
 Universidade de Aveiro
2005

Departamento de Electrónica e Telecomunicações

Avaliação de Bluetooth® para a transmissão sem
fios de MIDI

Paulo Jorge de
Campos Bartolomeu

Evaluating Bluetooth® for the wireless transmission
of MIDI

IN OUT IN OUT

MIDI MIDI

Bluetooth

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório Institucional da Universidade de Aveiro

https://core.ac.uk/display/15565083?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 Universidade de Aveiro

2005
Departamento de Electrónica e Telecomunicações

Avaliação de Bluetooth® para a transmissão sem
fios de MIDI

Paulo Jorge de
Campos Bartolomeu

Evaluating Bluetooth® for the wireless transmission
of MIDI
dissertação apresentada à Universidade de Aveiro para cumprimento dos
requisitos necessários à obtenção do grau de Mestre em Engenharia
Electrónica e Telecomunicações, realizada sob a orientação científica do Dr.
José Alberto Fonseca, Professor Associado do Departamento de Engenharia
Electrónica e Telecomunicações da Universidade de Aveiro.

dissertation submitted to the University of Aveiro in fulfilment of the thesis
requirement for the degree of Master in Electronics and Telecommunications
Engineering, under the supervision of José Alberto Fonseca, Associated
Professor at the Departamento de Engenharia Electrónica e Telecomunicações
of the University of Aveiro.

o júri

presidente Prof. Doutor Alexandre Manuel Moutela Nunes da Mota
Professor Associado do Departamento de Electrónica e Telecomunicações da Universidade de
Aveiro

 Prof. Doutor Manuel Alberto Pereira Ricardo
Professor Auxiliar do Departamento de Engenharia Electrotécnica e Computadores da Faculdade
de Engenharia da Universidade do Porto

 Prof. Doutor Paulo Maria Ferreira Rodrigues da Silva
Professor Auxiliar do Departamento de Comunicação e Arte da Universidade de Aveiro

 Prof. Doutor José Alberto Gouveia Fonseca
Professor Associado do Departamento de Electrónica e Telecomunicações da Universidade de
Aveiro

agradecimentos

Ao Professor Doutor José Alberto Gouveia Fonseca, queria agradecer a sua
orientação exemplar e apoio incondicional.

Aos meus pais e irmão, pelos esforços que sempre empreenderam em meu
auxílio nos diversos momentos difíceis da minha vida.

À minha namorada Patrícia, pela paciência e apoio.

palavras-chave MIDI, indústria musical, espectáculos, redes sem fios ad-hoc, Bluetooth, SPP,
ACL, pontualidade, Wi-FI, ZigBee, UWB

resumo

A indústria musical cresceu consideravelmente nos últimos anos originando
uma forte procura de novas tecnologias que potenciem a flexibilidade dos
espectáculos. Dado que o protocolo MIDI está fortemente implementado em
instrumentos musicais, é necessário desenvolver soluções que permitam
usufruir de flexibilidade na sua utilização. Esta dissertação procura endereçar
esta problemática, recorrendo ao uso de tecnologias de transmissão sem fios.
Em particular, é considerada a tecnologia Bluetooth para mapear as ligações
MIDI tradicionais em ligações sem fios. Neste sentido, são propostas várias
abordagens e destas são obtidos resultados indicando que a tecnologia
Bluetooth pode ser uma boa opção no suporte de ligações MIDI sem recurso a
fios.

keywords

MIDI, music industry, performances, ad-hoc wireless networks, Bluetooth, SPP,
ACL, timeliness, WPANs, Wi-FI, ZigBee, UWB

abstract

During the past few years, the musical industry has grown considerably and
has become more demanding in what concerns the use of technologies
supporting flexibility in musical performances. Provided that MIDI is strongly
implemented in the musical industry, it is required to develop solutions allowing
flexibility usefulness. In the scope of this dissertation, an assessment of
wireless technologies is performed. Particularly, Bluetooth is considered in the
mapping of traditional wired MIDI connection in wireless MIDI links. In this
sense, several approaches are proposed and results obtained, indicating that
the Bluetooth technology may be suitable to support the wireless connection of
MIDI devices.

INDEX OF CONTENTS

i

Contents

CHAPTER 1 - INTRODUCTION ..1-1
1.1 OVERVIEW...1-1
1.2 ORGANIZATION OF THE DISSERTATION..1-3

CHAPTER 2 - MIDI OVERVIEW...2-1
2.1 MIDI PROTOCOL ...2-2

2.1.1 Introduction ...2-2
2.1.2 Channel Voice Messages ...2-6
2.1.3 Channel Mode Messages ...2-11
2.1.4 System Messages ...2-13

2.2 STANDARD MIDI FILES...2-15
2.2.1 File Structure...2-16

2.3 CONCLUSION ...2-21

CHAPTER 3 - ISSUES CONCERNING THE IMPLEMENTATION OF WIRELESS
MIDI ..3-1

3.1 INTRODUCTION ..3-2
3.2 TIMING REQUIREMENTS ..3-4
3.3 PROPOSED ARCHITECTURE FOR WIRELESS MIDI...3-6
3.4 COMMERCIAL SOLUTIONS ...3-7

CHAPTER 4 - BLUETOOTH OVERVIEW ...4-1
4.1 INTRODUCTION ..4-1
4.2 STACK ...4-2

4.2.1 Radio..4-3
4.2.2 Baseband ...4-4
4.2.3 LMP ...4-9
4.2.4 L2CAP ...4-10
4.2.5 RFCOMM ..4-11
4.2.6 SDP..4-11

4.3 RECENT IMPROVEMENTS ...4-12
4.4 PROFILES ...4-13
4.5 CONCLUSION ...4-15

CHAPTER 5 - WIRELESS PERSONAL AREA NETWORKS - AN OVERVIEW.5-1

5.1 WI-FI ..5-1
5.1.1 Overview..5-2
5.1.2 Components and architecture..5-2

5.2 ZIGBEE AND 802.15.4 ...5-9
5.2.1 IEEE 802.15.4 ...5-10

5.3 ULTRA-WIDE BAND...5-18
5.3.1 Overview..5-18

EVALUATING BLUETOOTH FOR THE WIRELESS TRANSMISSION OF MIDI

ii

5.4 CONCLUSION... 5-21

CHAPTER 6 - WIRELESS MIDI - BLUETOOTH BASED SOLUTIONS............... 6-1
6.1 INTRODUCTION.. 6-1
6.2 STANDARD OPERATION... 6-2
6.3 TEST-BED ARCHITECTURE .. 6-3
6.4 SOLUTIONS.. 6-5

6.4.1 Serial Port Profile ... 6-5
6.4.2 ACL Connection .. 6-10
6.4.3 MIDI Command Aggregation.. 6-16

6.5 DISCUSSION... 6-19

CHAPTER 7 - CONCLUSION... 7-1

REFERENCES...I

APPENDIX A - LIST OF ACRONYMS... VII

INDEX OF FIGURES

iii

Figures

FIGURE 2-1 - MIDI TIMING FOR A SINGLE BYTE ..2-2
FIGURE 2-2 - EXAMPLE OF A MIDI SETUP FOR MINIMAL OPERATION2-3
FIGURE 2-3 - EXAMPLE OF A MIDI SETUP FOR INSTRUMENT DAISY CHAINING....................2-3
FIGURE 2-4 - EXAMPLE OF A MIDI SETUP FOR SOFTWARE SEQUENCER OPERATION............2-4
FIGURE 2-5 - SNAPSHOT OF THE CAKEWALK’S SONAR 4 USER INTERFACE..........................2-5
FIGURE 3-1 - MIDIMAN BLUETOOTH-MIDI PROTOTYPE ..3-3
FIGURE 3-2 - TIMELINE OF A MIDI TRANSMISSION ...3-4
FIGURE 3-3 - TIMELINE OF A CHORD..3-5
FIGURE 3-4 - TIMELINE OF A CHORD START (OR STOP) ..3-5
FIGURE 3-5 - EXAMPLE OF A MIDI SETUP...3-6
FIGURE 3-6 - AN EXAMPLE OF A WIRELESS MIDI SETUP ..3-7
FIGURE 3-7 - WIRELESS MIDI COMMERCIAL SOLUTIONS..3-7
FIGURE 4-1 - BLUETOOTH SCATTERNET. ...4-2
FIGURE 4-2 - BLUETOOTH PROTOCOL STACK...4-3
FIGURE 4-3 - BASEBAND PACKET STRUCTURE...4-4
FIGURE 4-5 - COMMUNICATION PROCESS FOR SINGLE-SLAVE OPERATION...........................4-5
FIGURE 4-6 - COMMUNICATION PROCESS FOR MULTI-SLAVE OPERATION4-6
FIGURE 4-7 - TIMINGS FOR ONE, THREE, AND FIVE SLOT PACKETS4-6
FIGURE 4-8 - LMP PDU PAYLOAD BODY..4-10
FIGURE 4-9 - BLUETOOTH PROFILES..4-14
FIGURE 5-1 - IEEE 802.11 COMPONENTS..5-3
FIGURE 5-2 - IEEE 802.11 SUPPORTED NETWORKS...5-3
FIGURE 5-3 - IEEE 802.11 MAC COORDINATION FUNCTIONS ..5-5
FIGURE 5-4 - IEEE 802.11 MAC FRAME FORMAT ..5-7
FIGURE 5-5 - PHY LOGICAL ARCHITECTURE ...5-7
FIGURE 5-6 - IEEE 802.11B PLCP FRAME TYPES ...5-8
FIGURE 5-7 - ZIGBEE STACK ...5-10
FIGURE 5-8 - BASIC IEEE 802.15.4 NETWORK TOPOLOGIES ...5-11
FIGURE 5-9 - IEEE 802.15.4 IN THE ISO-OSI LAYERED NETWORK MODEL5-13
FIGURE 5-10 - MESSAGE SEQUENCE CHART DESCRIBING THE MAC DATA SERVICE5-14
FIGURE 5-11 - AN EXAMPLE OF A SUPERFRAME STRUCTURE ...5-15
FIGURE 5-12 - IEEE 802.15.4 CHANNEL STRUCTURE..5-16
FIGURE 5-13 - FIRST REPORT AND ETSI DRAFT SPECTRUM MASK FOR UWB

COMMUNICATIONS IN INDOOR SCENARIOS ...5-19
FIGURE 5-14 - UWB TECHNOLOGY POSITIONING ..5-20
FIGURE 5-15 - UWB PROTOCOL LAYERS AND APPLICATION ...5-20
FIGURE 6-1 - DELAY MEASUREMENT SYSTEM (TEST-BED)..6-4
FIGURE 6-2 - SPP WIMIDI PROTOTYPE..6-5
FIGURE 6-3 - SPP SLAVE-TRANSMITTING DELAYS. ...6-6
FIGURE 6-4 - SPP SLAVE-TRANSMITTING JITTER INCIDENCE RATE.6-7
FIGURE 6-5 - SPP MASTER-TRANSMITTING DELAYS. ..6-7

EVALUATING BLUETOOTH FOR THE WIRELESS TRANSMISSION OF MIDI

iv

FIGURE 6-6 - SPP MASTER-TRANSMITTING JITTER INCIDENCE RATE. 6-8
FIGURE 6-7 - SPP SLAVE-TRANSMITTING STATISTICS... 6-9
FIGURE 6-8 - SPP MASTER-TRANSMITTING STATISTICS.. 6-9
FIGURE 6-9 - REDUCED BLUETOOTH STACK. .. 6-11
FIGURE 6-10 - ACL WIMIDI PROTOTYPE .. 6-11
FIGURE 6-11 - ACL SLAVE-TRANSMITTING DELAYS. ... 6-13
FIGURE 6-12 - ACL SLAVE-TRANSMITTING JITTER INCIDENCE RATE................................ 6-14
FIGURE 6-13 - ACL MASTER-TRANSMITTING DELAYS.. 6-14
FIGURE 6-14 - ACL MASTER-TRANSMITTING JITTER INCIDENCE RATE. 6-15
FIGURE 6-15 - ACL SLAVE-TRANSMITTING STATISTICS. .. 6-15
FIGURE 6-16 - ACL MASTER-TRANSMITTING STATISTICS. ... 6-16
FIGURE 6-17 - COMMAND AGGREGATION ALGORITHM ... 6-17
FIGURE 6-18 - MIDI TRANSMISSION TIMINGS ... 6-19

INDEX OF TABLES

v

Tables

TABLE 2-1 - SUMMARY OF STATUS BYTES..2-6
TABLE 2-2 - NOTE OFF AND NOTE ON ..2-7
TABLE 2-3 - POLYPHONIC KEY PRESSURE (AFTERTOUCH) ..2-8
TABLE 2-4 - CONTROL CHANGE ..2-8
TABLE 2-5 - SETTING THE MODULATION WHEEL TO THE LEVEL 8,1972-9
TABLE 2-6 - PROGRAM CHANGE ...2-10
TABLE 2-7 - CHANNEL PRESSURE ...2-10
TABLE 2-8 - PITCH BEND ..2-11
TABLE 2-9 - CHANNEL MODE MESSAGES ...2-12
TABLE 2-10 - SYSTEM EXCLUSIVE MESSAGES (SYSEX)..2-14
TABLE 2-11 - SYSTEM COMMON MESSAGES ...2-14
TABLE 2-12 - SYSTEM REAL-TIME MESSAGES..2-15
TABLE 2-13 - MIDI HEADER CHUNK FORMAT ..2-17
TABLE 2-14 - MIDI TRACK CHUNK FORMAT...2-18
TABLE 2-15 - STRUCTURE OF THE META EVENTS ...2-19
TABLE 2-16 - OVERVIEW OF THE MOST COMMON META EVENTS......................................2-20
TABLE 3-1 - COMPARISON BETWEEN COMMERCIAL WIRELESS MIDI PRODUCTS3-8
TABLE 5-1 - OVERALL IEEE 802.15.4 CHARACTERISTICS ..5-11
TABLE 5-2 - GENERAL IEEE 802.15.4 MAC PROTOCOL DATA UNIT...............................5-14
TABLE 5-3 - IEEE 802.15.4 CHANNEL FREQUENCIES ..5-16
TABLE 5-4 - GENERAL IEEE 802.15.4 PHY PROTOCOL DATA UNIT................................5-17

INTRODUCTION

1-1

Chapter 1 - Introduction

CHAPTER 1

INTRODUCTION

1.1 Overview

Historically, musical performances date from 18.000 B.C. according to the earliest musical
instruments found [1]. The oldest form of known written music dates from 3000 to 2000
years B.C. and was found on clay tablets retrieved from archaeological excavations in the
Mesopotamian remains. Likewise, other civilizations such as the Egyptian or the Greek
provide archaeological evidence of musical performances. Egyptian hieroglyphics
comprise the earliest surviving representations of performing musicians while Greek
iconography illustrates the emergence of other categories of musical performance such as
dance or music for support of religious beliefs.

Musical performances have changed significantly since then, mainly due to cultural and
technical evolution. In this sense, new types of performance have arisen to fulfill the urge
for entertainment of modern audiences. Visual elements have been introduced to improve
performances and, sometimes, to aid understanding the underlying message. Technology is

EVALUATING BLUETOOTH FOR THE WIRELESS TRANSMISSION OF MIDI

1-2

now playing a key role in some musical performances by enhancing sound, improving
synchronization (for example synchronizing sophisticated stage pyrotechnics with the
music itself), or just by allowing instruments to communicate with each other in a network.
Some performances have grown into large networks of instruments, some producing notes
or images and others synchronizing, enhancing, and mixing them to generate a set of
synchronized sounds and visual effects. Despite of the underlying complexity and number
of electronic instruments, a typical musical performance often occurs within a small
geographic area, a stage.

The emergence of MIDI, as a de facto communication standard in the Musical Industry,
has allowed solving some of the problems related with the use of synthesizers, sound
modules or samplers: today it is possible to connect, via MIDI interfaces, many of these
devices. This means that a single musician can control a range of very different sounds,
making devices from a single master device (a keyboard, a guitar, etc.). In other words, it
is possible to have a "full orchestra" in the stage being played by a handful of musicians.
As pointed, Modern music performances also imply other aesthetic elements, such as
image projection, movement, dance or theatre. This means that the musical stage is being
transformed. It started as a static "storage space" for instruments and musicians and has
evolved into a platform of multiple artistic expressions that needs to be flexible, clean,
spacious and versatile.

This work has been developed envisioning a particular application in the Department of
Communication and Art of the University of Aveiro. The target application consists of a
theatrical music performance, Bach2Cage [2], where the mobility of musicians and
instruments in the stage is extremely important. Bach2Cage is a set "tableaux" that occur in
a stage under permanent change. Additionally, one of the musicians has reduced mobility
and moves in the stage using a wheel chair. This led to the idea of using the keyboards on
wheels as well, which led to particularly interesting ideas in choreographic and theatrical
terms. The use of standard MIDI connections generates a large number of MIDI cables
scattered around the stage, which creates a big problem in developing these ideas. A
solution for some of these problems would be to use wireless technology for transmitting
MIDI data. Besides the specific case of Bach2Cage, it was realized that wireless MIDI
would be a very valuable resource for musicians and the music industry (in studios, touring
concerts, music theatres, etc.).

This application field can be regarded as having real-time constraints in the sense that, if
the communication fails, the performance degradation may cause the musical performance
to collapse.

INTRODUCTION

1-3

In the last few years several wireless technologies addressing low range communications
have arisen. Examples of such technologies are Wi-Fi (802.11b, 802.11g), Bluetooth and
ZigBee. These technologies share some common characteristics, such as the used
spectrum, but have noticeable differences in terms of bandwidth, range and power
consumption. However, there are available several commercial solutions for wireless MIDI
Systems [3][4][5]. Nevertheless, they all share the same limitations: being expensive,
power-hungry, large and proprietary.

This work explores Bluetooth as the MIDI enabling technology that will reduce the
installation costs and inherent complexity. The transport of MIDI data streams using
Bluetooth should also improve user experience and ergonomics given the well-known
character of the technology.

1.2 Organization of the Dissertation

In this chapter we have outlined the motivation for this dissertation and briefly discussed
the main objectives of the work. Moreover, several key technologies were identified as
alternatives to the envisaged solution.

Because this work addresses the MIDI technology, chapter 2 presents a detailed analysis of
the MIDI protocol. Besides describing the transmission medium and the protocol, this
chapter also studies the MIDI file format and presents the most renowned software
sequencers. The purpose of this study was to assess a platform that would allow the
evaluation of the proposed system. The level of detail was found adequate since it could be
decisive when considering options for implementation.

Chapter 3 discusses issues concerning the implementation of MIDI communications using
wireless technology. An analysis of the timing requirements is here presented as well as its
boundaries. This chapter also proposes the architecture of a Wireless MIDI system and
discusses its features. Besides the analysis of the required timeliness, this chapter also
identifies some of the available commercial solutions for the wireless transmission of
MIDI.

Chapters 4 and 5 explore the technologies considered for supporting the wireless
transmission of MIDI. Because Bluetooth was found more suited for the specified purpose,
it is described in detail in chapter 4. The alternative technologies (Wi-Fi, ZigBee and
UWB) are introduced in chapter 5. In the Bluetooth chapter, a vertical analysis is
performed over all layers of the protocol stack while in chapter 5 the focus is on the lower
layers. This differentiation occurs since, for the proposed architecture, three approaches are
studied and each one uses different layers of the Bluetooth stack (ranging from the lower
layers up to the higher layers). In addition, chapter 5 describes the main features of Wi-Fi,

EVALUATING BLUETOOTH FOR THE WIRELESS TRANSMISSION OF MIDI

1-4

ZigBee and UWB providing insight on their strengths and weaknesses concerning the
application in analysis.

The proposed architecture is further described in chapter 6 and its operation is introduced.
This chapter also describes the studied approaches to transport MIDI data flows (using
Bluetooth) and the test-bed used to evaluate its performance. In this sense, results are
presented and discussed in detail throughout each section addressing an individual
approach.

Chapter 7 concludes this dissertation and provides some lines for future work and research.

MIDI OVERVIEW

2-1

Chapter 2 - MIDI Overview

CHAPTER 2

MIDI OVERVIEW
MIDI stands for Music Instrument Digital Interface and is a digital, non-proprietary
hardware and software protocol for data communications among electronic musical
instruments and computers. This protocol was firstly required in the early 80's [6] as a
standard electronic "language" to enable musical keyboards from different manufacturers
to control each other and to interface with computers and other hardware units.

In 1988 a standard MIDI file specification was defined, allowing files created by one MIDI
software application to be used by other software applications. Later, in 1991, the General
MIDI Standard version 1.0 (GM1) was developed by the MIDI Manufacturers Association
(MMA) [7] and the Japanese Association of Musical Electronics Industry (AMEI) [8].

EVALUATING BLUETOOTH FOR THE WIRELESS TRANSMISSION OF MIDI

2-2

Since then, MIDI has experienced extreme popularity [9] mostly due to its enabling
features as, for example, allowing MIDI files to be distributed and played with the original
timbre choices on any general MIDI device.

However, GM1 was somehow constrained in what concerns the number of supported
sounds (128). In this sense, Roland [10] developed an extension to the GM1 standard
named GS (General Standard) supporting up to 16000 sounds. In 1998, following the
increasing number of required sounds and features, MMA proposed the GM2 standard. In
2001, Roland and Yamaha agreed to participate and to support the GM2 standard [11].
GM2 includes several features of the Roland GS standard (support for reverb, chorus
effects and larger number of reproducible sounds).

2.1 MIDI protocol

2.1.1 Introduction

MIDI is both a simple serial hardware interface and an elaborate protocol. The hardware
interface operates at 31.25 Kbit/s ±1% using asynchronous serial communications with 1
start bit, 8 data bits and 1 stop bit per transmitted symbol (Figure 2-1).

Figure 2-1 - MIDI timing for a single byte

The signaling and transmission bit order are similar to RS232, meaning that MIDI
signaling is active-low and the Least Significant Bit (LSB) is the first to be sent on the
channel. Symbols can represent MIDI commands or additional MIDI data according to
their position in the MIDI stream.

2.1.1.1 MIDI Hardware and Software

Each MIDI instrument has several female 5-pin DIN jacks, which allow incoming or
outgoing MIDI signals. These jacks are usually referred to as MIDI In (receives MIDI
signals from another device), MIDI Out (transmits MIDI signals to another device) and

MIDI OVERVIEW

2-3

MIDI Through (captures MIDI signals on the MIDI In interface and replicates them on
MIDI Through).

Male DIN MIDI cables are used to connect MIDI jacks from several MIDI instruments
together. By connecting the MIDI Out of an instrument to the MIDI In of another
instrument, a small MIDI network is made in which the keys pressed in the leftmost
instrument are played in the rightmost instrument. This arrangement is shown in Figure
2-2.

OutIn ThrOutIn Thr

Figure 2-2 - Example of a MIDI setup for minimal operation

A particular feature of MIDI Through (usually identified as MIDI Thru) is that, when an
instrument is being played, only the MIDI Out is driven. This means that, whenever an
instrument creates or modifies MIDI signals, they are only sent to the MIDI Out interface.
MIDI Thru serves the sole purpose of replicating the MIDI signal stream received at the
MIDI In interface.

Obviously, MIDI interfaces can be used to build more complex instrument networks as
shown in Figure 2-3.

OutIn ThrOutIn Thr OutIn Thr

Figure 2-3 - Example of a MIDI setup for instrument daisy chaining

In this arrangement, keys pressed at the leftmost instrument will generate a data stream that
will be sent to the remaining MIDI devices. The instrument at the center will receive the
data stream and play it accordingly. Additionally, it will also replicate the received data

EVALUATING BLUETOOTH FOR THE WIRELESS TRANSMISSION OF MIDI

2-4

stream in its MIDI Thru interface allowing the rightmost instrument to play the same data
stream.

MIDI can be used to record or playback musical performances whether by linking the
MIDI Out of a musical instrument to the MIDI In interface of a sequencer (allowing to
record the data stream of that particular instrument) or the MIDI Out of a sequencer to the
MIDI In interface of an instrument (allowing that instrument to play the recorded data
stream). Both arrangements are shown simultaneously in Figure 2-4.

MIDI sequencers allow recording musical performances by saving the actual MIDI data
stream that the instruments are generating. They also allow the reverse functionality of
playing a musical performance by sending over the MIDI Out interface the recorded data
stream. One of the most interesting features of MIDI sequencers is that they usually have a
tempo control, which allows them to play a musical performance slower of faster than the
original recording. Unlike other digital audio playback systems this procedure does not
change the pitch or the timbre of the sound.

iMac

OutIn Thr OutIn Thr

Figure 2-4 - Example of a MIDI setup for software sequencer operation

MIDI sequencers also provide other features like music editing on a per note basis, mute or
solo individual parts, perform changes in timbre/volume, etc. Furthermore, sequencers
have been improving their user interfaces allowing almost everyone to compose music in a
What You See Is What You Get (WYSIWYG) fashion. This is a large improvement since
a performer, whose musical technique is not sufficiently developed, may easily compose
musical parts without the traditional Real-Time performance requirements.

Several sequencers are commercially available. However, when speaking about MIDI
software sequencers, two manufacturers arise immediately: Cakewalk [12] and Steinberg
[13]. Both have products directed to different market segments: home, intermediate and
professional users. For example, Cakewalk provides Home Studio as an entry level
software sequencer and, at a professional level, the more expensive Sonar (snapshot shown
in Figure 2-5).

MIDI OVERVIEW

2-5

Figure 2-5 - Snapshot of the Cakewalk’s Sonar 4 user interface

Today, most software sequencers store musical performances using a specific format, the
Standard MIDI File format (SMF). This format will be discussed later in section 2.2 -
Standard MIDI Files.

2.1.1.2 MIDI Commands

A MIDI command comprises a status byte followed by a variable number of data bytes (0-
N). Status bytes are easily identified since their Most Significant Bit (MSB) is set. On the
other hand, data bytes have their MSB unset and thus vary from 0 to 127. Status bytes
identify mainly two types of messages: channel messages and system messages [14].

Channel messages use the upper nibble (4 MSBs) to encode the specific message and the
lower nibble (4 LSBs) to address 1 of the 16 available MIDI channels. The base channel is
a particular MIDI channel in which a device receives commands about the mode it should
operate and the corresponding sound (voice). However, a device can receive messages in
more than one channel depending on its operation mode.

There are two sub-types of channel messages: channel voice messages and channel mode
messages.

• Channel voice messages are used to control individual voices;

• Channel mode messages are sent on the base address of the device and are used to
specify its response to voice messages.

System messages are not (usually) targeted for specific MIDI channels and therefore are
considered global messages. There are 3 basic groups of MIDI system messages: system
exclusive (SysEx) messages, system common messages, and system real-time messages.

System exclusive messages are variable in length and have become the main route of
expansion of the MIDI standard. These messages allow manufacturers to specify their own

EVALUATING BLUETOOTH FOR THE WIRELESS TRANSMISSION OF MIDI

2-6

messages for specific devices. Some authors such as [15] defend that there is possibly
more complexity in the various messages provided by this single status byte than by the
rest of the MIDI specification.

System common messages are primarily used for system setup operations. An example of
these operations is the sequencer control and timing.

System real-time messages are always single byte commands that relate primarily to the
control and timing of the sequencer playback. These messages always have priority over
any other MIDI messages because they are used for sequencer synchronization and timing
accuracy purposes.

Table 2-1 summarizes the most common MIDI status bytes. In channel voice (and mode)
messages, the nnnn nibble can take values from 0 to 15 representing the 16 available MIDI
channels. Likewise, as seen in Table 2-1, system common messages have status bytes with
values ranging from 0xF1 to 0xF7 and system real-time messages with values ranging
from 0xF8 to 0xFF.

Table 2-1 - Summary of Status Bytes

Status Byte
Hex Binary

Number of
Data Bytes Description

Channel Voice Messages
8n 1000nnnn 2 Note OFF
9n 1001nnnn 2 Note ON (a velocity of zero = Note Off)
An 1010nnnn 2 Polyphonic Key Pressure (Aftertouch)
Bn 1011nnnn 2 Controller Change
Cn 1100nnnn 1 Program Change (instrument/voice

selection)
Dn 1101nnnn 1 Channel Pressure (Aftertouch)
En 1110nnnn 2 Pitch Bend

System Messages
F0 11110000 Variable System Exclusive (SysEx)

F1-F7 11110sss 0 to 2 System Common
F8-FF 11111ttt 0 System Real-Time

The following subsection focuses “real” messages in the MIDI data stream by providing
small examples for the channel voice messages illustrated in Table 2-1.

2.1.2 Channel Voice Messages

As stated before, channel messages are recognized by their first byte being in the 0x8n-
0xEn range and having a variable number of data bytes, depending on the message type (1

MIDI OVERVIEW

2-7

or 2 bytes). These data bytes must have their MSBs set to 0 (otherwise they could be
mistaken for status bytes).

2.1.2.1 Note ON and Note OFF

These are the most common messages in MIDI data streams when a performer is playing.
The three bytes of the Note On message are identical to the MIDI Note Off (except for the
high nibble) as seen in Table 2-2.

The Note On message instructs the instrument listening to channel nnnn to play the note
kkkkkkk with a vvvvvvv velocity.

The MIDI standard defines the value 60 (decimal value) as the note “middle C”. For each
increment or decrement a note changes a semitone. Therefore, the decimal value 61
represents the C# note, value 62 the D note, and so forth. The wide note range that MIDI
offers is adequate to support most musical instruments.

The velocity corresponds to the speed at which the key was pressed and its interpretation at
the receiver varies according to the instrument. An example is the organ in which the
velocity usually controls the loudness of the note (approximately constant). For other
instruments (piano, for example) with more complex note behavior (attack, sustain and
decay) the velocity can be interpreted as the maximum loudness of some particular note
phase (attack phase).

Table 2-2 - Note Off and Note On

Note Off
3 Bytes 1000nnnn, 0kkkkkkk, 0vvvvvvv

1000nnnn Note Off Status byte; nnnn (0-15) = MIDI channels 1..16
kkkkkkk Note number (0-127)
vvvvvvv Key Off (release) velocity. Default value = 64.

Note On
3 Bytes 1001nnnn, 0kkkkkkk, 0vvvvvvv

1001nnnn Note On Status byte; nnnn (0-15) = MIDI channels 1..16
kkkkkkk Note number (0-127)
vvvvvvv Key On (attack) velocity. Default value = 64.

The Note Off message instructs the instrument listening channel nnnn to stop playing the
note kkkkkkk. Clearly, there must be a perfect match between the Note Off and Note On
messages in what concerns the playing note (the note must be the same in both MIDI
messages). Otherwise, the instrument cannot stop the note that it is playing (it would try to
stop another note that is not being played). The MIDI specification also requires a perfect

EVALUATING BLUETOOTH FOR THE WIRELESS TRANSMISSION OF MIDI

2-8

match between the velocity fields of the Note Off and Note On messages. However, most
instruments accept a Note Off message with velocity 0 to stop playing a note.

2.1.2.2 Polyphonic Key Pressure

This message is seldom seen in MIDI data streams because it is only implemented in
sophisticated keyboards. Usually, it is named as aftertouch, which is the pressure at the
bottom of the key travel (for each key).

Table 2-3 - Polyphonic Key Pressure (aftertouch)

Polyphonic Key Pressure
3 bytes 1010nnnn , 0kkkkkkk , 0vvvvvvv

1010nnnn Polyphonic Key Pressure Status byte; nnnn (0-15) = MIDI channels
1..16

kkkkkkk Note number (0-127)
vvvvvvv Pressure value

Aftertouch information can be used to control modulation effects of separate notes (such as
vibrato). The main reason behind the absence of this feature in regular keyboards is the use
of additional pressure transducers. This clearly increases the overall cost of the keyboard
(note that it would be needed at least a pressure sensor per key).

2.1.2.3 Controller Change

This message is used as a general-purpose channel message. In this sense, it carries control
information about standardized “effects” such as breath, sustain, volume, etc. These are
generated by the switches and controls of the instrument.

Table 2-4 - Control Change

Control Change
3 Bytes 1011nnnn, 0ccccccc, 0vvvvvvv

1011nnnn Control Change Status byte; nnnn (0-15) = MIDI channels 1..16
ccccccc Controller number (0-119)
vvvvvvv Controller value (0-127); For switch controllers : 0 = Off ,127 = On

Table 2-4 depicts the MIDI Controller Change message structure. The first data byte
specifies the controller number and can be split in four groups:

• 000-063 High-resolution continuous controllers (0-31 = MSB; 32-63 = LSB);

• 064-069 Switches;

• 070-119 Low-resolution continuous controllers;

• 120-127 Channel Mode messages (see section 2.1.3).

MIDI OVERVIEW

2-9

The second data byte specifies the controller value. For switches, this byte is either 0 (Off)
or 127 (On). For continuous, high/low resolution controllers this byte can take values from
0 to 127. As the name implies, these later controllers have a more accurate level of control
in opposition to switches that only allow two levels: On or Off.

Low-resolution continuous controllers have a coarse adjustment while high-resolution
controllers have an extended fine adjustment. A high-resolution controller has 16,384
adjustment levels (14 bits to encode the desired level) while low-resolution controllers
have only 128 adjustment levels (7 bits to encode the desired level). Moreover, to use high-
resolution controllers it is necessary to send two Controller Change messages, one for the
coarse adjustment and the other for the fine adjustment.

As an example, consider the controller #1, the coarse adjustment for the Modulation Wheel
and the controller #31, the fine adjustment for the same control. If this control is to be set
on channel 0 to the level 8,197 (0x2005 = 0010 0000 0000 0101) two MIDI messages must
be sent as depicted in Table 2-5.

There are a large number of defined controllers for this message (too large to mention
here). Nevertheless, there are also controllers left for manufacturers to define specific
instruments. As a final remark concerning controllers, there are two that worth an
additional explanation: Registered Parameter Controllers (RPCs) and Non-Registered
Parameter Controllers (NRPCs). These controllers use Registered Parameter Numbers
(RPNs) and Non-Registered Parameter Numbers (NRPNs) to control specific internal
parameters of a sequencer. RPNs differ from NRPNs in the fact that the former have to be
registered with the MIDI Manufacturer's Association while NRPNs can be used by
manufacturers according to their requirements. Clearly, because RPNs have to be
registered they are part of the MIDI specification.

Table 2-5 - Setting the Modulation Wheel to the level 8,197

Coarse Adjustment
10110000 Controller change on channel 0
00000001 Coarse adjustment of modulation wheel
00000100 value = bits 7 to 13 of 14-bit overall value.

Fine Adjustment
10110000 Controller change on channel 0
00110011 Fine adjustment of modulation wheel
00000101 bits 0 to 6 of 14-bit overall value.

2.1.2.4 Program Change

The term “program” is generally interpreted as “patch” and refers to the current sound
setup of the sequencer. Most sequencers support factory-defined or user-defined patches,

EVALUATING BLUETOOTH FOR THE WIRELESS TRANSMISSION OF MIDI

2-10

each one emulating a different instrument or timbre. The Program Change message enables
switching the sequencer over these patches, thus producing different sounds when a MIDI
Note On message is received.

Table 2-6 - Program Change

Program Change
2 Bytes 1100nnnn, 0kkkkkkk

1100nnnn Program Change Status byte; nnnn(0-15) = MIDI channels 1..16
kkkkkkk Program number (0-127)

In most scenarios this is a MIDI message that will only be seen in the beginning of a
music. However, when more than sixteen instruments are to be played in one music and
there are only sixteen physical instruments or less, this message can be used to change the
“patch” of some MIDI channel “on the fly” thus allowing the additional instruments to be
played.

2.1.2.5 Channel Pressure (Aftertouch)

This message is quite similar to the Polyphonic Key Pressure message. The difference is
that the Channel Pressure message provides average “aftertouch” information of all
pressed keys in a specified instant (rather than on individual keys).

This average “aftertouch” information can be used to control the modulation effects of a
sequencer.

Table 2-7 - Channel Pressure

Channel Pressure (Aftertouch)
2 Bytes 1101nnnn, 0kkkkkkk

1101nnnn Channel Pressure Status byte; nnnn(0-15) = MIDI channels 1..16
kkkkkkk Channel Pressure (0-127)

2.1.2.6 Pitch Bend

Nowadays, a large number of MIDI controller keyboards have a “pitch wheel” allowing
the player to “bend” notes as guitar players do. When the performer uses this wheel the
MIDI controller generates a Pitch Bend message as shown in Table 2-8.

This message carries a 14-bit (least significant byte (LSB) plus most significant byte
(MSB)) number that identifies the wheel position or, in other words, the “bend” that should
be made to the current playing note. In the default position, the pitch wheel is “centered”
and its value is v_center=214/2=8192 (0x2000). Notwithstanding, it can be used to reach

MIDI OVERVIEW

2-11

extreme values such as 0x0000 or 0x3FFF respectively. Clearly, the note “bend” effect is
proportional to the deviation of the wheel from the center value.

Table 2-8 - Pitch Bend

Pitch Bend
3 Bytes 1110nnnn, 0vvvvvvv, 0hhhhhhh

1110nnnn Pitch Bend change Status byte; nnnn(0-15) = MIDI channels 1..16
vvvvvvv Pitch Bend LSB value (0-127)
hhhhhhh Pitch Bend MSB value (0-127)

2.1.2.7 Status Byte

Running Status
The running status is a special condition in which the MIDI message status byte is omitted
for consecutive messages with the same status byte. This condition is used to save
bandwidth when several (2 or more) consecutive messages have the same status byte. In
this scenario, the status byte is only transmitted once and omitted in subsequent messages.
The receiver associates the received bytes with the appropriate status byte. When a
different status byte is received the running status condition is terminated.

Undefined or Unimplemented Status
The reception of undefined (or unimplemented) status bytes should be ignored.
Furthermore, subsequent data bytes should also be ignored until the reception of the first
valid status byte. This approach allows the future development of the MIDI specification
without impact on the program of the device.

2.1.3 Channel Mode Messages

Channel Mode messages are a subset of Controller Change messages since they have the
same status byte format (0b1011nnnn) but different controller range (120-127).

The MIDI specification defines four basic operation modes. These modes can be chosen
using any two of the last four Channel Mode Messages (controllers 124-127) depicted in
Table 2-9.

The Omni Mode defines if a device should respond to messages received on any channel
(Omni Mode On) or only in its base channel (Omni Mode Off). The Mono mode defines
whether a device is able to play just a single note at any time (Mono Mode On) or if it can
play chords in a specified MIDI channel.

EVALUATING BLUETOOTH FOR THE WIRELESS TRANSMISSION OF MIDI

2-12

Table 2-9 - Channel Mode Messages

Channel Mode Messages
3 Bytes 1011nnnn (nnnn=channel number), 0ccccccc, 0vvvvvvv

ccccccc vvvvvvv Description

120 0
All Sound OFF; all sound generators shall stop upon receiving
this message. This operation doesn't involve any release
phase

121 0 Reset All Controllers; this message resets all MIDI controllers
to their default values

122
0(Off)

/
127(On)

Local Control On/Off; the local control allows a device to
control if the local data is sent to the MIDI OUT port and to the
sound generator (On) or only to the MIDI OUT port (Off)

123 0 All Notes Off (ANO); causes sound generators to enter the
release state, thus slowly stop making sound

124 0 OMNI Mode Off; this message causes ANO
125 0 OMNI Mode On; this message also causes ANO

126 0-16

Mono Mode On (Poly Off); also causes ANO;
vvvvvvv indicates the number of channels to use
(Omni Off). If this number is zero then it means that
all available channels should be used (Omni On)

127 0 Poly Mode On (Mono Off); also causes ANO

Notice that devices solely “hear” MIDI Mode Messages on their base channels. This means
that, even for the Omni Mode, a device will only respond to a MIDI Channel Mode
message if it was received on its base channel.

The four basic operation modes are described as:

• Omni Mode On, Polyphonic Mode On

o Bn, 7D, 00 → Omni Mode On
o Bn, 7F, 00 → Poly Mode On

In this MIDI mode, messages are received from all voice channels and assigned to
voices polyphonically. The transmission of polyphonic voice messages is performed
using the base channel.

• Omni Mode On, Monophonic Mode On
o Bn, 7D, 00 → Omni Mode On
o Bn, 7E, 00 → Mono Mode On

In this MIDI mode, messages are received from all voice channels and assigned to a
single voice (monophonically). The transmission of monophonic voice messages is
performed using the base channel.

MIDI OVERVIEW

2-13

• Omni Mode Off, Polyphonic Mode On
o Bn, 7C, 00 → Omni Mode Off
o Bn, 7F, 00 → Poly Mode On

In this MIDI mode, messages are received only in the base channel and assigned to
voices polyphonically. The transmission of polyphonic voice messages is also
performed using this channel.

• Omni Mode Off, Monophonic Mode On
o Bn, 7C, 00 → Omni Mode Off
o Bn, 7E, nn → Mono Mode On (nn = number of channels to use)

In this MIDI mode, messages are received on voice channels base channel + nn - 1
and assigned to voices 1 to nn (monophonically). The transmission of monophonic
voice messages (1 to nn) is performed using the base channel + nn - 1 channels
(one voice per channel).

2.1.4 System Messages

System messages are not associated with any particular channel. Instead, they are intended
for the whole MIDI system. The next subsections describe, with more detail, the existing
MIDI system message types.

2.1.4.1 System Exclusive Messages

System exclusive messages are used to transport information for/from a specific MIDI
device. Equipment manufacturers generally describe particular sounds using these
messages. The actual data sent in these messages is not usually usable by another device,
e.g., the structure of the message can be very particular and not understandable by other
devices (even from the same manufacturer).

System exclusive messages typically arise as result of a request issued by a device.
However, MIDI devices are free to ignore SysEx messages (including its data bytes) that
they do not understand or are not interested in. Table 2-10 shows the SysEx MIDI message
structure.

When the identification code (2nd byte of the message) is zero the following two bytes are
used as extensions to the manufacturer ID. The End Of System Exclusive (EOX) message
will terminate a SysEx MIDI message. However, any other status byte (except System
Real Time) will have the same effect. This feature prevents endless SysEx messages from
happening when the EOX byte is not received.

EVALUATING BLUETOOTH FOR THE WIRELESS TRANSMISSION OF MIDI

2-14

Table 2-10 - System Exclusive Messages (SysEx)

System Exclusive Messages
Status Byte

Hex Binary
Data Bytes Description

F0 11110000 Start of System Exclusive (SOX)
0iiiiiii Identification code (0-127)

0ddddddd
…

0ddddddd

Any number of data bytes (each 0-127)
having manufacturer specific
functionality

F7 11110111 End of System Exclusive (EOX)

2.1.4.2 System Common Messages

System common messages, as the name suggests, are the most common system messages
and are intended to all units of the MIDI system. Table 2-11 illustrates the structure of
these messages.

Table 2-11 - System Common Messages

Channel Common Messages
Status Byte

Hex Binary
Description

F1 11110001 0nnndddd --- MIDI Time Code Quarter Frame;
nn=message type; dddd=value;

F2 11110010 0lllllll 0hhhhhhh

Song Position Pointer; lllllll=LSB (0-
127); hhhhhhh=MSB (0-127); Number of
MIDI beats (since the song start) is given
by the 14-bit number

F3 11110011 0sssssss Song Select; sssssss=Song Number (0-
127)

F4 11110100 Undefined
F5 11110101 Undefined

F6 11110110 --- ---
Tune Request; analogue synthesizers
should start self tuning after receiving this
message

F7 11110111 --- ---
End of System Exclusive (EOX); this
message is used to terminate a system
exclusive message

MIDI OVERVIEW

2-15

2.1.4.3 System real-time messages

System real-time messages can be sent at any instant, even in the middle of other MIDI
messages. When this occurs, the receiving device can choose to act in response to the
received system real-time message or ignore it. However, after this procedure, the
receiving device shall resume to the previous state. This mechanism supports an accurate
timing maintenance of the MIDI system.

Table 2-12 - System Real-Time Messages

System Real-Time Messages
Status Byte

Hex Binary
Description

F8 11111000 Timing Clock; if a MIDI device is playing this message is
transmitted 24 times per quarter note

F9 11111001 Undefined
FA 11111010 Start; start playing the current sequence from the beginning

FB 11111011 Continue; continue playing the current sequence from the point
it was stopped

FC 11111100 Stop; stop playing the current sequence
FD 11111101 Undefined

FE 11111110

Active Sensing; this message starts the active sensing state in
the receiver. In this state the receiver expects to receive an
active sensing message each 300ms (maximum). When the
receiver does not receive it within the specified time window it
assumes that the connection was terminated

FF 11111111 Reset; this message resets all receivers to their power-
up status

Notice particularly the reset message in Table 2-12. Assuming that two devices were
programmed to send this message on power-up, a deadlock scenario can occur since they
can reset each other indefinitely. This message must be used with special care to avoid
deadlock scenarios.

2.2 Standard MIDI Files

Standard MIDI files are a common file format used by several musical software and
hardware devices to store information about songs. MIDI files contain the necessary
information to reproduce a musical performance. In other words, they contain not only
time information for each event, but also, information about the song such as the number
of tracks, track structure, tempo, etc.

EVALUATING BLUETOOTH FOR THE WIRELESS TRANSMISSION OF MIDI

2-16

A standard MIDI File stores standard MIDI messages as well as the time-stamp for each
one. The time-stamp information allows sequencers to play events according to the original
timing. This information is represented by a series of bytes that store the number of clock
pulses to wait before "playing" the event.

MIDI files were designed to be generic and compact. In this sense, they are usually small
and supported by most sequencers. Because MIDI files contain information arranged in
data chunks that can be loaded, parsed, skipped, etc. they allow a high degree of flexibility
in what concerns the storage of proprietary data. This way, other sequencers can just parse
the MIDI file and ignore unknown MIDI chunks.

2.2.1 File Structure

MIDI Files contain two basic chunks of information: header chunk and track chunk.
Chunks are groups of bytes preceded by an ID and corresponding size. Each file contains
one, and only one, header chunk and a variable number of track chunks.

A data chunk is always prefixed with an 8-byte chunk header. This chunk header contains
a 4-byte ID string followed by a 4-byte field indicating the length of the chunk as the
number of bytes that follow. The 4-byte ID string identifies the type, which can be MThd
(MIDI File header) or MTrk (MIDI File track).

To better illustrate this; one can use the following chunk header example (as it would be
seen in a hex editor):

4D 54 68 64 00 00 00 06

The initial 4 bytes identify the type, that is, the ASCII values for ‘M’, ‘T’, ‘h’ and ‘d’. The
following 4 bytes indicate the remaining length of the chunk, meaning that, after this
header, it should be expected to find 6 bytes before the end of the chunk. Notice that the
length is in the “Big Endian“ byte order, e.g., Most Significant Bytes (MSBs) appear
before Least Significant Bytes (LSBs).

2.2.1.1 MThd Chunk structure

The header chunk stores information regarding the format of the file, the number of tracks
and the timing division. Each file contains only one MThd chunk and it always comes in
first place (so that a sequencer or other application can easily identify its type).

A MIDI MThd chunk has always a 6-byte “payload” (as shown in Table 2-13) because the
format type, the number of tracks, and the time division parameters occupy 2 bytes each.

The Format Type describes how the following track information shall be interpreted. A
type 0 MIDI file has only one track containing all the events for the entire song. These

MIDI OVERVIEW

2-17

include the song title, time signature, tempo, etc. A type 1 MIDI file can have two or more
tracks. The first track contains, by convention, all the song related information like the
title, the time signature, etc. The second and following tracks contain track specific
information such as the musical event data. A type 2 MIDI file contains multiple tracks.
However, each track represents a different sequence, which may not be played
simultaneously. Usually, this type of file is used to save songs with multi-pattern music
sequences.

Table 2-13 - MIDI Header chunk format

MIDI Header Chunk Format
Offset Length Description Value
0x00 4 Chunk ID "MThd" (0x4D546864)
0x04 4 Chunk Size 6 (0x00000006)
0x08 2 Format Type 0 - 2
0x0A 2 Number of Tracks 0 - 65535
0x0C 2 Time Division Discussed in the following text

The Number of Tracks defines the number of track chunks that follow this header chunk. A
type 0 MIDI file contains only one track, while type 1 and 2 files can contain up to 65535
tracks.

The Time Division parameter is used to decode the track event delta times into "real" time
and represents either ticks per beat or frames per second depending on the top bit of the 2-
byte word. Moreover, if the top bit is 0, the following 15 bits represent the time division in
ticks per beat. Otherwise, the following bits describe the time division in frames per
second. The number of frames per second is obtained by splitting these 15 bits into two
parts. The 7 most significant bits represent the number of SMPTE1 frames per second,
which can be -24, -25, -29 or -30. These negative values are stored in two's complement
form. The remaining 8 bits define how many clock ticks or track delta positions there are
per frame. So a time division example of 0xE728 can be splitted in three parts. The most
significant bit is 1 and therefore the time division is in the SMPTE frames per second
format. The following 7 bits (0b1100111) represent the number of frames per second.
Since the most significant bit of this set is 1 the represented number is negative, in this case
-25 in decimal. Therefore there are 25 frames per second. Since the least significant byte is

1 SMPTE Time Code (Society of Motion Picture and Television Engineers) was originally developed by

NASA to synchronize computers together. SMPTE Time Code is a representation of absolute time in that it

follows hours, minutes, seconds and frames just like a particular watch, thus allowing an exact timing

reference.

EVALUATING BLUETOOTH FOR THE WIRELESS TRANSMISSION OF MIDI

2-18

0x28, we have 40 clock ticks (or track delta positions) per frame yielding a 1-millisecond
tick resolution or, in MIDI files, a delta-time increment of 1 millisecond.

2.2.1.2 MTrk Chunk structure

A track chunk stores information about an individual track, including the track name and
music events. Table 2-14 illustrates the format of the track chunk. A track chunk header
starts with a chunk ID followed by the length of the chunk. After these fields, the
individual track event data follows. It contains all MIDI data (including timing bytes and
optional non-MIDI data - tempo settings, track names, etc.) for this individual track.

Table 2-14 - MIDI Track chunk format

MIDI Track Chunk Format
Offset Length Description Value
0x00 4 Chunk ID "MTrk" (0x4D54726B)
0x04 4 Chunk Size variable
0x08 track event data

The chunk size is variable and depends on the number of bytes used for all events
contained in the track. The track event data field contains MIDI events that characterize the
sequence and how it is played.

Track chunks are made of events, each one preceded by its time-stamp. Each event time-
stamp is referenced by the previous event. In other words, if an event occurred 6 clocks
after another event, then its “delta-time” is 6. If the following event occurs simultaneously
with the previous, then its “delta-time” is 0, and so forth. Therefore the delta-time is the
duration (in clock ticks) between an event and its predecessor.

Delta-times are stored as a series of bytes called variable-length quantity. Each byte
contributes with only its less significant 7 bits. Therefore, if we are using 32-bit delta-times
we have to break it into a series of 7-bit bytes. The delta-time value dictates the number of
bytes that are effectively used for storage. Obviously, larger delta-times will result in a
larger number of storage bytes. To indicate which byte ends the series, its most significant
bit will be left cleared while the remaining bytes have this bit set. For example if the
largest delta-time allowed is in the range 0-127 then it can be represented by a single byte.

In an MTrk chunk, the first (1 to 4) bytes represent the first delta time of the event as a
variable-length quantity. The following data is the actual first event. If this is a MIDI
event, then it will be the actual MIDI Status byte.

MIDI OVERVIEW

2-19

2.2.1.3 MIDI events

A MIDI file is described using track events. Each event includes an individual set of
parameters, namely the delta-time, event type and, normally, some kind of event specific
data. Events can be grouped into three types: Control Events, System Exclusive Events and
Meta Events. This section only discusses Meta Events since the remaining were previously
addressed in former sections.

A particular characteristic of Meta Events is that they are not sent (or received) over a
MIDI port. Therefore they are used primarily for optional features. Despite this fact, they
are similar to other events in the sense that they also have a delta-time relative to the
previous event and that they can be intermixed with other MIDI events.

Table 2-15 illustrates the structure of the Meta Event whose status byte has the 0xFF value.
Notice that this value is also used in MIDI to specify a “reset” which, however, is never
stored in a data file. After, the event type parameter defines the individual Meta Event and
the length defines the actual number of parameter bytes that follow. Finally, we have the
specific variable-length parameter data.

Table 2-15 - Structure of the Meta Events

Meta Events
Meta Event

(Status Byte) Type Length Data

0xFF 0-255 Variable-length Type specific

Table 2-16 presents a short overview of the commonly used Meta-Events and describes
summarily each one.

The Sequence Number event specifies the MTrk sequence number and must be placed at
the beginning of each MTrk. Nevertheless, it can assume two forms: specify SS SS or not.
In the first case SS SS refers to the MIDI Cue message number. Afterwards, this number is
(in a format 2 MIDI file) used so that a "song" sequence can refer to “patterns” (e.g.,
MTrk) using the MIDI Cue message. In the second case, when the SS SS number is
omitted, the sequence number corresponds to the location of MTrk in the file. In a format 2
MIDI file only one of these events is allowed per MTrk chunk. In format 0 and 1 MIDI
files, only one of these is allowed and it must be in the first MTrk.

All the Text, Copyright, Track Name, Instrument Name, Lyric, Marker and Cue Point
events share the same structure. The third byte of these events specifies the number of
symbols that follow and the remaining bytes are used to describe the event specific
information (copyright notice, instrument name, etc.).

EVALUATING BLUETOOTH FOR THE WIRELESS TRANSMISSION OF MIDI

2-20

The End of Track event is not optional since every MTrk must end with one. This event is
used as the definitive marking of an MTrk end.

As previously introduced, the MIDI file format specifies tempo as the amount of time
(expressed in microseconds) per quarter note. A Tempo event indicates a tempo change.
The parameter TT TT TT specifies the new tempo as the number of microseconds per
quarter note. Of course, if we desired a tempo of 250 milliseconds, then TT TT TT should
be equal to 0x03 0xD0 0x90. In this case each quarter note would be 250 milliseconds
long.

Table 2-16 - Overview of the most common Meta Events

Data byte Status byte
2nd byte Other bytes Description

FF 00 02 SS SS Set the sequence of the
track

FF 01 NN TT… Any Text user wants
FF 02 NN TT… Text for copyright info
FF 03 NN TT… Track name
FF 04 NN TT… Track instrument name
FF 05 NN TT… Lyric
FF 06 NN TT… Marker
FF 07 NN TT… Cue Point
FF 2F 00 End of Track

FF 51 03 TT TT TT
Set tempo
(microseconds/quarter
note)

FF 54
05 HH MM SS FF SF
hour/minute/second
/frame/subframe

SMPTE Offset

FF 58

04 NN DD CC BB
numerator/denominator/
metronome ticks/
32nd notes per quarter note

Time signature

FF 59
02 SF MI
key(sharp/flat)
scale(0:major, 1:minor)

Key signature
(C when Key=0)

FF 7F 7F Sequencer Specific
Information

The SMPTE Offset event specifies the start time of the MTrk in hours (HH), minutes
(MM), seconds (SS), frames (FF) and subframes (SF). This event must be placed at the

MIDI OVERVIEW

2-21

beginning of the MTrk. The subframe field designates the number of fractional frames in
100ths of a frame.

The Time Signature event defines four parameters: numerator (NN), denominator (DD),
metronome ticks and 32nd notes per quarter note. The first two represent the signature as
notated in the sheet music. The metronome ticks parameter represents the number of MIDI
clocks in a metronome tick and the 32nd notes per quarter note parameter represent the
number of notated 32nd notes in a quarter note.

The Key Signature event allows, as the name implies, the specification of the key
signature.
Finally, the proprietary (Sequencer Specific Information) event can be used to store
proprietary events. The first bytes should be chosen in a way that a program could easily
evaluate if the event is addressed to it.

There are several Meta Events that can be used to improve the storage of musical
performances. However, even if some desired functionality is not already defined, it can be
implemented using the extension mechanisms provided in the SMF specification.

2.3 Conclusion

This chapter described MIDI by providing a deep overview of the protocol. It can be
concluded that it is a very complex protocol to be implemented in an embedded manner.
So, the approach of wirelessly transmit MIDI should be based on a solution handling MIDI
commands transparently. This means that the approach to be considered should not lie on
individual command interpretation.

The author believes that any feasible solution should not be supported on particular
features of the protocol, since it would increase the complexity of the system and perhaps
reduce its performance.

ISSUES CONCERNING THE WIRELESS IMPLEMENTATION OF MIDI

3-1

Chapter 3 - Issues concerning the implementation of wireless MIDI

CHAPTER 3

ISSUES CONCERNING THE WIRELESS

IMPLEMENTATION OF MIDI
Chapter 1 presented the motivation for this work by describing the envisaged application
scenario and by identifying some of its requirements. Although existing solutions
(discussed in section 3.4) provide a satisfactory performance, they show several limitations
concerning high cost, reduced openness and autonomy.

Considering the prospective applications, some scenarios may require a large number of
MIDI connections, and therefore, a large number of Wireless MIDI devices. Furthermore,
if Wireless MIDI devices are expensive, it will not be feasible to replace the traditional
wired connections with wireless links.

EVALUATING BLUETOOTH FOR THE WIRELESS TRANSMISSION OF MIDI

3-2

A main decision considering the development of wireless MIDI solutions is the choice of
an open or proprietary technology. Solutions supported by proprietary technologies are
commonly less flexible and less endowed to improvements than solutions supported on
open technologies. Likewise, systems assembled using successful technologies, thus
attaining a large customer market, are often cheaper and better supported. Therefore,
successful open technologies can enable an initial development of satisfactory solutions
and can permit a sustained evolution towards low-cost, high quality products.

Thus, it is the author’s belief that, if a cost-effective solution to implement Wireless MIDI
devices is to be obtained, it must be based on an open technology used pervasively in large
markets such as the information technology.

Musical performances are usually short and last just a few hours at most. However, the
logistics involved assume an important role in the success of the performance. If the
Wireless MIDI devices have a low autonomy, they must be recharged frequently or
replaced by others. Therefore, the direct consequence of low autonomy is an increased
logistics complexity. In scenarios with a large number of MIDI instruments this may
become unacceptable. The wireless technology chosen must also be adequate for the
autonomy requirements of musical performances.

The following sections introduce the key issues of using wireless technologies for
supporting MIDI communications by focusing operational and timeliness aspects. In
addition, some available commercial products are briefly analyzed.

3.1 Introduction

An alternative commercial solution was presented, in the form of prototype, by MIDIMAN
[16], one of the well-known MIDI equipment suppliers, at the NAMM show [17] in 2001
[18]. Figure 3-1 shows a pair of MIDIMAN Bluetooth based MIDI prototypes.

This solution was based on the Bluetooth technology and offered 4 MIDI channels
selectable via 2 DIP switches. However, this solution never reached commercial
availability, possibly due to the high cost of the Bluetooth module (at the time) or to the
poor performance of the prototypes.

The objective of this work is then to assess the possibility of developing a Wireless MIDI
solution supported in wireless technologies with potential to become pervasive. Also, as
the use of Wireless MIDI is of special interest in stage performances, where a significant
number of instruments are concentrated, the solution must be able to support simultaneous
transmissions between a reasonably high number of modules (say, at least some tenths).

ISSUES CONCERNING THE WIRELESS IMPLEMENTATION OF MIDI

3-3

It is the belief of the author that, to achieve pervasiveness in this application, cost
effectiveness must be obtained. Although many wireless technologies could be sought to
solve the problem, cost-effectiveness is usually only attained by using COTS (components
off the shelf), particularly when those are used in massive markets such as the ones of
information technology.

In the sequence of the previous reasoning, and given the envisaged application scenario,
only technologies developed for Wireless Personal Area Networks (WPANs) were
considered for evaluation (an overview of these technologies is presented in Chapters 4
and 5). At this point in time, Bluetooth was considered the most promising solution, mainly
due to its predictable low cost, low-power operation, low size and easy handling of the
communications between the previewed number of modules within the same space.
Another important factor that led to the interest in Bluetooth was the possible direct MIDI
mapping using the Serial Port Profile (SPP). The SPP offers a serial port replacement
mechanism that can be used to replace the original wired connection by a wireless
Bluetooth based connection. Also, since Bluetooth is a well-known technology and people
are used to manipulate Bluetooth devices, the need for specific training is reduced.
However, ZigBee also seemed an interesting technological option despite of the
technological lack of availability (at low cost) at the time of this writing.

Figure 3-1 - MIDIMAN Bluetooth-MIDI prototype

 The following sections describe the timing requirements for the wireless transmission of
MIDI, and the proposed Wireless MIDI architecture. A short overview of the existing
commercial solutions is included at the end of the chapter.

EVALUATING BLUETOOTH FOR THE WIRELESS TRANSMISSION OF MIDI

3-4

3.2 Timing Requirements

As introduced in Chapter 4, the MIDI physical layer uses unidirectional point-to-point
connections and therefore the channel is fully available to transmit MIDI messages. So,
time is directly coded in the sending instant. Obviously there are delays, but they are small
and just related with the transmission of each MIDI command byte. Figure 3-2 shows the
transmission of a three-byte MIDI message.

t
tit tirtb tb tb

A
ke

y
ha

s
be

en
 p

re
ss

ed

Tr
an

sm
is

si
on

ha
s

st
ar

te
d

M
es

sa
ge

R
ec

ei
ve

d

C
om

m
an

d
ha

s
be

en
 e

xe
cu

te
d

Figure 3-2 - Timeline of a MIDI transmission

It is assumed that the transmitter is able to avoid latency between consecutive byte
transmissions. Therefore, the transmission delay td of an n-byte MIDI message can be
represented by the following equation:

td=tit+n.tb+tir+tprop
Where:

tit represents the processing interval at the transmitter

tb represents the time to transmit a byte

tir represents the processing interval at the receiver

tprop represents the propagation delay (which can be ignored considering that a 40m
cable introduces a delay of approximately 200nsec).

For a three-byte message like a Note On, the transmission delay simplifies to:

td=tit +tir+952µsec
If the two ti parameters are small (and they usually are) the command will face a delay
around 1millisecond before becoming effective at the receiver. Because human hears can
perceive sound delays higher than 4 milliseconds [19], these timings are quite appropriate
for their discrimination capacity.

Considering a more complex sequence of messages, one must notice that the relative
timings between messages are very important. An example can be a chord. A chord is a
sequence of keys pressed simultaneously or within a very short interval of time. In this

ISSUES CONCERNING THE WIRELESS IMPLEMENTATION OF MIDI

3-5

scenario the produced sound must be heard as a simultaneous set of sounds. The early start
or late stop of one of the notes will be easily noticed by the human hear. Figure 3-3 shows
the correct MIDI transmission of a three-note chord.

KEY

3
ON

KEY
2

ON

KEY
1

ON

KEY
1

OFF

KEY
2

OFF

KEY
3

OFF t
Figure 3-3 - Timeline of a chord

Considering that the delays between Note On commands are bounded and that the
transmission delay is constant (and also bounded), then the delay between the Note Off
commands must also be bounded. These considerations guarantee that the chord becomes
effective at the receiver without being jeopardized. The overall chord delay will then be a
function of the individual byte delays. Figure 3-4 shows the timings involved for a three-
note simultaneous key pressure (chord start or chord stop).

K1 K2 K3

td td tdtbd tid tid

tdchord

t
Figure 3-4 - Timeline of a chord start (or stop)

Assuming the theoretical possibility of k keys being pressed simultaneously, there will be a
small delay tdb before the transmission of the first set of bytes corresponding to the first
Note On (or Note Off) command. Besides the command delay td there will be another
relevant delay between consecutive MIDI commands, here named tid. The sum of these
delays is the overall delay experienced by a MIDI chord as expressed in the following
equation:

tdchord=tbd+k.td+(k-1)tid
Notice that this approach is valid for the chord start or the chord stop.

Assuming that the transmission is immediate (tdb=0) after the simultaneous key press and
that the delay between consecutive MIDI commands is negligible (tid=0), then the overall
chord start (or stop) delay will be:

tdchord=k.td

EVALUATING BLUETOOTH FOR THE WIRELESS TRANSMISSION OF MIDI

3-6

A three-note chord will face a delay of approximately 3 milliseconds, which is acceptable
considering the previously discussed boundaries [19].

Despite the tight optimal delay requirements, higher latencies can be tolerated if jitter is
bounded to a few milliseconds. Musical performers can tolerate delays of tenths of
milliseconds as long as they do not change considerably. This assumption is based on
specific field knowledge gathered from field musical experiments with real instruments
communicating over MIDI. Therefore, considering that delays can be higher than 4
milliseconds, the system must ensure that their variation will not be noticeable.

3.3 Proposed architecture for Wireless MIDI
As presented in Chapter 2, MIDI connections are unidirectional. Common MIDI devices
have at least one input (MIDI In) and two outputs (MIDI Out and MIDI Through). These
interfaces allow the connection of several MIDI devices using point-to-point and point-to-
multipoint connections. The former are allowed by linking the MIDI Out to the MIDI In
interface, while the later by linking the MIDI Out to the MIDI Through interface.

The purpose of connecting several instruments together is to share functionality among
MIDI devices. For example, several instruments can be played using a single MIDI device.
Figure 3-5 illustrates this concept in which the leftmost MIDI device “plays” the
remaining.

Figure 3-5 - Example of a MIDI setup

The architecture of a MIDI wireless system can be viewed as the simple replacement of the
MIDI wired connection with a unidirectional wireless point-to-point connection. In this
sense, all the wired connections are replaced with wireless connections (as shown in Figure
3-6).

As it can be seen, each wireless connection links two points in a unidirectional fashion.
Therefore, Wireless MIDI (WiMIDI) devices are connected in pairs and the MIDI stream
flows in just one direction. For example, WiMIDI IN 01 is connected to WiMIDI OUT 01,
thus establishing a unidirectional point-to-point wireless connection between the two
attached MIDI devices. Commands sent by the leftmost device are received by the attached

ISSUES CONCERNING THE WIRELESS IMPLEMENTATION OF MIDI

3-7

WiMIDI and sent over the air to the corresponding WiMIDI unit (WiMIDI Out 01) that
forwards them to the target MIDI device.

Figure 3-6 - An example of a Wireless MIDI setup

Several solutions could be designed to transmit MIDI wirelessly. However, and to preserve
the traditional “look and feel” of establishing connections between MIDI devices, the
point-to-point topology was maintained by the architecture of the solution. Obviously, the
point-to-point topology is inspired by the MIDI architecture and not by the wireless
technology. If other topologies were considered, the number of required WiMIDI nodes
could be reduced. For example, if WiMIDI devices allowed point-to-multipoint
connections, the network presented in Figure 3-6 could use just 3 devices to communicate
the MIDI stream, generated by the leftmost device, to the remaining.

3.4 Commercial Solutions

Nowadays, the market offers some alternatives for supporting Wireless MIDI
communications. This section discusses comparable solutions (in terms of cost, range,
autonomy and performance) with the proposed WiMIDI system.

The comparative analysis is based on Wireless MIDI adapters, representing renowned
Wireless MIDI manufacturers such as Kenton [3], Classical Organ Works [4] and LIMEX
[5] that are commercially available (shown in Figure 3-7).

Figure 3-7 - Wireless MIDI commercial solutions

EVALUATING BLUETOOTH FOR THE WIRELESS TRANSMISSION OF MIDI

3-8

Table 3-1 shows the general characteristics of three different Wireless MIDI products.
Clearly, the common characteristics are the high cost and operational range.

Table 3-1 - Comparison between commercial Wireless MIDI products

Product Cost Range Autonomy Radio Channels Weight
LIMEX
MIDI 750€ 100m ND* UHF 902-

928 MHz 5 ND*

MIDIJet
Pro 400€ 150m 30h ISM 2.4GHz 1 170g

Midistream
MIDI 600€ 80m ND* UHF

869.85MHz 1 ND*

* Not-Defined

The operational range among solutions that use the same radio technology (UHF) is almost
identical. However, when a different radio technology is used (ISM), the range almost
doubles.

MIDIJet and Midistream provide a single channel for communication while LIMEX
provides five (at the expense of a higher price).

Table 3-1 also demonstrates that manufacturers do not disclose some important details,
such as the autonomy. However, the coincidence must be noticed because it takes place for
both UHF-based devices. Manufacturers do not provide strict information regarding
latency. For example, Kenton says that the devices present “imperceptible latency and low
dropout rate” while Classic Organ Works just specifies that devices exhibit a “low
latency”.

To sum up, existing solutions are very expensive and largely based on proprietary
technology. In addition, their specification does not disclose several important details, such
as autonomy and worst-case latency. Furthermore, available solutions do not seem
sufficiently feasible to withstand the requirements of the application.

BLUETOOTH OVERVIEW

4-1

Chapter 4 - Bluetooth Overview

CHAPTER 4

BLUETOOTH OVERVIEW

4.1 Introduction
Bluetooth [20] is an open standard designed for ad-hoc short-range wireless networking.
This standard operates in the unlicensed ISM 2.4 GHz band and is able to communicate
both data and voice. Its main features are: robustness, low complexity, low power
consumption and low cost.

Bluetooth is currently at version 1.2 and, since March 2002, the IEEE 802.15 working
group has adopted the SIG [21] 1.1 Bluetooth specification (without any major changes)
and made it an IEEE standard named IEEE 802.15.1 [22].

Bluetooth uses a frequency hopping transceiver in order to lower the signal fading and
interference of the wireless channel. This communication channel is divided into time slots
and the Time Division Duplex (TDD) scheme is used for transmissions. In this sense,

EVALUATING BLUETOOTH FOR THE WIRELESS TRANSMISSION OF MIDI

4-2

packets occupy at least one time slot but can be extended to five. These slots can also be
reserved for synchronous transmissions. Bluetooth supports one asynchronous channel for
data and up to three synchronous simultaneous voice channels [23].

The Bluetooth protocol supports two types of connections: point-to-point (only two
Bluetooth units communicate with each other) and point-to-multipoint. In the last form, the
channel is shared with all connected Bluetooth units. Two or more units sharing the same
Bluetooth channel form a piconet (see Figure 4-1).

The piconet is the atomic network of Bluetooth. Each piconet has one piconet master and
one (or more) piconet slave(s) (seven active slaves at most). However, several slaves may
be attached to the network in a so-called parked state. These parked slaves are not active,
but synchronized with the piconet master.

Figure 4-1 - Bluetooth scatternet.

Piconets covering common areas form a scatternet. Bluetooth units that belong to one
piconet may participate in other piconets by using a Time Division Multiplex (TDM)
scheme. Moreover, a piconet master may be a piconet slave in a neighbor piconet. Piconets
are not frequency hop synchronized, e.g., each one has its own specific hop sequence. This
partially avoids piconet interference.

4.2 Stack

The Bluetooth specification defines not only the physical medium (radio interface), but
also a complete communication stack (as seen in Figure 4-2). Besides defining different
communication protocols the stack includes the specification of protocols to allow devices
to find their neighbors and to advertise their services.

BLUETOOTH OVERVIEW

4-3

The Bluetooth stack can be divided into three logical groups of protocols [24]: the
application protocol group, the middleware protocol group and the transport protocol
group.

The application protocol group comprises the applications (Bluetooth-aware or not) that
use the Bluetooth technology.

The middleware protocol group consists on both Bluetooth specific protocols like the serial
port emulation (RFCOMM) and other adopted protocols like the Object Exchange Protocol
(OBEX).

The transport protocol group is composed of protocols exclusively developed for the
Bluetooth technology, like the Logical Link Control and Adaptation Protocol (L2CAP) or
the Host Controller Interface (HCI).

Figure 4-2 - Bluetooth protocol stack

A short discussion of the protocols defined for the different layers of the Bluetooth stack is
presented below.

4.2.1 Radio

As pointed, the Bluetooth radio operates in the unlicensed ISM (Industrial, Scientific and
Medical) band at 2.4 GHz. The antenna radiation is classified in one of the three power
classes:

• Power Class 1: designed for long range (~100m) devices, with a maximum output
power of 100 mW;

EVALUATING BLUETOOTH FOR THE WIRELESS TRANSMISSION OF MIDI

4-4

• Power Class 2: for ordinary range (~10m) devices, with a maximum output power
of 2.5 mW;

• Power Class 3: for short-range (~10cm) devices, with a maximum output power of
1 mW.

Data is transmitted at a maximum raw rate of 1Mbit/s. However, due to communications
overhead, only a maximum of 721Kbit/s is (actually) achievable.

Bluetooth uses 792 hop frequencies spaced 1 MHz apart ranging from 2.402 MHz to 2.480
MHz. The hop rate is 1600 hops per second and each is separated from the following by a
625µs time window.

A piconet is characterized by a specific hopping pattern determined by the piconet master
ID and its clock. The overall hopping pattern is divided in 323 hop segments.

The Bluetooth radio uses GFSK (Gaussian Frequency Shift Keying) for modulation by
representing a binary one by a positive frequency deviation and a binary zero by a negative
frequency deviation.

The radio tolerance for transmitting is ±75Hz from the specified central frequency Fc,
meaning that the deviation from Fc must be lower than 75Hz.

4.2.2 Baseband

The Bluetooth Baseband packet follows the general packet structure shown in Figure 4-3.
Figure 4-3 - Baseband packet structure

Acess Code Header Payload

LSB MSB

72 bits 54 bits 0-2745 bits

Figure 4-3 - Baseband packet structure

2 In a few countries (e.g., France) this frequency band range is (temporarily) reduced, and a 23-hop system is

used instead.
3 In reduced hop systems (23 hops) the hoping pattern is divided in 16 segments.

BLUETOOTH OVERVIEW

4-5

This packet structure contains an Access Code, a Header and a Payload. The Access Code
field is 72-bit wide and is used for synchronization. However, depending on the application
context, it may contain the piconet identity or the address of the recipient.

The Header field is 54-bit wide and includes the destination address, the type of payload
that follows and error control information.

The payload field is variable in length and includes the message to be transmitted.

As pointed, the communication channel is divided in time slots, each one occupying
625µs. These slots are numbered according to the master clock of the piconet. The master
transmits on even numbered slots and the slave in odd numbered slots. Each transmission
takes place at one new hopping frequency, and a complete data packet is sent in each slot.
This means that there is no frequency shift before the end of the packet transmission, even
if the packet occupies more than one slot. Figure 4-4 unveils the communication process
for a single slave piconet.

Figure 4-4 - Communication process for single-slave operation

Point-to-multipoint communication occurs when a piconet contains more than one slave. In
this scenario, and to prevent piconet members of jamming each other with simultaneous
transmissions, a Time Division Duplex (TDD) scheme is used. This means that slaves
multiplex the overall throughput. Figure 4-5 demonstrates the procedure.

EVALUATING BLUETOOTH FOR THE WIRELESS TRANSMISSION OF MIDI

4-6

Figure 4-5 - Communication process for multi-slave operation

As described, the master transmits on even-numbered slots and the slaves on odd-
numbered slots. However, slaves can only transmit when directly addressed by the master
in the previous time slot. In this sense, if the master sends a packet to slave 1, slave 2 will
remain with its receiver turned on only while decoding the packet access code (identifying
the piconet) and header (identifying the destination). Afterwards, it will realize that the
packet is not addressed to it and will turn its receiver off until the next even-numbered slot.

As can be seen in Figure 4-5, the piconet slaves only communicate with the piconet master.
This means that slave-to-slave data transfers are only possible through the master or by
creating a separate piconet through which they can communicate directly (one being the
piconet master and the other the piconet slave).

The support of multi-slot packets enables the increase of the achieved data throughput.
Multi-slot packets can either have a duration of three or five time slots. Figure 4-6 depicts
the timing of one-slot, three-slot and five-slot packets.

Figure 4-6 - Timings for one, three, and five slot packets

BLUETOOTH OVERVIEW

4-7

As represented in Figure 4-6, packets are sent in a single hop frequency independently of
their length.

4.2.2.1 Links

Bluetooth devices can establish two4 different logical transports: asynchronous
connectionless (ACL) and synchronous connection-oriented (SCO) links. ACL links are
used for data communication while SCO links are used for real-time two-way voice [25].
Applications with low latency and low integrity constraints use SCO links. An SCO link is
a circuit-switched, point-to-point link between a master and a single slave. The low latency
characteristic is achieved through well-timed transmissions in specific slots and with the
absence of retransmission mechanisms. However, the lack of retransmission mechanisms
can lead to loss of data when transmission failures occur. This is not a common problem
since, for example, voice reproduction from a digitized bit stream can tolerate a fairly high
percentage of bit errors.

SCO Packets are exchanged in pairs, firstly from the master to the slave and afterwards
(next slot), in the opposite direction. Slaves are allowed to transmit in their reserved time
slots, even if the master did not transmit in the previous slot. However, if the master
transmits a higher priority packet in the reserved slot, the slave is not allowed to transmit.
This means that, in case of reserved slot dispute, the master always wins the right to
transmit.

When data integrity is more important than latency, ACL links are used. An ACL link is a
packet-switched link between a master and a slave. When a packet is received with
uncorrectable errors it is retransmitted until proper reception. Of course, the number of
retransmissions increases directly with the bit error rate of the channel (BER) leading to
high latency times.

A piconet master can transmit broadcast packets that will be received by all slaves. The
slaves are not permitted to reply in the slave-to-master slot following a broadcast packet.

ACL links can also be used to carry isochronous data. Isochronous data is less time critical
than real-time two-way voice. Streaming audio applications can use ACL links for
buffered audio transmission. Retransmissions are possible without affecting considerably
the audio reproduction. However, if the BER of the channel is high, it may be necessary to

4 In fact, the Bluetooth Specification Version 1.2 introduces another logical transport named extended SCO

(eSCO). This logical transport is one of the main improvements introduced by the latest Bluetooth

specification and will be described later in section 4.3.

EVALUATING BLUETOOTH FOR THE WIRELESS TRANSMISSION OF MIDI

4-8

flush periodically bad received packets, which can result in audible sound quality
degradation.

4.2.2.2 Link Controller

The Link Control (LC) sublayer resides within the Baseband layer. It is responsible for
managing the discoverability of the device, establishing connections and maintaining them.

Aiming to establish piconets, inquiry and page procedures are defined. Prior to the piconet
creation, the devices involved are not yet master and slave. To reduce ambiguity, they are
called prospective master (p-master) and prospective slave (p-slave).

In the inquiry phase the p-master discovers other Bluetooth devices that are in range by
broadcasting an inquiry message. The p-slaves that receive5 the inquiry message return an
FHS (Frequency-Hop Synchronization) packet including, among other information, their
identity and clock information. If all p-slaves reply simultaneously their messages will
collide. To resolve the FHS collisions the p-slaves reply using a back off mechanism.

In the page phase the p-master tries to establish a Bluetooth connection with a particular p-
slave (that may have been discovered during the inquiry phase). The p-slave must be
connectable, which means that it must be in the page scan state to accept a connection
request. However, since one of the Bluetooth requirements is low power operation, a p-
slave is most of the time in a sleep state. When awaken from this state, a p-slave performs
a page scan at a different hop frequency for a short period of time. If this time is
sufficiently long a p-master will eventually send a page at this frequency and the
connection establishment may proceed. However, if a p-slave is awake for a long period of
time it will drain out the batteries rapidly. A trade-off has to be made between response
time and power consumption. The p-master transmits the access code repeatedly at
different frequencies. In a 10-millisecond period 16 hop frequencies are paged (in each
1.25ms two access codes are transmitted at two different hop frequencies). If once awaken,
an idle p-slave performs a page scan in any of these 16 frequencies, it will receive the
access code required to start the Baseband connection procedure. In this sense, the p-slave
will start by notifying the p-master of the received access code. The p-master will transmit
an FHS packet containing all the required information to start the connection. This
information is then used by both, p-master and p-slave, to establish the piconet. After a
successful Baseband link establishment, both units can exchange roles if they wish (the
slave may become master and vice-versa). It must noticed that, if a device does not make
itself discoverable by being in the inquiry scan state for a determined amount of time, it
cannot be found by neighbor devices (unless they already know the address of the device).

5 p-slaves are only able to listen inquiries when operating in inquiry scan.

BLUETOOTH OVERVIEW

4-9

Also, if a device does not make itself connectable by being in the page scan state for a
determined amount of time, neighbor devices will not be able to connect with it.

Additional information concerning the connection establishment can be found in [26] and
[27].

4.2.3 LMP

The Link Manager (LM) translates the higher layer commands into operations at the
Baseband level. Its main functions are: link configuration and information, and piconet
management and security. The link configuration and information functions are especially
important when, after a successful paging procedure, one master and one slave form a
piconet. Both need to discover what link features (multi-slot support, RSSI6, etc.) are
available on the other end. These functions also play an important role for setting QoS,
power control and other configuration options during the time a connection is active.

The piconet management functions include the management of slave attachment and
detachment, master-slave role switch, SCO link establishment and handling of low-power
modes (sniff, hold and park). These low-power modes are not discussed here for extension
considerations.

The security management functions handle most of the implementations associated with
the authentication and/or encryption of the Bluetooth link.

The LM communicates with its peers on other Bluetooth devices by using the Link
Management Protocol (LMP). Figure 4-7 depicts the payload body of an LMP Packet Data
Unit (PDU). The payload body contains a transaction identifier (TID), an opcode and a
variable number of parameters. The first bit to be transmitted is the 1-bit TID. When the
PDU is originated in the master the TID bit is set to 0. When the PDU is originated in the
slave the TID is set to 1. This bit is commonly used to track which node started the
parameter negotiation.

The opcode is a 7-bit PDU designator. An opcode identifies a specific command that may
have (or not) several parameters being provided after the opcode. If a parameter exists, it
can be as short as one byte or as long as 16 bytes (usually parameters occupy an integer
number of bytes).

6 The Receiver Signal Strength Indicator (RSSI), as the name implies, is a parameter used to measure the

receiver signal strength of a Bluetooth device. It is used to evaluate if the transmitter on the other side of the

link should increase (or decrease) its output power level in order to maintain the desired level of connectivity

using the less possible power.

EVALUATING BLUETOOTH FOR THE WIRELESS TRANSMISSION OF MIDI

4-10

Figure 4-7 - LMP PDU payload body

As pointed, the LMP provides mechanisms for encryption mode negotiation and for
encryption key coordination between both peers. LMP also supports messages for QoS
configuration. In this sense, the used packet types can change to reflect changes in the BER
of the channel. For example, when a link is firstly set-up it uses single slot packets.
However, the use of multi-slot packets increases the overall throughput of the link.
Provided that the BER is sufficiently low to support low latency communications, multi-
slot packets can be used to increase the throughput of the link.

4.2.4 L2CAP

The Logical Link Control and Adaptation Protocol (L2CAP) is a protocol layer that
provides connection-oriented (master to slave and slave to master) and connectionless
(master to multiple slaves - broadcast) data services to upper layer protocols. Although
L2CAP does not provide real-time communication capabilities as SCO links, it may
communicate with the LM to assist the channel setup. L2CAP supports two types of user
data: user asynchronous (UA) and user isochronous (UI). The UA type offers reliability
guarantees by forcing the retransmission of data until successfully received. As pointed
before, if the BER of the channel is high, large latency times will occur. In the UI type,
data reliability is as important as latency times. In this sense, latency can supersede
reliability requirements (multimedia streaming is an example). UA and UI data types are
supported in a specific logical link named ACL-U, which allows the user data to be framed
and transmitted according to its nature (asynchronous or isochronous).

The L2CAP functions can be divided into four categories: protocol multiplexing, packet
segmentation and reassembly, QoS and group management.

The protocol multiplexing function ensures the sharing of an ACL connection with several
higher layer links. In this sense, it allows different user applications to run on a single ACL
link. The protocol differentiation is achieved through the use of channel numbers (labels)
that guarantee proper routing of ACL payloads belonging to different higher layer
protocols.

L2CAP transparently provides protocol multiplexing to higher layers.

BLUETOOTH OVERVIEW

4-11

The segmentation and reassembly function ensures that higher layer packets with large
(sometimes as long as 64K bytes) Maximum Transmission Units (MTUs) are segmented
into smaller Bluetooth Baseband packets for proper transmission. It also ensures the
opposite packet reassembly by combining small Bluetooth Baseband packets into larger
higher layer packets. This process is transparent for higher layers.

The QoS function allows the implementation of a QoS level for each protocol in terms of
parameters such as bandwidth, latency, and delay variation. These QoS settings are set
using the token bucket traffic model. However, by default, the QoS level is set to best
effort, meaning that it will perform the best it can under any circumstances.

The group management function arises from the fact that several higher layer protocols
require the capability of managing address groups. The Bluetooth LM supports a group of
devices named piconet that includes all active and parked slaves. L2CAP takes this concept
into the next level by allowing the mapping of protocol groups within the piconet. An
example could be a real-time streaming video transmission for two active slaves within a
seven-slave piconet.

4.2.5 RFCOMM

The RFCOMM Protocol is used “to expose a serial interface to the packet-based Bluetooth
transport layers” [28]. This protocol emulates standard RS232 control and data signaling
over the Bluetooth Baseband. It is based on the ETSI 07.10 standard [29] and supports the
emulation and multiplexing of several (maximum 30) serial links over a single connection.
The ETSI 07.10 standard is an asymmetric protocol used by GSM cellular phones to
multiplex several streams of data onto one physical serial cable.

Legacy applications designed to operate over serial cables can run on top of a Bluetooth
link without significant modifications using the RFCOMM protocol. Most of the actual
applications developed for Bluetooth use the RFCOMM protocol as part of their stack.

4.2.6 SDP

The Service Discovery Protocol arose from the original envisioned rich operating space for
Bluetooth (a pervasive world offering different services). In this sense, a large variety of
services would be available to choose from. Using SDP, a Bluetooth unit can inquire about
the services that another Bluetooth unit offers and learn how to access them. This means
that SDP does not provide the services, but information about them.

Services and attributes are described by universally unique identifiers (UUIDs). Usually
UUIDs are 128 bits long, but for known services, 16-bit and 32-bit UUIDs may also be
used.

EVALUATING BLUETOOTH FOR THE WIRELESS TRANSMISSION OF MIDI

4-12

The following section briefly describes some of the most important improvements
introduced in the latest Bluetooth specifications.

4.3 Recent Improvements

In November 2004 the Bluetooth SIG launched the new Bluetooth Core Specification
Version 2.0 + Enhanced Data Rate (EDR) [30]. This specification promises several
improvements to the previous versions, namely:

• Increased data rate (up to ten times in specific scenarios);

• Lower power consumption achieved by decreasing duty cycles;

• Simplified multi-link scenarios through the use of additional bandwidth;

• Improved Bit Error Rate (BER) performance;

• Backward compatibility.

Three major companies, Cambridge Silicon Radio (CSR) [31], Broadcom [32] and RF
Micro Devices (RFMD) [33], support this Bluetooth specification. CSR implements its
BlueCore4 chip with 0.18µm technology, while Broadcom and RFMD (BCM2045 and
SiW4000 chips respectively) use 0.13µm technology in their implementation.

At the time of this writing only Bluetooth Specification 1.2 is available for non-SIG
members. Therefore, the following analysis is solely based in the Bluetooth Specification
Version 1.2 [34] [35].

This release improves several existing features to achieve shorter connection times, higher
quality audio links and improved co-existence with other wireless technologies, namely
Wi-Fi [36]. A group of four new features called Faster Connections has been introduced to
shorten the connection establishment. The enhanced inquiry is part of this group and with
the interlaced inquiry scan and page scan can reduce up to half the connection times
(inquiry + page). The RSSI with inquiry results is the last member of this group and is
targeted to devices with limited display capabilities. It acts by ordering the inquiry results
by RSSI value from the highest (which should be the desired) to the lowest. So, the device
will show to the user a list of available devices, ranging from the nearest to the farthest.

Traditionally, audio is transmitted over SCO links. Because these links do not have error
detection capabilities, sometimes users experience data loss in noisy environments. To
overcome this problem Bluetooth Specification Version 1.2 introduces an extended SCO
(eSCO) logical transport. When an eSCO transport is established the piconet master
assigns an additional address (LT_ADDR) to the slave. This address is used in all eSCO
traffic allowing the separation of the eSCO Automatic Repeat reQuest (ARQ) scheme from

BLUETOOTH OVERVIEW

4-13

the ACL ARQ scheme. The eSCO transport supports error-detection and limited
retransmissions. These features contribute to an improved audio quality.

The co-existence with other wireless technologies, a long-term issue, was addressed by
introducing a mechanism known as Adaptative Frequency Hopping (AFH). This
mechanism works by reducing the nominal number of hopping channels according to their
occupation by other ISM technologies such as Wi-Fi, microwave ovens, cordless
telephones, etc. This way, channels in use are marked as occupied and are not considered
in the hopping pattern. Bluetooth Specification Version 1.2 defines AFH as being
mandatory. This specification globally describes the AFH mechanism. However, it does
not specify the channel occupation assessment algorithm. This means that manufacturers
are free to implement their own solution, which may lead to different performances (in
noisy environments) among different manufacturers.

The following section describes the role of the Bluetooth profiles within the Specification.

4.4 Profiles

Bluetooth profiles define the implementation of Bluetooth usage models. These models
refer to specific arrangements of protocols within the Bluetooth specification. Bluetooth
profiles have three main purposes [25]:

• To reduce the number of options by setting parameter ranges within the used
protocols;

• To specify the order in which procedures are combined;

• To provide similar user experience in Bluetooth devices of different manufacturers.

A Bluetooth profile can be seen as a “vertical slice in the Bluetooth protocol stack” [25]. In
this sense, it only “selects” particular functionalities from each layer according to the
specific Bluetooth function being developed. As illustrated in Figure 4-8, Bluetooth
profiles are organized into groups. Each group inherits features from the one beneath, from
which it is built upon [37]. Additional features from the standard are gathered as required.
This scheme allows recycling features among profiles and reduces the costs concerning the
development cycle.

EVALUATING BLUETOOTH FOR THE WIRELESS TRANSMISSION OF MIDI

4-14

Figure 4-8 - Bluetooth profiles

Bluetooth profiles were drawn from typical usage scenarios (use cases) and grouped
together according to shared elements [38]. However, there are profiles developed for
different purposes than just the mapping of a particular usage scenario. These profiles are
usually referred to as Generic Profiles and are the Generic Access Profile (GAP) and the
Service Discovery Application Profile (SDAP). The former is the elemental profile, from
which all remaining are built upon. Its main purpose is to ensure that all devices can
successfully establish a Baseband link. The latter “provides a common and standard
method for performing service discovery using the Bluetooth protocol stack” [37]. The
Generic Access Profile, for example, defines several elements that must be taken into
account when developing an application. Not only it defines the requirements for features
that must be implemented in all devices, but it also specifies requirements regarding the
discoverability, connectivity and security of Bluetooth devices. Additionally, this profile
defines a specific terminology to be used in the user interface. It can, however, be different
from the one used through the Bluetooth Specification.

Another important profile is the Serial Port Profile (SPP). This is probably the most
popular Bluetooth profile (in parallel with the Headset Profile) since it addresses one of the
initial Bluetooth target applications (cable replacement). This profile is based on the GSM
07.10 standard [29] and allows multiplexing several serial connections over a single serial
link. It accomplishes this task by specifying the protocols and procedures required to
seamlessly emulate (using Bluetooth) a RS232 wired connection. In terms of hierarchical
structure, the SPP is built upon the GAP (see Figure 4-8) and the additional features are
drawn in from the Bluetooth standard.

BLUETOOTH OVERVIEW

4-15

Resuming, Bluetooth profiles have the purpose of guaranteeing interoperability and similar
user experience when using equipment from different manufacturers.

4.5 Conclusion
This chapter provided an overview of the Bluetooth protocol by focusing on its layered
structure. This technology offers several features that seem suitable to be used in the
envisioned application. The most important are the low-cost, the technological availability,
the adequate operating range and the noise immunity. Besides providing several key
features, Bluetooth is an evolving technology that seems a good option for supporting
wireless communications. This means that, even if its performance is not as good as others
(at present), there is enough room to improvement and thus it can be considered a
promising solution to implement wireless MIDI.

WIRELESS PERSONAL AREA NETWORKS – AN OVERVIEW

5-1

Chapter 5 - Wireless Personal Area Networks - an overview

CHAPTER 5

WIRELESS PERSONAL AREA NETWORKS –

AN OVERVIEW

5.1 WI-FI
The IEEE 802.11 [39] is the leading standard in wireless LANs. The original scope of this
standard was “to develop a Medium Access Control (MAC) and Physical Layer (PHY)
specification for wireless connectivity for fixed, portable and moving stations within a
local area” [40]. After its release in 1997, the IEEE 802.11 protocol was ratified in 1999 to
support data rates above the 10 Mbit/s barrier. In 2003 the IEEE 802.11 standard was
amended to further extend its data rate to 54 Mbit/s within the 2.4 GHz band. This
evolution has been motivated by the increasing demand for higher data rates. However, the
original goal still remains.

EVALUATING BLUETOOTH FOR THE WIRELESS TRANSMISSION OF MIDI

5-2

5.1.1 Overview
The IEEE 802.11 standard specifies the MAC and PHY layers for Wireless Local Area
Networks (WLANs). This standard adopts the IEEE 802 standard (802.2) for the Logic
Link Layer (LLC), which, with the MAC sub-layer, forms the Open Systems Interconnect
(OSI) Data Link Layer (DLL). The 802.11 PHY specifies two distinct physical layers:
Direct Sequence Spread Spectrum (DSSS) and Frequency Hopping Spread Spectrum
(FHSS). As introduced, several revisions to the original standard have been made.
Considering the last revision (2003), the transmission technology and the operating
spectrum, the 802.11 protocol can be classified in three categories [41]:

• 802.11a (Orthogonal Frequency-Division Multiplexing (OFDM), 5 GHz);

• 802.11b (High-Rate DSSS (HR/DSSS), 2.4 GHz) and

• 802.11g (OFDM, 2.4 GHz).

The IEEE 802.11a (rev. 1999) standard is based on a multicarrier technique named OFDM
and operates in the unlicensed national information infrastructure (U-NII) band (USA).
This standard supports data rates between 6 and 54 Mbit/s. The IEEE 802.11b (rev. 1999)
operates in the 2.4 GHz Industrial, Scientific and Medical Band (ISM) using a High Rate
DSSS (HR/DSSS) technique for achieving data rates between 1 and 11 Mbit/s. Finally, the
IEEE 802.11g (rev. 2003) standard also operates in the ISM band and is able to support
data rates up to 54 Mbit/s using the OFDM multicarrier technique. Since 802.11g and
802.11b use the same operating spectrum their compatibility is guaranteed, from a
bandwidth perspective.

The IEEE 802.11 MAC is considered the key to the 802.11 specification [42]. It links the
PHY layer with higher layers providing core framing operations and interaction with
(possibly) wired backbones. Following the success path of Ethernet, it uses a Carrier Sense
Multiple Access (CSMA) scheme to control the medium access. However, it does not use a
Collision Detection (CD) mechanism as Ethernet. Instead, it uses Collision Avoidance
(CA) thus reducing the waste of valuable transmission capacity.

The following subsections present a brief overview of the basic components and supported
network types that characterize the IEEE 802.11 protocol.

5.1.2 Components and architecture

802.11 networks are built on four physical components: Distribution System (DS), Access
Points (AP), Wireless medium and stations. These components are related as shown in
Figure 5-1.

WIRELESS PERSONAL AREA NETWORKS – AN OVERVIEW

5-3

The DS is the interface that links stations within a WLAN to the exterior world (usually the
Web) by forwarding frames to their destinations. APs convert frames in the 802.11 format
into different frame formats allowing them to be transmitted in different communication
media (such as Ethernet for example). The IEEE 802.11 protocol uses a wireless medium
as the frame communication support. This wireless medium is based on two PHYs: Radio
Frequency (RF) and infrared. The RF PHY has become very popular, mostly because of its
improved operating range and performance.

Access
Point

Station

Wireless
Medium

Distribution
System

Figure 5-1 - IEEE 802.11 components

Stations are computing devices that include a wireless network interface. These computing
devices can be laptops, PDAs, PCs or other micro-controller based devices.

5.1.2.1 Types of Networks

The Basic Service Set (BSS) is a group of stations that communicate with each other.
Figure 5-2 shows the two forms a BSS can take: independent and infrastructure.

Access
Point

Independent BSS Infrastructure BSS

Station Station

Station

Station

StationStation

Figure 5-2 - IEEE 802.11 supported networks

In the Independent BSS form (IBSS), stations can communicate directly with each other
providing that they are in range. This form is also known as ad-hoc BSS and, in its

EVALUATING BLUETOOTH FOR THE WIRELESS TRANSMISSION OF MIDI

5-4

smallest arrangement, it only includes two stations. Usually, IBSSs are built to provide
connectivity within a small area to a small number of stations for a short period of time
(conference meetings, spontaneous data exchange, etc.).

Infrastructure networks use an access point to mediate communication. When a station
initiates a frame transfer to another station, it must transfer the frames to the AP, which in
turn communicates them to the target station (even if the target station is in range).
Although the communication needs two hops, two advantages arise immediately from this
procedure:

• The operating range limit of an Infrastructure BSS is determined by the AP
coverage. In this sense, even if two stations are not in range from each other, they
may communicate provided that they are within the reach of the AP. It seems
obvious that allowing direct communication between stations can lead to a higher
throughput. However, this would increase the PHY complexity since it would
require the embodiment of additional mechanisms to manage neighbor
relationships within the service area.

• Most stations requiring wireless communications are mobile, and thus battery
powered. APs are in a good position (Infrastructure BSS) to assist mobile stations
that require power savings. If an AP acknowledges a mobile station entering in a
power saving mode, it may operate by buffering all frames and only delivering
them when requested.

The following sub-sections provide an overview of the IEEE 802.11 MAC and PHY
layers.

5.1.2.2 MAC layer

In the 802.11 MAC, the access to the wireless medium is controlled by coordination
functions. Therefore, the IEEE 802.11 MAC defines two coordination functions:
Distributed Coordination Function (DCF) and Point Coordination Function (PCF) (as
shown in Figure 5-3). The former provides an Ethernet-like CSMA/CA medium access
while the latter provides a contention-free medium access.

The CSMA/CA access mechanism works by sensing the medium for transmissions. If the
medium is found busy (another device might be transmitting), then the station will
postpone its transmission to a later time. Otherwise, the station is allowed to transmit.
Furthermore, collisions might occur if two stations sense the medium at the same time and
decide to transmit simultaneously.

WIRELESS PERSONAL AREA NETWORKS – AN OVERVIEW

5-5

Contention-free
delivery

Normal
delivery

PCF

PCF

Figure 5-3 - IEEE 802.11 MAC coordination functions

The collision avoidance (CA) mechanism works together with a positive acknowledgment
scheme to avoid collisions. In this sense, if a station senses the medium as occupied then it
defers its transmission to a later time, once the medium has been free for a specified
amount of time (called Distributed Inter-Frame Space - DIFS), the station transmits. The
receiving station will check the Cyclic Redundancy Check (CRC) packet field and will
send an Acknowledgment (ACK) packet notifying the sender of a successful transmission.
Of course, if the sender does not receive the ACK packet it means that a collision has
occurred and it must retransmit the packet until it is properly acknowledged. To further
reduce the probability of collisions a CTS/RTS clearing technique is used, partially
avoiding collisions due to hidden nodes [43]. This technique is defined, in the standard,
within the Virtual Carrier Sense mechanism. A station willing to transmit will first transmit
a short control packet called Request to Send (RTS), which includes some information
(source, destination and duration) about the following transaction. If the medium is
available for transmission, the receiving station will respond with a Clear to Send (CTS)
packet indicating that the sender is allowed to start its transmission. Notice that the
transmission duration, present in both control packets RTS and CTS, accounts for the ACK
control packet. All stations receiving these control packets (RST and CTS) must update
their Virtual Sense Indicators (defined as Network Allocation Vector - NAV) for the given
transaction duration and use them together with the Physical Carrier Sense mechanism.
Additionally, an exponential backoff algorithm is used in several scenarios: when a station
senses an occupied medium before a packet transmission, after each retransmission and
finally after a successful transmission. When a station wishes to transmit and the medium
has been available for at least the DIFS time the exponential backoff algorithm is not used.

Although PCF seems more interesting since it implies that there is no need for contention it
can only be used in infrastructure networks. In addition, the loose PCF specification leaves
several issues unresolved [41]:

EVALUATING BLUETOOTH FOR THE WIRELESS TRANSMISSION OF MIDI

5-6

• PCF experiences substantial delay at low loads; this occurs because stations must
always wait for polling, even if the wireless channel is idle;

• Because the AP needs to contend for the channel using the DCF at the beginning of
the contention-free period (CFP), the actual period of contention-free polling may
vary;

• In scenarios with a large number of streams, the AP will have an enormous
difficulty in managing the polling procedure without affecting other applications
using DCF contention;

• PCF is a centralized medium access mechanism controlled by the point coordinator.
If a failure occurs, all the associated stations will not able to access the channel and
therefore it will not be able to communicate.

These drawbacks justify the general lack of interest in the PCF scheme. Moreover, the
research community and the industry directed their research efforts to DCF due to its
distributed nature.

IEEE 802.11 MAC Frame Format

Figure 5-4 shows the format of a general 802.11 MAC frame. The 802.11 MAC frame
differs from the Ethernet frame mostly due to the lack of the type/length and preamble
fields. The preamble field is part of the physical layer, and the type and length fields are
present in the header of the 802.11 frame.

The first field of a MAC frame is the Frame Control. This field holds information about the
MAC protocol version, the type of MAC frame and additional control information
(fragmentation, retransmission, power management, encryption, bit ordering, etc.).

Afterwards, is the Duration/ID field, which can be interpreted in three different ways
according to the two most significant bits. When the most significant bit (MSB) is zero the
duration/ID field is used to set the amount of time that must elapse until the current
transmission session is complete (and the channel can be sensed again). This amount of
time is usually known as Network Allocation Vector (NAV). During the CFP the MSB is
1, the second MSB is 0 and remaining bits are 0. In this scenario the duration/ID field is
interpreted as the NAV. Therefore, it allows any stations that did not receive the Beacon
announcing the CFP to update their NAV with a rather large value so that they do not
interfere with current contention-free transmissions.

When stations require a power saving mode they wake-up periodically and send a Power
Save (PS) poll frame (PS-Poll) indicating the BSS they belong to. These PS-Poll frames
are characterized by having the two MSB bits of the duration/ID field equal to 0. The

WIRELESS PERSONAL AREA NETWORKS – AN OVERVIEW

5-7

addressed AP receives the PS-Poll frame and replies with the buffered frames (if they
exist).

The following fields are addresses. An IEEE MAC frame may contain a maximum of four
addresses. Figure 5-4 illustrates these numbered addresses once they vary depending on the
frame type. The IEEE 802.11 addressing follows the conventions used for the other IEEE
802 networks (such as Ethernet for example). The address fields, if present, contain one of
the following 48-bit IEEE 802 addresses: destination address, source address, receiver
address, transmitter address, Basic Service Set ID (BSSID). In infrastructure networks, the
BSSID is the MAC address used by the wireless interface in the access point.

The sequence control field holds the Sequence Number and the Fragment Number
subfields. This field is used for both defragmentation and discarding duplicate frames.

The Frame Body, also known as Data field, carries the higher-layer payload. The IEEE
802.11 standard specifies that the maximum payload length is 2,304 bytes. However,
implementations must support frame bodies of 2,312 bytes to accommodate the Wired
Equivalent Privacy (WEP) overhead.

The last field is the Frame Check Sequence (FCS). The FCS allows stations to verify the
integrity of the frames and is performed over all fields in the MAC header and body.

2 6 6 6 2 6 2-2312 42

Frame
Control

Duration/
ID Address 1 Address 2 Address 3 Sequence

Control Address 4 Frame
Body FCS

MAC Header

Octets:

Frame
Fields:

Figure 5-4 - IEEE 802.11 MAC frame format

5.1.2.3 PHY layer

The IEEE 802.11 PHY is divided into two sub-layers (Figure 5-5): the Physical Layer
Convergence Procedure (PLCP) sub-layer and the Physical Medium Dependent (PMD)
sub-layer.

OSI Layer 2: Data Link MAC

PLCP

PMD
OSI Layer 1: Physical

Figure 5-5 - PHY logical architecture

EVALUATING BLUETOOTH FOR THE WIRELESS TRANSMISSION OF MIDI

5-8

The PLCP sub-layer provides a Service Access Point (SAP) to the MAC layer from which
it can communicate with the Physical Layer. The PMD, as the name implies, interfaces
directly with the transmission medium by providing the actual transmission and reception
of data.

The following sub-section focuses on the PLCP sub-layer of the IEEE 802.11b PHY. This
PHY has been chosen due to its popularity when compared to the IEEE 802.11g PHY.

HR/DSSS PHY

The 802.11b PHY, also known as the high-rate, direct-sequence PHY (HR/DSSS) uses the
same channels as the original low-rate direct sequence PHY.

The IEEE 802.11 working group has chosen a different encoding method known as
Complementary Code Keying (CCK), to increase the number of encoded bits per symbol
and, therefore, to increase the data throughput to 5.5 Mbps or 11 Mbps.

As pointed before the HR/DSSS PHY is split into two parts: PLCP and PMD. The IEEE
802.11b PLCP sub-layer supports two types of frames as shown in Figure 5-6. The “long”
frame format must be supported for backward compatibility with Direct Sequence (DS)
PLCPs. However, an optional “short” PLCP format may be used for increased efficiency
and improved throughput.

Sync
128 crambled 1s

SFD
16 bits

Signal
8 bits

Service
8 bits

Length
8 bits

CRC
8 bits PSDU

Preamble Header PSDU (MAC
Frame)

Sync
56 crambled 0s

SFD
16 bits

Signal
8 bits

Service
8 bits

Length
8 bits

CRC
16 bits PSDU

144 bits 48 bits variable

72 bits 48 bits variable

1 Mbps DBPSK

1 Mbps DBPSK
2 Mbps DQPSK

5.5/11 Mbps CCK
5.5/11 Mbps PBCC

1 Mbps DBPSK 2 Mbps DQPSK
2 Mbps DQPSK

5.5/11 Mbps CCK
5.5/11 Mbps PBCC

Long

Short

PLCP Frame

Figure 5-6 - IEEE 802.11b PLCP frame types

The first field of a PLCP frame is the Preamble, which contains the Sync and Start of
Frame Delimiter (SFD) subfields. The preamble is transmitted at 1.0 Mbps using

WIRELESS PERSONAL AREA NETWORKS – AN OVERVIEW

5-9

Differential Binary Phase Shift Keying (DBPSK). DBPSK is a modulation method in
which bits are encoded as phase shift differences between successive symbol periods.

The Sync subfield may assume two forms: long or short. The Long Sync subfield is
composed of 128 “1” bits while the Short Sync subfield is composed of 56 “0” bits.

The SFD also varies with the length of the PLCP frame. For the Long PLCP frame the
SFD is the sequence 1111 0011 1010 0000. For the Short PLCP frame, and to avoid
confusion, the SFD takes a reverse value, 0000 0101 1100 1111.

The following field is the Header. This field contains the Signal, Service, Length and CRC
subfields. Both Long and Short Signal subfields indicate the speed and transmission
method of the enclosed MAC frame. However, Short PLCP frames are limited to three
transmission speeds (2 Mbps, 5.5 Mbps, and 11 Mbps), meaning that they can solely be
supported by networks capable of such data rates. The Service field was originally reserved
for future use but it was found useful to extend the Length field, indicating the type of
coding used for the packet (CCK or Packet Binary Convolution Coding (PBCC)) and
indicating the use (or not) of locked clocks, which implies that the transmit frequency and
symbol clock use the same oscillator.

The Length sub-field is common in both short and long PLCP frame formats and consists
on the number of microseconds required to transmit the enclosed MAC frame.

The CRC field is 8-bit wide in long PLCP frames and 16-bit wide in short PLCP frames. It
is calculated in the sender using the Signal, Service, and Length subfields. The receiver
uses the CRC subfield to ensure that the header was received intact and was not damaged
during transmission.

The last field is the PHY Service Data Unit (PSDU) that carries the MAC PDU. Figure 5-6
shows that, for Long PLCP frames, the Header field is transmitted at 1Mbps and for Short
PLCP frames the Header field is transmitted at 2Mbps.

5.2 ZIGBEE and 802.15.4
The ZigBee7 technology was developed by the ZigBee Alliance [44] and the IEEE 802.15
Task Group 4 [45] to address applications requiring long battery life and low data rates. An
additional requirement, concerning the protocol stack, was that its implementation should
be less complex than the existing for standard for technologies covering the same
application range.

7 The name arises from the communication method that bees use. Bees move in zigzags to share information

on the position, distance and direction of the food they find.

EVALUATING BLUETOOTH FOR THE WIRELESS TRANSMISSION OF MIDI

5-10

Collaborative work between the IEEE 802.15 Task Group 4 and the ZigBee Alliance
fuelled the development of the IEEE 802.15.4 standard [46]. This standard defines the
PHY (Physical) and MAC (Medium Access Controller) layers for Low-Rate Wireless
Personal Networks (LR-WPANs). The ZigBee protocol stack, depicted in Figure 5-7, is
built on top of the IEEE 802.15.4 layers. In consequence, the ZigBee Alliance is just
responsible for the Network/Security and Application layers. These provide
interoperability between products of different manufacturers (among other features).

Application/Profiles

Application Framework

MAC

Network/Security

PHY

User
Defined

ZigBee
Alliance

IEEE

Figure 5-7 - ZigBee stack

The following subsection describes the IEEE 802.15.4 standard by focusing on the MAC
and PHY layers of the protocol. Upper layers will not be discussed in this document since
this work relates primarily with functionalities provided at the MAC layer level. However,
if additional information (regarding higher layers) is required, it can be found in the
recently released ZigBee Specification [47]. This specification describes, in detail, the
Network/Security and Application Framework layers.

5.2.1 IEEE 802.15.4
As mentioned, the IEEE 802.15.4 was designed to address Low-Rate Wireless Personal
Area Networks (LR-WPAN) given that it would provide short-range operation, low cost,
high autonomy, low data rate and low complexity. These design goals lead the
development towards the standard known today. Table 5-1 summarizes the overall IEEE
802.15.4 standard characteristics.

The IEEE 802.15.4 defines two types of participating devices in a LR-WPAN: full-
function device (FFD) and reduced-function device (RFD). A FFD can operate as a
Personal Area Network (PAN) coordinator, a coordinator or simply a communications
device. Any FFD can talk with another FFD or with an RFD. RFDs can talk only with
FFDs. RFDs are simpler and cheaper when compared to FFDs. Therefore, are limited to

WIRELESS PERSONAL AREA NETWORKS – AN OVERVIEW

5-11

become leaf nodes. Their simplicity implies that they cannot perform complex tasks and
can only be used in scenarios where the amount of data for transmission is low (sensors,
actuators, etc.).

Table 5-1 - Overall IEEE 802.15.4 characteristics

IEEE 802.15.4

 Over-the-air data rates of 250 kb/s, 40 kb/s, and 20 kb/s;
 Star or peer-to-peer operation;
 Allocated 16 bit short or 64 bit extended addresses;
 Allocation of Guaranteed Time Slots (GTSs);
 Carrier Sense Multiple Access with Collision Avoidance

(CSMA-CA) channel access;
 Fully acknowledged protocol for transfer reliability;
 Low power consumption;
 Energy Detection (ED);
 Link Quality Indication (LQI);
 16 channels in the 2450 MHz band, 10 channels in the

915 MHz band, and 1 channel in the 868 MHz band.

5.2.1.1 Network Topologies
The basic component of an 802.15.4 network is the device (FFD or RFD). When two or
more devices communicate over the same physical channel, a WPAN is created. However,
this network must include at least one FFD, operating as PAN coordinator.

The IEEE 802.15.4 standard defines two (Figure 5-8) possible topologies for LR-WPANs:
star topology and peer-to-peer topology.

PAN

Coordinator

PAN
Coordinator

Full Function Device

Reduced Function Device

Communication Flow

Figure 5-8 - Basic IEEE 802.15.4 network topologies

EVALUATING BLUETOOTH FOR THE WIRELESS TRANSMISSION OF MIDI

5-12

The star topology is primarily used in applications where a central node is used as PAN
coordinator and where the leaf nodes act as endpoints or have some specific application. In
this topology all the nodes communicate with a single central node known as PAN
coordinator. The PAN coordinator can have some specific application but, simultaneously,
it can be used to initiate, terminate or route data through the network.

The peer-to-peer topology also includes a PAN coordinator, but is different from the star
topology by allowing communication with all devices in range (Figure 5-8). This topology
provides a higher level of flexibility thus allowing the formation of more complex
networks (for example mesh networks).

A peer-to-peer network can be ad-hoc, self-organizing and self-healing. Several functions
such as message routing from any device to any other device on the network are enabled at
the network layer (ZigBee Alliance).

5.2.1.2 Network Formation
Although network formation is performed at the network layer, a brief overview of the
mechanism is provided here. This overview explains the formation of the star and the peer-
to-peer network topologies.

Star Topology
After a FFD is activated for the first time, it may establish a network and become the PAN
coordinator. Star networks operate independently allowing each PAN coordinator to
choose a different PAN identifier (within its radio range). Once the PAN coordinator has
chosen the PAN identifier, other devices are allowed to join its network (both FFDs and
RFDs).

Peer-to-Peer Topology
The peer-to-peer topology enables devices to communicate directly within their radio
range. Usually, the first device to communicate on the channel will be nominated PAN
coordinator. This topology allows high flexibility on the structure of the network enabling
the formation of complex networks such as, for example, the cluster-tree network.

The following subsections describe the IEEE 802.15.4 MAC layer as part of the OSI Data
Link Layer (DLL) and the IEEE 802.15.4 PHY layer. The approach is mainly based on
[46] and [48].

WIRELESS PERSONAL AREA NETWORKS – AN OVERVIEW

5-13

5.2.1.3 MAC Layer
Figure 5-9 presents the IEEE 802.15.4 layered structure using the International
Organization for Standardization (ISO) open systems interconnect (OSI) reference model
[49]. The IEEE 802 project divides the DLL into two sub-layers, the Medium Access
Control (MAC) and the Logic Link Control (LLC).

This figure also demonstrates that the IEEE 802.15.4 MAC provides services to an IEEE
802.2 type I LLC through the service-specific convergence sub-layer (SSCS) or directly to
a proprietary LLC sub-layer. The SSCS ensures compatibility between the MAC and
different LLC sub-layers.

The IEEE 802.15.4 MAC layer supplies the following features: association and
disassociation, acknowledge frame delivery, channel access, frame validation, guaranteed
time slot management and beacon management.

Upper Layers

Network Layer

Data Link Layer

IEEE 802.15.4
868/915 MHz

physical layer

IEEE 802.15.4
2400 MHz

physical layer

IEEE 802.2
LLC, Type I

SSCS

Other
LLC

IEEE 802.15.4 MAC

Figure 5-9 - IEEE 802.15.4 in the ISO-OSI layered network model

The MAC layer supplies two services to higher layers: the MAC data service and the MAC
management service. These two services are accessed through service access points
(SAPs). These SAPs are the MAC Common Part sub-layer (MCPS-SAP) and the MAC
layer management entity (MLME-SAP). The MAC Common Part sub-layer has only five
primitives.

Figure 5-10 illustrates their (MCPS DATA primitives) usage in the establishment of a
successful data transfer between two devices.

The MAC management service has only 30 primitives, meaning that the IEEE 802.15.4
MAC is simple enough to be used in low-end applications. On the other hand, given its
simplicity, it cannot perform more complex tasks (for instance synchronous voice
communication as the 802.15.1 MAC).

EVALUATING BLUETOOTH FOR THE WIRELESS TRANSMISSION OF MIDI

5-14

Sender next-
higher Layer

Sender
MAC

Receiver
MAC

Receiver next-
higher Layer

MCPS-DATA.request
Data Frame

Ackowledgment (if
requested)

MCPS-DATA.indication

MCPS-DATA.confirm

Figure 5-10 - Message sequence chart describing the MAC data service

The MAC Frame Format
The general format of a MAC Protocol Data Unit (PDU) is depicted in Table 5-2. This
frame is composed of a MAC Header (MHR), a MAC payload (also known as MAC
Service Data Unit (MSDU)) and a MAC footer (MFR).

Table 5-2 - General IEEE 802.15.4 MAC Protocol Data Unit

Octets: 2 1 variable variable 2
Frame

Control

Sequence

Number

Addressing

Fields

Data

Payload
FCS

MHR
MAC

Payload
MFR

The first field of a MAC frame is the Control field, which specifies the contents of the
remaining fields. In this sense, it specifies the type of frame, the format of the address field
and the acknowledgment control [48]. The second field is the Sequence Number that
allows the matching of the Acknowledgment frames with the sent frames. Only when the
Sequence Number of the Acknowledgment frame matches the Sequence Number of the
sent frame is a transaction considered successful. The third field is the Address, which may
vary in size from 0 to 20 bytes. The size variation is due to the nature of the frame. For
instance, a data frame usually contains both source and destination addresses while an
Acknowledgment frame does not contain address information. Also, the device addresses
may be 8-bit or 64-bit (IEEE) long. The fifth field is the Payload, which is variable in
length. This field may not exceed 127 bytes in length and the data it transports is

WIRELESS PERSONAL AREA NETWORKS – AN OVERVIEW

5-15

dependent on the frame type. Finally, the last field is the Frame Check Sequence (FCS)
that allows verifying the integrity of the frame.

The IEEE 802.15.4 MAC defines four types of frames: data frame, acknowledgment
frame, beacon frame and command frame.

The Command and Acknowledgment frames only are used at MAC layer level to establish
peer-to-peer communication and therefore carry MAC specific data. On the other hand,
Data and Beacon frames carry data from upper layers.

5.2.1.4 The Superframe structure
An IEEE 802.15.4 network can either work in beacon-enabled mode or non-beacon-
enabled mode [50]. In beacon-enabled mode, a PAN coordinator broadcasts beacons
periodically to synchronize the attached devices. In non-beacon-enabled mode there is no
periodical beacon broadcast (from the PAN coordinator) but a soliciting device can be
addressed using a unicast mechanism if required.

A superframe structure is used in beacon-enabled mode. Figure 5-11 depicts this structure,
also showing that the superframe boundaries are beacon frames. The superframe structure
is composed of an active part and an (optional) inactive part.

InactiveGTSGTS

1 2 3 4 5 6 7 8 9 10 11 12 13 14 150

Beacon
CAP CFP

Beacon

SD

BI
Figure 5-11 - An example of a superframe structure

The beacon interval (BI) and the superframe duration (SD) are determined either by the
beacon order (BO) and the superframe order (SO). The active part is composed of
aNumSuperframeSlots equally sized slots (being 16 the default value). Moreover, it can be
further divided into a contention access period (CAP) and an optional contention free
period (CFP). The former uses a slotted Carrier Sense Multiple Access with Collision
Avoidance (CSMA-CA) mechanism for channel access. All contention-based
communications shall be completed before the beginning of the CFP. The latter can
accommodate up to 7 Guaranteed Time Slots (GTS). GTSs refer to communication slots

EVALUATING BLUETOOTH FOR THE WIRELESS TRANSMISSION OF MIDI

5-16

where data transfers occur, without contention, between a device and the coordinator (and
vice versa). Normally, the CFP is used to assign communication time slots to devices
requiring dedicated bandwidth or low latency transmissions. GTSs may occupy more than
one slot while guaranteeing that all transactions using GTSs complete before the next GTS
or the end of the CFP.

5.2.1.5 The PHY Layer
The IEEE 802.15.4 defines two PHY layers; the 2.4 GHz and the 868/915 MHz band
PHYs. Both are based on Direct Sequence Spread Spectrum (DSSS) and share the same
packet structure. The most significant difference between the two PHYs is the frequency
band in which they operate (see Figure 5-12 and Table 5-3).

902.0 928.0868.0 868.6

Channel 0 Channels 1-10 2 MHz

868/915
MHzPHY:

2483.52400.0

Channels 11-26 5 MHz

2.4 GHz
PHY:

f (MHz)

f (MHz)

Figure 5-12 - IEEE 802.15.4 channel structure

The 2.4 GHz PHY operates in the Industrial, Scientific and Medical (ISM) band available
almost worldwide. The 868/915 MHz PHY operates in the 868 MHz European band and in
the 915 MHz ISM American band. Despite being available almost worldwide, the
increasing use of the 2.4 GHz band may result in a large traffic congestion. The 868/915
MHz band offers an alternative PHY that, besides avoiding the excessive use of the 2.4
GHz band, it does not suffer interference from domestic equipment (for example
microwave ovens).

Table 5-3 - IEEE 802.15.4 channel frequencies

Channel Number Channel Central Frequency (MHz)

k=0 868.3
k=1, 2, …, 10 906 + 2(k-1)
k=11, 12, …, 26 2405 + 5(k-11)

WIRELESS PERSONAL AREA NETWORKS – AN OVERVIEW

5-17

Another distinguishing characteristic is the achieved transmission rate in both PHYs. The
2.4GHz band is capable of carrying data at a rate of 250 Kbit/s while the 868/915 MHz
bands can achieve data rates of only 20 Kbit/s and 40 Kbit/s respectively. The higher data
rate of the 2.4 GHz PHY is largely due to a higher-order modulation scheme representing
multiple bits by one data symbol. Given the large application spectrum addressed by this
technology, it is expected that each PHY will find its place.

Figure 5-12 and Table 5-3 show that there are 27 available channels across the three bands.
However, it is unlikely that they will be used simultaneously due to the lack of regional
support. An assessment of these bands must be performed prior to its usage. The MAC
layer supports several low-level functions such as receiver energy detection, link quality
indication and channel switching. These functions allow higher layers (network) to decide
on which band to operate.

The PHY Frame Format
The PHY packet structure, also known as PHY Protocol Data Unit (PPDU), is shown in
Table 5-4.

Table 5-4 - General IEEE 802.15.4 PHY Protocol Data Unit

Octets: 4 1 1 Variable

Preamble SFD
Frame Length
(7 bits)

Reserved
(1 bit)

PSDU

SHR PHR PHY Payload

The first field is the synchronization header (SHR), which is composed of preamble and
start of frame delimiter (SFD). The second field is the PHY header. The PHY header
comprises two subfields: the frame length and a reserved bit. The frame length is 7-bit
wide, meaning that the maximum achievable packet length is 127 bytes (also presented in
the MAC subsection). However, in theory the packets could have zero-length. This will
never occur, in a practical practice, due to the MAC overhead. The third field is the PHY
service data unit (PSDU) that will carry the MAC protocol data unit (MPDU).

Modulation and Range
The 868/915 MHz PHY and the 2.4 GHz PHY both use Direct Sequence Spread Spectrum
(DSSS). However, the 868/915 MHz PHY uses a simpler approach. Each transmitted bit is
represented by a binary phase-shift keying (BPSK) modulated 15-chip maximal length
sequence. The 2.4 GHz PHY employs a 16-ary quasi-orthogonal modulation technique.
This means that, for each symbol period, four bits are used to select one of the possible 16
nearly orthogonal pseudo-random noise sequences (PN). Later, these successive PN

EVALUATING BLUETOOTH FOR THE WIRELESS TRANSMISSION OF MIDI

5-18

sequences (corresponding to successive data symbols) are aggregated into a chip sequence
and modulated onto the carrier using Offset Quadrature Phase-Shift Keying (O-QPSK).

The specified receiver sensitivities for the 868/915 MHz PHY and the 2.4 GHz PHY are -
92 dBm and -85 dBm respectively. The operational range is a function of the receiver
sensitivity and transmitted power. Because the standard specifies that each device should
be capable of transmitting at least 1 mW, the expected range is of ten to twenty meters.
However, the actual transmitted power may be increased or decreased (within regulatory
limits).

Applications requiring low latency may operate with star network topologies. The
achievable range can be improved by increasing the transmit power (and also the receiver
sensitivity). Applications with less demanding requirements (e.g. higher latency) may
operate using the mesh network topology. This topology is known to reduce exploration
costs by applying data routing algorithms to spread (or collect) data.

5.3 ULTRA-WIDE BAND
Ultra Wide-Band, often considered a recent evolution in wireless technology, experienced
almost 40 years of development since its original appearance on time-domain
electromagnetics [51]. The increasing interest in this technology for communication
applications was triggered by modifications introduced by the Federal Communications
Commission to its Part 15 rules in order to accommodate UWB transmissions. Afterwards,
several proposals based on conventional modulation techniques such as Orthogonal
Frequency Division Multiplexing (OFDM) and Code Division Multiple Access (CDMA)
were presented. Today, two proposals are competing for its way on the market: OFDM
UWB and DS-UWB. The first is based on the OFDM modulation technique and claims
more spectral flexibility, which addresses the problem of lack of spectral regulatory
specifications in some countries. The second is based on the CDMA modulation technique
and is supported by Freescale [52], which already has a commercial implementation.

The following section will briefly describe the UWB technology from an OFDM point-of-
view. Because there is not much information available for non-OFDM members, this
overview will only focus on known aspects of the technology such as its physical
characteristics.

5.3.1 Overview
FCC defines ultra-wideband (UWB) as any signal that occupies at least 500 MHz of
bandwidth in the 7.5 GHz chunk of spectrum between 3.1 GHz and 10.6 GHz (see Figure
5-13).

WIRELESS PERSONAL AREA NETWORKS – AN OVERVIEW

5-19

1 102 3 4 5 6 7 8 9

-80

-75

-70

-65

-50

-60

-55

-45

-40

0.96 1.61

1.99

3.1 10.6

-75 dBm/MHz @ 1.66 GHz

ETSI Draft

FCC

Indoor Limit:
U

W
B

 E
IR

P
em

is
si

on
 le

ve
l (

dB
m

/M
H

z)

Frequency (GHz)
Figure 5-13 - First Report and ETSI draft spectrum mask for UWB communications in

indoor scenarios

This definition has also strict restrictions concerning the maximum radiated power (radio
emissions must be lower than the permitted level of incidental electronic noise in
computer's switching power supplies).

The UWB technology is characterized by transmitting low-power streams of short pulses
(in the order of 10-1000 picoseconds) [53] [54]. Provided that they use very high
frequencies, they can be transmitted directly without the need of being previously
modulated into a carrier (like in other radio systems such as Wi-Fi). The actual information
is impressed onto the pulse train by varying the amplitude, spacing or duration of the
individual pulses in the train.

The FCC First Report and Order [55] and the ETSI draft [56] specify the spectral masks
shown in Figure 5-13. These spectral masks allow to compute the maximum permitted
Effective Isotropic Radiated Power (EIRP) of 0.562 mW given the imposed power limit of
75 nW/MHz.

Since the allowed EIRP is very low, UWB radio emissions will not interfere with existing
communications. This allows an enormous outcome in terms of bandwidth reuse resulting
in a more efficient use of the available bandwidth. Obviously, further spectrum efficiency
may be achieved by applying concepts of data routing between neighbor nodes (as in
Bluetooth scatternets [57]).

Figure 5-14 demonstrates the UWB positioning among the remaining wireless
technologies. Although its operational range is limited to around 10m, its throughput
capacity is several times higher than the achieved with IEEE 802.11 technology.

EVALUATING BLUETOOTH FOR THE WIRELESS TRANSMISSION OF MIDI

5-20

10 20 30 40 500

ZigBee (802.15.4)

Bluetooth

802.11b

60 70

802.11a/
802.11g

UWB
(802.15.3a)

Indoor Range (meters)

Th
ro

ug
hp

ut
 C

ap
ac

ity

High
(1Gbps)

Low
(kbps)

Figure 5-14 - UWB technology positioning

As noticed, the spectrum masks approved by the FCC and the more conservative ones
under development for Europe by ETSI ERM TG31a ensure that the emerging UWB
products will be safe and will not affect other communication technologies.

The IEEE has also established Task Group 3a (TG3a), which focuses on defining an
alternative UWB PHY for the IEEE 802.15.3 standard [58]. This new Alt-PHY [59] (IEEE
802.15.3a) will work with the already specified MAC (IEEE 802.15.3). Although the
adoption of a predefined MAC may reduce the overall system efficiency, it is expected that
this approach will help the expedition of commercial deployment. Figure 5-15 shows the
UWB protocol stack as defined by the Multiband OFDM Alliance.

Convergence Layer

U
S

B

IP
 (

W
iN

et
)

O
th

er
A

pp
lic

at
io

n
s

13
94

Media Access Control

Physical (802.15.3a)

Var ious technology
s o lu t io n s ru n n in g
o v e r t h e c o m m o n
platform

Common Ul tra wide
Band Radio Platform

Figure 5-15 - UWB protocol layers and application

As it can be seen, the physical layer will be based on the IEEE 802.15.3a PHY proposal
and the MAC layer on the IEEE 802.15.3 MAC. Several other technological solutions may

WIRELESS PERSONAL AREA NETWORKS – AN OVERVIEW

5-21

run on the top of the UWB protocol stack. Examples such as WiNet, UWB USB and UWB
1392 are already being explored.

The successful effort in branding wireless technologies demonstrated by the Wi-Fi
Alliance [60] motivated the creation of a similar association called WiMedia [61]. This
alliance was created in 2002 in order to build a brand image, and establish test and
interoperability compliance procedures for the IEEE 802.15.3 standard.

Concluding, the Ultra Wide-Band technology promises a revolution in the WPANs by
providing extended data rates up to 480 Mb/s and a low level of radiated power (maximum
of 0.562 mW). Power consumption will be reduced and the interference with other wireless
technologies (operating in the same spectrum) minimized. Despite of these advantages,
UWB was not considered due to its lack of commercial availability, at the time of this
writing.

5.4 Conclusion

This chapter described several technologies alternative to Bluetooth. The approach was to
describe firstly the wireless technologies with more field implementations and lastly, the
more promising technologies.

Wi-Fi is a successful communication technology but presents a higher cost and power
consumption than Bluetooth. However, it provides higher data rates and extended
operational range. ZigBee only recently reached commercial implementation and therefore,
is not yet sufficiently cost-effective to be considered as a viable solution. Likewise, UWB
is being developed and promises several features that may reinforce the use of wireless
communications (for example, power consumption and throughput). Nevertheless, at this
point, Bluetooth still seems a better option for the wireless transmission of MIDI.

WIRELESS MIDI - BLUETOOTH BASED SOLUTIONS

6-1

Chapter 6 - Wireless MIDI - Bluetooth based solutions

CHAPTER 6

WIRELESS MIDI - BLUETOOTH BASED

SOLUTIONS

6.1 Introduction
Several solutions could be sought to transmit MIDI in wireless channels using Bluetooth.
This work presents three of them: the Serial Port Profile, the use of an Asynchronous
Connectionless Link (ACL) and the use of an ACL link altogether with a command
aggregation algorithm. These approaches were considered on a top-down perspective, first
evaluating solutions already implemented (there are several vendors selling commercial
RS232-Bluetooth modules using the SPP) and after developing our own solutions by
identifying limitations in the available ones.

The Serial Port Profile approach was considered because it enables a direct mapping of
standard wired MIDI connections over wireless Bluetooth links, thus making the
connection procedure easy to the user. Another important characteristic is that this profile

EVALUATING BLUETOOTH FOR THE WIRELESS TRANSMISSION OF MIDI

6-2

is one of the most widespread and has large support by the Bluetooth industry. Despite
these facts, there are no documented studies on its timeliness and, consequently, no
guarantees of fulfilling the MIDI timing requirements.

The second approach uses Asynchronous Connectionless Links (ACL) to carry MIDI data
flows. This approach is less complex than the SPP because it just requires half of the
Bluetooth stack. It was proposed mainly to evaluate the influence of the stack in the
Bluetooth timeliness. In addition, it was used to identify the timing restrictions of a
minimum wireless MIDI (WiMIDI) implementation.

The ACL with command aggregation approach was developed to overcome the limitations
found in the ACL based solution, which jeopardized the transmission of MIDI chords.
Therefore, a command aggregation algorithm is proposed and analyzed in detail.

Although several solutions are proposed, they all share a common architecture like the one
proposed in chapter 3. The following sections describe the envisaged operation of the
system and the architecture of the test-bed used to assess the performance of the system.
Further on, each approach is studied in detail and the experimental results obtained are
discussed.

6.2 Standard Operation
The proposed WiMIDI architecture maps directly common MIDI connections on wireless
links, ensuring a similar user experience as the one obtained in normal wired connections.
In this sense, WiMIDI links are unidirectional and replace directly physical MIDI cables.
WiMIDI devices are configurable and emulate a MIDI connection after proper setup. By
configuring a WiMIDI device to act as a sender and another as a receiver, a connection can
be established.

Musical performances frequently require several instruments to be played simultaneously.
Therefore, it is necessary to define individual identifiers, here called keys (shared by both
WiMIDI devices, the sender and the receiver), for each WiMIDI connection. In the setup
phase keys are used to match WiMIDI pairs of devices correctly.

In chapter 3, Figure 3-6 illustrated two different connections using WiMIDI devices for
cable replacement. As explained, the WiMIDI sender device (for example WiMIDI IN01)
is connected to a standard MIDI output, whereas the receiving device (for example
WiMIDI OUT01) is connected to an input. All MIDI traffic arriving from the output of the
MIDI device will be wirelessly transmitted into the input of the other device.
Notwithstanding, the existence of multiple WiMIDI connections in a reduced geographical
space, they are independent concerning MIDI flows from different instruments. The
pairing procedure ensures a unique ID for each connection, which means that if an ID is in

WIRELESS MIDI - BLUETOOTH BASED SOLUTIONS

6-3

use, no other pairing procedures are allowed to use it. In other words, when a user selects
two WiMIDI devices and tries to set a Wireless MIDI link between them, an identification
(ID) for the connection must be chosen. If the chosen ID is already in use, the WiMIDI
devices will both return an error message indicating that a different ID must be chosen.

In [62] an upper bound of 10 simultaneous piconets using one-slot packets, operating on
the same coverage area and performing at the maximum throughput, is defined. This
means that more piconets can coexist in the same geographical space, but operating with
lower throughputs. Since the required throughput of the application is a function of the
human response time, it will be presumably low when compared to the throughput the
communication link has available. This means that probably, the proposed architecture will
be able to support a larger number of simultaneous piconets. This reasoning can only be
validated though the characterization of the MIDI data flows in a typical music
performance, which is beyond the scope of this work. Particularly, in this implementation,
only 10 different IDs are allowed to be used, since the user interface of a WiMIDI unit (7-
segment display) can only represent numbers ranging from 0 to 9. These numbers are then
used as a part of the Bluetooth PIN, thus facilitating the identification of the WiMIDI
networks.

The following section describes the test-bed used to assess the performance of the
proposed approaches.

6.3 Test-Bed Architecture
Aiming to evaluate the time response of the proposed approaches, a testing system was
developed. This delay measurement system (DMS) was built with the purpose of
measuring delays and their variation. As noticed in previous sections, MIDI has tight
requirements concerning command/chord delay and jitter. Therefore, the performance of
the approaches has to be expressed as function of these parameters.

The measurement system also addresses other requirements such as the ability to measure
the delay between MIDI bytes or MIDI commands, always in a non-destructive manner. In
other words, the measurement system only “watches” the MIDI flow at both
communication ends and computes the correspondent delays without affecting the MIDI
flow.

Figure 6-1 shows an illustrative diagram of the test-bed architecture. Two personal
computers assume the role of MIDI source and MIDI sink. This way, the MIDI data flow is
fed to the DMS using the PC on the left. The system records the instants in which MIDI
bytes (or commands) are sent or received by the source or sink, respectively. In addition,
this information is sent to a separate PC using a fast serial connection. On a subsequent
phase, the recorded data is processed offline and used to compute MIDI delays.

EVALUATING BLUETOOTH FOR THE WIRELESS TRANSMISSION OF MIDI

6-4

Figure 6-1 - Delay measurement system (Test-Bed)

Further on, it will be seen that the hardware composing each WiMIDI device [63] is highly
dependent on the discussed approach. Therefore, the hardware analysis will be left to be
presented there. However, the measurement system remains unmodified throughout all
approaches. For this reason, it is discussed in the remaining of this section

The Delay Measurement System (DMS) consists of two Cygnal C8051F040 micro-
controller evaluation boards running at 22MHz. The same external oscillator running at
32KHz drives both boards. This particularity has been included to ensure an accurate
synchronism between both boards. The delay measurement occurs in terms of ticks, each
one lasting approximately 1/32.768 milliseconds.

Each Cygnal development board is connected to one of the MIDI ends by means of a
MIDI-Serial electrical interface. This interface provides electrical conversion from MIDI
levels into RS232 levels. Each development board can be programmed to register single
byte or full command instants.

The Delay Measurement System operates by sniffing the MIDI physical connection in
search for new bytes or commands. After a successful detection, an RS232 message,
containing the detected data and the instant in which it has been sent (or received), is sent
to the logging PC. This PC stores all received messages in two separate files, one with the
transmission instants and the other with the receiving instants. These instants are later used
to compute the corresponding delays.

The following section describes the proposed approaches for using Bluetooth as the carrier
technology for MIDI command streams. Several measurements were made and will be
thoroughly discussed.

WIRELESS MIDI - BLUETOOTH BASED SOLUTIONS

6-5

6.4 Solutions

6.4.1 Serial Port Profile

The first considered approach was to use the Serial Port Profile (SPP) in order to take
advantage of its serial port emulation feature [64]. The MIDI protocol highly resembles
with a particular configuration of the RS232 protocol and therefore, this solution seemed a
good starting point to communicate MIDI data. Another reason is the fact that it is well
supported by the Bluetooth industry. In addition, it privileges a top-down approach to
existing solutions.

6.4.1.1 Hardware

The developed WiMIDI nodes (Figure 6-2) are based on a Cambridge Silicon Radio
BlueCore2-External device that uses the Serial Port Profile implementation from Mezoe,
which is available with the BlueLAB SDK [31]. This device is compliant with the
Bluetooth specification v1.1.

Figure 6-2 - SPP WiMIDI prototype

The BlueCore2-External is a complete single-chip Bluetooth solution with onchip
microcontroller, and a 4Mbit external Flash memory interface for general-purpose usage
and development. This configuration allows a high degree of flexibility in terms of the
solution deployment. The application can run on the top of the Bluetooth stack within the
device or it can run on a separate microcontroller interfacing with the Bluetooth device.
This device can be easily upgraded using specific software provided by CSR, thus making
it flexible enough to implement different solutions.

EVALUATING BLUETOOTH FOR THE WIRELESS TRANSMISSION OF MIDI

6-6

6.4.1.2 Performance Evaluation

The performance evaluation of the Bluetooth SPP was made using the described test bed
and hardware. For this purpose the MIDI data source was configured with the following
settings:

• Random MIDI message lengths (uniformly distributed) between 1 and 6 bytes.

• Random MIDI message intervals (uniformly distributed) between 0 and 200
milliseconds.

The WiMIDI sender unit was configured to transmit a byte, in the emulated Bluetooth
serial connection, whenever it is received from the MIDI link.

Two sets of experiments were conducted using these settings, one in which the piconet
master operates as MIDI transmitter and the other in which it operates as MIDI receiver.
Twelve individual trials were conducted for each experiment (piconet master or piconet
slave transmitting). Each trial consists of transmitting 8192 MIDI bytes through an
emulated Bluetooth serial connection and measuring the individual byte delay. This
number of bytes was chosen provided that it leads (in average) to experiments lasting 4
minutes and 20 seconds, being a near realistic approach to a song duration.

The chosen environment is the Electronics and Telecommunications Department of the
University of Aveiro. This department has an 802.11b wireless infrastructure network
through which students access the World Wide Web. The environment was chosen
considering an almost “worst case” scenario, in which several noise sources (Wi-Fi,
Bluetooth, etc.) would exist to interfere with the Bluetooth links.

Figure 6-3 shows the resultant byte delays of a particular test for the piconet slave
transmitting.

Figure 6-3 - SPP Slave-transmitting delays.

WIRELESS MIDI - BLUETOOTH BASED SOLUTIONS

6-7

As it can be seen, there are a large number of MIDI bytes suffering delays higher than 100
milliseconds. These delays range from approximately 20 milliseconds to almost 200
milliseconds and lead to a delay variation that can reach 150 milliseconds.

Using the data that led to Figure 6-4, it is possible to verify that the delay variation is
limited to 20 milliseconds for approximately 63% of the transmitted MIDI bytes.
Additionally, it can also be determined that delay variations higher than 100 milliseconds
occur for only 0.5% of the transmitted bytes.

Figure 6-4 - SPP Slave-transmitting jitter incidence rate.

Figure 6-5 shows now the measured byte delays when the piconet master is transmitting
the MIDI flow. In this experiment, byte delays did not exceed the 100-millisecond
threshold and the delay variation has decreased significantly.

Figure 6-5 - SPP Master-transmitting delays.

EVALUATING BLUETOOTH FOR THE WIRELESS TRANSMISSION OF MIDI

6-8

Figure 6-6 documents an improvement in delay variation. When the master is transmitting
a MIDI flow over a Bluetooth emulated serial port, MIDI bytes suffer a delay lower than
20 milliseconds in almost 96% of the situations. This is a remarkable improvement when
compared with the previous scenario, were the same delay variation occurred only for 63%
of the transmitted bytes.

Figure 6-6 - SPP Master-transmitting jitter incidence rate.

After the completion of the two sets of experiments, several statistical variables were
considered, namely the Average, Maximum and Minimum Delays as well as the Delay
Variation (Jitter).

This information can be used to evaluate the performance of the approach. In this sense,
best-case and worst-case delays have been computed, for each experiment, as well as the
average delay. Best-case and worst-case scenarios are important to identify the operational
boundaries of the approach. In addition, since the human hear can perceive small delay
variations, the jitter was also computed.

Figure 6-7 indicates the statistical data obtained from the first set of experiments (piconet
slave transmitting). With this figure it becomes visible that very high delays (about 510
milliseconds) can occur. This means that, for a given MIDI byte, the experienced delay
was almost half a second. If a musician senses that a note has not yet been played (after
pressing a key of a keyboard for example), he/she may be lead to think that the key had not
been pressed sufficiently and will try again. Considering that the first event was
transmitted with a large delay (say, half a second) and the second was transmitted with a
short delay, they can become effective at the receiver almost simultaneously. Therefore,
the first note will be played out of time and an additional note will sound even worse.

WIRELESS MIDI - BLUETOOTH BASED SOLUTIONS

6-9

In Figure 6-7, it can also be observed that the average delay is lower than 50 milliseconds
and that its average variation never reaches the 20-millisecond boundary. Nevertheless,
these measurements merely indicate that, in average, delays are confined to the 50-
millisecond threshold. However, they can be as higher as 500 milliseconds, which is
unacceptable for the application in analysis.

Figure 6-7 - SPP Slave-transmitting statistics.

As in the former case, measurements were used to compute the minimum and maximum
delays as well as the average delay when the piconet master performs the role of
transmitter. In addition, the average delay variation was computed. The statistical values
obtained can be observed in Figure 6-8.

Figure 6-8 - SPP Master-transmitting statistics.

EVALUATING BLUETOOTH FOR THE WIRELESS TRANSMISSION OF MIDI

6-10

As it can be seen, all statistical values have decreased when compared to those in Figure
6-7. The maximum delay never reaches the 100-millisecond threshold and the delay is, in
average, 30 milliseconds long. Furthermore, and because delays not only have decreased
but have also become more regular, the average delay variation has been reduced to 10
milliseconds.

Recalling the Bluetooth standard, the piconet master must poll a slave before this one is
allowed to transmit. On the other hand, a piconet master may transmit almost anytime (in
even-numbered slots). It could then be presumed that commands transmitted by the piconet
slave would experience higher delays than commands from the master. However, and
considering that the piconet master in this Bluetooth stack implementation polls the slave
at the maximum frequency (every two time slots for single slot packets), this explanation
does not seem credible since the observed delays are much higher than 1.25 milliseconds.
Instead, if it had been assumed that, for this Bluetooth stack implementation, the piconet
master had a poll interval larger than two time slots, the piconet slave would have
experienced much larger delays when trying to transmit a MIDI command.

Although this could explain why the master experiences smaller delays, it does not explain
the large delays observed in general. These may relate to the Bluetooth flow control
(already discussed in the Bluetooth overview) and with the specific SPP implementation.
Because the SPP and the flow control mechanism are implemented through several stack
layers, they may introduce large delays. However, these assumptions can only be validated
using alternative SPP implementations, which is currently out of the scope of this work.

Despite MIDI transmissions over the Bluetooth serial link are bounded by a 100-
millisecond delay and a 10-millisecond delay variation (when the piconet master is
transmitting) they seem yet distant from the requirements of the application due to
excessive delay.

6.4.2 ACL Connection

The Serial Port Profile (SPP) approach showed to be insufficiently predictable to transmit
MIDI command streams. Not only the delay is excessively high but it also occurs with a
large variation. To outcome the limitations of the SPP approach, a second solution is here
introduced. This approach is based on the principle that layers introduce delays and
contribute to higher jitter due to processor load variations. In this sense, this approach cuts
down as much layers as possible (see Figure 6-9) using a pre-assembled Bluetooth device.
Therefore, the solution works on the top of the HCI layer to establish and maintain ACL
connections and to allow data communication between two Bluetooth devices.

WIRELESS MIDI - BLUETOOTH BASED SOLUTIONS

6-11

Figure 6-9 - Reduced Bluetooth stack.

This simplified approach eliminates delays introduced by the L2CAP and RFCOMM
layers, thus reducing the end-to-end delay. Because the processor load will be substantially
reduced, it is expected that the delay variation will also decrease.

6.4.2.1 Hardware

In this approach, WiMIDI nodes are assembled using the most common arrangement: one
host and one host controller for each WiMIDI node (Figure 6-10). The reasoning
underpinning this arrangement is that the firmware included in the Bluetooth module, for
supporting both stack and application in the same device, includes a complete Bluetooth
stack, which cannot be handled at the HCI level. The host is a Cygnal C8051F040 micro-
controller evaluation board and the host controller is a CSR BlueCore2-External device
flashed with the HCI Bluetooth stack version 1.1. The evaluation board has two serial
ports; one is connected to the MIDI-RS232 electrical interface, and the other one to the
host controller. The MIDI-RS232 electrical interface converts MIDI levels into RS232
levels or RS232 levels into MIDI levels, according to the MIDI flow direction.

Figure 6-10 - ACL WiMIDI prototype

EVALUATING BLUETOOTH FOR THE WIRELESS TRANSMISSION OF MIDI

6-12

Each WiMIDI node is connected to one of the communication ends through the MIDI-
RS232 interface. After the initial configuration, in which it is required to choose an unused
ID for the network and the role of each WiMIDI device (sender or receiver), an ACL link
is created between them. This link carries MIDI data (in the configured direction) and
control information from one end to the other (in both directions).

The architecture of this approach has the disadvantage of requiring additional hardware
(Cygnal C8051F040 based board) when compared with the SPP approach. In the previous
approach there was no host because the Bluetooth stack and the application both resided in
the same device. Nevertheless, this approach is more flexible, since it allows specifying
some parameters of the connection such as the maximum number of slots a packet can
occupy. For the following experiments, only one-slot packets were used.

6.4.2.2 Performance Evaluation

The performance evaluation of this approach was carried out using the Delay Measurement
System, already discussed, altogether with two WiMIDI nodes (now incorporating one
Cygnal C8051F040 board each). For this purpose the MIDI data source was configured
using the following settings:

• Random MIDI message lengths (uniformly distributed) between 1 and 6 bytes.

• Random MIDI message intervals (uniformly distributed) between 0 and 200
milliseconds.

The WiMIDI sender unit was configured to transmit the received MIDI commands, in the
ACL link, only when the last transmitted ACL packet is acknowledged.

As in the former approach, two sets of experiments were conducted, one in which the
piconet master transmits the data stream and the other in which it listens to it. Both sets
were carried on in the Electronics and Telecommunications Department and each one
consists on twelve individual trials. A single trial comprises the transmission of 8192 MIDI
commands with variable length (1 to 6 bytes) and the measurement of the delay each
command suffers.

Figure 6-11 shows the command delays measured when a piconet slave is transmitting the
MIDI stream (for a particular trial). As it can be seen, delays are mostly distributed around
specific values that are approximately 20 milliseconds apart from each other.

This separation may be a consequence of the fact that, a slave can only transmit after being
polled by the master. However, since this approach uses HCI commands to manage the
ACL links, this behavior can only be explained by additional delays introduced in the
lower layers of the Bluetooth stack. Therefore, when a slave tries to transmit an ACL

WIRELESS MIDI - BLUETOOTH BASED SOLUTIONS

6-13

packet using an HCI command, the packet will be queued for transmission. Then, it will
only be transmitted after the lower layers gain transmission access to the medium. Since
the approach uses the shortest possible Bluetooth packets (DM1/DH1), it would be
expected that the delays would be of one (0.625 milliseconds) or two timeslots (1.25
milliseconds), in the worse case. However, and since the lower layers introduce additional
delays that seem to be deterministic, MIDI commands will face a delay around multiples of
20 milliseconds starting from 5 milliseconds.

Figure 6-11 - ACL Slave-transmitting delays.

Figure 6-12 shows the delay variation incidence rate that MIDI commands suffer when a
piconet slave has the transmitting role. It is noticeable that almost 80% of the commands
suffer a delay variation lower than 10 milliseconds. Despite that fact, the maximum delay
variation can reach the 50-millisecond threshold, although this situation occurs with
negligible frequency.

Notwithstanding these encouraging results, there are still strong limitations for the
envisaged application. For example, with the slave transmitting the MIDI stream, there are
a large number of MIDI commands (20%) that experience delay variations higher than 10
milliseconds. This, of course, does not cope with the timing requirements of MIDI. In this
sense, better solutions have to be investigated in order to provide an overall delay variation
bellow the 4 millisecond audible threshold. This means that, in a scenario were chords are
present (and in most cases they are), the communication technology must ensure that the
overall delay variation (regarding all commands that constitute the chord) is lower than 4
milliseconds.

EVALUATING BLUETOOTH FOR THE WIRELESS TRANSMISSION OF MIDI

6-14

Figure 6-12 - ACL Slave-transmitting jitter incidence rate.

Figure 6-13 depicts the command delay distribution of one particular experiment
performed for a master transmitting the MIDI data stream. As in the former scenario (slave
transmitting), delays seem to be distributed around specified values. Nevertheless, it seems
that the Bluetooth link introduces delays multiple of 1 millisecond (starting from
approximately 16 milliseconds). Furthermore, some commands will face a higher delay
that can reach the 30-millisecond threshold.

Figure 6-13 - ACL Master-transmitting delays.

Figure 6-14 shows the delay variation incidence rate that a MIDI command will face when
the transmitting device is configured as piconet master. As it can be seen, almost 99.6% of
the delay variation is lower than 3 milliseconds, which is an appreciable improvement
when compared to the slave-transmitting scenario. Almost 50% of the delay variation is
lower than the 1-millisecond threshold and almost 75% are within the 2-millisecond
boundary.

WIRELESS MIDI - BLUETOOTH BASED SOLUTIONS

6-15

MIDI chords usually accommodate three notes, each one produced by an individual MIDI
command. Moreover, the overall delay variation of a MIDI command will be a function of
the individual command delay variations. Therefore, provided that an individual MIDI
command faces a delay variation of approximately 3 milliseconds, the overall delay
variation will become considerably larger than the 4-millisecond threshold. In fact, in this
scenario (with a three-note MIDI chord), the overall delay variation is of approximately 9
milliseconds. Clearly, it is higher than the maximum allowed delay variation.

Figure 6-14 - ACL Master-transmitting jitter incidence rate.

In order to understand and evaluate the results obtained from the experiments (when a
slave was transmitting), several statistical variables were calculated, namely the average,
maximum and minimum delays and the average delay variation. As represented in Figure
6-15, the average delay is always lower than 25 milliseconds and the average delay
variation is lower than 10 milliseconds. These results indicate that this approach does not
yet fulfill the timing requirements of the application in analysis.

Figure 6-15 - ACL Slave-transmitting statistics.

EVALUATING BLUETOOTH FOR THE WIRELESS TRANSMISSION OF MIDI

6-16

As in the previous scenario, several statistical variables (shown in Figure 6-16) were also
calculated using data from the master-transmitting experiments. It can be observed that the
average delay is confined to the 20 milliseconds threshold and that the average delay
variation decreased significantly (1 millisecond) when compared to the scenario where the
piconet slave was transmitting the MIDI data stream.

Figure 6-16 - ACL Master-transmitting statistics.

These results indicate that this approach (master-transmitting scenario) seems feasible to
carry MIDI commands with single notes. In average, MIDI commands will face a 20-
millisecond delay that will change within an average boundary of 1 millisecond (up and
down). This will ensure that, for example, a MIDI Note-On command will become
effective after approximately 20 milliseconds ±1 millisecond (in average).

As described, single note MIDI commands will face an average reduced delay variation.
Because there can be higher delay variations, this approach seems only feasible to transmit
single note MIDI commands. When considering chords, the overall delay variation is
approximately the sum of the individual command delay variations, which may become
(even in average) larger than the specified 4-millisecond threshold. In this sense, the
following section proposes an alternative approach that will improve the performance of
the WiMIDI system, when transmitting chords.

6.4.3 MIDI Command Aggregation

The mapping of MIDI data streams in ACL connections has shown to be feasible when the
transmitting WiMIDI unit is the piconet master. However, as measured, it only operates
within the application requirements for single note commands. The extension of this
behavior to MIDI chords can be accomplished using a command aggregation mechanism.
This aggregation mechanism is based on the evidence that packets sent at the HCI level

WIRELESS MIDI - BLUETOOTH BASED SOLUTIONS

6-17

experience similar delays for different lengths. The reasoning behind this fact is that the
lower-level stack introduces, in the process of breaking HCI ACL packets into Baseband
packets, significant delays when compared to the transmission delay. Therefore, the
transmission time can be neglected (even if a single HCI payload is broken into several
Baseband packets) when compared to the maximum delay variation the application can
support. If this premise holds and assuming constant length chords, it is possible to design
an approach that will ensure minimum delay variations in both scenarios: single notes and
chords.

The flowchart depicted in Figure 6-17 illustrates the command aggregation algorithm.

Tw expired?

Start

Send BT packet
with MIDI
command

YES

NO
Received

MIDI
Command?

NO

Last chord
note?

Send BT packet
with MIDI chord

YES

YES

NO

Save MIDI
Command

Aggregate MIDI
Command

Received
MIDI

Command? NO

YES

Tw expired?

YES

NO

Received
MIDI

Command?

YES NO

Received
MIDI

Command?

NO

YES

Figure 6-17 - Command aggregation algorithm

EVALUATING BLUETOOTH FOR THE WIRELESS TRANSMISSION OF MIDI

6-18

This algorithm operates by joining together the commands of a MIDI chord (three Note On
commands for example) in a Bluetooth HCI ACL data packet. In other words, MIDI
commands belonging to a chord will be grouped together and transmitted in the same HCI
ACL packet.

When a command is received at the transmitting WiMIDI unit it can be either a single note
MIDI command or it can belong to a MIDI chord. Assuming that the maximum delay
between two consecutive Note On (or Note Off) commands is Tbc then the WiMIDI unit
must wait Tbc seconds to check if another note command is received. This time window
will be referred in the remaining text as Tw. If, within the time window Tw, no other
commands are received, the system can determine that it is a single note command.
Otherwise, the command belongs to a MIDI chord. In this case the WiMIDI unit must
receive the remaining note commands and aggregate them to ensure the desired timely
performance.

Figure 6-18 illustrates the transmission of MIDI chords using the ACL command
aggregation algorithm. As noticed, Tw is the time window (that must be equal or larger
than the maximum time between commands – Tbc – in a MIDI chord), in which commands
must arrive in order to be considered part of a MIDI chord. The delay between the
transmission instant of a Bluetooth HCI ACL packet (containing one, or more, MIDI
commands) and the instant when it becomes effective is denoted by Td. Tscd and Tchd
denote the delays between the arrival of a command, or a MIDI chord, at the sender
WiMIDI node and its arrival at the receiver WiMIDI node. Notice that, for visualization
purposes, the command duration is expanded regarding the time between commands, e.g.,
they occupy more time in the figure than they really do in a practical perspective.

From Figure 6-18 it is possible to deduce an equation that accounts for the delays
experienced by a single note command:

scd c d wT T T T= + +

In a similar manner, it is also possible to deduce an equation for the delay that a MIDI
chord experiences:

chd c dT nT T= +

where n is the number of commands in the chord.

Considering that both Tw and Tc are negligible when compared to the Bluetooth
transmission delay (and they usually are) then:

dsc chdT T

WIRELESS MIDI - BLUETOOTH BASED SOLUTIONS

6-19

The delay experienced by single note MIDI commands will be approximately equal to the
delay experienced by MIDI chords. Therefore, the delay variation in these two scenarios
will be minimized as desired.

Figure 6-18 - MIDI transmission timings

6.5 Discussion

To transmit MIDI command streams using the Bluetooth technology three proposals were
presented. The first approach was to use the direct mapping of the MIDI protocol on the
Serial Port Profile, given its dissemination on the consumer market. This approach showed
to be quite far from the requirements set by the application. Particularly, it was observed
that delays introduced by the transmission (when the slave was transmitting) could reach
half a second. However, improvements were observed when the transmitting role was
assigned to the piconet master. In this scenario, not only the delay has been reduced, but
also its variation (jitter). Nevertheless, the improvements were not sufficiently expressive
to cope with the requirements of the application.

The second approach tried to verify if the delays were introduced by the communication
stack or by the medium access contention (in the presence of noise in the ISM band). From
the measurements, it has become evident that the Bluetooth stack introduces very large
delays in the transmission process. For this reason, the ACL approach uses a minimum
number of layers by operating directly on the top of the HCI interface. This approach
showed to be feasible when the Bluetooth master transmits the MIDI data stream, but
simply for single note commands.

The last approach, command aggregation in Bluetooth HCI packets, is a simple mechanism
that seems to be a good option for using Bluetooth to transmit not only single note
commands, but also MIDI chords. This approach aggregates the traffic at the transmitter

EVALUATING BLUETOOTH FOR THE WIRELESS TRANSMISSION OF MIDI

6-20

and does not require any particular synchronization between the sender and the receiver
WiMIDI nodes, as it would be needed if a time-stamping mechanism had been used
instead.

CONCLUSION

7-1

Chapter 7 - Conclusion

CHAPTER 7

CONCLUSION
The Musical Industry has grown largely in the last decade and today it constitutes an
industrial niche that cannot be disregarded. Musical performances have also grown in
complexity and increasingly require creative freedom. Since MIDI is the de facto
communication protocol in the musical industry, this dissertation described the general
characteristics of the MIDI protocol and provided an in depth overview of the command
structure. Particular requirements, concerning a possible mapping on wireless
communication technologies, were also discussed. In fact, any solution feasible for
interconnecting musical instruments must offer support for mobility and flexibility. Today,
this can only be accomplished using wireless communication technologies. Consequently,
this dissertation proposed a wireless-based MIDI architecture.

Although several wireless networking solutions were analyzed during this work, Bluetooth
was the standard chosen to study the implementation of wireless communication between
musical instruments.

EVALUATING BLUETOOTH FOR THE WIRELESS TRANSMISSION OF MIDI

7-2

The proposed architecture benefits from the existing user knowledge on operating
Bluetooth devices and from the large availability of musical instruments equipped with
MIDI interfaces. Besides the improvement on user experience, Bluetooth offers several key
features when compared to other wireless technologies such as reduced power
consumption, high immunity to ISM interference and large commercial availability.

The described architecture allows a direct mapping of MIDI connections on Bluetooth
links. In this sense, point-to-point wired links are mapped into point-to-point wireless
links. In order to transport MIDI command flows using Bluetooth links two approaches
were implemented and a third proposed. The common feature among all approaches is the
use of commercial Bluetooth devices, which means that, if any of the approaches is
considered for commercial development, only minor changes (or none) will be required.

The first approach used a well-known Bluetooth profile, known as Serial Port Profile, to
profit from the serial nature of the MIDI protocol. In this sense, a practical test-bed was
implemented and test results were obtained. These results showed that MIDI commands
experienced high delays that did not cope with the requirements of the application.
Notwithstanding, results contributed to the timing qualification of the SPP in noisy
environments, which can be used to assess its usability on other industrial applications.

The second approach was developed under the assumption, which became evident later,
that the delays experienced by MIDI commands are mostly introduced by the higher-level
Bluetooth stack. In this sense, the implemented test-bed uses only part of the Bluetooth
stack, the one included in the Bluetooth physical device. The use of a reduced Bluetooth
stack implies that procedures that were embedded in the stack have to be implemented in a
host unit. Therefore, the developed test-bed uses, for each WiMIDI unit, an additional
microcontroller that is responsible for establishing and maintaining the Bluetooth link
according to the requirements of the application.

The developed test-bed has provided results indicating the feasibility of the approach to
transport MIDI short commands such as, for example, single notes. However, in a real
scenario such as a musical performance, there are chords composed of several single notes
that must be played correctly. This approach does not cope with such requirements because
it exhibits a high delay for each MIDI command, leading to high variations in the overall
delay of a MIDI chord. However, the results may be useful to assess the usage of the
approach in noisy scenarios, for example on timing constrained industrial applications.

The approach of using a reduced stack for transmitting MIDI commands exhibited a fair
performance for the transmission of short commands. Nevertheless, it does not solve the
problem of transmitting chords; reason why a third solution was presented. In this
approach, the single note commands, belonging to a MIDI chord, are aggregated into a

CONCLUSION

7-3

single packet and handled as a single note command (as in the second approach). It is
expected that the overall delay will be similar to a single note command. Despite the lack
of implementation to validate the approach (at the time of this writing) it seems a viable
solution because, besides exhibiting a similar delay for single note commands and chords,
it does not require any particular synchronization between sending and receiving WiMIDI
units.

To summarize, this dissertation presented an architecture for transmitting MIDI using the
Bluetooth technology. It provided background information on the core technologies
involved and described two implementations for achieving the desired results. These
results were discussed and, from them, a third approach, capable of supporting MIDI
chords, was proposed.

As future work within the MIDI line, it would be important to implement the third proposal
in order to verify its validity and, in case of a good performance, to develop a commercial
device. Also in this line of work, it would be important to characterize the MIDI data flows
in typical musical performances in order to determine the maximum number of supported
piconets in a small geographical area such as a stage.

Furthermore, it would also be interesting to evaluate ZigBee as the communication
technology since it has recently become commercially available.

Additionally, some outcomes of the work are important for the evaluation of the use of
wireless technologies in industrial, time-constrained applications. These also require future
work, namely the verification of the impact of different Bluetooth stacks in the timeliness
of the solutions.

REFERENCES

I

Chapter 8 References

REFERENCES

[1] Maryanne Cline Horowitz, “New Dictionary of the History of Ideas”, Charles Scribner's

Sons, December 2004.

[2] Rodrigues, P., Vairinhos, M, Girão, L., Figueiredo, A., Ferreira, D., Gomes, V., Dias, N.,

“Integrating Interactive Multimedia in Theatrical Music: the case of Bach2Cage”,

ARTECH 2005, 2º Workshop Luso-Galaico de Artes Digitais, August 2005.

[3] Kenton, MIDISTREAM Wireless MIDI System, http://www.kentonuk.com/, April 2005.

[4] Classic Organ Works, MIDIjet and MIDIjet Pro, http://www.organworks.com/, April 2005.

[5] MidiWireless, LIMEX MIDI, http://www.midiwireless.com, September 2005.

[6] Jim Heckroth, “Tutorial on MIDI and Music Synthesis”, MIDI Manufacturers Association,

1995.

[7] MIDI Manufacturers Association, http://www.midi.org, February 2005.

[8] Japanese Association of Musical Electronics Industry, http://www.amei.or.jp, February

2005.

EVALUATING BLUETOOTH FOR THE WIRELESS TRANSMISSION OF MIDI

II

[9] Steven G. Estrella, “Dr. Estrella’s Incredibly Abridged Guide to MIDI”,

http://www.stevenestrella.com/midi/, February 2005.

[10] Roland, http://www.roland.com, February 2005.

[11] Pro-Music-News, “Yamaha and Roland agree to cooperate to improve MIDI data

compatibility”, http://www.pro-music-news.com/html/01/e10123na.htm, January 2001.

[12] Cakewalk, http://www.cakewalk.com/, June 2005.

[13] Steinberg, http://www.steinberg.de/Steinberg/defaultb0e4.html, June 2005.

[14] RA Penfold, “Advanced MIDI User’s guide”, Second Edition, PC Publishing, United

Kingdom, 1996.

[15] Blair School of Music, “Computer Music - MIDI Specification”, Vanderbilt University,

http://www.ec.vanderbilt.edu/computermusic/musc216site/MIDI.Specification.html,

March 2005.

[16] M-Audio, http://www.midiman.com/, June 2005.

[17] National Association of Music Merchants (NAMM), http://www.namm.com/, June 2005.

[18] Harmony Central Summer NAMM 2001 Coverage, “Bluetooth Wireless MIDI on the Way

from Midiman”, http://namm.harmony-

central.com/SNAMM01/Content/Midiman/PR/Bluetooth-MIDI.html, Nashville, USA, July

2001.

[19] Lago, N., and F. Kon., “ The quest for low latency”, Proceedings of the International

Computer Music Conference, pp. 33-36, Miami, November 2004.

[20] Bluetooth SIG, “Specification of the Bluetooth System 1.1”, Specification Volume 1,

February 2001.

[21] Bluetooth Special Interest Group (SIG), “https://www.bluetooth.org/ ¨, May 2005.

[22] IEEE Std 802.15.1- IEEE Standard for Information technology- Telecommunications and

information exchange between systems- Local and metropolitan area networks- Specific

requirements Part 15.1: Wireless Medium Access Control (MAC) and Physical Layer

(PHY) Specifications for Wireless Personal Area Networks (WPANs), 2002.

[23] Erina Ferro and Francesco Potortì, ¨Bluetooth and WiFi wireless protocols: a survey and

comparison¨, IEEE Wireless Communications magazine, pp. 12-26, February 2005.

[24] Ramiro Jordan and Chaouki T. Abdallah, ¨Wireless Communications and Networking: An

Overview¨, IEEE Antenna’s and Propagation magazine, Vol. 44, No. 1, February 2002.

[25] Robert Morrow, ¨Bluetooth Operation and Use¨, McGraw-Hill, USA, 2002.

REFERENCES

III

[26] Jaap C. Haartsen, “The Bluetooth Radio System”, IEEE Personal Communications, pp. 28-

36, February 2000.

[27] William H. Tranter, Brian D. Woerner, Jeffrey H. Reed, Theodore S. Rappaport and Max

Robert, “Wireless Personal Communications – Bluetooth Tutorial and Other

Technologies”, Kluwer Academic Publishers, The Kluwer International Series in

Engineering and Computer Science, pp. 249-265, 2001.

[28] Chatschik Bisdikian, ¨An Overview of the Bluetooth Wireless Technology¨, IEEE

Communications magazine, pp. 86-94, December 2001.

[29] European Telecommunications Standards Institute (ETSI), “3GPP TS 07.10 version 7.2.0 -

Digital cellular telecommunications system (Phase 2+) Terminal Equipment to Mobile

Station (TE-MS) multiplexer protocol”, 1998.

[30] Bluetooth SIG, “Bluetooth 2.0 Core Specification”, November 2004.

[31] Cambridge Silicon Radio, http://www.csr.com, May 2005.

[32] Broadcom, http://www.broadcom.com, May 2005.

[33] RF Micro Devices, http://www.rfmd.com, May 2005.

[34] T. Jatschka, R. Tschofen, “Bluetooth”, The Industrial Information Technology Handbook,

CRC Press, pp.51-1 51-16, 2005.

[35] Bluetooth SIG, “Bluetooth 1.2 Core Specification”, November 2003.

[36] Wi-Fi Alliance, “http://www.wi-fi.com/”, May 2005.

[37] Brent A. Miller and Chatschik Bisdikian, “Bluetooth Revealed”, Prentice Hall, Upper

Saddle River, New Jersey, 2001.

[38] Jennifer Bray and Charles F. Sturman, “Bluetooth – Connect Without Cables”, Prentice

Hall, Upper Saddle River, New Jersey, 2001.

[39] International Standard [for] Information Technology- Telecommunications and

Information Exchange between Systems- Local and Metropolitan Area Networks Specific

Requirements Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer

(PHY) Specifications, IEEE 802.11 WG, ref. no. ISO/IEC 8802-11:1999(E) IEEE Std.

802.11, 1999.

[40] Brian P. Crow, Indra Widjaja, Jeong G. Kim and Prescott T. Sakai, “IEEE 802.11 Wireless

Local Area Networks”, IEEE Communications magazine, pp. 116-126, September 1997.

[41] Hua Zhu, Ming Li, Imrich Chlamtac and B. Prabhakaram, “A Survey of Quality of Service

in IEEE 802.11 Networks”, IEEE Wireless Communications, pp. 6-14, August 2004.

EVALUATING BLUETOOTH FOR THE WIRELESS TRANSMISSION OF MIDI

IV

[42] Matthew S. Gast, “802.11 networks: the definitive guide”, ISBN:0-596-00183-5, O'Reilly,

April 2002.

[43] Stefan Mangold, Sunghyung Choi, Guido R. Hiertz, Ole Klein and Bernhard Walke,

“Analysis of IEEE 802.11e for QoS Support in Wireless Lans”, IEEE Wireless

Communications, pp. 40-50, December 2003.

[44] ZigBee Alliance, http://www.zigbee.org/en/index.asp, December 2004.

[45] IEEE 802.15 WPAN Task Group 4 (TG4), http://www.ieee802.org/15/pub/TG4.html,

December 2004.

[46] IEEE Std 802.15.4- IEEE Standard for Information technology- Telecommunications and

information exchange between systems- Local and metropolitan area networks- Specific

requirements Part 15.4: Wireless Medium Access Control (MAC) and Physical Layer

(PHY) Specifications for Low-Rate Wireless Personal Area Networks (LR-WPANs), 2003.

[47] ZigBee Alliance, ZigBee Specification Version 1.0, June 2005.

[48] Ed Callaway, Paul Gorday, Lance Hester, Jose A. Gutierrez, Marco Naeve, Bob Heile and

Venkat Bahl “Home Networking with IEEE 802.15.4: A Developing Standard for Low-

Rate Wireless Personal Area Networks”, IEEE Communications magazine, pp. 70-77,

August 2002.

[49] A. S. Tanenbaum, “Computer Networks”, 3rd Edition, Upper Saddle River, Prentice Hall,

1996.

[50] Jianliang Zheng and Myung J. Lee, “Will IEEE 802.15.4 Make Ubiquitous Networking a

Reality?: A discussion on a Potential Low Power, Low Bit Rate Standard”, IEEE

Communications magazine, pp. 140-146, June 2004.

[51] C. L. Bennett and G. F. Ross, “Time-domain electromagnetics and its applications,” Proc.

IEEE, vol. 66, pp. 299–318, March 1978.

[52] Freescale, http://www.frescale.com/, June 2005.

[53] Steve Stroh, “Ultra-Wideband: Multimedia Unplugged”, IEEE Spectrum, pp. 23-27,

September 2003.

[54] Domenico Porcino and Walter Hirt, “Ultra-Wideband Radio Technology: Potential and

challenges Ahead”, IEEE Communications magazine, pp. 66-74, July 2003.

[55] FCC, “Revision of Part 15 of the Commission s Rules Regarding Ultra-Wideband

Transmission Systems”, First Report and Order, ET Docket 98-153, FCC 02-8, February

2002.

REFERENCES

V

[56] ETSI ERM TG 31a, http://portal.etsi.org/erm/ERMtg31A_ToR.asp, December 2004.

[57] Shoie-Chyr Lin, Hsiao-Chiu Chu and Yu-Yen Chung, “A Bandwidth-efficient packet

transmission algorithm for Bluetooth scatternets”, IEEE ICCS, pp. 824-828, 2002.

[58] 802.15.3, IEEE Standard for Information technology— Telecommunications and

information exchange between systems— Local and metropolitan area networks—

Specific requirements Part 15.3: Wireless Medium Access Control (MAC) and Physical

Layer (PHY) Specifications for High Rate Wireless Personal Area Networks (WPANs),

September 2005.

[59] MBOA-SIG, MultiBand OFDM Physical Layer Proposal for IEEE 802.15 Task Group 3a,

September 2004.

[60] Wi-Fi Alliance, http://www.wi-fi.org/OpenSection/index.asp?TID=1, December 2004.

[61] WiMedia Alliance, http://www.wimedia.org, December 2004.

[62] Zurbes, S., “Considerations on link and system throughput of Bluetooth networks”,

Personal, PIMRC 2000, 11th IEEE International Symposium on Indoor and Mobile Radio

Communications, London - UK, Volume 2, pp. 1315 – 1319, September 2000.

[63] Duarte P., Fonseca J. A. and Bartolomeu P., “Development and operation of a Bluetooth

demonstrator”, Revista do DET, pp. 519-524, March 2005.

[64] Bartolomeu P., Fonseca J.A., Duarte P., Rodrigues P.M. and Girão L.M., “MIDI over

Bluetooth”, ETFA 2005 – 10th IEEE International Conference on Emerging Technologies

as Factory Automation, Catania - Italy, pp. 95-102, September 2005.

APPENDIX A - LIST OF ACRONYMS

VII

Chapter 9 Appendix A - List of Acronyms

APPENDIX A

LIST OF ACRONYMS
ACK Acknowledge
ACL Asynchronous Connectionless Link
AFH Adaptative Frequency Hopping
AMEI Japanese Association of Musical Electronics Industry
AP Access Point
BER Bit Error Rate
BI Beacon Interval
BO Beacon Order
BPSK Binary Phase-Shift Keying
BSS Basic Service Set
BSSID Basic Service Set Identifier
CA Collision Avoidance
CAP Contention Access Period

EVALUATING BLUETOOTH FOR THE WIRELESS TRANSMISSION OF MIDI

VIII

CCK Complementary Code Keying
CD Collision Detection
CFP Contention Free Period
COTS Components of The Shelf
CRC Cyclic Redundancy Check
CSMA Carrier Sense Multiple Access
CTS Clear to Send
DBPSK Differential Binary Phase Shift Keying
DCF Distributed Coordination Function
DIFS Distributed Inter-Frame Space
DLL Data Link Layer
DMS Delay Measurement System
DS Distribution System
DSSS Direct Sequence Spread Spectrum
EDR Enhanced Data Rate
EOX End of System Exclusive
ETSI European Telecommunications Standards Institute
FCC Federal Communications Commission
FCS Frame Check Sequence
FFD Full-Function Device
FHS Frequency-Hop Synchronization
GAP Generic Access Profile
GFSK Gaussian Frequency Shift Keying
GS General Standard
GSM Global System for Mobile communications
GTS Guaranteed Time Slot
HCI Host Controller Interface
HR High Rate
IBSS Independent Basic Service Set
ID Identifier
IEEE Institute of Electrical and Electronics Engineers
ISM Industrial, Scientific and Medical
ISO International Organization for Standardization
L2CAP Logical Link Controller and Adaptation Protocol
LAN Local Area Network
LC Link Control
LLC Logic Link Layer
LMP Link Management Protocol

APPENDIX A - LIST OF ACRONYMS

IX

LR Low Rate
LSB Least Significant Bit
MAC Medium Access Control
MCPS MAC Common Part Sub-layer
MFR MAC Footer
MHR MAC Header
MLME MAC Layer Management Entity
MMA MIDI Manufacturers Association
MSB Most Significant Bit
MSDU MAC Service Data Unit
MTU Maximum Transmission Unit
NAV Network Allocation Vector
NRPC Non-Registered Parameter Controller
NRPN Non-Registered Parameter Number
OFDM Orthogonal Frequency-Division Multiplexing
OSI Open Systems Interconnect
PAN Personal Area Network
PBCC Packet Binary Convolution Coding
PC Personal Computer
PCF Point Coordination Function
PDU Protocol Data Unit
PHY Physical Layer
PLCP Physical Layer Convergence Procedure
PMD Physical Medium Dependent
PN Pseudo-Random Noise
PPDU Physical Protocol Data Unit
PSDU Physical Service Data Unit
QoS Quality of Service
QPSK Quadrature Phase-Shift Keying
RFD Reduced-Function Device
RPC Registered Parameter Controller
RPN Registered Parameter Number
RSSI Receiver Signal Strength Indicator
RTS Request to Send
SAP Service Access Point
SCO Synchronous Connection Oriented
SD Superframe Duration
SDAP Service Discovery Application Profile

EVALUATING BLUETOOTH FOR THE WIRELESS TRANSMISSION OF MIDI

X

SDP Service Discovery Protocol
SFD Start of Frame Delimiter
SHR Synchronization Header
SMF Standard MIDI File
SMPTE Society of Motion Picture and Television Engineers
SO Superframe Order
SOX Star of System Exclusive
SPP Serial Port Profile
SSCS Service-Specific Convergence Sub-layer
TDD Time Division Duplex
TDM Time Division Multiplex
TID Transaction Identifier
UA User Asynchronous
UI User Isochronous
UUID Universally Unique Identifier
UWB Ultra-Wide Band
WEP Wired Equivalent Privacy
WPAN Wireless Personal Area Network

