowest energy surface of the templates.1 To access the rate-controlling 

process for template grain growth, that is, whether it is controlled by diffusion through the 

liquid phase or by the interfacial reaction at the solid/liquid interface, the magnitude of 
n
o

n
t RR −  (where Rt and Ro are the average template radii at time t and zero, respectively, 

and n is the growth exponent that determines the governing grain growth law)18 must be 

plotted against the sintering time. Lay reported the cubic growth kinetics for diffusion-

controlled grain growth in the presence of a liquid phase, using the following equation,19 

smot tKRR 05.133 =−      (4.2) 

where Km is the growth kinetic constant at a given sintering temperature and ts is the 

sintering time. This cubic law was observed to be independently fulfilled by the length (L) 

and by the thickness (T) of the large anisometric grains, in the seeded SBT3Bi5T ceramics 

uniaxially pressed at 300 MPa and sintered at 1250 ºC in the sintering time period between 
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0 and 2 h, before template impingement, as shown in Fig. 4.20. Error bars displayed in the 

plots were calculated from the standard deviation in each case and the correlation 

coefficients for the fit of the length and the thickness were 0.98 and 0.99, respectively. For 

longer sintering times the model did not fit the cubic law due to template impingement. 
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Figure 4.20 Growth of the large anisometric grains: (a) Length and (b) Thickness follow a 
cubic rate law for seeded SBT3Bi5T ceramics pressed at 300 MPa and sintered at 1250 ºC 
from 0 to 24 hours. Km is the growth kinetic constant. 

The value of the length growth kinetic constant is L
mK  = 2.0 × 103 µm3/min, being of 

the same order of magnitude of that reported for textured alumina and PMN-PT crystals.4,17 

On the other hand, the thickness growth kinetic constant T
mK  is three orders of magnitude 

smaller (5.0 µm3/min) in this sintering time period. The fulfillment of the Lay´s law by 

both the length and the thickness growth suggests that the mechanism for the growth of the 

large anisotropic grains in seeded SBT textured ceramics is controlled by mass diffusion 

through the liquid phase medium. 

It is worth noting that for a diffusion-controlled template growth in the presence of 

liquid phase, the viscosity of the liquid phase constrains the mass transfer processes. 

Therefore, this mechanism is in a good agreement with the observed increase in the 

volume fraction of large anisometric grains in seeded SBT3Bi5T pressed at 150 MPa when 

increasing the sintering temperature from 1150 to 1250 ºC, since the resulting decrease of 

the liquid phase viscosity is expected to speed up the mass transport and thus the rate of 

grain growth. Nevertheless, it is not safe to unambiguously assign a particular growth 
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mechanism based simply on the experimental growth exponent and further studies are 

needed to confirm this mechanism of template growth.18 

4.3.3. Orientation distribution function and quantitative texture analysis 

As mentioned in section 2.5.5, the texture analysis using only the Lotgering factor 

does not provide enough information about the distribution of grain orientation,20 which 

can be a key in the understanding of the processing-texture and more important texture-

property relationships. In fact, it only reflects the percentage quantity of material with the 

(00l) planes perpendicular to the scanned surface in the XRD experiment, thus, scarce 

information about the distribution of grain orientation is obtained. On the other hand, if the 

grain morphology can be correlated with a particular crystallographic direction or plane of 

the studied material, an orientation distribution of the anisotropic grains stereologically 

determined can be used to quantify the degree of texture throughout the r (texture factor) 

and fv (volume fraction of textured material) parameters.21,22 Therefore, more important 

than the degree of texture in piezoelectric materials determined by the Lotgering factor is 

the knowledge of the distribution of grain orientation, since the grains with some small 

misorientation regarding the texture axis may also contribute to the spontaneous 

polarization, thus enhancing the ferroelectric properties along a specific direction. 

The orientation distribution of large anisotropic grains in seeded SBT3Bi5T ceramics 

pressed at 300 MPa was obtained from the stereological analysis by measuring the number 

frequency of large grains with their major axis oriented at a given angle ω with respect to 

the texture plane, and fitted using the March-Dollase equation described in section 2.5.5 by 

a least-squares method. In this case, fv was set equal to 1 in order to quantify the degree of 

alignment of the large anisotropic grains throughout the r parameter (texture factor), which 

is associated with the width of the orientation distribution function. The equation obtained 

by setting fv = 1 in the March-Dollase equation (Eq. 2.10) describes the probability 

distribution function introduced originally by March in 1932 and utilized by Dollase in his 

later work.23 

2
3

2
22 sincos),,1(

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

r
rrF ωωω      (4.3) 



Chapter 4         Processing and Characterization of Textured SrBi2Ta2O9 Ceramics 

 179

The normalization to the unity of the March probability distribution function  

(Eq. 4.3) was obtained by dividing this equation by its boundary condition at ω = 0, that is, 
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Figure 4.21 Calculated dependence of the normalized March function for different values of 
the r parameter in the range 0.1 ≤ r ≤ 0.9, using Eq. 4.4. 

Equation 4.4 was used to fit the normalized orientation distributions of large 

anisotropic grains. Figure 4.21 shows the ω dependence of this normalized March 

probability function, FN, with the value of the r parameter in the range 0.1 ≤ r ≤ 0.9. The 

higher is the texture of the material, the narrower is the orientation distribution and thus the 

smaller is the r value. For randomly oriented materials, the normalized orientation 

distribution is equal to the unity for the full range of ω and thus r = 1. Highly textured 

ceramics obtained by TGG have shown r values smaller than 0.2.22 

Figure 4.22 shows the normalized orientation distribution of large anisometric grains 

for seeded SBT3Bi5T ceramics uniaxially pressed at 300 MPa and sintered at (a) 1000 ºC 

for 1 hour (this condition was considered as corresponding to the initial stage of the TGG 
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process, and thus, this curve describes the orientation distribution of the original templates) 

and at (b-f) 1250 ºC from 0 to 24 hours of sintering time. Each distribution was normalized 

to the unity by dividing it by the number frequency of large grains with orientation equal to 

zero, ω = 0. For each case, a texture factor, r, was searched so as to produce the best fitting 

of the normalized March function (Eq. 4.4) to the experimental values. The March fits to 

the data are plotted in Fig. 4.22 for each distribution as a solid line, being the correlation 

coefficients better than 0.99 for all the fits, except for the distribution of original templates 

[Fig. 4.22(a)] that shows a correlation coefficient above 0.97, demonstrating the suitability 

of the March-Dollase distribution function for fitting stereologically measurable data. 
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Figure 4.22 Normalized orientation distribution of large anisometric grains and their March 
fits in seeded SBT3Bi5T ceramics pressed at 300 MPa and sintered at (a) 1000 ºC for 1 hour 
(original templates) and (b) 1250 ºC for 0 h, (c) 15 min, (d) 1 h, (e) 2 h and (f) 24 hours. 

Square open symbol stands for the experimental data and solid lines for March fits. ω is the 
platelet orientation angle. 

As expected, the maximum value of the distributions occurs at ω = 0 and the number 

frequency of large grains drops with increasing ω, reaching 0.2 (that is 5 times lower than 

the value for ω = 0) at ω ∼ 30º of the texture axis. Moreover, a noticeable increase in the 

widths of the profiles occurs when the sintering time increases beyond 1 hour at 1250 ºC. 

Figure 4.23(a) allows comparing the profiles corresponding to 0 and 2 h of sintering time. 
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Figure 4.23 (a) Comparison of the width of the normalized orientation distribution of large 
anisometric grains corresponding to seeded SBT3Bi5T ceramics pressed at 300 MPa and 
sintered at 1250 ºC during ( ) 0 h and ( ) 2 h (the solid lines represent March fits).  
(b) Texture factor (r) as a function of the logarithm of the sintering time. 

Figure 4.23(b) shows the r values of seeded SBT3Bi5T ceramics uniaxially pressed 

at 300 MPa and sintered at 1250 ºC as a function of the sintering time. A step increase of 

the r value from ~ 0.49 for short sintering times to ~ 0.58 for 2 and 24 hours of sintering 

times is clearly observed. For the specimen sintered at 1000 ºC for 1 hour, which was 

considered as the initial stage of the TGG process and where the distribution is associated 

to the original templates, the value obtained for the texture factor was r = 0.48, very close 

to that obtained for the specimens sintered at 1250 ºC from 0 to 1 hour. Thus, within this 

range of sintering times the degree of orientation of large grains remains approximately 

constant. The relatively high r values obtained in the present work reflect mainly the 

effectiveness of the used processing technique for template alignment. It is believed that an 

r value improvement will be achieved by using other more complex texturing techniques. 

If texture development during TGG was controlled only by the growth of the 

templates throughout the matrix, consuming the small and randomly oriented grains, as 

primarily proposed by Messing et al. in many other systems,11,13,22 then a nearly constant r 

value should be obtained for the different sintering times, being the texture factor of the 

sintered specimens the result of the original templates texture factor. The sudden increase 

in the texture factor for 2 or more hours of sintering time is probably related with the 

nucleation and growth of the new large grains in the final stage of the TGG process, as 

discussed in the previous section 4.3.2. Nevertheless, some experimental aspects, such as 
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the lower size limit and the AR condition for selecting a measurable large grain, need to be 

taken into account in this method in order to have a more accurate result. 

4.4. Dielectric and Ferroelectric Properties 

4.4.1. Dielectric characterization 

Unseeded SBT ceramics 

Figure 4.24(a) shows the temperature dependence of dielectric permittivity upon 

heating for several frequencies (from 1 kHz to 1 MHz) obtained for the unseeded SBT3Bi 

ceramic sintered at 1250 ºC for 2 h. The maximum of dielectric permittivity corresponding 

to the ferroelectric-paraelectric phase transition is clearly observed at Tm ≈ 300 ºC, in a 

good agreement with previous reports on stoichiometric SBT ceramics.24,25 Small thermal 

hysteresis of about 1 ºC were observed in the permittivity curves upon heating and cooling, 

as shown in the inset of Fig. 4.24(a) for 1 and 10 kHz, which is within the experimental 

error. Figure 4.24(b) shows the temperature dependence of the dielectric losses (tanδ) upon 

heating in the same frequency range, where the peak corresponding to the ferroelectric-

paraelectric phase transition is only visible at 1 MHz [see inset of Fig. 4.24(b)]. The 

temperature of tanδ peak is also obtained at Tm ≈ 300 ºC, with dielectric losses lower than 

0.02 from room temperature up to 400 ºC at 1 MHz. 

SBT is believed to belong to the displacive-type ferroelectrics with a near 2nd-order 

phase transition from paraelectric to ferroelectric state at TC (Curie temperature), as shown 

in section 3.2.4. The absence of frequency dispersion at the transition temperature 

observed in Fig. 4.24(a), together with the matching values of Tm from permittivity and 

tanδ curves as well as the small thermal hysteresis in permittivity, confirms the close to a 

2nd-order phase transition in the unseeded SBT ceramics, where Tm can be estimated to be 

close to TC. Similar behavior of the temperature dependences of dielectric permittivity and 

losses for several frequencies (from 1 kHz to 1 MHz) were obtained for all the unseeded 

SBT specimens under different sintering conditions, which are summarized in Table 4.4. 
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Figure 4.24 Temperature dependence of (a) dielectric permittivity and (b) dielectric losses 
(tanδ) upon heating for several frequencies (from 1 kHz to 1 MHz as indicated by the 
arrows) for the unseeded SBT3Bi ceramic sintered at 1250 ºC for 2 hours. The inset in (a) 
shows the thermal hysteresis upon heating and cooling for 1 and 10 kHz, and in (b) gives the 
tanδ peak at 1 MHz corresponding to the ferroelectric phase transition. 

The room temperature and maximum permittivities for 10 kHz are around 135 and 

480, respectively, with dielectric losses lower than 0.02, for most of the samples, except 

for the unseeded SBT3Bi specimen sintered at 1250 ºC for 24 hours whose maximum 

permittivity decreases to ∼ 400. As previously referred, the long sintering process of the 



Chapter 4         Processing and Characterization of Textured SrBi2Ta2O9 Ceramics 

 184

sample at 1250 ºC is followed by some bismuth losses which are known to deteriorate 

dielectric properties. The unseeded SBT specimen sintered at 1250 ºC for 2 hours will be 

used as a reference for further comparison with the textured seeded SBT ceramics. 

Table 4.4 Results from the dielectric characterization of unseeded SBT3Bi ceramics for 
different sintering conditions. Tm is the transition temperature obtained from the permittivity 
curve, the dielectric permittivity (εr) is reported at room temperature (RT) as well as at Tm 
(maximum permittivity) at 10 kHz, and the dielectric loss (tanδ) is reported at Tm (1 MHz). 

εr (10 kHz) Sintering 
Temperature 

( ºC ) 

Sintering 
Time 

(hours) 

Tm 
( ºC ) RT Maximum 

tanδ 
at Tm 

(1 MHz) 

1150 2 320 140 495 0.014 
1150 24 317 130 475 0.018 
1250 2 300 135 480 0.015 
1250 24 293 130 405 0.020 

The small downwards shift of the transition temperature with increasing sintering 

temperature and time, i.e., from 320 ºC (1150 ºC / 2 h) to 300 ºC (1250 ºC / 2 h) and to  

293 ºC (1250 ºC / 24 h) may be ascribed to different degree of internal stresses in the fine-

grained ceramics, which develop during cooling down from the sintering temperature and 

affect the intrinsic properties of ferroelectric materials.26 These internal stresses are related 

to the grain size and grain distributions, as well as to the formation of 90º domains.27 

Similar grain-size effect on the Curie temperature has been reported in other ferroelectric 

systems.27-29 Moreover, for the samples sintered at 1250 ºC, it is believed that 

compositional fluctuations and the bismuth loss due to long sintering times and high 

sintering temperature may also contribute for this Tm shift. This discussion will be further 

resumed for the analysis of the seeded SBT specimens. 

Figure 4.25 shows the linear relationship between the inverse permittivity (at 1 MHz) 

and temperature, above and below Tm, in the unseeded SBT3Bi ceramic sintered at 1250 ºC 

for 2 hours. The permittivity curve at 1 MHz was selected for this study since it is the one 

having the lower contribution from the low frequency dispersion above Tm up to 400 ºC, as 

observed in Fig. 4.24(a). This linear relationship in the proximity of Tm is known as the 

Curie-Weiss law previously described in section 1.2.3 (Eq. 1.7), which is satisfied in most 
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(non-relaxor) ferroelectrics. The Curie constant was determined from the slope of the 

straight line above Tm (C = 5.5 × 104 ºC) while TCW was ∼ 175 ºC. It is worth noting that 

the C value is similar to that reported in section 3.2.4 for SBT single crystal. On the other 

hand, the slope of 1/ε(T) dependence below Tm is approximately two times greater than 

that above Tm, which is also characteristic of a 2nd-order phase transition. Similar results 

were obtained in all unseeded SBT specimens. 
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Figure 4.25 Temperature dependence of the inverse dielectric permittivity near Tm at  
1 MHz, in the unseeded SBT3Bi ceramic sintered at 1250 ºC for 2 hours. C is the Curie 
constant, Tm is the transition temperature and TCW is the Curie-Weiss temperature. 

Seeded SBT ceramics 

The dielectric characterization of the seeded SBT3Bi5T ceramics is discussed for the 

samples uniaxially pressed at 300 MPa, since they demonstrated the highest texture.  

Figure 4.26 shows the temperature dependence of permittivity for several frequencies upon 

heating for seeded SBT3Bi5T ceramics sintered at 1250 ºC for 0 and 24 hours, when the 

electric field is applied parallel to the pressing direction (E//P), i.e., perpendicular to the 

favorable direction of polarization. For comparative purposes, the curve obtained for the 

unseeded SBT3Bi ceramic sintered at 1250 ºC for 2 hours is also included. 
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Figure 4.26 Temperature dependence of dielectric permittivity for several frequencies (from 
10 kHz to 1 MHz as indicated by the arrows) for the unseeded SBT3Bi ceramic sintered at 
1250 ºC for 2 hours and the seeded SBT3Bi5T ceramic sintered at 1250 ºC for 0 and 24 h, 
when the electric field is applied parallel to the pressing direction (E//P). 

The unseeded SBT ceramic exhibit room temperature and maximum permittivities at 

10 kHz of ~ 135 and ~ 480, respectively, while the transition temperature was at 300 ºC as 

mentioned before. When increasing the sintering time at 1250 ºC, the room temperature 

and maximum permittivities at 10 kHz of the seeded SBT3Bi5T samples decrease from  

~ 125 and ~ 390 for 0 hours to ~ 100 and ~ 265 for 24 hours of sintering time, respectively, 

followed by a downwards shift of the transition temperature from 295 ºC to 282 ºC (see 

also Table 4.5). The decrease observed in the peak of dielectric permittivity is related to the 

improvement of the degree of texture of the seeded SBT ceramics with increasing sintering 

time. The contribution from the highly polarizable ab-plane of the plate-like grains 

diminishes due to the favorable alignment of large anisometric grains with their major face 

(crystallographic ab-plane of the SBT structure) perpendicular to the applied electric field. 

It must be referred that, as observed in unseeded ceramics, the thermal hysteresis in 

the permittivity curves upon heating and cooling for seeded SBT3Bi5T specimens was also 

∼ 1 ºC. Moreover, no significant frequency dependence of the transition temperature was 

observed in all the seeded SBT samples, being the behavior of the temperature dependence 

of permittivity for several frequencies (from 1 kHz to 1 MHz) very similar for all the cases. 
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Figure 4.27 Anisotropy in the temperature dependence of the dielectric permittivity at  
10 kHz, measured with E//P and E⊥P, for seeded SBT3Bi5T ceramics sintered at 1250 ºC 
for 0, 2 and 24 hours. For comparison, the dielectric curve at 10 kHz for the unseeded 
SBT3Bi ceramic sintered at 1250 ºC for 2 hours is also included. 

Figure 4.27 compares the temperature dependence of permittivity at 10 kHz obtained 

in seeded SBT3Bi5T samples sintered at 1250 ºC for 0, 2 and 24 hours, when the electric 

field is applied parallel (E//P) and perpendicular (E⊥P) to the pressing direction. For 

comparison, the dielectric curve for the unseeded SBT3Bi ceramic sintered at 1250 ºC for 

2 hours is also included in the plot. Anisotropy in the dielectric permittivity at room 

temperature as well as at the transition temperature can be observed in the seeded SBT 

samples (see also Table 4.5). This anisotropy is scarcely evident in the seeded SBT 

samples sintered during 0 h, whose curves (measured with E//P and E⊥P) stay below that 

of the unseeded SBT sample. However, when the sintering time increases to 2 h and to  

24 h, the anisotropy becomes strongly enhanced due to the increasing degree of texture, 

i.e., for 24 h of sintering time the room temperature and maximum permittivities increase 

from ~ 100 and ~ 265 to ~ 160 and ~ 580 when measured with E//P and E⊥P, respectively. 

The permittivity value obtained for the seeded SBT ceramic sintered at 1250 ºC for 2 

and 24 hours (measured with E⊥P) exceeds those of the unseeded one which are roughly 

isotropic, not depending on the direction of the applied electric field. In the case of seeded 

samples, there is a positive contribution from the highly polarizable ab-plane of the plate-
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like grains, due to the favorable alignment of the large anisometric grains with their major 

faces (crystallographic ab-plane) parallel to the applied electric field. 
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Figure 4.28 Temperature dependence of dielectric loss (tanδ) upon heating for several 
frequencies (from 1 kHz to 1 MHz as indicated by the arrows), measured with (a) E//P and 
(b) E⊥P, for seeded SBT3Bi5T ceramics sintered at 1250 ºC for 2 h. The inset gives the tanδ 
peak at 1 MHz in both cases, which corresponds to the ferro-paraelectric phase transition. 
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Figure 4.28 shows the temperature dependence of dielectric losses (tanδ) for several 

frequencies (from 1 kHz to 1 MHz) when the electric field is applied (a) parallel (E//P) and 

(b) perpendicular (E⊥P) to the pressing direction, for the seeded SBT3Bi5T ceramic 

sintered at 1250 ºC during 2 hours. Once again, the peak corresponding to the ferroelectric-

paraelectric phase transition can be only observed at 1 MHz [see insets in Fig. 4.28], as 

already referred in the unseeded ceramics. However, in the case of seeded ceramics, the 

temperature corresponding to tanδ peak is observed at Tm ≈ 280 ºC, which is around 3 to  

5 ºC lower than the value obtained from permittivity measurements in this sample (see also 

Table 4.5). Similar temperature dependences of the dielectric loss for several frequencies 

(from 1 kHz to 1 MHz) were obtained in all the seeded SBT specimens. 
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Figure 4.29 Anisotropy in the temperature dependence of the dielectric loss (tanδ) at  
1 MHz, measured with E//P and E⊥P, for seeded SBT3Bi5T ceramics sintered at 1250 ºC for 
2 and 24 hours. For comparison, the tanδ curve for the unseeded SBT3Bi ceramic sintered at 
1250 ºC for 2 hours is also included. 

The anisotropy in tanδ curve at 1 MHz for seeded SBT3Bi5T ceramic sintered at 

1250 ºC for 2 and 24 h, when the electric field is applied parallel (E//P) and perpendicular 

(E⊥P) to the pressing direction is better observed in Fig. 4.29. For comparison, the curve 

corresponding to the unseeded SBT3Bi specimen sintered at 1250 ºC for 2 hours is also 

included in this plot. As observed in permittivity data, the temperature of tanδ peak also 
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decreases with increasing sintering time. In addition, the anisotropy of the dielectric loss at 

room temperature as well as at the transition temperature can be observed in the seeded 

samples. The higher losses were obtained when measurements were performed with E⊥P 

due to the higher conductivity in the ab-plane of the BLSF materials,30,31 while the lower 

losses were obtained with E//P, because in this case the Bi2O2 layers are perpendicular to 

the electric field direction. 

Table 4.5 summarizes the results of the dielectric characterization of the seeded 

SBT3Bi5T specimens obtained under different pressing and sintering conditions, when the 

electric field is applied parallel (E//P) and perpendicular (E⊥P) to the pressing direction. 

The anisotropy in the average room temperature and maximum permittivities, as well as in 

the dielectric losses, can be clearly observed. This anisotropy is greater in the samples with 

a higher uniaxial pressure because these samples showed a higher degree of texture. 

Table 4.5 Results from the dielectric characterization of seeded SBT3Bi5T ceramics 
uniaxially pressed at 150 and 300 MPa for different sintering conditions, and measured with 
the electric field applied parallel (E//P) and perpendicular (E⊥P) to the pressing directions. 
Tm is the transition temperature obtained from the permittivity curves, dielectric permittivity 
(εr) is reported at room temperature (RT) as well as at Tm (maximum permittivity) at 10 kHz, 
and dielectric looses (tanδ) are reported at Tm (1 MHz). 

εr (10 kHz) Tm 

( ºC ) RT Maximum 

tanδ 
at Tm 

(1 MHz) 
Sintering 

Temperature 
( ºC ) 

Sintering 
Time 

(hours) 
E // P E ⊥ P E // P E ⊥ P E // P E ⊥ P E // P E ⊥ P 

Pressure 150 MPa 

1150 24 298 300 125 128 412 512 0.012 0.014 
1250 24 288 290 110 145 288 560 0.016 0.027 

Pressure 300 MPa 

1250 0 295 292 125 115 390 390 0.015 0.014 
1250 0.25 294 293 120 122 375 405 0.016 0.017 
1250 1 290 289 115 135 340 430 0.015 0.016 
1250 2 285 283 118 150 285 525 0.014 0.019 
1250 24 282 281 100 160 265 582 0.007 0.024 
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The downwards shift of the transition temperature with the increase of the sintering 

time is observed again, i.e., Tm ≈ 295 ºC for the sample sintered at 1250 ºC during 0 h, but 

decreases to 282 ºC after 24 hours (Table 4.5). Moreover, the seeded sample sintered at 

1250 ºC for 2 h has Tm ≈ 285 ºC, which is 15 ºC lower than the value obtained for the 

unseeded sample (Tm ≈ 300 ºC) sintered under the same conditions (Table 4.4). This result 

agrees with a grain-size dependence of the transition temperature, that is, in seeded SBT 

ceramics stresses develop during the TGG process and become stored in the impinged 

large anisometric grains. Such internal stresses in the impinged large grains increase the 

free energy of the ferroelectric phase, thus decreasing the transition temperature.28 

4.4.2. Ferroelectric characterization 

The ferroelectric characterization of the seeded SBT3Bi5T ceramics was performed 

on the specimens uniaxially pressed at 300 MPa, since they demonstrated the highest 

texture and anisotropy in the dielectric properties. Figure 4.30 shows the room temperature 

P-E hysteresis loops (at 50 Hz) using progressively increasing applied electric fields (Em), 

for the seeded SBT3Bi5T ceramic sintered at 1250 ºC for 2 hours and measured with the 

electric field applied parallel (E//P) and perpendicular (E⊥P) to the pressing direction. 

Anisotropy in the hysteresis loops can be clearly observed by comparing the two plots as 

well as the values of remanent (Pr) and spontaneous (PS) polarizations along both 

directions, which are also reported in the figure for the loops obtained with Em ≈ 150 

kV/cm (see also Table 4.6). The coercive field was the same in both cases, EC = 26 kV/cm. 

Figure 4.31 shows the dependence of Pr and PS with the applied electric field (at  

50 Hz), obtained from progressive hysteresis loops, when the electric field is applied 

parallel (E//P) and perpendicular (E⊥P) to the pressing direction. Once again, the 

anisotropy in the Pr and PS values can be clearly seen in this plot, although, it should be 

noted that none of the two parameters is saturated for a maximum applied electric field of 

150 kV/cm, which exceeds more than five times the coercive field of this sample. In 

addition, further increase of the applied electric field beyond this maximum value gives 

rise to the electrical breakdown in most of the samples. 
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Figure 4.30 Room temperature P-E hysteresis loops measured with (a) E⊥P and (b) E//P for 
a maximum applied electric field of 150 kV/cm in seeded SBT3Bi5T ceramics sintered at 
1250 ºC for 2 hours. The values for the remanent (Pr) and the spontaneous (PS) polarization 
as well as the coercive field (EC) obtained from the hysteresis loop at 150 kV/cm are 
included in both cases. 

Similar dependences of Pr and PS values on the applied electric field (at 50 Hz) until 

Em ≈ 150 kV/cm have been obtained for all the seeded SBT samples measured with both 

applied field configurations, that is, E//P and E⊥P. Figure 4.32 shows a comparison of the 

room temperature P-E hysteresis loops at Em ≈ 150 kV/cm for the seeded SBT3Bi5T 
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ceramics sintered at 1250 ºC for different sintering times and measured with E//P and E⊥P. 

For comparison, the loop obtained for the unseeded SBT3Bi ceramic sintered at 1250 ºC 

for 2 hours is also included in the three graphs. The textured samples show a strong 

anisotropy in the hysteresis loops when measured with E//P and E⊥P, which is higher for 

the specimens with higher degree of texture, i.e., those sintered during 2 and 24 hours. 
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Figure 4.31 Dependence of the remanent (Pr) and the spontaneous (PS) polarization on the 
electric field, when it is applied parallel (E//P) and perpendicular (E⊥P) to the pressing 
direction, in the seeded SBT3Bi5T ceramic sintered at 1250 ºC for 2 hours. 

The polarization vector in the SBT orthorhombic structure lies entirely along the  

a-axis.32 Accordingly, the observed increase of PS and Pr values for the textured ceramics 

when E⊥P is used, may be explained as an increased contribution from the highly 

polarizable ab-plane allowed by the favorable alignment of the large anisometric grains 

with their major faces (crystallographic ab-plane) parallel to the applied electric field. This 

contribution is expected to further increase with the ceramic degree of texture. For the 

sample where E//P, the above mentioned contribution is partly lost and the permittivity and 

polarization values decreases. 
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Figure 4.32 Room temperature P-E hysteresis loops obtained at Em ≈ 150 kV/cm with E⊥P 
and E//P in seeded SBT3Bi5T ceramics sintered at 1250 ºC during (a) 0, (b) 2 and (c) 24 h. 
The hysteresis loop obtained for the unseeded SBT3Bi ceramic sintered at 1250 ºC for 2 h is 
also included for comparison. 
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Table 4.6 summarizes the results of the ferroelectric characterization for the seeded 

SBT3Bi5T specimens sintered at 1250 ºC from 0 to 24 hours, when the electric field is 

applied parallel (E//P) and perpendicular (E⊥P) to the pressing direction. The results for 

the unseeded SBT3Bi ceramic sintered at 1250 ºC for 2 hours are also included. 

The permittivity for high electric fields, εE, was determined from the slope of the 

linear segment that back to the polarization axis in the P-E hysteresis loop at high electric 

fields [dashed line in Fig. 1.6(a)] and using the Eq. 1.8, as described in the section 1.2.5. 

As mentioned in that section, at very low as well as at very high electric fields, when all 

the domains have switched in the direction of the electric field, the material behaves like an 

ordinary dielectric and the permittivity obtained from the P-E hysteresis loop must be 

similar to that obtained from dielectric measurements at room temperature using the same 

frequency. The high εE values obtained for Em ≈ 150 kV/cm with both configurations, E//P 

and E⊥P, being far above the permittivity values obtained from dielectric measurements at 

room temperature (see Table 4.5), also indicate that polarization from the hysteresis loops 

was not saturated. It should be mentioned that even when dielectric measurements were 

performed from 1 kHz to 1 MHz (far above the 50 Hz used in the P-E hysteresis loops), the 

frequency dispersion of room temperature permittivity is too weak for predicting εr values 

(at 50 Hz) comparable with the εE values determined from the hysteresis loops. 

The anisotropy in the Pr, PS and εE values measured at Em ≈ 150 kV/cm can be also 

observed in Table 4.6 when the degree of texture of seeded SBT3Bi5T ceramics increases. 

These parameters become enhanced for E⊥P but decrease if E//P, due to the opposite 

contribution from the highly polarizable ab-plane for these two cases. On the other hand, 

the coercive field does not show anisotropy when measured parallel and perpendicular to 

the pressing direction, but it increases from 20 to 27 kV/cm with the increasing sintering 

time. It is important to emphasize that the EC obtained for the unseeded SBT3Bi specimen 

(20 kV/cm) is very close to that obtained in SBT single crystals (see section 3.2.4). The 

maximum PS of 8.9 µC/cm2 measured with E⊥P for 24 h of sintering time is still far from 

the value estimated for the SBT single crystal in section 3.2.4 (PS ≈ 20 µC/cm2). 
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Table 4.6 Results from the room temperature P-E hysteresis loops measured with the 
electric field applied parallel (E//P) and perpendicular (E⊥P) to the pressing directions in the 
unseeded SBT3Bi ceramic sintered at 1250 ºC for 2 h and seeded SBT3Bi5T ceramics 
pressed at 300 MPa and sintered at 1250 ºC from 0 to 24 h. Pr and PS are the remanent and 
spontaneous polarization, respectively, EC is the coercive field, and εE is the permittivity 
under high electric field, all reported for a maximum electric field of Em = 150 kV/cm. 

Pr 
(µC/cm2) 

PS 
(µC/cm2) 

EC 
(kV/cm) εE Sintering 

Temperature 
( ºC ) 

Sintering 
Time 

(hours) 
E // P E ⊥ P E // P E ⊥ P E // P E ⊥ P E // P E ⊥ P 

Unseeded SBT3Bi 

1250 2 3.3 5.3 20 590 
Seeded SBT3Bi5T 

1250 0 3.1 4.2 4.2 5.4 22 24 470 700 
1250 0.25 2.9 4.5 4.0 5.6 23 23 425 762 
1250 1 2.8 4.9 4.0 5.9 23 24 386 790 
1250 2 2.1 6.6 2.9 8.1 26 26 280 876 
1250 24 1.6 7.0 2.1 8.9 27 27 225 950 

These results indicate that dielectric and ferroelectric properties are considerably 

improved in the textured SBT ceramics when measured with E⊥P, as compared to the 

unseeded SBT samples, and that highly anisotropic properties can be thus achieved. Next 

section is focused on the prediction of the texture - property relationships in BLSF 

materials, especially in textured SBT ceramics. 

4.5. Texture - Property Relationships in BLSF materials 

The final section of this chapter is devoted to describe the spatial distribution of the 

polarization vector for both randomly oriented and textured BLSF materials, so as to 

predict the corresponding theoretical spontaneous polarization. This quantitative model 

uses the texture analysis accomplished via the orientation distribution function, described 

in section 4.3.3, for the calculation of the expected PS as a function of the degree of texture. 
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4.5.1. Theoretical approach 

It is well known that piezoelectric properties of ferroelectric materials depend on the 

orientation of the spontaneous polarization relative to the direction of the applied electric 

field, and thus can not be fully exploited in randomly oriented polycrystalline materials. 

For instance, in uniaxial ferroelectrics where the polarization vector (P) is confined to one 

axis and only two antiparallel domain states are allowed (180º Domain Wall Switching or 

DWS), the net polarization for a randomly oriented ceramic under the application of a 

poling electric field along a specific direction is obtained by averaging over the available 

spatial distribution of the polarization vector of each grain in the semi-sphere of solid angle 

2π around the direction of the electric field (z-axis), as schematically illustrated in  

Fig. 4.33(a).33 In this case, the spatial distribution of polarization for misoriented grains 

can be expressed as Po cosθ, where Po is the spontaneous polarization of each grain (which 

is assumed to be a single crystal) and θ is the angle between Po and the electric field 

direction. Thus, the net polarization along the z-axis is given by (in spherical coordinates), 

( )

2
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sincos

2

0

2

0 o
o

random
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P ==

∫
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π

π

θθ

θθθ
        (4.5) 

However, in BLSF materials the polarization is basically confined to a plane, 

allowing not only two antiparallel domain states (180º DWS) but also two perpendicular 

domain states in the plane (90º DWS).34 Takenaka et al.34 have calculated for the first time 

the expected polarization for perfectly textured and randomly oriented Bi4Ti3O12 ceramics, 

considering two configurations of domain wall switching, that is, only 180º DWS and both 

180º and 90º DWS. Ferroelastic 90º domains (twins) in BLSF are related to the interchange 

of the crystallographic a and b-axes in the ab-plane of the orthorhombic structure. 

In BLSF materials, the grains grow in anisotropic form showing platelet morphology 

with the major face of the plate-like grain parallel to the ab-plane and perpendicular to the 

c-axis of the pseudo-tetragonal structure.5-7,15 Thus, the spatial distribution of the 

polarization vector of each grain in a randomly oriented ceramic under the application of a 
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poling electric field is described by two angles in the semi-sphere of solid angle 2π around 

the direction of the electric field (z-axis). These angles are: θ - the angle between the major 

face of the platelet grain and the electric field direction, and ϕ - the angle between the polar 

vector (Po) within the plane of the major face and the projection of the electric field vector 

(z-axis) in the same plane, as schematically illustrated in Fig. 4.33(b). 
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Figure 4.33 Spatial distributions of the polarization vector in ferroelectric materials with  
(a) uniaxial symmetry (P is confined to one axis and only 180º DWS is allowed), and  
(b) platelet grain morphology (P is confined to a plane allowing both 180º and 90º DWS), in 
the semi-sphere of solid angle 2π around the electric field direction (taken along the z-axis). 

In this model, the polarization is considered entirely along the a-axis in the ab-plane 

of the structure, as is the case of SBT, although, for BLSF materials where m is odd (see 

section 1.3.2) the small component of the spontaneous polarization appearing along the  

c-axis has also to be taken into account in the calculation. Furthermore, each grain in the 

randomly oriented or partially textured ceramic is assumed to act independently from 

adjacent grains. Thus, the cooperative effect of domain switching and the elastic coupling 

at the grain boundary which tend to pin domain switching are neglected in the calculations 

as well as the mechanical strain accompanying 90º DWS which also clamps domain 

switching. It is also assumed in the case of both 180º and 90º DWS that the polarization 

vector under the application of a poling electric field will assume the orientation closest to 

the projection of the electric field vector in the plane of the grain major face. 
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Therefore, the spatial distribution of polarization for misoriented grains according to 

the Fig. 4.33(b) can be expressed as ϕθϕθ coscos),( oPP = , and the net polarization 

along the z-axis is given by (considering some symmetry elements), 

( )

ϕθθ

ϕϕθθθ

π

π

dd

ddP
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o

random
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sin
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   (4.6) 

The value of Φ in the upper limit of the integration for the ϕ angle depends on if only 

180º DWS is considered (Φ = π/2) or both 180º and 90º DWS are considered (Φ = π/4). 

Therefore, the net polarization in a randomly oriented BLSF ceramic is, 

 

In textured ceramics, the spontaneous polarization is enhanced by the alignment of 

the polar vector of each grain along a preferential direction (texture direction). To model 

the effect of the degree of texture in the net polarization along this preferential direction, 

the orientation distribution of anisometric grains must be quantified and introduced in the 

integration procedure. In this case, the March-Dollase (MD) function (Eq. 2.10) has been 

selected as a model equation to fit and quantify the measured orientation distribution of 

large anisometric grains, as previously described in the section 4.3.3. The MD function is a 

real probability distribution function which satisfied the normalization condition, 

1sin),,(2

0
=∫

π

θθθ drfF v      (4.7) 

Therefore, the expected polarization in textured BLSF ceramics can be theoretically 

modeled by introducing the MD function into the Eq. 4.6, 

 

〈P〉random = 

π
oP2

π
oP

(180º and 90º DWS)

(180º DWS)



Chapter 4         Processing and Characterization of Textured SrBi2Ta2O9 Ceramics 

 200

( )

ϕθθθ

ϕϕθθθθ

π

π

ddrfF

ddPrfF
rfP

v

ov

v
Theor

∫ ∫
∫ ∫

Φ

Φ

=
2

0 0

2

0 0

sin),,(

cossincos),,(
),(   (4.8) 

from which is obtained, 
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where, 

 

The maximum expected polarization as a function of the experimentally determined 

fv and r parameters can be predicted from the Eq. 4.9 in textured BLSF ceramics. 

In fully textured BLSF materials (fv = 1 and r = 0), even when the major faces of all 

platelet grains are parallel to each other, the polarization vector lies completely in the plane 

parallel to the major face of platelet grains, but still randomly distributed within the plane. 

In this case, the net polarization under the application of a poling electric field along a 

specific direction in the texture plane is given by, 

∫
∫

Φ

Φ

=

0

0
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ϕϕ
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o
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       (4.10) 

where Φ in the upper limit of the integration depends on if only 180º DWS is considered 

(Φ = π/2) or both 180º and 90º DWS are considered (Φ = π/4). Therefore, the net 

polarization in a fully textured BLSF ceramic is, 
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4.5.2. Comparison between predicted and experimental polarization in SBT 

textured ceramics 

Figure 4.34 shows an example of the linear dependence of the predicted values for 

the maximum expected polarization (PTheor), considering only 180º DWS, on the volume 

fraction of textured material (fv) in textured SBT ceramics having a different degree of 

alignment of the template grains, which is represented through the r parameter as described 

in section 4.3.3. To Po was attributed the value of 20 µC/cm2, which is the spontaneous 

polarization of the SBT single crystal as reported in section 3.2.4. 
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Figure 4.34 Predicted values for the maximum expected polarization, PTheor (Eq. 4.9), as a 
function of the volume fraction of textured material (fv) in partially textured SBT ceramics 
having different values of the r parameter ( ) r = 0.2, ( ) r = 0.5 and ( ) r = 0.8, and 
assuming Po = 20 µC/cm2 and only 180º DWS. ( ) Predicted PTheor for the fully textured 
SBT ceramic with only 180º DWS. 

It is noteworthy that both parameters (fv and r) are crucial for obtaining high values 

of PS in textured ceramics, so that, not only to grow of a great amount of platelet grains 

 

(180º and 90º DWS) 
〈P〉fully textured

oP
π

22

oP
π
2

(180º DWS) 



Chapter 4         Processing and Characterization of Textured SrBi2Ta2O9 Ceramics 

 202

during the TGG process, but rather to induce a high alignment of the original templates 

during the fabrication of the green samples. The predicted maximum polarization for 

randomly oriented, 〈P〉random (fv = 0 or r = 1) and fully textured, 〈P〉fully textured (fv = 1 and  

r = 0), SBT ceramics, assuming Po = 20 µC/cm2, were determined to be, 

 

and 

 

Therefore, only 90% of the PS for SBT single crystal can be theoretically obtained in 

fully textured SBT ceramics (considering both 180º and 90º DWS), since the distribution 

of the polarization vector within the texture plane can not be inhibited during TGG. 

The results predicted by the model underlying the Eq. 4.9 and the experimental PS 

values obtained from P-E hysteresis loops when E⊥P (see Table 4.6) are both plotted in 

Fig. 4.35 as a function of the volume fraction (fv) of textured material (see Table 4.3). The 

calculated data yield the maximum polarization that can be ideally obtained for a given set 

of fv and r parameters if it is considered the configuration of only 180º DWS or that with 

both 180º and 90º DWS. Po = 20 µC/cm2 was used as the spontaneous polarization of each 

grain, the same as that reported for the SBT single crystal in section 3.2.4. 

The calculated polarizations for both configurations (only 180º DWS or both 180º 

and 90º DWS) are considerably higher than the measured PS, in particular for low fv values. 

Several reasons may explain this result, including porosity, grain size, and mostly the poor 

continuity in the polarization during switching due to the randomly oriented grains, which 

effectively decrease the measured PS as suggested by Duran et al. in Sr0.53Ba0.47Nb2O6 

textured ceramics.33 Randomly oriented grains effectively decrease the measured 

polarization at lower fv values by interfering with the domain switching. Nevertheless, with 
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the increasing degree of texture, experimental PS approaches to the predicted values, 

exceeding the values predicted for only 180º DWS for fv > 0.5. This result suggests that 

there exist both contributions to the polarization, e.g., 180º and 90º DWS, and that the 

higher degree of texture enhances the cooperative switching of ferroelectric domains in 

well-oriented grains with good connectivity. Further experimental results obtained for f ~ 1 

are necessary to confirm this assumption. 
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Figure 4.35 Predicted values for the maximum expected spontaneous polarization (PS) as a 
function of the volume fraction of textured material (fv) assuming ( ) only 180º DWS and 
( ) both 180º and 90º DWS. ( ) Experimental PS obtained from the P-E hysteresis loops 
with E⊥P in the seeded SBT3Bi5T ceramics (see Table 4.6). 

4.6. Summary 

In summary, this chapter was dedicated to the processing and characterization of 

textured SrBi2Ta2O9 ceramics with improved performances of dielectric and ferroelectric 

properties along a particular direction. The studies were focused on seeded SBT ceramics 

prepared by templated grain growth using 3 wt% of Bi2O3 excess as liquid phase and  

5 wt% of anisometric SBT templates, as these were identified as promising conditions for 

TGG. The effects of the processing and sintering conditions including uniaxial pressure, 

the sintering temperature and time, etc., on the final density, degree of texture and 

microstructure evolution of both seeded and unseeded SBT ceramics were studied and 
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discussed. The texture development was examined by XRD and pole figure analyses, 

which confirmed a crystallographic texture in seeded SBT samples. Lotgering factor was 

determined in all cases showing an increase with the increasing sintering temperature and 

time, whereas the higher uniaxial pressure used for shaping the green samples resulted in 

ceramics with higher degree of texture. 

A bimodal microstructure with a high amount of large anisometric grains was 

obtained after sintering the seeded SBT ceramics at 1250 ºC for 2 h. The large grains were 

similar in shape to the original templates but two times larger than the initial seeds. Most 

of the large grains with c-axis perpendicular to the major face were preferentially oriented 

with the normal to the major face within ∼ 20º about the texture axis (the pressing 

direction). When increasing the sintering time and temperature, the template particle grow 

significantly faster along the length direction until the template impingement occurs while 

the matrix grains coarsen gradually. The volume fraction of oriented material increases 

from ~ 9% after 0 hours to ~ 62% after 24 hours of sintering time. The alignment of the 

templates particles induces alignment of the matrix grains, given rise to nucleation of new 

large anisometric grains that evolve from the matrix independent of the original seeds. The 

number of large anisometric grains per 1 cm3 increases from 2.7 × 106 cm-3 for short 

sintering times to 1 × 107 cm-3 for longer sintering times. The growth of the large grains in 

seeded SBT textured ceramics seemed to be controlled by a mechanism of mass transport 

by diffusion through the liquid phase. 

Anisotropy in the dielectric and ferroelectric properties of the seeded SBT specimens 

at room temperature as well as at the transition temperature, and its dependence on the 

degree of texture were demonstrated. Enhanced dielectric and ferroelectric properties were 

measured perpendicularly to the uniaxial pressing direction for the seeded samples sintered 

at 1250 ºC for 2 and 24 hours, with permittivity and polarization values exceeding those of 

the unseeded SBT ceramics which are roughly isotropic, not depending on the direction of 

the applied electric field. The ferro-paraelectric phase transition temperature decreases with 

increasing the sintering temperature and time in both seeded and unseeded SBT ceramics, 

probably due to internal stresses associated with the grain size and grain distributions. The 

Curie constant was determined to be ∼ 5.5 × 104 ºC, in a good agreement with the results in 
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SBT single crystals, and the maximum PS of 8.9 µC/cm2 was measured with E⊥P for 24 h 

of sintering time, far from the value estimated for SBT single crystal (PS ≈ 20 µC/cm2). 

A quantitative model was presented for the prediction of the maximum PS in both 

randomly oriented and textured BLSF materials, using a texture analysis accomplished via 

the orientation distribution of large anisometric grains. The March-Dollase equation was 

selected to fit the measured orientation distribution and the spatial distribution of the 

polarization vector in platelet grains of BLSF materials was discussed. The calculated data 

yield the maximum PS that can be ideally obtained for a given set of fv and r parameters 

whether 180º DWS or (180º and 90º) DWS configurations are considered. The results were 

applied to the case of the textured SBT ceramics, and the predicted values for PS as a 

function of the degree of texture were compared with those obtained from the hysteresis 

loops. The experimental PS approaches to the predicted values with the increasing degree 

of texture, exceeding the values predicted for 180º DWS configuration when fv > 0.5. 
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The knowledge of SrBi2Ta2O9 and SrBi2Nb2O9 intrinsic properties, including the 

anisotropy of the dielectric, ferroelectric and piezoelectric properties, domain structure and 

phase transitions, are important prerequisite for the understanding of the distinct effects 

observed to date in SBT and SBN thin films. As referred above, this has motivated an 

important part of this thesis work focused on the growth and properties study of SBT and 

SBN single crystals. Moreover, stressed by the current interest in developing lead-free 

piezoelectric materials for high-temperature applications, this work also explored the use 

of the grown crystals for producing textured SBT ceramics, thereby allowing to understand 

the texture - property relationships in this material. As a result, the main conclusions of this 

thesis work may be summarized as follows: 

5.1. SrBi2Ta2O9 and SrBi2Nb2O9 Single Crystals 

• High-quality SBT and SBN plate-like single crystals were successfully grown by 

high-temperature self-flux solution method, allowing the study of their intrinsic properties 

which are required for applications in various microelectronic devices. The same optimized 

thermal profile was successful for growing large single crystals of both compositions, with 

the sizes of ∼ 7 × 5 × 0.2 and 5 × 5 × 0.4 mm3 for SBT and SBN, respectively, though the 

greater thickness of SBN crystals accounts for some difference in the various parameters 

ruling the crystal growth of both systems. The narrow sides of the platelet crystals were 

oriented along the [110] and [ 011 ] directions of the orthorhombic structure with the [001] 

direction (c-axis) lying perpendicular to the major face. 

• Piezoelectric force microscopy allowed the observation of coexisting 90º and 180º 

domain walls in SBT single crystals, which form a well-defined “herringbone” structure 

with mostly flat 90º walls. These flat 90º walls oriented parallel to the 〈110〉-direction, 

which were not observed to date in ceramics and thin films, were explained by considering 

the energy associated to elastic fields of very long range produced by the wall bending. 

The formation of such complex domain structure in SBT crystals, which was attributed to 

the presence of separate ferroelastic and ferroelectric phase transitions in SBT, may have a 

significant impact on the physical properties of this system. 
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• The high-quality of the grown SBT and SBN single crystals was also confirmed by 

dielectric, ferroelectric and piezoelectric measurements, demonstrating a large anisotropy 

in the intrinsic properties of both crystals. The maximum permittivity measured in the ab-

plane was an order of magnitude greater than that along c-axis, and significantly exceeded 

that of bulk ceramics in both cases. The displacive-type ferro-paraelectric phase transition 

of SBT and SBN systems seemed to be intermediate between the 1st- and the 2nd-order. 

• The saturated hysteresis loop obtained along the [110] direction and the linear P-E 

behavior revealed along the [001] direction in SBT crystals confirms that the spontaneous 

polarization vector lies entirely in the ab-plane of the SBT structure. PS was estimated as  

≈ 20 µC/cm2 along the polar a-axis in SBT. Though saturated hysteresis loops were not 

reached for a maximum applied electric field of 100 kV/cm in SBN crystals, their 

ferroelectric anisotropy was demonstrated, too. 

• Piezoelectric coefficients d33 exceeding those reported for ceramics and thin films 

have been measured along the [100] direction (polar-axis) of both crystals (d33 ≈ 30 and  

62 pm/V for SBT and SBN, respectively). The measured d33 is believed to be smaller than 

the real value corresponding to the crystal free of any stress and constrain due to the 

sample holder. A correction factor that relates the real d33 value to the measured one could 

not be determined due to the complex configuration of the crystal embedded in araldite. 

5.2. Textured SrBi2Ta2O9 Ceramics 

• Textured SBT ceramics were prepared by templated grain growth using anisometric 

SBT templates. The orientation of the original templates in the green pressed samples was 

seen to be enhanced when increasing the uniaxial pressure, thereby improving the degree 

of texture of the sintered ceramics. Seeded SBT specimens with 3 wt% of Bi2O3 excess as 

liquid phase former and 5 wt% of templates revealed the highest degree of texture with 

improved performance of the dielectric and ferroelectric behavior. 

• The crucial role of the liquid phase and of the templates in the TGG process was 

demonstrated in the microstructure of the seeded specimens: whereas a large amount of 

anisometric grains having a similar platelet shape but with the size twice as that of the 
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starting templates was developed in the seeded samples having liquid phase, a negligible 

template boundary migration occurred in the absence of Bi2O3 excess. Moreover, the 

presence of aligned templates induced the alignment of the small matrix grains and created 

proper conditions for the nucleation of new large anisometric grains within the matrix, 

displaying platelet morphology with similar alignment as the original templates. The lateral 

growth of these large anisometric grains is therefore preferred to maximize the area of the 

faces perpendicular to the c-axis, which appear to be those with low surface energy, until 

the template impingement occurs. The mechanism of templated grain growth in the seeded 

SBT ceramics seemed to be controlled by the diffusion through the liquid phase. 

• Anisotropy in the dielectric and ferroelectric properties was demonstrated in the 

seeded SBT samples with enhanced properties measured perpendicularly to the uniaxial 

pressing direction, due to the greater contribution from the highly polarizable ab-plane of 

large anisometric grains with their major faces parallel to the applied electric field. In this 

case, the permittivity and spontaneous polarization values exceed those of the unseeded 

SBT ceramics which are roughly isotropic and do not depend on the applied electric field 

direction. The observed downwards shift of the transition temperature with the increasing 

sintering temperature and time was ascribed to different degree of internal stresses, which 

probably develop during the TGG process and become stored in the impinged large grains, 

though compositional fluctuations and bismuth losses for long sintering times and at high 

sintering temperature may also contribute to this shift. 

• The maximum spontaneous polarization that can be ideally obtained in randomly 

oriented or in partially textured SBT ceramics was predicted by a quantitative model which 

takes into account the configuration of only 180º domain wall switching (DWS) or that 

corresponding to both 180º and 90º DWS. In the present case of textured SBT ceramics, 

the experimental PS measured from the hysteresis loop approaches the values predicted by 

the model when increasing the degree of texture, and exceeds the predicted values when 

the volume fraction of textured material is above 0.5, if only the 180º DWS is considered. 

Both contributions to the polarization, e.g., 180º and 90º DWS, are thus suggested to take 

place in the textured SBT ceramics. Moreover, this model can be applied to other BLSF 

materials for predicting the maximum expected PS as a function of the degree of texture in 

ceramics and thin films. 
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5.3. Future Work 

The results obtained in this thesis work emerged from a systematic examination of 

the intrinsic properties of SBT and SBN single crystals, as well as from the study of the 

texture - property relationships in textured SBT ceramics. However, further studies 

regarding these two subjects are required to answer some unsolved questions in this work. 

Accordingly, the future work should be focused in the following issues. 

SBT and SBN Single Crystals 

• The growth morphology of the obtained SBT and SBN single-crystals was 

compared, and several factors related to the crystal growth were suggested as possible 

reasons accounting for the observed difference in the growth rates along the [001]-

direction (c-axis). However, a deeper understanding of the growth mechanism requires a 

detailed study of the growth conditions such as: flux viscosity, supersaturation, solute 

diffusion, etc. Such study is generally expected to benefit the knowledge on crystal growth 

in the BLSF family and, particularly, to allow the growth of thicker SBT crystals. 

• The obtained complex domain pattern in SBT crystals was attributed to separate 

ferroelastic and ferroelectric phase transitions in SBT. It is believed that different thermal 

treatments of the grown crystals may clarify the relation between the observed twinned 

domain structure and the ferroelastic phase above TC observed in SBT, i.e., using a very 

slow cooling through the ferro-paraelastic transition, as well as a quenching from ∼ 750 ºC 

down to room temperature. In addition, the domain structure of the SBN crystals should be 

investigated in detail by piezoelectric force microscopy to reveal the unknown domain 

pattern of this ferroelectric crystal. 

• The experimental setup used for piezoelectric characterization must be improved 

for allowing measurements in stress-free crystals and for obtaining d33 as well as d31 and 

d15 piezoelectric coefficients, which are very important for the complete study of the 

piezoelectric properties. Moreover, many other fundamental properties of SBT and SBN 

systems should be exploited by characterizing the grown crystals like electromechanical, 

elastic and electro-optical coefficients. 
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SBT Textured Ceramics 

• Although textured SBT ceramics were successfully obtained by TGG, the degree of 

texture evaluated via the Lotgering factor shows values lower than those typically reported 

for fully textured ceramics produced by other more elaborated texturing techniques like 

tape casting and extrusion. Therefore, such texturing techniques must be introduced in the 

TGG process of SBT ceramics for enhancing the degree of texture, thus improving the 

dielectric and ferroelectric properties. 

• Transmission electron microscopy (TEM) studies may be performed to confirm the 

crystallographic orientation of the large anisometric grain with c-axis perpendicular to the 

major face, and to determine the thickness and composition of the liquid layer at the 

interface between templates and matrix grains, which would help to achieve a greater 

understanding of the mechanism for the growth of the large anisotropic grains. 

• The model presented for the prediction of the maximum PS in randomly oriented 

and textured BLSF materials must be improved in the case where m is odd, by considering 

the small component of the PS appearing along the c-axis in the calculation. 
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