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palavras-chave 
 

Modelação Comportamental, Amplificadores de Potência, Série de Volterra 
 

resumo 
 
 

Esta tese insere-se na área de Electrónica de Rádio Frequência e Microondas 
e visa o desenvolvimento de ferramentas que permitam a melhor compreensão
e análise do impacto da distorção não linear produzida em amplificadores de 
potência no desempenho de um sistema de telecomunicações sem fios. 
Devido à crescente complexidade dos amplificadores a simulação baseada em 
representações de circuito equivalente tornou-se extremamente pesada do 
ponto de vista computacional. Assim têm surgido várias técnicas de simulação 
de sistemas baseadas em modelos comportamentais, ou seja, que tentam 
aproximar a resposta do sistema a um sinal de entrada, independentemente 
dos elementos físicos que implementam o circuito. 
Neste trabalho foram estudadas as principais técnicas de modelação 
comportamental existentes assim como as principais características de um 
amplificador de potência que o modelo comportamental deve ser capaz de 
prever. 
Uma nova formulação de um modelo comportamental baseado na série de 
Volterra é apresentada em conjunto com o método de extracção ortogonal dos 
seus coeficientes. A principal vantagem deste novo método de extracção é 
permitir a determinação independente de cada valor coeficiente na série, 
garantindo-se deste modo um modelo com uma capacidade de aproximação 
óptima. A determinação dos coeficientes na série de modo independente é 
conseguida com base na reorganização dos termos da série e na identificação 
ortogonal de cada componente de saída. 
Adicionalmente, a identificação das componentes de saída de uma não 
linearidade é ainda utilizada na definição de uma métrica que permite avaliar 
de modo simples qual é a degradação imposta à qualidade do sinal ao ser 
passado num amplificador não linear. Esta métrica contabiliza 
simultaneamente a degradação imposta pelo ruído e pela distorção. 
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abstract 
 

This thesis is related to the RF and Microwave Electronics field and the main 
goal of this thesis is to develop tools that can contribute to understand and 
analyse the impact of nonlinear distortion generated by power amplifiers on 
wireless communication systems. 
Due to the growing complexity of amplifiers, equivalent circuit based 
simulations become a heavy computational task due to the large number of 
nonlinear elements to account for. So, several system simulation techniques 
have been proposed based on behavioural modelling, that is, models that can 
approximate the system’s response to a given input signal regardless of the 
physical circuit implementation description. 
In this thesis, the most important behavioural modelling techniques have been 
studied as well as the main power amplifier characteristics that the behavioural 
model should account for. 
A new formulation of a Volterra series based behavioural model is presented as
well as the corresponding coefficient orthogonal extraction procedure. The 
main advantage of this new extraction method is to allow the independent 
determination of the exact value of each coefficient, guaranteeing this way an 
optimum approximation condition. The exact coefficient determination is 
achieved by reorganizing the series terms to reach independent subsets and by
identifying separately each of systems’ output components. 
In addition, nonlinearity output component separation is also used to define a 
Figure of Merit that allows the simple evaluation of signal quality degradation 
when passed through a nonlinear amplifier. This Figure takes into account 
simultaneously the impact of noise and distortion. 
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1. Introduction 
 

There is some controversy about who was the inventor of wireless radio 

transmissions. Probably this achievement can not be attributed to a single person but is the 

result of several contributions. Some of the most important were: the theoretical work 

developed by Maxwell, the first practical controlled synthesis of radio waves by Hertz, and 

also, the first practical information transmission over a system by Tesla. There is a US 

patent of 1900 by Tesla, describing an apparatus with many “valuable uses as for instance, 

when it is desired to transmit intelligible messages to great distances […]”. In Europe 

Marconi made the first wireless transmission across the English Channel on March 1899. 

More consensual is that since then we have been assisting, and participating, in one rapidly 

increasing evolution in the wireless communications. 

The development of new wireless communication technologies that occurred in the 

past few decades was one of the most important revolutions in the last centuries. This 

development changed the conventional way how people interact with each other. This on-

going revolution in communications is self regenerating, as people’s eager for new services 

is fed by the service providers with new products and applications. Both, the number of 

users and also the services per user have increased considerably. Consequently, the 
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communication systems need to accommodate the increased information flow generated by 

the growing consumer’s demands. 

In both wired and wireless communications the modulation schemes have changed in 

order to allow higher communication rates with an efficient use of the available spectra. In 

wired communications, the power consumption and bandwidth used are not major issues 

when compared to mobile communications. Due to its nature the power is available from 

‘the line’ and the bandwidth is most of the times devoted to the service and not severely 

interfering with other systems due to its guided propagation nature. In mobile wireless 

communications, both these aspects might be bottlenecks. The power because the user 

devices are operated by batteries and the device autonomy is a key factor for its success. 

The bandwidth is a bottleneck, because the communication channel is shared between all 

the users and even between different communication systems.  

In wireless communication systems the use of the frequency spectra must obey very 

stringent rules in order to make possible the coexistence of different services and also 

different service providers. Each communication standard imposes strict spectral masks 

created to keep the interference between different users and systems at reasonable levels 

and thus also to guarantee the quality of service. The recent wireless communication 

protocols (GSM, CDMA2000, UMTS, etc) make use of complex modulation techniques 

that intend to maximize the data throughput of the communication channel. To increase the 

debit through the channel, linear transmission should be guaranteed, so that the signal 

perturbations caused by distortion are avoided. This issue is even more serious when 

multilevel modulation techniques like M-QAM are used. As they have non-constant 

amplitude envelopes and the distortion impact might be different for each amplitude level. 

The three restrictions referred: (i) the limited power available on the device, (ii) the 

efficient use of spectra and (iii) the complex modulation schemes used lead to a critical 

design compromise on the mobile handset power amplifier (PA). Effectively, in order to 

transmit the modulated signal while avoiding the transmission/generation of spectral 

garbage the PA should operate on its linear regime. However, to operate the PA on the 

linear regime an output power back off of several dBs is required, which compromises the 

PA efficiency and consequently reduces the battery autonomy. On the other end, to operate 

the PA efficiently in terms of consumed power, its signal transfer characteristic becomes 

strongly nonlinear. So, it is evident that a compromise between power efficiency and 
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linearity of the PA must be achieved. This compromise is a major concern on the design 

and performance of an overall communication system. 

With the evolution of the computation technologies and the advent of virtual 

communication system simulators, the need for PA models that could mimic the PA 

behaviour appeared. The PA models allow the characterization of their impact on system’s 

performance. Two different approaches can be used to reach these models. One can start 

from the PA circuit design and build a virtual circuit from it through voltages or currents 

Kirchoff’s laws. Alternatively, one can adopt a black box methodology which, regardless 

of the amplifier circuit, tries to build a mathematical function that approximates the PA 

response to a given set of inputs. The first approach, which might be a good solution for a 

circuit with a small number of active elements, rapidly becomes unpractical if their amount 

increases, since the number of equations leads to a mathematical problem hard to solve. 

So, the alternative is to find a PA model that does not have the same complexity of the 

equivalent circuit model while still being able to approximate the PA response. This is the 

principle of the black box modelling or behavioural modelling approach. This modelling is 

distinguished from the equivalent circuit modelling because no parallelism can be made 

among the circuit being modelled and the model topology. 

Another application of the behavioural models is its use on linearization. To alleviate 

the compromise between power efficiency and linearity on the PA design, some 

linearization techniques have been proposed throughout the last years [1.1,1.2]. One of the 

most discussed today is based on digital baseband predistortion. In nowadays 

communication systems there is a digital processor that is responsible for the baseband 

digital treatment of the information: coding, interleaving, spreading etc. The basic principle 

of digital predistortion techniques is to substitute the ideal signal to transmit by one signal 

somehow designed to become the ideal signal after the PA distortion effects. To be able to 

generate this predistorted transmission signal it is required a good inverse model of the 

amplifier, which is an equivalent problem of getting a good model of the amplifier. 

As was stated above, the use of power amplifiers in nowadays communication 

systems is a key issue, since they have to be efficient, in order to extend portable devices’ 

battery life, and also linear to accomplish the tight spectral masks imposed by the standards 

to allow a practical use of the spectra. This would not be a problem if the maximum device 

power efficiency would not be reached in a very nonlinear regime. 
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In order to reach a good compromise between efficiency and linearity, behavioural 

modelling plays a very important role either to allow the implementation of fast and 

accurate system level simulations or to promote the design of base-band digital pre-

distorters that increase the PA efficiency. 

An ideal power amplifier should work as a constant gain factor applied to the input 

signal 

 

( ) ( )txGty ⋅=  (1.1a) 
 

or also as linear gain only on the input signal bandwidth zone (an active filter): 

 

( ) ( ) ( )∫
+∞

∞−

−= τττ dtxgty  (1.1b) 

 
where x(t), y(t) are the input and output signals; G and g(τ) are the amplifier gain and 

impulse response respectively. 

The power required to operate this “ideal” PA is only the power that is effectively 

added to the signal. 

In this scenario the PA is a linear system in which the superposition principle holds. 

That is, if the system outputs to x1(t) and to x2(t) are known, then the systems response to 

any linear combination of these two inputs is also known: 
 

( ) ( )[ ] ( )[ ] ( )[ ]txtxtxtx 22112211 LLL αααα +=+  (1.2) 
 

Linear systems have been extensively studied over the last decades, and their 

identification in the presence of nonlinear distortion continues to be an important 

investigation field [1.3-1.5]. However a simple linear based model is of no practical use 

when trying to estimate the distortion effect on the communication system, since a linear 

system does not account for distortion. 

Several approaches have been used to model the nonlinear behaviour of a PA. 

Probably the simpler ones are the static representations in which the output signal y(t) is 

obtained as: 

 

( ) ( )[ ]txFty =  (1.3) 
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Usual representations of the nonlinear function F are polynomial series transfer 

functions or functions based on hyperbolic tangent like approximations. Being very simple 

in their nature these methods are only capable of representing the memoryless or static part 

of the PA nonlinearity phenomena. 

In order to account for the PA dynamic effects lots of different approaches have been 

proposed in the last years. They can be grouped into two main categories, the artificial 

neural networks (ANN) and the polynomial approximators.  

With the new computational capabilities ANNs are easy tools to work with. This is 

one of their major advantages. However, their coefficient extraction procedure – the 

learning process – relies on a nonlinear optimization procedure that tries to minimize a 

certain error function. After the convergence of this process the ANN presents good 

approximation results for the input signal class used in coefficient determination, but has 

no guaranteed modelling accuracy for signal classes different from the one used for 

extraction. 

On the other hand, polynomial models and, in particular, Volterra series models are 

linear in their parameters and so they can be extracted in a more straightforward way. 

Expression (1.4), represents the digital formulation of the Volterra series. 
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where, M represents the number of time samples considered and N the nonlinear order. In 

this expression the hx(.) parameters linearity is shown since each of them multiplies a 

combination of input samples. 

However, due to the overlapping of a large number of different Volterra series terms, 

as can be seen in (1.4), it is hard to determine exactly each single coefficient. So, the 

coefficients are usually determined with the use of some linear estimation technique like 

least square error minimization. This way, there are no guarantees that the coefficients 
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obtained are also optimum for a different kind of input signal. Or equivalently, the set of 

coefficients that model a given system might vary with different signals used for model 

extraction. If a method for separate identification of each coefficient is possible then the 

true coefficient value could be determined independently of all the others. 

 

1.1 Objectives 
The main goal of this thesis is to formulate a procedure for the orthogonal Volterra 

series parameter extraction. So, a rearrangement of the Volterra series that allows the 

separation of all its components (orthogonality) is searched. Note that this orthogonality is 

achieved only for a particular input signal statistics, since the input signal has impact on 

the output signal statistics. With this orthogonal model formulation, the coefficient 

determination is done in a one to one way and, finally, these orthogonal series coefficients 

are transformed into the conventional Volterra series parameters.  

With this approach it is guaranteed that the best polynomial system approximator, up 

to a given order N and memory span M is obtained. 

The goal of this thesis is to provide some contributions to the study of the distortion 

impact on a communication system. 

The objectives defined for this thesis are: 

• To formulate a behavioural model topology and the corresponding extraction 

procedure, with a well known mathematical background so that: 

o The coefficient extraction is unique and straightforward 

o The model predictive capabilities are guaranteed. 

• To propose a metric to evaluate the signal quality degradation in a nonlinear 

system; 

 

1.2 Thesis Description and Original Contributions 
To reach the goals above presented this thesis is organized in the following way. 

Chapter 2 provides a state of the art description on power amplifier behavioural modelling. 

This chapter starts with a brief description of the main characteristics that must be 

modelled by the PA to then present a description (not exhaustive since there are a very 
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large number of different approaches) of the most important works on this area. The 

description presented on this part of the thesis follows closely a recent paper on this subject 

[1.6]. In the second part of this chapter some previous orthogonal approaches to Volterra 

series based behavioural modelling are presented. 

Chapter 3, one of the most important in this thesis, presents the formal derivation of 

the orthogonal behavioural model proposed, the extraction procedure and correspondence 

between the orthogonal model’s coefficients and the corresponding time domain Volterra 

series. This Chapter is followed by the practical validation results shown in Chapter 4, 

where the modelling procedure is tested in a wide range of different situations ranging 

from a simulated memoryless amplifier to a real PA with memory effects. These two 

chapters aggregate a set of original author contributions published in several national and 

international conference papers [1.7-1.12]. 

As an application of cross-correlation identification techniques, and output signal 

components identification, Chapter 5 presents the author contributions to evaluate the 

signal quality degradation in a nonlinear system due to noise and distortion. To come up 

with the definition of Noise and Distortion Figure, the Best Linear Approximator of a 

nonlinear system is computed. The Best Linear Approximator is derived using cross 

correlation identification techniques similar to the ones used to separate each component of 

the orthogonal model. This chapter ends with some application results of the concepts 

proposed. The value of this original work was recognized by one paper on a national 

conference [1.13], two papers published at the International Microwave Symposium 

[1.14,1.15], and an extended version of that work in the IEEE Transactions on Microwave 

Theory and Techniques [1.16]. 

To finish this thesis, Chapter 6 presents the conclusions of the work performed and 

also some guidelines for Future Work that can be carried on as a natural sequence to this 

thesis. 
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2. State of the Art Description 
 

2.1 Introduction 
In this chapter an overview of the most relevant works that have been done (or are 

currently being done, at the time of this thesis) in the area of power amplifier behavioural 

modelling is presented. The goal of this overview presentation is to introduce the main 

issues on behavioural modelling and also to justify the modelling approach that has been 

followed on the work presented in this thesis. 

This description will be divided into two main parts: the first one is devoted to 

present the state of the art in behavioural modelling in general; while the second one will 

be more focused on the Volterra Series (VS) describing some previous approaches to VS 

behavioural modelling especially some works on the optimal VS coefficients extraction.  

The first section of this chapter starts by trying to identify the driving forces to 

behavioural modelling and the compromises that are required among them. Then a 

description of the PA phenomena that must be modelled is made. To conclude the first 

section of this chapter some examples of previous behavioural model approaches are 
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presented to illustrate different modelling capabilities. This part of the chapter follows 

closely the behavioural model comparison of [2.1]. 

The second part of the chapter, which is devoted to VS modelling, starts with a 

succinct historical introduction to the VS, to then describe different techniques that had 

been proposed to extract its coefficients. It is precisely on the coefficient extraction 

difficulties that is placed the emphasis of this section that ends with the description of prior 

orthogonal approaches to determine them. 

 

2.2 Behavioural Modelling Overview 
Along the chain from active transistor fabrication to the Power Amplifier circuit 

design and system level performance evaluation there are different requirements for 

modelling and characterization of the devices and/or systems. As usual in engineering 

problems, all those requirements involve a trade off between effort and performance.  

For instance, from the measurement engineer point of view, an accurate knowledge 

of the device and also an exhaustive exploration of its different operation regimes would be 

desirable. However that exhaustive testing can imply a large number of measurements to 

be done, with probably different setups which may take too much time and/or cost to be 

performed.  

The circuit designer requires a model that accurately describes the device, but that 

also allows fast Computer Aided Design (CAD) simulation in order to optimise the time 

required for simulations of different circuit configurations. On the other end of this 

compromise, there is the complexity of the model, the number of physical effects that are 

handled and, more important, the reliability of the model. 

At the top of hierarchy, the system designer would like to verify the overall system’s 

performance and to find the best trade off between linearity and power efficiency; 

modulation with varying envelopes (to optimize the transmission rates) and amplifiers with 

low frequency memory effects. 

On each different stage a model is required to allow the design and simulation for 

performance evaluation of the proposed solution. However, since in each of the stages the 

designer is facing different problems, the model characteristics should also be different. 

Actually to perform a complete system simulation using the interconnection of the physical 
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model of each of its components is not a good solution due to the complexity/number of 

variables required and also to the large computation time required [2.2]. 

It is usual, especially on system level simulations, to rely on simplified models that 

are able to describe the input/output relation of a given (sub-)system without having to 

include all the physical information about its components. In some cases, for instance 

Travelling Wave Tube (TWT) amplifiers, there is effectively no relation between the 

device and an equivalent circuit. Thus, an empirical model based on the observation of 

input/output characteristics is developed to allow the simulation of that kind of devices. 

Given the main driving forces for behavioural model use, it should be of no surprise 

that this has been a hot topic in the last years. However, the increasing interest on this 

subject was not accompanied by a solid theoretical work. Effectively, perhaps due to the 

empirical nature of the models, many have been proposed without references to similar on-

going works. A recent paper [2.1] presented an overview of the main activities that have 

been done in this area. In that paper the formal background of system identification theory 

is discussed, and then different model approaches are classified according to their 

approximation capabilities. 

A behavioural model is presented as an operator that intent to approximate the 

response of one system – which is a function, or a vector of functions – to a certain input 

excitation – again one function or vector of functions. In order to introduce some 

mathematical formalism it can be written, for a general case as: 

 

( ) ( ) ( ) ( ) ( ) ( )
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txFty ,...,,,...,,  (2.1) 

 

This equation explicits that the output y(t) is a function of the input x(t) and of its 

derivatives up to the nth order, and of the output derivatives up to the mth order. 

Since behavioural models are intended to be used in digital computers, (2.1) can be 

re-written using its discrete time equivalent: 

 

( ) ( ) ( ) ( ) ( ) ( )[ ]msysynsxsxsxFsy −−−−= ,...,1,,...,1,  (2.2) 
 

In which it is stated that the output at the time instant s (that effectively corresponds 

to sTs), is a function of the present input sample x(s), of its n past samples, and also a 
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function of the output m past samples. Equation (2.2) can be recognized as a nonlinear 

infinite impulse response (NIIR) filter [2.3]. 

An interesting result from system identification theory states that any continuous, 

stable, causal and of finite memory system – which is a good framework for a general PA – 

can also be represented with any small error using a non recursive structure. This means 

that a different functional form can be found: 

 

( ) ( ) ( ) ( )[ ]MsxsxsxFsy NR −−= ,...,1,  (2.3) 
 

M represents the number of past input samples actually required to represent the 

current output sample and is called the memory depth, or memory span of the system. The 

function FNR[.] can be identified as a nonlinear finite impulse response (NFIR) filter. The 

non-recursive approximation of any system may have some disadvantages like the possible 

large number of coefficients to achieve a negligible error. However, it has one guaranteed 

main advantage: it is always unconditionally stable. This is why most of the modelling 

approaches adopt this type of formulation. Additionally, it is easier to determine the 

coefficients of a feed-forward structure than the ones of a recursive structure. 

There are several ways to implement the function FNR[.]. The two more common are 

the multidimensional polynomial and the time delay artificial neural networks (ANN). The 

reasons for the use of either of these two solutions are their formal mathematical support 

and also the fact that they lead to a straightforward implementation. In the case of a 

multidimensional polynomial it replaces FNR[.] and so (2.3) takes the form of: 
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in which it is shown the dependence of y(s) on a series of multi-linear terms. Actually it 

can be seen that, regardless of the order of each term, there is a linear relation between the 

output and each of the nth order product terms. Also, a linear relation can be found for the 
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coefficients Pn. These linear properties made easy the formal study of these 

multidimensional polynomials in terms of their convergence and approximation 

capabilities.. 

There are two well known particular cases of this approach. (i) If FNR[.] is 

approximated in a Taylor series sense, then the multidimensional polynomial is known as 

the Volterra series and has the property of producing the optimal approximation (in a 

uniform error sense) for an expansion near the point where it was extracted. It is thus 

especially good for approximation in the small-signal (or mildly nonlinear) regime and 

quite bad for large signal regimes. (ii) If FNR[.] is approximated by an Hermite polynomial, 

then (2.4) is known as the Wiener series, and produces approximation results optimal (in a 

mean square error sense) in the vicinity of the extraction input power level and for that 

kind of input signals. Thus it is amenable for modelling stronger nonlinear systems, when 

the input signal characteristics can be considered close to the ones of the white noise. 

In the case where FNR[.] is approximated by an ANN (2.3) takes the form of: 
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where wk(i), wo(k), b0 and bk are weighting coefficients and bias parameters to be 

determined during the extraction procedure (ANN training), while f[.] is a predetermined 

function, known as activation function. The formulation shown in (2.5) is a simplified 

version of a class of ANNs known as the multi-layer perceptron with a single hidden layer. 

In [2.4,2.5] it was shown that this type of ANN has universal approximation capabilities. 

It can be easily shown that if the ANN’s activation function is bounded then the 

approximation results of the ANN are also bounded. This characteristic is a great 

advantage when compared to the known divergence problems of the polynomials. On the 

other hand, the main disadvantage of the ANN is that no direct relation can be made 

between the output and its coefficients, thus one has to rely solely in an optimization 

process to determine them. This implies that one has no guarantee that the optimal solution 

is found. This poses a bigger problem since nothing can be said on what will be the impact 
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(in terms of approximation quality) of increasing or decreasing the number of model 

parameters. 

At this point it is worth stressing out that there are actually two big families of 

models: the “bandpass models” that process RF-modulated carriers and the “lowpass 

equivalent models” that process only the envelope information regardless of the carrier 

frequency. Recalling that a PA is a device intended to amplify a signal like: 

 

( ) ( ) ( )[ ][ ]ttj rcetrtx φω += Re        (2.6) 

 

that consists of a carrier modulated by an information signal [r(t), φr(t)], then a model able 

to process x(t) – the bandpass model – or a model that processes the envelope of the carrier 

( )tx~ – a low pass equivalent model – can be conceived. 

This difference is actually quite important due to the large disparity between the time 

scales of the carrier and the envelope (e.g. in WCDMA the envelope bandwidth is near 

5MHz while the carrier is near 2GHz). So a model intended to process simultaneously the 

carrier and the envelope can be hard to implement in practice due to the very large number 

of time samples that will be required to accommodate a reasonable number of envelope 

signal periods sampled at a sufficient rate to represent the carrier. 
 

2.2.1  Main Effects to be Modelled by a PA Behavioural Model 
 

In a recent publication [2.6] the dynamic effects of PAs were divided into three 

categories according to their ability of representing PA memory effects: the static or 

memoryless, the PAs with linear memory and the PAs with nonlinear memory. 

The first type – static PAs – can be represented as shown in Figure 2.1. 

 

x(t) y(t)
fNL[x(t)]

 
Figure 2.1 – Schematic representation of a memoryless amplifier. 
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In this figure it is shown that the output y(t) is obtained as a function of the present 

input x(t) regardless of its past (derivatives in the case of continuous signals). If a Taylor 

series (or other polynomial form) expansion of fNL[x(t)] is considered: 
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n
nNL txtxf α  (2.7) 

 

then the first and third order frequency domain Volterra series kernels of this system can 

be written as [2.6,2.7]: 
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It can be shown that this is a reasonable approximation of a PA processing a very 

narrow input signal, for which its transfer characteristics remain essentially constant inside 

the signal bandwidth.  

However, if it is considered an input signal bandwidth that is not negligible compared 

to the amplifier pass band, then the effects of the input and output matching networks must 

be taken in account. In this case a cascade of the memoryless nonlinearity between to 

dynamic linear filters is obtained. 

 

x(t) y(t)fNL[x(t)]hi(τ) ho(τ)

 
Figure 2.2 – Schematic representation of nonlinear amplifier with linear memory. 
 

In Figure 2.2 the input and output filters are represented by their impulse responses 

hi(τ) and ho(τ), respectively. For this case and considering the same Taylor series 

expansion of (2.7) the equivalent Volterra series description of this system is [2.6,2.7]: 
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where HI(.) and HO(.) are the frequency domain representations of the filters hi(τ) and 

ho(τ), respectively. 

In some cases it can be observed a different type of dynamics in PAs: nonlinear 

memory effects. Those are memory effects that are only visible when the amplifier enters 

it’s nonlinear regime of operation. This type of effects can be modelled by a different 

topology as shown in Figure 2.3. 

 

fNL[x(t)]

f(τ)

x(t) hi(τ)
y(t)ho(τ)+

 
Figure 2.3 – Schematic representation of a nonlinear amplifier with nonlinear memory proposed by 
Pedro et al. 

 

Considering once again the Taylor series expansion of (2.7) for fNL[x(t)], the first and 

third order Volterra kernels of this system are [2.6,2.7]: 
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where D(ω) = 1 – α1F(ω). 

Contrary to the Volterra descriptions of the last examples, in this equation the 

nonlinear dynamic effects are visible in the product of α2
2 by a rational of the feedback 

filter transfer function. 

An alternative model topology was also proposed by Vuolevi et al. [2.8,2.9] that is 

also capable of modelling nonlinear dynamic effects. 
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fNL1[x(t)]

f(τ)

x(t) hi(τ)

y(t)ho(τ)fNL2[x(t)]

 
Figure 2.4 – Schematic representation of a nonlinear amplifier with nonlinear memory. proposed by 
Vuolevi et al. 
 

In this model topology the nonlinear dynamic effects are modelled by the nonlinear 

mixtures of the dynamic response of the filter f(τ) that are created in fNL2[]. Note that since 

the filter f(τ) is placed after fNL1[] it processes baseband components created by the first 

nonlinearity that are then up converted by fNL2[]. 

If we assume that fNL1[] is equal to fNL2[], then this model topology is a simplified 

version of the one of Figure 2.3. 
 

 

2.2.2 Different Behavioural Model Capabilities 
 

In this section some illustrative examples of the more common behavioural model 

approaches are described. Different model examples are presented according to their 

capabilities of modelling the different phenomena presented in the last section. 

Note that it is not the aim of this text to present an exhaustive description of all the 

behavioural modelling approaches. Given that they are so many, its description would go 

far beyond the scope of this thesis. 
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Memoryless Models 

 

The models with the simpler structure are also the ones with less dynamic predictive 

capabilities – the memoryless models. The most commonly cited model of this kind is the 

complex polynomial series: 
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where x~ (t) is the complex envelope input and a2n+1 are the complex coefficients used. It is 

seen in (2.11) that in this approach the output envelope ( )ty~  is dependent only on the 

present value of the input envelope, thus it is impossible to represent any memory effect 

with a model formulation like this one. 

Another well known memoryless model is the Saleh model, [2.10] in which: 
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where rx, φx, ry and φy are the amplitude and phase parts of the input and output complex 

envelope signals, respectively. αr, βr, αφ and βφ are parameters used to fit the modelled and 

measured transfer curves, from Amplitude Modulation to Amplitude Modulation (AM-

AM) and from Amplitude Modulation to Phase Modulation (AM-PM). Despite this 

modelling approach intends to model amplitude and phase, both of them are once again 

only dependent on the instantaneous input complex envelope amplitude, and thus this 

model is considered a memoryless model. 

Models of this type – memoryless – are well suited for modelling systems in which 

the input and output filters’ (hi(τ) and ho(τ) in Figure 2.3) bandwidth is considerably wider 

than the bandwidth of the signal processed by the system, so that those filters can be 

considered flat. Additionally, the feedback path filter f(τ) should also be flat so that the 

nonlinear mixing through the feedback path doesn’t create memory effects in the system. 
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Models addressing linear memory 
 

When the signal’s bandwidth approaches the bandwidth of the system, then its 

response can no longer be considered flat – it presents linear memory effects. This way the 

memoryless models (extracted with a single CW excitation) are no longer valid 

approximators for these systems. Since the approximation problem appeared from the 

bandwidth increase, one of the proposed solutions was to consider AM-AM and AM-PM 

curves dependent on the input frequency. This was the approach of Saleh frequency 

dependent model [2.10] intended to be used on TWT amplifiers. Saleh proposed a new 

model formulation in which the complex envelope output amplitude and phase are 

dependent on the input complex envelope amplitude as previously, but also on the carrier 

frequency. This dependence of the AM-AM and AM-PM curves on the carrier frequency 

can be understood as the modelling of a linear filter connected in series with the previous 

frequency independent nonlinearity. To understand the impact of the input and output 

filters, let’s focus on the schemes of Figure 2.1 and Figure 2.2. In the memoryless case the 

output complex envelope can be written as: 
 

( ) ( )[ ]txfty NL
~~ =  (2.14) 

 

If the effect of the input filter is now considered, in a configuration usually known as 

Wiener two box model, the complex output will be given by: 

 

( ) ( ) ( )[ ]txthfty iNL
~~ ∗=  (2.15) 

 

The input filter can change the amplitude of the signal entering the nonlinear block, 

feeding the nonlinearity with different input power levels. Thus the AM-AM and AM-PM 

curves can be shifted horizontally (along the input power axis) by changing the coefficients 

of the input filter. 

On the other hand if the effect of the output filter is considered separately, the two-

box Hammerstein model is obtained. In this case the output complex envelope will be 

given by: 
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( ) ( )[ ] ( )thtxfty oNL ∗= ~~  (2.16) 
 

From this expression it can be seen that the output filter impulse response ho(τ) is 

convolved with the nonlinearity output and thus can control the output amplitude. Thus the 

output filter can shift the AM-AM and AM-PM curves vertically (along with the output 

power/output phase axis). 

The reasoning above presented states that both configurations are essentially 

different, and thus cannot be interchanged. Actually, it is quite frequent the usage of both 

configurations simultaneously in a three box configuration: filter – memoryless 

nonlinearity – filter. This structure is also known as the Wiener-Hammerstein model. 

One of the first published works using this topology was one work of Blachman in 

the 60’s [2.11]. In these earlier studies a framework was created for the study of nonlinear 

bandpass systems. Blachman identified each of the nonlinearity output autocorrelation 

function components: the signal X signal, the noise X noise and the signal X noise [2.12]. 

With these definitions, ways of identifying and separating the output signal from the output 

noise components were developed in order to characterize the signal quality degradation in 

the nonlinearity. Furthermore, studies of the interference impact of two signals of different 

amplitudes processed in the same PA were conducted [2.13].  

Further examples of three-box models are the Poza-Sarkozy-Berger [2.14] and the 

Abuelma’atti models [2.15]. 

Different modelling approaches that also lead to models with these predicting 

capabilities are the ones based on polyspectral higher order statistics proposed by C. Silva 

et al. in [2.16]. In these works it is assumed that the nonlinear FIR filters can be 

represented by one-dimensional systems – which forces the systems to be represented by a 

two box model (either Wiener or Hammerstein configuration), in which the nonlinearity is 

the measured AM-AM and AM-PM curve. The main advantage of this approach is that it 

allows the model extraction with one CW test (to determine the AM-AM and AM-PM 

static curves) followed by an envelope test (to determine the cascaded filter). However this 

configuration is incapable of representing the systems’ nonlinear memory, as will be seen 

in the next sub-section. Other example of a three box model is the one proposed by 

Ibnkahla et al [2.17], that uses an ANN to approximate the three box structure. 
 

 



2. State of the Art Description 

23 

 

Models Addressing Nonlinear Memory 
 

Despite all the model formulations presented above, there are some types of effects 

that can not be modelled by any of the models already presented. For instance, an amplifier 

in which the output ( )ty~  depends, not only on the present value of the input complex 

envelope ( )tx~ , but also on its past values requires a different model structure. 

Back in 2000, Fang et al. [2.18] proposed a recursive neural network model for a 1 

GHz bandpass amplifier. Unfortunately the ANN was trained and tested with the same type 

of unmodulated data. This way the ANN training process can not capture any envelope 

dynamic effects since they were not excited by the training data. In this case the adopted 

extraction procedure (basically the excitation choice) does not allow taking full profit from 

the general predictive capabilities of the adopted ANN structure. 

A different approach has been proposed by Mirri et al. [2.19] and further developed 

by Ngoya et al. [2.20] and Soury et al. [2.21]. This strategy consists in an application of 

the nonlinear integral model (NIM) of Filicori et al. [2.22] and is based on the assumption 

that the signal can be nonlinearly processed in the system in a static way while the dynamic 

effects introduced can be described in a linear way. In this strategy the systems’ response is 

expanded in a Taylor series around a predetermined nonlinear operating input x0(t) in the 

following way: 
 

( ) ( )[ ] ( )∑
=

−⋅≈
Q

q
qqq txtxfty

1
0 , ττ  (2.17) 

 

this formulation can lead to the definition of a nonlinear impulse response, dependent on 

the static approximation point h[x0(t),τ] 
 

( ) ( )[ ] ( )∫
∞

−⋅≈
0

0 , τττ dtxtxhty . (2.18) 

 

A different approach that also leads to a parallel Hammerstein topology was 

proposed by Ku [2.23]. Ku intended to model the memory effects shown by power 

amplifiers when excited by two tone RF signals. In that work the authors started with a 

usual AM-AM/AM-PM memoryless polynomial representation of the nonlinearity (similar 

to the one in (2.11)) and imposed coefficient dependency with frequency, obtaining, this 

way, a model like: 
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( ) ( ) ( ) ( )∑
−

=
+ ⋅⋅=

1

0

2
12

~~~ N

n

n
n txtxaty ω  (2.19) 

 

where ωm represents the frequency of the envelope sinusoid, which is the envelope 

equivalent of the particular two tone input. 

A heuristic parametric approach has been proposed by Asbeck et al. [2.24] and 

continued by Draxler et al. [2.25]. The main idea of this approach was the extension of the 

AM-AM/AM-PM modulation by assuming that for an amplifier with long term memory 

effects its transfer characteristics will no longer be solely dependent on the instantaneous 

input envelope amplitude but also on a parameter that is a function of the envelope past 

inputs. If the PA transfer characteristic is represented by G which used to be considered as 

a function of rx(t): ( )[ ]trG x ; this work considers G as a function of the present input 

envelope and also of a parameter ( )tz~  dependent on the past input envelope samples: 

( ) ( )[ ]trtzG x,~ . Then the authors expand ( ) ( )[ ]trtzG x,~  by a first order Taylor series. This 

way the PA is modelled by a complex gain that is a nonlinear function of the instantaneous 

envelope amplitude and also of a parameter obtained by linear filtering of the input 

envelope past samples. 

In a recent publication Dooley et al. [2.26] proposed a recursive model based on a 

IIR filter with a new approach for improving the coefficient determination of the structure. 

Starting with a vector of input and output data it was possible to develop an algorithm that 

uses the measured output sample at each process’ iteration for coefficient determination 

(and not the one computed with the estimated coefficients). This way the convergence and 

accuracy of the coefficient extraction are increased. The results obtained with this 

modelling strategy are compared with a conventional 3rd order VS model and a model 

approximation improvement was shown. 

A more formal approach has been followed by Brazil and his group. In 2003 they 

have proposed a least square error extraction procedure for a hybrid time and frequency 

domain Volterra representation of a RF bandpass PA [2.27]. Despite nothing is said on the 

order of the model extracted nor on the number of time delays considered, the fact is that 

remarkably good results have been achieved with a model able to reproduce the variations 

in the third and even the fifth order Inter-Modulation Distortion (IMD). Recently, Zhu et al 
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[2.28], from the same research group, suggested a low pass equivalent model based on the 

Volterra Series written on discrete time domain. The main advantage of this work is that it 

is based on a well known framework – the Volterra Series – despite the limitations of 

applicability to mildly nonlinear PA’s. This model is no-longer a one-dimensional 

arrangement, but a true multidimensional approximation of the system. This work had the 

merit of proposing an unconventional arrangement for the Volterra series – the V-vector 

algebra which simplified the model implementation. Since this work was devoted to 

address nonlinearity compensation techniques (pre-distortion), the authors proposed an 

adaptive learning process for the coefficient estimation instead of considering a more 

straightforward coefficient extraction. These works have been continued and recently the 

author has presented new methods to reduce the number of coefficients of the Volterra 

series [2.29,2.30]. 

This work, well grounded on the Volterra series field constitutes a general lowpass 

equivalent approach. However, the suggested adaptive coefficient determination and the 

overlapping existent between different model terms are still issues that can be improved in 

order to reach the best Volterra series based low pass equivalent model. 

Actually, in order to optimally determine the Volterra series coefficients, some 

strategies should be adopted to enforce the separability among all the model terms and to 

obtain a well conditioned set of equations for coefficient determination. In the next section 

some previous works on efficient determination of Volterra series coefficients will be 

described. 

 

2.3  Volterra Series Modelling 
The Volterra series is so called in recognition of the work of the mathematician Vito 

Volterra. Around the year 1880, Volterra studied a series, as a generalization of the Taylor 

series expansion of a function, and later he lectured its application to the study of certain 

differential and integro-differential equations in 1912. Fréchet has used Volterra’s results 

and added some more rigorous mathematical foundation. Specifically Fréchet proved that 

“any continuous functional can be represented by a series of functionals of integer order 

[equivalent to Volterra functionals] whose convergence is uniform in all compact sets of 

continuous functions”. This result is a generalization of the Weierstrass theorem which 
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states that every continuous function can be represented by a series of polynomials that 

converges uniformly in every compact space of points [2.3]. These results were later used 

by Wiener who first used them to the study of nonlinear systems [2.31]. 

The Volterra series is a mathematical approximation of a general time invariant, 

continuous system written as 

 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )∫ ∫ ∫
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in which for n = 1, 2, … 
 

( ) 0,0,,1 <= jnn anyforh τττ K . (2.21) 
 

With the growing use of computational calculation and simulation tools the discrete 

form of the Volterra series is of major importance: 
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where M represents the length of the memory span, that is the number of past samples that 

can contribute to the output at the time sample s; and N the nonlinear order of the model 

considered. This equation is written in a triangular form according to the notation adopted 

in [2.32]. 

In addition to the solid mathematical groundwork, the main advantage of a Volterra 

series type model is that the kernel value determination is a linear problem. That is easily 

shown [2.32], in the case of (2.22), by considering a record of K input samples x(0), x(1), 
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…, x(K) and output samples y(0), y(1), …, y(K) and straightforwardly write a linear matrix 

equation where the unknowns are the kernel values. 

 

HXY =  (2.23) 
 

where 

 

( ) ( ) ( )[ ]KyyyY K10=  (2.24) 
 

[ ]MMM hhhhhhhH ,...,1,10,10,010 KK=  (2.25) 
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It is now clear that if the number of recorded samples K is such that X is a square 

matrix and invertible then the kernel values H are obtained by: 

 
1−= YXH  (2.27) 

 

However if K doesn’t match the required size to make X square (either because it is 

larger or smaller), or if X is not invertible, then one has to rely on some least mean squares 

technique to obtain approximations to the kernel values. The problem of matrix X 

inversion can, in some situations, be solved with the use of the pseudo-inversion. 
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The proposed method for kernel determination states that it is possible to obtain the 

kernel values in a linear way, provided that the input is chosen with a certain length K and 

with certain properties to ensure that X is invertible. However, please note that the kernel 

determination using this direct formulation leads to a problem with very high dimensions 

for any case of practical interest, since the number of coefficients of an nth degree kernel 

with memory span M is of the order of (M+1)n. This can lead, and usually does, to 

difficulties in the solution of (2.27). Some published results on Volterra series behavioural 

modelling [2.33] adopt models of order 3 and memory span 1 to keep a low number of 

coefficients to be determined, while [2.28] uses a fifth order Volterra model without 

specifying the time delay considered. 

A solution to circumvent the high number of coefficients described above is to 

introduce an approximation based on the expansion of the kernels using known functions. 

Describing the triangular form kernels using a series expansion will (in principle) decrease 

the number of coefficients required for its representation [2.32]. This text will not describe 

with further detail this approach, since it is out the scope of this thesis. However, it is an 

area that still raises interest in the scientific community as some recently published papers 

confirm [2.34,2.35]. 

Other identification techniques have also been proposed to determine general 

Volterra kernels. One example is the identification using input pulses, which is not very 

useful for RF power amplifier modelling due to the difficulties to create and measure 

pulses narrow enough to perform the kernel extraction. One technique that has been quite 

studied is the kernel identification using Gaussian white noise excitation [2.32,2.36]. This 

technique can be understood as an extension of the cross-correlation technique for the 

identification of linear systems, in which the input response can be computed as the cross 

correlation between the input and output of the system when the input is real, stationary 

Gaussian white noise with zero mean and power A: 
 

( ) ( ) ( )

( ) ( )[ ]τ

ττ

−=

−= ∫
−

∞→

txtyE
A

dttxty
TA

h
T

T
T

1
2
1lim1

 (2.28) 

 

A similar analysis can be performed to determine the nonlinear impulse response of 

order n, exemplified by the second degree kernel: 
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( ) ( ) ( ) ( )[ ] 21212212 ,
2

1, ττττττ ≠−−= fortxtxtyE
A

h  (2.29) 
 

This equation however is only valid for τ1 ≠ τ2, since for white Gaussian variables 

E[x2(t)] is non null, preventing this way the simplifications made to reach (2.29). Usually 

this problem is circumvented by either of two ways: (i) not using true white noise or (ii) 

obtaining the values of h2(τ,τ) by continuous extension of the values of h2(τ1,τ2) [2.32]. 

Either of these approaches can be valid in given circumstances however in chapter 3 it will 

be shown that the determination of diagonal values of hn can cause difficulties and is of 

major importance. Another issue of using this method is the problem of separating 

different order terms as, for example, h1(τ) and h3(x,x,τ) that appear together in a nonlinear 

(3rd or higher) system case [2.32]. 

Another common approach for kernel determination is based on frequency response 

(FR) measurements. Again the underlying idea of nonlinear FR identification is based on 

the simpler concept used for linear system identification: if a stable, causal and linear 

system is considered, it’s transfer function H(jω) can be determined by measuring the 

magnitude and phase of the steady state response to the input u(t) = cos(ωt). Actually two 

values of H(jω) are determined since H(-jω) is computed as the complex conjugate of 

H(jω). 

The determination of the second order kernel using one tone signal as excitation is 

incomplete since H(jω1, jω2) can not be determined. Thus a two tone input signal is 

required for the determination of the second order kernel. This analysis is expandable to 

higher order kernels and thus a nth tone input excitation is required to measure the nth order 

kernel. 

This strategy for kernel determination also leads to some problems [2.31,2.32,2.37] 

since there are different order terms that contribute to the same frequency component, 

needed to determine both of them. This can be understood considering the polynomial 

system case where the higher degree homogeneous parts of the system, also contribute to 

steady state response terms at the same frequencies as the lower degree terms (e.g. 3rd 

order correlated components). As a simple example consider the one tone input u(t) = 

2Acos(ωt) and a system composed only of degree 1 and 3 terms. The steady state output 

can be written as: 
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it is clear that there are two terms at frequency ω, and that the degree-3 homogeneous part 

of the system contributes to the frequency components needed to determine H(jω). 

Different homogeneous degree terms contributing to the same frequency bring up 

problems for determining the symmetric transfer functions from its evaluations. In order to 

deal with these problems some assumptions are required. However, they can depend on the 

type of system being studied [2.32]. One advanced solution is the use of cyclostationary 

inputs that simply eliminate this problem [2.38]. This solution will be discussed later when 

orthogonal extraction methods are described. 

Schouckens and Pintelon [2.39] have been particularly active on the area of 

Frequency Response Functions (FRF) determination. In a 2001 publication of this group 

Vanhoenacker et al. [2.40] advanced a method for properly designing multisine excitations 

that allow detecting and qualifying the nonlinear distortions while measuring the FRF. This 

technique consisted in choosing a multisine in which not all the harmonics are excited. The 

non excited frequencies are used to detect and quantify the nonlinear effects. 

However the special multisine design for Volterra Series identification was started 

long before. Starting in the early 80’s Boyd and Chua [2.37] realised the importance and 

difficulty of Volterra kernel estimation and proposed a new method that allowed 

appropriate excitation design to avoid certain types of interference between different 

degree components. This way the kernel extraction procedure was simplified and the 

number of required measurements reduced. The basic idea advanced in this work was that, 

if a particularly sparse multisine is used, the output term frequency coincidences can be 

minimized and thus the number of kernel coefficients that can be obtained independently 

from a single measurement increases. However, this strategy does not solve the problem 

advanced before of different degree terms containing symmetric frequency pairs (ω,-ω,...) 

and sharing the same output frequency. A similar strategy was adopted nearly at the same 

time by Lawrence [2.41] whose aim was to design signals with autocorrelation properties 

identical to white noise up to a given order. While the solution proposed by Lawrence lead 

to a sparser signal, it also had the advantage of keeping a larger number of unique output 
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frequency combinations. In the 90’s Evans et al. [2.42] compared these works and 

presented an interesting summary of the characteristics of each of them that takes into 

account their sparseness, auto-correlation properties, crest factor and the number of each 

order kernel points that can be measured directly. After the analyses they proposed a range 

of new periodic signals that present a good compromise between sparseness and output 

separability. 
 

Orthogonal Approaches  
 

A different way of optimize the Volterra coefficients’ extraction is to make the 

matrix X in (2.26) diagonal. This way the numerical problems that can occur when trying 

to invert it are minimized. One possible way of do this is to rearrange the terms of the 

polynomial series so that the entries of the X matrix also change. In a recent work about 

orthogonal memoryless polynomial model extraction, a new general, non-recursive 

formula for the coefficients of a power series orthogonal to a particular uniformly 

distributed random variable input is presented [2.43]. In another work, the same author 

presents the formula for the computation of the polynomial coefficients in the case in 

which the input is Gaussian noise [2.44]. These works address a very important issue: the 

ill conditioning of the equation system used for the determination of the polynomial model 

coefficients. However the main limitation of this work is that it addresses this problem in a 

memoryless situation.  

The work developed by Kim and Powers [2.45] is based on Gram-Schmidt 

orthogonalization of the different order input products used on the Volterra series. This 

orthogonalization leads to a set of modified orthogonal kernels that can be extracted by 

polyspectral correlations and later related to the original ones by the orthogonalization 

matrix. The main advantage of this work is the possibility of orthogonal extraction of the 

Volterra kernels independently of the input signal statistics (previous approaches required 

Gaussian input signals). This is an important contribution since not all the systems can be 

tested using Gaussian like signals. Additionally, sometimes this type of signals might not 

be very useful if they excite the system under test in a different operation point, when 

compared to the one obtained with the signals that the model is intended to process. 

More recently, Cheng and Powers [2.46], presented an algorithm for the optimal 

determination (in mean square error sense) of the low pass equivalent Volterra series 
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coefficients for a nonlinear communication system processing PSK or QAM signals. 

Formal derivation of the cross-correlation formulas that minimize the MSE is presented for 

each type of fifth kernel (according to their multiplicity) when the input signal is a PSK 

and a QAM signal. In this work the dependence of the extracted model on the input signal 

considered is stated. Namely, it is shown that, in particular conditions, a third order 

Volterra model can be accurate enough to deal with a PSK signal, while for obtaining the 

same normalized mean square error (NMSE) with a QAM signal a fifth order Volterra 

model is required. 

It is worth mentioning here a previously referred work [2.38] that also presents some 

contributions to the development of an orthogonal extraction procedure that allows the 

determination of Volterra kernel coefficients. In this work Gardner and Archer propose a 

method that allows the aimed orthogonal extraction using as input excitation 

cyclostacionary signals. However this is a class of complex input signals that can be used 

to extract the model of mathematically described nonlinear systems, but that cannot be 

applied in physical systems. 

 

2.4  Conclusions 
In this chapter some of the work that has been carried on by the scientific community 

on the behavioural modelling topic has been described. A brief description of the different 

phenomena observed in a PA was made, in order to show the effects that a behavioural 

model has to account for. It was shown that a lot of work has been done in behavioural 

modelling but its foundations are fragile.  

The Volterra Series is a modelling topology suitable for behavioural modelling of 

PAs but whose coefficients are difficult to obtain with the existent standard extraction 

techniques. These difficulties can be minored if an appropriate extraction process is 

followed. Some previous existent work on VS coefficients orthogonal extraction was 

presented, despite some of these approaches are not well suited to extract the coefficients 

of a general system. 
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3. The Orthogonal Formulation for Volterra 
Series Extraction 

 

3.1 Introduction  
In the previous chapter the state of art in power amplifier behavioural modeling has 

been presented and the need for an improved method of Volterra series coefficient 

determination was introduced in order to improve model accuracy and range of validity. 

In this chapter the whole process leading to the formulation of the orthogonal 

polynomial used to obtain the Volterra series description of a nonlinear system is 

presented. The model topology and theoretical support are described in section 3.2. 

Sections 3.3 and 3.4 describe the input signal selection and the assembly of each order 

terms to build the orthogonal model. Section 3.5 presents an analysis of the orthogonal 

coefficient determination convergence process, while section 3.6 shows how to convert the 

orthogonal coefficients back into the time domain Volterra kernels. Finally section 3.7 

summarizes and concludes this chapter. 
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3.2 The Used Model Topology 
 

The modeling approach herein presented is founded on the rigorous nonlinear system 

identification theory. This states that any single-input / single-output nonlinear dynamic 

system that is stable and of fading memory, can be represented by a cascade of a single-

input multiple-output linear system with memory, followed by a multiple-input single-

output nonlinear memoryless system [3.1,3.2]. One possible implementation of this is the 

nonlinear finite impulse response filter stated in (3.1). 

 

[ ])(),...,1(),()( Msxsxsxfsy NL −−=  (3.1) 

 

In this expression M, indicates the number of time delays considered (the system’s 

memory span or depth) while fNL(.) is any (M+1) to 1 nonlinear universal approximator. 

Two widely used implementations of this universal approximator are the artificial neural 

network (ANN) – which leads to the time-delay ANN nonlinear filter, and the 

multidimensional polynomial – leading to the general polynomial filter (PF) or Volterra 

filter [3.3]. 

Both of these approaches present advantages and drawbacks. For example, while the 

relation between the ANNs’ response to their parameter set is nonlinear, PFs are linear in 

their parameters. So, these latter models can be identified using direct extraction 

procedures, while ANNs require a nonlinear optimization process (of non guaranteed 

success in terms of convergence and uniqueness of the parameter set). Unfortunately, 

although the extraction of the polynomial model parameter set can be performed solving a 

linear system of equations, this is not easy in practice, due to the large number of 

coefficients to be determined, and the fact that the poor separability of some equations 

tends to produce an ill-conditioned system. Usually, such a problem is circumvented 

through the use of some optimization process, for instance, via an adaptation loop. But that 

jeopardizes the advantage of direct extraction. 

In this work we intend to profit from the parameter linearity of the PFs and circumvent 

the problem of ill-conditioning by rearranging the Volterra series in order to obtain an 

orthogonal model. This work is similar to the one made by [3.1], except that now instead 
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of considering white Gaussian input signal a set of randomized phase multisines are used. 

3.3 Input Signal Selection to Build an Orthogonal 

Polynomial 
 

One must realize that the orthogonality condition of a certain polynomial will hold only 

for one particular input signal. So, it is of major importance to choose the particular input 

signal for which the polynomial should be orthogonal. This signal must verify two 

different conditions: (i) it should guarantee that all the system states are excited, so that a 

general complete model is extracted, and (ii) it should be easy to synthesize in a RF 

laboratory allowing this way a simple feasible model extraction procedure. A signal known 

to meet both of these conditions is a set of multisines with randomized phases. Actually it 

is known that this signal is a complete signal, that is, is able to excite all different system 

states [3.4], and it is easy to generate and measure in a usual RF laboratory. 

Since it was already determined that a Volterra series approximator will be used to 

describe fNL[.] in (3.1), it can be re-written as: 
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where M is the memory span and N the order of the nonlinearity. 

To achieve the orthogonal coefficients extraction it is mandatory to rearrange the terms 

in (3.2) so that all of them become separable for the particular input of a set of multi-sines 

with randomized phases. 

Prior to state this process in a formal way, lets look at Fig. 3.1 that presents the final 

orthogonal model topology in a schematic way. 
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Figure 3.1 – Schematic representation of the dynamic polynomial model topology used. 

 

In Figure 3.1, it is seen the Fourier decomposition of the input signal into a set of single 



3. The Orthogonal Formulation for Volterra Series Extraction 

41 

 

tone signals. Those signals will then be processed by nonlinear combinations arranged so 

that each of the combinations produces a separable output component. By guaranteeing 

that the output of each block is separable from all the others we obtain our orthogonal 

model. 

Note that this model verifies the topology proposed by [3.1,3.2] of a linear dynamic 

single input / multiple output system – the Fourier series decomposition – and a static 

multiple input / single output nonlinear system. 

In order to write this in a formal way the statement of the Fourier series decomposition 

used is stated: 
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in which the Ck and Sk coefficients are given by: 
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where 
 

k
Kk
πω 2

=   (3.5) 

 

Now, all n’th order responses of (3.2) should be given as a function of these frequency 

domain inputs. For example, for the first order, or linear part, of (3.2) the corresponding 

output is: 
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Separating the cosine and sine dependence on s and m, grouping the terms in m and then 

changing the summation order: 
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This is exactly the required frequency domain representation that is being looked for. 

Grouping the terms in this expression as: 
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where ( )sxk
'  indicates a 90º phase shift, and C

kH  and S
kH  are the frequency domain 

coefficients of the linear transfer function. Equation (3.7) can be rewritten in compact form 

as: 
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A similar process can be applied to the second order part of (3.2) using the bi-

dimensional form of the Fourier series. Once again the starting point is the second order 

time domain system’s response expression: 
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writing x(s) in its Fourier series: 
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separating s from m in each sine and cosine and rearranging the expression: 
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Changing the summation orders and simplifying the notation of xi(s)  
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according to the definition of the bi-dimensional coefficients and splitting each hm1m2 into 

different parts we get 
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in which each of the double summations in m1 and m2 are part of the bi-dimensional 

Fourier series. So (3.14) can be re-written as: 
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This is the desired expression: the second order output written as a function of the input 

Fourier components and frequency domain coefficients. 

This process can also be applied to the n’th order component of (3.2) using the n-

dimensional form of the Fourier series. In this general case: 
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After this derivation a model formulation that approximates the system’s response using 

each of the input signal’s frequency components was obtained. Now, a rearrangement of its 

terms to get a model that is orthogonal for a multi-sine at a given input amplitude is 

required. 
 

3.4 Obtaining the Model Orthogonality 
In order to build an orthogonal model an inner product definition is required. This will 

then be used to express the corresponding orthogonality condition, which the model 

components, Ψ , must fulfill. Since the input signal for orthogonality are randomized phase 

multi-sines, the inner product is the average of a large number (R, ideally infinite) of 

different phase arrangement realizations, r:  
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where nIΨ  represents an individual term of the cosine part of order n, of the orthogonal 

polynomial that we are looking for.  

It can be shown that (3.17) verifies the properties of a general inner product. Therefore, 

the orthogonal model formulation requires the development of a complete set of model 

basis functions, Ψn and Ψm, where the only non null inner products of (3.17) are the ones in 

which n=m. As is known from Fourier series, the inner product of terms at different 

frequencies is zero. So, for that type of model functions the orthogonality is already 

guaranteed. However, since in this case the input signal is an evenly spaced multi-sine, 
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there will appear some Ψx’s that share the same output frequency, and these require special 

attention to guarantee orthogonality. 

There are two different things that may cause two output components to share the same 

frequency: (i) different frequency combinations of evenly distributed tones (e.g. ω1+ω2-ω3 

and ω1+ω3-ω4) and (ii) interference between components of different orders (e.g. ω1 and 

ω1+ω1-ω1 or ω1+ω2-ω2). 

These two situations are quite different. Type (i) interfering terms share the same 

frequency, but their phases vary independently. Therefore, each of the contributions can be 

separated from the others, when the average of the responses to multi-sines of randomized 

phases is performed [along with r, in (3.17)]. 

Type (ii) interfering terms can not be overcome this way since the phase of those 

contributions is exactly the same. So, the cancellation of type (ii) interference will be 

achieved by adding orthogonalization parts to those terms. As the desired orthogonal 

extraction stimulus is a multi-sine in which all the tones have A0 amplitude, only the lowest 

order of type ii) terms will be kept, while all the others will be canceled by subtracting the 

value of their responses at the extraction level. This way in the example of first and third 

order interference, the first order coefficient accounts for the linear and non-linear 

correlated part [3.5]. 

So, the orthogonal model is achieved by grouping, in a systematic way, all the input 

combinations to obtain model terms that produce a single output frequency, and by adding 

special orthogonalization parts to some of the terms that share the same frequency. 

Basically, the resulting model is a generalization of the Chebyshev polynomial (defined 

for one tone input and for memoryless systems), into a general polynomial with memory 

that is now orthogonal for the K input tones. 

After all these considerations the general orthogonal model creation procedure is stated. 

The first function considered is the one that produces the dc term. This term has no phase 

and so the quadrature function is zero valued. The result for the zero order components is: 
 

10 =Ψ I   (3.18a) 

 

and 

 

00 =Ψ Q .  (3.18b) 
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The first order components of the model are linearly scaled versions of the inputs. So 

the model functions are ( )sxk  and ( )sxk
' , the output of the linear decomposition: 

 

( ) ( ) ( ) ( ) kkkkkkkkkI xsSsCsAs ≡+=+=Ψ ωωφωω sincoscos,1
1 (3.19a) 

 

and 

 

( ) ( ) ( ) ( ) '
1 sincossin, kkkkkkkkkQ xsCsSsAs ≡−=+=Ψ ωωφωω . (3.19b) 

 

As they are linear, they produce a single output and thus need no orthogonalization. 

Note that xk is a function of the time sample s, ( )sxk , but, for simplicity of notation, its 

dependence on (s) is omitted. 

The second order functions can produce the frequencies �i+�j or �i-�j so there should be 

an independent Ψ for the sum and another for difference frequencies. If i=j then the second 

order difference contribution will fall at dc. The dc component was already accounted for 

in the zero order. So, the second order function can not produce another dc output, when 

the input amplitude is A0 [that is the role of the delta function in (3.20a)]. The contribution 

of input signal amplitude to the change of the output dc level is accounted for at a different 

input amplitude level. The formulation of these functions is 
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and 
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The third order functions can produce the frequencies ± ωi ± ωj ± ωk. If two symmetric 

frequencies appear in a combination (e.g ωj=-ωk) the resultant frequency will be coincident 

with the first order component (ωi). As was stated above, the third order function must not 

produce an output coincident with ωi, when the input amplitude is A0, to enable the 

separate measurement of the linear coefficient. The third order impact at that frequency 

will be measured later. The functions obtained are: 
                                                 

1 Note that the Ψ(ωk, s) is a function of the input component xk(s) whose resulting frequency is at ωk. 



3. The Orthogonal Formulation for Volterra Series Extraction 

47 

 

 

( ) ( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

( ) ( )
( )( ) ( ) ( )
( )( ) ( ) ( )sA

sA

sA

sss

sss

sss

ssss

kIkkkk

kIkkkk

kIkk

kIkQkQ

kQkIkQ

kQkQkI

kIkIkIkkkI

,1

,1

,

,,,

,,,

,,,

,,,,

13221

23132

321

321

321

321

321321

1
2
0

1
2
0

1
2
0

111

111

111

1113

ωωωδωωδ

ωωωδωωδ

ωωωδ

ωωω

ωωω

ωωω

ωωωωωω

Ψ+−−−

Ψ+−−−

Ψ+−

ΨΨΨ−

ΨΨΨ−

ΨΨΨ−

ΨΨΨ=++Ψ

 (3.21a) 

 

( ) ( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

( ) ( )
( )( ) ( ) ( )
( )( ) ( ) ( )sA

sA

sA

sss

sss

sss

ssss

kQkkkk

kQkkkk

kQkk

kIkIkQ

kIkQkI

kQkIkI

kQkQkQkkkQ

,1

,1

,

,,,

,,,

,,,

,,,,

13221

23132

321

321

321

321

321321

1
2
0

1
2
0

1
2
0

111

111

111

1113

ωωωδωωδ

ωωωδωωδ

ωωωδ

ωωω

ωωω

ωωω

ωωωωωω

Ψ+−−−

Ψ+−−−

Ψ+−

ΨΨΨ+

ΨΨΨ−

ΨΨΨ−

ΨΨΨ−=++Ψ

  (3.21b) 

 

For simplicity of notation, in these expressions it was assumed that for components 

involving frequency differences the minus signal is hidden inside the ωk. This 

simplification lacks physical meaning, since there are no negative frequencies. But, 

remembering that ( )skI ,1 ωΨ  is a cosine of ωk and that ( )skQ ,1 ωΨ  is the sine part, then the 

assumption made corresponds to change the signal of ( )skQ ,1 ωΨ  when the term desired 

involves -ωk. 

These expressions obtained can be generalized recursively obtaining the result  
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Basically, the first line of (3.22a) and (3.22b) produces the resultant frequency from the 

combination (ω1,…,ωn), based on the frequency sets ωn and (ω1,…,ωn-1). The summations 

and products at the second line evaluate the need of inclusion of an extra orthogonalization 

factor if ωn is the symmetric of any of the frequencies in the range (ω1,…,ωn-1).  

All the model terms presented are multiplied by scaling coefficients CI and CQ, the 

parameters of any instantiation of the model as was depicted in Figure 3.1, and as stated in 

(3.23). 
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3.5 Orthogonal Model Coefficients’ Extraction 
The model coefficients’ extraction starts with the system excitation with a set of random 

phase multi-sines  
 

( ) ( )( )∑
−

=

+∆+=
1
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,00 cos

N

n
nrr snAsx φωω   (3.24) 

 

in which each tone has amplitude A0, the defined amplitude of orthogonality, and the 

output components at each frequency are measured in amplitude and phase. The value of 

each coefficient can be calculated as the projection, based on the inner product (3.17), of 

the output over the corresponding orthogonal model component. 

The coefficient determination process is based on averaging several random 

components in which each of them contains the desired coefficient and also a random 
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perturbation (from other components that share the same spectral position). So it is 

considered that the extraction process is finished after a certain number of random 

experiments that guarantee that the expected value of the interference on each coefficient is 

as small as prescribed. There are some strategies that can speed up the convergence. For 

example, if we start with the estimation of the first order coefficients and then use the 

obtained values for the estimation of the higher order ones, we will obtain better estimates 

of higher order coefficients with a smaller number of random phases in the input multi-

sine.  

In order to quantify this impact and determine what should be a reasonable number of 

random phases to consider, lets consider, as a simple example, a three tone multi-sine of 

equally spaced frequencies 1ω , ωωω ∆+= 12  and ωωω ∆+= 213 . The output at 

frequency 1ω  will have two different sources. One resulting from the first order basis 

function (3.18a) and another of the third order basis function here rewritten: 
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Because the model is orthogonal to this input, the coefficients (model kernels) 

multiplying those functions can be recursively determined using the projections of the 

output over the corresponding orthogonal basis functions. This projection is given by the 

ratio between (i) the output and the basis function cross-correlation and (ii) the 

corresponding basis function auto-correlation. So, in the first parameter extraction stage, 

the first order coefficients, C1I,1, are estimated from 
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In which R is the number of random phase measurement made and S the number of the 

time samples s. The numerator of (3.26) can always be understood as one part that relates 

( )[ ]sxI 11Ψ  with the component of ( )sy  of the same phase and another part that relates 

( )[ ]sxI 11Ψ  with the part of ( )sy  that has random phase. As seen from this numerator, the first 

part is the one that we are interested to extract, while the second one is the interference to 
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the measurement. Note that, because the various multi-sine realizations have randomized 

phases, the mentioned cross-correlation (in which the average is achieved during the 

summation of all the multi-sine realizations, r) guarantees that the interference indeed goes 

asymptotically to zero.  

Then, using these first order coefficients, the C3I,22-3 can be estimated from (3.27) in 

which the strong interference of the linear components was previously suppressed. In fact, 

since the extracted C1I,1 will always have a residual error, there is still some interference 

from first to third order components that must be eliminated by the appropriate cross-

correlation of (3.27). In a general situation (with more than three input frequencies) 

different third order combinations would appear at the same output frequency and thus 

should be also accounted here as interference. 
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Simplifying expression (3.27), for this particular case of a three tone input, and focusing 

only on the interference term, the following result for the error is reached: 
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where ε1 is the error limit for the estimation of C1I,1. Since the phases φ are stochastic 

variables, the sum φ1-2φ2+φ3 is also a random variable. Using the central limit theorem, it 

can be shown that the summation of the random phase cosines becomes a Gaussian 

variable whose variance is 1/(2R) [3.6]. 

The problem now is to determine the value R that ensures, with a probability level PL, 

that the error obtained is smaller than ε, that is: 
 

( ) L

R

r
rrr P

RAA
AP >⎥

⎦

⎤
⎢
⎣

⎡
<+−∑

=

εφφφ
ε

1
321

3
2
2

11 2cos  (3.29) 

 



3. The Orthogonal Formulation for Volterra Series Extraction 

51 

 

Since the error is a Gaussian variable, this condition can be equivalently written as: 
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in which Q stands for the normalized form of the cumulative normal distribution function, 

which can be solved to find the minimum required number of random experiments R . 

So, following this approach, if one uses an appropriate number R of random phase 

realizations of the input multi-sine, the determination of all the coefficients is guaranteed, 

with P probability, to have an error smaller than ε. 

An additional comment is imposed on (3.27). Some of the ΨnI were defined to produce 

zero output at the orthogonality level. Therefore, this expression can not be used directly to 

extract the coefficients relative to those terms. To extract those coefficients extra 

measurements must be performed with different input amplitudes so that the desired model 

terms produce a measurable effect. 

After those measurements, an intermediate output signal is computed with the terms and 

coefficients already measured and this intermediate predicted signal is subtracted from the 

output. The difference between measured output and intermediate predicted output is then 

used to extract the non-orthogonal terms. Typical values of the number of randomizations 

required are shown in [3.7]. 
 

3.6 Passing from the Orthogonal Model to the Volterra 

Series 
At this point the coefficients of a model able to mimic the system’s response are known. 

However, the goal of this work is to determine the Volterra coefficients of (3.2). The 

procedure to compile those coefficients is conceptually simple. Since the orthogonal model 

was obtained recombining the Volterra series products, if the inverse combination is 

performed, then the original coefficients will be achieved. A simple way to accomplish this 

is to apply the probing method to (3.23) and calculate the model’s response to each 

complex exponential excitation. Direct use of the probing method in (3.23) is not possible 

since the model basis functions xk(s) and xk
’(s) are unable to represent complex signals. So 
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the basis functions xk(s) and xk
’(s) have to be redefined as: 

 

( ) ( )kkkkkkk tAjtAx φωφω +++= sin.cos , (3.31a) 
 

and the corresponding 90º deviation 
 

( ) ( )kkkkkkk tAjtAx φωφω +−+= cos.sin'   (3.31b) 

 

to allow the representation of the complex exponentials. 

With these new basis functions in the Ψ’s evaluation on (3.23) the mapping between the 

orthogonal model formulation and the Volterra series can be computed. After a lengthy and 

time consuming process of substitutions and simplifications the expressions for each of the 

frequency domain Volterra kernels are obtained. 

Bellow the expressions for the Volterra series kernels determination from the 

orthogonal model representation are shown, for a generic number of input tones and a 

nonlinearity order up to 5. 
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16,,,, iiiiiQiiiiiIiiiii CjCH −=ωωωωω  (3.32f) 

 

The Volterra kernels presented in these expressions can be converted into their 

equivalent time domain representation using conventional multidimensional Fourier 

Transforms. After all this process the desired coefficients of equation (3.2) are obtained. 

In expressions (3.32), it can be seen that the determination of the first order Volterra 

kernel is dependent on the higher order orthogonal kernels. This dependency is already 

known [3.1], and arises from the fact that the orthogonal first order coefficients are not the 

small signal 1st degree term, but actually, a Best Linear Approximator of the system (thus 

containing components of higher orders, as discussed on Chapter 5). Since the Volterra 

series is homogeneous, the higher order components included in the first order terms must 

be subtracted when writing the Volterra series coefficients. 

3.7 Summary and Conclusions 
In this chapter the whole procedure to reach the orthogonal extraction of the Volterra 

series coefficients was presented. The formal equations to build such an orthogonal model 

for an input randomized phase multisine were derived and explained and an expression for 

the general Nth order term was given. 

The orthogonal coefficients’ extraction was explained and closed form expressions 

derived to determine the minimum number of different input randomized phase multisine 

realizations that ensures a desired maximum error for coefficients’ determination. 

Finally, the correspondence between the orthogonal model coefficients and the 

conventional Volterra series ones was derived. 

The next chapter will present several application examples of this coefficient extraction 

methodology. 
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4. Approximation results with the new model 
formulation in different conditions 

 

4.1 Introduction 
In this chapter a demonstration of the performance of the orthogonal modelling 

approach presented in Chapter 3 is shown. To accomplish this demonstration in a complete 

way, situations will be shown where the model approximation is very good, but also some 

other examples in which this modelling approach is not recommended. 

To circumvent practical limitations on the number of extracted coefficients and of 

signal time samples required to represent a real communications’ system, a lowpass 

equivalent model formulation will be used. This way the number of time samples required 

decreases a lot since the sample frequency is chosen to verify the Nyquist criteria for the 

signal’s bandwidth and not for the carrier frequency. 

With the purpose of demonstrating the model’s ability to deal with the different 

phenomena present in a real microwave PA, the modelling approach presented in the 
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previous chapter will here be exemplified and demonstrated for different kinds of systems 

[4.1]. 

This chapter starts with two control tests: (i) extracting the model of a nonlinear 

memoryless amplifier modelled by a mathematical function (ii) and extracting the model of 

a linear band pass filter. The purpose of these simple situations is to illustrate the 

modelling procedure and to create control experiences that will allow the verification of 

the model performance when modelling more realistic systems. After these basic initial 

control tests some linear memory was cascaded with a nonlinear memoryless system 

creating, this way, the Wiener, Hammerstein and Wiener-Hammerstein configurations. 

After these tests, an extra synthetic amplifier was used: a nonlinear amplifier with memory 

effects caused by the bias circuitry. The device used to test this configuration was a real 

power amplifier modelled by its equivalent ADS [4.2] representation, and the model results 

obtained by the proposed modelling approach are compared with the ones obtained in 

ADS. 

Finally, real amplifiers are measured and a model is extracted for two different 

amplifiers, one of them presenting strong nonlinear memory effects due to a badly 

designed (on purpose) bias circuits. 

For all these different power amplifier situations some figures are presented in order to 

characterize their operating point and to demonstrate the model’s performance. Also, for 

each case the one tone input/output power curve is shown to characterize the nonlinearity 

of the amplifier used. To illustrate the linear memory present in the system the small signal 

transfer function is plotted. Finally, to characterize the nonlinear memory, the 

instantaneous input/output power plot is also shown. 

4.2 First Example: A Memoryless Amplifier 
Figure 4.1 presents the block diagram of the nonlinear system being modelled in this 

example. A nonlinear function (in this case an hyperbolic tangent) converts the input time 

signal x(t) into its correspondent output signal y(t). 
 

x(t) y(t)

 
Figure 4.1 – Block diagram of the nonlinear memoryless system considered. 
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The particular expression implemented in this example was: 
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in which x(t) and y(t) are the input and output voltages respectively. 

As was stated above, the goal of modelling this memoryless amplifier is to illustrate the 

steps required to extract the Volterra series model. So, to find the required model 

parameters (order of the polynomial and the number of input tones of the multisine) we 

must start with some raw measurements in order to observe, qualitatively, the behaviour of 

the system. 

Figure 4.2 shows the system’s small signal transfer function. This figure allows the 

evaluation of the linear memory present in the system. In this simple case, since a 

memoryless system was created on purpose, the transfer function is flat over frequency. 
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Figure 4.2 – Small signal frequency response of the memoryless amplifier. a) amplitude b) phase. 

 

Figure 4.3a) illustrates the one tone input/output average power. As a reference, it is 

also shown the response of a linear system with identical small signal gain. One extra step 

is required to complete our initial system analysis – it is the instantaneous input/output 

power gain plot. This test shows the dynamic behaviour of the systems. The presence of 

hysteresis [4.3] on this curve might indicate linear memory (if it appears for low input 

signal power) and/or nonlinear memory (if it appears for high input signal power). In this 

case, histeresis does not appear either in small or large signal regime, as was expected for 

this memoryless system. 
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Figure 4.3 – a) One tone input/output average power. b) Dynamic gain curve of the amplifier 

considered (obtained with two tones) 

After these preliminary tests, the number of input tones required for model extraction 

can be determined. Since the system in this example presents no memory effects, a single 

tone measurement is sufficient for model extraction.  

Figure 4.3 shows that the input one dB compression point of the system is 

approximately 10 dBm. The model was extracted with an average input power of 8 dBm. 

Figure 4.4 shows a comparison between observed and predicted input/output one tone 

power curves. Very good results are seen up to an average input power of 18dBm. Above 

this point the polynomial divergence phenomena starts to appear. It must be pointed out 

that we are modelling a hyperbolic tangent system using a fifth order polynomial. So, 

sooner or later the model should diverge. However, when the model diverges, the input 

power level is more than 6 dB above the extraction point, and the system is already in deep 

compression (more than 3 dB). 

5 10 15 20 2520

25

30

35

40

45

Average Input Power (dBm)

Av
er

ag
e 

O
ut

pu
t P

ow
er

 (d
Bm

)

Observed
Predicted

 
Figure 4.4 – Input/output average power for one tone signal: observed and modelled results. 
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Additionally to the one tone input/output validations, another test was performed that 

consisted in evaluating the model’s accuracy when excited with a WCDMA signal. As an 

indicative example, it is shown in Figure 4.5a) and Figure 4.5b) the time domain complex 

envelope and spectrum, respectively, of the WCDMA sequence used. The average input 

power of the signal used was equal to the model extraction point. 
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Figure 4.5 – a) Output magnitude of the complex envelope of the WCDMA sequence used to validate 
the model. b) – Observed and predicted power spectral density of the WCDMA signal used to validate 
the model. 

 
In Figure 4.5b), the WCDMA power spectrum is shown. In-band results are nearly 

coincident. The absolute error between both is of the order -50 dBm. On the contrary, the 

alternate channel approximation is not as good and at some points the value of the error 

observed is of the same order of magnitude as the modelled signal. This result is probably 

originated on the power level difference from the in-band component (nearly -10dBm) and 

the fifth order one (around -80dBm). This power level difference complicates the accurate 

modelling of the small power IMD components. 

Another validation test performed is the comparison shown in Figure 4.6 that plots the 

dynamic input/output characteristics measured and modelled. In this example the modelled 

curve presents a wider region in the small input signal power. This can be interpreted as 

the impact of the modelling noise (which is more visible when the signal contribution is 

negligible). 
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Figure 4.6 – Observed and Predicted instantaneous input/output transfer characteristic for the 
memoryless system. 

 

Additionally, the comparison of the output in-band, adjacent and alternate channel 

power modelled and measured is shown for a WCDMA validation signal. The plot in 

Figure 4.7 shows an overview of all this data and a good agreement is seen. In an ideal 

situation, the alternate channel power (IMD5) would raise at 5dB/dB. It is not visible in 

this figure because the low power fifth order IMD is masked by the spectral leakage of the 

signal. 

Finally, the Normalized Mean Square Error (NMSE) is plotted in Figure 4.7b). A 

NMSE smaller than -40 dB can be seen for power levels bellow the extraction level. The 

model divergence for high input power levels causes the fast degradation of the NMSE. 
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Figure 4.7 – a) Comparison between measured and modelled output power, IMD3 and IMD5. b) 
Normalized Mean Square Error variation with the input power sweep. 
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4.3 Modelling a Linear Filter 
The schematic representation of the system used in this modelling example is presented 

in Figure 4.8. The adopted filter was a 4th order Butterworth bandpass. The frequency 

response of this filter is shown in Figure 4.9. 
 

x(t) y(t)

 
Figure 4.8 – Schematic representation of the linear filter used. 
 

The linear filter transfer function is presented in the following equation 

 

( ) 4321
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zzzz
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Since, in this situation, a linear system is to be modelled the nonlinear system 

characterization figures will not be explored. So, the preliminary characterization of the 

linear filter is made by its small signal frequency response presented in Figure 4.9. Despite 

the constant amplitude response in a bandwidth of nearly 5 MHz, it is visible in the phase 

variation the non-constant frequency response of the filter inside that band. 
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Figure 4.9 – Frequency response of the linear filter used in this situation. 
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Figure 4.10a) shows the one tone input/output average power in which the system’s 

linearity can be seen by the superposition of the measured line with the reference linear 

system. 
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Figure 4.10 – a) One tone input/output average power of the linear system. b) Dynamic gain curve of 
the linear filter. 

 

Figure 4.10b) shows the instantaneous gain of the filter used. It is shown that the 

system presents a linear behaviour. The aperture of the curve in the left side of the figure 

(for very low input powers) demonstrates some delay on the zero crossing zones imposed 

by the linear memory of the filter.  

In order to determine the number of samples (frequency tones) required to model this 

filter an estimation of its lowpass equivalent impulse response is made using a large 

number of frequency tones (15), the result is shown in Figure 4.11. 
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Figure 4.11 – The magnitude plot of the linear filter impulse response. 
 



4. Approximation results with the new model formulation in different conditions 

63 

 

From a rough analysis of this figure one can realise that the 15 time samples are more 

than enough to contain the more significant part of the filter’s impulse response energy. 

Since the most significant part of the energy is concentrated on the first five samples this is 

the number considered for model extraction. 

So the nonlinear model is extracted with five tones up to fifth order, and its modelling 

performance is presented in the next figures. In Figure 4.12a) the comparison between 

modelled and observed input/output is shown for a single tone. Since the system under test 

is, in this case, linear, the model does not present deviations when the input power leaves 

the model extraction level. 

Figure 4.12b) shows that there is a good convergence between measured and modelled 

instantaneous output waveforms. 
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Figure 4.12 – a) Input/output power comparison between observed and predicted waveforms for an 
input multisine. b) Predicted and observed instantaneous input/output transfer characteristic for the 
linear filter. (obtained with a WCDMA signal) 
 

As validation, in Figure 4.13 the modelling results of a WCDMA signal are plotted in 

time and frequency domain, respectively.  

In Figure 4.13b), differences are shown for the adjacent and alternate channels. 

However the spectrum in those regions is more than 100 dB bellow the in-band power and 

thus the observed differences do not have physical meaning. 
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Figure 4.13 – a) Comparison between observed and predicted magnitude of the complex envelope of 
the WCDMA sequence used to validate the model. b) The predicted and observed spectra of WCDMA 
validation signal. 
 

Figure 4.14a) shows the variation of in-band, adjacent and alternate channel powers 

both measured and modelled with an input WCDMA signal power sweep. 
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Figure 4.14 – a) Comparison between measured and modelled output power, IMD3 and IMD5 for the 
linear filter system. b) – Normalized Mean Square Error evolution with input power sweep. 

 

Since in this particular example a linear system is being modelled, the nonlinear 

coefficients obtained are almost zero (the differences are the extraction noise), there is no 

NMSE degradation with the input power variation, as shown in Figure 4.14b. 
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4.4 Modelling the Cascade of a Memoryless Nonlinearity 

and a Linear Filter 

4.4.1 Wiener Configuration 
 

In this sub-section an amplifier in a Wiener configuration is considered. Figure 4.15 

shows the nonlinearity following the linear filter. It can be understood as the sequence of 

two systems of the type of the ones that were previously studied. 
 

x(t) y(t)

 
 

Figure 4.15 – Schematic representation of the Wiener model amplifier configuration. 
 

For this system the small-signal S21 parameters are presented in Figure 4.16, in both, 

amplitude and phase. 
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Figure 4.16 –Small signal gain variation with frequency of the Wiener system considered. a) 
amplitude; b) phase. 

 

The one tone input/output power is plotted in Figure 4.17a), the one dB compression 

point is also indicated in the figure. 
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Figure 4.17 – a) One tone average PIN/POUT of the system of Figure 4.15. b) Instantaneous two-tone gain 
curve for the Wiener configuration. 

 

Figure 4.17b) shows the instantaneous two-tone gain characteristic of the Wiener 

system under modelling in this section. The right part of the figure shows the nonlinear 

behaviour of the system, while the left part shows the memory behaviour visible for the 

small signal regime - thus is linear memory. 

The model for this system was obtained with five time delays and fifth order. Figure 

4.18a) shows the comparison between modelled and measured single tone output power. In 

this situation the polynomial divergence for high input powers is also shown. Figure 4.18b) 

shows a good convergence of the instantaneous input/output power shadows for both 

modelled and measured signals. 
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Figure 4.18 – a) Single tone input/output average power (modelled and observed). b) Comparison 
between modelled and measured WCDMA instantaneous output for the Wiener system. 
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Figure 4.19a) shows a comparison between modelled and measured WCDMA signal 

complex envelope magnitude. It is seen that in this case the model has some difficulties to 

track the measured output. Nevertheless, Figure 4.19b), which shows the same results in 

the frequency domain, presents an absolute error of more than 20 dB bellow the output 

power level for the in-band channel, and a similar result for the adjacent channel 

(dominated by third order components). The fifth order components present an absolute 

error closer to the actual value of the IMD components. That might be due to the low level 

of these components. 
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Figure 4.19 – Magnitude of the time domain complex envelope of the WCDMA signal (Measured and 
Modelled). b) – The predicted and observed spectra of CDMA validation signal. 
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Figure 4.20 – a) Model results on output power, IMD3 and IMD5 with input WCDMA signal power 
sweep. b) Normalized Mean Square Error of the model of the Wiener system.  
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Figure 4.20a) presents the effect of input power sweep on the in-band, adjacent and 

alternate channel power predictions. Once more it is shown that above the extraction level 

the model rapidly diverges from the measured values. In this figure this is particularly 

evident for the third order components. 

In this situation the best NMSE achieved is -30 dB, as exposed in Figure 4.20b), which 

is not a very good value, but is in accordance with the imperfect approximation shown in 

Figure 4.19a). 

4.4.2 Hammerstein Configuration 
 

In this validation, a different test has been performed. The memoryless nonlinearity 

was placed before the nonlinear filter according to the Hammerstein configuration shown 

in Figure 4.21. 

x(t) y(t)

 
Figure 4.21 – Schematic representation of the Hammerstein model configuration. 
 

For this system the small-signal S21 parameters are plotted in the next figure. 
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Figure 4.22 –Small signal gain variation with frequency of the Hammerstein system considered. a) 
amplitude; b) phase. 
 

The one tone input/output system characteristic is exposed in Figure 4.23a). Also 

shown is the one dB compression point (where the model was extracted).  
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Figure 4.23 – a) One tone average PIN/POUT of the system of Figure 4.21. b) Instantaneous two-tone gain 
curve for the Hammerstein configuration. 

 

Figure 4.23b) shows the instantaneous two tone gain of this system. It can be seen that 

the system behaviour is mainly dominated by linear memory (low input power) and 

nonlinearity. 

The system with the characteristics presented in the previous figures has been modelled 

and now the modelling performance will be evaluated. To start, Figure 4.24a) shows the 

comparison between measured and modelled one tone input/output power. 
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Figure 4.24 – a) Observed and Predicted one tone input/output average power. b) Comparison between 
observed and predicted WCDMA instantaneous output for the Hammestein system. 
 

The cross validation results, with WCDMA sequence, are plotted in Figure 4.25a). It is 

shown that the model approximates the shape of the envelope amplitude but presents some 

difficulties to track it with detail. 
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Figure 4.25 – a) Time domain complex envelope magnitude comparison between Measured and 
Modelled CDMA signals. b) The predicted and observed spectra of WCDMA validation signal. 
 

Figure 4.25b) shows the correspondent frequency domain plot of the WCDMA 

envelope signal. 

The next figure shows the variation of the in-band, adjacent and alternate channel 

integrated power both measured and simulated. As in the previous examples good 

agreement is shown except in the region of the polynomial model divergence. 
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Figure 4.26 – a) Model results on output power, IMD3 and IMD5 with input WCDMA signal power 
sweep for the Hammerstein system. b) Normalized Mean Square Error of the Hammerstein system 
model results. 

 

The NMSE plot of this model, Figure 4.26b), shows a clear valley that illustrates 

perfectly the local characteristic of the model being used in this thesis. 
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4.4.3 Wiener-Hammerstein Configuration 
 

The block diagram of the Wiener Hammerstein configuration is shown in Figure 4.27. 

y(t)x(t)

 
Figure 4.27 – Schematic representation of the Wiener-Hammerstein model configuration. 
 

The small-signal S21 parameters, of this system are presented in Figure 4.28. 
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Figure 4.28 –Small signal gain variation with frequency of the Wiener-Hammerstein system 
considered. a) amplitude; b) phase. 

 

The next figure shows the PIN/POUT transfer characteristic of this system measured 

using a single tone. The dynamic transfer characteristic is plotted in Figure 4.29b). 

-20 -10 0 10 20

0

10

20

30

40

PIN (dBm)

PO
U

T 
(d

Bm
)

System to model
Small Signal Ref.
P1dB

-30 -20 -10 0 10 20
14

16

18

20

22

Instantaneous Input Power (dBm)

In
st

an
ta

ne
ou

s 
G

ai
n 

(d
B)

b)a)

 

Figure 4.29 – a) One tone average PIN/POUT of the system of Figure 4.27. b) Instantaneous two-tone 
Gain curve for the Wiener-Hammerstein configuration. 
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Figure 4.30a) presents the comparison of input/output power obtained in a static way 

using a single-tone excitation. Figure 4.30b) presents the measured/modelled instantaneous 

input/ouput power curves obtained with a WCDMA signal. 
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Figure 4.30 – a) Observed and predicted one tone input/output average power. b) Comparison between 
Modelled and Measured WCDMA instantaneous output for the Wiener-Hammerstein system. 
 

Figure 4.31a) and Figure 4.31b) show the measured and modelled complex envelope of 

the WCDMA signal used to perform the cross validation of the model. 
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Figure 4.31 – a) Magnitude of complex time domain envelope comparison between Measured and 
Modelled CDMA signals. b) The predicted and observed spectra of CDMA validation signal. 

 

Figure 4.32a) presents the evolution of the WCDMA integrated power with an input 

power sweep. Once again, the model divergence is quite clear for input power above the 

model extraction point. 
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Figure 4.32b) presents the variation of the NMSE for the Wiener-Hammerstein system 

model with the input power level variation. The model’s local behaviour is once again 

visible on this figure. 
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Figure 4.32 – a) Model results on output power, IMD3 and IMD5 with input signal power sweep. b) 
Normalized Mean Square Error of the model for the Wiener-Hammerstein System. 
 

4.5 Modelling a Nonlinear Amplifier With Memory Effects 

Caused by the Bias Circuitry 
In this section the modelling approach is validated in a more realistic power amplifier. 

Figure 4.33 shows the block diagram of the amplifier being considered. The feedback path 

in this configuration is responsible for a new type of memory that none of the previous 

systems can mimic. This memory does not appear if the system is operated in the small 

signal condition, this is why this memory effect is usually called nonlinear memory. 
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Figure 4.33 – Schematic representation of the Hammerstein model configuration. 
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Figure 4.34 presents the circuit schematic of the block diagram considered. If the L2 

inductor value is properly chosen than it creates considerable reactive base band 

impedance that varies within the input signal bandwidth [4.4]. This schematic was 

implemented in ADS, and then properly tuned to present nonlinear memory effects.  
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Figure 4.34 – Circuit diagram of the amplifier being modelled. 
 

As in the previous sections, the main characteristics of the system under test are plotted 

in the next figures. The small-signal S21 parameters are represented bellow: 
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Figure 4.35 –Small signal gain variation with frequency of the simulated PA considered. 
 

This figure presents a very small variation on the S21 from which we might assume the 

small signal flat frequency response of the system. Figure 4.36a) presents the one tone 



4. Approximation results with the new model formulation in different conditions 

75 

 

input/output power curve of the device showing this way its static nonlinear properties. 

The instantaneous input/output power measured with a two tone signal is shown in Figure 

4.36b) and demonstrates its nonlinear dynamics. These are mainly visible for high input 

powers. 
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Figure 4.36 – a) One tone average PIN/POUT of the system of Figure 4.15. b) Instantaneous two-tone gain 
curve for the simulated PA configuration. 

After the main system characterisation, some modelling results are now presented. As 

in the previous examples the first model results are the static and dynamic comparison 

between measured and modelled output signals presented in Figure 4.37.  
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Figure 4.37 – a) Observed and Predicted input/output one tone average power. b) Comparison between 
Modelled and Measured WCDMA instantaneous output for the simulated PA. 
 

Figure 4.37a) shows, once more, the good approximation results for the small signal 

regime and the model divergence for high input powers. Figure 4.37b) presents the 

instantaneous input/output curves; it is visible in the higher input powers a slight 



Contribution to the Study of the Impact of Nonlinearities on Telecommunications Systems 

76 

enlargement of the input/output power curve. This enlargement is due to the nonlinear 

memory effects. 

Figure 4.38a) shows the complex time domain magnitude comparison between 

measured and modelled WCDMA envelope signals. The corresponding frequency spectra 

comparison is in Figure 4.38b). Good approximation results were obtained. 
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Figure 4.38 – a) Complex envelope time domain comparison between Measured and Modelled 
WCDMA signals. b) The predicted and observed spectra of WCDMA validation signal. 

Figure 4.39a) shows the comparison between measured and modelled power of the in-

band, adjacent and alternate channels. In this situation, the measured adjacent and alternate 

channel powers are quite noisy. 
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Figure 4.39 – a) Model results on output power, IMD3 and IMD5 with input signal power sweep. b) 
Normalized Mean Square Error of the model response for several input powers. 
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4.6 Modelling a Real Power Amplifier 
In order to demonstrate the application of this modelling approach on a real power 

amplifier two different tests have been made. Profiting from the collaboration with other 

European universities and companies within the Network of Excellence TARGET – Top 

Amplifier Research Group in a European Team, we had access to two comparable 

amplifiers designed to study the impact of DC-bias network effects on the amplifier 

nonlinear memory characteristics. This way the model performance could be tested on one 

amplifier without significant memory effects and also in an amplifier specifically designed 

to present nonlinear memory effects [4.5,4.6]. 

The next two subsections present the main characterization of each device as well as 

the modelling performance obtained. 

4.6.1 Nonlinear Memoryless Amplifier 
 

Figure 4.40 presents the circuit topology of the considered memoryless amplifier. The 

circuit component values were chosen to obtain a flat frequency response near the 

operation band. This amplifier was modelled for a CDMA2000 signal application centered 

at 950 MHz. 
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Figure 4.40 – Schematic representation of the circuit of the memoryless amplifier. 
 

For this system the small-signal S21 parameters are represented in Figure 4.41. The 

analysis of this figure indicates that it is a good assumption to consider a flat response in a 

band of nearly 5 MHz around 950 MHz where the small signal S21 varies less than 0.1 dB. 
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Figure 4.41 –Small signal gain variation with frequency of the Wiener system considered. 

 

To characterize the nonlinear behaviour of this amplifier, a one tone input/output 

power sweep was made and the results are shown in the Figure 4.42. A fifth order model, 

with seven time delays was extracted for an average input power of 6 dBm which is 

approximately the 1 dB compression point. 
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Figure 4.42 – One tone average PIN/POUT of the memoryless amplifier. 
 

The cross validation results are shown in the next two figures. Figure 4.43 shows a 

comparison between the envelope magnitudes of the amplifier response measured and 

modelled. It is seen some large deviation especially for abrupt transitions and high peaks.  
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Figure 4.43 - Time domain magnitude comparison between Measured and Modelled multitone signals. 

 

At this operation power level the PA is already clipped as Figure 4.43 demonstrates, 

and so a polynomial model has difficulties describing the system’s output response 

(Compare with Figure 4.45). 

The analysis of the spectra comparison in Figure 4.44 shows a larger difference 

between measured and modelled output signals for lower output PSDs. Other issue that 

might influence this modelling problem are the different statistical properties (PSD, PAR, 

etc) of the multisine used for model extraction and of the CDMA2000 sequence used for 

validation. 
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Figure 4.44 – The predicted and observed spectra of CDMA validation signal. 
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The instantaneous input/output power measured and modelled comparison is shown in 

Figure 4.45. In this figure a reasonable similarity is observed between both curves. The 

polynomial model divergence starts to be visible in the high power zone. 
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Figure 4.45 –WCDMA signal instantaneous input/output power curve for the memoryless amplifier – 
Measured and Modelled. 

 

Table 4.1 shows the NMSE obtained for this amplifier for different CDMA2000 signal 

average input powers. Being slightly worse than the results obtained with the model 

extracted for simulated results, the NMSE values above 20 dB were still a reasonable 

achievement for a behavioural model obtained from real measurements. 
 

Table 4.1 – Normalized mean square error for different CDMA2000 input signal powers. 
 

Input Power (dBm) NMSE (dB) 
4 -22.3 
6 -25 
9 -23.45 

 

4.6.2 Nonlinear Dynamic Amplifier 
 

A different topology of the bias networks, shown in Figure 4.46, introduces nonlinear 

memory effects. The bias resonance, specifically added to create a sharp frequency 
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response within the input signal bandwidth, is the main cause of this nonlinear dynamic 

behaviour. 
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Figure 4.46 – Schematic representation of the circuit of the nonlinear dynamic amplifier. 
 

The model for this amplifier was extracted in the same conditions of the previous one. 

Once more, the small-signal S21 parameters of the system being studied are presented.  
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Figure 4.47 –Small signal gain variation with frequency of the nonlinear dynamic amplifier. 
 

The nonlinear static characterization is shown in Figure 4.48. This input/output power 

curve was measured using a single tone signal. 
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Figure 4.48 – One tone average PIN/POUT of the dynamic amplifier. 
 

The next two figures show the cross validation results obtained. In Figure 4.49 the 

envelope magnitude of the CDMA2000 signal used is plotted. A good comparison is seen 

between the modelled and predicted signals. The frequency domain equivalent results are 

shown in Figure 4.50. 
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Figure 4.49 – Time domain Magnitude comparison between Measured and Modelled CDMA signals. 
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Figure 4.50 – The predicted and observed spectra of CDMA validation signal. 
 

The instantaneous input/output plot obtained with the CDMA2000 signal is shown in 

Figure 4.51. This figure denotes some difficulties of the model in accurately modelling the 

nonlinear memory component. This difficulty might be a consequence of the measurement 

error, because the model worked just fine in the simulated amplifier with nonlinear 

memory (Figure 4.37b). Another possible explanation for the model’s bad performance 

modelling the nonlinear memory on this situation might be an insufficient discretization of 

the spectra to accurately capture the nonlinear frequency response imposed by the bias 

resonance shown in Figure 4.46. 
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Figure 4.51 – Instantaneous CDMA2000 input/output power curve for the nonlinear dynamic 
amplifier – Measured and Modelled. 
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Table 4.2 presents the NMSE evolution with the input power sweep. The poor results 

obtained in this situation are probably due to the insufficient spectral discretization to 

represent the nonlinear system dynamics’. The choice of a small number of tones in this 

situation was made to allow the extraction of a fifth order model – since the number of 

coefficients grows with LN (memory length to the power of nonlinear order) to increase the 

order and keep a reasonable number of coefficients the number of time delays has to be 

small. However these poor results appear to indicate that, in this case, probably a smaller 

order model with more time delays would perform much better, but this experiment was 

not possible to perform since the amplifiers were measured on a round-robin basis and 

were not available to repeat the measurements when this issue was detected. 

This table points out, again, the local characteristics of the model. 

 
Table 4.2 – Normalized mean square error for different CDMA2000 input signal powers. 
 

Input Power (dBm) NMSE (dB) 
4 -14.7 
6 -17.0 
9 -19.4 
11 -14.7 

 

4.7 Conclusions 
In this chapter an extensive set of validation tests were performed to demonstrate the 

model capabilities. The model operation and performance was demonstrated both on the 

regions where it performs well and on the regions where the divergence is obvious. 

It was shown that this model has the main behavioural characteristics of a 

“conventional” Volterra series: it behaves well for small signal (bellow the extraction 

point), and diverges (rapidly) for the large signal operation. One improvement of this 

model is that since it is a local approximation – in opposition to the small signal approach 

of the conventional Volterra series – its extraction point can be shifted to extract a model 

more devoted for a given application scenario. 

The modelling capabilities were demonstrated even in difficult situations as a nonlinear 

amplifier with nonlinear memory effects. Good results were obtained in the case of the 

simulated amplifier. 
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For the real dynamic amplifier, presented in section 4.6.2, the number of time delays 

considered and/or the sample frequency was unable to capture the system’s dynamic 

behaviour. However, the modelling of this amplifier was limited by the number of 

coefficients that can be treated (which limited the number of time delays) and also by the 

bandwidth of the measurement equipment used which did not allow a high sampling rate. 
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5. Noise and Distortion Figure: An Outcome of 
Cross-Correlation Identification. 
 

5.1 Introduction 
In the previous Chapters an orthogonal model was formulated and validated making 

use of output signal separate components identification. The separable identification was 

based on the definition of cross-correlation between the output and a set of particularly 

selected input combinations.  

If the input signal itself is used, and the output part correlated with the input is 

computed, than it is possible to separate the output signal and non-signal components. 

After the identification of these two components, an easy metric that accounts for the 

signal degradation imposed by the system can be achieved. 

In this Chapter, by using white Gaussian noise as the standard excitation, and cross-

correlation techniques, it is shown how the Best Linear Approximator (BLA), can be 

determined for general memoryless and dynamic nonlinear Volterra systems, this way 
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allowing the identification of the desired signal and noise components involved in the 

system’s output. Considering these results, a new Figure of Merit (FoM), named Noise and 

Distortion Figure (NDF), is proposed to evaluate the total signal degradation due to noise 

and distortion, simultaneously. It starts with a motivation to the usefulness of the new FoM 

based on the currently existing ones. After this discussion, the usual Noise Figure (NF) is 

revisited, and a formal discussion on the output separation of signal and noise for a system 

modeled by a Volterra Series is presented. In order to validate the derived closed form 

expressions for the newly defined NDF, a time domain simulation was performed for a 

typical dynamic nonlinear system, of third order, and the results compared with the 

proposed theoretical values. 

5.2 Current Figures of Merit for Signal Degradation 

Evaluation 
Signal to noise ratio, SNR, in real communication systems can be severely degraded 

when signals are processed by nonlinear components. That degradation is normally 

attributed to two different impairments: linear additive noise and nonlinear distortion [5.1]. 

In order to account for the additive noise, the figure of merit Noise Figure, NF, is 

normally used, while the 3rd order Intercept Point, IP3, can be made to play a correspondent 

role for nonlinear distortion degradation. 

Unfortunately, until now the complex nature of nonlinear distortion has prevented the 

integration of these two SNR degradation figures, forcing the design engineer to evaluate 

any link budget in two different steps: looking for the small amplitude signal limitations 

determined by additive noise, and its high level end imposed by nonlinear distortion. Only 

by taking into account those two perturbation causes, he can maximize the communication 

systems’ dynamic range. 

In an effort to understand the relation between these two signal perturbation figures 

of merit, A. Geens and Y. Rolain have detected in [5.2] some problems when measuring 

NF in the presence of nonlinearities and proposed a new noise figure to circumvent those 

problems. Nevertheless, and due to the excitation signals that were used, the results 

obtained with this new formulation of the NF can be disastrous, as it predicts certain zones 

of improvement in the output signal to noise ratio (SNRo), an obviously impossible 

outcome in practical situations. Furthermore, this work restricted its analysis to 
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memoryless nonlinear systems, which constitutes a severe limitation if applied to modern 

wide band wireless components that are known to exhibit non-negligible nonlinear 

memory effects [5.3,5.4]. 

One of the first and most important difficulties imposed by nonlinear distortion 

analysis is its dependence on the type of signal excitation. That issue, for long time 

recognized in the nonlinear systems’ identification field [5.5,5.6], demands for a careful 

selection of a convenient signal class. 

Although in the past, RF and microwave engineers had a propensity to represent their 

telecommunication signals by a pure sinusoid, it is already known that such class of signals 

is totally inadequate. In fact, it can not represent any real signal of non null bandwidth, 

amplitude varying envelope and the random behavior associated to information. Although 

the two-tone has been also widely adopted for nonlinear distortion testing, it still suffers 

from the fact that it only involves a sinusoidal envelope of deterministic behavior.. A much 

better signal class used to represent real communication signals that does not suffer from 

any of these drawbacks is the band-limited White Gaussian Noise, which will be therefore 

adopted for the present definition of a new figure of merit intended to be a metric of SNR 

degradation in presence of additive noise and nonlinear distortion. 

The second issue worth of discussion is the separation of the system’s output into its 

signal and distortion components. A useful criterion should be to use the same separation 

undertaken in modern wireless receivers as it would immediately lead to practically 

significant transmission quality figures as bit-error-rate. So, in that sense, it is considered 

as signal everything that contains information possibly processed by a linear dynamic 

operator, and as distortion any remaining part. This way it is possible to classify as signal 

the outcome of the so-called Best Linear Approximation, BLA, [5.6] which governs the 

linear behavior of the output signal versus the input excitation, and then use cross-

correlation to uniquely identify it. The dependence of the system’s Best Linear 

Approximation (gain in a memoryless system) on the input has been already discussed in 

the 60’s [5.7]. With those assumptions in mind, it was then possible to correctly divide the 

output useful signal from the noise distortion, and then quantify the signal to noise and 

distortion ratio, SINAD0, at the output. 
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5.3 Nonlinear Noise Figure Revisited 
An important figure of merit used to measure the degradation of signal quality 

between input and output is the NF which relates the Signal to Noise Ratio at the input 

(SNRi) to the Signal to Noise Ratio at the output. A. Geens and Y. Rolain [5.2] have 

proved that the presence of nonlinear distortion influences the measured NF value, and 

proposed a new setup for measuring NF using a single tone as a test signal. In this work an 

input composed by the sum of a single tone, of amplitude A, and band-limited, white, zero-

mean Gaussian noise with single sided PSD equal to N0 was used. To demonstrate the 

impact of the nonlinearity on the NF, a noiseless system is considered, and so a NF = 1 

should be obtained if the system were also linear. Using this approach, they reached the 

following expression for the NF: 
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where G is the linear power gain, α is a third order voltage gain and A the input tone 

amplitude. A closer look into expression (5.1) reveals that there are certain zones of input 

signal voltage in which the NF can be smaller than one, as shown in Figure 5.1. 
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Figure 5.1 – The NF proposed in [5.2] variation with the input power, for a system with parameters G 
= 100, α = 60, as indicated in the paper. 
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This result is strange since it indicates that the system can, in fact, improve SNR from 

the input to the output, in a certain sense eliminating input noise. 

A closer look into this theoretical result shows that the gain in the SNR, verified in 

these conditions, is caused by the different compression imposed to each signal: a sinusoid 

and white Gaussian noise. Actually, it is known [5.8] that when two different signals excite 

a nonlinear system, in which one is of much larger amplitude than the other, the 

compression of the smaller one is mainly determined by the level of the strong signal. In 

this case, the sinusoidal signal is the dominant component therefore determining a greater 

compression to the noise. In fact, the relation between the output sinusoid and noise will be 

improved due to the extra compression imposed to noise level. The referred NF 

characteristics associated to this approach can be traced to the use of a single sinusoid as 

the input signal. Actually, there is no input noise perturbing the signal, since the signal has 

a null spectral bandwidth, and thus there is no noise power inside the signal bandwidth. 

Additionally, since this test signal has a constant envelope, it is also unable to generate 

uncorrelated nonlinear distortion, also known as nonlinear distortion noise [5.6]. 

A more appropriate alternative would be the use of a test signal similar to a real 

communications signal, for example Gaussian noise, since it has nonzero bandwidth 

allowing the inclusion of effective additive noise and uncorrelated nonlinear distortion 

effects. Beyond that it has statistical properties similar to the ones of real signals. 

 

5.4 Signal and Noise Identification 
Despite the advantages of using Gaussian signals pointed out in the last section, there 

are also several difficulties associated with the separation between signal and noise 

components. In this case, the signal and noise share the same spectral positions obviating 

any straightforward separation in the frequency domain. Moreover, the signal component 

may be several orders of magnitude higher than the noise level.  

A physical meaning solution, often used because of its practical interest, is to 

consider as signal the output component correlated with the input, as is usual in 

conventional rake receivers. This result is supported by Bussgang’s Theorem [5.9]. In 

Figure 5.2 it is shown a geometric illustration of this operation. The projection of the 
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output (vector v) - which has correlated (collinear) components with the input and other 

ones uncorrelated (orthogonal) - onto the input signal component (vector u) is calculated 

using the input/output correlation and the power of input and output signals. That 

projection is the output signal component (vector w). 

 

u
rv

r

w
r

 
Figure 5.2 – Geometric representation of the method used to determine the output signal component. 

 

One way to obtain that correlated component is to use the BLA, which is defined as 

the linear transfer function that is the best approximation to the nonlinear system in a least 

squares sense [5.6]. In the frequency domain, it can be given by: 
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where Sxy(ω) is the cross spectral density of the input and output signals and Sxx(ω) is the 

input spectral density function that can be calculated as the Fourier Transform of the cross-

correlation and autocorrelation functions respectively: 
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Having defined this way the signal component, it can thus be considered as nonlinear 

noise all the remaining output components. Part of this distortion noise is irrelevant as it 

falls out-of-band (i.e., around DC and the carrier harmonics) and thus can be eliminated by 

proper filtering. The remaining in-band noise is present in the co- and adjacent-channels. 

To compute the SINAD one must consider as relevant noise only the co-channel part. 

The first approach considered is to calculate the output signal component in the case 

where a memoryless nonlinearity is modeled by a power series. 

 

5.4.1 BLA Calculation for a Memoryless Nonlinearity. 
 

A Gaussian signal, x(t), will be considered as input, so that the output is given by: 
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In order to obtain the output signal component, the input/output cross-correlation 

must be evaluated. Applying the definition of expression (5.3) and the properties of 

averaging Gaussian random variables [5.5] Rxy(τ) will be 
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which can be written in a generalized form as 
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Expression (5.6) presents a general result for input/output cross correlation of a 

memoryless nonlinear system modeled by a N’th order polynomial. This expression 

indicates that correlation only exists between output odd order terms and the input, since it 

is known that the average of the product of a number of Gaussian random variables is only 

non zero if that number is even. 

With equation (5.2) and equation (5.6) the linear transfer function (or gain) of a 

memoryless nonlinearity modeled by a polynomial can be directly expressed as: 
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This expression states that the Best Linear Approximation is not only dependent on 

the system parameters, αi, but also on the input signal characteristics, namely its power. 

 

5.4.2 BLA Calculation for a Nonlinear System with Memory 
 

A nonlinear system that presents memory, but is sufficiently well behaved so that it 

can be described by a Volterra Series is now addressed. Although conceptually similar to 

the memoryless case, this problem is significantly more difficult to treat analytically. The 

derivation process starts by writing the analytical expression for the output (5.8) 
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or, in a general form: 
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Once again, using the definition (5.3), the cross-correlation between input and output 

can be calculated. Considering a Gaussian random signal x(t), and y(t) given by (5.9), 

Rxy(τ) in expression (5.10) is obtained. 
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The same procedure of the last section will now be used to determine the Best Linear 

Approximation. The Fourier Transform of equation (5.10) is computed and then (5.2) is 

used to find HL(ω). In order to find the Fourier Transform of (5.10) hn(τ1,…,τn) is written 

as a function of the n-dimensional inverse Fourier Transform of Hn(ω1,…, ωn). Then, 

changing the order of integration between ω’s and τ’s and using some properties of the 

Fourier Transform, the following results is reached (5.11):  
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 (5.11). 

 

This expression (which to the best of the authors’ knowledge is new) gives the Best 

Linear Approximation of a nonlinear dynamic system modelled by a Volterra Series of 

order N when subject to a Gaussian input signal. It states that the Best Linear 

Approximation is dependent, not only on the system parameters and the even order 

moments of the input (the integrated power), but also on the stimulus’ power spectral 
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density [the shape of Sxx(ω)]. The main interest of expression (5.11) resides on the fact that 

the BLA varies with the input signal power spectral density in a way that can be interpreted 

as if Sxx(ω) were ‘weighting’ the nth order Volterra kernel. Therefore, HL(ω) will be 

different whenever Sxx(ω) gives more importance to the different parts of the 

multidimensional frequency response of each of the Hn(ω1,…, ωn). 

 

5.5 Noise and Distortion Figure 
Having developed the theoretical tools to isolate the signal components from the 

noise components, it is now possible to define a new figure of merit that simultaneously 

deals with noise and distortion [5.10]. 

It is well known the relation between NF and Signal to Noise Ratio, i.e. the ratio 

between signal and noise powers. As a matter of fact, although the NF is frequently 

referred as the ratio between input and output SNRs, the IEEE adopted formal definition of 

NF is [5.11]: 
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in which, No is the output available noise power spectral densities at a given source noise 

temperature, as seen if the system were noise free, and Na is the system’s added noise, 

respectively. This way defined, the NF varies with frequency and is thus also named as the 

spot noise figure. 

In a nonlinear system the approach described above results incomplete [5.2] because 

the SNR degradation caused by the nonlinear intermodulation noise is not taken in account. 

Another common figure of merit, which is more useful in the context of nonlinear systems, 

is the SINAD. According to [5.12], it can be defined as the ratio of signal power spectral 

density, to noise and distortion power spectral densities, and can thus be expressed as: 
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where S(ω), N(ω) and D(ω), are, respectively, the Signal, additive Noise and nonlinear 

distortion power spectral densities. 

It was already mentioned above that NF can represent the ratio of the SNRi to the 

SNRo. If a similar ratio is evaluated using the SINAD, a figure identical to NF will be 

found except that it will now also include the distortion impact. Accordingly, it should be 

called Noise and Distortion Figure (NDF) (5.14). 
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NDF is thus defined as the ratio of the input SINAD to the output SINAD. In (5.14), 

HL(ω) is the BLA, Ni(ω) is the input available noise power spectral density at a given 

reference temperature T0, Na(ω) the power spectral density of the additive noise introduced 

by the device and seen at the output, and IMD(ω) the power spectral density of 

intermodulation distortion delivered to the load. For guaranteeing compatibility with the 

former IEEE NF definition, these SINADs describe spot frequency values, and so they are 

defined as the ratio between the spot signal power spectral density function, PSD, to the 

sum of the spot power spectral density functions of the noise and the distortion, assumed 

uncorrelated. 

At the device’s input port, these PSDs refer to the source available powers of the 

signal and the noise, when the source’s equivalent noise internal resistance is at the 

standard noise temperature (290K). The present NDF definition is therefore assuming that 

the signal available from the source is undistorted, and so that this situation must be 

guaranteed if the NDF is to be measured. In fact, what must be guaranteed is that the 

source’s IMD can not generate any appreciable IMD inside the DUT and that its value, 

when seen at the DUT’s output, is much smaller than the one due to the DUT itself.  

When SINAD calculations are to be made with this NDF, and the device is isolated, 

it is naturally expected that the input IMD is zero, since the source can be supposed to 
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produce an undistorted signal. However, if that is not the case, or if the device is embedded 

in a chain whose precedent blocks already generate some distortion, then this available 

distortion PSD should be added to the source available PSD of the signal and the additive 

noise (since all three are assumed uncorrelated). 

Note, however, that, in this latter case, a precise calculation of the total output IMD 

would require knowledge of the phase of those distortion components, since, being 

correlated with the ones generated by the DUT, they can not be simply added in power at 

the output. However, the more usual practical situation is that the precise IMD phase 

relations are unknown, and no other alternative is left then to rely on a mere absolute value 

addition. Such a power wise addition would therefore correspond to an average power 

value as discussed in [5.13]. 

At the output port, the situation is a little bit more complex, as the DUT’s IMD 

depends on the load termination. So, one has to consider the actual load impedance and 

define the output PSDs of the signal, IMD and noise as referring to the actual powers 

delivered to that load. That is, while the IEEE NF definition assumes that the DUT is a 

system that can be described by an operator whose input variables are the available source 

PSDs, and the output variables are the available output PSDs, now one has to assume that 

the system is represented by an operator whose input variables are the input available PSDs 

while the output variables are the PSDs delivered to the load. 

In practice, however, these two distinct definitions will lead to similar values in the 

vast majority of situations. Indeed, because the output mismatch suffered by the signal is 

the same as the one suffered by the noise, the ratio of their PSDs (the SNR, which is 

essential in NF calculation) is an invariant to load impedance. So, a NF defined from 

output available PSDs, or another one defined from PSDs actually delivered to the load, 

will only differ if the noise introduced by the load (thermal noise) is significant compared 

to the noise delivered to that load by the DUT. And, since the equivalent noise temperature 

of the load and the source are probably the same, this can only happen if a rare situation of 

a DUT with small gain and very low added noise is to be characterized. Therefore, 

significant discrepancies between our NDF and previous IEEE NF will only be noticed for 

DUTs of very small gain and very low added powers of additive noise and distortion. If the 

load added noise PSD were subtracted from the total noise PSD measured at the load 

(indeed it can be subtracted because the noise associated to the load is uncorrelated to any 
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other noise generated in the measurement system), then the NDF and the IEEE NF would 

again be perfectly consistent. 

Finally, since the IEEE NF was originally defined for linear systems, it was always a 

measure of the system’s induced SNR degradation independent of the signal input power. 

That is so because, keeping the gain constant, the output SNR becomes independent of the 

input signal power or noise power. On the contrary, NDF is especially useful for nonlinear 

systems, where the gain and the generated IMD are strongly dependent on the input power. 

Therefore, it should be of no surprise that the NDF must be defined for a certain input 

power. In the case of dynamic nonlinear systems, the BLA of (5.11) actually shows that it 

will even be dependent on the available signal’s PSD. 

To exemplify the use of NDF, a nonlinear system excited by an input, x(t) composed 

of a signal s(t) and noise n(t) is considered [x(t) = s(t) + n(t)]. The SINADo can be 

calculated if the output signal, noise and distortion components are separately identified. 

As stated above, those components can be separated using the BLA. With input x(t), the 

output z(t), can be decomposed in: 
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where y(t) is uncorrelated with x(t), and has two distinct components: the additive noise 

introduced by the system and the generated nonlinear distortion. Since the origin of these 

two components is physically distinct, they are uncorrelated with each other and can thus 

be added in power. The value of hL(t) can be determined using the BLA. According to this 

formulation, the output signal component was found: hL(t)*x(t). That is, the output signal is 

the output component that can be obtained with the linear transfer function derived from 

the input/output cross-correlation. With all these statements the SINADo can be written as: 
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In this expression Si(ω), and Ni(ω) stand for the input signal and input noise power 

spectral densities, respectively. )(ωLH  is the frequency domain BLA transfer function, 
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Na(ω) the power spectral density of the DUT’s induced additive noise and IMD(ω) the 

power spectral density of the stochastic nonlinear intermodulation distortion. 

NDF will now be computed for a particular case of the input and for a nonlinear 

memoryless system, where the signals are flat over a bandwidth B, with power Ps and Pn. 

as given by (5.17) 
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The output power spectral density in the fundamental zone may be obtained, 

replacing (5.17) in (5.4), up to the third order, and can be written as: 
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Using expression (5.7) the signal components in (5.18) can be identified and isolated 

from nonlinear distortion. Taking also into account the effect of additive noise, the in-band 

output SINAD can be obtained as depicted in expression (5.19): 
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Using, expression (5.14) and (5.19), in-band NDF(ω) for this case is given by (5.20)  
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 (5.20) 
 

where it can be seen that the NDF assumes a parabolic shape inside the band. That is due 

to the triple convolution of the bandpass signal used in this example. 

This expression will not tend to expression (5.1) since the statistical properties of 

Gaussian noise (even when the bandwidth is narrow) are different from a single sinusoid. 

In the case of a nonlinear system with memory, the process is much more laborious 

but follows exactly the same procedure. First the BLA is calculated using expression 

(5.11), then the output spectral density function is derived, and these two values are used to 

compute output noise and distortion. 
 

5.6 Validation of the Theoretical Results 

In order to validate the above theory, the NDF of the general system of Figure 5.3 

was estimated from time domain numerical simulations and these results compared to the 

ones directly obtained from expression (5.14). Several tests were performed for different 

input signals and distinct system configurations. 

α1.e(t)+α2.e(t) 2+α3.e(t) 3+ e(t)

F(ω)

y(t)x(t)

  
Figure 5.3 – Block Diagram of a general nonlinear bandpass dynamic system. 

 

The Volterra series representation of the system in Figure 3 was obtained in [5.14] 

and is rewritten here for convenience: 
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where D(ω)=1-a1F(ω). 

This general system can be set to model both situations presented above, the 

memoryless nonlinear system and the system with memory.  

The memoryless nonlinear system is obtained by eliminating the feedback path, 

making F(ω)=0, while the system with memory is obtained by proper tuning of the 

feedback path. In [5.14] it was proved that only an F(ω) reactive to the base band 

frequencies can be responsible for the envelope memory effects. Thus, in the dynamic 

case, F(ω) was designed to present some reactive behavior at low frequencies. 

In order to observe the impact of the input signal spectrum on the BLA, and thus on 

the NDF, in the dynamic case, this system was simulated recurring to three different input 

signals. 

Since the presented studies are only relative to simulations, the real frequency value 

is not important. So, the frequency axis of the next figures is normalized, standing for the 

ratio between the frequency and the sampling frequency. 

The simulator block diagram is depicted in Figure 5.4. 

5.6.1 NDF Calculation in a Memoryless Situation. 
 

Lets consider first a memoryless nonlinearity (F(ω)=0). Although the theoretical 

conclusions predicted that the BLA is constant with the input spectrum in memoryless 

nonlinear systems, three different spectrums are used, to compare it with the BLA of 

dynamic systems. 
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Figure 5.5 depicts the input spectrum of each test signal used. In the same figure, the 

output spectrum is also plotted, where the adjacent-channel distortion generated in the 

nonlinearity can be observed. 

As can be seen in Figure 5.6 the BLA is unaffected by the input signal spectrum 

shape. This confirms the theoretical results previously obtained in Section 5.4, which state 

that the HL(ω) of (5.7) is only dependent on the even order moments of the input signal and 

not on its shape.  

HL(w)

Input Signal
(noise seed 2)

BPF

Input Noise
(noise seed 1)

BPF

Additive Noise
(noise seed 3)

BPF

+

NLF

+

Correlator

+

Output Linear
Signal

Output Noise &
Distortion

Pi adjust

-
-

Output Linear
Noise

SNRi
adjust

                ULSHL(w)

 
Figure 5.4 – Block Diagram of the simulator used to validate NDF, NLF stands for Nonlinear Function. 
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Figure 5.5 – The input spectrum of the test signals used for the BLA extraction (simple line) and 
Output Spectrum (dark line). a) Signal Spectrum 1. b) Signal Spectrum 2 c) Signal Spectrum 3  
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Figure 5.6 – In-band BLA: simulated (simple line); theoretical (dark line). a) Signal Spectrum 1. b) 
Signal Spectrum 2 c) Signal Spectrum 3  
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Although the BLA is an invariant to the input spectrum shape, the NDF varies with it, 

as shown in Figure 5.7. This variation is due to the fact that, in the frequency zones where 

the input signal spectral density is higher, the nonlinear distortion level increases at a faster 

rate than the output signal. Hence, the NDF must also present higher values.  

 

0.145 0.15 0.155 0.16
Normalized Freq
           a)

5

10

15

dB

 
 

  

0.145 0.15 0.155 0.16
5

10

15

Normalized Freq
           b)

dB

 
 

 



5. Noise and Distortion Figure: An Outcome of Cross-Correlation Identification. 

107 

 

0.145 0.15 0.155 0.16
5

10

15

Normalized Freq
           c)

dB

 
Figure 5.7 – In-band NDF: simulated (simple line), theoretical (dark line).a) Signal Spectrum 1. b) 
Signal Spectrum 2 c) Signal Spectrum 3. 
 

5.6.2 NDF Calculation in a nonlinear system with memory. 

In order to calculate the BLA for a nonlinear system with memory, a polynomial with 

α1 and α3 identical to the memoryless case was used, but the α2 was increased to give more 

emphasis to the memory effect that is being studied [5.14, 5.15]. Note in expression (5.22) 

that, increasing the polynomial second degree coefficient, α2, also varies the third order 

Volterra kernel [5.14]. A low frequency feedback filter F(ω) with frequency response 

shown in Figure 5.8 was introduced. 

Note that this filter has a rejection ratio of more than 20 dB in the fundamental 

frequency zone and a steep roll off at the low frequencies between 0 and Bw/2 (Bw of the 

signals used were approximately 2% of the sampling frequency).  
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Figure 5.8 – Frequency response of the feedback filter F(ω) used. 
 

Figure 5.9 shows the input and output spectra of the test signals used. The output has 

an adjacent distortion level higher than the one used when compared to the memoryless 

case (Figure 5.5). This is a consequence of the fact that, in this case, the strong second 

order coefficient also contributes to in-band distortion due to the feedback path, as seen in 

expression (5.22).  

The valley shown in the BLA plot of Figure 5.10 b) is due to the high-pass 

characteristic of the feedback filter manifested between DC and 0.02, as F(ω) increases 

from the center of the band (DC) to the extremes (± Bw, the occupied signal bandwidth). 

This effect can only be noticed in this figure, because that case is the only resulting from a 

flat input spectrum. For the input spectra 1 and 3 [Figure 5.10 a) and c)], and due to the 

dynamic behavior of the feedback path, the BLA is affected simultaneously by the input 

spectrum and filter shapes, this way reducing the effect of the filter format.  
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Figure 5.9 – The input spectrum of the test signals used for the BLA extraction (simple line) and 
Output Spectrum (dotted line). a) Signal Spectrum 1. b) Signal Spectrum 2 c) Signal Spectrum 3. 
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Figure 5.10 – In-band BLA: simulated (simple line); theoretical (dotted line) a) Signal Spectrum 1. b) 
Signal Spectrum 2 c) Signal Spectrum 3. 
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Figure 5.11 – In-band NDF: simulated (simple line); theoretical (dotted line)  a) Signal Spectrum 1. b) 
Signal Spectrum 2 c) Signal Spectrum 3 
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The residual differences seen between theoretical and simulated results are due to the 

fact that the noise signal here in use is not of infinite length but a limited sequence whose 

realizations were averaged in frequency. 

In Figure 5.11 the NDF is also presented and, as theoretically predicted, it also varies 

with the input spectrum.  

 

5.7 Conclusions 
In this chapter, to analytically characterize the NDF, the BLA was calculated for 

memoryless and dynamic systems. In the memoryless case it was shown that BLA is only 

dependent on the nonlinearity and on the input power. In dynamic systems, however, it 

also depends on the input spectrum shape. 

The results obtained in this chapter for the BLA dependence on the input signal are a 

clear indication that particular attention must be paid to the input signal used to determine 

a nonlinear system model, since the system behavior (and thus the model) might be 

strongly dependent of the input excitation used. 

Additionally in this chapter the misleading result presented on paper [5.2] was 

discussed and its main drawbacks pointed out. Nevertheless, the important conclusion 

obtained in [5.2], stating that the usual NF standard is affected by nonlinearities, is used to 

propose a new figure of merit, called NDF, that relates the input and output SINADs. 

Therefore, a NDF definition for nonlinear systems, but still consistent with the traditional 

linear NF, was advanced.  

The excellent agreement between simulated and theoretical results gives us 

confidence to use this figure of merit in link budget designs. 
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6. Conclusions 
 

Along with this thesis partial conclusions have been presented at the end of each 

chapter; so, now, is made a more general a summary of the work presented in this thesis. 

In chapter 2 a description of PA main characteristics was made in order to introduce 

the main requirements for behavioural modelling. Then a brief overview of some 

behavioural model approaches and its approximation capabilities were discussed. 

Additionally, an introduction to Volterra series modelling approaches was presented 

including also a description of prior works on orthogonal Volterra series identification. 

In Chapter 3 the derivation of the new orthogonal approach for Volterra series 

coefficients extraction was included. In this derivation the input signal for orthogonality 

was chosen and each model branch expression was derived. This derivation process 

included the general formula to build recursively any model order term. Also described in 

this chapter were the coefficient convergence problem and the conversion from the 

orthogonal model to the time domain Volterra series. 

Different model validation simulation and measurement setups were presented in 

chapter 4. From the trivial memoryless nonlinear amplifier and linear filters up to real 
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microwave power amplifiers a vast set of validations were performed. The adopted model 

presents good approximation results in different situations but there is still margin for some 

improvements. Due to the adopted Volterra model topology the number of coefficients 

increases exponentially with the nonlinear order considered. This issue prevents the 

simultaneous use of a large number of memory span and nonlinear order. 

Cross-correlation techniques, which enabled the separation of the output signal from 

the output noise, were presented in chapter 5. In this chapter the Best Linear Approximator 

was computed for systems modelled by a Volterra series. It was proved that, for a given 

system, the BLA is dependent on the input signal considered, and that both the input signal 

power and input signal statistics, influence the system’s BLA. Furthermore, the definition 

of BLA enabled the proposal of a new Noise and Distortion Figure that allows the 

quantification of signal quality degradation on a system caused by additive noise and 

nonlinear distortion. 

 

Five years ago, in the beginning of this work, when trying to understand the difference 

between correlated and non-correlated distortion, as well as what is the impact of each one 

on the signal quality degradation, I was very far from imagining all the problems that 

would need to be solved in order to reach the contributions presented in this thesis. 

Particularly, the orthogonal model formulation became an intricate problem that required a 

lot of dedicated and persistent work. Different approaches were tested more or less 

successfully, and a long discussion was carried on what should be an orthogonal model. 

However, after these years of work, I think it is possible to truly state that the 

nonlinear distortion impacts are now slightly more understood, and that the behavioural 

modelling scientific field received some more contributions with well grounded formalism 

and guaranteed predictive capabilities. 

 

6.1 Future Work 
After this work there are still some open questions that might lead to some 

interesting work. The first one should be the extension of the modelling procedure 

validation, by comparing, for the same type of system, the now proposed technique with 

other conventional Volterra series extraction methods. This way the benefits of this 
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technique could be demonstrated comparatively with the existing ones, and the workload 

required to extract the coefficients by each of the methods could be compared. 

It is known that one of the major disadvantages of the Volterra series is its large 

number of coefficients. Some interesting approaches have been proposed recently to prune 

the Volterra series [6.1-6.3]. It would be interesting to analyse from an orthogonally 

extracted series which are actually the negligible coefficients and after this to come up with 

a truncated version of a model and the corresponding extraction procedure that allows the 

orthogonal extraction of a truncated Volterra series. 

The compromise between power efficiency and linearity in order to extend battery 

life and spectral efficiency has been driving the search for improved PA designs. A recent 

hot topic on this compromise, are the switched PAs that constitute a change in the 

paradigm of designing a PA. It is already known [6.4] that the distortion mechanisms for 

this type of amplifier are quite different from the ones of the “conventional” PAs. This way 

the development of new behavioural models able to mimic the nonlinear response of 

switched PA is a major question waiting for an answer.  

The continue developments of integrated devices are leading to higher levels of 

integration and system complexity that create large challenges for chip and system design. 

The verification/simulation of these mixed-signal high integrated devices is an 

unacceptably large computational task, which requires the replacement of circuit-level 

models by accurate, all-purpose behavioural models. In this scenario, the application of the 

knowledge gathered in this thesis to the modelling of complete integrated systems or 

subsystems should also be evaluated. 
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