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resumo 
 
 

A fosforilação de proteínas é um dos principais mecanismos reguladores de 
cascatas de transdução de sinais em eucariotas. A fosforilação é catalizada 
por proteínas cinases e é revertida pela acção de proteínas fosfatases. 
Embora as proteínas fosfatases tenham sido descobertas à mais de sessenta 
anos, a sua importância central em múltiplos mecanismos celulares só muito 
recentemente foi reconhecida. 
PP1, uma fosfatase específica para serina/treonina, está envolvida em 
importantes mecanismos celulares, como o ciclo celular, a contracção 
muscular e a apoptose, entre outros. O seu papel em tão variados processos 
celulares depende das suas interacções com subunidades reguladoras. Até à 
data, foram descritas mais de 50 subunidades reguladoras que se ligam à 
subunidade catalítica da PP1, sendo determinantes para a sua função num 
local específico da célula. 
Das três isoformas da PP1 conhecidas, PP1�, PP1� e PP1�, a isoforma gama 
sofre splicing alternativo, originando a PP1�1, ubíqua e, a PP1�2 específica de 
testículo. 
Incubação de espermatozóides imaturos com inibidores de fosfatases induz a 
sua motilidade, sendo a PP1�2 a fosfatase envolvida. Este facto levou-nos a 
procurar proteínas de testículo humano capazes de interagir especificamente 
com a PP1�2 que possam ser alvos terapêuticos no tratamento da infertilidade, 
ou na contracepção masculina. Para atingir este objectivo utilizou-se o sistema 
Dois Híbrido de Levedura no rastreio de uma biblioteca de testículo humano, 
na busca de novas proteínas que se ligam à PP1 usando como isco a PP1�1 
(no YTH1) ou a PP1�2 (no YTH2). 
Obtivemos 120 clones positivos no YTH1 e 155 no YTH2. Entre eles 
encontravam-se clones que codificam reguladores da PP1 previamente 
descritos, como a Nek2 e a NIPP1, assim como novas proteínas. Efectuámos 
um estudo detalhado de um novo gene, codificando uma nova proteína, que 
denominamos SEARP-T. Esta proteína de 93kDa é expressa maioritariamente 
em testículo e, a sua localização intracelular foi determinada por 
imunocitoquímica de fluorescência. Ambas as proteínas, PP1�2 e SEARP-T, 
estão presentes na cauda e no segmento equatorial da cabeça do 
espermatozóide. Estes resultados clarificam as funções da PP1 no testículo 
humano e na motilidade do esperma e, indicam que o sistema Dois Híbrido de 
Levedura é um bom método para compreender o papel da PP1 em múltiplos 
eventos de regulação celular.    
 

 



 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
 

abstract 
 

Protein phosphorylation is a major regulatory mechanism notably of signal 
transduction cascades in eukaryotic cells. Protein phosphorylation is catalysed 
by protein kinases and can be reversed by the action of protein phosphatases. 
Although phosphatases were discovered more than sixty years ago, their 
importance as central players in multiple cellular mechanisms was only recently 
recognized.  
PP1, a Serine/Threonine specific phosphatase, is involved in important cellular 
mechanisms such as the cell cycle, muscle contraction and apoptosis, among 
others. Its role in such diverse cellular processes depends on its interactions 
with targeting/regulatory subunits. To date, more than 50 regulatory subunits 
have been identified that bind the catalytic subunit of PP1 determining its 
function in a specific cellular location. 
Several isoforms of PP1 are known, termed PP1�, PP1� and PP1�. The 
gamma isoform undergoes alternative splicing to yield a ubiquitously expressed 
PP1�1 and a testis-specific PP1�2 isoform. 
Incubation of non-motile immature sperm with phosphatase inhibitors induces 
sperm motility, and PP1�2 was implicated in this process. This led us to search 
for PP1�2-specific interactors in human sperm that could be targeted for 
infertility therapeutics or in male contraception. To achieve this goal the Yeast 
Two Hybrid system was used to screen a human testis library for new PP1 
binding proteins using both PP1�1 (YTH1) and PP1�2 (YTH2) as baits. 
We recovered 120 positive clones in YTH1 and 155 positive clones in YTH2. 
Among these were clones encoding “bona fide” PP1 interactors such as Nek2 
and NIPP1, and also previously uncharacterized proteins. We undertook a 
more detailed study of a novel gene encoding a novel protein that we termed 
SEARP-T. This protein of 93KDa is expressed mainly in testis and fluorescence 
immunocytochemistry was used to determine its intra sperm localization. Both 
PP1�2 and SEARP-T proteins are present in the tail and in the equatorial 
segment of the head.These results provide new insights into PP1 function in 
human testis and sperm motility, and indicates that the Yeast Two Hybrid 
System provides a mean to understand the roles PP1 plays in diverse cellular 
regulatory events.  
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ABBREVIATIONS 
 

aa 

AD 

Ade 

Amp 

APS 

BD 

BLAST 

cAMP 

cDNA 

cds 

Chr 

CK2 

Cys 

dATP 

dCTP 

DEPC 

dGTP 

DMSO 

DNA 

dNTP 

dsDNA 

dTTP 

EDTA 

EST 

GAL4 

GSK3 

His 

I-2 

LB 

Amino acid 

Activation domain  

Adenine 

Ampicillin 

Ammonium persulfate 

Binding domain 

Basic Local Alignment Search Tool 

Cyclic AMP (Adenosine 3’,5’-monophosphate) 

Complementary deoxynucleic acid 

Protein coding sequence  

Chromosome 

Casein kinase 2 

Cystein 

2’-deoxyadenosine-5’-triphosphate 

2’-deoxycytidine-5’-triphosphate 

Diethylpyrocarbonate 

2’-deoxyguanosine-5’-triphosphate 

Dimethylsulfoxide 

Deoxynucleic acid 

Deoxynucleotide triphosphate 

Double strand deoxynucleic acid 

2’-deoxythymidine-5’-triphosphate 

Ethylenodiaminotetraacetic acid 

Expressed sequence tag 

Gal4 transcription factor 

Glycogen synthase kinase-3 

Histidine  

Inhibitor-2 

Luria-Bertani Medium (Miller) 
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Leu 

LiAc 

NMDA 

nt 

OD 

ORF 

PCR 
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PKA 

PMSF 

PP1 

PPM 

PPP 

QDO 

RNA 

RT-PCR 

SAP 

SD 

SDS 

SDS-PAGE 

Ser 

TBS 

TDO 

TEMED 

Thr 

Tris 

Trp 

Tyr 

UAS 

UV 

X-�-gal 

YPD 

Leucine 

Lithium acetate 

N-methyl-D-aspartic acid 

Nucleotide 

Optical density 

Open Reading Frame 

Polymerase Chain Reaction 

Polyethylene glycol 

Protein kinase A 

Phenyl methylsulfoxide 

Protein phosphatase 1 

Mg2+-dependent protein phosphatase 

Phosphoprotein phosphatase 

Quadruple dropout  

Ribonucleic acid 

Reverse transcriptase - polymerase chain reaction 

Shrimp alkaline phosphatase 

Supplement dropout  

Sodium dodecyl sulfate 

Sodium dodecyl sulphate – polyacrylamide gel electrophoresis 

Serine  

Tris-buffered saline solution 

Triple dropout 

N,N,N’,N'-tetramethyletylendiamine 

Threonine 

Tryptophan 

Tyrosine 

Tris (hydroxymethyl)-aminoethane chloride 

Upstream activating sequence 

Ultraviolet 

5-bromo-4-chloro-3-indolyl-alpha-D-galactopyranoside  

Yeast extract, Peptone and Dextrose medium for S. cerevisiae 
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I INTRODUCTION 
 

 

I.1 PROTEIN PHOSPHORYLATION AS A DYNAMIC PROCESS 

 
The reversible phosphorylation of structural and regulatory proteins is a major 

intracellular control mechanism in eukaryotes. It is involved in almost all cellular 

functions, from metabolism to signal transduction, cell division and memory. The 

phosphorylation state of a protein is a dynamic process controlled by both protein kinases 

and protein phosphatases (Fig. I.1).  

 
Figure I.1: The dynamic process of protein phosphorylation. 

 

The protein kinases and protein phosphatases, the key controlling elements, are 

regulated by a myriad of extracellular and intracellular signals. Unlike the protein kinases 

that all belong to a single gene family, the protein phosphatases are divided into several 

distinct and unrelated protein/gene families. The Ser/Thr-specific protein phosphatases 

(Ser/Thr-PPs) comprise two distinct families, the PP1/PP2A/PP2B gene family and the 

PP2C gene family. The Tyr-specific phosphatase family, as well as including the Tyr-

specific phosphatases, also comprises the so-called dual specificity phosphatases (capable 

of dephosphorylating Ser, Thr and Tyr residues). Besides these intracellular phosphatases 

involved in signal transduction, there are also unrelated non-specific alkaline and acid 

phosphatases that are usually found either in specialized intracellular compartments or in 

the extracellular milieu.  
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The sequencing of entire genomes has revealed that approximately 3% of all eukaryotic 

genes encode protein kinases or protein phosphatases (Plowman et al., 1999). Surprisingly, 

there appear to be 2-5 times fewer protein phosphatases than protein kinases. This 

imbalance is even more pronounced when the analysis is limited to Ser/Thr-PP and 

kinases, particularly in vertebrates. The human genome, for instance, encodes 

approximately 20 times fewer Ser/Thr-PP than Ser/Thr-kinases. Thus, whereas the 

diversity of the Ser/Thr-protein kinases has kept pace with the increasing complexity of 

evolving organisms, that of Ser/Thr-PP has not. In the past decade it has became apparent 

that the diversity of Ser/Thr-PP is achieved not only by the evolution of new catalytic 

subunits, but also by the ability of a single catalytic subunit to interact with multiple 

regulatory (R) subunits. 

 

I.2 ABNORMAL PHOSPHORYLATION IN DISEASE 
 

Reversible protein phosphorylation is the major metabolic control mechanism of 

eukaryotic cells. Indeed, cellular health and vitality are dependent on the fine equilibrium 

of protein phosphorylation systems. Not surprisingly many diseases and dysfunctional 

states are associated with the abnormal phosphorylation of key proteins (e.g. cancer, 

diabetes, etc.).  

In neurodegenerative diseases such as Alzheimer’s Disease there is evidence for 

abnormal regulation of protein kinases. Altered activities and protein levels of several 

specific kinases suggest that abnormal phosphorylation contributes to the pathogenesis of 

these diseases. In Alzheimer’s Disease, neurofibrillary degeneration results from the 

aggregation of abnormally phosphorylated Tau protein into paired helical filaments. 

Protein kinase A (PKA) and glycogen synthase kinase 3 � (GSK3�) are likely to be key 

kinases involved (Delobel et al., 2002), and PP2A is thought to be the main tau 

phosphatase (Planel et al., 2001). Furthermore, activation of protein kinase C (PKC), or 

inactivation of protein phosphatase 1 (PP1) leads to a relative increase in the utilization of 

the non-amyloidogenic pathway for Alzheimer’s amyloid precursor protein (APP) 

processing (Gandy and Greengard, 1994; da Cruz e Silva et al., 1995a).   

Other neurodegenerative diseases that may result from abnormal phosphorylation 

include Parkinson’s Disease (PD) and Huntington’s Disease (HD). Alpha-Synuclein has 

been implicated in the pathogenesis of PD, and is a major component of Lewy bodies (a 
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major anatomical hallmark of PD). Alpha-synuclein was demonstrated to be constitutively 

phosphorylated indicating that its function is regulated by 

phosphorylation/dephosphorylation mechanisms (Okochi et al., 2000). Motor and 

cognitive deficits in HD are likely caused by progressive neuronal dysfunction preceding 

neuronal cell death. Synapsin I is one of the major phosphoproteins regulating 

neurotransmitter release. In mice expressing the HD mutation, synapsin I is abnormally 

phosphorylated suggesting that an early impairment in its phosphorylation may alter 

synaptic vesicle trafficking and lead to defective neurotransmission in HD (Lievens et al., 

2002).  

Altered phosphorylation has also been implicated in the etiology and/or symptoms of 

heart failure (Neumann, 2002) as well as in Diabetes (Sridhar et al., 2000). 

Therefore, protein phosphorylation systems represent attractive targets for 

diagnostics and therapeutics of several neurodegenerative and non-neurodegenerative 

diseases. 

 

I.3 PHOSPHATASES AND THEIR CLASSIFICATION 
 

The Ser/Thr-PPs, based on biochemical parameters, were initially divided into two 

classes: the type-1 phosphatases  (PP1) that were inhibited by two heat-stable proteins, 

inhibitor-1 (I-1) and inhibitor-2 (I-2), and preferentially dephosphorylated the �-subunit of 

phosphorylase kinase; and the type-2 phosphatases, insensitive to the heat-stable inhibitors 

and that preferentially dephosphorylated the �-subunit of phosphorylase kinase 

(Ingebritsen and Cohen, 1983; Cohen, 1989). Type-2 phosphatases were further subdivided 

into cation independent (PP2A), Ca2+-dependent (PP2B) and Mg2+-dependent (PP2C) 

classes. The use of okadaic acid, a specific phosphatase inhibitor, further facilitated the 

discrimination between different classes (Cohen et al., 1989). Although widely in use, this 

classification does not reflect the actual phylogenetic relationship between the different 

Ser/Thr-PP. Molecular cloning revealed that PP2A was in fact much more related to PP1 

than to PP2C (Berndt et al., 1987; da Cruz e Silva et al., 1987).  From a phylogenetic point 

of view it is more reasonable to group PP1, PP2A and PP2B in family I or PPP [that also 

includes the bacteriophage λ, orf221 phosphatase (Cohen et al., 1988)] and PP2C in family 

II or PPM (Fig. I.2).  
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Figure I.2: Phylogenic tree depicting the degree of similarity between the known phosphatases 

based on their primary amino acid sequence. PP1-PP7 belong to a single gene family (PPP) that is 

structurally distinct from the PP2C family (PPM). The phosphatases above the dashed line are 

highly sensitive to inhibition by the naturally occurring toxins, okadaic acid, mycrocystin and 

calyculin A (Honkanen and Golden, 2002). 

 

I.3.1 The PPP Family 

 

The application of recombinant DNA techniques to the field yielded not only the 

primary structure of all four phosphatase types, but also documented the existence of 

isoforms for each type and revealed the existence of previously undetected phosphatases in 

a variety of eukaryotic cells (Berndt et al., 1987; da Cruz e Silva et al., 1987; da Cruz e 

Silva and Cohen, 1987; Cohen et al., 1988; da Cruz e Silva et al., 1988). Three genes are 

known to encode type 1 phosphatase catalytic subunits, termed PP1α, PP1β and PP1γ. At 

least PP1γ is known to undergo tissue-specific processing to yield an ubiquitously 

expressed PP1γ1 isoform and a testis-specific PP1γ2 isoform (da Cruz e Silva et al., 1995b). 

Two genes are known encoding PP2A catalytic subunits, termed PP2Aα and PP2Aβ, and 

the three known PP2B catalytic subunit genes (Aα, Aβ and Aγ) are also subject to complex 

regulation to yield several alternatively spliced isoforms from each.      

Perhaps more surprising was the discovery, from a variety of tissues and species, of 

other previously unknown phosphatase catalytic subunit isoenzymes, that were termed 
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novel phosphatases (da Cruz e Silva et al., 1988). PP4, PP5 and PP6 (Cohen, 1997) are 

present in all mammalian tissues examined. In contrast, human PP7 (Huang and Honkanen, 

1998), also found in Arabidopsis thaliana by Andreeva et al. (1998) and two Drosophila 

phosphatases are tissue specific (PPY is testis-specific and RdgC is restricted to 

photoreceptor organs and a small region in the brain). PP7 has been detected in the human 

retina and also in specialized sensory cells in plants (Fig. I.3). 
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Figure I.3: Domain organization of PPP family members. The numbers of amino acids in each are 

indicated on the right. 

 
I.3.1.1 PP1 - Protein Phosphatase 1 
 

Eukaryotic genomes contain between one (Saccharomyces cerevisiae) and eight 

(Arabidopsis thaliana) genes that encode isoforms of PP1 catalytic subunit. These 

isoenzymes typically show an overall sequence identity of approximately 90% and cannot 

be distinguished by either their substrate specificity or their ability to interact with R 

subunits in vitro (Zhang et al., 1993; Schillace and Scott, 1999). The sequence of the 

catalytic core of PP1 (residues 41-269 of the mammalian PP1� isoform) is almost identical 

in all isoforms, showing a high degree of similarity with the corresponding fragment of the 

catalytic subunits of PP2A and PP2B (Egloff et al., 1995; Goldberg et al., 1995). A 

detailed description of PP1, its properties and binding proteins will be given below. 
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I.3.1.2 PP2A - Protein Phosphatase 2A  
 

PP2A has one of the most highly expressed catalytic subunits. It has been detected 

in various cell types and can comprise 0.3-1% of cellular proteins (Ruediger et al., 1991; 

Lin et al., 1998). The first descriptions of PP2A holoenzymes in the late 1970s and early 

1980s demonstrated that the prevalent holoenzymes in rabbit skeletal muscle were 

heterotrimers composed of a catalytic subunit (C), a structural A subunit and a regulatory 

B subunit. cDNAs have been identified for two A subunits (α,β), two C subunits (α,β) and 

over twenty B subunits. For example, PR55 (B subunit), a 54 kDa protein (B’ subunit), 

PR72, a 74 kDa protein (B’’ subunit) and PR130. It has becoming increasingly clear that a 

major function of these regulatory subunits is to target the PP2A holoenzyme to distinct 

intracellular locations, signaling complexes and substrates. The A subunit is composed 

almost entirely of 15 imperfect repeats, each of 39 amino acids. These HEAT repeats (so 

named because they were found in Huntingtin, Elongation factor, PP2A subunit and the 

TOR kinase) are found in a variety of proteins. It seems that the repeats consist of two α 

helices connected by an intra-repeat loop, and that these loops are the binding sites for the 

B and C subunits (Ruediger et al., 1992; Ruediger et al., 1994; Ruediger et al., 1999) (Fig. 

I.4). The crystal structure of the mammalian Aα subunit (PR65α) has been solved: the 

subunit is a hook-shaped protein with the C subunit binding to the inner face of the hook; 

the various B subunits attach to the medial surface of the hook (Fig. I.5) (Cegielska et al., 

1994).  
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Figure I.4: The heterotrimeric form of 

PP2A includes a catalytic C subunit, a 

structural A subunit and a regulatory B 

subunit. Several cellular and viral 

proteins that interact with PP2A 

components are indicated. 

 

 

Other molecular mechanisms that regulate PP2A catalytic subunit function include 

phosphorylation, carboxylmethylation, inhibition by intracellular protein inhibitors 



Characterization of the PP1 Interactome from Human Testis Chapter I  

Centro de Biologia Celular 
Universidade de Aveiro 

21 

I(1)PP2A and I(2)PP2A (Li et al., 1995) and stimulation by ceramide. The C subunit of 

PP2A can be phosphorylated in vitro by the tyrosine kinases p60v-src, p56lck, epidermal 

growth factor receptor and insulin receptor (Chen et al., 1992). Phosphorylation occurs at 

Tyr-307 at the extreme C-terminus of the protein and leads to 90% loss of activity. 

Dephosphorylation reactivates the phosphatase. This reactivation is prevented by okadaic 

acid, suggesting an auto-dephosphorylation reaction. A carboxymethyltransferase  (Lee 

and Stock, 1993; Xie and Clarke, 1994a, b) has PP2A C subunit as the major substrate. The 

methylation of the α-carboxyl group of the C-terminal Leu-309 of PP2A in vitro has only 

moderate stimulatory effects on phosphatase activity and impairs binding of peptide-

specific antibodies to the C-terminus of PP2A C subunit (Favre et al., 1994). Interestingly, 

the C-terminal sequence of PP2A C subunit is conserved from yeast to man suggesting that 

modifications of the C-terminus may be a conserved regulatory mechanism (Zolnierowicz 

et al., 1994). This modification may influence the interaction of the C subunit with its 

regulatory subunits. In vitro ceramide activates the trimeric forms of PP2A that contain 

either the PR55a or the 54kDa (B’) subunit. In contrast, PP2A dimmeric form and the 

isolated  C subunit are insensitive to ceramide (Dobrowsky et al., 1993).   

 
Figure I.5: Crystal structure of the mammalian Aα subunit of PP2A. 

 

PP2A plays a central role in processes as varied as cell cycle regulation, cell 

signaling and neuronal function.  
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Cell Cycle Control and PP2A 

PP2A was first implicated in the control of DNA replication when PP2A C subunit 

was purified as replication protein C on the basis of its ability to stimulate the efficient 

initiation of simian virus 40 (SV40) DNA replication (Virshup and Kelly, 1989). PP2A C 

subunit restored SV40 DNA replication activity to extracts from G1 phase cells suggesting 

that specific PP2A activity was regulated in the cell cycle as well (Virshup et al., 1989). 

More recently, strong evidence has been obtained  for the involvement of PP2A in 

chromosomal DNA replication (Lin et al., 1998). The immunodepletion of A-subunit-

containing forms of PP2A from Xenopus egg extracts inhibit subsequent DNA replication. 

This inhibition was relieved by replenishing the extracts with purified free PP2A C 

subunit. It was shown that PP2A activity was required for initiation of chromosomal 

replication rather than elongation. Immunodepletion of A/C dimers alone did not inhibit 

DNA replication, suggesting that a specific heterotrimeric form of PP2A is required (Lin et 

al., 1998). The finding of a novel PR72-related B subunit that recruits PP2A to the human 

replication initiator protein CDC6 suggests that this family of B subunits (the 

PR72/130/B’’ family) may be involved in initiation of both chromosomal and viral DNA 

replication (Yan et al., 2000). Another novel PR72 family member, PR59, has been 

isolated in a two hybrid screen using p107, the Rb-related cell-cycle regulatory protein 

(Voorhoeve et al., 1999a). PR59 may target PP2A to dephosphorylate p107 in response to 

stimuli such as UV irradiation that causes G1 arrest (Voorhoeve et al., 1999b). So, the 

PR72-related proteins may be the PP2A regulatory subunit family involved in regulation of 

the G1/S transition. 

 Interestingly, a body of data suggests that a subset of PP2A holoenzymes function 

as tumor suppressors. The PP1/PP2A inhibitor okadaic acid can promote tumor formation 

suggesting that phosphatase inhibition can function similarly to kinase activation. The most 

compelling evidence that PP2A is a tumor suppressor remains the finding that DNA tumor 

virus small and middle T antigens replace B subunits in the PP2A heterotrimer and 

modulate substrate specificity (Pallas et al., 1990; Walter et al., 1990). Other potentially 

oncogenic human proteins that inhibit PP2A function have been reported, including 

HOX11 and SET oncogenes (Li et al., 1996b; Kawabe et al., 1997). Set expression and 

hence PP2A inhibition has been shown to induce c-JUN and AP-1 activity, whereas 

increased expression and hence increased activity of PP2A catalytic subunit inhibits ras-
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induced transformation (Al-Murrani et al., 1999; Baharians and Schonthal, 1999). 

Although some studies indicate that PP2A might exert tumor suppressive functions, other 

findings demonstrate the requirement for PP2A in cell growth and survival, which is not a 

characteristic of a tumor suppressor. This discrepancy might be due to the fact that PP2A is 

a multitask enzyme system, rather then a single enzyme. The puzzling observation that 

PP2A exerts inhibitory as well as stimulatory effects on cell growth could be due to the 

activity of different PP2A complexes with distinct subcellular location and diverse 

substrate specificity.  

PP2A and neuronal function 

The roles of PP2A in dephosphorylation of brain proteins are obscure. PP2A is a 

major activity that dephosphorylates voltage-sensitive sodium channels (Chen et al., 1995), 

and is also a major brain phosphatase that dephosphorylates autophosphorylated CaMKII. 

PP2A selectively dephosphorylates soluble CaMKII rather then CaMKII associated with 

postsynaptic density, where it becomes a substrate for PP1 (Strack et al., 1997a). The 

recent demonstrations that PP2A associates with and regulates CaMKIV (Westphal et al., 

1998), p70S6 kinase and p21-activated kinase (Westphal et al., 1999a), support the 

proposal that PP2A might be a general regulator of protein kinases (Barnes et al., 1995). 

PP2A is also known to be associated with neurofilaments, dephosphorylating NF-M and 

NF-L (Saito et al., 1995; Strack et al., 1997b). It probably regulates either the stability of 

neurofilaments or their interactions with other components of the neuronal cytoskeleton. 

Another potential function of PP2A is the regulation of the state of phosphorylation of 

microtubulule-associated proteins (MAPs). Neuronal-specific MAPs, including Tau and 

MAP2, bind to microtubules and regulate their stability. Neural MAPs are phosphorylated 

at multiple sites by a variety of protein kinases. Phosphorylation causes disassociation of 

MAPs from microtubules and their loss of stability. Accumulation of hyperphosphorylated 

Tau in neurofibrillary tangles is a pathological mark of Alzheimer’s disease (T. H. Lee, 

1995; Mandelkow et al., 1996; Billingsley and Kincaid, 1997). Disruption of the 

microtubule cytoskeleton as a result of the loss of Tau-mediated stabilization may be one 

mechanism of neuronal cell death.    

Signaling Cascades and PP2A 

PP2A also plays an important role in the regulation of specific signal transduction 

cascades, as witnessed by its presence in a number of macromolecular signaling modules, 
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where it is often found in association with other phosphatases and kinases. Viral proteins 

target specific PP2A enzymes in order to deregulate chosen cellular pathways in the host 

and promote viral progeny. The observation that a variety of viruses utilize PP2A to 

alienate cellular behavior emphasizes the fundamental importance of PP2A in signal 

transduction. Other examples of the importance of PP2A in signaling cascades include the 

Wnt signaling pathway and the TOR  (Target Of Rapamycin) signaling pathway.  

Wnt signaling regulates vertebrate axis formation in early embryogenesis, and 

deregulation of the Wnt pathway is found in multiple epithelial cancers, including those of 

colon, skin and liver. One major effect of Wnt signaling is increased transcription driven 

by heterodimeric β-catenin/TCF transcription factor (Brown and Moon, 1998). In the 

absence of Wnt signaling β-catenin is maintained at low levels by phosphorylation-

regulated proteolysis. Phosphorylation is mediated by a large multiprotein complex 

containing the adenomatous polyposis coli protein (APC), the serine/threonine kinase 

GSK3β and axin. PP2A has also been placed in this complex. It was shown by a two 

hybrid screen (Seeling et al., 1999) that an amino-terminal domain of APC interacted with 

all members of the B’/B56 family of PP2A regulatory subunits. It was also found (Hsu et 

al., 1999) that the carboxyl terminus of axin binds to PP2A via the catalytic subunit. Thus, 

the role of B56-containing PP2A heterotrimers in Wnt signaling may be to regulate the 

activity of GSK3β, keeping it dephosphorylated and thus active, leading to lower β-catenin 

levels in vivo. It was shown that PP2A C subunit dephosphorylated and activated GSK3β 

in vitro.  

TOR signaling activates a response to nutrients, leading to TOR kinase activation 

with subsequent phosphorylation and activation of the ribosomal S6 kinase and 

phosphorylation and inactivation of eukaryotic initiation factor 4E-BP1, an inhibitor of 

translation initiation factor eIF4E (Gingras et al., 1999). The result is stimulation of mRNA 

translation. Rapamycin inhibits TOR leading to growth arrest. TOR signaling may be due 

largely to its effect on PP2A and related phosphatases (Di Como and Arndt, 1996). TOR 

directly phosphorylates the Tap42 protein of S. cerevisiae, which then binds to either the C 

subunit of PP2A or the related yeast phosphatase Sit4 (Jiang and Broach, 1999). The 

Tap42-PP2A C dimer does not contain PP2A A or B, subunits representing a novel form of 

PP2A. In mammals, mTOR is downstream of phosphatidylinositol 3 kinase (PI3K) and can 

be directly activated by phosphorylation by PKB/Akt. A mammalian protein related to the 
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yeast Tap42, α4, has been shown to bind PP2A C  (Murata et al., 1997) and also the 

related phosphatases PP4 and PP6 (Jiang and Broach, 1999). 

In summary, many proteins have been identified that interact with PP2A. Some of 

them affect PP2A activity [such as I(1)PP2A, I(2)PP2A, PTPA, Tap42/α4, SV40 small t, 

polyoma middle T/small t, HIV-1 NCp-7Vpr, adenovirus E4orf4CKIIα, Hox11 and PKR], 

some are PP2A substrates (such as Bcl2, p70s6 kinase, CaMKIV, vimentin, paxillin and 

SCR), for some PP2A it self is a substrate (such as caspase-3, JAK2, PME-1 and PKR) and 

some act as targeting proteins (such as eRF1, axin, APC and CG-NAP). An overview is 

given in Figure I.6. 

       

 
Figure I.6: PP2A interacts with a variety of proteins (Janssens and Goris, 2001). 
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I.3.1.3 PP2B - Protein Phosphatase 2B 
 

PP2B, or calcineurin, is a Ca2+/calmodulin-dependent protein phosphatase. The 

enzyme consists of two subunits, the catalytic A subunit of 60 kDa (PP2B A) and the 

myristoylated regulatory B subunit of 19 kDa (PP2B B). Calcineurin is present in nearly all 

mammalian cells studied but is highly enriched in neural tissue comprising over 1% of the 

total protein in the brain [a review can be found in (Klee et al., 1998)]. Originally, the term 

calcineurin referred to the neuronal form of PP2B but, more recently, calcineurin refers to 

both neuronal and non-neuronal PP2B. The amino acid sequence of PP2B is highly 

conserved from humans to yeast with over 50% sequence identity (da Cruz e Silva and 

Cohen, 1989; da Cruz e Silva et al., 1991; Stemmer and Klee, 1994). Cloning from rat 

brain indicated an A subunit of 521 amino acids. There are three mammalian genes for the 

A subunit, giving rise to the PP2B Aα, PP2B Aβ and PP2B Aγ isoforms. Aα and Aβ are 

highly expressed in brain, whereas Aγ is testis specific. Differential splicing of PP2B 

Aα generates two transcripts (α1 and α2), whereas PP2B Aβ gene is alternatively spliced to 

give three transcripts β1, β2 and β3. PP2B Aα1 and PP2B Aβ2 are highly expressed in 

neuronal tissue (Ueki et al., 1992). The A subunit shows autoinhibition that is relieved by 

interaction with the B subunit. PP2B, in contrast to PP1 and PP2A, is the only PP directly 

regulated by Ca2+. The inhibition of B on A is relieved if B binds Ca2+. This explains why 

the enzyme is dependent on Ca2+ for activity. Proteolysis of the autoinhibitory COOH 

terminus (residues 467-492) of the PP2B A generates a Ca2+-independent form. The B 

subunit was sequenced at the protein level and found to comprise 168 amino acids, 

exhibiting a high degree of sequence similarity to calmodulin. Both contain four EF-hand 

Ca2+-binding loops, both are needed for full PP2B activity, and both bind to unique regions 

on PP2B A without any cross interference. Two different B subunit genes are known: 

PP2B Bα and PP2B Bβ. PP2B Bα gives rise to one protein isoform expressed in many 

tissues termed PP2B Bα1 (170 amino acids) and, by means of a different promotor, leads 

also to another testis-specific isoform PP2B Bα2 (216 amino acids). PP2B Bβ (179 amino 

acids) is only expressed in the testis (Ueki et al., 1992; Chang et al., 1994). The crystal 

structure of PP2B has been determined (Griffith et al., 1995; Kissinger et al., 1995) and 
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helped to further clarify the various binding domains and interaction sites of PP2B (Fig. 

I.7).  

The best known in vitro and in vivo substrates of PP2B are the PP1 inhibitors I-1 

and DARPP-32. Thus, PP2B controls PP1 activity and the two together form the first 

documented phosphatase cascade (Mulkey et al., 1994). 
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Figure I.7: Structure of calcineurin. a) Diagrammatic representation of the calcineurin A subunit 

indicating the catalytic domain, the binding domains for calcineurin B (CaN B), calmodulin 

(CaM), and the auto-inhibitory domain (AID). b), the crystal structure of the human calcineurin 

heterodimer is shown with secondary structural elements. The calcineurin A subunit is shown in 

blue and the B subunit in green. Fe (red) and Zn (yellow) are bound in a cleft of the catalytic 

domain and four Ca (black) are shown binding to the B subunit. 

 

PP2B and neuronal function 

Calcium-stimulated dephosphorylation of target proteins by PP2B modulates 

numerous neuronal activities. Described functions for PP2B in the brain include Ca2+-

dependent dephosphorylation of DARPP-32, inhibition of neurotransmitter release, 

dephosphorylation of dynamin I, and desensitization of postsynaptic NMDA-receptor-

coupled calcium channels (Yakel, 1997; Greengard et al., 1998; Klee et al., 1998). PP2B is 

also thought to regulate the calcium channel activity of the ryanodine and inositol 1,4,5-
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triphosphate receptors via an immunophilin-mediated interaction (Snyder et al., 1998), and 

plays a role in the neurotoxicity associated with excessive stimulation of NMDA-type 

glutamate receptors. Immunossuppressants prevent apoptosis and rearrangments of the 

cytoskeleton in response to excitotoxic glutamate (Halpain et al., 1998). Overexpression of 

PP2B in transgenic mice revealed a novel phase of long-term potentiation in the CA1 

region of the hippocampus that may be normally constrained by PP2B (Winder et al., 

1998). These observations provide evidence for a physiological function for PP2B in intact 

animals. The altered regulation of this component of long-term potentiation by PP2B 

correlates with reversible deficits in long-term memory that occur during expression of 

activated PP2B (Mansuy et al., 1998). These observations provide an elegant 

demonstration of the role of PP2B in memory. Along with PP2A, PP2B is one of the major 

tau phosphatases in vitro and can restore the microtubule-binding ability of 

hyperphosphorylated tau (Billingsley and Kincaid, 1997). When nerve terminals in the 

brain are stimulated, a group of phosphoproteins called dephosphins are coordinately 

dephosphorylated by PP2B. Amazingly, the seven presently known dephosphins are not 

structurally related, yet each has been independently shown to be essential for synaptic 

vesicle endocytosis. Nowhere else in biology is there a similar example of the coordinated 

dephosphorylation of such a large group of proteins each sharing roles in the same 

biological response.  

PP2B and T-cell activation 

PP2B plays a crucial role in the Ca2+-signaling cascade of activated T-cells. 

Increases in Ca2+ concentrations in T-cells promoted by antigen presentation to T-cell 

receptor stimulates PP2B to dephosphorylate the cytosolic subunit of the transcription 

factor NFAT, Nuclear Factor of Activated T-cells, (Jain et al., 1993). Dephosphorylated 

NFAT translocates into the nucleus where, in concert with other transcription factors, it 

induces expression of the IL-2 gene, one of the early genes in the T-cell activation 

pathway. Inhibition of this Ca2+-signaling cascade by immunosuppressant drugs (such as 

FK506 and cyclosporin A, when complexed to their intracellular receptors FKBP and 

cyclophilin, respectively) suppresses T-cell activation. 

PP2B and transcription control 

Regulation by PP2B of the nuclear import of NFAT has already been mentioned 

above. It was the first example of the transduction of a signal at the plasma membrane to 
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the nucleus. More recently, it has been shown that this transcription factor is not only 

involved in T-cell activation, but also in several other mechanisms. PP2B has been shown 

to have important roles in axonal guidance (Chang et al., 1995), as well as memory and 

learning (Mansuy et al., 1998; Winder et al., 1998). In general, these functions in neurons 

have been thought to be independent of transcription. However, recent evidence indicates 

that NFAT family members may have critical roles in the development of synaptic 

connections (Graef et al., 1999). It also seems that the NFAT pathway is involved in the 

morphogenesis of heart valves. Additionally, it has been shown that severe cardiac 

hypertrophy can be induced by the overexpression of a truncated constitutively active 

PP2B A subunit (Molkentin et al., 1998). 

 NF-κB and other Rel proteins play critical roles in the development of the liver, 

skin, inflammatory responses and in some aspects of recombinational immune response. 

Unlike NFAT, which absolutely requires a calcium stimulus, NF-κB can be fully activated 

by PKC activators in the absence of calcium (Singh et al., 1986). However, suboptimal 

stimuli can be augmented with a calcium signal (Mattila et al., 1990). This calcium 

facilitation of NF-κB activity can be mimicked by overexpression of a constitutively active 

PP2B and can be partially blocked with FK506 or cyclosporin A, indicating that PP2B is 

required for full induction of NF-κB activity in certain circumstances (Frantz et al., 1994). 

The AP-1 transcription complex consists of Fos and Jun proteins. Transcription controlled 

by most AP-1 sites is not sensitive to inhibition by cyclosporin A or FK506 (Mattila et al., 

1990). However, a site in the IL-2 promoter that binds junD and perhaps c-jun requires the 

action of PP2B for full function (Ullman et al., 1993). In addition, an apparent AP-1 site in 

the collagenase promoter is sensitive to FK506 (Su et al., 1994) and hence likely to be 

PP2B-dependent. 

 PP2B inhibitors 

Several different classes of PP2B inhibitors have been discovered raising questions 

about their various roles in Ca2+/PP2B signaling. The inhibitors bind to PP2B and inhibit 

its ability to dephosphorylate substrates such as NFAT family members, thereby 

preventing their nuclear localization. One of the most interesting is the DSCR1 gene and 

its relatives, DSCR2 and ZAK14 (Fuentes et al., 2000). DSCR1 is located on chromosome 

21 in the so called critical region (hence its designation, Down’s syndrome critical region 1 

gene). Some evidences indicate that overexpression of DSCR1 might underlie the 
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pathogenesis of Down’s Syndrome. First, it was shown that DSCR1 protein is 

overexpressed in the brains of Down’s Syndrome patients. Second, some of the symptoms 

of the Syndrome appear in mice with mutations of the different PP2B-dependent (NFAT) 

subunits of the transcription complex (Fuentes et al., 2000). It is possible that 

overexpression of DSCR1 as a result of trisomy leads to inhibition of PP2B and subsequent 

effects on the development of the brain, immune system, heart and skeleton. However, the 

Down’s Syndrome critical region includes a number of genes and it is possible that the 

syndrome is due to overexpression of several of these. Recently, yeast has been shown to 

have a related protein, Pcn1p that binds and inactivates PP2B (Gorlach et al., 2000). Two 

additional classes of PP2B inhibitors are Cabin/Cain (Lai et al., 1998; Sun et al., 1998), 

which are novel proteins, and the CHP protein that has similarity to PP2B B subunit (Lin 

and Barber, 1996; Lin et al., 1999). The CHP proteins appear to compete with PP2B B for 

binding to the A protein and thereby inhibit the Ca2+-dependent activation of PP2B A. 

Cabin, or Cain (Calcineurin inhibitor), is a non competitive inhibitor of PP2B phosphatase 

activity with a Ki of 440nM. A physiologic role for these proteins is still unclear, but they 

do antagonize NFAT translocation. A fourth class of PP2B inhibitors is found in the 

genome of certain viruses, (e.g. African swine fever virus). The A238L protein encoded by 

the virus binds tightly to PP2B and blocks NFAT translocation and function (Miskin et al., 

1998). AKAP79 (protein kinase A anchoring protein) was the first PP2B protein inhibitor 

to be found (Coghlan et al., 1995) and is also a scaffolding protein. AKAP79 binds both 

calcineurin and protein kinase A, and may anchor PP2B at specific sites that allow the 

protein to engage the proper substrates when activated. Another inhibitor that constitutes a 

useful laboratory tool is the auto-inhibitory peptide. This is a 26-residue peptide that 

interacts with the catalytic core and blocks PP2B activity with an IC50 of 10-15µM 

(Hashimoto et al., 1990). Immunosuppressant drugs such as cyclosporin A and FK506 

(Liu, 1993) belong to a different class of PP2B inhibitors. These are fungal compounds that 

require binding to their cognate intracellular immunophilins (cyclophilin A and FKB12, 

respectively) prior to binding to and inhibiting PP2B activity with nanomolar affinity. 

Being membrane permeable, these compounds have greatly facilitated the in vivo study of 

PP2B function. Yet another class of inhibitors is the type II pyrethroid insecticides, 

including cypermethrin and deltamethrin (Enan and Matsumura, 1992). 
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In conclusion, within the past few years PP2B has been implicated in a wide variety 

of extremely important biological responses including lymphocyte activation, neuronal and 

muscle development, neurite outgrowth, morphogenesis of vertebrate heart valves, learning 

and memory (Fig. I.8). 

 
Figure I.8: Calcineurin as a multifunctional regulator (Shibasaki et al., 2002). 

 
I.3.2 The PPM Family 

 

The PPM protein phosphatases belong to a large and diversified family of protein 

phosphatases expressed in both eukaryotes and prokaryotes that dephosphorylate serine 

and threonine residues, as does the PPP family. PPC relates to the main enzyme subtype of 

the PPM, including Arabidopsis ABI1 (Leung et al., 1994), Arabidopsis KAPP-1 (Stone et 

al., 1994), pyruvate dehydrogenase phosphatase (Lawson et al., 1993) and Bacillus subtilis 

SpoIIE phosphatase (Barak et al., 1996). Within the PPM family, the PP2C domain occurs 

in numerous structural contexts that reflect functional diversity. For example, PP2C 

domain of the Arabidopsis ABI1 gene is fused with EF- hand motifs (Leung et al., 1994; 

Meyer et al., 1994), whereas in KAPP-1, a kinase-interaction domain that associates with a 

phosphorylated receptor precedes the phosphatase domain (Stone et al., 1994). Other 

examples include the Ca2+-stimulated mitochondrial pyruvate dehydrogenase phosphatase, 

which contains a catalytic subunit sharing 22% sequence identity with mammalian PP2C 

(Lawson et al., 1993) and SpoIIE phosphatase, which has ten membrane-spanning regions 

preceding the PP2C-like catalytic domain (Fig. I.9).  
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Figure I.9: The PPM family. 

 

PP2C was originally identified as a Mg2+-dependent protein phosphatase. The 

enzyme is monomeric with a molecular mass of 43-48 kDa (Cohen, 1989) and is resistant 

to okadaic acid. To date the existence of six distinct PP2C genes (PP2Cα, PP2Cβ, PP2Cγ, 

PP2Cδ, Wip1 and FIN13) has been reported in mammalian cells (Tamura et al., 1989; 

Wenk et al., 1992; Fiscella et al., 1997; Guthridge et al., 1997; Travis and Welsh, 1997; 

Tong et al., 1998). In addition, mouse PP2Cβ has been found to have five distinct isoforms 

(β1, β2, β3, β4, β5), which are splice variants from a single pre-mRNA (Terasawa et al., 

1993; Hou et al., 1994; Kato et al., 1995). 

Considerable information on the function of mammalian PP2C has accumulated 

over the last decade. PP2C can be activated by polyunsaturated fatty acids such as 

arachidonic acid. Upon addition of fatty acids PP2C no longer requires unphysiologically 

high Mg2+ concentrations for activity, and Ca2+ ions become inhibitory in the micromolar 

range. The stimulation of PP2C in vitro by fatty acids suggests that this enzyme may be 

regulated by an endogenous lipid messenger in vivo (Klumpp et al., 1998). It was shown 

(Murray et al., 1999) that PP2Cγ is physically associated with the spliceosome in vitro and 

is required during the early stages of spliceosome assembly for efficient formation of the A 

complex. PP2C is also involved in the regulation of AMP-activated protein kinase (Moore 

et al., 1991) and Ca2+/calmodulin–dependent protein kinase II (Fukunaga et al., 1993). 

PP2C may also selectively inhibit the SAPK pathway through suppression of MKK3b, 



Characterization of the PP1 Interactome from Human Testis Chapter I  

Centro de Biologia Celular 
Universidade de Aveiro 

33 

MKK4, MKK6b and MKK7 activities in mammalian cells (Hanada et al., 1998). Recent 

research further revealed that PP2C might be involved in the control of cell apoptosis 

(Wolf et al., 1997), gene expression and other cellular functions (Bohmann, 1990; 

Kurosawa, 1994; Schonthal, 1995). More recently, PP2Cα has been implicated in Wnt 

signaling, being a positive regulator and exerting its effects through the dephosphorylation 

of axin (Strovel et al., 2000), a role that was first attributed to PP2A (Willert et al., 1999). 

PP2C influences the dynamic interactions between the actin cytoskeleton and membrane 

constituents linked to moesin (Hishiya et al., 1999). Members of the moesin protein family 

are localized membrane structures rich in actin filaments that act as linkers between the 

plasma membrane and the actin cytoskeleton. Furthermore, PP2Cα and PP2Cβ2 are 

responsible for the inactivating dephosphorylation of Cdk2/Cdk6 (Cheng et al., 2000b). 

The dephosphorylation of Cdk2 and Cdk6 by PP2C isoforms is inhibited by the binding of 

cyclins. PP2Cβ was recently implicated in the regulation of the TAK1 signaling pathway: 

TAK1 is a stress-activated protein kinase that is activated by interleukin-1, transforming 

growth factor-β or stress. PP2Cβ negatively regulates the TAK1 signaling pathway by 

direct dephosphorylation of TAK1 (Hanada et al., 2001). 

 

I.4 PHOSPHATASE INHIBITORS 
 

One of the most significant advances in the study of Ser/Thr-PPs, and the 

elucidation of the cellular events they control, was the identification of several naturally 

occurring toxins as powerful and specific phosphatase inhibitors. Among these are okadaic 

acid (Fujiki and Suganuma, 1993), cantharidin (Laidley et al., 1997), calyculin A (Ishihara 

et al., 1989), microcystins (Carmichael, 1992; Fujiki and Suganuma, 1993; Carmichael, 

1994) and tautomycin (MacKintosh and Klumpp, 1990; Hori et al., 1991) to name a few 

examples. Another class of phosphatase inhibitors are the protein inhibitors readily 

available inside the cell. The specificity of these inhibitors for a given phosphatase has 

placed the former as key tools in the study of phosphorylation dependent processes. 
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I.4.1 Toxins as natural inhibitors of PPs 

 

I.4.1.1 Okadaic acid and derivatives 
 

Okadaic acid (OA) is a polyether compound with a C-38 structure and was isolated 

from the black sponge Halichondria okadai (Fujiki and Suganuma, 1993) (Fig. I.10).  

 

 
Figure I.10: Structure of okadaic acid (R1=H, R2=H, R3=CH3). 

 

OA is a potent phosphatase inhibitor in smooth muscle preparations (Bialojan et al., 

1988), and was reported to inhibite PP1, PP2A and PP2B with IC50 values of 272, 1.6, and 

3,600nM, respectively (Bialojan and Takai, 1988). PP2C, phosphotyrosyl phosphatase, 

acid phosphatase and alkaline phosphatase were not inhibited by up to 10µM OA. It is 

currently thought that tumor promotion by OA and related compounds like calyculin A and 

microcystin LR is due to inhibition of PP1 and PP2A [a review can be found in (Fujiki and 

Suganuma, 1993)]. OA in concentrations <2nM inhibits also other PP2A related family 

members such as PP4, PP5, and PP6 (Cohen, 1997).  

 

I.4.1.2 Cantharidin and analogs 
 

Cantharidin (CT), cantharidic acid, palasonin and endothall are structural analogs 

(Laidley et al., 1997). CT is the vesicant in blister beetles, palasonin is an anti-helmintic in 

seeds of a medical tree and endothal is a synthetic herbicide. The toxic action of CT is 

thought to be due to phosphatase inhibition. Initially, CT was reported to bind to PP2A in 

mouse liver (Li et al., 1993). However, CT inhibits PP1 and PP2A in vivo with IC50 values 

of 500 and 40nM (Honkanen, 1993; Li et al., 1993; Neumann et al., 1995). Palasonin and 



Characterization of the PP1 Interactome from Human Testis Chapter I  

Centro de Biologia Celular 
Universidade de Aveiro 

35 

cantharidic acid exhibited similar inhibitory activity (Li et al., 1993). Endothal inhibits 

both PP1 and PP2A with IC50 values of 5,000 and 1,000nM (Li et al., 1993). Neither 

compound inhibits PP2B (>30,000nM) or PP2C (>1mM). CT is a terpenoid and is cell 

membrane permeable. It is less potent and selective than OA, but much cheaper. 

Mutational analysis indicates that OA and CA might act on different amino acids on PP1 

(Zhang et al., 1994b) (Fig. I.11). 

 

 
Fig. I.11: Structure of Cantharidin.  

 

I.4.1.3 Calyculin A:  
 

Calyculin A (CA) was isolated from another marine sponge, Discodermia calyx. It 

is an octamethylpolyhydroxylated C-28 fatty acid linked to two γ-amino acids and 

esterified with phosphate. It is cell membrane permeable. CA is equally potent against PP1 

and PP2A (Ishihara et al., 1989; Fujiki and Suganuma, 1993) with IC50 values from 1 to 

14nM. OA and CA seem to compete for the same inhibitory site on PP2A (Takai et al., 

1995). Mutational analysis suggests that CA inhibits the enzyme via interaction with amino 

acid tyrosine-272 on PP1 because its IC50 is changed from 0.5 to 3,000nM in the Y272K 

mutant (J. Zhang et al., 1996) (Fig. I.12). 

 
Figure I.12: Structure of calyculin A (CA A,R=H; CA C, R=Me). 
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I.4.1.4 Microcystins 
 

Whereas OA and CA are fatty acid derivatives, microcystins (Mic) and nodularin 

(Nod) are peptide toxins. Mic are of toxicological and public health relevance. They cause 

death in cattle and humans exposed to water contaminated by certain algae. These include 

colonical and filamentous algae and cyanobacteriae like Microcystis aeruginosa 

(Carmichael, 1992; Fujiki and Suganuma, 1993; Carmichael, 1994). Mic are cyclic 

heptapeptides containing five constant (some of which are unique) and two variable amino 

acids. The variable amino acids in Mic are indicated in the one-letter code. Hence, their 

short-hand notation is microcystin-LR, -YR and –RR. Mic-LR inhibits PP1 and PP2A with 

IC50 values of 0.1nM each (MacKintosh et al., 1990). It inhibits PP2B with an IC50 of 

0.2µM and does not inhibit PP2C up to 4µM (MacKintosh et al., 1990). PP4 and PP5 are 

inhibited by <2nM Mic. Mic is the most potent (and toxic) PP inhibitor, but being a 

peptide it is not cell permeable. The 3D structure of Mic-LR bound to PP1 has been 

determined (Goldberg et al., 1995; Bagu et al., 1997), and mutation of the critical cysteine-

273 in PP1 to alanine impeded covalent binding of Mic to PP1 (Fig I.13).  

 
Figure I.13: Structure of Microcystin. 

 

I.4.1.5 Nodularin  
 

Nodularin (Nod), a cyclic pentapeptide, was isolated from the toxic cyanobacterium 

Nodularia spumigenia (Carmichael, 1992). Like Mic it is toxic to the liver. Nod R and its 

derivative motuporin (nodularin V) potently inhibit PP1, as well as PP2A, with IC50 values 

of 1.6 and 0.03nM, respectively (Honkanen et al., 1991). Hence, it inhibits PP1 and PP2A 

10 times more potently than OA, being is 70 fold selective for PP2A. It inhibits PP2B with 
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an IC50 of 8.7µM but does not affect PP2C (Honkanen et al., 1991). The IC50 values are 

comparable to those of Mic-LR. In contrast to Mic, Nod R or V do not covalently bind to 

PP1 or PP2A (Craig et al., 1996). Mutational analysis suggests that Nod also inhibits PP 

activity via interaction with amino acid Tyr-272 on PP1 because its IC50 changed from 0.5 

to 150nM in the Y272S mutant (J. Zhang et al., 1996). The 3D solution structure of Nod 

closely resembles that of Mic-LR (Annila et al., 1996) (Fig. I.14).          

 
Figure I.14: Structure of Nodularin. 

 

I.4.1.6 Tautomycin 
 

Tautomycin (Tau) was isolated from Streptomyces spiroverticillatus as an antibiotic 

because it is toxic to yeast and fungi. Its structure as a polyketide resembles somewhat that 

of OA (MacKintosh and Klumpp, 1990; Hori et al., 1991). It inhibits PP1 and PP2A with 

IC50 values of 0.2-0.7 and 0.4-0.65nM, respectively (MacKintosh and Klumpp, 1990; 

Fujiki and Suganuma, 1993). Others reported IC50 values of 0.4 and 34nM for PP1 and 

PP2A, respectively (Takai et al., 1995). It does not inhibit PP2C and its IC50 for PP2B is 

100µM. OA prevents the interaction of Tau with the catalytic subunit of PP2A (Fig. I.15). 

 
Figure I.15: Structure of Tautomycin. 
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I.4.1.7 Cyclosporin 
 

Ciclosporin (CsA) or cyclosporin A (a cyclic undecapeptide), and FK506 (a 

macrocyclic lactone) inhibit PP2B (Parsons et al., 1994). This inhibition is not direct as 

was already mentioned. First CsA and FK506 bind to cyclophilin and a FK506-binding 

protein (FKBP), respectively. Then, they interact with the latch region of PP2B B 

(Clipstone et al., 1994; Milan et al., 1994), leading to inhibition of PP2B A. The 3D 

structure of the PP2B-FK506 and FKBP complex supports this notion (Griffith et al., 

1995); (Kissinger et al., 1995). Rapamycin, an immunosupressant fungal metabolite, also 

binds to FKBP but does not inhibit PP2B because it cannot interact with PP2B B for steric 

reasons (Griffith et al., 1995). In contrast, it targets a rapamycin-associated protein (FRAP) 

that leads to inactivation of some specialized protein kinases like p70s6k (Price et al., 1992; 

Alberts et al., 1993).Work with CsA is complicated by its poor aqueous solubility. 

However, it is cell membrane permeant (Fig. I.16). 

 

 
Figure I.16: Structure of Cyclosporin. 

 

I.4.1.8 Cypermethrin  
 

Type 2 pyrethroids like cypermethrin are used as insecticides because they 

modulate ion channel activity, but they also have been reported to inhibit PP2B at sub-

nanomolar concentrations (Enan and Matsumura, 1992), independently of mediator 

proteins like cyclophilin. Subsequent reports that up to 1mM cypermethrin did not affect 
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PP2B, PP1 or PP2A (MacKintosh and MacKintosh, 1994), are thought to be due to 

artifactual reasons. 

 

I.4.1.9 Apomorphine 
 

Apomorphine and SKF-38393 inhibited PP2A from rat brain with IC50 values of 1 

and 50µM, respectively. In contrast, apocodeine was inactive. It has apparently not been 

reported to inhibit other PPs (Kawai, 1991). Apomorphin is cell membrane permeant. 

 

I.4.1.10 Fostriecin 
 

The antitumor antibiotic fostriecin (FT) is a type II DNA topoisomerase-directed 

anticancer drug, like doxorubicin or etoposide (Boritzki et al., 1988). FT is a naturally 

occurring compound from Streptomyces pulveraceus subspecies fostreus, an actinomycete 

found in a Brazilian soil sample. It is a water soluble polyene lacton with a phosphate ester. 

FT inhibited both PP1 and PP2A with IC50 values of 4µM and 40nM, respectively, but it 

did not inhibit tyrosine phosphatases (Roberge et al., 1994). It has been suggested that the 

PP inhibition at least contributes to its efficacy against solid tumors in humans.  

 

I.4.1.11 Heparin 
 

Heparin binds and inhibits to PP1 but not PP2A (Gergely et al., 1984; Erdodi et al., 

1985a, b). Heparin can actually stimulate PP2A. This property led to a procedure to 

separate these phosphatases using a heparin-based affinity column chromatography. 

Spermine inhibits both PP1 and PP2A with similar potency (Shenolikar and Nairn, 1991).   

 

I.4.1.12 Thyrsiferyl 23-acetate 
 

This compound is, like OA, a polyether fatty acid and contains a squalene carbon 

skeleton. It was isolated from the red alga L. obtuse. It is unique because it is a selective 

inhibitor of PP2A. It does not inhibit PP1, PP2B, PP2C or tyrosine phosphatase activity at 

concentrations up to 1mM. Its IC50 for PP2A is 4µM. It is several orders of magnitude less 

potent than OA or CA. It is expected to be cell membrane permeant (Matsuzawa et al., 

1994).  



Characterization of the PP1 Interactome from Human Testis Chapter I  
 

Centro de Biologia Celular 
Universidade de Aveiro 

40 

I.4.1.12 Oscillamide B and Oscillamide C 
 

Two new phosphatase inhibitors, oscillamide B and C, were isolated from the 

cyanobacteria Planktothrix (Oscillatoria) agardhii and P. rubescens. These inhibitors are 

ureido-containing cyclic peptides and inhibit PP1 and PP2A (Sano et al., 2001). 

 

I.4.2 Protein inhibitors 

 

I.4.2.1 Inhibitor 1 (I-1)  
 

I-1 and I-2 were identified by Huang and Glinsmann (F. L. Huang and W. H. 

Glinsmann, 1976; Huang et al., 1976). They share unusual physical properties: both are 

heat stable and are not precipitated by 1% trichloroacetic acid, in contrast to most other 

proteins. I-1 comprises 171 amino acids (Aitken et al., 1982; Elbrecht et al., 1990; Endo et 

al., 1996). Only in the C-terminal were differences between rabbit, rat and human noted 

(Endo et al., 1996). I-1 from rabbit skeletal muscle and human brain has a calculated 

molecular mass of 18.7 and 19.2kDa, respectively (Aitken et al., 1982; Endo et al., 1996), 

but the apparent molecular mass on SDS-PAGE is 26kDa. This discrepancy has been 

explained by a low degree of order in the protein. I-1 binds to and inhibits PP1 only after 

being phosphorylated on Thr-35 by cAMP-dependent protein kinase or cGMP-dependent 

protein kinase (Hemmings et al., 1984b). It is highly selective for PP1, inhibiting PP1 and 

PP2A with IC50 values of 1.1 and 21,000nM, respectively (Endo et al., 1996). I-1 is a 

cytosolic protein; it has been used as a tool to study whether a process involves PP1. 

Amino acids 9-12 KIQF are conserved in rat, rabbit and human and seem to be crucial for 

binding and inhibition of PP1 (Egloff et al., 1997). 

 

I.4.2.2 Inhibitor 2 (I-2) 
 

I-2 from rabbit skeletal muscle comprises 204 amino acids and has a calculated 

mass of 22.9kDa (Holmes et al., 1986a). Similarly to I-1, its apparent molecular mass on 

SDS-PAGE is much larger (31kDa). It binds to and inhibits PP1 regardless of 

phosphorylation. Mutational analysis suggests that I-2 inhibits via interaction with amino 

acid Tyr-272 on PP1 because its IC50 changed from 13 to 180ng/ml in the Y272K mutant 
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(L. Zhang et al., 1996). I-2 inhibition of PP1 can be reversed by GSK3 phosphorylation of 

I-2. 

 

I.4.2.3 DARPP-32  
 

DARPP-32 (dopamine and cyclic AMP-regulated phosphoproteins, Mr 32,000Da) 

is similar to I-1 in function but derived from a different gene, and is mainly expressed in 

the brain (Hemmings et al., 1984a). It is cytosolic and a predicted molecular mass of 

22.6kDa, but again a higher apparent molecular mass of 32kDa on SDS-PAGE (Williams 

et al., 1986). The same Thr residue on DARPP-32 is phosphorylated by cAMP-dependent 

protein kinase and also by cGMP-dependent protein kinase. Phosphorylation of DARPP-32 

changes its IC50 for PP1 from 1µM to 2nM (Desdouits et al., 1995a; Desdouits et al., 

1995b), underscoring its high selectivity. Under physiological conditions (mM Mn2+ in the 

assay) I-1 and DARPP-32 are dephosphorylated and inactivated by PP2A and even better 

by PP2B (Hemmings et al., 1984a; Hemmings et al., 1990; Desdouits et al., 1995c). The 

dephosphorylation by PP2B is dependent on the presence of calcium. It was suggested that 

this might be a way for Ca2+ levels to control protein phosphorylation (Hubbard and 

Cohen, 1989). Thiophosphorylated I-1 or DARPP-32 is not dephosphorylated and has been 

successfully used to study the physiological role of PP1-mediated phosphorylation in 

muscle contraction. 

 

I.4.2.4 Inhibitor 1 PP2A 
 

Inhibitor 1 PP2A has been isolated from bovine kidney. It is thermostable and not 

inactivated by 1% trichloroacetic acid. Its apparent molecular mass is 30kDa (Li et al., 

1995). Identified as putative class II human histocompatibility leukocyte-associated protein 

(PHAP) I (Li et al., 1996a), it seems to inhibit the catalytic subunit directly. It is not known 

whether its activity is regulated by a posttranslational modification like I-1 of PP1 (Li et 

al., 1995). 
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I.4.2.5 Inhibitor 2 PP2A 
 

This inhibitor has been isolated from bovine kidney. It is also thermostable and not 

inactivated by 1% trichloroacetic acid. Its apparent molecular mass was initially reported 

as 20kDa (Li et al., 1995). Protein sequencing revealed that the protein had been described 

before as SET (Li et al., 1996b), PHAP II (Vaesen et al., 1994) and template activating 

factor-1β (Nagata et al., 1995). These last two inhibitors might be useful tools to study the 

physiological function of PP2A. It has been speculated that I-1 and I-2 of PP2A might be 

involved in signal transduction, particularly to mediate the effects of insulin on PP2A (Li 

et al., 1995). 

 

I.4.2.6 Simian virus 40 small tumor antigen (SV40) 
 

SV40 is a member of the papova family of small DNA tumor viruses. Its lytic cycle 

takes place in permissive monkey cells. SV40 infection leads to the production of proteins 

that are immunogenic and that were called tumor antigens. One such antigen is the SV40 

small tumor antigen. It can inhibit PP2A activity with an IC50 of 10-15nM. SV40 inhibits 

PP2A trimeric complex (Yang et al., 1991). In cells the interaction of small tumor antigen 

with PP2A leads to deinhibition and thus activation of MAP kinase and MEK which 

induces cell proliferation (Sontag et al., 1993).   

 

I.4.2.7 Inhibitor 4 
 

Kikuchi and coworkers isolated a human cDNA for a novel PP1 inhibitory protein, 

named I-4, from a cDNA library of germ cell tumors (Shirato et al., 2000). I-4, composed 

of 202 amino acids, is 44% identical to I-2. I-4 conserves functionally important structure 

of I-2 and exhibited similar biochemical properties. I-4 inhibited activity of the catalytic 

subunit of PP1 with IC50 of 0.2nM, more potently than I-2 with an IC50 of 2nM. Gel 

overlay experiments showed that I-4 binds PP1c directly through a multiple-point 

interaction.  
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I.5 DISTRIBUTION AND EXPRESSION OF PROTEIN 

PHOSPHATASES 

 

I.5.1 PP1 

 

By using specific antibodies raised against the different PP1 isoforms (α, β and γ1) it 

was shown that all the three isoforms were expressed in a variety of mammalian cells 

tested although they localize within these cells in a distinct and characteristic manner. All 

the isoforms were present both in the cytoplasm and nucleus during interphase. Within the 

nucleus PP1α associates with the nuclear matrix, PP1γ1 concentrates in nucleoli in 

association with RNA, and PP1β localizes to non-nucleolar chromatin. During mitosis 

PP1α is localized to the centrosomes, PP1γ1 is associated with microtubules and 

PP1β associates with chromosomes (Andreassen et al., 1998). 

In the brain the mRNAs for PP1α, PP1β and PP1γ1 were found to be particularly 

abundant in hippocampus and cerebellum (da Cruz e Silva et al., 1995b). At the protein 

level � PP1α and PP1γ1 were found to be more highly expressed in brain than in peripheral 

tissues (Table I.1), with the highest levels being measured in the striatum, where they were 

shown to be relatively enriched in the medium-sized spiny neurons (da Cruz e Silva et al., 

1995b). At the electron microscopic level, PP1 immunoreactivity was demonstrated in 

dendritic spine heads and spine necks and possibly also in postsynaptic density (Ouimet et 

al., 1995). PP1 immunoreactivity has also been reported in human hippocampal neuronal 

cytoplasm (Pei et al., 1994). In addition, most neuronal nuclei were not immmunoreactive 

for PP1γ1 but were usually strongly immunoreactive for PP1α (Ouimet et al., 1995). 

 

I.5.2 PP2A 

 

Both PP2A catalytic subunit isoforms α and β are ubiquitously expressed, and very 

high levels are found in brain and heart. However, PP2A α is about 10 times more 

abundant than PP2A β (Khew-Goodall and Hemmings, 1988).  PP2A is mainly 

cytoplasmic (Waelkens et al., 1987), although it has also been found in the nucleus 

(Turowski et al., 1995). Of all tissues tested, its activity was highest in brain extracts 
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(Ingebritsen and Cohen, 1983). The catalytic subunit was found to have a wide regional 

distribution in brain, with the highest immunoreactivity being present in neurons and 

particularly enriched in the cytosolic and synaptosolic subcellular fractions (Saitoh et al., 

1989).  

 

I.5.3 PP2B 

 

PP2B is present in nearly all mammalian cells studied but it is most abundant in the 

brain (Wallace et al., 1980). In brain, 50-70% of PP2B is bound to membrane or 

cytoskeleton elements, and is found in most cells, although its concentration varies from 

one area to another (Yakel, 1997). PP2B Aα1 and PP2B Aβ2 isoforms are highly expressed 

in neuronal tissues whereas PP2B Aγ is testis specific (Ueki et al., 1992). PP2B Bα gives 

rise to an isoform expressed in many tissues named PP2B Bα1 (170 amino acids) and by 

means of a different promoter leads to another testis-specific isoform PP2B Bα2 (216 

amino acids). Similarly, PP2B Bβ (179 amino acids) is only expressed in the testis (Ueki et 

al., 1992; Chang et al., 1994). 

The PP2B Aα isoform is the most abundantly expressed in neurons. PP2B activity has 

been detected in both the soluble and particulate fractions of brain homogenates (Tallant et 

al., 1983). A dual cytoplasmic and membrane distribution was revealed by a series of 

immunohistochemical studies. PP2B has been detected in association with postsynaptic 

densities (Carlin et al., 1981; Grab et al., 1981), enriched at postsynaptic loci, plasma 

membranes and dendritic microtubules, with a more diffuse cytoplasmic distribution 

(Wood et al., 1980), and has also been reported in axons (Kincaid and Coulson, 1985). 

PP2B is either absent or present at very low levels in glia (Goto et al., 1986). Loss of PP2B 

immunoreactivity has been reported in the brains of both Huntington’s disease (Goto et al., 

1989b) and Parkinson’s disease (Goto et al., 1989a) patients.  

Developmentally, PP2B is undetectable in rat brain at a very young age, then PP2B 

expression increases to a peak at around 5 weeks of age, after which it remains at a high 

level throughout adulthood (Takahashi et al., 2000). PP2B levels in rat brain increase in 

parallel with synaptogenesis (Tallant and Cheung, 1984). 
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Table I.1: Tissue distribution of the main protein phosphatases catalytic subunits of the PPP 

family. 

 PP1αααα PP1γγγγ1 PP1γγγγ2 PP1ββββ PP2Aαααα,ββββ PP2BAαααα PP2BAββββ PP2BAγγγγ 
Brain ++ 

 
+++ 
 

- 
 

+++ 
 

+ 
 

+++ 
 

+++ 
 

- 
 

Heart + 
 

+ 
 

 + 
 

+ 
 

+ 
 

+ 
 

 

Liver + 
 

+ 
 

 -  
 

+ 
 

+ 
 

+ 
 

 

Intestine + 
 

+ 
 

- 
 

+++ 
 

+ 
 

   

Kidney + 
 

+ 
 

- 
 

+ 
 

+ 
 

+ 
 

+ 
 

 

Spleen + 
 

++ 
 

- 
 

+ 
 

+ 
 

+ 
 

  

Adrenal 
gland 

+ 
 

++ 
 

- 
 

+ 
 

    

Lung ++ 
 

++ 
 

 +++ 
 

+ 
 

+ 
 

++ 
 

 

Skeletal 
muscle 

+ 
 

+ 
 

 - 
 

+ 
 

++ 
 

++ 
 

- 
 

Testis ++ 
 

+ 
 

+++ 
 

++ 
 

 - 
 

- 
 

+++ 
 

 -, below detection limit. 

 

I.6 PP1 STRUCTURE AND FUNCTION 
 

Protein phosphatase 1 (also known as phosphorylase phosphatase) has been studied 

since the 1940s as the enzyme responsible for the conversion of phosphorylase a to 

phosphorylase b (Cori and Green, 1943). The discovery that PP1 was actually a 

phosphatase came at the same time as the discovery of phosphorylase kinase (Keller and 

Cori, 1955; Sutherland and Wosilait, 1955). These findings marked the beginning of an era 

of the study of protein phosphorylation/dephosphorylation as a regulatory mechanism.  

Investigation of PP1 in the following three decades focused on defining its enzymology 

and role in glycogen metabolism [a review can be found in (Shenolikar and Nairn, 1991; 

Bollen and Stalmans, 1992; Brautigan, 1994; Shenolikar, 1994; E. Y. C. Lee, 1995)] and 

the progress in the isolation and characterization of PP1 activity was very slow. The study 

of the enzymology of this enzyme is still incomplete and PP1 continues to bring surprises 

as well as new questions about its cellular functions. 

 



Characterization of the PP1 Interactome from Human Testis Chapter I  
 

Centro de Biologia Celular 
Universidade de Aveiro 

46 

I.6.1 Historical background 

 

The key steps that led to the beginning of the understanding of the enzymology of 

PP1 came with the isolation of the catalytic subunits (PP1c) from liver and muscle (Brandt 

et al., 1975a; Gratecos et al., 1977). Underlying this success was the discovery that 

treatment of tissue extracts with denaturants (alcohol or urea) led to the release of a 35kDa 

catalytic subunit which could be readily isolated (Brandt et al., 1974). This 35kDa subunit 

was derived from a 37kDa form by proteolytic cleavage near the C-terminus (Cohen, 1989; 

E. Y. C. Lee, 1995). The denaturant treatment released the catalytic subunit from its 

regulatory subunits, so that the enzyme activity behaved in a monodisperse manner and 

was amenable to isolation by conventional chromatographic methods. Following this 

treatment (ammonium sulfate precipitation followed by 95% ethanol at room temperature) 

the PP1 activity could be extracted from the pellet of denatured proteins. At the time it was 

clear that while phosphorylase a was the best PP1c substrate, both glycogen synthase and 

phosphorylase kinase were also dephosphorylated. Later studies (Cohen, 1989) showed 

that this enzyme was relatively non-specific when compared, for example, to the protein 

kinases. PP1c isolation from rabbit skeletal muscle led to the isolation of another catalytic  

subunit of 35kDa, which differed in its ability to act on p-nitrophenyl phosphate 

(Silberman et al., 1984). This activity turned out to be PP2A catalytic subunit (Cohen, 

1989). Ethanol or trypsin treatment of tissue extracts led to large increases in PP1 activity, 

concomitant with the reduction in apparent size to the free catalytic subunit (Brandt et al., 

1974). These findings led to the discovery of the heat-stable PP1 inhibitor proteins (Brandt 

et al., 1975b).  

The existence of these inhibitors led to two important considerations about the 

enzymology of PP1: the role of the inhibitor proteins in regulating phosphatase activity and 

the existence of holoenzyme forms. Subsequent studies (F. L. Huang and W. H. 

Glinsmann, 1976) identified two such inhibitors: inhibitor-1 (I-1) and inhibitor-2 (I-2) [a 

review can be found in (Cohen, 1989; Shenolikar and Nairn, 1991; Bollen and Stalmans, 

1992)]. I-1 and I-2 are small proteins (165 and 204 amino acids, respectively) with 

estimated molecular mass of 23kDa and 19kDa. I-1 is only inhibitory when phosphorylated 

at a threonine residue by a cAMP-dependent kinase (Cohen, 1989). The concept of a 

holoenzyme complex of the catalytic subunit with regulatory subunits was supported by 
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the findings that PP1 activity was generally associated with high molecular weight 

complexes recovered by gel filtration, but that could be reduced to a low molecular weight 

form by proteolysis, urea or ethanol treatment (Killilea et al., 1979; Mellgren et al., 1979). 

A high molecular weight form of PP was first isolated as a myosin light chain PP (Pato et 

al., 1993). However, studies of an inactive form of PP1 that could be activated by ATP and 

that had been studied by Merlevede and co-workers for many years, led to its isolation and 

the surprising finding that it consisted of a 1:1 complex of the 37kDa PP1c and I-2 (Yang 

et al., 1980; Merlevede et al., 1984). In muscle, early studies had shown the existence of a 

“glycogen particle” in which glycogen sedimented from muscle extracts was shown to be 

associated with phosphorylase phosphatase, PP1 and phosphorylase kinase (Haschke et al., 

1970; Meyer et al., 1970). The purification of the glycogen-bound form of muscle PP1 

revealed it to be a heterodimer of the catalytic subunit and a glycogen binding subunit, GM 

(Stralfors et al., 1985). GM bound both glycogen and PP1, and also modified its substrate 

specificity in that its activity toward glycogen synthase was enhanced. These studies led 

Cohen (Cohen, 1989; Hubbard and Cohen, 1993) to propose that the catalytic subunit 

could associate with different targeting subunits, which serve to direct the enzyme to 

specific subcellular locations in addition to serving regulatory functions. This finding was 

followed by isolation of the myosin bound PP1 which contained two other subunits, one of 

which, M110, binds to myosin (Chen et al., 1994). The targeting hypothesis is 

substantiated by the recent discovery of a large number of PP1 binding proteins, and the 

current view that PP1c exists in many heterodimeric forms provides an understanding of 

some of the original difficulties in the isolation of PP1c.   

   

I.6.2  Recombinant PP1c 

 

I.6.2.1 Molecular cloning and expression of the PP1c  
 

Attempts to express PP1 as a recombinant protein were initially unsuccessful as it 

was readily overexpressed in the pET3a vector, but as an inactive, insoluble protein in 

inclusion bodies (Browner et al., 1991). Attempts to renature the solubilized PP1 protein 

were only partially successful and required the presence of Mn2+, dithiothreitol, high salt 

and high dilution. The renatured enzyme exhibited only 5% of the expected specific 
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activity. So another vector system was tried: the pTACTAC vector, which had been used 

for the expression of rabbit muscle phosphorylase in a soluble form (Browner et al., 1991). 

This vector allowed the expression of PP1 in an active soluble form (Zhang et al., 1992). 

Expression was dependent on induction at a lowered temperature of 26-28ºC, rather than at 

37ºC and was also dependent on the presence of Mn2+ in the culture media, as had been 

used for the expression of phosphorylase (Browner et al., 1991).  

 

I.6.2.2 Enzymatic properties of recombinant PP1 
 

The striking feature of the recombinant protein which marks it as distinct from the 

catalytic subunit isolated from muscle and liver is that its activity is dependent on the 

presence of added Mn2+ (Zhang et al., 1992). Muscle PP1 is normally isolated in the 

presence of buffers containing EDTA, and such preparations are also active in the presence 

of EDTA (Silberman et al., 1984; Bollen and Stalmans, 1992). The exceptions are the 

catalytic subunits released from the PP1-inhibitor-2 complex (Bollen and Stalmans, 1992) 

or from higher molecular weight forms of PP1 by trypsin (Brautigan et al., 1982). In 

addition, a form of cardiac myofibrillar PP1 that requires activation by Co2+ has been 

reported (Chu et al., 1994). It has been suggested by Lee and coworkers (Zhang et al., 

1993) that the recombinant enzyme may be related to the form present in the PP1-inhibitor-

2 complex. The existence of the metal-dependent and –independent activity forms of PP1 

suggests that there exist two stable conformations of PP1 (discuss below in terms of the 

metalloprotein nature of PP1). The specific activities and general enzymatic properties of 

recombinant PP1 toward phosphorylase a are similar to those of the muscle enzyme with 

some exceptions: it is much less sensitive to inhibitor-1 (Alessi et al., 1993; Zhang et al., 

1993) and dephosphorylates phosphotyrosine containing substrates (MacKintosh et al., 

1996). Recombinant PP1 actively dephosphorylates p-nitrophenol phosphate (Zhang et al., 

1992), a property that makes it useful for the assay of toxins (by inhibition of PP1 activity) 

such as microcystin by simple colorimetric methods (Ward et al., 1997). 
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I.6.3 PP1c crystal structure and catalytic mechanism 

 

During the past decade there has been major progress in the elucidation of the 

atomic structures of the Ser/Thr-PPs in general. Crystal structures for PP1-microcystin 

(Goldberg et al., 1995), PP1-tungstate (Egloff et al., 1995), PP1-GM peptide complexes 

(Egloff et al., 1997) and more recently PP1-okadaic acid (Maynes et al., 2001) have been 

determined. Two structures for PP2B have been solved, the auto-inhibited enzyme (Fig. 

I.7) and a ternary complex of a truncated PP2B with FKBP12/ FK506 (Griffith et al., 1995; 

Kissinger et al., 1995). These structures show that the molecular architecture of the 

catalytic cores [a review can be found in (Barford, 1996)] of PP1 and PP2B are conserved, 

and that both contain a bimetal center at the active site which is structurally similar (Strater 

et al., 1995) to that present in the purple acid phosphatase. PP1, like PP2B, is a 

metalloprotein that possess a bimetal center that is bridged by a water molecule at the 

active site. The use of proton induced X-ray emission spectroscopy revealed the presence 

of Mn and Fe in the ratio 1 to 0.5 in PP1 (Egloff et al., 1995). The nature of the metal ions 

in the wild type muscle PP1 is unknown, although it can be speculated that this may be a 

Fe/Zn pair as in PP2B (King and Huang, 1984; Kissinger et al., 1995). The current views 

of the catalytic mechanism (reviewed in Barford, 1996) for PP1 are that the metals serve as 

ligands for the phosphate oxygens and for the generation of a hydroxide ion which serves 

as the nucleophile that is involved in the catalysis, while H125 serves as a proton donor for 

the leaving alcohol group (Fig I.17). Other residues in the active site which serve to 

stabilize the proposed pentacoordinate state of the phosphate intermediate are R96, N124 

and R221. Mutation of the metal ligands (J. Zhang et al., 1996) H66, D64, D92 and H248 

led to severe loss of catalytic function. Mutation of H125 and of H173 did not result in 

readily expressed proteins, although small amounts of the H125S and H125A mutants 

could be isolated. These mutants were inactive. Mutation of D95, which is proposed to 

stabilize the protonation of H125 by a salt bridge in PP1, resulted in significant reduction 

in catalytic activity. Mutations of R96 and N124 have also supported their proposed roles 

in phosphate binding.  
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Figure I.17: Active site of PP1. The active site of PP1 contains a bimetal center (shown as Fe and 

Zn) bridged by a water molecule which is displaced on binding of phosphate (Egloff et al., 1995). 

Ligands for the metal ions are shown in heavy lines. The hydrogen bonds of the phosphate oxygens 

to N124, R96 and R221 are shown in thin lines. The catalytic mechanism, based on studies of PP1 

(Egloff et al., 1995), purple acid phosphatase (Strater et al., 1995) and  PP2B (Griffith et al., 1995) 

is indicated in the diagram. The proposed reaction mechanism involves nucleophilic attack by a 

hydroxide ion, with the H125 providing the proton for the leaving alcohol group, and is supported 

by mutagenesis of the active site residues (J. Zhang et al., 1996). 

 

I.6.3.1 Binding region for toxins 
 

Several mutants of PP1 which exhibit a general loss of sensitivity towards several natural 

toxins show that these toxins have a common binding region on PP1. It was shown that a 

mutated PP2A (Cys269 to Gly) had reduced sensitivity to OA (Shima et al., 1994). By 

comparing the sequences of PP1 and PP2A in this region (Fig. I.18) it was noted that the 

region was well conserved except for a four residue difference, YRCG in PP2A (267-270) 

and GEFD (274-277) in PP1.  

 
Figure I.18: Alignment of C-terminal regions of PP1, PP2A and PP2B. The boxed region shows 

the loop regions that connect beta sheets 12 and 13 in the structures of PP1 and PP2B.  
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The chimeric PP1 mutant in which GEFD was changed to YRCG resulted in 

increased sensitivity to okadaic acid (Zhang et al., 1994a), consistent with the fact that 

PP2A is more sensitive to okadaic acid than PP1. The same occurred when F276 was 

mutated to Cys (J. Zhang et al., 1996). It was also shown that Y272 is important for the 

binding of all of the inhibitors tested, as its conservative mutation to phenylalanine caused 

decreases in PP1 toxin sensitivity. These mutagenesis studies indicate that binding of the 

toxins must all involve some common contacts on PP1, and that Y272 is particularly 

important in this context. Y272 is located close to the active site with its hydroxyl within 

several angstroms from the Fe ion (Egloff et al., 1995); the mutation of Y272 without 

deleterious effects on its catalytic activity suggests that it is not involved in the catalysis. 

This region of PP1 represents the loop region connecting beta strands 12 and 13 in PP1 

structure (Fig I.19).  

 

 

Figure I.19: The β12/β13 loop of 

PP1. The diagram shows a ribbon 

model of the PP1 structure 

(Goldberg et al., 1995). The two 

beta sheets that are the scaffold for 

the active site are shown in yellow 

(beta sheet 1) and magenta (beta 

sheet 2). Beta strands 12 and 13 are 

shown in red. Microcystin is shown 

in wireframe and the two metal ions 

as black spheres. 

 

If the toxins bind to the same site on PP1 this must reflect the possibility that these 

diverse molecules must present topographically similar surfaces at the points of interaction 

with PP1. This idea has been supported by molecular modeling studies (Bagu et al., 1997; 

Gauss et al., 1997; Lindvall et al., 1997). 

 The structure of PP1 bound to okadaic acid (Maynes et al., 2001) is remarkably 

similar to the two structures of PP1 and PP2B determined previously (Fig I.20). Even with 

only the phosphate-mimic tungstate present the architecture of the active site of the 
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tungstate-bound PP1 structure is virtually identical to OA-bound PP1 complex. In contrast, 

the microcystin-bound structure reveals large changes in the conformation of the active 

site. These changes are mainly restricted to the β12/β13 loop. The loop in the microcystin-

bound PP1 structure folds back on itself causing significant shifting of residues 273-278. 

One critical difference between microcystin and OA is the presence of a dehydroalanine 

residue in microcystin that covalently alkylates the Sγ of Cys273 in a time dependent 

reaction (Dawson and Holmes, 1999). This covalent linkage is not the primary cause of 

inhibition of PP1 by microcystin (Goldberg et al., 1995). Given the strong similarity of the 

PP1-interacting domains of OA and microcystin it is likely that the primary mode of 

inhibition of PP1 by microcystin is similar to that of OA and that the movement of the 

β12/β13 loop in the microcystin complex is a secondary event accompanying the covalent 

binding reaction. An important interaction between PP1 and microcystin that is not present 

in the PP1-OA complex is the hydrogen bond that occurs between Arg96 (PP1) and the 

acid of the methyl-aspartate residue (microcystin). This interaction may account for the 

100-fold greater inhibition of PP1 by microcystin over OA (Holmes and Boland, 1993). 

The structure of PP1-OA is very similar to the structure of PP2B despite the fact that OA 

does not strongly inhibit PP2B. 
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Figure I.20: A, stereo representation of the 

backbone carbon alignment of tungstate-bound 

PP1 (gold), PP1-OA complex (blue) and PP1-

microcystin LR complex (red). OA is shown in 

ball and stick representation with carbon atoms 

in gray and oxygen atoms in red. The metals 

are from the PP1-OA structure and are shown 

as spheres. B, stereo representation of the 

backbone carbon alignment of PP1-OA (blue) 

and PP2B (gold). C, stereo representation of 

the backbone carbon alignment between the 

PP1-OA complex (blue) and the PP1-

microcystin LR complex (red). OA is shown as 

ball and stick representation and is colored 

light blue, microcystin LR is shown as ball and 

stick representation and is colored red (adapted 

from (Maynes et al., 2001).  

 

I.6.3.2 Substrate binding 
 

The active site of PP1 lies at the confluence of three shallow grooves, a C-terminal 

groove, an acidic groove and a hydrophobic groove, which are potential binding sites for 

substrates and inhibitors (Egloff et al., 1995; Goldberg et al., 1995). Microcystin binds in a 

manner such that it occupies the active site, while its extended ADDA side chain occupies 

the hydrophobic groove. The hydrophobic groove forms the obvious binding site for 

peptide substrates. The two PP1 inhibitors, I-1 and DARPP-32 both carry four basic 

residues N-terminal to the phosphothreonine residue and its binding to PP1 has been 

hypothesized to be that of a pseudosubstrate (Goldberg et al., 1995). Binding of 

peptide/polypeptide substrates to PP1 can be considered to be composed of three elements: 

interaction of the basic residues N-terminal to the phosphoserine with the acidic residues in 

the acidic groove, binding of the phosphoserine to the active site and an interaction of the 

region C-terminal of the phosphoserine (or phosphothreonine) to the hydrophobic groove. 

In the active site region the structure of the PP1-tungstate complex has shown that R96, 

N124 and R221 are involved in the binding of the phosphate oxygens (Egloff et al., 1995). 



Characterization of the PP1 Interactome from Human Testis Chapter I  
 

Centro de Biologia Celular 
Universidade de Aveiro 

54 

R221 and R96 are well positioned to form salt bridges with two of the phosphate oxygens 

while the amino group of N124 can be hydrogen bound to the third oxygen. D208 was 

hypothesized to be important for the orientation of R221 via a salt bridge interaction. It 

was also pointed out (Egloff et al., 1995) that W206 and Y134 are well positioned to 

interact with the Ser or Thr carrying the phosphate residue. These interactions and the 

location of the acidic and hydrophobic grooves are shown in Figure I.21. 

 

            
Figure I.21: The C-terminal, acidic and hydrophobic grooves of PP1. The diagram shows a space 

filled model of PP1 with a view of the face of the molecule containing the active site. The dashed 

red oval shows the location of the active site, with the two metal ions as red spheres. Microcystin is 

shown in wireframe. The location of the hydrophobic groove is delineated by the binding of the 

ADDA group of microcystin. The hydrophobic, acidic and C-terminal grooves radiate from the 

active site. Residues which are labeled are those which were analyzed by mutation (Zhang and Lee, 

1997). 
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I.7 PP1 TARGETING/BINDING PROTEINS 
 

During the last decade evidence has accumulated, that the substrate specificity of 

PP1 is achieved by the interaction with other proteins that can act as targeting subunits or 

activity modulators. Targeting, as the requirement for the molecular juxtaposition of 

proteins for the generation of signaling events, is well established as a paradigm in a 

number of growth regulated signaling systems involving tyrosine phosphorylation 

(Lemmon and Schlessinger, 1994; Pawson, 1994; Kuriyan and Cowburn, 1997), as well as 

in the anchoring of Ser/Thr-protein kinases by A-kinase anchoring proteins (AKAPs), one 

of which also binds PP2B (Lemmon and Schlessinger, 1994; Rubin, 1994). The concept of 

targeting as it relates to PP1, however, has a major twist in terms of the large number of 

PP1 binding proteins that have been reported during the past years, as it expands the 

number of PP1 heterodimers that may exist and consequently the repertoire of cellular 

functions that involve PP1.  

Genetic studies of yeast mutations that affect glycogen metabolism and cell cycle 

regulation, and the use of the yeast two hybrid system have revealed over a dozen genes 

that encode putative PP1-binding proteins (reviewed in (Stark, 1996). These include 

GAC1, REG1, REG2, SCD5, GIP1, SHP1, GIP2 and SDS22 in S. cerevisiae. These genes 

are required for the control of glycogen metabolism, protein synthesis, glucose repression, 

meiosis, sporulation and mitotic cell cycle regulation. Rigorous biochemical demonstration 

that these PP1-binding proteins actually interact with PP1 or the nature of the targeting 

function or the substrates have not been shown in all cases. A key element of the targeting 

hypothesis is that the cellular activity of PP1 is only expressed when it is targeted. This 

would explain why the PP1 catalytic subunit exhibits a relatively nonspecific phosphatase 

activity. The strongest experimental support for a targeting function of a PP1 regulator (R) 

has come from genetic and biochemical studies of yeast glycogen metabolism. The 

glycogen-deficient yeast mutant glc7-1 was found to express a PP1 with a R73C point 

mutation (Peng et al., 1990). This did not affect PP1 activity but resulted in loss of its 

ability to bind to the yeast homolog (Gac1p) of the mammalian glycogen binding protein 

(Stuart et al., 1994). The activation of glycogen synthase requires its dephosphorylation by 

PP1 and it has been shown that glycogen synthase in this mutant is largely in the inactive 

phospho-form. Overexpression of Gap1p, on the other hand, led to increased glycogen 
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accumulation. These findings demonstrated that the physiological functioning of PP1 in 

glycogen metabolism was dependent on it being targeted to the appropriate micro-

environment and that other cellular functions were not affected when targeting to glycogen 

was disrupted.           

Several mammalian PP1-binding proteins have also been isolated either by 

biochemical methods or by yeast two hybrid analyses (Table I.2). Based on their effect on 

PP1c the best characterized R subunits can be divided into three groups. The first group is 

represented by activity-modulating proteins, including true inhibitors such as I-1 (Connor 

et al., 1999) and CPI-17 (Koyama et al., 2000) that in their phosphorylated form block the 

activity of PP1c towards all substrates. Other members of this group act instead as 

substrate-specifiers of PP1c. For example, I-1  PP2A/PHAP-I and I-2 PP2A/PHAP-II, 

which are potent inhibitors of PP2A, promote the dephosphorylation of specific substrates 

by PP1c (Katayose et al., 2000). A second group of R subunits contains the targeting 

proteins, which bind both PP1c and one of its substrates. For example, MYPT1 binds PP1c 

as well as specific substrates such as myosin (Fukata et al., 1998; Hartshorne and Hirano, 

1999; Toth et al., 2000a). Other targeting subunits do not bind the substrate directly but 

instead associate with a subcellular structure that contains the substrate. For example, the 

G subunits target PP1 to glycogen particles which also bind the substrate glycogen 

synthase (Liu and Brautigan, 2000). The targeting proteins of PP1 also include scaffolding 

proteins that mediate the formation of protein complexes. Often, these complexes function 

as signaling modules that contain both protein kinases and phosphatases and are localized 

in close proximity to the substrates of these enzymes. The third group of proteins that 

directly and tightly associates with PP1c defines a subset of its substrates. Some of these 

substrates also function as targeting proteins. Thus, the centrosomal protein kinase Nek2 

not only binds its substrate C-Nap1 but also PP1c and both Nek2 and C-Nap1 are proposed 

substrates of the associated PP1c (Helps et al., 2000). Some PP1c-bound substrates also 

function as activity modulators. For example, the retinoblastoma protein interacts with 

PP1c both as a substrate and as a noncompetitive inhibitor (Tamrakar and Ludlow, 2000). 
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Table I.2: Classification of the R subunits of PP1 

Activity  

modulators 

I-1; DARPP-32 

CPI-17; PHI-1; KEPI 

G-substrate; 

I-2; I-4 

I-1 PP2A/PHAP-I; I-2 PP2A/SET/PHAP-II/TAF-1β 

GADD34 

Targeting  

proteins 

AKAPs (AKAP149, AKAP220; Yotiao)  

G subunits (GM/RGL; GL; R5/PTG/U5; R6) 

M subunits (M110/M130/MYPT1; MYPT2/PP-1bp55)  

Neurofilament-L 

Neurabin-I; spinophilin/neurabin-II 

NIPP1 

sds22 

Tau 

Substrates Bad 

Nek2 

Phosphofructokinase 

Retinoblastoma protein 

Ryanodine receptor 

Unclassified BH-protocadherin-c 

HCF (host cell factor) 

HOX11 

Inhibitor-3/HCGV 

p53BP2 

PP-1bp80 

PSF 

R111/p99/PNUTS 

ribosomal proteins (L5, RIPP1) 

GRP-78 

NCLK 

Myr8 

FAK 

Bcl-2 

Herpes virus γ1 34.5 protein 

AKAPs, A-kinase anchoring proteins; G subunits, glycogen-targeting subunits; M subunits, 

myosin-targeting subunits; GRP, glucose related protein; NCLK, nuclear cdc-2 like kinase; FAK, 

focal adhesion kinase. The names of structurally related proteins are on the same line and are 

separated by a semicolon. Synonyms are separated by a slash. 
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I.7.1 “RVxF motif” 

 

Members of all three groups of R subunits have been shown to bind to PP1c via a 

short sequence that is now referred to as the “RVxF motif” (Barford et al., 1988; Egloff et 

al., 1997; Zhao and Lee, 1997a). Although the sequences that correspond to the RVxF 

motif are degenerate (the consensus sequence is [K/R]-X0-1-[V/I/L]-{P}-[F/W] (Wakula et 

al., 2003), the evidence for their role in the binding of PP1c is convincing. First, the co-

crystallization of PP1c with a synthetic fragment of the muscle-type G subunit revealed 

that the RVxF sequence binds tightly in an extended conformation to a hydrophobic 

channel of PP1c that is remote from the catalytic site (Egloff et al., 1997) (Fig. I.22). 

Modelling suggested that the variant RVxF motif of I-2 (KLHY) can be accommodated in 

a similar way in this channel (Yang et al., 2000). Second, it has been demonstrated for 

various R subunits that mutations of the hydrophobic (V/I/L) and/or aromatic (F/W/Y) 

residue in this motif is sufficient to disrupt or weaken their interaction with PP1c (Johnson 

et al., 1996; Egloff et al., 1997; Kwon et al., 1997b; Beullens et al., 1999; Yang et al., 

2000).  

 

 
Figure I.22: Structure of the PP1-GM peptide complex. A ribbon diagram of PP1c indicates the 

position of the peptide-binding channel at the interface of two β-sheets, the GM peptide atoms are 

represented as ball and stick and the position of one of the metal ions at the catalytic site is 

indicated as a green sphere. The Cα of Cys273, whose side chain forms a covalent bond with the 

MDHA side chain of microcystin is shown as a yellow sphere.       
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The residues of PP1c that are necessary for binding to the RVxF motif (in particular 

residues 287-293) are invariant in all isoforms from all species (Barford et al., 1988; Egloff 

et al., 1997). However, they are not conserved in the catalytic subunits of PP2A or PP2B, 

which explains why most regulators of PP1 do not interact with these structurally related 

phosphatases. Conversely, the R subunits of PP1 (HOX11, I-1 PP2A/PHAP-I and I-2 

PP2A/PHAP-II) that are also able to interact with the catalytic subunit of PP2A do not 

contain an RVxF sequence (Kawabe et al., 1997; Katayose et al., 2000).  

The binding of the RVxF sequence does not cause important conformational 

changes in the catalytic subunit (Egloff et al., 1997) and does not have major effects on the 

activity of the phosphatase (Endo et al., 1996; Kwon et al., 1997a; Beullens et al., 1999). 

Studies on MYPT1 and I-2 have indicated that the RVxF motif can function as an anchor 

for PP1c and enables these R subunits to make additional contacts with the phosphatase in 

an ordered and cooperative manner (Toth et al., 2000b; Yang et al., 2000). For example, 

four phosphatase-interaction sites, in addition to the RVxF motif, have been identified for 

MYPT1 and I-2 (Hartshorne and Hirano, 1999; Toth et al., 2000b; Yang et al., 2000). 

Another recurring theme is that the R subunits have common or overlapping binding sites 

on PP1c in addition to the RVxF-binding channel. For example, the inhibition of PP1c by 

phosphorylated I-1 (Endo et al., 1996), DARPP-32 (Kwon et al., 1997a) and MYPT1 

(Hartshorne and Hirano, 1999) have all been attributed to the binding of the 

phosphorylated residue at or near the catalytic site as a pseudo-substrate. The sharing of 

interaction sites is also in accordance with findings that various point mutants of PP1c 

show altered affinity for multiple R subunits (Baker et al., 1997; Ramaswamy et al., 1998). 

As expected from the unusually high conservation of residues on the surface of PP1c, 

mutagenesis studies in yeast have identified many surface residues as being essential for 

the binding of R subunits (Baker et al., 1997; Ramaswamy et al., 1998). A site that lies 

adjacent to the RVxF–binding groove has been identified as a binding pocket for the N-

terminal “IKGI” motif of inhibitor-2 (Connor et al., 2000). 

The picture that emerges shows that the binding of the R subunits to PP1c is 

mediated by multiple, degenerate, short sequence motifs and that the R subunits can share 

interaction sites. It should be pointed out that this combinatorial control (Bollen, 2001) of 

PP1c does not rule out the possibility that some R subunits might have unique binding 

sites. The combinatorial control of PP1 allows the exquisite physiological regulation of 
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PP1 holoenzymes by hormones, growth factors and metabolites at the molecular level. 

Work on the various holoenzymes has demonstrated that their physiological regulation 

involves modulation of subunit interactios, which is mediated by the reversible 

phosphorylation or allosteric regulation of the R subunits. For three unrelated R subunits it 

has been shown that the phosphorylation of Ser residue(s) within or close to the RVxF 

motif disrupts the binding of this motif to PP1c (Beullens et al., 1999; McAvoy et al., 

1999; Liu et al., 2000). This results in altered activity of the holoenzyme or the release of 

the catalytic subunit. In contrast phosphorylation of other subunits strengthens their 

interaction with PP1c. Examples include I-1 and DARPP-32, in which an additional 

binding site for PP1c is created by phosphorylation. A different type of regulation involves 

the binding of allosteric regulators. The allosteric binding of phosphorylase a to the C-

terminal tail of the liver-type G subunit (GL) abolishes the activity of the associated PP1c 

towards glycogen synthase (Armstrong et al., 1998). An additional level of regulation of 

the PP1 holoenzymes is provided by targeting of these enzymes to specific substrates or 

subcellular structures. Bollen and coworkers, by a combination of bioinformatics tools and 

mutagenesis studies have delineated the consensus sequence and function of three PP1 

binding motifs as being [K/R]-X0-1-[V/I/L]-(P)-[F/W], were X denotes any residue and P 

any residue except proline (Wakula et al., 2003). This sequence is very similar to a 

consensus sequence proposed by Zhao and Lee (Zhao and Lee, 1997a), [R/K]-[K/R]-X0-2-

V-[R/H]-[F/W]-X-[DE], by panning of a random peptide display library. The main 

differences are the presence of an N-terminal basic residue and a C-terminal acidic residue 

in the second.  

The RVxF-consensus sequence is present in about one third of all eukaryotic 

proteins but only a small fraction are PP1-binding proteins. It seems that RVxF-consensus 

sequences function as PP1 interaction sites only when they are present in a flexible and 

exposed loop that can be modeled into a �-strand. Additionally, other low affinity regions 

on the PP1 regulators strengthen the binding. Thus, the RVxF-consensus sequence 

functions like an anchor and other low affinity interactions have to occur that have 

regulator-specific effects on PP1 activity and specificity (Wakula et al., 2003). 

Recently, another PP1 binding motif has been described, F-X-X-R-X-R, that also 

appears to exist in several PP1 interactors (Ayllon et al., 2002). A combined bioinformatics 

and mutagenesis approach could also be used to study this new consensus motif. 
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The existence of common binding sites for the R subunits explains why a relatively 

small protein such as PP1c can interact with numerous different R subunits and why the 

binding of most R subunits is mutually exclusive. 

 

I.8 PP1 IN TESTES AND SPERM 
 

Post-translational modifications of proteins are essential to the viability of all 

eukaryotic cells, and reversible protein phosphorylation is recognized as the major 

regulatory mechanism. In recent years the serine/threonine-specific protein phosphatases 

have received increasing attention, and the nature of their physiological substrates and 

regulation is the subject of intensive study. As previously mentioned, of the three known 

PP1 genes (alpha, beta and gamma), PP1� undergoes tissue-specific splicing to yield a 

poorly characterized testis-specific isoform, PP1�2 (Kitagawa et al., 1990; Sasaki et al., 

1990; da Cruz e Silva et al., 1995b).  

Since sperm are terminally differentiated cells essentially devoid of transcriptional 

and translational activity, they are a relatively simple model system to study the regulation 

of PP1 in relation to motility and metabolism. The PP1 driven endogenous regulation of 

protein phosphorylation and sperm motility could represent an important mechanism for 

physiological regulation of a cell that encounters dramatically different environments as it 

journeys through the seminiferous tubules and the female reproductive tract. Previous 

results (Smith et al., 1996; Vijayaraghavan et al., 1996) provide strong support for a novel 

unifying hypothesis based on the observation that PP1 is present in sperm and that 

pharmacological modulation of its activity profoundly affects sperm motility. In other cell 

types PP1 has been implicated in the control of very diverse processes of cell metabolism, 

muscle contraction, mitosis, neurotransmitter release, etc. This regulation is the result of 

complex intracellular pathways, initiated by activation of distinct receptors and second 

messenger systems. However, the precise role played by phosphatases and their regulation 

have only recently started to be elucidated. The available data demonstrate their highly 

regulatable nature, contrary to previous views. One particularly interesting mechanism for 

controlling PP1 activity involves its inhibition by heat-stable protein phosphatase inhibitors 

I-1, and I-2, phosphoproteins whose state of phosphorylation controls their inhibitory 

activity. I-1 is phosphorylated by cAMP-dependent protein kinase and dephosphorylated 

by the phosphatase calcineurin (PP2B). Thus, PP1 is involved in the cross-talk between the 
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intracellular messengers calcium and cAMP. I-2 is also capable of inhibiting the catalytic 

subunit of PP1 leading to the production of a stable PP1-I-2 complex. GSK-3  is capable of 

phosphorylating the I-2 in the PP1-I-2 complex, relieving the inhibition and producing 

active PP1.  

This biochemical scheme is likely to be operative in mammalian sperm since 

preliminary studies have identified an I2-like activity and also GSK-3 in mammalian 

sperm. Immotile bovine caput epididymal sperm contain twofold higher levels of protein 

phosphatase activity, identified as being PP1�2, and six fold higher GSK-3 activity than do 

mature motile caudal sperm. Thus, the complex PP1�2/ I2-like is inactive in motile caudal 

sperm and the phosphatase activity is re-established in immotile sperm by the higher GSK-

3 activity (Smith et al., 1996; Vijayaraghavan et al., 1996). In addition, the phosphatase 

inhibitors okadaic acid and calyculin A, were able to induce motility in completely 

immotile bovine caput epididymal sperm and to stimulate the kinetic activity of mature 

caudal sperm.  

 Besides the mechanism of protein phosphatase activity regulation described above 

others may exist. It is now well established that in somatic cells PP1 activity relies on its 

binding to several phosphatase regulators, thus the same is likely to occur in germ cells. 

Other hypothesis will be evaluated in Chapter V. 

 

I.8.1 PP1γ knockout mice 

 

 The PP1� gene was disrupted by targeted insertion in murine embryonic stem cells 

to address the importance of PP1�1 and PP1�2 functions. Mice derived from these cells 

were viable and homozygous females were fertile. On the contrary, disruption of the PP1� 

gene in mice causes sterility in males due to arrest of spermatogenesis at the spermatid 

stage (Varmuza et al., 1999). Histological examination revealed severe impairment of 

spermiogenesis beginning at the round spermatid stage. Histopathological evidence shows 

that meiosis may be disrupted: the presence of polyploidy spermatids suggests a failure of 

one of the reductional divisions. These observations show that other isoforms of PP1 can 

compensate for the lack of PP1�1 in somatic cells and for the lack of PP1�2 in germ cells 

until the final stages of spermatogenesis were PP1�2 becomes indispensable (Varmuza et 
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al., 1999). PP1γ knockout mice raised very interesting questions about the importance of 

protein phosphatases in spermiogenesis.  

 

I.9 SIGNAL TRANSDUCTION THERAPEUTICS 

 

Cellular health and vitality are dependent on the fine equilibrium of protein 

phosphorylation systems. Not surprisingly many diseases and dysfunctional states are 

associated with the abnormal phosphorylation of key proteins (e.g. cancer, diabetes, etc.). 

Thus, protein phosphorylation systems represent attractive targets for diagnostics and 

therapeutics. However, unlike the myriad of known protein kinases that all belong to a 

single gene superfamily, the protein phosphatases belong to several unrelated families. 

Furthermore, relatively few protein phosphatase catalytic subunits exist, exhibiting broad 

and overlapping substrate specificities in vitro. From a medical perspective, non-selective 

or marginally-selective phosphatase inhibitors have broad biological activity and are highly 

toxic to eukaryotic cells due to the inhibition of a number of critical cellular processes. 

Therefore, the development of non-specific inhibitors (i.e. calyculin A, microcystin and 

cantharidin) into therapeutic agents for systemic use seems unlikely. However, the 

development of type and isoform specific inhibitors seems very promising. Both ISIS 

15534 (Zuo et al., 1998) and ISIS 14435 (Cheng et al., 2000a) have been employed to 

specifically suppress the expression of human PP5 and PP1γ1, respectively.  

More interesting, however, is the data that indicates that in vivo, as phosphatases 

possess exquisite specificities, both in terms of substrates and localization, the key control 

mechanism must reside in the nature of the proteins to which they bind. An increasing 

number of proteins are being identified in diverse cell types that are responsible for 

regulating the catalytic activity of protein phosphatases. Indeed, the diversity of such 

phosphatase regulatory subunits explains not only the need for few catalytic subunit types, 

but also make them attractive targets for pharmacological intervention. The functional 

diversification of PP1 is controlled via its interaction with regulatory proteins. A major 

question remaining is how the regulators exert their discrimination between virtually 

identical mammalian PP1 isoforms. 

The importance of PP1 and its binding proteins as potential targets for signal 

transduction therapeutics is further strengthened by the work of Greengard and co-workers 
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demonstrating the central role played by DARPP-32 in mediating many of the most 

important neuronal signaling pathways (Greengard et al., 1999). To date more than twenty 

primary signaling cascades have been shown to be under the regulation of the 

PP1/DARPP-32 system in the striatum, and the PP1/I-1 system in other brain regions. PP1 

may also have a central role to play in the molecular mechanisms of the actions of drugs of 

abuse.  Furthermore, several lines of evidence also link PP1 to the basic processes thought 

to underlie memory and learning, such as LTP (long term potenciation) and LTD (long 

term depression). In fact, the relevance of PP1 within the context of aging and memory 

loss was recently given a rather intriguing boost. PP1 has been linked to the efficacy of 

learning and memory by limiting the acquisition of new knowledge and favouring memory 

decline (Genoux et al., 2002). PP1 inhibition prolongs memory when induced after 

learning, suggesting that PP1 promotes forgetting. These findings may account for aging-

related cognitive decline and emphasize the physiological importance of PP1 as a 

suppressor of learning and memory. Thus, at least in mice, the molecular machinery is not 

completely deteriorated with aging and the results show that near normal cognitive 

functions can be restored simply by inhibiting PP1. Altered PP1 activity may therefore be 

associated not only with the normal cognitive decline during aging, but may also explain 

the accelerated decline observed in AD patients and in other neurodegenerative diseases. 

 
I.10 AIMS 
 
 

Taking into account all the new roles that have been attributed to PP1 based on its 

binding subunits, it is extremely important to identify novel PP1-binding proteins in order 

to address cellular functions to PP1. Moreover, relatively little is known about isoform-

specific PP1 regulators. Serine/threonine phosphatase PP1�2 is a testis-specific protein 

phosphatase present in spermatozoa. This enzyme has been shown to play a key role in 

sperm motility. Immotile spermatozoa contain higher activity levels of PP1�2 compared 

with motile spermatozoa. Inhibition of protein phosphatase activity by okadaic acid and 

calyculin A initiates motility in caput epididymal sperm without requirement for a change 

in cAMP levels (Vijayaraghavan et al., 1996). Based on this data a role for PP1�2 in sperm 

motility was suggested. 

PP1�2 is expressed during germ cell differentiation in testis (Kitagawa et al., 1990; 

Sasaki et al., 1990; da Cruz e Silva et al., 1995b). Of the four PP1 isoforms known, PP1�2 



Characterization of the PP1 Interactome from Human Testis Chapter I  

Centro de Biologia Celular 
Universidade de Aveiro 

65 

is the only isoform present in spermatozoa and has been involved in the regulation of all 

mammalian spermatozoa studied so far. It has also been involved in the onset of 

hyperactivated motility and acrosome reaction (Smith et al., 1996; Vijayaraghavan et al., 

1996; Khare et al., 1999; Si, 1999; Si and Okuno, 1999; Smith et al., 1999). The 

evolutionary conservation and the importance of serine/threonine phosphatases in 

regulating flagellar motility is highlighted by the involvement of a PP1 homolog in the 

regulation of rooster sperm motility (Ashizawa et al., 1994; Ashizawa et al., 1995) and by 

the involvement of a serine/threonine phosphatase in the regulation of microtubule sliding 

velocity in Paramecium and Chlamydomonas (Klumpp et al., 1990; Klumpp and Schultz, 

1991; Habermacher and Sale, 1995, 1996, 1997).  

Spermatozoa leave the testis incapable of progressive motility an unable to fertilize 

an egg. Motility is acquired during transit through the epididymis (O'Brien et al., 1994) 

and the ability to fertilize is achieved after incubation within the female reproductive tract, 

a process referred to as capacitation (Yanagimachi, 1994). There, an acrosome reaction 

occurs and the spermatozoa acquire a hyperactivated state. A variety of experimental 

approaches have involved a huge number of proteins in mediating the interaction between 

a spermatozoon and its environment (Wassarman et al., 2001). However, the nature of the 

molecular events behind acquisition of progressive motility, capacitation, hyperactivation 

of motility, directed motility or induction of acrosome reaction remains unresolved.  

A combination of biochemical and molecular approaches will be used, together 

with the unique PP1 tools available in our laboratory to expand the preliminary 

observations (Smith et al., 1996; Vijayaraghavan et al., 1996) that identified PP1�2 as a 

key component and suggested that PP1�2 activity may ultimately regulate spermatozoa 

motility and fertility. Thus, the objective of this study is to determine the identity and 

define the properties of the protein regulators of human testis PP1�2. Therefore, in order to 

identify the sperm proteins that interact with PP1, we performed two separate yeast two-

hybrid screens of a human testis library using the baits PP1�1 and PP1�2. These results 

should provide new insights into PP1 function in human testis and sperm motility and point 

to possible targets for pharmacological intervention, particularly regarding infertility and 

contraception. We will undertake an exhaustive characterization of the PP1�2 interactome 

from human testis.  
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II YEAST TWO HYBRID SCREENS 
 

II.1 INTRODUCTION 
 

Since sperm are terminally differentiated cells essentially devoid of transcriptional 

and translational activity, they are a relatively simple model system to study the regulation 

of PP1 and its relation to motility and metabolism. The PP1 driven endogenous regulation 

of protein phosphorylation and sperm motility could represent an important mechanism for 

physiological regulation of a cell that encounters dramatically different environments as it 

journeys through the seminiferous tubules and the female reproductive tract. Previous 

results (Smith et al., 1996; Vijayaraghavan et al., 1996) provide strong support for a novel 

unifying hypothesis based on the observation that PP1 is present in sperm and that 

pharmacological modulation of its activity profoundly affects sperm motility. On the other 

hand, PP1 activity towards different substrates appears to be mediated via binding to 

specific regulatory proteins.  Such proteins play critical regulatory and targeting roles for 

PP1.  In this context we have undertaken an in-depth survey using the yeast two-hybrid 

approach to identify the proteins expressed in human testis capable of interacting 

specifically with the alternatively spliced isoforms of PP1�. 

The yeast two hybrid system (YTH) was originally devised as a simple means to 

probe protein-protein interactions (Fields and Song, 1989). YTH uses the fact that most 

eukaryotic transcription activators have two functionally independent domains, the DNA-

binding domain (BD) that recognizes a specific DNA sequence in the promoters of 

different genes and a DNA-activation domain (AD) that brings the transcriptional 

machinery to the promoter vicinity. This independence was demonstrated by fusing the AD 

of yeast GAL4, a yeast transcription factor involved in galactose metabolism, with the BD 

of E. coli LexA to create a functional transcription factor in yeast (Brent and Ptashne, 

1985). Fields and Song (1989) took advantage of this property of GAL4 to prove the 

interaction between two known proteins. They fused GAL4-AD to a protein X (prey) and 

GAL4-BD [recognizing the UASG sequence, (Weaver, 2002)] to a protein Y (bait). These 

two elements were cointroduced into yeast with one or more reporter genes (the bigger the 

number of reporter genes used the lower the number of false positives obtained) that were 

made to be transcriptionally dependent on activation through a binding site to the BD. 
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Interaction of the BD fusion with the AD fusion positions the AD in the proximity of the 

reporter gene, thus activating its transcription (Fig. II.1). The reporter genes that are most 

commonly used are the MEL1 gene (encoding α-galactosidase that is secreted into the 

culture medium), LacZ gene (encoding �-galatosidase) and auxotrophic genes (like HIS3 

and ADE2) that allow the yeast to grow in medium lacking histidine and adenine, 

respectively). This system can also be used to find new interacting proteins by fusing to the 

AD a collection of cDNAs from an expression library. 

 

a) 

UASG Reporter genes

BD
bait

 
 
 
b) 

UASG Reporter genes

AD
prey

 
 
 
c) 

UASG Reporter genes  
 
  

Figure II.1: The yeast two-hybrid system. 

Two chimeric proteins are expressed in 

yeast: a) GAL4 DNA-binding domain (BD) 

fused to a bait protein and GAL4 activation 

domain (AD) fused to a prey protein. The 

BD-bait hybrid protein can bind to upstream 

activation sites (UASG) but cannot activate 

transcription). b) The AD-prey protein 

cannot recognize the UASG, thus, alone is 

not capable of initiating transcription. c) 

When the bait and the prey interact, the BD 

and AD are brought together and can 

activate reporter gene transcription. 

 

 

Larger scale two-hybrid approaches typically rely on interaction mating (Finley and 

Brent, 1994). In this method a yeast strain expressing the bait protein is mated with another 

yeast strain of opposite mating type pretransformed with the cDNA library. Interaction 

between two proteins can then be determined by the activation of one or more reporter 

genes in the diploid strain. The advantages of this approach are the possibility of using 

frozen aliquots of pretransformed yeast cells saving time and resources, and that diploid 

cells are more tolerant to expression of toxic proteins and less false positives will appear 

since the diploids have reporter genes less sensitive to transcription (Kolonin and Finley, 

1998). 
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Over the 14 years since its introduction this system has been modified greatly 

expanding its biological and technological applications. The YTH has been developed first 

as an agent of biological discovery, second as a tool in proteomics and finally as a means 

towards engineering novel pharmaceutical agents. Some YTH alternative systems have 

been developed and in many cases resulted in remarkably elegant hybrid systems (a review 

can be found in (Serebriiskii et al., 2001). 

 

II.2 MATERIALS AND METHODS 
 

For the complete composition of all reagents, media and solutions used, see the 

list presented in Appendix I. All reagents were cell culture grade or ultrapure. 

 

II.2.1 Isolation of plasmids from bacteria 

 

Method 1 – alkaline lysis “mini-prep”   

 A single bacterial colony was transferred into 2ml of LB medium containing 

ampicilin (100µg/ml) and incubated overnight at 37ºC with vigorous shaking. 1.5 ml of 

this culture were transferred into a microtube and centrifuged at 14,000g for 1min at 4ºC. 

The medium was removed by aspiration. The bacterial pellet was resuspended in 100µl of 

ice-cold solution I [50mM glucose/ 25mM Tris.HCl (pH 8.0)/ 10mM EDTA] by vigorous 

vortexing. Then, 200µl of freshly prepared solution II (0.2N NaOH, 1%SDS) were added 

to the microtube that was mixed by inverting several times. Keeping the microtube on ice, 

150µl of ice-cold solution III (3M potassium acetate/ 2M glacial acetic acid) were added 

and the microtube gently vortexed. The microtube was then left on ice for 5min, 

centrifuged at 14,000g for 10min at 4ºC and the supernatant transferred to a clean 

microtube. The DNA was precipitated by adding 2 volumes of ethanol at room temperature 

(RT) and vortexed. The mixture was allowed to stand for 2min at RT. After centrifugation 

at 14,000g for 5min at 4ºC the supernatant was completely removed and the pellet washed 

with 70% ethanol. After further centrifugation, the pellet was allowed to air-dry for 10min. 

The DNA was dissolved in H2O containing DNAase-free pancreatic RNAase (20µg/ml) 

and stored at -20ºC. 
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Method 2 - QIAGEN “miniprep” 

 The bacterial pellet was obtained as described above. The pellet was then 

resuspended in 250µl of buffer P1, 250µl of buffer P2 were added and the microtube was 

mixed by gently inverting until the solution became viscous and slightly clear. Afterwards, 

350µl of buffer N3 were added and the microtube was repeatedly inverted until the 

solution became cloudy. The microtube was centrifuged for 10min and the resulting 

supernatant was applied to a QIAprep spin column placed in a microtube. After a 1min 

centrifugation the flow-through was discarded. The column was washed by adding 0.75ml 

of buffer PE and centrifuging 1min to discard the flow-through. The column was 

centrifuged for an additional 1min to remove residual wash buffer. Finally, the column was 

placed in a clean microtube and 50µl of H2O were added to elute the DNA by centrifuging 

for 1min after letting it stand for 1min. This method gives a cleaner DNA preparation than 

Method 1 with better yields. This method was used when the DNA was subsequently used 

for DNA sequencing. For enzymatic restriction the first method was commonly used.  

  

Method 3 - PROMEGA “Megaprep” 

 1000ml of cell culture were pelleted by centrifugation at 1,500g for 20min at RT. 

The cell pellet was resuspended in 30ml of cell resuspension solution [50mM Tris-HCl 

(pH 7.5)/ 10mM EDTA/ 100µg/ml RNAase A] by manually disrupting the pellet with a 

pipette. 30ml of cell lysis solution (0.2M NaOH/ 1%SDS) were added to the cells and the 

solution mixed gently by inverting until it became clear and viscous. Then, 30ml of 

neutralization solution [1.32M potassium acetate (pH 4.8)] were added and the tube 

immediately mixed by inverting. After centrifugation at 14,000g for 15min at RT the clear 

supernatant was transferred by filtering through gauze swabs to a new tube and the volume 

of supernatant was measured. At this stage 0.5 volumes of RT isopropanol were added and 

the solution mixed by inversion. This solution was centrifuged at 14,000g for 15min at RT, 

the supernatant was discarded and the pellet resuspended in 4ml of TE buffer. 20ml of 

Wizard TM Megapreps DNA purification Resin were added to the DNA and mixed by 

swirling. A Wizard TM Megacolumn was inserted into the vacuum manifold port and the 

DNA/resin mix was transferred into the Megacolumn. Vacuum was applied to pull the mix 

through the Megacolumn. Two washes with 25ml of column wash solution (80mM 

potassium acetate/ 8.3mM Tris-HCl/ 40µM EDTA/ 55% ethanol) were performed and the 
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resin was rinsed with 10ml of 80% ethanol. The Megacolumn was inserted into a 50ml 

screw cap tube and centrifuged at 2,500rpm for 5min using a swinging bucket rotor 

centrifuge. The Megacolumn was placed in a clean tube and 3ml of pre-heated water 

(70ºC) were added to the column. After waiting 1min the DNA was eluted by 

centrifugation at 2,500rpm for 5min. The DNA was stored at –20ºC. This method can yield 

more than 1mg of plasmid DNA from 1,000ml of culture.     

 This procedure was used to prepare large amount of plasmid DNA for storage and 

subsequent cloning, transfection, probe labelling, and other purposes.  

 

II.2.2 DNA digestion with restriction enzymes 

For a typical DNA digestion the manufacturer’s instructions were followed. In a 

microtube the following components were added to the following concentrations: 

- 100µg/ml DNA 

- 1X reaction buffer (specific for each restriction enzyme)  

- 1U/µg DNA of restriction enzyme 

The mixture was incubated at the appropriate temperature for a few hours (or overnight if 

convenient). The restriction enzyme should contribute less than 10% of the final volume. 

When sequential digestions with different enzymes were carried out the DNA was purified 

between the two reactions. 

   

II.2.3 DNA purification 

 

Method 1 - QIAGEN DNA Purification kit 

 This kit was used to purify DNA fragments from PCR and other enzymatic 

reactions. It allowed purification from primers, nucleotides, polymerases and salts by using 

QIAquick spin columns. Briefly, 5 volumes of buffer PB were added to 1 volume of the 

solution to be purified and mixed. The spin column was placed in a collection microtube 

and the sample was applied to the column and centrifuged for 1min at 14,000rpm to bind 

the DNA. The flow-through was discarded and the column was washed with 0.75ml of 

buffer PE, centrifuged for 1min at 14,000rpm and the flow-through discarded. The column 

was placed back in the same microtube and centrifuged again to remove traces of washing 

buffer. Then, the column was placed in a clean microtube, 50µl of H2O were added and 
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allowed to stand for 1min. To elute the DNA the column was centrifuged for 1min at 

14,000rpm. The DNA was stored at –20ºC. 

 

 Method 2: DNA precipitation with ethanol 

 This method is used to concentrate nucleic acids as well as to purify them. 

Approximately 1/10 volume of 3M sodium acetate (pH 5.2) was added to the DNA 

solution to adjust the salt concentration, followed by 2 volumes of ice-cold ethanol. The 

solution was well mixed and stored at –20ºC for 30min to allow the DNA precipitate to 

form DNA was recovered by centrifugation at 4ºC for 15min at 14,000rpm. The 

supernatant was carefully removed without disturbing the pellet. The microtube was half 

filled with ice-cold 70% ethanol and recentrifuged using the same conditions as above for 

5min. The supernatant was again removed and the pellet  allowed to dry before being 

resuspended in sterile water.  

 

 Method 3: DNA purification by extraction with phenol/chloroform 

 This approach can be used to remove proteins from DNA solutions, for instance to 

inactivate and remove enzymes. An equal volume of phenol/chloroform was added to the 

DNA sample. The contents were mixed until an emulsion was formed. The emulsion was 

then centrifuged at 14,000rpm for 1min at RT until the aqueous and organic phases were 

well separated. The aqueous phase was transferred to a clean tube and an equal volume of 

chloroform was added and mixed until an emulsion was formed. Centrifugation was 

performed using the same conditions as above, the aqueous phase was recovered and the 

DNA recovered by precipitation with ethanol (see above).  

 

II.2.4 DNA ligation 

 

Ligation of cohesive termini and blunt ended DNA 

The plasmid and the DNA fragment to be inserted were digested with the 

appropriate restriction enzymes. Digested fragments were separated by gel electrophoresis 

(see below) and purified from low melting temperature agarose. 0.1µg of vector DNA were 

transferred to a microtube with an equimolar amount of insert DNA. H2O was added to 

7.5µl, 1µl of 10X bacteriophage T4 DNA ligase (PROMEGA) buffer and 1µl of 
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bacteriophage T4 DNA ligase were added to the reaction mix and incubated for 4h at 16ºC. 

Two additional control reactions were set up that contained the plasmid vector alone and 

the insert fragment alone. To ligate blunt-ended DNA the protocol followed was exactly 

the same as above. 

 

Alkaline phosphatase treatment 

 In order to prevent self ligation of vector molecules, shrimp alkaline phosphatase 

(SAP) (ROCHE), was used according to the manufacturer’s suggestions. The reaction 

mixture was adjusted with 1/10 volume 10X concentrated dephosphorylation buffer, and 

incubated with 1µl of SAP at 37ºC for 1h. Finally, SAP was inactivated by heating the 

reaction mixture at 65ºC for 15min. 

 

II.2.5 Preparation of competent cells 

 

 A single colony of E. coli XL1-Blue was incubated in 10ml SOB medium at 37ºC 

overnight. Then, 1ml of this culture was used to incubate 50ml SOB until OD550=0.3. The 

culture was incubated on ice for 15min and centrifuged at 4,000rpm at 4ºC for 5min. The 

supernatant was discarded and 15ml of Solution I were added. After allowing to stand on 

ice for 15min the cells were centrifuged at 4,000rpm for 5min at 4ºC and 3ml of Solution II 

were added to the cell pellet. The cells were immediately divided in 0.1ml aliquots and 

stored at –80ºC. 

 

II.2.6 Bacteria transformation with plasmid DNA 

 

Competent cells (100µl) were thawed on ice and 0.1-50ng of DNA were added to 

the cells and gently swirled. The microtube was incubated on ice for 20min and heat 

shocked at 42ºC for 90sec. The microtubes were then incubated on ice for 2min before 

adding 0.9ml of SOC medium. The tubes were incubated at 37ºC for 30min with shaking at 

220rpm. The cells were then plated on the appropriate antibiotic agar medium and 

incubated at 37ºC for 16h until colonies appeared. Control transformations were also 

performed in parallel. These always included a negative control transformation without 
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DNA and a positive control transformation with 0.1ng of a control plasmid, for instance 

pUC19.  

 

II.2.7 Electrophoretic analysis of DNA 

 

 The electrophoresis apparatus was prepared and the electrophoresis tank was filled 

with enough 1X TAE to cover the agarose gel. The appropriate amount of agarose was 

transferred to an Erlenmeyer with 50ml 1X TAE. The slurry was heated until the agarose 

was dissolved and allowed to cool to 60ºC before adding ethidium bromide to a final 

concentration of 0.5µg/ml. The agarose solution was poured into the mold and the comb 

was positioned. After the gel was completely set the comb was carefully removed and the 

gel mounted in the tank. The DNA samples were mixed with the 6X loading buffer (LB) 

(0.25% bromophenol blue/ 30% glycerol in water) and the mixture was loaded into the 

slots of the submerged gel using a micropipette. Marker DNA (�-Hind III fragments or 1kb 

ladder) of known size was also loaded into the gel. The lid of the gel tank was closed and 

the electrical leads were attached so that the DNA migrated towards the anode. The gel 

was run until the bromophenol blue had migrated the appropriate distance through the gel. 

At the end, the gel was examined by UV light and photographed or analysed on a 

Molecular Imager (Biorad).   

 

II.2.8 DNA purification from low melting point agarose gels 

 

To purify DNA after restriction digestion, the mixture was ran on a low melting 

temperature agarose gel. The procedure is the same as described in the section above 

except for the use of low melting temperature agarose. In this type of agarose hydroxyethyl 

groups are present in the polysaccharide chain. This substitution causes the agarose to gel 

at around 30ºC and to melt at approximately 65ºC, below the melting point of dsDNA. 

After preparing the gel as described above, the gel was ran in a cold room (4ºC) at 40V for 

4h to ensure that the gel does not melt during the run. After, the desired DNA band was 

localized on the gel with a long-wavelength UV lamp, it was excised using a sharp scalpel 

and transferred to a clean, pre-weighted microtube. To extract the DNA from the agarose 
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slice two methods were used: agarose digestion with agarase (NEB) or purification through 

a QUIAGEN column. 

 

II.2.9 DNA sequencing 

 

 All the DNA samples to be sequenced followed the same protocol. In a microtube 

the following components were added: 

- 500ng dsDNA  

- 4µl of Ready Reaction Mix* 

- 3.2pmol primer 

- H2O to a final volume of 20µl 

* Ready Reaction Mix is composed of: dye terminators, deoxynucleoside triphosphates, 

AmpliTaq DNA polymerase, FS, rTth pyrophosphatase, magnesium chloride and buffer 

(Applied Biosystems). 

This reaction mixture was vortexed and spun down for a few seconds. PCR was then 

performed using the following conditions: 

 96ºC 10sec 

 50ºC 5sec               25 cycles 

 60ºC 4min 

 hold at 4ºC 

Afterwards, the samples were purified by ethanol precipitation (see above). Briefly, 

2.0µl of 3M sodium acetate (pH4.6) and 50µl of 95% ethanol were added to the reaction 

microtube. The microtube was vortexed and incubated at RT for 15min to precipitate the 

extension products. The microtube was then centrifuged at 14,000rpm for 20min at RT. 

After discarding the supernatant 250µl of 70% ethanol were added, the microtube was 

briefly vortexed and recentrifuged for 5min at 14,000rpm at RT. The supernatant was 

discarded and the pellet dried. After this procedure the DNA was ready to be applied in an 

Applied Biosystems Automated DNA Sequencer.    
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II.2.10 Yeast transformation with plasmid DNA  

 
Preparation of competent yeast cells 

The appropriate selection media and agar plates were prepared in advance. One 

colony of yeast strain AH109 was inoculated into 1ml of YPD medium in a 1.5ml 

microtube and vortexed vigorously to disperse cell clumps. The culture was transferred 

into a 250ml flask containing 50ml of YPD and incubated at 30ºC with shaking at 230rpm 

overnight until it reached stationary phase with OD600 > 1. Enough of this culture (20-

40ml) was transferred into 300ml YPD in a 1L flask to produce an OD600 = 0.2-0.3. The 

culture was incubated for 3h at 30ºC with shaking at 230rpm, centrifuged at 2,200rpm for 

5min at RT and the supernatant was discarded and the cells resuspended in 25ml H2O. The 

cells were recentrifuged and the pellet was resuspended in 1.5ml of freshly prepared, 

sterile 1XTE/LiAc.  

 

Yeast transformation- LiAc method 

In a microtube 0.1µg of plasmid DNA were added to 100µg of herring testes carrier 

DNA. Then, 100µl of freshly prepared competent cells were added to the microtube,  

followed by 600µl of sterile PEG/LiAc (40% PEG 4000/ 1X TE/ 1X LiA). The solution 

was incubated at 30ºC for 30min with shaking (200rpm). After adding 70µl of DMSO the 

solution was mixed gently and then heat shocked for 15min in a 42ºC water bath. The cells 

were pelleted after being chilled on ice, centrifuged for 5sec at 14,000rpm and resuspended 

in 0.5ml of 1X TE buffer. 100µl of these cells were then plated in the appropriate selection 

media, and incubated at 30ºC for 2 days.   

 

II.2.11 Expression of proteins in yeast  

 
Preparation of yeast cultures for protein extraction 

For each transformed yeast to be assayed by immunoblotting, 5ml overnight 

cultures in SD (supplement dropout) selection medium were prepared by inoculating a 

colony of the previously transformed yeast (see above). As a negative control an 

untransformed yeast colony (AH109) was inoculated in YPD. The overnight cultures were 
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vortexed and added to 50ml of YPD. These cultures were incubated at 30ºC with shaking 

(220rpm) until OD600 reached 0.4-0.6 (this took 4-8h). The culture was quickly chilled by 

pouring it into a prechilled 50ml centrifuge microtube halfway filled with ice. The 

microtube was immediately centrifuged at 1,000g for 5min at 4ºC. The supernatant was 

discarded and the pellet washed in 50ml of ice-cold water. The pellet was recovered by 

centrifugation at 1,000g for 5min at 4ºC and immediately frozen by placing the microtube 

in liquid nitrogen.  

 

Preparation of protein extracts 

Complete cracking buffer was prepared and pre-warmed to 60ºC. 100µl of cracking 

buffer were used per 7.5 OD600 units of cells. The cell pellets were quickly thawed by 

resuspending in the pre-warmed cracking buffer. The samples were briefly placed at 60ºC 

to hasten melting. An additional aliquot (1µl of 100X PMSF per 100µl of cracking buffer) 

of the 100X PMSF stock solution was added to the samples every 7min during the 

procedure. Each cell suspension was transferred into a 1.5ml microtube containing 80µl of 

glass beads per 7.5 OD600 � units of cells. The samples were heated at 70ºC for 10min to 

release the membrane-associated proteins. Then, the microtubes were vortexed vigorously 

for 1 min and the debris pelleted at 14,000rpm for 5min at 4ºC. The supernatants were 

transferred to fresh microtubes and placed on ice. The pellets were boiled for 5min, 

vortexed for 1min and centrifuged again. The supernatants were combined and the samples 

were boiled and stored at –70ºC (or loaded immediately on a SDS-PAGE gel).     

 

II.2.12 SDS-PAGE  

 

 In SDS polyacrylamide gel electrophoresis (SDS-PAGE) separations were carried 

out using well stablished methods (Laemmli, 1970). 

The percentage and size of the gel used depended on the molecular weight of the 

proteins being separated in the gel (Table II.1). For instance, when we wanted to visualize 

PP1 (with molecular weight around 40kDa) 12% gels were used. 
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Table II.1: Composition of the running and stacking gels for SDS-PAGE (mini gels).  

Components 
Running gel 

(7.5%) 

Running gel 

(12%) 

Running gel 

(15%) 

Stacking gel 

(3.5%) 

Water 4.9 ml 3.45 ml 2.45 ml 6.6 ml 

30%Acryl./8%Bisacryl. 2.5 ml 4.0 ml 5.0 ml 1.2 ml 

4X LGB 2.5 ml 2.5 ml 2.5 ml ------- 

5X UGB ------- ------- ------- 2.0 ml 

SDS 10% ------- ------- ------- 100 µl 

10% APS 50 µl 50 µl 50 µl 100 µl 

TEMED 5 µl 5 µl 5 µl 10 µl 

 

The 12% running gel was prepared by sequentially adding the components indicated on 

Table II.1 (APS and TEMED were the last added, as they initiate the polymerising 

process). The solution was then carefully pipetted down the spacer into the gel sandwich, 

leaving some space for the stacking gel. Then, water was carefully added to cover the top 

of the gel and the gel was allowed to polymerise for 1h. The stacking gel was prepared 

according to Table II.1. The water was poured out and the stacking gel was added to the 

sandwich; a comb was inserted and the gel allowed to polymerise for 30min. Then, the 

samples were prepared by adding to the protein sample (when appropriate the amount of 

protein loaded on the gel will be described) ¼ volume of LB (Loading Buffer). The 

microtube was boiled and centrifuged, the combs removed and the wells filled with 

running buffer. The samples were carefully loaded into the wells that were filled with 

running buffer, and the samples were electrophoresed at 90mA until the bromophenol blue 

from the LB reached the bottom of the gel. 

 

II.2.13 Staining gels with Coomassie Blue 

 

Coomassie Blue staining is based on non-specific binding of the Coomassie Blue 

dye to proteins. The separated proteins are simultaneously fixed and stained in the gel, and 
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then destained to remove the background prior to drying and photographing. The proteins 

are detected as blue bands on a clear background. 

The staining was performed at room temperature. Covered plastic trays were used to 

minimize exposure to acetic acid and methanol vapours. The gel was placed in staining 

solution (enough volume was used so that the gel could float) and agitated slowly for 

30min. After, the gel was placed in destaining solution until the bands were visible. The 

gel was then dried using a vacuum gel dryer. To this end the gel was placed on a sheet of 

filter paper of the same size, on top of a larger sheet of filter paper covering the metal 

screen on the dryer. The gel was covered with plastic wrap, then the silicon dryer cover 

flap was lowered and the vacuum applied. Finally, the heat was turned on to 65ºC for 1h. 

Alternatively, gels were scanned wet with a GS-710 calibrated imaging densitometer 

(Biorad) and analyzed with Quantity One software (version 4.2.1).    

 

II.2.14 Immunoblotting 

 

For immunoblotting tank transfer system was used. 3MM blotter paper was cut to 

fit the transfer cassette and a nitrocellulose membrane of the gel size was also cut. The gel 

was removed from the electrophoresis device and the stacking gel removed and discarded. 

The transfer sandwich was assembled under transfer buffer to avoid trapping air bubbles. 

The cassette was placed in the transfer device filled with transfer buffer. Transfer was 

allowed to proceed for 4h at 100mA, for mini gels, or overnight at 200mA for larger gels. 

Afterwords, the transfer cassettes were disassembled, the membrane carefully removed and 

allowed to air dry prior to further manipulations.  

 

II.2.15 Immunodetection by enhanced chemiluminescence (ECL)  

 

ECL TM is a light emitting non-radioactive method for the detection of immobilised 

antigens, conjugated directly or indirectly with horseradish peroxidase-labelled antibodies. 

First, the membrane was soaked in 1X TBS for 10min. Non-specific binding sites were 

blocked by immersing the membrane in 5% low fat milk in TBST for 1h. Then, the 

membrane was incubated with a solution of the appropriate primary antibody diluted in 5% 

low fat milk in TBST for 1h with shaking. After three washes of 10min each in 1X TBST 
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the membrane was incubated with a solution of the appropriate secondary antibody diluted 

in 5% low fat milk in TBST for 1h with shaking. Depending on the origin of the primary 

antibody (mouse, rabbit or sheep), the secondary antibody was anti-rabbit or anti-mouse, 

diluted 1:5000, or anti-sheep, diluted 1:1000, all conjugated to peroxidase. The membrane 

was washed, three times for 10min, and incubated for 1min at RT with the ECL detection 

solution (a mixture of equal volumes of solution 1 and solution 2 from the ECL kit, 

approximately 0.125ml/cm2 membrane). Excess solution was drained by touching the edge 

of the membrane against tissue paper and the membrane was gently wrapped with cling-

film, eliminating all air bubbles. In the dark room, the membrane was placed in a film 

cassette and an autoradiography film (XAR-5 film, KODAK) was placed on the top. The 

cassette was closed and the blot exposed over a certain period of time. The film was then 

removed and developed in a developing solution, washed in water and fixed in fixing 

solution. If needed, a second film was exposed more or less time according to the first 

result.    

To reuse the same membrane with another antibody, the membrane was sometimes 

stripped with stripping solution for 45min at 50ºC, washed with 1X TBST for 15min three 

times and then dried until needed. 

 

II.2.16 cDNA library screening by yeast mating  

 

A concentrated overnight culture of the bait strain (AH109+insert) was prepared by 

inoculating a colony of the bait strain into 50ml of SD/-Trp and incubating it at 30ºC 

overnight with shaking at 250rpm. The next day, the culture was centrifuged at 1,000g for 

5min and the pellet was resuspended in the residual liquid (5ml) by vortexing. The cells 

were counted using a haemocytometer (the concentration was > 1X109 cells/ml). Just prior 

to use, a frozen aliquot (1ml) of the library culture (Pretransformed Human Testis 

MATCHMAKER cDNA Library) was thawed in a room temperature water bath. The 

library was gently mixed and 10µl were set aside for later tittering (see below). The entire 

bait strain culture was combined with the 1ml library culture in a 2L sterile flask, 45ml of 

2X YPDA were added and gently swirled. This culture was incubated at 30ºC for 20-24h 

with shaking at 40rpm. After 20h of mating a drop of the mating culture was checked 

under a phase-contrast microscope to check for the presence of zygotes (Figure II.7). If so, 
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the mating was allowed to proceed for four more hours. The mating mixture was 

transferred to a sterile 50ml tube and the cells spun down at 1,000g for 10min. The mating 

flask was rinsed twice with 2X YPDA (50ml) and the rinses were combined and used to 

resuspend the first pellet. The cells were centrifuged again at 1,000g for 10min, the pellet 

resuspended in 10ml of 0.5X YPDA and the total volume (cells + medium) was measured. 

Half of the library mating mixture was plated on SD/QDO (SD without Leu, Trp, Ade and 

His), and the other half on SD/TDO (SD without Leu, Trp and His), at 200µl per 150mm 

plate. For mating efficiency controls, 100µl of 1:10,000, 1:1,000; 1:100 and 1:10 dilutions 

of the mating mixture were plated in 100mm SD/-Leu, SD/-Trp and SD/-Leu/-Trp plates. 

All plates were incubated at 30ºC until colonies appeared, generally 3-8 days on TDO and 

8-21 days on QDO medium. Then, growth of the control plates was scored and the mating 

efficiency and number of clones screened were calculated. All positive clones were 

replated twice in SD/QDO medium containing X-α-Gal and incubated at 30ºC for 3-8 

days. True positives formed blue colonies. The master plates were sealed with parafilm and 

stored at 4ºC. Glycerol stocks were prepared for all the positive clones.    

 

II.2.17 Library titering 

 
 A library aliquot (10µl) was transferred to 1ml of YPDA in a 1.5ml microtube – 

dilution A (dilution factor 10-2). 10µl from dilution A were added to 1ml of YPDA in 

another microtube and mixed gently – dilution B (dilution factor 10-4). 10µl of dilution A 

were added to 50µl of YPDA in another microtube and mixed gently. This solution was 

spread onto a SD/-Leu plate. From dilution B, 50 and 100µl were spread onto separate 

SD/-Leu plates. All the plates were incubated at 30ºC for 3 days after which the number of 

colonies was counted. The titer of the library was calculated using the following 

expression: [# colonies]  /[ plating volume (ml)x dil factor] = cfu/ml.   
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II.3 RESULTS 
 

Two separate yeast two-hybrid screens were performed to identify proteins from a 

human testis cDNA library capable of interacting with the alternatively spliced isoforms of 

PP1�, PP1γ1 (YTH1) and with PP1γ2 (YTH2). These two isoforms are identical, except for 

the C-terminus (Fig. II.2):  

 
PP1gamma1       GGGCGCGAGCCGGCGGCGGCGCCGCTGCGGGAGGGTCGGCGGTGGGAAGGCGATGGCGGA 60 
PP1gamma2       GGGCGCGAGCCGGCGGCGGCGCCGCTGCGGGAGGGTCGGCGGTGGGAAGGCGATGGCGGA 60 
                ************************************************************ 
 
PP1gamma1       TTTAGATAAACTCAACATCGACAGCATTATCCAACGGCTGCTGGAAGTGAGAGGGTCCAA 120 
PP1gamma2       TTTAGATAAACTCAACATCGACAGCATTATCCAACGGCTGCTGGAAGTGAGAGGGTCCAA 120 
                ************************************************************ 
 
PP1gamma1       GCCTGGTAAGAATGTCCAGCTTCAGGAGAATGAAATCAGAGGACTGTGCTTAAAGTCTCG 180 
PP1gamma2       GCCTGGTAAGAATGTCCAGCTTCAGGAGAATGAAATCAGAGGACTGTGCTTAAAGTCTCG 180 
                ************************************************************ 
 
PP1gamma1       TGAAATCTTTCTCAGTCAGCCTATCCTACTAGAACTTGAAGCACCACTCAAAATATGTGG 240 
PP1gamma2       TGAAATCTTTCTCAGTCAGCCTATCCTACTAGAACTTGAAGCACCACTCAAAATATGTGG 240 
                ************************************************************ 
 
PP1gamma1       TGACATCCATGGACAATACTATGATTTGCTGCGACTTTTTGAGTACGGTGGTTTCCCACC 300 
PP1gamma2       TGACATCCATGGACAATACTATGATTTGCTGCGACTTTTTGAGTACGGTGGTTTCCCACC 300 
                ************************************************************ 
 
PP1gamma1       AGAAAGCAACTACCTGTTTCTTGGGGACTATGTGGACAGGGGAAAGCAGTCATTGGAGAC 360 
PP1gamma2       AGAAAGCAACTACCTGTTTCTTGGGGACTATGTGGACAGGGGAAAGCAGTCATTGGAGAC 360 
                ************************************************************ 
 
PP1gamma1       GATCTGCCTCTTACTGGCCTACAAAATAAAATATCCTGAGAATTTTTTTCTTCTCAGAGG 420 
PP1gamma2       GATCTGCCTCTTACTGGCCTACAAAATAAAATATCCTGAGAATTTTTTTCTTCTCAGAGG 420 
                ************************************************************ 
 
PP1gamma1       GAACCATGAATGTGCCAGCATCAACAGAATTTATGGATTTTATGATGAATGTAAAAGAAG 480 
PP1gamma2       GAACCATGAATGTGCCAGCATCAACAGAATTTATGGATTTTATGATGAATGTAAAAGAAG 480 
                ************************************************************ 
 
PP1gamma1       ATACAACATTAAACTATGGAAAACTTTCACAGACTGTTTTAACTGTTTACCGATAGCAGC 540 
PP1gamma2       ATACAACATTAAACTATGGAAAACTTTCACAGACTGTTTTAACTGTTTACCGATAGCAGC 540 
                ************************************************************ 
 
PP1gamma1       CATCGTGGATGAGAAGATATTCTGCTGTCATGGAGGTTTATCACCAGATCTTCAATCTAT 600 
PP1gamma2       CATCGTGGATGAGAAGATATTCTGCTGTCATGGAGGTTTATCACCAGATCTTCAATCTAT 600 
                ************************************************************ 
 
PP1gamma1       GGAGCAGATTCGGCGAATTATGCGACCAACTGATGTACCAGATCAAGGTCTTCTTTGTGA 660 
PP1gamma2       GGAGCAGATTCGGCGAATTATGCGACCAACTGATGTACCAGATCAAGGTCTTCTTTGTGA 660 
                ************************************************************ 
 
PP1gamma1       TCTTTTGTGGTCTGACCCCGATAAAGATGTCTTAGGCTGGGGTGAAAATGACAGAGGAGT 720 
PP1gamma2       TCTTTTGTGGTCTGACCCCGATAAAGATGTCTTAGGCTGGGGTGAAAATGACAGAGGAGT 720 
                ************************************************************ 
 
PP1gamma1       GTCCTTCACATTTGGTGCAGAAGTGGTTGCAAAATTTCTCCATAAGCATGATTTGGATCT 780 
PP1gamma2       GTCCTTCACATTTGGTGCAGAAGTGGTTGCAAAATTTCTCCATAAGCATGATTTGGATCT 780 
                ************************************************************ 
 
PP1gamma1       TATATGTAGAGCCCATCAGGTGGTTGAAGATGGATATGAATTTTTTGCAAAGAGGCAGTT 840 
PP1gamma2       TATATGTAGAGCCCATCAGGTGGTTGAAGATGGATATGAATTTTTTGCAAAGAGGCAGTT 840 
                ************************************************************ 
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PP1gamma1       GGTCACTCTGTTTTCTGCGCCCAATTATTGCGGAGAGTTTGACAATGCAGGTGCCATGAT 900 
PP1gamma2       GGTCACTCTGTTTTCTGCGCCCAATTATTGCGGAGAGTTTGACAATGCAGGTGCCATGAT 900 
                ************************************************************ 
 
PP1gamma1       GGTGGATGAAACACTAATGTGTTCTTTTCAGATTTTAAAGCCTGCAGAGAAAAAGAAGCC 960 
PP1gamma2       GGTGGATGAAACACTAATGTGTTCTTTTCAGATTTTAAAGCCTGCAGAGAAAAAGAAGCC 960 
                ************************************************************ 
 
PP1gamma1       AAATGCCACGAGACCTGTAACGCCTCCAAGGGGTAT----GATCACAAAGCAAGCAAAGA 1016 
                                             R  G  M      I  T  K  Q  A  K   
                                             R  V  G  S  G  L  N  P  S  I  Q  
PP1gamma2       CAATGCCACGAGACCTGTCACACCGCCACGGGTTGGATCAGGCCTGAACCCGTCCATTCA 1020 
                 ***************** ** ** *** *** *      *  *  **  *   **   * 
 
PP1gamma1       AATAG------------------------------------------------------- 1021 
                K  * 
                  K  A  S  N  Y  R  N  N  T  V  L  Y  E  * 
PP1gamma2       GAAAGCTTCAAATTATAGAAACAACACTGTCCTATACGAGTGATCGGGGGTACCGAATTC 1080 
                 * **                                                        
 
PP1gamma1       ------------------------------ 
PP1gamma2       CTCGAGTCTAGGGGATCCGTCGACCTGCAG 1110

Figure II.2: Comparison of the human alternatively spliced PP1γ1 and PP1γ2. The red letters 

mark the splice site, the grey letters mark the stop codon and the green letters represent the PstI 

restriction site. 

 

II.3.1 Construction of the bait plasmids  
 

The vector used to clone the bait cDNAs encoding PP1γ1 and PP1γ2, was 

Clontech’s GAL4 binding domain expression vector pAS2-1 (Appendix IV). pAS2-1 has 

several characteristics that make it suitable for YTH. It has the GAL4-BD, two 

independent yeast and bacteria replication origins, it confers ampicilin and cyclohexamide 

resistance and allows the yeast to grow without tryptophan in the culture media. It also has 

a multiple cloning site used to clone the bait cDNA. 

 

II.3.1.1 Construction of pAS-PP1�1 
 

The cDNA for human PP1γ1 (da Cruz e Silva, 1995) was removed from pBluescript 

(Appendix IV) by restriction digestion with XmaI/SalI and directionally subcloned into 

XmaI/SalI-digested pAS2-1. The resulting plasmid was sequenced to check the correctness 

of the PP1γ1 sequence and if the fusion protein was in the proper reading frame (Fig. II.3). 

 

atgaagctactgtcttctatcgaacaagcatgcgatatttgccgacttaaaaagctcaag 
 M  K  L  L  S  S  I  E  Q  A  C  D  I  C  R  L  K  K  L  K  
tgctccaaagaaaaaccgaagtgcgccaagtgtctgaagaacaactgggagtgtcgctac 
 C  S  K  E  K  P  K  C  A  K  C  L  K  N  N  W  E  C  R  Y  
tctcccaaaaccaaaaggtctccgctgactagggcacatctgacagaagtggaatcaagg 
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 S  P  K  T  K  R  S  P  L  T  R  A  H  L  T  E  V  E  S  R  
ctagaaagactggaacagctatttctactgatttttcctcgagaagaccttgacatgatt 
 L  E  R  L  E  Q  L  F  L  L  I  F  P  R  E  D  L  D  M  I  
ttgaaaatggattctttacaggatataaaagcattgttaacaggattatttgtacaagat 
 L  K  M  D  S  L  Q  D  I  K  A  L  L  T  G  L  F  V  Q  D  
aatgtgaataaagatgccgtcacagatagattggcttcagtggagactgatatgcctcta 
 N  V  N  K  D  A  V  T  D  R  L  A  S  V  E  T  D  M  P  L  
acattgagacagcatagaataagtgcgacatcatcatcggaagagagtagtaacaaaggt 
 T  L  R  Q  H  R  I  S  A  T  S  S  S  E  E  S  S  N  K  G  
caaagacagttgactgtatcgccggtattgcaatacccagctttgactcatatggccatg 
 Q  R  Q  L  T  V  S  P  V  L  Q  Y  P  A  L  T  H  M  A  M  
gaggccgaattcccgggcgcgagccggcggcggcgccgctgcgggagggtcggcggtggg 
 E  A  E  F  P  G  A  S  R  R  R  R  R  C  G  R  V  G  G  G  
aaggcgatggcggatttagataaactcaacatcgacagcattatccaacggctgctggaa 
 K  A  M  A  D  L  D  K  L  N  I  D  S  I  I  Q  R  L  L  E  
gtgagagggtccaagcctggtaagaatgtccagcttcaggagaatgaaatcagaggactg 
 V  R  G  S  K  P  G  K  N  V  Q  L  Q  E  N  E  I  R  G  L  
tgcttaaagtctcgtgaaatctttctcagtcagcctatcctactagaacttgaagcacca 
 C  L  K  S  R  E  I  F  L  S  Q  P  I  L  L  E  L  E  A  P  
ctcaaaatatgtggtgacatccatggacaatactatgatttgctgcgactttttgagtac 
 L  K  I  C  G  D  I  H  G  Q  Y  Y  D  L  L  R  L  F  E  Y  
ggtggtttcccaccagaaagcaactacctgtttcttggggactatgtggacaggggaaag 
 G  G  F  P  P  E  S  N  Y  L  F  L  G  D  Y  V  D  R  G  K  
cagtcattggagacgatctgcctcttactggcctacaaaataaaatatcctgagaatttt 
 Q  S  L  E  T  I  C  L  L  L  A  Y  K  I  K  Y  P  E  N  F  
tttcttctcagagggaaccatgaatgtgccagcatcaacagaatttatggattttatgat 
 F  L  L  R  G  N  H  E  C  A  S  I  N  R  I  Y  G  F  Y  D  
gaatgtaaaagaagatacaacattaaactatggaaaactttcacagactgttttaactgt 
 E  C  K  R  R  Y  N  I  K  L  W  K  T  F  T  D  C  F  N  C  
ttaccgatagcagccatcgtggatgagaagatattctgctgtcatggaggtttatcacca 
 L  P  I  A  A  I  V  D  E  K  I  F  C  C  H  G  G  L  S  P  
gatcttcaatctatggagcagattcggcgaattatgcgaccaactgatgtaccagatcaa 
 D  L  Q  S  M  E  Q  I  R  R  I  M  R  P  T  D  V  P  D  Q  
ggtcttctttgtgatcttttgtggtctgaccccgataaagatgtcttaggctggggtgaa 
 G  L  L  C  D  L  L  W  S  D  P  D  K  D  V  L  G  W  G  E  
aatgacagaggagtgtccttcacatttggtgcagaagtggttgcaaaatttctccataag 
 N  D  R  G  V  S  F  T  F  G  A  E  V  V  A  K  F  L  H  K  
catgatttggatcttatatgtagagcccatcaggtggttgaagatggatatgaatttttt 
 H  D  L  D  L  I  C  R  A  H  Q  V  V  E  D  G  Y  E  F  F  
gcaaagaggcagttggtcactctgttttctgcgcccaattattgcggagagtttgacaat 
 A  K  R  Q  L  V  T  L  F  S  A  P  N  Y  C  G  E  F  D  N  
gcaggtgccatgatggtggatgaaacactaatgtgttcttttcagattttaaagcctgca 
 A  G  A  M  M  V  D  E  T  L  M  C  S  F  Q  I  L  K  P  A  
gagaaaaagaagccaaatgccacgagacctgtaacgcctccaaggggtatgatcacaaag 
 E  K  K  K  P  N  A  T  R  P  V  T  P  P  R  G  M  I  T  K  
caagcaaagaaatag   
 Q  A  K  K  *   

Figure II.3: Partial sequence of the pAS-PP1�1 construct. Human PP1�1 sequence is in green and 

blue; Sequence marked in green is a non-coding sequence in the human PP1γ1; pAS2-1 sequence 

that is fused to PP1�1 is in black; splice site of PP1� is in red; Pst I restriction site is in orange; 

Initiantion codon is in pink; Stop codon is in grey. 
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II.3.1.2 Construction of pAS-PP1γ2 
 

The cDNA for mouse PP1γ2 was a generous gift from E.Y.C. Lee (Zhang et al., 

1993). This cDNA was inserted into the expression vector pTACTAC. However, the 

mouse PP1γ2 cDNA provided could not be used since sequencing of this plasmid revealed 

that it contained a mutation that resulted in a premature stop, thus yielding a C-terminally 

truncated protein (Fig. II.4). Therefore, the carboxyl terminus of PP1γ2 was taken from this 

vector by digestion with PstI and subcloned into PstI-digested pAS-PP1γ1giving the pAS-

PP1γ2 plasmid (the N-terminal of this cDNA was from human origin and the C-terminus 

from mouse). The resulting plasmid was sequenced to check the sequence of the insert 

cDNA PP1γ2 and also to check if the fusion protein was in the correct reading frame (Fig. 

II.5). 

 
ratPP1gamma2      AGCTCCTCCTCTCGCCACTGGAACCACGAGAAGAGGAGGAAGCCGGGAGCGGGGCGGCTG 60 
LeePP1gamma2      AGCTCCTCCTCTCGCCACTGGAACCACGAGAAGAGGAGGAAGCCGGGAGCGGGGCGGCTG 60 
 
ratPP1gamma2      GGGGGGGGACCCGCCGCGGCTGCTGCTGCCACCGCCGCCGCCACCACCGCTCGTGGGGCT 120 
LeePP1gamma2      GGGGGGGGACCCGCCGCGGCTGCTGCTGCCACCGCCGCCGCCACCACCGCTCGTGGGGCT 120 
 
ratPP1gamma2      CGTGGCGTGAAGAAGGAGGACGAGTGAGACCCGGGCGCGACGGGGCGCGTGCGGGAGGGT 180 
LeePP1gamma2      CGTGGCGTGAAGAAGGAGGACGAGTGAGACCCGGGCGCGACGGGGCGCGTGCGGGAGGGT 180 
 
ratPP1gamma2      CGGCGGCGGGACGGCGATGGCGGATATCGATAAACTCAACATCGACAGTATCATCCAACG 240 
LeePP1gamma2      CGGCGGCGGGACGGCGATGGCGGATATCGATAAACTCAACATCGACAGTATCATCCAACG 240 
 
ratPP1gamma2      GCTGCTGGAAGTGAGAGGGTCCAAGCCAGGCAAGAATGTCCAGCTCCAGGAGAATGAAAT 300 
LeePP1gamma2      GCTGCTGGAAGTGAGAGGGTCCAAGCCAGGCAAGAATGTCCAGCTCCAGGAGAATGAAAT 300 
 
ratPP1gamma2      CCGGGGACTGTGCTTGAAGTCTCGGGAGATCTTCCTCAGTCAGCCTATCCTTTTAGAACT 360 
LeePP1gamma2      CCGGGGACTGTGCTTGAAGTCTCGGGAGATCTTCCTCAGTCAGCCTATCCTTTTAGAACT 360 
 
ratPP1gamma2      TGAAGCACCACTCAAGATATGTGGTGACATCCACGGGCAGTACTATGATTTGCTCCGTCT 420 
LeePP1gamma2      TGAAGCACCACTCAAGATATGTGGTGACATCCACGGGCAGTACTATGATTTGCTCCGTCT 420 
 
ratPP1gamma2      GTTTGAATACGGTGGCTTTCCTCCAGAAAGCAACTATTTGTTTCTCGGGGACTATGTGGA 480 
LeePP1gamma2      GTTTGAATACGGTGGCTTTCCTCCAGAAAGCAACTATTTGTTTCTCGGGGACTATGTGGA 480 
 
ratPP1gamma2      CAGGGGCAAACAGTCACTAGAGACGATCTGCCTCTTGCTGGCCTACAAAATCAAGTATCC 540 
LeePP1gamma2      CAGGGGCAAACAGTCACTAGAGACGATCTGCCTCTTGCTGGCCTACAAAATCAAGTATCC 540 
 
ratPP1gamma2      GGAGAACTTTTTTCTTCTTAGAGGGAACCATGAGTGTGCCAGCATCAATAGAATCTACGG 600 
LeePP1gamma2      GGAGAACTTTTTTCTTCTTAGAGGGAACCATGAGTGTGCCAGCATCAATAGAATCTACGG 600 
 
ratPP1gamma2      ATTTTATGATGAGTGTAAGAGAAGATACAACATTAAGCTGTGGAAAACGTTCACAGACTG 660 
LeePP1gamma2      ATTTTATGATGAGTGTAAGAGAAGATACAACATTAAGCTGTGGAAAACGTTCACAGACTG 660 
 
ratPP1gamma2      TTTTAACTGCTTACCGATAGCAGCCATCGTGGACGAGAAGATATTCTGCTGTCATGGAGG 720 
LeePP1gamma2      TTTTAACTGCTTACCGATAGCAGCCATCGTGGACGAGAAGATATTCTGCTGTCATGGAGG 720 
 
ratPP1gamma2      TTTATCACCAGATCTTCAATCTATGGAGCAGATTCGGCGAATTATGAGACCAACTGATGT 780 
LeePP1gamma2      TTTATCACCAGATCTTCAATCTATGGAGCAGATTCGGCGAATTATGAGACCAACTGATGT 780 
 
ratPP1gamma2   ACCAGATCAAGGTCTTCTTTGTGATCTTTTGTGGTCTGACCCCGATAAAGATGTCTTTGG 840 
                 P  D  Q  G  L  L  C  D  L  L  W  S  D  P  D  K  D  V  F  G  
                 P  D    R  S  S  L  * 
LeePP1gamma2   ACCAGAT--AGGTCTTCTTTGTGATCTTTTGTGGTCTGACCCCGATAAAGATGTCTTAGG 838 
 
ratPP1gamma2      CTGGGGTGAAAATGACAGAGGAGTGTCCTTCACATTTGGTGCAGAAGTGGTTGCAAAATT 900 
LeePP1gamma2      CTGGGGTGAAAATGACAGAGGAGTGTCCTTCACATTTGGTGCAGAAGTGGTTGCAAAATT 898 



Characterization of the PP1 Interactome from Human Testis Chapter II  
 

Centro de Biologia Celular 
Universidade de Aveiro 

86 

 
ratPP1gamma2      TCTCCATAAGCATGATTTGGATCTTATATGTAGAGCCCATCAGGTGGTTGAAGATGGATA 960 
LeePP1gamma2      TCTCCATAAGCATGATTTGGATCTTATATGTAGAGCCCATCAGGTGGTTGAAGATGGATA 958 
 
ratPP1gamma2      TGAGTTTTTTGCAAAGAGGCAGTTAGTCACTCTGTTTTCTGCACCCAACTACTGTGGCGA 1020 
LeePP1gamma2      TGAGTTTTTTGCAAAGAGGCAGTTAGTCACTCTGTTTTCTGCACCCAACTACTGTGGCGA 1018 
 
ratPP1gamma2      GTTTGACAATGCGGGCGCCATGATGAGTGTGGATGAGACCCTCATGTGCTCCTTCCAGAT 1080 
LeePP1gamma2      GTTTGACAATGCGGGCGCCATGATGAGTGTGGATGAGACCCTCATGTGCTCCTTCCAGAT 1078 
 
ratPP1gamma2      TTTAAAGCCTGCAGAGAAAAAGAAGCCCAATGCCACGAGACCTGTCACACCGCCACGGGT 1140 
LeePP1gamma2      TTTAAAGCCTGCAGAGAAAAAGAAGCCCAATGCCACGAGACCTGTCACACCGCCACGGGT 1138 
 
ratPP1gamma2      TGGATCAGGCCTGAACCCGTCCATTCAGAAAGCTTCAAATTATAGAAACAACACTGTCCT 1200 
LeePP1gamma2      TGGATCAGGCCTGAACCCGTCCATTCAGAAAGCTTCAAATTATAGAAACAACACTGTCCT 1198 
 
ratPP1gamma2      ATACGAGTGATCGATAATGCTTTCTTTGGCTACATTCTTTATTCTGCGGTGACATTGAGG 1260 
LeePP1gamma2      ATACGAGTGATCGATAATGCTTTCTTTGGCTACATTCTTTATTCTGCGGTGACATTGAGG 1258 
 
ratPP1gamma2      CTTATAAATCAAAAGGAACTAACTTGCCGTCCACCGGTTTATACAGAACTCACAGTATCT 1320 
LeePP1gamma2      CTTATAAATCAAAAGGAACTAACTTGCCGTCCACCGGTTTATACAGAACTCACAGTATCT 1318 
 
ratPP1gamma2      ATGACTTTTTTAAACTACGACCTGTTAAAATGAATCTGTTTCCACAGATGCCGTGTACAA 1380 
LeePP1gamma2      ATGACTTTTTTAAACTACGACCTGTTAAAATGAATCTGTTTCCACAGATGCCGTGTACAA 1378 
 
ratPP1gamma2      TGCCATGTGCTAAGAATGATTTCAGACTTATTAAATGCGAGCTTGTT 1427 
LeePP1gamma2      TGCCATGTGCTAAGAATGATTTCAGACTTATTAAATGCGAGCTTGTT 1425 

Figure II.4: Alignment of the rat PP1γ2 (Gi:3236123) versus the sequence of rat PP1γ2 provided 

by E.Y.C. Lee. The PstI site is marked in green, the splice site is marked in red, the stop codon in 

grey . The cDNA provided by E.Y.C. Lee has a substitution T838-A836 and a two bases deletion 

(C788A789) marked in blue. The last mutation alters the open reading frame leading to a 

premature stop codon (in pink) that originates a 22kDa protein (data not shown). 

 

atgaagctactgtcttctatcgaacaagcatgcgatatttgccgacttaaaaagctcaag 
 M  K  L  L  S  S  I  E  Q  A  C  D  I  C  R  L  K  K  L  K  
tgctccaaagaaaaaccgaagtgcgccaagtgtctgaagaacaactgggagtgtcgctac 
 C  S  K  E  K  P  K  C  A  K  C  L  K  N  N  W  E  C  R  Y  
tctcccaaaaccaaaaggtctccgctgactagggcacatctgacagaagtggaatcaagg 
 S  P  K  T  K  R  S  P  L  T  R  A  H  L  T  E  V  E  S  R  
ctagaaagactggaacagctatttctactgatttttcctcgagaagaccttgacatgatt 
 L  E  R  L  E  Q  L  F  L  L  I  F  P  R  E  D  L  D  M  I  
ttgaaaatggattctttacaggatataaaagcattgttaacaggattatttgtacaagat 
 L  K  M  D  S  L  Q  D  I  K  A  L  L  T  G  L  F  V  Q  D  
aatgtgaataaagatgccgtcacagatagattggcttcagtggagactgatatgcctcta 
 N  V  N  K  D  A  V  T  D  R  L  A  S  V  E  T  D  M  P  L  
acattgagacagcatagaataagtgcgacatcatcatcggaagagagtagtaacaaaggt 
 T  L  R  Q  H  R  I  S  A  T  S  S  S  E  E  S  S  N  K  G  
caaagacagttgactgtatcgccggtattgcaatacccagctttgactcatatggccatg 
 Q  R  Q  L  T  V  S  P  V  L  Q  Y  P  A  L  T  H  M  A  M  
gaggccgaattcccgggcgcgagccggcggcggcgccgctgcgggagggtcggcggtggg 
 E  A  E  F  P  G  A  S  R  R  R  R  R  C  G  R  V  G  G  G   
aaggcgatggcggatttagataaactcaacatcgacagcattatccaacggctgctggaa 
 K  A  M  A  D  L  D  K  L  N  I  D  S  I  I  Q  R  L  L  E  
gtgagagggtccaagcctggtaagaatgtccagcttcaggagaatgaaatcagaggactg 
 V  R  G  S  K  P  G  K  N  V  Q  L  Q  E  N  E  I  R  G  L  
tgcttaaagtctcgtgaaatctttctcagtcagcctatcctactagaacttgaagcacca 
 C  L  K  S  R  E  I  F  L  S  Q  P  I  L  L  E  L  E  A  P  
ctcaaaatatgtggtgacatccatggacaatactatgatttgctgcgactttttgagtac 
 L  K  I  C  G  D  I  H  G  Q  Y  Y  D  L  L  R  L  F  E  Y  
ggtggtttcccaccagaaagcaactacctgtttcttggggactatgtggacaggggaaag 
 G  G  F  P  P  E  S  N  Y  L  F  L  G  D  Y  V  D  R  G  K  
cagtcattggagacgatctgcctcttactggcctacaaaataaaatatcctgagaatttt 
 Q  S  L  E  T  I  C  L  L  L  A  Y  K  I  K  Y  P  E  N  F  
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tttcttctcagagggaaccatgaatgtgccagcatcaacagaatttatggattttatgat 
 F  L  L  R  G  N  H  E  C  A  S  I  N  R  I  Y  G  F  Y  D  
gaatgtaaaagaagatacaacattaaactatggaaaactttcacagactgttttaactgt 
 E  C  K  R  R  Y  N  I  K  L  W  K  T  F  T  D  C  F  N  C  
ttaccgatagcagccatcgtggatgagaagatattctgctgtcatggaggtttatcacca 
 L  P  I  A  A  I  V  D  E  K  I  F  C  C  H  G  G  L  S  P  
gatcttcaatctatggagcagattcggcgaattatgcgaccaactgatgtaccagatcaa 
 D  L  Q  S  M  E  Q  I  R  R  I  M  R  P  T  D  V  P  D  Q  
ggtcttctttgtgatcttttgtggtctgaccccgataaagatgtcttaggctggggtgaa 
 G  L  L  C  D  L  L  W  S  D  P  D  K  D  V  L  G  W  G  E  
aatgacagaggagtgtccttcacatttggtgcagaagtggttgcaaaatttctccataag 
 N  D  R  G  V  S  F  T  F  G  A  E  V  V  A  K  F  L  H  K  
catgatttggatcttatatgtagagcccatcaggtggttgaagatggatatgaatttttt 
 H  D  L  D  L  I  C  R  A  H  Q  V  V  E  D  G  Y  E  F  F  
gcaaagaggcagttggtcactctgttttctgcgcccaattattgcggagagtttgacaat 
 A  K  R  Q  L  V  T  L  F  S  A  P  N  Y  C  G  E  F  D  N  
gcaggtgccatgatggtggatgaaacactaatgtgttcttttcagattttaaagcctgca 
 A  G  A  M  M  V  D  E  T  L  M  C  S  F  Q  I  L  K  P  A  
gagaaaaagaagcccaatgccacgagacctgtcacaccgccacgggttggatcaggcctg 
 E  K  K  K  P  N  A  T  R  P  V  T  P  P  R  V  G  S  G  L  
aacccgtccattcagaaagcttcaaattatagaaacaacactgtcctatacgagtgatcg 
 N  P  S  I  Q  K  A  S  N  Y  R  N  N  T  V  L  Y  E  *   
ggggtaccgaattcctcgagtctaggggatccgtcgacctgcag 

Figure II.5: Partial sequence of the pAS-PP1�2 construct. PP1�2 sequence is in green and blue; 

Sequence marked in green is a non-coding sequence in the human PP1γ2; pAS2-1 sequence that is 

fused to PP1�1 is in black; splice site of PP1� is in red; Pst I restriction site is in orange; 

Initiantion codon is in pink; Stop codon is in grey. 

 

II.3.2 Expression of the bait proteins 

 

In order to verify the ability of the recombinant constructs to drive PP1 expression, 

they were transformed into yeast strain AH109, the transformed cells were grown on the 

appropriate media and PP1 expression was confirmed by immunobloting of the 

corresponding protein extracts (Fig. II.6). To detect the fusion protein PP1γ1/GAL4-BD 

the immunoblot was performed using an anti-PP1γ1 antibody (da Cruz e Silva et al., 

1995b), and an anti-rabbit secondary antibody conjugated to peroxidase. A band of the 

expected molecular mass was detected only in protein extracts from yeast cells containing 

the pAS-PP1γ1 plasmid (Fig. II.6A). A non-specific band was detected both in the controls 

(protein extracts from AH109 yeast cells and from AH109 yeast cells transformed with the 

vector pAS2-1 alone) and in the protein extracts from yeast cells containing the pAS-

PP1γ1 plasmid. Detection of the PP1γ2/GAL4-BD protein used an anti-PP1γ2 antibody 

prepared essentially as described in (da Cruz e Silva et al., 1995b; Vijayaraghavan et al., 

1996), that recognizes the C-terminal sequence of PP1γ2. A protein extract from human 
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testis was used as a positive control, and as a negative control the protein extract from 

untransformed AH109 yeast cells was used (Fig. II.6B).  

None of the constructs activated transcription from the UAS (the DNA sequence 

that is recognized by GAL4-BD) as detected by lack of growth of AH109 yeast cells 

containing the different bait plasmids on selective media (data not shown). 

 
Figure II.6: Immunoblot analysis of protein extracts from AH109 yeast transformed with pAS-

PP1γ1 (A) or pAS-PP1γ2 (B). A), The blot was probed with anti-PP1γ1 and X represents a non-

specific immunoreactive yeast protein. Lane 1, untransformed yeast control; Lane 2, pAS2-1 vector 

control; Lanes 3 and 4, two independent pAS-PP1γ1 clones. B), The blot was probed with anti-

PP1γ2. Lane 1, protein extract from rat testis; Lane 2, untransformed yeast control; Lane 3, pAS-

PP1γ2 extract. The calculated molecular masses (in kDa) of the fusion proteins is indicated.   

 

Once yeast cell expression of the fusion proteins GAL4-BD/PP1γ1 and GAL4-

BD/PP1γ2 was confirmed, the yeast two hybrid screens were performed. 

 

II.3.3 Identification of PP1 interacting clones 

 

 After transforming the bait plasmids into the appropriate yeast strain, AH109 (mat 

a), the next step was to obtain the desired library pretransformed in a yeast strain of the 

opposite mating type. In our case we used a pretransformed pACT-2 library in the yeast 

strain Y187 (mat α) containing human testis cDNA sequences fused to the GAL4 

transactivation domain (AD). By using a pretransformed library the most costly and time-
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consuming steps of the library screening are already done. These include, constructing the 

library, amplifying the library in E. coli, isolating the library DNA, performing the library-

scale transformation of yeast strain Y187, plating the transformation mixture and 

harvesting the transformants at high viability and density in freezing medium. 

The YTH screens were performed by yeast mating, instead of the more commun 

cotranformation protocol. By using the yeast mating protocol more unique positive clones 

are obtained due primarily to the “jump-start” that the new diploids receive before being 

plated on selective medium. Besides that, diploid yeast cells are more vigorous than 

haploid cells and can better tolerate the expression of toxic proteins. Also, in diploids, the 

reporters are less sensitive to transcription activation than they are in haploids, reducing the 

incidence of false positives from transactivating baits.  

 The human testis cDNA library was screened to identify new interacting partners 

for PP1γ1 (YTH1) and PP1γ2 (YTH2). Both screens were performed by mating as 

described in the methods section. The mating culture was checked under a phase-contrast 

microscope to check for the occurrence of zygotes (Fig. II.7), indicative that mating was 

occurring as expected. 

 

 

Figure II.7: Zygote formation in the 

mating mixture with its typical three-

lobed shape. The arrow is pointing 

the budding diploid cell. The other 

two lobes are the two haploid 

(parental) cells. This picture was 

taken using an inverted microscope, 

during the mating procedure (40X 

magnification). 

 

 

After plating the mating mixture in the appropriate selective media and waiting 

several days for colonies to appear, the growth on the control plates was scored and the 

mating efficiency and number of clones screened were calculated (Table II.2). 
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Table II.2: Results from the yeast two hybrid screens. 

YTH screen Bait Positive clones 
Mating efficiency 

(% diploids) 
Clones screened 

YTH1 PP1γ1 120 5 9 X 107 

YTH2 PP1γ2 155 5 5 X 107 

To calculate de number of clones screened the following equation was used [# cfu/ml of diploids X 

resuspension volume]. To calculate the mating efficiency the following equation was used [# cfu (in 

SD –Leu/-Trp) X 1000µl/ml/ volume plated (µl) x dilution factor] / [# cfu (in SD -Trp) X 

1000µl/ml/ volume plated (µl) X dilution factor] X 100. 

 

For YTH1 268 clones were colected and for YTH2 333 clones were isolated (Fig. 

II.8) in SD/QDO media. This media tests the expression of the nutritional reporter genes 

HIS3 and ADE2. These clones were further tested for MEL1 expression, another reporter 

gene, by growing these putative primary positive clones in SD/QDO media with X-α-Gal. 

True positive clones turn a blue colour (Fig. II.9). 120 and 155 true positive clones were 

thus identified for the YTH1 and the YTH2, respectively. 

 

1Q 3Q 4Q 5Q 7Q 8Q 9Q 12Q 13Q 17Q 20Q 26Q

27Q 29Q 30Q 31Q 32Q 33Q 34Q 35Q 36Q 37Q 39Q 40Q

41Q 44Q 45Q 46Q 47Q 48Q 49Q 53Q 57Q 55Q 58Q 4T

12T 13T 20T 22T 27T 29T 31T 32T 33T 36T 37T 39T

42T 43T 48T 50T 55T 58T 60T 62 101T 113T 118T 120T

121T 125T 127T 129T 131T 133T 135T 136T 137T 138T 141T 143T

144T 146T 152T 153T 155T 156T 157T 158T 161T 162T 164T 201T

208T 210T 212T 214T 219T 220T 223T 224T 226T 227T 228T 229T

232T 23T 236T 240T 244T 245T 246T 249T 251T 252T 254T 255T

256T 257T 258T 259T 260T 261T 302T 303T 304T 305T 311T 316T

 
A)                                                                 B) 
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C) 

21 22 24 25 26 212 213 214 215 216

217 218 219 220 225 226 229 231 232 239

244 245 247 253 260 261 262 263 264 265

266 268 269 270 271 272 273 275 276 278

279 280 284 285 287 289 291 294 296 298

2100 2101 2104 2109 2110 2123 2124 2133 2138 2140

2141 2142 2143 2144 2145 2146 2147 2149 2150 2151

2152 2153 2155 2158 2159 2160 2161 2162 2163 2164

2165 2168 2174 2175 2176 2178 2179 2183 2186 2187

2188 2189 2192 2194 2198 2202 2204 2205 2209 2210

2211 2215 2216 2217 2218 2220 2223 2224 2226 2227

2229 2231 2232 2234 2235 2236 2237 2238 2239 2240

2247 2248 2250 2252 2254 2255 2257 2258 2259 2261

2263 2264 2267 2268 2269 2271 2272 2275B 2276 2277

2278 2283 2287 2285 2296 2305 2307 2308 2324 2325

2326 2327 2329 2331 2332
 

D) 

 

Figure II.8: Positive clones identified in the yeast two hybrid screens using PP1γ1 as bait (A and 

B) or PP1γ2 (C and D). The numbers in B and D reflect their recovery from the original SD/TDO 

or SD/QDO plates.  

 

 

Figure II.9: MEL-1 expression test 

of the positive clones obtained in the 

YTH1 screen. White colonies 

(arrows) represent false positives 

that grew on SD/QDO medium but 

could not turn blue in the presence 

of X-�-GAL. 
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II.4 DISCUSSION 
 

As with all detection methods, the YTH system is known to result in the detection of 

some false positives. This was a relatively serious problem in the early days of the YTH 

method but the elimination of such false positive results has been greatly improved 

nowadays. False positive signals result from cells in which the reporter genes are active 

even though the bait and prey do not interact. There are several classes of false positives. 

For example, false positives may arise from preys that interact with DNA upstream of the 

reporter genes or with proteins that interact with promoter sequences. These two classes of 

false positives can be eliminated by the use of more than one reporter gene under the 

control of different promoters, as was the case with the present work. Another inherent 

problem with the system is that not all proteins will be efficiently folded and/or post-

translationaly modified in the yeast nucleus, which may result in the protein not interacting 

with the true partner. In the same way, the protein may adopt a different tertiary structure 

when expressed as fusions with the transcription factor domains. Also, some proteins may 

be toxic when expressed as fusions in yeast, inhibiting growth when expressed at high 

levels. This can be circumvented to some extent by the use of inducible expression 

plasmids. Other false positive results include interactions that occur in the YTH screen but 

not in a physiological context, because the partners are not expressed in the same cellular 

or subcellular environment at the same time. 

By screening 9 X 107 clones from a human testis cDNA library with PP1γ1 as bait 

we obtained 120 positive clones as accessed by their ability to grow on SD/ODO selective 

media and to turn blue in the presence of X-�-Gal. Similarly, the screening of 5 X 107 

clones with PP1γ2 as bait originated 155 positive clones. We observed multiple colonies 

(268 and 333 for the YTH1 and YTH2, respectively) that were able to induce the 

expression of the nutritional reporters (thus growing on SD/QDO) although they were not 

considered as true positives since they do not induce the expression of another reporter 

gene, MEL-1. 

In conclusion, supplementary data from other sources should be used to evaluate 

the credibility of interactions in an YTH screen. Thereby, the verification of a putative 

interaction can be achieved in a variety of ways. One approach is to mix the recombinant 
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proteins and verify binding in vitro through a variety of biochemical assays. Another 

approach is to express both proteins in cells by transfection and analyse interactions by 

immunoprecipitation studies. However, even if co-immunoprecipitation is successful, there 

is still the possibility that the proteins only interact under the conditions used. So, a crucial 

validation of the two hybrid results is to prove that the two proteins exist in the same 

subcellular environment, by doing immunoprecipitation in the tissue of interest.  
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III CHARACTERIZATION OF THE POSITIVE 
CLONES 

 
III.1 INTRODUCTION  
 

The vast majority of the PP1 binding proteins that have been identified to date were 

discovered using the yeast two hybrid (YTH) method. Often, when performing an YTH 

screen, only a few clones are selected and further characterized. Using such an approach 

many of the rarer positive clones are never analyzed, and some important potential 

interactors may be missed. 

In our screens we obtained 120 positive clones for the interactions with PP1�1 and 

155 for the interactions with PP1�2. We decided to analyse all the positive clones in order 

to identify not only the most abundant clones but also the more interesting ones, even 

though they may have been detected only once or twice in the screen. This does not mean 

they are not important but may simply reflect the low abundance of the mRNA in the 

library used or its low abundance in the tissue from which the library was made.  

All positive clones were partially sequenced and some of the clones were further 

analyzed. 

 

III.2 MATERIALS AND METHODS 
 

For the complete composition of all reagents, media and solutions used, see the 

list presented in Appendix I. All reagents were cell culture grade or ultrapure. 

 

III.2.1  Plasmid isolation from yeast and transformation into bacteria 
 

Yeast plasmid DNA was extracted by resuspending cells in 0.2ml of breaking 

buffer [2% Triton X-100/ 1% SDS/ 100mM NaCl/ 10mM Tris-HCl (pH 8.0)], adding 0.3g 

of 0.5mm acid-washed glass beads plus 0.2ml 25:24:1(v/v/v) phenol/chloroform/isoamyl 

alcohol and vortexing for 2min before centrifuging for 5min. DNA was ethanol 

precipitated. 
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An alternative method was also used for isolating yeast plasmid DNA and turned 

out to be more efficient: 3ml of yeast cells were pelleted and the DNA extracted using the 

QUIAGEN kit (Chapter II).  

Both types of DNA were used to transform E. coli XL1-Blue and plasmid DNA 

was isolated from single colonies as described in Chapter II. 

 

III.2.2  Analysis of the positive plasmids by restriction digestion, sequencing 

and database searching  

 

Plasmid DNA was digested with the restriction endonuclease HindIII and fragments 

produced were separated by agarose gel electrophoresis as described in Chapter II.  

 The cloning vector used (pACT-2) produced a characteristic pattern of fragments 

that allowed its differentiation from colonies resulting from transformation by the bait 

vector. Plasmids generating DNA fragments characteristic of the pACT-2+library insert 

digested with Hind III were further analysed. The DNA was purified (500ng) for the 

sequencing PCR (Chapter II) with 3.2 picomole GAL4-AD primer (1µl), 4µl of Term 

Ready Reaction Mix (Applied Byosystems) to a final volume of 20µl with dH2O. PCR 

conditions were as follow:  

96ºC 10sec  

50ºC 5sec         25 cycles 

60ºC 4min 

The PCR products were ethanol precipitated before being sequenced using an 

Applied Byosystems automated DNA sequencer, according to the manufacturer’s 

instructions, using Taq dye terminator cycle sequencing. A search for similar sequences in 

the Genbank database was performed using the BLAST algorithm (Altschul et al., 1997). 

 

III.2.3  Yeast colony hybridization 

 

 A nitrocellulose filter was placed on an agar plate containing the selective media 

(SD/QDO). Isolated yeast colonies were patched onto the filter and incubated overnight at 

30ºC. For each filter to be processed one piece of 3MM Whatman paper was cut, placed in 

a 150mm petri dish and soaked with 6 ml of freshly prepared SCE/DTT/Lyticase solution. 



Characterization of the PP1 Interactome from Human Testis Chapter III  
 

Centro de Biologia Celular 
Universidade de Aveiro 

97 

The filter was lifted from the growth medium and carefully placed, cell side up, onto the 

saturated paper, removing all air bubbles beneath the filter. The Petri dish containing the 

membrane was closed, placed into a plastic bag and incubated overnight at 30ºC. Then, a 

fresh sheet of plastic wrap was lined on the bench and pieces of 3MM Whatman paper 

were soaked with the solutions described below. 

1) 10% SDS, 5min 

2) 0.5N NaOH, 10min 

3) 200mM Tris(pH 7.5)/ 2X SSC, 5min (repeated 3X) 

The nitrocellulose filters were then placed on a 3 MM Whatman sheet to air dry for 1h and 

baked for 2h in a 80ºC vacuum oven between pieces of Whatman. Finally, they were stored 

between pieces of Whatman 3MM filter paper until being used for hybridization. Filter 

hybridization was performed using specific oligonucleotides.  

 Before use each oligonucleotide was 5’ end-labelled using T4 polynucleotide 

kinase (Roche) and [γ-32P] ATP (3000Ci/mmol, 10mCi/ml) from Amersham Pharmacia as 

follows: 30picomole (90µCi) of [γ-32P] ATP (9µl) were added to 37.5µl 60mM Tris.HCl 

(pH 7.8)/ 10mM MgCl2 / 14mM 2-mercaptoethanol containing 30picomole of 

oligonucleotide (10µl). The reaction was initiated by the addition of 15 units of T4 

polynucleotide kinase (1.5µl) and incubated for 30min at 37ºC. 2µl of 0.5M EDTA (pH 

8.0) were added to stop the reaction and the resulting labelled oligonucleotide was added 

directly to the pre-hybridization solution.  

 The baked nitrocellulose filters were wetted in dH2O and transferred to 3X SSC/ 

0.1% SDS/ 1mM EDTA at 45ºC for 15min. The cellular debris was removed from the 

membrane by gently rubbing with fingertips over a plastic sheet. The membranes were left 

in the same solution for another 15min with shaking. The procedure was repeated and the 

membranes transferred to a glass hybridization bottle containing approximately 0.1ml of 

prehybridization buffer per cm2 of membrane. Prehybridization was carried out 5 degrees 

below the Tm of the oligo for 4h to overnight in a rotary hybridization oven. The 

radiolabelled oligonucleotide was then added to a final concentration of 0.8pmol/ml and 

hybridization was performed at the same temperature for a minimum of 12h with constant 

shaking. At the end of the hybridization period the membrane was transferred to a plastic 

box containing 6X SSC prewarmed to the hybridization temperature. The membrane was 

washed with constant shaking for 15min and the wash solution was replaced and the 
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membrane washed for further 15min. A final wash was performed for 10min. Then, the 

membrane was removed from the solution, sealed in a plastic bag and autoradiographed 

overnight at –70ºC using a Kodak cassette and intensifying screens. Autoradiographs on X-

Omat S film were developed as described in Chapter II.    

 

III.2.4  Isolation of total RNA from mammalian tissues  

  

 The frozen tissues (~500mg) were placed into 9ml of Denaturing Solution 

(Promega kit Z5110), previously chilled on ice, and disrupted with a manual homogenizer. 

Then, 900µl 2M Sodium Acetate (pH 4.0) was added and mixed thoroughly by inverting 

the tube 4-5 times. After, the 9ml of Phenol: Chloroform: Isoamyl Alcohol was added to 

the tube. The tube was capped and the contents mixed by inverting the tube 3-5 times and 

then shaking vigorously for 10sec. The tube was chilled on ice for 15min and then, the 

mixture was transferred to DEPC-treated tube and centrifuged at 10,000g for 20min at 4ºC. 

The top aqueous phase, that contains the RNA, was carefully removed and transferred to a 

fresh DEPC-treated tube. An equal volume of isopropanol was added to the aqueous phase 

and incubated at –20ºC for 20min to precipitate the RNA. The RNA was then pelleted by 

centrifugation at 10,000g for 10min at 4ºC. The RNA pellet was resuspended in 5ml of 

Denaturing Solution and vortexed until the RNA was dissolved. An equal volume of 

isopropanol was added and the RNA was precipitated again by incubating at –20ºC for 

20min and centrifuging at 10,000g for 10min at 4ºC. The resulting pellet was washed by 

adding 10ml of 75% ethanol, resuspended by pipeting with a sterile, RNase-free tip and 

centrifuged at 10,000g for 10min at 4ºC. The pellet was air-dried, resuspended in 

Nuclease-Free Water and stored at –20ºC. 

 

III.2.5  Electrophoretic analysis of RNA 

 

An agarose gel was prepared by melting the appropriate amount of agarose in 

water, cooling it to 60ºC, and adding 5X formaldehyde gel-running buffer and 

formaldehyde to produce a final concentration of 1X and 2.2M, respectively. The gel was 

then cast in a chemical hood and allowed to set for 30min at room temperature. 
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 The RNA samples were prepared by mixing the following components in a sterile 

microtube: 

 - RNA (≈10µg)    4.5µl 

 - 5X formaldehyde gel-running buffer 2.0µl 

 - 17.5% formaldehyde   3.5µl 

 - 50% formamide    10.0µl 

The samples were incubated for 15 min at 65ºC, chilled on ice and centrifuged to 

deposit all of the fluid in the bottom of the tubes. 1µl of ethidium bromide (1mg/ml) and 

2µl of formaldehyde gel-loading buffer were added to the samples before electrophoresis. 

 Before applying the samples the gel was pre-run for 5 min at 5V/cm submerged in 

1X formaldehyde gel-running buffer. After loading the samples the gel was run at 3V/cm 

for 3h. the integrity of the RNA samples was checked by photographing the gel under UV 

illumination. 

 The gels that were transferred to nitrocellulose were not stained with ethidium 

bromide because it can reduce the efficiency of Northern hybridization. 

 

III.2.6  Northern blot analysis  

 

Probe isolation - The DNA to be labelled was cut with the appropriate restriction 

enzymes in order to release the appropriate fragment. Then the fragments were separated 

by electrophoresis on 1% low melting agarose. After staining the gel in ethidium bromide 

(0.2µg/ml) for 30min, the desired band was cut out of the gel and placed in a pre-weighted 

microtube. After, 3ml of dH2O were added per gram of gel slice and placed in a boiling 

water bath for 7 min. The sample was stored at –20ºC. Prior to using the DNA in a 

labelling reaction the DNA was denatured by boiling for 10 min and kept at 37ºC. 

 Labelling reaction - 25 ng of template DNA was dissolved in a final volume of 8µl 

dH2O and denatured in a boiling water bath for 10min. Then, the following components 

were added to the DNA: 4µl of High Prime reaction mixture (Roche) containing random 

primer mixture, Klenow polymerase and reaction buffer followed by 1µl of dATP, 1µl of 

dGTP and 1µl of dTTP and 5µl (50µCi) [α32P]dCTP (3000Ci/mmol). This mixture was 
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incubated for 1h at 37ºC. The reaction was stopped by adding 2µl 0.2M EDTA (pH 8.0) 

and heating at 65ºC for 10min. 

 Stratagene’s NucTrap probe purification columns were used to rapidly separate 

unincorporated nucleotides from the radiolabeled DNA, according to the manufacturer’s 

instructions.  

 Membrane hybridization - ExpressHyb Solution Clontech was warmed at 65ºC to 

completely dissolve any precipitate. The membrane, a Clontech rat Multiple Tissue 

Northern (MTN) membrane, was then prehybridized in 10ml of ExpressHyb Solution with 

continuous shaking at 68ºC for 2h. Meanwhile, the radioactively labelled DNA probe was 

denatured at 100ºC for 5min and chilled on ice. After, the probe was added to the 

prehybridized solution and the membrane was incubated overnight. 

 The blot was then rinsed at RT in solution I (2X SSC/ 0.05% SDS), 3 times for 

30min. Then, 2 washes with Solution I at 50ºC for 30min were performed. Finally, the blot 

was covered with plastic wrap and exposed for 1day in a K screen and visualised in a 

Phosphor Imager. 

 To remove the probe the blot was placed in 0.5% SDS at 90-100ºC for 10min with 

shaking. The solution was allowed to cool for 10min before removing the blot. Then the 

blot was slipped into a plastic bag and stored at –20ºC until needed. Complete removal of 

the probe was verified as described above prior to use. 

 

III.2.7  PCR (polymerase chain reaction) 
  

 Amplification reactions were performed according to the manufacturer’s 

instructions. Depending on the experiment, two different polymerases were used: Taq and 

Pfu (Promega). The latter is more accurate due to its proofreading capacity. Standard 

amplification reactions were performed in 0.2ml microtubes by adding10X reaction buffer, 

a mixture of the four dNTPs, two primers and the DNA template. 

The mixtures were heated for 5 min at 94ºC to denature the DNA completely. 

After, the DNA polymerase (1µl) was added to the reaction. Typical conditions used are 

indicated below in Table III.1: 
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Table III.1: Standard PCR conditions. 

Cycle Denaturation Annealing Polymerization 

First cycle 5 min, 94ºC 2 min at 50ºC 3 min at 72ºC 

24 cycles 1 min, 94ºC 2 min at 50ºC 3 min at 72ºC 

Last cycle 1 min, 94ºC 2 min at 50ºC 10 min at 72ºC 

The annealing temperature varied with the primers in the reaction.  

 

To verify the success of the PCR an aliquot was analysed by agarose gel 

electrophoresis. 

 

III.2.8  cDNA synthesis and RT-PCR  

  

cDNA synthesis - The control and experimental reactions were prepared by adding 

the following components to separate microtubes in order: 

5.9µl RNase-free water (not DEPC-treated water) 

1.0µl 10X StrataScript RT buffer (Strategene) 

 0.6µl oligo(dT) primer (100ng/ µl) 

1.0µl dNTP mix (40mM) 

 1.0µl RNA (100ng) or 1.0µl control mRNA 

Reactions were incubated at 65ºC for 5min and then cooled at RT for 5min to allow 

the primers to anneal to the RNA. After, 0.5µl of StrataScript Reverse Transcriptase 

(20U/µl) were added to each reaction. The tubes were incubated for 30min at 42ºC. At the 

end the completed first-strand cDNA synthesis reactions were placed on ice for subsequent 

use in the PCR amplification. The PCR conditions were as follows: 

95ºC, 5 min 

95ºC, 30 sec 

55ºC, 30 sec        25 cycles 

68ºC, 3 min 

All the resulting PCR products were sequenced to confirm the nucleotide sequence. 
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III.2.9  Overlay Blot 

 

The partial cDNAs obtained for Nek2 and Nek2-T were used to express the 

corresponding proteins in bacteria.  The purified protein samples were run on a SDS-

PAGE gel and transferred to a nitrocellulose membrane.  The membrane was then overlaid 

with purified PP1�2 protein (Watanabe et al., 2003) in TBST/BSA for 1h.  After washing 

with TBST to remove excess protein, the bound PP1�2 was detected by incubating the 

membrane with anti-PP1�2 antibody (1:1000 in 5% milk in TBST).  Immunoreactive 

bands were revealed by incubating with horseradish peroxidase conjugated secondary 

antibody (1:5000 in 5% milk in TBST) and developed by ECL (Amersham). 

 

III.3 RESULTS 
 

III.3.1 Preliminary analysis of the positive clones 

 

In order to identify the library insert present in a given positive clone, the plasmid 

DNA must first be isolated from yeast. Thus, a mixture of different plasmidic DNAs can 

be isolated from a single yeast clone: the bait plasmid (Figure III.1, lanes 3 or 4) and one, 

or more, library plasmids (Figure III.1, lane 6), because each yeast cell can incorporate 

more than one library plasmid. So, in order to obtain single plasmids and pure DNA for 

sequence analysis, the plasmid DNA isolated from yeast cells was used to transform E. coli 

XL1-Blue. The plasmid DNA obtained from the resulting transformants was further 

analysed by restriction digestion with endonuclease HindIII. The restriction fragments 

were then separated by agarose gel electrophoresis. Figure III.1 exemplifies a typical result 

obtained after this procedure:  
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Figure III.1: HindIII restriction analysis of yeast 

two hybrid plasmids. Lanes 1and 7, 1Kb ladder 

marker; Lane 2, pAS2-1 vector (4.6+2.2+0.9Kb); 

Lane 3, pASPP1�1 bait plasmid (4.6+2.2+1.7+0.9 

Kb); Lane 4; pASPP1�2 bait plasmid 

(4.6+2.2+1.5+0.9+0.3Kb); Lane 5, pACT-2 vector 

(7.4+0.7Kb); Lane 6, pACT-2+library insert 

(7.4+(0.7+ ~1.5 insert)Kb). 

  

 The same strategy was followed for each positive clone. After identifying 

transformants carrying the cDNA library plasmids, their respective inserts were sequenced 

with the GAL4-AD primer (Appendix II). Figure III.2 is a representative example obtained 

with one of the positive clones: 

 
Figure III.2: Nucleotide sequence of the positive clone 48. 

  

The nucleotide sequence of each clone was then converted to FASTA format (Fig. 

III.3). In this format, in the first line the signal > precedes a name or additional information 

on the sequence and the sequence itself starts on the second line.  

 

 

1   2    3   4    5    6   7

3
2

1

kb1   2    3   4    5    6   7

3
2

1

kb
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Figure III.3: Sequence of clone 48 in the FASTA format.  

 

Then, the GenBank sequence was copied to the BLAST window (Fig. III.4A) to be 

compared with the GenBank Database of nucleotide sequences. Figure III.4B shows a 

representative example of the results obtained. 

 
 

Figure III.4: A, Blast window to introduce the query sequence; B, Blast results. 

  

The identity of the positive clones identified was thus obtained. After identifying 

around 30 positive clones from both screens, a large number was identified as a known 

PP1 regulator, named Nek2 by Cohen and coworkers (Helps et al., 2000). Therefore, in 

order to reduce the number of clones that needed to be sequenced, all positives resulting 

from both screens (YTH1 and YTH2) were subjected to colony hybridization using 

appropriate oligonucleotides. 

 

 

>48 seq chrom sequence exported from chromatogram file (I2like) 
CTCTGCTGTGCCGACCCTTCTCTTCGCGGACCCCACGCCAAGCAGCGACCCTGAGGCG
ACAGCCGGAGCGCCCGGCAATGGCGGCCTCGACGGCCTCCCACCGGCCCATCAAGGG
GATCTTGAAGAACAAGACCTCTACGACTTCCTCTATGGTGGCGTCGGCNNANCACCCCA
NNCCGANTGTNTANAAAANNCTTNANCAAAAATTCCATAANTGCGNATGAAANTNANNTC
TTGGNCNTCCNAANNTCCANANCAANAAGGCNTTGNGTNANTGANAATANATNACCNAC
CCTTCNTACCATAAAATNNATGGTGANNTTNANATCCNTNTNCGGCCTTGNCNNCCTTGN
AACATGGGNCTNAANTCNANTCATAATTTNNNCTNTTCCGCTTGANACCCANCNNCNNTC
NCNATNNCTCCCTNNNGANTCANNNNNAANNTTNCNTNAANACAAAAAATACGACATNTN
CAAANNGTACNTTACTNNGGNGANNANNNNTNNTNCNAATATATNTTANGCATCANNCCA
NANTNATNGTTTTCCTANGGNANTANCACNNAATTCNCGGTCTNTTNCTCCNAAANACNN
NNTNACAATTNNCACNACTACNAAANNNTNNNTATCGCTCATCACTANAATCACANNNCT
NGCAACGGNATTAATNANCNTGTNATCACGNTNACGGCATTTGGTGNGTAGTTGCAAAT
CNCTNCNNCACTTCNNCNNNACACCNNACTTACTANNG 
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III.3.2  Yeast Colony hybridization analysis 

 

Yeast colony hybridization is an efficient way to screen a large collection of library 

transformants for the presence of an abundant cDNA insert. Transformants carrying the 

same or overlapping library plasmid can be easily identified.  

To quickly identify putative positive Nek2 clones among the large number of 

transformants obtained, a Nek2 specific oligonucleotide (OLIGONEK, Appendix II) was 

radiolabeled with 32P-ATP and hybridised to the full collection of yeast positive colonies 

arrayed in nitrocellulose membranes. The results obtained are shown bellow in Fig. III.5 

and summarized in Table III.2: 

 

  

A)          B) 

Figure III.5: Identification of putative Nek2 positives by colony hybridization: A) YTH1, B) YTH2. 

 

Table III.2: Putative positive clones coding for Nek2. 

YTH1 
1Q, 8Q, 33Q, 44Q, 45Q, 49Q, 53Q, 12T, 13T, 60T, 155T, 208T, 210T, 

212T, 226T, 227T, 229T, 233T, 236T, 240T, 246T, 252T, 255T, 260T 

YTH2 
21, 239, 244, 261, 263, 264, 265, 269, 270, 272, 289, 291, 294, 296, 2123, 

2146, 2147, 2159, 2160, 2204, 2220, 2235, 2254, 2263, 2269, 2283 

 

This approach allowed the identification of several different clones in a short period 

of time, not only for Nek2 but also for other abundant positives. Such positives were set 

aside until all the others were sequenced. 
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III.3.3  Identification of the positive clones 

 

Of the 120 positives identified in YTH1 and 155 positives identified in YTH2, 114 

and 153, respectively, were recovered and definitively identified by partial or full DNA 

sequence analysis. The results obtained are summarized in Table III.3: 
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Table III.3: Complete list of positives. 

Clone ID YTH1 YTH2 PP1 BM chr Data base ID Insert Nº 
positives

Nek2A

7Q,8Q,30Q,31Q,36Q, 
37Q,44Q,45Q,53Q, 

57Q,4T,13T,60T,113T, 
227T,236T,240TC,246T, 

251T,252T,254TB,254TC, 
257T,259TB,260T,261TB, 

302T,311T,316T

21,24,25,212,225,226,239,244, 
262,263,264,265,270,272,278, 

284,289,291,294,296,2101,2104, 
2109,2123,2140,2141,2142A,2144, 
2146,2147D,2151,2152,2153,2158, 
2159,2160,2163,2165,2168,2174, 
2175,2176,2186,2187,2198,2204, 
2209,2210,2215,2220,2234,2247, 
2248,2252,2254,2258,2261,2263, 

2267,2269,2276,2278,2283,2326 2329

KVHF 1 NM_002497 1170(3Q2) 94

Nek2A-T

3Q,5Q,12Q,13Q,17Q,20Q, 
26Q,27Q,49Q,55QB,12T, 
13TA,155T,208T,229T, 

256T,303T,304TB

26,215,218,232,268,269 KVHF 1 NM_002497 1340(25) 24

PPP1R15B 39Q,48QA
214,229,245,260,266,275,276, 
2110,2138,2142C,2147A,2192, 

2226,2227,2271,2272,2308
KVTF 1 NM_032833 2331(275) 19

PPP1R13B (WRF) 
ASPP1 

47Q,48QB,29T,36T,37T, 
43T,101T,137T,223T

2178,2229 RVRF 14 NM_015316 �2500 11

KPI-2 46Q,58Q,39T,201T,254TA VTF 7 NM_014916 �1900 5

PPP1R13A (WRF) 
ASPP2

129T,153T 2189 RVKF 1 NM_005426 �2500 (2200) 3

PPP1R8-T               
NIPP1-T           

273 RVTF 1 NM_138558 710(273) 1

C1QA (WRF) 216,217,287,2155,2223,2231, 2259,2277 RSLGF KGLF 1 NM_015991 540(217) 8

ZAP3 42T,214T,255T KEVEF 14 XM_085151 �1700 3

DAPPER 1 2183 KILRF 14 NM_016651 �1100 1

RANBP2-like 20T KQLF/RGVIF 10 Gi:30146988 �400 1

JAK2 kinase 33T after stop 9 Gi:3068751 �1200 1

RANBPM 2232 RMIHF 6 AB055311 �2800 1

PPP1R2 -L(WRF)           
I2-L 

48T KLHY 5 XM_018216 �400 1

AXUD1 261
KRKF/RVAF/ 
RILSF/RVEF

3 NM_033027 �1100 1

FLJ35803
1Q,9Q,41Q,50,55,120T,125T,12
7T,133T,135T,212T,233T,245T,

258T
22,220,247,253,285,2133,2143, 2145,2239 RVRF 9 AK093122 �1000 23

DKFZp434D193 
(WRF)

32Q,55QA,31T,58T,62T, 
144T,146T,157T,210T, 244TC

2164,2179,2194A,2202,2205,2216,2218A,2250,2
324,2325,2327

RVSF 2 XM_114297 �2500 19

KIAA1949
4Q,29Q,33Q,34Q,35Q,22T,27T,3

2T,141T
213,2238C KISF 6 XM_166376 1269 (4Q1) 11

FLJ90254 (WRF) 143T,162T,224T,249T KISF 9 RP11-350014 �2300 4

MGC22793 131T 2161,2162,2305 RQVRF 7 NM_145030 �900 4

MGC35144 152T 2124,2149,2150,2332 KTVRF 5 Gi21595061 �300 4

IMAGE5581122 240TB,259TC MIT Gi:22028276 �1300 2

FLJ32766                  
(testis clone)

271,2188 absent 2 AK057328 �1800 2

LOC51315 (WRF) 2211,2217 after stop 2 NM_016618 117 2

DKFZp434N0650 
(WRF)

280 KVCF 21 NM_032261 �900 1

FLJ11904 244TA absent/short peptide 18 AK021966                �1300 1

FLJ14069 261TC RVTF 17 AK024131 �3000 1

FLJ20373 2257 RVHF 17 BC045694 �1100 1

LOC388135         
(WRF)

219T RVRF 15 XM_301534 �1200 1

SARP 40Q KVHF 11 AK095193 2416 1

FLJ32771 2307 KVHF 11 NP_659454 �1500 1

MGC16664 (WRF) 156T absent 1 NM_173509 �2100 1

FLJ39908 (part of) 298 absent 1 NM_144569 �3850 1

FLJ32001 279 RVRF 1 NM_152609 �3700 1

RP11-114H24 161TA,161TC,220T,228T 2218B,2236,2237,2268,2285,  2287 RVWW 15 Gi27545119 161 10

RP11-383C5 2194B,2235,2255 KVRF 10 Gi:16416159 �200 3

RP11-282K6 231,2224,2275B absent 1 Gi21954023 �800 3

RP11-13J14 244TB,304TA absent/short peptide 1 AL596217 �900 2

CTD-2036P10 121T RVSF 15 Gi:18249987 �2400 1

RP11-77G23 20 KVTF 10 Gi:20334535 1

RP11-792D24 2296 RVRF 10 Gi:20177216 �800 1

RP13-39P12 2238A 10 Gi:026953 �2300 1

RP11-405I21 240TA absent 7 Gi:18042433 �800 1

RP1-223E5 305T KFVSF 6 Gi:11830787 �1400 1

RP11-294018 2100 absent 3 Gi:22657521 437 1

RP11-84A19 219 absent 1 Gi:28467537 �3200 1  
WRF (wrong reading frame) when shown indicates that the reading frame of the isolated clone 

differs from that of the identified protein. The occurrence of a consensus PP1 binding motif (PP1 

BM) is indicated by the corresponding sequence.The size of the inserts is indicated in base pairs. 
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The identified clones were divided in four groups: proteins already known to be 

PP1 regulators (in purple), proteins known in other contexts (in yellow), proteins of 

unknown function present in the database (in blue) and clones present in the database only 

at the genomic level (in orange). All clones were subject to the same analysis: they were 

partially or completely sequenced, special features of the amino acid sequence were 

searched using Motif search databases and the amino acid sequence was searched for a 

consensus PP1 binding motif ([K/R]-X0-1-[V/I/L]-X-[F/W]). The existence of ESTs 

(expressed sequence tags) was also ascertained by database searching. Inasmuch as several 

positives corresponded to independent hits on the same protein, the PP1 interactomes 

comprised 28 and 29 different proteins for the YTH1 and the YTH2, respectively.  

Interestingly, the most abundant interactions detected for both PP1 isoforms were with the 

same kinase.  Thus, 47 positives out of the 120 detected with PP1�1 and 71 positives out of 

the 155 detected with PP1�2 encoded Nek2A (Table III.3).  Another abundant interaction 

detected with PP1�2 (17 positives) was with a protein identified only as R15B in the 

GenBank database.  It was thus named since it shares a region of homology with R15A 

(also known as GADD34).  Only 2 positives were obtained for R15B with PP1�1. The next 

known PP1 binder more abundant was PPP1R13B. For the YTH1 9 clones were isolated 

while for the YTH2 only 2 clones were obtained. Also, 3 clones were obtained for a related 

protein, PPP1R13A, 2 with PP1�1 as bait and 1 with PP1�2. KPI-2, a recently identified 

PP1 inhibitor, was also isolated in the YTH1 in five independent clones. Finally, 1 positive 

coding for NIPP-1 was isolated as a PP1�2 binding protein.  

 Some of the positives identified were analyzed more thoroughly: Nek2A-T, NIPP1-

T, R15B, I2-L, KIAA1949, and SEARP. These will be further discussed below (SEARP 

will be addressed in Chapter IV). 

 

III.3.4  Nek2 (NIMA- related kinase 2)  

 

Nek2  is a protein kinase that localizes to the centrosomes throughout the cell cycle 

(Fry et al., 1998b) and regulates their structure during the G2/M transition.  It is known 

that Nek2 interacts with PP1, that dephosphorylates Nek2 itself and other Nek2 substrates 
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(Helps et al., 2000). Surprisingly, Nek2 was the most abundant interacting protein 

identified in both screens (47 and 71 positives respectively). 

By completely sequencing the Nek2 clones with the primers GAL4-AD, 

OLIGONEK, OLIGONEK2, OLIGONEK3 and Amplimer 3’ (Appendix 4), it was 

discovered that two differently spliced isoforms of Nek2 had been identified. One of the 

isoforms was identical to the previously reported sequence (Fig. III.6) (Helps et al., 2000). 

For this isoform several independent clones were obtained (Table III.4) whereas for the 

novel spliced isoform only two independent clones were isolated. 

 

Table III.4: Independent Nek2 and Nek2-N clones in the YTH1 and YTH2. 

5' Sequence First nt YTH1 YTH2

ACGAGTTTTG 642 296

CCTGAACAAA 687 24TC 294

ATGAATCGCA 696
225,226,2158,2159,2163, 

2258,2263

GCTTTTAGCC 786 227T,236T 291,2101,2151

ATTCAGGCGA 830
239,2104,2140,2141,2142A,  
2144,2147,2152, 2153,2254

TCTGATGAAT 855 289, 2123

GAATTGAATG 861 113T

CCATCGACCT 905 13

CATCGACCTT 906 212,262,2146,2269,2326

GCAGATTTGG 948 265

GAGCAAAGAA 966

44Q,45Q,57Q,4T,246T, 
251T,252T,254T,254TC, 

257T,259TB,260T,261TB, 
302T,311T,316T

21,244,263,272,278,2109, 
2165,2168,2175,2186,2187, 
2198,2204,2209,2210,2215, 
2234,2248,2261,2267,2276, 

2278,2283 

GAGAGAAGAG 984 7Q,8Q,31Q,36Q,37Q

GAAAAATCGC 1014 30Q, 53Q
24,25,270,284,2160,2174, 

2176

TTTACAGCTT 780
3Q,5Q,12Q,13Q,20Q,27Q, 

55QB,12T,229T,303T, 304TB 26, 215, 218, 232, 268, 269

CAGGATTCCA 1023
17Q,26Q,49Q,136TA,155T, 

208T,256T N
ek

2A
-T

N
ek

2A

 

 

The novel, alternatively spliced isoform was termed Nek2A-T and missed 24 

nucleotides, corresponding to amino acids 371 to 378, that we called phosphorylatable 
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domain (PD) (in red in Fig. III.6 and Fig. III.7). From all clones from the YTH1 and 

YTH2, 47 and 71 coded for Nek2A/Nek2A-T, respectively. By sequencing all the Nek 

clones we could state that 94 were Nek2A and 24 were Nek2A-T (Table III.4).  
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1  ggcacgagtaggggtggcgggtcagtgctgctcgggggcttctccatccaggtccctggagt 
63   tcctggtccctggagctccgcacttggcgcgcaacctgcgtgaggcagcgcgactctggc 
123  gactggccggccatgccttcccgggctgaggactatgaagtgttgtacaccattggcaca 
1                 M  P  S  R  A  E  D  Y  E  V  L  Y  T  I  G  T   
183  ggctcctacggccgctgccagaagatccggaggaagagtgatggcaagatattagtttgg 
17    G  S  Y  G  R  C  Q  K  I  R  R  K  S  D  G  K  I  L  V  W 
243  aaagaacttgactatggctccatgacagaagctgagaaacagatgcttgtttctgaagtg 
37    K  E  L  D  Y  G  S  M  T  E  A  E  K  Q  M  L  V  S  E  V 
303  aatttgcttcgtgaactgaaacatccaaacatcgttcgttactatgatcggattattgac 
57    N  L  L  R  E  L  K  H  P  N  I  V  R  Y  Y  D  R  I  I  D 
363  cggaccaatacaacactgtacattgtaatggaatattgtgaaggaggggatctggctagt 
77    R  T  N  T  T  L  Y  I  V  M  E  Y  C  E  G  G  D  L  A  S 
423  gtaattacaaagggaaccaaggaaaggcaatacttagatgaagagtttgttcttcgagtg 
97    V  I  T  K  G  T  K  E  R  Q  Y  L  D  E  E  F  V  L  R  V 
483  atgactcagttgactctggccctgaaggaatgccacagacgaagtgatggtggtcatacc 
117   M  T  Q  L  T  L  A  L  K  E  C  H  R  R  S  D  G  G  H  T 
543  gtattgcatcgggatcttaaaccagccaatgttttcctggatggcaagcaaaacgtcaag 
137   V  L  H  R  D  L  K  P  A  N  V  F  L  D  G  K  Q  N  V  K 
603  cttggagactttgggctagctagaatattaaaccatgacacgagttttgcaaaaacattt 
157   L  G  D  F  G  L  A  R  I  L  N  H  D  T  S  F  A  K  T  F 
663  gttggcacaccttattacatgtctcctgaacaaatgaatcgcatgtcctacaatgagaaa 
177   V  G  T  P  Y  Y  M  S  P  E  Q  M  N  R  M  S  Y  N  E  K 
723  tcagatatctggtcattgggctgcttgctgtatgagttatgtgcattaatgcctccattt 
197   S  D  I  W  S  L  G  C  L  L  Y  E  L  C  A  L  M  P  P  F 
783  acagcttttagccagaaagaactcgctgggaaaatcagagaaggcaaattcaggcgaatt 
217   T  A  F  S  Q  K  E  L  A  G  K  I  R  E  G  K  F  R  R  I 
843  ccataccgttactctgatgaattgaatgaaattattacgaggatgttaaacttaaaggat 
237   P  Y  R  Y  S  D  E  L  N  E  I  I  T  R  M  L  N  L  K  D 
903  taccatcgaccttctgttgaagaaattcttgagaaccctttaatagcagatttggttgca 
257   Y  H  R  P  S  V  E  E  I  L  E  N  P  L  I  A  D  L  V  A 
963  gacgagcaaagaagaaatcttgagagaagagggcgacaattaggagagccagaaaaatcg 
277   D  E  Q  R  R  N  L  E  R  R  G  R  Q  L  G  E  P  E  K  S 
1023 caggattccagccctgtattgagtgagctgaaactgaaggaaattcagttacaggagcga 
297   Q  D  S  S  P  V  L  S  E  L  K  L  K  E  I  Q  L  Q  E  R 
1083 gagcgagctctcaaagcaagagaagaaagattggagcagaaagaacaggagctttgtgtt 
317   E  R  A  L  K  A  R  E  E  R  L  E  Q  K  E  Q  E  L  C  V 
1143 cgtgagagactagcagaggacaaactggctagagcagaaaatctgttgaagaactacagc 
337   R  E  R  L  A  E  D  K  L  A  R  A  E  N  L  L  K  N  Y  S 
1203 ttgctaaaggaacggaagttcctgtctctggcaagtaatccagaacttcttaatcttcca 
357   L  L  K  E  R  K  F  L  S  L  A  S  N  P  E  L  L  N  L  P 
1263 tcctcagtaattaagaagaaagttcatttcagtggggaaagtaaagagaacatcatgagg 
377   S  S  V  I  K  K  K  V  H  F  S  G  E  S  K  E  N  I  M  R 
1323 agtgagaattctgagagtcagctcacatctaagtccaagtgcaaggacctgaagaaaagg 
397   S  E  N  S  E  S  Q  L  T  S  K  S  K  C  K  D  L  K  K  R 
1383 cttcacgctgcccagctgcgggctcaagccctgtcagatattgagaaaaattaccaactg 
417   L  H  A  A  Q  L  R  A  Q  A  L  S  D  I  E  K  N  Y  Q  L 
1443 aaaagcagacagatcctgggcatgcgctagccaggtagagagacacagagctgtgtacag 
437   K  S  R  Q  I  L  G  M  R  * 
1503 gatgtaatattaccaacctttaaagactgatattcaaatgctgtagtgttgaatacttgg 
1563 ccccatgagccatgcctttctgtatagtacacatgatatttcggaattggttttactgtt 
1623 cttcagcaactattgtacaaaatgttcacatttaatttttctttcttcttttaagaacat 
1683 attataaaaagaatactttcttggttgggcttttaatcctgtgtgtgattactagtagga 
1743 acatgagatgtgacattctaaatcttgggagaaaaaataatattaggaaaaaaatattta 
1803 tgcaggaagagtagcactcactgaatagttttaaatgactgagtggtatgcttacaattg 
1863 tcatgtctagatttaaattttaagtctgagattttaaatgtttttgagcttagaaaaccc 
1923 agttagatgcaatttggtcattaataccatgacatcttgcttataaatattccattgctc 
1983 tgtagttcaaatctgttagctttgtgaaaattcatcactgtgatgtttgtattctttttt 
2043 tttttctgtttaacagaatatgagctgtctgtcatttacctacttctttcccactaaata 
2103 aaagaattcttcagtta(tccctgtt) 

Figure III.6: Sequence of Nek2 (NM_240097). The Nek2A-T clone that we have used for further 

study was the 3Q clone that starts at the nucleotide 780. This clone has an extra 8 nucleotides (in 

blue) after the polyadenylation signal (underlined) and misses the 24 nucleotides that characterize 

this new alternatively spliced isoform (in red, phosphorylatable domain). The PP1 binding motif 

(KVHF) is indicated in green. 
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Another spliced variant of Nek2 exists derived by the use of alternative 

polyadenylation signals (Hames and Fry, 2002). The two isoforms were called Nek2A and 

Nek2B. Although both isoforms localize to centrosomes, only Nek2A can induce 

centrosome splitting upon overexpression. 

Besides the PP1 binding motif, amino acid sequence analysis of Nek2A identified 

the protein kinase domain (residues 8-271) and the protein kinase Serine/Threonine active 

site (residues 137-149), an interesting putative leucine-zipper domain (306-327) and a 

couple of serines whose phosphorylation may be very important for Nek2 function (Fig. 

III.7). Removal of the phosphorylatable domain (PD) leads to the appearance of a new 

nuclear targeting motif (residues 361-377). 
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Figure III.7: (A) Genomic structure of the Nek2 gene, showing the exon-intron organization (not 

to scale).  The 8 amino acid sequence corresponding to the phosphorylatable domain (PD) that is 

specifically spliced out in the testis (exon 8) is shown.  The two phosphorylated serines are shown 

enlarged. (B) Schematic representation of the encoded domain of the Nek2 protein. Amino acids 

missing in Nek2A-T are indicated by the PD box and the PP1 consensus binding motifs by the BD 

box (not drawn to scale).  The numbers denote the exact amino acid localization of the various 

domains. 

 

 The Nek2 gene maps to human chromosome 1 (Hames and Fry, 2002). By aligning 

the Nek2 cDNA with the corresponding genomic sequence the intron-exon boundaries can 
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be identified (Fig. III.7, III.8 and Table III.5). Nek2 is encoded by 8 exons spread over 

13Kb on chromosome 1. The novel alternative splice identified occurs in exon 8. 

 
ggcacgagtaggggtggcgggtcagtgctgctcgggggcttctccatccaggtccctgga 
gttcctggtccctggagctccgcacttggcgcgcaacctgcgtgaggcagcgcgactctg 
gcgactggcc ggcc 
atgccttcccgggctgaggactatgaagtgttgtacaccattggcacaggctcctacggc 
 M  P  S  R  A  E  D  Y  E  V  L  Y  T  I  G  T  G  S  Y  G  
cgctgccagaagatccggaggaagagtgatggcaagatattagtttggaaagaacttgac 
 R  C  Q  K  I  R  R  K  S  D  G  K  I  L  V  W  K  E  L  D  
tatggctccatgacagaagctgagaaacagatgcttgtttctgaagtgaatttgcttcgt 
 Y  G  S  M  T  E  A  E  K  Q  M  L  V  S  E  V  N  L  L  R  
gaactgaaacatccaaacatcgttcgttactatgatcggattattgaccggaccaataca 
 E  L  K  H  P  N  I  V  R  Y  Y  D  R  I  I  D  R  T  N  T  
acactgtacattgtaatggaatattgtgaaggaggggatctggctagtgtaattacaaag 
 T  L  Y  I  V  M  E  Y  C  E  G  G  D  L  A  S  V  I  T  K  
ggaaccaaggaaaggcaatacttagatgaagagtttgttcttcgagtgatgactcagttg 
 G  T  K  E  R  Q  Y  L  D  E  E  F  V  L  R  V  M  T  Q  L  
actctggccctgaaggaatgccacagacgaagtgatggtggtcataccgtattgcatcgg 
 T  L  A  L  K  E  C  H  R  R  S  D  G  G  H  T  V  L  H  R  
gatcttaaaccagccaatgttttcctggatggcaagcaaaacgtcaagcttggagacttt 
 D  L  K  P  A  N  V  F  L  D  G  K  Q  N  V  K  L  G  D  F  
gggctagctagaatattaaaccatgacacgagttttgcaaaaacatttgttggcacacct 
 G  L  A  R  I  L  N  H  D  T  S  F  A  K  T  F  V  G  T  P  
tattacatgtctcctgaacaaatgaatcgcatgtcctacaatgagaaatcagatatctgg 
 Y  Y  M  S  P  E  Q  M  N  R  M  S  Y  N  E  K  S  D  I  W  
tcattgggctgcttgctgtatgagttatgtgcattaatgcctccatttacagcttttagc 
 S  L  G  C  L  L  Y  E  L  C  A  L  M  P  P  F  T  A  F  S  
cagaaagaactcgctgggaaaatcagagaaggcaaattcaggcgaattccataccgttac 
 Q  K  E  L  A  G  K  I  R  E  G  K  F  R  R  I  P  Y  R  Y  
tctgatgaattgaatgaaattattacgaggatgttaaacttaaaggattaccatcgacct 
 S  D  E  L  N  E  I  I  T  R  M  L  N  L  K  D  Y  H  R  P  
tctgttgaagaaattcttgagaaccctttaatagcagatttggttgcagacgagcaaaga 
 S  V  E  E  I  L  E  N  P  L  I  A  D  L  V  A  D  E  Q  R  
agaaatcttgagagaagagggcgacaattaggagagccagaaaaatcgcaggattccagc 
 R  N  L  E  R  R  G  R  Q  L  G  E  P  E  K  S  Q  D  S  S  
cctgtattgagtgagctgaaactgaaggaaattcagttacaggagcgagagcgagctctc 
 P  V  L  S  E  L  K  L  K  E  I  Q  L  Q  E  R  E  R  A  L  
aaagcaagagaagaaagattggagcagaaagaacaggagctttgtgttcgtgagagacta 
 K  A  R  E  E  R  L  E  Q  K  E  Q  E  L  C  V  R  E  R  L  
gcagaggacaaactggctagagcagaaaatctgttgaagaactacagcttgctaaaggaa 
 A  E  D  K  L  A  R  A  E  N  L  L  K  N  Y  S  L  L  K  E  
cggaagttcctgtctctggcaagtaatccagaacttcttaatcttccatcctcagtaatt 
 R  K  F  L  S  L  A  S  N  P  E  L  L  N  L  P  S  S  V  I  
aagaagaaagttcatttcagtggggaaagtaaagagaacatcatgaggagtgagaattct 
 K  K  K  V  H  F  S  G  E  S  K  E  N  I  M  R  S  E  N  S  
gagagtcagctcacatctaagtccaagtgcaaggacctgaagaaaaggcttcacgctgcc 
 E  S  Q  L  T  S  K  S  K  C  K  D  L  K  K  R  L  H  A  A  
cagctgcgggctcaagccctgtcagatattgagaaaaattaccaactgaaaagcagacag 
 Q  L  R  A  Q  A  L  S  D  I  E  K  N  Y  Q  L  K  S  R  Q  
atcctgggcatgcgctagccaggtagagagacacagagctgtgtacaggatgtaatatta 
 I  L  G  M  R  *    
ccaacctttaaagactgatattcaaatgctgtagtgttgaatacttggccccatgagcca    
tgcctttctgtatagtacacatgatatttcggaattggttttactgttcttcagcaacta  
ttgtacaaaatgttcacatttaatttttctttcttcttttaagaacatattataaaaaga 
atactttcttggttgggcttttaatcctgtgtgtgattactagtaggaacatgagatgtg 
acattctaaatcttgggagaaaaaataatattaggaaaaaaatatttatgcaggaagagt  
agcactcactgaatagttttaaatgactgagtggtatgcttacaattgtcatgtctagat  
ttaaattttaagtctgagattttaaatgtttttgagcttagaaaacccagttagatgcaa   
tttggtcattaataccatgacatcttgcttataaatattccattgctctgtagttcaaat  
ctgttagctttgtgaaaattcatcactgtgatgtttgtattctttttttttttctgttta   
acagaatatgagctgtctgtcatttacctacttctttcccactaaataaaagaattcttc 
agtta 

Figure III.8: The exon-intron boundaries of Nek2 are indicated by the different colours in the 

cDNA sequence. The alternatively spliced sequence missing from Nek2A-T is indicated in grey. 
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Table III.5 describes the exon-intron boundaries of Nek2A-T showing in bold the 

canonical 3’ splice acceptor and the 5’ splice donor.   

 

Table III.5: Exon-intron boundaries of Nek2A-T. The canonical exon-intron boundaries sequences 

are in bold. 

INTRON 

3’ splice acceptor 

 EXON 

No. 

 

5’ splice donor 

INTRON 

YNCURACYNNAG G  AG                             GUAAGU 

 GGCACG 1 GGCAAG GTGAGC 

TTCTTATTTCAG ATATTA 2 GGAAAG GTAAGC 

CTTTGGTTTTAG GCAATA 3 TCTCCT GTAAGT 

TTCCCTGTATAG GAACAA 4 ATTAAT GTAAGT 

TTTTAACCCTAG GCCTCC 5 TTAAAG GTAAAG 

TTTTTTCCCCAG GATTAC 6 TGGAGC GTAAGT 

CTCTTTTTAAAG AGAAAG 7 ATCCAG GTATGA 

TTCCTTCTAAAG TAATTA 8A   

� �

 The isolation of two independent Nek2A-T cDNAs from the library used indicated 

that this novel isoform was unlikely to be the result of an artifact. However, in order to 

ascertain the occurrence of the corresponding mRNA in human testis, RT-PCR was 

performed using appropriate oligonucleotide primers. Using mRNA from human testis as 

template and two different sets of primers, OLIGONEK/OLIGONEK2 and 

OLIGONEK/OLIGONEK3 (Appendix II), DNA fragments of 224nt (Nek2A-T) and 238nt 

(Nek2A) were obtained (Fig. III.9). DNA sequence analysis of the Nek2A-T product 

confirmed the alternatively spliced sequence (data not shown). 
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Figure III.9: RT-PCR analysis of Nek2 expression in human testis using isoform-specific primers. 

A) Alignment of the amino acid and nucleotide sequences of Nek2A and Nek2A-T. The arrows 

indicate the specific oligonucleotide primers used. B) Agarose gel electrophoretic analysis of RT-

PCR products obtained from human testis using the indicated primers.  

 

 The expression of Nek2 in different tissues was analysed by Northern blot 

hybridization using a Rat Multiple Tissue Northern (MTN) Blot and the cDNA from clone 

3Q as probe (Fig. III.10): 

        

He      Br      Sp     Lu     Li      M       Ki Te

Nek2

�-Actin

3.2kb

2.1kb

1.6kb

He      Br      Sp     Lu     Li      M       Ki Te

Nek2

�-Actin

3.2kb

2.1kb

1.6kb

He      Br      Sp     Lu     Li      M       Ki Te

Nek2

�-Actin

3.2kb

2.1kb

1.6kb

 
Figure III.10: Northern blot analysis of different rat tissues.He, heart; Br, brain; Sp, spleen; Lu, 

lung; Li, liver; M, skeletal muscle; K, kidney; Te, testis.  

 

 Nek2 expression was only detected in testis, where a single transcript of 3.2kb 

hybridized with the probe used (Fig. III.10, top panel). As a control the same blot was also 

hybridized with β-actin probe (Fig. III.10, lower panel). Densitometry analysis of both 

blots allowed for correction of Nek2 expression in terms of the �-actin 2.1kb band (muscle 

was excluded from this analysis due to the absence of the �-actin species). The results 

obtained are summarized in Table III.6: 
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Table III.6: Relative abundance of Nek2 mRNA. 

Tissue Heart Brain Spleen Lung Liver Kidney Testis 

Nek mRNA 2 0 2 0 0 0 100 

The value for testis was set at 100 and other tissues are expressed in relative terms. 

 

 In order to confirm the interaction of Nek2A and Nek2A-T with PP1�1 and PP1�2, 

blot overlay analysis was performed. For this purpose, the cDNAs of clones 25 and 3Q, 

respectively, were used to express the corresponding N-terminally truncated proteins (work 

performed in our laboratory by Wu Wenjuan). The proteins were separated by SDS-PAGE 

gel, transferred to nitrocellulose and the membrane was incubated with PP1�2 (also 

purified by Wu Wenjuan). Then, the membrane was immunobloted with Anti-PP1�2 and 

developed by ECL (Fig. III.11). 

                      

Nek2A
(25)

Nek2A-T
(3Q)

31kDa

24kDa

Nek2A
(25)

Nek2A-T
(3Q)

31kDa

24kDa
 

Figure III.11: Overlay assay of Nek2 A and Nek2A-T The size of the proteins detected corresponds 

to the calculated molecular weights of the proteins encoded by the partial cDNAs used (25 and 3Q, 

respectively). 

 

Additionally, sequential transformation of yeast with the bait and the prey was 

performed in order to confirm the YTH interaction (Fig. III.12): 
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Nek2A-T
(3Q)

PP1�1                           PP1�2                     PP1�2end

Nek2A
(25)

Nek2A-T
(3Q)

PP1�1                           PP1�2                     PP1�2end

Nek2A
(25)

 
Figure III.12: Sequential transformation of yeast AH109 a bait plasmid (either pAS2PP1�1,or  

pAS2PP1�2 or  pAS2PP1�2end) and the prey plasmid (pACT2-3Q, or pACT2-25). 

 

 The results indicate that both Nek2A and Nek2A-T interact with PP1�1 and PP1�2. 

They also appear to interact with the PP1�2 C-terminal, although the interaction is weaker 

since the blue colour takes longer to develop. This was expected since the C-terminal PP1 

peptide expressed did include the sequence thought to be responsible for binding to the 

consensus binding motifs in other proteins. 

 

III.3.5  NIPP1-T (Nuclear Inhibitor of Protein Phosphatase 1 in Testis) 

 

NIPP1 (Beullens et al., 1992) is a 38.5kDa nuclear inhibitor of PP1 that is 

ubiquitously expressed in multicellular eukaryotes (Ceulemans et al., 2002). Biochemical 

analysis of NIPP1 indicates that it is composed of several functional domains. The basic 

NH2-terminal domain contains a forkhead associated domain (FHA). The acidic central 

third, expressed in bacteria, is a potent inhibitor of PP1 (Van Eynde et al., 1995). This 

domain contains the consensus PP1 binding motif “RVXF”, an additional inhibitory PP1 

binding site (Beullens et al., 1999) and phosphorylation sites for PKA (Ser199) and CK2 

(Ser204). The basic COOH-terminus is identical to the polypeptide Ard-1 (Activator of 

RNA decay) that was shown to be a rare splice variant of NIPP1 (Van Eynde et al., 1999). 

The inhibitory potency of NIPP1 is regulated by multisite phosphorylation and by the 

binding of RNA (Vulsteke et al., 1997; Beullens et al., 2000). NIPP1 is targeted through its 

FHA to the speckles, or splicing-factor compartments, that are storage sites for splicing 



Characterization of the PP1 Interactome from Human Testis Chapter III  
 

Centro de Biologia Celular 
Universidade de Aveiro 

118 

factors (Trinkle-Mulcahy et al., 1999; Jagiello et al., 2000). This FHA domain interacts 

with the phosphorylated forms of the essential splicing factors CDC5L (Boudrez et al., 

2000) and SAP155 (unpublished observation of Bollen M. and coworkers). Since these 

splicing factors are in vitro substrates for PP1, it has been speculated that NIPP1 might 

target them for dephosphorylation by PP1. This function of PP1 may be very important, 

since toxins that inhibit Ser/Thr-protein phosphatases often inhibit pre-mRNA splicing 

(Mermoud et al., 1992). NIPP1, besides being targeted to the speckles, is a component of 

the spliceosomes and has an essential role in a late step of spliceosome assembly (Beullens 

and Bollen, 2002). Surprisingly, this NIPP1 function seems to be unrelated to its ability to 

bind PP1. So, NIPP1 can be thought of as a bifunctional protein, having a PP1-independent 

function in spliceosome assembly and, after splicing, involved in the regeneration of 

splicing factors by recruiting PP1 to dephosphorylate them. Recently, it was shown that 

PP1 is required for Tat-induced HIV-1 transcription and for viral replication in cultured 

cells (Ammosova et al., 2003). By inhibiting PP1 through overexpression of NIPP1, Tat-

induced HIV-1 transcription was inhibited. By contrast, a mutant of NIPP1 that could not 

bind PP1 did not have this effect. These important results indicate that nuclear PP1 may 

represent a novel target for anti-HIV-1 therapeutics.  

The structure of a human NIPP1 pseudogene and the authentic NIPP1 gene was 

reported by Van Eynde et al. (Van Eynde et al., 1999), who also reported the existence of 

various NIPP1 mRNAs, including the Ard-1 transcript, that are generated by alternative 5’-

splice site selection, exon skipping and/or alternative polyadenylation. By completely 

sequencing the NIPP1 clone 273, with the primers GAL4-AD, OLIGONIPP, 

OLIGONIPP2 and Amplimer 3’ (Appendix 4), we verified that we had isolated a 

previously unknown alternatively spliced isoform of NIPP1. A single clone isolated from 

the YTH2 screen, it started at nucleotide 854 (NM_138558), was 710bp long and differs 

from all the other known NIPP1 isoforms (Fig. III.13): 
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1    cttccagtttcccggcgtgcttagggcgcgccaaatgggagggggagacgcaagatggcg 
61   gcagccgcgaactccggctctagcctcccgctgttcgactgcccaacctggtgagtggcg 
121  gggcggccagggctagagtggcccggccggagctagcctgggctggaagggcggctcttt 
181  ttttacttttctgctgcgagccgaacggctcagaaaccccggaatggttgaggaaaaact 
241  gtttgctgcaccgggccgggcgacgtgttgaagaaccgagagcctggagcccaggcccag 
301  gaactgaagaaacccggggttgggggctcaaaggcgctcacttaggcagcccctttgagc 
361  gattagccagtcgccggagcgcttcgaggccttggcccgaacttacgcccaactcttgac 
421  tgagtgcctggtgctctcgtggagcatcgcatctggccccttcctggcaggtaagccccc 
481  tcccggtttacatctggatgtagtcaaaggagacaaactaattgagaaactgattattga 
541  tgagaagaagtattacttatttgggagaaaccctgatttgtgtgactttaccattgacca 
601  ccagtcttgctctcgggtccatgctgcacttgtctaccacaagcatctgaagagagtttt 
661  cctgatagatctcaacagtacacacggcactttcttgggtcacattcggttggaacctca 
721  caagcctcagcaaattcccatcgattccacggtctcatttggcgcatccacaagggcata 
781  cactctgcgcgagaagcctcagacattgccatcggctgtgaaaggagatgagaagatggg 
1                                                            M  G  
841  tggagaggatgatgaactcaagggcttactggggcttccagaggaggaaactgagcttga 
3      G  E  D  D  E  L  K  G  L  L  G  L  P  E  E  E  T  E  L  D  
901  taacctgacagagttcaacactgcccacaacaagcggatttctacccttaccattgagga 
23     N  L  T  E  F  N  T  A  H  N  K  R  I  S  T  L  T  I  E  E  
961  gggaaatctggacattcaaagaccaaagaggaagaggaagaactcacgggtgacattcag 
43     G  N  L  D  I  Q  R  P  K  R  K  R  K  N  S  R  V  T  F  S  
1021 tgaggatgatgagatcatcaacccagaggatgtggatccctcagttggtcgattcaggaa 
63     E  D  D  E  I  I  N  P  E  D  V  D  P  S  V  G  R  F  R  N  
1081 catggtgcaaactgcagtggtcccagtcaagaagaagcgtgtggagggccctggctccct 
83     M  V  Q  T  A  V  V  P  V  K  K  K  R  V  E  G  P  G  S  L  
1141 gggcctggaggaatcagggagcaggcgcatgcagaactttgccttcagcggaggactcta 
103    G  L  E  E  S  G  S  R  R  M  Q  N  F  A  F  S  G  G  L  Y  
1201 cgggggcctgccccccacacacagtgaagcaggctcccagccacatggcatccatgggac 
123    G  G  L  P  P  T  H  S  E  A  G  S  Q  P  H  G  I  H  G  T  
1261 agcactcatcggtggcttgcccatgccatacccaaaccttgcccctgatgtggacttgac 
143    A  L  I  G  G  L  P  M  P  Y  P  N  L  A  P  D  V  D  L  T  
1321 tcctgttgtgccgtcagcagtgaacatgaaccctgcaccaaaccctgcagtctataaccc 
163    P  V  V  P  S  A  V  N  M  N  P  A  P  N  P  A  V  Y  N  P  
1381 tgaagctgtaaatgaacccaagaagaagaaatatgcaaaagaggcttggccaggcaagaa 
183    E  A  V  N  E  P  K  K  K  K  Y  A  K  E  A  W  P  G  K  K  
1441 gcccacaccttccttgctgatttgatatttttggtcatggagaagggtgggattgggtgg 
203    P  T  P  S  L  L  I  *   
1501 gaatggggtggaagggtgatggggagctaatgaactagggagaaaaactttccatgtgtg 
1561 cggtatcgtctttcagaatgtctcctggcatcctaaccatgtaatatgacaattgggggt 
1621 ggggttgaaatagcccataaagacctgtcttcacaacacttgcattgtagagaaaggctt 
1681 cttatatccttttcaatagactgccctggctctttcctaggccttccactacctcctttc 
1741 tttctcccactttctaggatcatttttatgtaaagtcacatatcccaggccctcaggttg 
1801 aatccagagctgtagaggttacagtagcatcaccagccttgggggtccagagcctaattt 
1861 atattcactatccttccaagtcccgggtagcagaagggttgccatagatctcagtttgat 
1921 caaaaagaaggcttagaattctgcagttaagctgaggtttaaactaaaaaatgtttcctt 
1981 gggtcagtggttttgaggtccagtagctaggcttttctcttttgtccttcctgttggaat 
2041 gaaaacatttcgattttccttcatctgtgactggtgccatagacacaggtttatagtttt 
2101 aacttacagtattgtttgaaatttacctgtttttcttgtcaaacctgagcactcctcctg 
2161 ctgaagtttcttatttaattccagagtactgtcctctactctaaggcattacttttaagt 
2221 gtattatgaaggcagttttcaaaggatatgaccagttggggtaattcaaattaaaaagga 
2281 aaagatttgtttggaagtaactggtgtctctaagaggaatttttagatgtcagtttggag 
2341 gctctttcccccctcaattgagagctcttgttattcagagctccaagactagacctggct 
2401 aacaaacataggagacaaagttaggaaacattgatacaagctttgtacagagatttgtac 
2461 atttgtgtaataggccttttcatgctttatgtgtagctttttacctgtaacctttattac 
2521 attgtaaattaaacgtaacttttgtcatttgggtgcaggctgtgaatttgtctctcagtc 
                                           G  C  E  F  V  S  Q  S 
2581 actgattgccactgccatctggaaatgtttgctaaaggcacagtcactgggcttgggagg 
       L  I  A  T  A  I  W  K  C  L  L  K  A  Q  S  L  G  L  G  G 
2641 caatgctccatccccattatattacaaataaag-atgccctaaatgagtgtg 
       N  A  P  S  P  L  Y  T  K  *   t  

Figure III.13: Nucleotide and corresponding amino acid sequence of NIPP1� (NM_138558). 

Highlighted regions correspond to the sequence of clone 273 (the PP1 binding motif is underlined). 

The dark blue area indicates the C-terminal domain specific for NIPP1-T isoform that is not 

translated in the previously known variants. 

 

This new isoform was named NIPP1-T and uses the same polyadenylation site as 

NIPP1�. NIPP1� (NM_138558) is the longer NIPP1 isoform and is encoded over 7 exons. 

Our clone starts at exon 4, and contains exons 5, 6 and 7. Nevertheless, exon 7 in our clone 
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is different from that previously described for NIPP1�. Interestingly, in NIPP1-T the 

polyadenylation signal overlays the stop codon. At the protein level, NIPP1-T differs from 

NIPP1� in that it has a longer C-terminal extension (Fig. III.14). It is interesting to note 

that whereas NIPP1� possesses the sequence –KKPTP- in the spliced domain (a proline 

directed kinase consensus acceptor site), a related sequence also occurs in NIPP1-T (-

NAPSP-).  Both motifs are located exactly 4 amino acids from the C-terminus of the two 

proteins.  

STOP

NIPP1-TmRNA

DNA

NIPP1�mRNA

GCEFVSQSLIATAIWKCLLKAQSLGLGGNAPSPLYTK

ATG

1 2 3 4 6 7a

1 2 3 54 7

ATG STOP

1 2 3 4 6 7

GKKPTPSLLI

5

6

5
STOP

NIPP1-TmRNA

DNA

NIPP1�mRNA

GCEFVSQSLIATAIWKCLLKAQSLGLGGNAPSPLYTK

ATG

1 2 3 4 6 7a

1 2 3 54 7

ATG STOP

1 2 3 4 6 7

GKKPTPSLLI

5

6

5

 
Figure III.14: Genomic structure of the NIPP-1 gene (not to scale).  The alternative splicing of 

exon 7 shown produces the different C-terminal amino acid sequences shown.  ATG, location of the 

initiator methionine codon; PP1-BD, PP1 consensus binding domain; STOP, location of the stop 

codon. 

 

Table III.7 summarizes the intron-exon organization of clone 273 encoding NIPP1-T. 

 

 

 

 

 

 

 

 

 

Table III.7: Exon-intron organization of clone 273 (NIPP1-T). 
Exon 
No.  

Nt No.* 
NIPP1-T 

Exon 
size  
(bp) 

Intron 
No. 

Intron Nt No.* Intron 
size  
(Kb) 

Nt No.* 
NIPP1� 

4 2777243385-27772433 
(854-901) 

48 4 27772434-27774384 1951 27772213-27772433 
(681-901) 
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5 27774385-27774529 
(902-1046) 

145 5 27774530-27778226 3697 27774385-27774529 
(902-1046) 

6 27778227-27778291 
(1047-1111) 

65 6 27778292-27781291 3000 27778227-27778291 
(1047-1111) 

7 27781292-27781727 
(1112-1548) 

436    27781292-27782871 
(1112-2691) 

Clone 273 starts at exon 4 from NIPP1�. Exon 5 and 6 are the same as in NIPP1� but exon 7 is 

different. *, corresponding to sequence from chromosome 1 (NC_000001). In column 2 and 7 

sequences in brakets correspond to sequence NM_138558. 

 

RT-PCR was performed using mRNA from human testis and the primers 

OLIGONIPP and OLIGONIPP2 (Appendix II). These primers are specific for NIPP1-T, 

amplifying a PCR product of 208nt (Fig. III.15). The correct sequence of the PCR product 

was determined by automatic sequence analysis, thus confirming the position of this 

alternative splice (data not shown). 

 

 

Figure III.15: RT-PCR analysis of mRNA from human 

testis using the primers OLIGONIPP/OLIGONIPP2 (lane 

1). A single band of the expected size (208bp) was 

obtained M, molecular weight markers.  

 
 

Interestingly, searching of the EST database identified a single EST (from kidney) 

corresponding to this novel splice variant (gi|3890874|gb|AI271707.1|AI271707). The 

expression of NIPP1 mRNA in different rat tissues was also verified by Northern analysis 

of a Multiple Tissue Northern (MTN) Blot, using the cDNA from clone 273 as probe (Fig. 

III.16).The results from densitometric analysis of the resulting autoradiogram, corrected 

for the actin control, are shown in Table III.8. Muscle was excluded from this analysis 

since it does not express the 2.1kb �-actin message. 

 

NIPP-T 

500 
396 
344 
298 
220 
201 

1                M        nt 
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He    Br     Sp     Lu     Li      M     Ki Te

NIPP1-T2.0 kb

�-Actin
2.1 kb
1.6 kb

He    Br     Sp     Lu     Li      M     Ki Te

NIPP1-T2.0 kb

�-Actin
2.1 kb
1.6 kb

 
Figure III.16: Northern analysis of different rat tissues using the cDNA of clone 273 as probe.The 

same blot was re-probed with �-actin as a control (lower panel). He, heart; Br, brain; Sp, spleen; 

Lu, lung; Li, liver; M, skeletal muscle; Ki, kidney; Te, testis. 

 

Table III.8: Densitometric analysis of NIPP1 mRNA considering testis mRNA 100%. 

Tissue Heart Brain Spleen Lung Liver Kidney Testis 

%NIPP1 mRNA 125 93 22 18 86 50 100 

 

 Another Northern blot was also prepared with human testis RNA and several rat 

tissues mRNAs. The results demonstrated the existence of two mRNA bands in the human 

testis lane (Fig. III.17) that might correspond to NIPP1� and the novel NIPP1-T.    

HT     RT     C      Li       M       Ki Lu     Ce

2.4Kb

1.5Kb

NIPP1

NIPP1-T

HT     RT     C      Li       M       Ki Lu     Ce

2.4Kb

1.5Kb

NIPP1

NIPP1-T

HT     RT     C      Li       M       Ki Lu     Ce

2.4Kb

1.5Kb

NIPP1

NIPP1-T

 
Figure III.17: Northern analysis of human testis and several rat tissues using the cDNA of clone 

273 as probe.HT, human testis; RT, rat testis; C, cortex; Li, liver; M,skeletal muscle; Ki, kidney; 

Lu, lung; Ce, cerebellum. 

  

 These results, together with the RT-PCR analysis (Fig. III.15) and the existence of a 

human EST corresponding to this splice strongly support the existence of a novel NIPP1 

splice variant, that we have named NIPP1-T. 

Additionally, sequential transformation of yeast was performed with the bait 

(PP1�1 or PP1�2 or PP1�2end) and the prey (NIPP1-T) in order to confirm the YTH 

interaction (Fig. III.18). 
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BAIT              PP1�1                 PP1�2              PP1�2end

PREY - NIPP1-T

BAIT              PP1�1                 PP1�2              PP1�2end

PREY - NIPP1-T

 
Figure III.18: Sequential transformation of the yeast AH109 first with the bait plasmid 

(pAS2PP1�1 or pAS2PP1�2 or pAS2PP1�2end) and then the prey plasmid (pACT2-273), followed 

by plating in selective medium containing X-�-Gal. 

 

The results obtained indicate that NIPP1-T interacts more strongly with PP1�2 than 

with its C-terminal domain or with PP1�1, since the blue colour due to X-�-Gal cleavage 

takes longer to develop with the latter two. 

 

III.3.6  PPPR15B (Phosphoprotein Phosphatase Regulatory Subunit 15B) 

 

Data from multiple eukaryotic genomes was used to trace the evolution of well 

established vertebrate PP1 regulators (Ceulemans et al., 2002). That study also identified 

nine poorly characterized proteins as putative PP1 regulators. Among them was a protein 

named PPP1R15B (NM_032833; FLJ14744). This gene is predicted to encode a 

homologue of GADD34 (growth arrest and DNA damage-inducible protein) also known as 

PPP1R15A. GADD34 is a member of a group of genes whose mRNA levels are increased 

following stressful growth arrest conditions and treatment with DNA-damaging agents. 

GADD34 was identified in a yeast two hybrid screen of a human brain cDNA library by its 

interaction with I-1 (inhibitor-1). It was also shown that PP1 bound GADD34 near the C-

terminus, while I-1 bound the central domain of GADD34. Modifications of the I-

1/GADD34/PP1 signaling complex regulate initiation of protein translation in mammalian 

tissues  in response to cell stress, by dephosphorylation of the eukaryotic initiation factor 

eIF-2� (Connor et al., 2001).  Recently, a yeast two hybrid screen using GADD34 as bait 

identified the human cochaperone protein BAG-1 (Hung et al., 2003). Also, Hsp70 and 

PP1 were shown to associate reversibly with the GADD34/BAG-1 complex. It was 
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suggested that BAG-1 might function to suppress the GADD34-mediated cellular stress 

response and have a role in the survival of cells undergoing stress. 

 

In our YTH screens we identified several independent PPP1R15B clones (Table 

III.9):  

 

Table III.9: Independent PPP1R15B clones identified in YTH1 and YTH2. 

Initial Sequence first nt YTH1 YTH2 

CTTGGCTCTTCGC 1004 
 

48QA 
 

229,245,260,266,275,276,2110,2138,2142C, 
2147A, 2192,2226,2271,2272,2308 

GCTTGTAGTAACA 1664  214 

GATGACTGGGAAT 2027 39Q 2227 

 

We chose clone 275 for further studies, starting at nt 1004 and finishing after nt 

2942  relatively to the database sequence NM_032833 (Fig. III.19). We have not get 

sequenced the remaining sequence but we have verified the existence of the poly-A tail. 

The total size of the 275 cDNA insert is approximately 2.8kb. 
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1    attttgggcttcgcttccaccgcaccagccggcctacccagtccttccggtatcgcgttgc 
62    tcaggggcttttcaaccctctgtcagtcggaaaaccatcgccgaggccgtggggggactc 
122   ctatccatggtgttgaagcgtcgagccgactagggaacctccttccccgccaggatggaa 
182   gtcgcatcagtcgccgcctattgcgcgggctgttcttccctgtgttctgccgcccgctgc 
242   cgcattcgctgccctctgtggcttttctgctggctcgaagatcggcctggagcagcgacg 
302   ccaccgctgggcaaggccgagactctgtaggcttcctccgaatcccgtcgacctccagcc 
362   gctgagcgccgcggccctacctgagagactgtcaagaaaaaggagatggagccggggaca 
1                                                    M  E  P  G  T  
422   ggcggatcgcggaaacggcttggccctcgggcgggcttccggttctggccaccctttttc 
6      G  G  S  R  K  R  L  G  P  R  A  G  F  R  F  W  P  P  F  F  
482   cctcggcgatcgcaagcaggctcttctaagttcccgacgcctcttggcccggaaaactcc 
26     P  R  R  S  Q  A  G  S  S  K  F  P  T  P  L  G  P  E  N  S  
542   gggaaccccacactgctttcctctgcccagcccgagactcgggtcagttactggacgaaa 
46     G  N  P  T  L  L  S  S  A  Q  P  E  T  R  V  S  Y  W  T  K  
602   ctgctctcccagctccttgcgccgctccccggattgcttcagaaggtgctaatttggagc 
66     L  L  S  Q  L  L  A  P  L  P  G  L  L  Q  K  V  L  I  W  S  
662   caacttttcggtggaatgtttccgaccagatggctagattttgctggagtctacagcgcc 
86     Q  L  F  G  G  M  F  P  T  R  W  L  D  F  A  G  V  Y  S  A  
722   ctgagagccctgaagggacgggagaaaccagccgcccccacagcgcagaaatctttgagt 
106    L  R  A  L  K  G  R  E  K  P  A  A  P  T  A  Q  K  S  L  S  
782   tcgctgcagctcgactcctcagacccctcggtcaccagtccccttgattggctagaggaa 
126    S  L  Q  L  D  S  S  D  P  S  V  T  S  P  L  D  W  L  E  E  
842   gggatccactggcaatactcgcccccagacctaaaattggagcttaaggccaagggaagt 
146    G  I  H  W  Q  Y  S  P  P  D  L  K  L  E  L  K  A  K  G  S  
902   gctttggaccctgcagcacaggcttttctcttagagcagcagctgtggggagtggagctg 
166    A  L  D  P  A  A  Q  A  F  L  L  E  Q  Q  L  W  G  V  E  L  
962   ttgcccagtagccttcaatcccgtctgtactctaaccgggaacttggctcttcgccctct 
186    L  P  S  S  L  Q  S  R  L  Y  S  N  R  E  L  G  S  S  P  S  
1022  gggcctctaaacattcaacgcatagacgatttcagtgtggtatcctatttgctgaaccct 
206    G  P  L  N  I  Q  R  I  D  D  F  S  V  V  S  Y  L  L  N  P  
1082  tcctacctggactgctttcccaggctagaagtcagctatcagaacagtgatggaaatagc 
226    S  Y  L  D  C  F  P  R  L  E  V  S  Y  Q  N  S  D  G  N  S  
1142  gaggtagtcggcttccagacactaaccccagagagcagctgcctgagagaggaccattgt 
246    E  V  V  G  F  Q  T  L  T  P  E  S  S  C  L  R  E  D  H  C  
1202  catccccagccgctgagtgcagaactcattccggcctcgtggcagggatgtccacctctt 
266    H  P  Q  P  L  S  A  E  L  I  P  A  S  W  Q  G  C  P  P  L  
1262  tctacggaaggcctaccagaaattcaccatcttcgcatgaaacggctggaattccttcaa 
286    S  T  E  G  L  P  E  I  H  H  L  R  M  K  R  L  E  F  L  Q  
1322  caggctagcaaggggcaagatttacccacccctgaccaggataatggctaccacagcctg 
306    Q  A  S  K  G  Q  D  L  P  T  P  D  Q  D  N  G  Y  H  S  L  
1382  gaggaggaacacagccttctccggatggatccaaaacactgcagagataacccaacacag 
326    E  E  E  H  S  L  L  R  M  D  P  K  H  C  R  D  N  P  T  Q  
1442  tttgttcctgctgctggagacattcctggaaacacccaggaatccactgaagaaaaaata 
346    F  V  P  A  A  G  D  I  P  G  N  T  Q  E  S  T  E  E  K  I  
1502  gaattattaactacagaggttccacttgctttggaagaagagagcccttctgagggctgt 
366    E  L  L  T  T  E  V  P  L  A  L  E  E  E  S  P  S  E  G  C  
1562  ccatctagtgagatacctatggaaaaggagcctggagagggccgaataagtgtagttgat 
386    P  S  S  E  I  P  M  E  K  E  P  G  E  G  R  I  S  V  V  D  
1622  tactcatacctagaaggtgaccttcccatttctgccagaccagcttgtagtaacaaactg 
406    Y  S  Y  L  E  G  D  L  P  I  S  A  R  P  A  C  S  N  K  L  
1682  atagattatattttgggaggtgcatccagtgacctggaaacaagttctgatccagaaggt 
426    I  D  Y  I  L  G  G  A  S  S  D  L  E  T  S  S  D  P  E  G  
1742  gaggattgggatgaggaagctgaggatgatggttttgatagtgatagctcactgtcagac 
446    E  D  W  D  E  E  A  E  D  D  G  F  D  S  D  S  S  L  S  D  
1802  tcagaccttgaacaagaccctgaagggcttcacctttggaactctttctgcagtgtagat 
466    S  D  L  E  Q  D  P  E  G  L  H  L  W  N  S  F  C  S  V  D  
1862  ccttataatccccagaactttacagcaacaattcagactgctgccagaattgttcctgaa 
486    P  Y  N  P  Q  N  F  T  A  T  I  Q  T  A  A  R  I  V  P  E  
1922  gagccttctgattcagagaaggatttgtctggcaagtctgatctagagaattcctcccag 
506    E  P  S  D  S  E  K  D  L  S  G  K  S  D  L  E  N  S  S  Q  
1982  tctggaagccttcctgagacccctgagcatagttctggggaggaagatgactgggaatct 
526    S  G  S  L  P  E  T  P  E  H  S  S  G  E  E  D  D  W  E  S  
2042  agtgcagatgaagcagagagtctcaaactgtggaactcattctgtaattctgatgacccc 
546    S  A  D  E  A  E  S  L  K  L  W  N  S  F  C  N  S  D  D  P  
2102  tacaaccctttaaattttaaggctccttttcaaacatcaggggaaaatgagaaaggctgt 
566    Y  N  P  L  N  F  K  A  P  F  Q  T  S  G  E  N  E  K  G  C  
2162  cgtgactcaaagaccccatctgagtccattgtggccatttctgagtgtcacaccttactt 
586    R  D  S  K  T  P  S  E  S  I  V  A  I  S  E  C  H  T  L  L  
2222  tcttgtaaggtgcagctgttggggagccaagaaagtgaatgtccagactcggtacagcgt 
606    S  C  K  V  Q  L  L  G  S  Q  E  S  E  C  P  D  S  V  Q  R  
2282  gacgttctttctggaggaagacacacacatgtcaaaagaaaaaaggtaaccttccttgaa 
626    D  V  L  S  G  G  R  H  T  H  V  K  R  K  K  V  T  F  L  E  
2342  gaagttactgagtattatataagtggtgatgaggatcgcaaaggaccatgggaagaattt 
646    E  V  T  E  Y  Y  I  S  G  D  E  D  R  K  G  P  W  E  E  F  
2402  gcaagggatggatgcaggttccagaaacgaattcaagaaacagaagatgctattggatat 
666    A  R  D  G  C  R  F  Q  K  R  I  Q  E  T  E  D  A  I  G  Y  
2462  tgcttgacatttgaacacagagaaagaatgtttaatagactccagggaacatgcttcaaa 
686    C  L  T  F  E  H  R  E  R  M  F  N  R  L  Q  G  T  C  F  K  
2522  ggacttaatgttctcaagcaatgttgagttggcagcctgtagtcctagctagcatacact 
706    G  L  N  V  L  K  Q  C  *   
2582  acctcttacctgagaggtgtcttttaaaaacaaatcttggcagctgtcctttgacatttt 
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2642  tttttttagaggaaatgtaacttggatctagtttaatttttttttttgcaacatatccca 
2702  ctcagaaacattcaggtttgaagccagccctgataatgaaggatgaactagtgtgatttc 
2762  taatcctcccttttttgatttagttggatgtgcttttaaatgtcctttgcctgcatgagg 
2822  tggaaaggggacctttttgagttgtcattttgcactttcaaaacttattttcttggaaaa 
2882  caatacttatagggcttaaagcccattttcatttctaatctaaattatgtgtgcctatct 
2942  g 

Figure III.19: Sequence of PPP1R15B (NM_032833). Clone 275 starts at nt 1004. The PP1 

binding motif is indicated in green. The pink area corresponds to the small C-terminal module that 

characterizes the GADD34 family. 

 

 Aligning of the PPP1R15B sequence with human genome contig, lead us to map it 

to two exons on chromosome 1 (Fig. III.20). Interestingly, the exon boundaries occur 

within the PP1 binding motif.    

 

               
Figure III.20: Genomic structure of PPP1R15B.  

 

By searching Pfam (Bateman et al., 2002) with the PPP1R15B sequence, some 

special features could be identified. Notably, the existence of a Pfam-B domain 

(Pfam_9893) that characterizes the GADD34 family of proteins (Table III.10 and Fig. 

III.21), and is present in the C-terminus of all members. This family includes members 

from very different organisms like human, mouse, virus and fly. 

1 2326 

2327 2942 

mRNA 

Chr 1     200741516                                                  200739247      200736076      200735457 

aa  637  K  R  K  K  V  T  F  L   644    
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Table III.10: Members of the PPP1R15B family. 

Identification Diagram of the protein domains residues 

MY16_MOUSE   
[Mus musculus (mouse)]  

myeloid differentiation primary  

response protein myd116 

 

657  

Q60465      

[Cricetulus longicaudatus (long 

tailed hamster) (chinese 

hamster)] GADD34 protein 

 

590 

O75807      - GADD34 

[Homo sapiens (human)]  

apoptosis associated protein 

(growth arrest and DNA-damage 

-inducible34) 

 
   

674 

Q9EML3      

[Amsacta moorei entomo 

poxvirus (amepv)] amv193 

  
150 

Q9W1E4       

[Drosophila melanogaster (fruit 

fly)] cg3825 protein (gh11727p) 

 
��� 

Q91CH8       

[Macropodid herpesvirus 1]  

icp34.5 

 
170 

Q96SN1     - PPP1R15B  

[Homo sapiens (human)]  

hypothetical protein flj14744 

 
713 

Transmembrane:  ; low complexity: ; pfamB:   (different colours indicate different Pfam-B 

families ) ; GADD34 family domain:  .  Pfam B domains are regions of proteins that belong to a 

Pfam-B family; Pfam-B is an automatically generated supplement to Pfam that is generated from 

the PRODOM database. Matches to Pfam-B are likely to indicate true relationships.    
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PPP1R15B

GADD34

PPP1R15B

GADD34  
A 

 

 
 

 

 

 

 

 

 

Figure III.21: A, Diagram of the alignment of the aa sequences of GADD34 and PPP1R15B using 

BLAST algorithm (Altschul et al., 1997). B, Alignment of the boxed aa sequences.* indicates 

identities  and + indicates homologies. 

  

Searching PROSITE (Sigrist et al., 2002) several putative motifs were identified in 

PPP1R15B, including glycosylation sites, sulfation  sites, cAMP and cGMP-dependent 

protein kinase phosphorylations site, PKC phosphorylation sites and CK2 phosphorylation 

sites. 

Sequential transformation of yeast with bait and prey plasmids confirmed the YTH 

interaction (Fig. III.22). 

PREY –R15B

BAIT        PP1�1             PP1�2           PP1�2end

PREY –R15B

BAIT        PP1�1             PP1�2           PP1�2end

  
Figure III.22: Sequential transformation of yeast AH109 first with, the bait plasmid (pAS2PP1�1 

or pAS2PP1�2 or pAS2PP1�2end) and then the prey plasmid (pACT2-275). 

 

 
PPP1R15B    634 THVKRKKVTFLEEVTEYYIS-----GDEDRKGPWEEFARDGCRFQKRIQETEDAIGYCLT 
                  +  +      +   ++++          +    +         +   + ++ +  
GADD34      549 TPLKARKVRFSEKVTVHFLAVWAGPAQAARQGPWEQLARDRSRFARRIAQAQEELSPCLT 
                *  *  ** * * **              * ****  ***  **  **         *** 
 
PPP1R15B    689 FEHRERMFNRLQGTCFKGLNVLKQ 
                       +   +      + 
GADD34      609 PAARARAWARLRNPPLAPIPALTQ 
                   * *   **          * * 
Score = 53.1 bits (126), Expect = 3e-05 
Identities = 29/84 (34%), Positives = 46/84 (54%), Gaps = 5/84 (5%) 
 

B 
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The results indicated that R15B interacts both with PP1�1 and PP1�2. Although it 

also interacts with the PP1�2 C-terminal domain, the interaction is likely weaker since the 

blue colour takes longer to develop. 

 

III.3.7  KIAA1949  

 
In this section a previously unpublished clone will be described. This cDNA termed 

KIAA1949 (XM_166376) in the database, seemed to be very interesting because it 

encodes for a protein sequence with some special features (Fig. III.23).  

 
1      agacaaagcggtcgccgcccccgcccggccccctggtctctgtctccgtccctcctcctttg 
63       ctgcctctttccctcctcctctccctccctcctcccctccctccagtctccggatctccc 
123      tcggtccctctctcctcctcttcctctctctggacgcccggctcctccgcaccccctccc 
183      ccgggggtcccgcggcctgtgagttgactgaggggctcagacttggggagtgggtgtctc 
243      ctcgcccctgtccttgctcccgtccctggcccggaccttggctgtctcctctttgtgccg 
303      agattgtcagtctgtgcggctacagcggggtggagacggccggctctgtcacggcttcat 
363      gagagcggggacggggcgcaggacttgcaggcgccggggagaagagacatggagccggcc 
423      cttggcactctggggtcgcgtggggcagtcggtgggggaggcaggcggtggtgacaggac 
483      agggtgggggtggacgccagggttctgggaacgcgctggcagccctgacgcccgggttcc 
543      gaaagtctcgggggtgggtatttcccccgacccgcctcgggggcggagtgcggggcagag 
603      gggtgggggctggggagaggcgtggcccgagcggtgctggaagcggagccgggacctttg 
663      gggcccgcgctgagacgcgcccggctgctgccgccgccctcctttcccctcttccctggt 
723      ttcccttctcctctagacctgttcgctctccgcccctccttgcctccccaacaccccctc 
783      aggtcccgttgcctcctggtcctttcagggattcctggtccttccttcccacactagcct 
843      ccctggggtatcgctgaggcagcctggcctgcacccaggttcccctcacccctgccacat 
903      ttctctcttctccctcacgccaactttccttttcgcccttctctctctttctcacatcct 
963      agagacggtctttaatacgcattaaccctgtgctgccacatctggctcctgccctcattg 
1023     cctccaatccggactcttcctctcacatcacccccaccacccccaacttgggctcacaac 
1083     ttctcttcactttttccatttccccagttctctgccttccgtctttccctctgtcctcat 
1143     ccttagcccctctgccctgctttgtgtcccacctctccccctccacttcctctcctccca 
1203     ccctcagtctcacccccgggctgtctcactctctggagcctctccttcctgttctctgtc 
1263     cccagtgctccctaccctcacctcaagacgaccatggccaccatcccagactggaagcta 
1                                          M  A  T  I  P  D  W  K  L  
1323     cagctgctagcccggcgccggcaggaggaggcgtccgttcgaggccgagagaaagcagaa 
10        Q  L  L  A  R  R  R  Q  E  E  A  S  V  R  G  R  E  K  A  E  
1383     cgggagcgcctgtcccagatgccagcctggaaacgagggctcctggagcgccgccgggcc 
30        R  E  R  L  S  Q  M  P  A  W  K  R  G  L  L  E  R  R  R  A  
1443     aagcttgggctgtcccctggggagcctagccctgtgctagggactgtagaggctggacct 
50        K  L  G  L  S  P  G  E  P  S  P  V  L  G  T  V  E  A  G  P  
1503     ccagacccggatgagtctgcggtccttctggaggccatcgggccagtgcaccagaaccga 
70        P  D  P  D  E  S  A  V  L  L  E  A  I  G  P  V  H  Q  N  R  
1563     ttcatccggcaggagcggcagcagcagcagcagcaacaacaacggagtgaagagctgcta 
90        F  I  R  Q  E  R  Q  Q  Q  Q  Q  Q  Q  Q  R  S  E  E  L  L  
1623     gcagagagaaagcctgggcctctggaggcccgggagcggagacccagccctggggagatg 
110       A  E  R  K  P  G  P  L  E  A  R  E  R  R  P  S  P  G  E  M  
1683     cgggatcagagccccaagggaagagagtcaagagaagagagactaagtccgagggagacc 
130       R  D  Q  S  P  K  G  R  E  S  R  E  E  R  L  S  P  R  E  T  
1743     agagagaggaggctggggatagggggagcccaagagttgagcctgaggcctctggaggct 
150       R  E  R  R  L  G  I  G  G  A  Q  E  L  S  L  R  P  L  E  A  
1803     cgggactggaggcaaagcccaggagaggtgggagacaggagctcccgactgtcagaggca 
170       R  D  W  R  Q  S  P  G  E  V  G  D  R  S  S  R  L  S  E  A  
1863     tggaaatggaggctgagtcctggagaaactccagagcggagtctgagactagcagagtct 
190       W  K  W  R  L  S  P  G  E  T  P  E  R  S  L  R  L  A  E  S  
1923     cgagagcaaagccccaggagaaaagaggtggaaagtagactgagcccaggggaatctgcc 
210       R  E  Q  S  P  R  R  K  E  V  E  S  R  L  S  P  G  E  S  A  
1983     taccagaagttgggcctgacagaggcccataaatggagacctgactccagagagtctcag 
230       Y  Q  K  L  G  L  T  E  A  H  K  W  R  P  D  S  R  E  S  Q  
2043     gaacagagtttggtacaactggaggcaacagagtggaggctgaggtcaggagaagaaaga 
250       E  Q  S  L  V  Q  L  E  A  T  E  W  R  L  R  S  G  E  E  R  
2103     caagactactcggaagaatgtgggagaaaagaagagtggccagttccaggggtagctcca 
270       Q  D  Y  S  E  E  C  G  R  K  E  E  W  P  V  P  G  V  A  P  
2163     aaagagactgcagagctgtccgagaccctgacaagggaggcccaaggcaacagttccgca 
290       K  E  T  A  E  L  S  E  T  L  T  R  E  A  Q  G  N  S  S  A  
2223     ggagtggaggcagcagagcagaggcctgtggaagatggcgagaggggcatgaagccaaca 
310       G  V  E  A  A  E  Q  R  P  V  E  D  G  E  R  G  M  K  P  T  
2283     gaagggtggaaatggaccctgaactccgggaaggctcgagaatggacacccagggacata 
330       E  G  W  K  W  T  L  N  S  G  K  A  R  E  W  T  P  R  D  I  
2343     gaggctcaaactcagaaactagaacctccagagtcagcagagaagcttctggaatctccc 
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350       E  A  Q  T  Q  K  L  E  P  P  E  S  A  E  K  L  L  E  S  P  
2403     ggtgtggaggctggagaaggggaggctgagaaggaggaggcgggggctcagggcaggcct 
370       G  V  E  A  G  E  G  E  A  E  K  E  E  A  G  A  Q  G  R  P  
2463     ctgagagccctgcagaactgctgctctgtgccctcccccctcccaccagaggacgctggg 
390       L  R  A  L  Q  N  C  C  S  V  P  S  P  L  P  P  E  D  A  G  
2523     actggaggcctgagacagcaggaagaggaagcagtggagctccagcccccaccaccagcc 
410       T  G  G  L  R  Q  Q  E  E  E  A  V  E  L  Q  P  P  P  P  A  
2583     cctctgtctcccccacccccagccccaactgccccccaacctcctggggatcccctcatg 
430       P  L  S  P  P  P  P  A  P  T  A  P  Q  P  P  G  D  P  L  M  
2643     agccgcctgttctatggggtgaaggcagggccaggggtgggggccccccgccgcagtgga 
450       S  R  L  F  Y  G  V  K  A  G  P  G  V  G  A  P  R  R  S  G  
2703     cacaccttcaccgtcaacccccggcggtctgtgccccctgcgaccccagccaccccaacc 
470       H  T  F  T  V  N  P  R  R  S  V  P  P  A  T  P  A  T  P  T  
2763     tctccagccacagttgatgctgcagtcccgggggctgggaagaagcggtacccaactgcc 
490       S  P  A  T  V  D  A  A  V  P  G  A  G  K  K  R  Y  P  T  A  
2823     gaggagatcttggttctggggggctacctccgtctcagccgcagctgccttgccaagggg 
510       E  E  I  L  V  L  G  G  Y  L  R  L  S  R  S  C  L  A  K  G  
2883     tcccccgaaagacaccacaaacagcttaagatctccttcagcgagacagccctggagacc 
530       S  P  E  R  H  H  K  Q  L  K  I  S  F  S  E  T  A  L  E  T  
2943     acgtaccaatacccctccgagagttcggtactggaggagctgggcccggagcctgaggtc 
550       T  Y  Q  Y  P  S  E  S  S  V  L  E  E  L  G  P  E  P  E  V  
3003     cccagtgcccccaaccctccagcagcccaacccgacgacgaagaggatgaggaagagctg 
570       P  S  A  P  N  P  P  A  A  Q  P  D  D  E  E  D  E  E  E  L  
3063     ctgctgctgcagccagagctccagggcgggctgcgcaccaaggccctgattgtggatgag 
590       L  L  L  Q  P  E  L  Q  G  G  L  R  T  K  A  L  I  V  D  E  
3123     tcctgccggcggtgaccatcttccaacatagggatatacctccctccttcttataactga 
610       S  C  R  R  *   
3183     agatcctggagcccggaagattcagggcagacagaccctgataatgagcctggcagggaa 
3243     gggcaaccaacatcttgtaacttgctttccccaccctgtttctgggggcagagccaattg 
3303     cccaatttctaccctaatccaaagtccctggtgtgggtggggttaaacgtgctggtgcat 
3363     cctaggtcatccaagagtgagcgccaagtcctgagaaggggcacagaactccctggaggg 
3423     tggagatggagcacctgccccccatggcagggtacactctccccacagccttcctcccca 
3483     ccatcccgtggggactctcgggatttaagcactcgtctctctgggaggcccagaccccac 
3543     tccatttataggcacatctccttcatttcctaggtcactgcccctttgtttacagctcct 
3603     gcctcctcccttgaccacagcctggtttacaaattccatcagctcccagccccacctgcc 
3663     aaagtcccaggtttacaagccacgcttacttgctgtgtctgcgtggaattctctcctctg 
3723     tcccctccagtctcctcattggagtgacctgaaggtgtggcttcctccactttttctcag 
3783     tattactttgccttagttttccccaagagggaaggctggaactcttaactctgtacccct 
3843     tgatagttatttaattctgtttctcctagtggttcacaattgaactgaattgagatggtg 
3903     tcgggtggctaaggagacacctcacctctccttccccattgtgccgcctttatcaattgc 
3963     ctgttttgttttgtttgttttttaactttccataataaaatggagttctcttc 

Figure III.23: Nucleotide and deduced amino acid sequence of clone KIAA1949. Clone 4Q starts 

at nt 2763. The PP1 binding motif is indicated in green; A PEST sequence is underlined. 

 

Several KIAA1949 cDNAs were isolated in both YTH screens (Table III.11). 

Clone 4Q was selected for further examination. This clone starts at nt 2763 relatively to the 

XM_166376 sequence in the database.  
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Table III.11: Independent KIAA1949 clones obtained in the YTH1 and YTH2. 

Sequence first nt YTH1 YTH2 

TCTCCAGCCACAG 2763 
 

4Q,29Q,33Q,34Q,35Q, 
22T,27T,32T,141T 

 

 
GAAGCGGTACCC 

 
2804  2238C 

 

The protein encoded by KIAA1949 contains a putative PP1 binding motif, KISF, 

and a putative PEST sequence (responsible for targeting proteins to degradation). Other 

putative domains were also identified by searching Prosite: a N-glycosylation site (aa 306-

309), a Tyr sulfation site (aa 265-279), a cAMP- and cGMP-dependent protein kinase 

phosphorylation site (aa 122-125), and several protein kinase C phosphorylation sites. 

Additionally, it has casein kinase II phosphorylation sites, a Tyr kinase phosphorylation 

site (264-272), several N-myristoylation sites, two amidation sites, a Arg rich region (aa 

120-216), a Gln rich region (aa 87-103), a Glu rich region (aa 247-382) and a Pro rich 

region (aa 425-491). 

 By aligning the XM_166376 database sequence with the human genome, the 

corresponding gene sequence was determined to spread over 3 exons on chromosome 6 

(TableIII.12). 

 

Table III.12: Exon-intron sizes of KIAA1949. 

Exon 
No.  

Nt No.* Exon size  
(bp) 

Intron 
No. 

Nt No.+ Intron size 
(kb) 

1 1-2906 2906    
2 2907-3116 209 1 30712912-30707910 5002 
3 3117-4015 898 2 30707683-30705795 1888 

Clone 4Q starts near the end of exon 1. *, corresponding to sequence XM_166376.+, 

corresponding to the human chromosome 6 sequence (NC_000006). 

 

By searching EST database, several ESTs were found to be present in the database. 

There are ESTs from brain, primary B-cells, spleen, thymus, brain and leukocytes. The 

existence of such ESTs supports the importance of this protein in several tissues. 
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III.3.8  I2-L (Protein Phosphatase 1 Inhibitor 2 Like) 

 

Inhibitor 2 (I2) is a heat stable protein that inhibits PP1 activity in vitro with 

nanomolar affinity and was first  purified from rabbit skeletal muscle (F. L. Huang and W. 

Glinsmann, 1976). It is a 23 KDa phosphoprotein well conserved among eukaryotes. PP1 

is inactivated through binding to I2 and its activity is reestablished when I2 is 

phosphorylated at Thr72 by glycogen synthase kinase III� (GSK-3�) (Hemmings et al., 

1982; Aitken et al., 1984; DePaoli-Roach, 1984) and Cdk5 (Agarwal-Mawal and Paudel, 

2001). PP1 can then dephosphorylate I2. I2 is also phosphorylated by casein kinase II 

(CK2) at Ser86, Ser120 and Ser121 (Holmes et al., 1986b). Phosphorylation by CK2 does 

not alter the inhibitory activity of I2. Phosphorylation of Ser86 enhances the subsequent 

phosphorylation at Thr72 by GSK-3� (Park and DePaoli-Roach, 1994; Park et al., 1994). 

A recent study showed that Ser120 and Ser121 phosphorylation, of previously unknown 

function, is also important for the binding of GSK-3� (Sakashita et al., 2003). Other 

sequences are thought to be important in the formation of the PP1/I2 complex, such as the 

N-terminal IKGI sequence, Trp46 and the C-terminal FEMKRKLHY sequence (Helps et 

al., 1998; H. B. Huang et al., 1999; Yang et al., 2000).  

To date, two genes have been identified that code for I2, termed I2� and I2� 

(Osawa et al., 1996). All the phosphorylation sites were found to be conserved in these I2 

isoforms. Here, we report the finding of a new protein, termed I2-L (Inhibitor 2 Like) that 

is 96% identical at the nucleotide level and 95.6% identical at the aa level to I2 (Fig. III.24 

and 25). Clone 48, shown in red in Figure III.26, starts at nt 57 and ends at nt 901 of the 

sequence XM_018216 in the database.  

  

 
A 

B 

Figure III.24: Diagram of the alignment of the nt sequences of A) I2 (NM_006241) and B) I2-L 
(XM_018216)).  
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I2-L    1 MAASTASHRPIKGILKNKTSTTSSMVASAEQPRRSVDEELSKKSQKWDEINILATYHPAD 
I2      1 MAASTASHRPIKGILKNKTSTTSSMVASAEQPRGNVDEELSKKSQKWDEMNILATYHPAD 
          *********************************  ************** ********** 
 
I2-L   61 KGYGLMKIDEPSPPYHSMMGDDEDACRDTETTEAMAPDILAKKLAAAEGLEPKYRIQEQE 
I2     61 KDYGLMKIDEPSTPYHSMMGDDEDACSDTEATEAMAPDILARKLAAAEGLEPKYRIQEQE 
          * ********** ************* *** ********** ****************** 
 
I2-L  121 SSGEEDSDLSPEEREKKRQFEMRRKLHYNEGLNIKLARQLISKDLHDDDEDEEMLETADG 
I2    121 SSGEEDSDLSPEEREKKRQFEMKRKLHYNEGLNIKLARQLISKDLHDDDEDEEMLETADG 
          ********************** ************************************* 
 
I2-L  181 ESMNTEESNQGSTPSDQQQNKLRSS 
I2    181 ESMNTEESNQGSTPSDQQQNKLRSS 
          ************************* 
95.6% identity in 205 residues overlap; Score: 1006.0; Gap frequency:0.0% 

Figure III.25: Alignment of amino acid sequences of I2-L and I2. Highlighted residues represent 

important regulatory site; underlined region represents the most highly conserved region of the 

protein.  

 
1     gaggcagcaggtgcggccgctttagccctgagcgggctctgcggctgcctgcgagtctctg 
62     ctgtgccgacccttctcttcgcggaccccacgccaagcagcgaccctgaggcgacagccg 
122    gagcgcccggcaatggcggcctcgacggcctcccaccggcccatcaaggggatcttgaag 
1                   M  A  A  S  T  A  S  H  R  P  I  K  G  I  L  K  
182    aacaagacctctacgacttcctctatggtggcgtcggccgaacagccccgcaggagtgtc 
17      N  K  T  S  T  T  S  S  M  V  A  S  A  E  Q  P  R  R  S  V  
242    gacgaggagctgagcaaaaaatcccagaagtgggatgaaattaacatcttggcgacctat 
37      D  E  E  L  S  K  K  S  Q  K  W  D  E  I  N  I  L  A  T  Y  
302    catccagcagacaaaggctatggtttaatgaaaatagatgaaccaagccctccttaccat 
57      H  P  A  D  K  G  Y  G  L  M  K  I  D  E  P  S  P  P  Y  H  
362    agtatgatgggtgatgatgaagatgcgtgtagggacaccgagaccactgaagccatggcg 
77      S  M  M  G  D  D  E  D  A  C  R  D  T  E  T  T  E  A  M  A  
422    ccagacatcctagccaagaaattagctgctgctgaaggcttggagccaaagtaccggatt 
97      P  D  I  L  A  K  K  L  A  A  A  E  G  L  E  P  K  Y  R  I  
482    caggaacaagaaagcagtggagaggaggatagtgacctctcacctgaagaacgagaaaaa 
117     Q  E  Q  E  S  S  G  E  E  D  S  D  L  S  P  E  E  R  E  K  
542    aagcgacaatttgaaatgagaaggaagcttcactacaatgaaggactcaatatcaaacta 
137     K  R  Q  F  E  M  R  R  K  L  H  Y  N  E  G  L  N  I  K  L  
602    gccagacaattaatttcaaaagacctacatgatgatgatgaagatgaagaaatgttagag 
157     A  R  Q  L  I  S  K  D  L  H  D  D  D  E  D  E  E  M  L  E  
662    actgcagatggagaaagcatgaatacggaagaatcaaatcaaggatctactccaagtgac 
177     T  A  D  G  E  S  M  N  T  E  E  S  N  Q  G  S  T  P  S  D  
722    caacagcaaaacaaattacgaagttcatagaagagatttgttcaacactgcaattgtttg 
197     Q  Q  Q  N  K  L  R  S  S  *                                          
782    ttagatataaaccctgtgactataatacattgcttcttgttctccacaattcatgactta 
842    agtaccaaaatgcataccagttattatatattgccaagaattaaatgataaacttagaga 
902    ctaattagactgaaaatgcctaattgatatatatattcttatgcctagtactttaccaca 
962    aatacagtgtaatatcatcagtccaaaactgcattactttcataagaacactggttaatt 
1022   tgtataagatattatagagctttttatgctttagaagttaagcaatatctttggggggga 
1082   actaatttattttcatcactcgaaatgtggtagctcttacaaagtttgttgatttgtttt 
1142   tttaaaaatcaaaagccagttgaacaacaggatatatagacttataaatattcaagctga 
1202   atcgtattttaacacttctcttcaacttgatttgtctgtttaattgaaaagaattgtaag 
1262   agttactgttgcattttctgacctactacctttaaaattcctgttgagtttctttgtgtt 
1322   tacaaggaaaggactgaactttttctcatcaaaactagcttttttccccacaaataaatt 
1382   atcaggttaaactttc 

Figure III.26: Nucleotidic and amino acidic sequences of I2-L (XM_018216). In red is the 

sequence of the clone 48 (it starts at nt 57 and ends at nt 901). Underlined are the important aa 

sequences involved in PP1 binding. The blue adenine is absent in clone 48. 

 

The alignment of I2 and I2-L highlights the differences between the two proteins. 

The main difference is the Thr for Pro substitution at position 72. This Thr72 is the most 

important residue for the regulation of the PP1/I2 complex. Thr72 can be phosphorylated 
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by CDK5/p35, GSK3, MAPK and CDK2/cyclinB. The absence of Thr72 in I2-L raises an 

interesting question. Is I2-L an alternative constitutive inhibitor of PP1, not controlled by 

phosphorylation by GSK-3� but by an alternative mechanism? In Chapter V this question 

will be addressed in more detail. Another difference is the substitution of Ser86 by Arg. 

This fact also alters I2-L regulation by CK2 and subsequently the regulation of PP1 and 

other regulatory proteins, since it was recently shown that the PP1/I2 complex can bind a 

third protein, for instance, Nek2 (Eto et al., 2002). It was shown that  Ser86 

phosphorylation by CK2 does not alter the inhibitory activity of I-2 but accelerates the 

subsequent phosphorylation at Thr72 by GSK-3 (Park and DePaoli-Roach, 1994).    

By searching Prosite for motifs, several CK2 phospho sites (35-38 SvdE, 121-124 

SsgE, 122-125 SgeE, 130-133 SpeE, 193-196 TpsD) were found, as expected. The 35-38 

SvdE is a new putative CK2 phosphorylation site in I2-L that does not exist in I2. There 

are also other possible motifs: protein kinase C phosphorylation sites (7-9 ShR, 41-43 SkK, 

44-46 SqK) and a putative ubiquitin interacting motif (170-189 

EDEEMLETADGESMNTEESN). 

Using the BLAST2 algorithm we aligned the XM_018216 sequence with the 

human genome and concluded that this sequence is present in chromosome 5, while the I2 

gene is located in chromosome 3. The I2-L gene has an unique exon in contrast to the 5 

exons of I2.  

Curiously, in vivo, both negative and positive effects of I2 on PP1 activity were 

observed (Tung et al., 1995; Nigavekar et al., 2002). Overexpression of I2 induces a 

decrease in PP1 activity due to PP1 inhibition (Tung et al., 1995). On the other hand, at 

physiological concentrations, I2 was found to lead to activation of PP1 (Tung et al., 1995; 

Nigavekar et al., 2002). This experiment suggests that I2 may not act simply as a direct 

inhibitor of PP1 activity in vivo. This idea is also supported by the fact that the in vitro 

inactivation of PP1 by I2 is blocked by salt at physiological concentrations (Bollen et al., 

1994). So the current notion is that I2 function may be to promote a PP1 conformational 

change that converts the enzyme to its active form. Supporting this view is the fact that the 

I2 phosphorylation mechanism is conserved: in yeast the major I2 kinase is Pho85, a 

cyclin-dependent kinase, which also phosphorylates glycogen synthase; in mammals I2 is 

phosphorylated, as pointed out above, by GSK-3� (Woodgett and Cohen, 1984) and also 

by Cdk5, the Pho85 orthologue (Agarwal-Mawal and Paudel, 2001).  
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 In what concerns I2-L, the subtle differences in amino acid sequence with respect to 

I2 might induce a different behavior of the sperm PP1 holoenzyme, thus leading to a 

different mode of PP1 activity and sperm function. 

  

III.4 DISCUSSION 
 

PP1 involvement in diverse cellular processes is associated with its binding to a 

diverse set of regulatory subunits. Using the Yeast Two Hybrid System, new PP1 

interactors from human testis were identified in order to gain insight into the various roles 

of PP1 in sperm motility. The results obtained validated the method as a promising 

approach to understand the multiple functions of PP1 catalytic subunit, being a method of 

choice to screen a large number of proteins for putative interactions. We set out to identify 

all the positive clones obtained in our screens. This strategy turned out to be very fruitful 

because we could identify several new very interesting clones that would never be found if 

we decided only to study the more abundant clones. Some bonafide, previously 

characterized, PP1 binding proteins were identified in both screens (YTH1 and YTH2) like 

NIPP1 and Nek2. These findings validated our approach by confirming that expression of 

reporter genes was due to a specific interaction between the bait protein (PP1�2/ PP1�1) 

and the identified library protein. 

Nek2 was by far the most frequent interaction in both the YTH1 (47 out of 120) and 

the YTH2 (71 out of 155) screens. There is a panoply of data supporting the involvement 

of PP1 in mitosis. Specifically, PP1 was shown to be targeted to multiple mitotic structures 

such as chromosomes, spindle and centrosomes. Centrosomes duplicate during S-phase 

and remain paired during G2. Before the onset of mitosis the centrosomes split to form the 

poles of the mitotic spindle. Many of the changes that occur during the centrosome cycle 

are due to protein phosphorylation (Nigg, 2001). Two kinases have been shown to be 

involved in centrosome splitting and to be inactivated by PP1, indicating that PP1 prevents 

precocious separation of centrosomes. One of the kinases is Aurora-A, a homologue of 

Aurora-B (Katayama et al., 2001), that interacts with PP1 strongly at mitosis. PP1 

dephosphorylates and inactivates Aurora-A and is also an in vitro substrate for Aurora-A, 

being inactivated by its phosphorylation.  

 The other kinase related to centrosome separation is Nek2. Nek2 is tethered to 

centrioles via binding to a specific substrate called C-Nap1 (Nek-2 associated protein 1) 
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(Fry et al., 1998a). Phosphorylation of C-Nap1 correlates to loss of centrosome cohesion 

and C-Nap1 is likely to be the substrate and effector of Nek2-PP1 complex. It has also 

been shown that I2, a PP1 inhibitor, can enhance the kinase activity of the Nek2-PP1 

complex via inhibition of PP1 to initiate centrosome splitting (Eto et al., 2002). This 

complex is auto-regulated since Nek2 phosporylates PP1 at Thr307 and Thr318. PP1, in 

turn, dephosphorylates Nek2 (Helps et al., 2000). The kinase/phosphatase complex of 

Nek2-PP1 functions as a bistable switch, as first described by Sohaskey and Ferrell (2002). 

Besides the two splice variants Nek2A and Nek2B, identified in primary blood 

lymphocytes and adult transformed cells (Hames and Fry, 2002), no other Nek2 isoforms 

have been described to date. Here we identified a new alternatively spliced isoform of 

Nek2 in human testis called Nek2A-T. Murine Nek2 was shown to be highly expressed in 

adult testis. It was also shown that Nek2 was expressed in a stage specific pattern during 

spermatogenesis and intense signals were also observed in oocytes (Tanaka et al., 1997). 

The new Nek2A-T isoform misses a phosphorylatable domain of 8 amino acids 

(ELLNLPSS) which includes two serines (Fig. III.7.). These serines could be important for 

regulation of PP1 in two ways. First, PP1 may dephosphorylate these serine residues in 

Nek2A but since they are missing from Nek2A-T, the latter would not be subject to such 

regulation, ultimately leading to an increase in centrosome splitting, in agreement with 

testis being a tissue with high levels of cell division. Second, the absence of this 8 amino 

acids stretch could alter Nek2A-T conformation resulting in a different affinity for PP1. In 

conclusion, this may be a very important isoform of Nek2 in testis and further 

experimentation is required to address the significance of this splicing event. Nek2 was 

shown to be phosphorylated on the two serine residues that occur N-terminally to the PP1 

binding domain, thus that are present in the phosphorylatable domain. It is interesting to 

note that it is precisely the phosphorylatable 8 amino acid domain of Nek2A that is missing 

from Nek2A-T. Thus, although Nek2A and Nek2A-T are likely to exhibit distinct 

properties, it may be difficult to specifically target Nek2A-T for therapeutics since it lacks 

the phosphorylatable, regulatory 8 amino acid domain.  However, the effectiveness of 

siRNA directed against Nek2A-T can still be explored.  

Another new alternatively spliced variant found in the YTH2 was designated 

NIPP1-T. While Nek2A-T derives from an alternative 3’splice-site of the pre-mRNA, the 

NIPP1-T results from excision of part of exon 7 (Fig. III.7 and III.14). NIPP1 was 
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originally identified in the particulate fraction of bovine thymus nuclei. Subsequent studies 

showed that the full length NIPP1 cDNA encoded a protein of 38.5 kDa that was extremely 

sensitive to proteolysis. NIPP1 is perhaps the most potent inhibitor of PP1 thus far 

identified, with a Ki in the picomolar range. The protein is largely nuclear in its 

localization and is ubiquitously expressed in mammalian tissues (Van Eynde et al., 1995). 

Although NIPP1, like I-1 and DARPP-32, possesses the consensus PP1-binding motif, it is 

more like I-2 in its action, being a more potent phosphatase inhibitor in the 

dephosphorylated state. Moreover, NIPP-1, like I-2, forms a stable, inactive complex with 

PP1. Following phosphorylation of NIPP1 by PKA on a site within the PP1-binding motif, 

its activity as a PP1 inhibitor is dramatically reduced. NIPP1 is phosphorylated at Ser178 

and Ser199 by PKA and on Thr161 and Ser204 by CK2 (Vulsteke et al., 1997). Both 

kinases reduce the affinity of NIPP1 for PP1 and increase phosphatase activity. The effects 

of the two kinases in activating the NIPP1/PP1 complex are synergistic but do not cause 

dissociation of the complex. NIPP1 phosphorylation may prevent its re-association with 

PP1. NIPP1 contains a RNA-binding motif also found in the bacterial RNA processing 

enzyme, Ard-1. The extensive sequence homology between mammalian Ard-1 and the C-

terminus of NIPP1 suggests that the two proteins are derived from the same gene through 

alternative splicing (Vulsteke et al., 1997). Recombinant NIPP1 was shown to bind to 

RNA and its C-terminal fragment was shown to possess endonuclease activity. While 

RNA-binding was not affected by the presence of PP1, full length NIPP1 did not degrade 

RNA (Jagiello et al., 1997). 

Although several alternatively spliced variants of NIPP1 are known (Van Eynde et 

al., 1999), NIPP1-T appears to be a novel testis-specific variant that uses the same 

polyadenylation site as NIPP1�. At the protein level, it differs from the latter in that it has a 

longer C-terminal extension. It is interesting to note that whereas NIPP1� possesses the 

sequence –KKPTP- in the spliced domain (a proline directed kinase consensus acceptor 

site), a related sequence also occurs in NIPP1-T (-NAPSP-). Both motifs are located 

exactly 4 amino acids from the C-terminus of the two proteins. In this case, the distinct C-

terminal sequence of NIPP1-T could constitute a specific therapeutic target. 

The specificity of the interactions between PP1�1 or PP1�2 and the identified 

positives was confirmed by sequential transformation of yeast strain AH109 with the 

putative interacting proteins (Fig. III.12 and III.18). To this end the longest cDNAs 
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obtained for Nek2A (clone 25), Nek2A-T (clone 3Q) and NIPP1-T (273) were used. All 

interactions described in this chapter were confirmed by this method. Furthermore, the 

binding of PP1�2 to Nek2A and Nek2A-T was also verified by the blot overlay technique. 

Both proteins were expressed in E. coli and found to bind purified PP1�2 (Fig. III.11). 

Thus, both the previously known Nek2A isoform and the novel Nek2A-T and NIPP1-T 

variants appear to bind PP1�2 in vitro (blot overlays) and in vivo (yeast co-expression).  In 

order to evaluate whether the novel protein variants detected were truly testis-specific and 

produced by alternative splicing, Northern blot and RT-PCR analyses were also performed.  

The results obtained indicate that Nek2A-T expression is largely restricted to the testis 

(Fig. III.10). However, both Nek2A and Nek2A-T appear to be expressed in testis, since 

the RT-PCR performed using the indicated primers detected fragments of the expected 

length for both (Fig. III.9 and III.15). The probe used for NIPP1-T was also expected to 

hybridize with NIPP1. Thus, only a single message was detected in rat tissues, being 

particularly abundant in testis, heart and brain. As expected, two mRNAs were detected in 

human testis, corresponding to NIPP1 and NIPP1-T (Fig. III.16 and III.17). Therefore, it 

appears that both Nek2A-T and NIPP1-T are new and testis-specific alternatively spliced 

variants.  Although Nek2A-T and NIPP1-T were shown to interact with both PP1� 

isoforms, the significance of these observations remains to be fully clarified.  Since sperm 

were found to express almost exclusively the PP1�2 isoform, the possible interaction of 

Nek2A-T and NIPP1-T with PP1�1 would only be expected to have physiological 

relevance in other testis cell types. 

Some of the positive clones encoded known PP1 binding proteins joined out of 

frame to GAL4-BD (Table III.3, WRF). We would therefore expect a totally different 

reading frame to code for an artificial protein that might not bind PP1. This was the case, 

for example, with well known PP1 binding proteins PPP1R13A and PP1R13B. Thus, the 

fact that several bonafide PP1 regulators were fused to the GAL4-BD in a wrong reading 

frame strongly suggested that the correct protein might still be produced by a well 

established mechanism in yeast, called programmed translational frameshift or 

translational recoding (Shah et al., 2002). Some specific sequences, 7 nucleotides long, are 

known to induce ribosomal frameshifting. This is a directional and reading frame specific 

event. Several programmed frameshift heptanucleotides have been identified: CUU-AGG-

C, CUU-AGU-U and GGU-CAG-A (Shah et al., 2002).We concluded that translational 
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recoding may be a feasible explanation for these observations. Moreover, this mechanism 

could be enhanced because of the use of selective media without some amino acids. So, the 

yeast translation machinery might be using alternative codons favouring the existing amino 

acids. 

The majority of the recovered clones encoded partial cDNA sequences (Table III.3) 

but each shows specific interaction with PP1 in the yeast two hybrid system. The large 

number of totally new putative PP1 binding proteins opens new fields of study. All the 

uncharacterized proteins need to be further analysed in order for their functions to be 

identified, allowing new roles to be attributed to PP1, not only in sperm motility but in 

other cellular functions. In what concerns PP1�2 and sperm motility, this screen provided a 

large amount of data that will be useful in our search for testis-specific PP1 binding 

proteins that may be used as targets for therapeutic intervention at the level of male 

infertility or contraception. 
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IV SEARP – a novel PP1 interacting protein 
 

IV.1 INTRODUCTION 

 

It is now well estabilished that PP1 occurs in cells in multi-component complexes 

with regulatory/targeting subunits that are responsible for controlling its activity and 

fulfilling its cellular potential. Some PP1 regulatory subunits are known to direct the 

catalytic subunit to specific cellular loci (Ouimet et al., 1995; Allen et al., 1997), 

restricting the action of the catalytic subunit to the substrates expressed there. Thus, such 

regulatory subunits can be highly specific to particular subcellular compartments (Ouimet 

et al., 1995) and control a much more restricted number of cellular events than the 

phosphatase catalytic subunit itself.   

Until now more than 50 different PP1 regulatory subunits have been identified and 

were shown to be responsible for the involvement of PP1 in a number of diverse cellular 

functions from protein synthesis to regulation of the cell cycle, muscle contraction, 

glycogen metabolism, synaptic plasticity, gene transcription, etc (Cohen, 2002). The 

overall picture is summarized in Table IV.1, listing the classification of PP1 R-subunits. 

 

Table IV.1: Classification of the R subunits of PP1. 

Regulatory subunit General Function Reference 
I-1 PPP1R1A (F. L. Huang and W. Glinsmann, 1976) 

DARPP-32 PPP1R1B (Hemmings et al., 1984c) 

I-2 PPP1R2 

PP1 inhibitors 

 
(F. L. Huang and W. Glinsmann, 1976) 

GM (RGL, R3) PPP1R3A (Stralfors et al., 1985) 

GL (R4) PPP1R3B 
(Doherty et al., 1995; Moorhead et al., 

1995) 

R5(PTG) PPP1R3C (Doherty et al., 1996) 

R6 PPP1R3D 

Glycogen metabolism 

(Armstrong et al., 1997) 

Sds22 PPP1R7 Mitosis/Meiosis (Dinischiotu et al., 1997) 

NIPP-1 (Ard-1) PPP1R8 (Van Eynde et al., 1995) 

SIPP-1  (Llorian et al., 2004) 

PSF1  

RNA splicing 

(Hirano et al., 1996) 

Neurabin I PPP1R9A Neurite outgrowth, synapse morphology (MacMillan et al., 1999) 

Spinophilin (neurabin 

II) 
PPP1R9B 

Glutamatergic synaptic transmission, 

dendritic morphology 
(Allen et al., 1997) 

p99 (R111, PNUTS) PPP1R10 RNA processing or transport? (Allen et al., 1998) 
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Hox11  Cell cycle checkpoint (Kawabe et al., 1997) 

Inhibitor-3 (HCG-V) PPP1R11 Inhibits PP1 (Zhang et al., 1998) 

HCF  Transcription, cell cycle (Ajuh et al., 2000) 

MYPT1 (M110, MBS, 

M130) 
PPP1R12A (Alessi et al., 1992) 

MYPT2 (PP1bp55, 

M20-spliced form) 
PPP1R12B (Moorhead et al., 1998) 

p85 PPP1R12C (Tan et al., 2001) 

Phactr1  

Myosin/actin targeting 

(Allen et al., 2004) 

L5 ribossomal protein  (Hirano et al., 1995) 

RIPP1  
Protein synthesis? 

(Beullens et al., 1996) 

53BP2 (TP53BP2, p53-

binding protein 2) 
PPP1R13A Cell cycle checkpoint? (Helps et al., 1995) 

CPI-17 PPP1R14A Inhibits the myosin bound PP1 complex (Eto et al., 1997) 

PHI-2 PPP1R14B (Eto et al., 1999) 

PHI-1  (Eto et al., 1999) 

KEPI  

Inhibits PP1 

(Liu et al., 2002) 

GBPI-1  
Inhibits PP1 when phosphorylated 

(Brain/Stomach) 
(Liu et al., 2004) 

GBPI-2  
Inhibits PP1 when phosphorylated 

(Testis) 
(Liu et al., 2004) 

I-4   (Shirato et al., 2000) 

GADD34 PPP1R15A Protein synthesis (Connor et al., 2001) 

CReP PPP1R15B Protein synthesis (Jousse et al., 2003) 

AKAP 149  
Nuclear envelope reassembly 

(dephosphorylation of B-type lamins) 
(Steen et al., 2000) 

NF-L  Synaptic transmission? (Terry-Lorenzo et al., 2000) 

AKAP-220  Coordination of PKA/PP1 signaling (Schillace et al., 2001) 

Yotiao  
Synaptic transmission (NMDA receptor 

ion channel activity) 
(Westphal et al., 1999b; Zhao et al., 1999) 

BH-protochaderin c  Neuronal cell-cell interaction (Yoshida et al., 1999) 

Rynanodyne receptor  Calcium ion channel activity? (Zhao et al., 1998) 

NKCCl  Cl transport (Darman et al., 2001) 

AKAP 350 (CG-NAP, 

AKAP450) 
 (Takahashi et al., 1999) 

Nek2  

Centrosomal function 

(Helps et al., 2000) 

Tau  Microtubule stability? (Liao et al., 1998) 

Bcl2  Apoptosis (Ayllon et al., 2001) 

RB  Cell cycle progression (Durfee et al., 1993) 

PRIP-1 (p130, PLC-L1)  Calcium signaling? (Yoshimura et al., 2001) 

PFK  Glycolisis? (Zhao and Lee, 1997b) 

PP1bp80  (Damer et al., 1998) 

MYPT3 PPP1R16A 
Myosin targeting 

(Skinner and Saltiel, 2001) 

I1PP2A(PHAPI)  (Katayose et al., 2000) 

I2PP2A(SET, PHAPII, 

TAF1�) 
 

Stimulation of PP1 and Inhibition of PP2A 
(Katayose et al., 2000) 

G-substrate  Inhibition of PP1 (Aitken et al., 1981) 
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Grp78  Unknown (Chun et al., 1994) 

NCLK  Activates PP1 (Agarwal-Mawal and Paudel, 2001) 

Myr8  Brain development (Patel et al., 2001) 

FAK  
PP1 dephosphorylates FAK in cells 

released from mitosis 
(Fresu et al., 2001) 

Herpes vírus �1 34.5 

protein 
 Inhibits protein synthesis (He et al., 1997) 

mGluR7b  Unknown (Enz, 2002) 

Histone H3  Mitosis (Hsu et al., 2000) 

Scapinin  
Associated with the nuclear nonchromatin 

structure 
(Sagara et al., 2003) 

14-3-3  sperm (Huang et al., 2004) 

Abbreviations: PTG, Protein targeting to glycogen; MYPT, myosin phosphatase targeting subunit; 

MBS, myosin binding subunit; NIPP, Nuclear inhibitor of PP1; PSF, polypyrimidine tract-binding 

protein associated splicing factor; PNUTS, phosphatase 1 nuclear targeting subunit; Hox11, 

Homeodomain transcription factor; HCF, host cell factor or human factor C1; RIPP1, ribosomal 

inhibitor of PP1; PHI, phosphatase holoenzyme inhibitor; KEPI, kinase-enhanced protein 

phosphatase type 1 inhibitor; GADD34; growth arrest and DNA damage protein; AKAP, A-kinase 

anchoring protein; NKCCl, Na-K-Cl cotransporter; Nek2; NIMA-related protein kinase; Rb, 

retinoblatoma protein; PRIP-1; phospholipase C-related inactive protein; PFK, 

Phosphofrutokinase; G-substrate, cGMP-dependent protein kinase substrate; Grp-78, glucose-

regulated protein, member of the HSP-70 family; NCLK, neuronal cdc2-like kinase; FAK; Focal 

adhesion kinase. The human genome nomenclature for the regulatory subunits that are only 

classified as PP1 regulators is indicated in column 2. PPP1R4, PPP1R5 and PPP1R6 have 

recently been re-classified as PPP1R3B, PPP1R3C and PPP1R3D.     

 

The cellular functions of several PP1 complexes are now well established although 

there are a number of interactions that have not yet been fully characterized. Most PP1 

regulatory subunits have a consensus binding motif but they do not exhibit any other 

sequence similarities that would allow their identification them by bioinformatic means. 

The methods that are used to identify PP1 regulators include the Yeast Tho Hybrid System, 

immunoprecipitation of PP1 complexes and the screening of expression libraries with PP1 

as probe. The known PP1 regulators can be classified into targeting or modulator subunits. 

Several PP1 targeting subunits can target PP1 to glycogen. These include GM, GL, R5 and 

R6 that possess a glycogen targeting domain (Doherty et al., 1996; Wu et al., 1996; 

Armstrong et al., 1997; Armstrong et al., 1998; Wu et al., 1998). Three novel proteins 

encoded in the human genome also have a similar domain (Ceulemans et al., 2002). GM 
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(124 kDa) is a G subunit that directs PP1 to glycogen particles and membranes of the 

sarcoplasmic reticulum in muscle (Hubbard and Cohen, 1993), GL (33kDa) directs PP1 to 

glycogen in liver (Cohen, 1989) and R5 (36kDa) is related to GL but is ubiquitously 

expressed (Doherty et al., 1995).  

MYPT1, MYPT2, MYPT3, p85 and phactr1 target PP1 to myosin/actin (Hirano et 

al., 1997; Johnson et al., 1997; Skinner and Saltiel, 2001; Tan et al., 2001; Allen et al., 

2004). Smooth muscle myosin phosphatase is composed of three subunits: PP1c and large 

(110kDa) and small (20kDa) noncatalytic subunits. The large subunit binds to myosin and 

to PP1. This subunit was called MYPT1 (myosin phosphatase target subunit 1) because it 

binds to myosin and to PP1c� activating it (Tanaka et al., 1998). The N-terminal sequence 

and the ankyrin repeats of MYPT1 are involved in PP1 binding. PKC phosphorylates 

Thr34, the residue that precedes the consensus PP1-binding motif, KVKF, in MYPT1 but 

this did not affect binding of the peptide to PP1c. Another phosphorylation site, within the 

ankyrin repeat, diminished the stimulatory effect of MYPT1 on the phosphorylated 20kDa 

myosin light chain phosphatase activity of PP1c (Toth et al., 2000a). In a yeast two hybrid 

screen using PP1 as bait a new homolog of the MYPT family, MYPT3 (Skinner and 

Saltiel, 2001), was found to interact with PP1. The N-terminal region of MYPT3 consists 

of a consensus PP1-binding motif and multiple ankyrin repeats. MYPT3 is distinguished 

from the other members of the MYPT family by its molecular mass of 58kDa and a unique 

C-terminal region that contains several potential signaling motifs and a CaaX prenylation 

site. Endogenous PP1 from 3T3-L1 lysates specifically interacts with MYPT3. 

Additionally, purified PP1 was inhibited by recombinant GST-MYPT3 using 

phosphorylase a, myosin light chain and myosin substrates in vitro (Skinner and Saltiel, 

2001). 

PP1 can also be targeted to particular subcellular locations by interacting with A-

kinase-anchoring proteins (AKAPs) that keep PKA and PP1 in close proximity (Schillace 

and Scott, 1999). These include AKAP-149, AKAP-220, Yotiao and AKAP-350 

(Takahashi et al., 1999; Westphal et al., 1999b; Steen et al., 2000; Schillace et al., 2001). 

For example, AKAP350 (Takahashi et al., 1999) is a scaffold protein that assembles 

several protein kinases and protein phosphatases, including PP1, at the centrosomes 

throughout the cell cycle and at the Golgi during interphase.  



Characterization of the PP1 Interactome from Human Testis Chapter IV  
 

Centro de Biologia Celular 
Universidade de Aveiro 

145 

There are several PP1 regulators that are involved in RNA processing. L5 (Hirano 

et al., 1995) is part of the 60S ribosomal subunit and localizes in both the cytoplasm and 

the nucleus of eukaryotic cells, accumulating particularly in the nucleoli. L5 is known to 

bind specifically to 5S rRNA and is involved in nucleocytoplasmic transport of this rRNA 

(Rosorius et al., 2000).  L5 was first isolated from rat liver ribosomes and activated 

phosphatase activity of a myosin-bound phosphatase and the isolated type 1 catalytic 

subunit using phosphorylated myosin light chains and phosphorylase a as substrates. In 

addition, it was shown that phosphatase sedimented with ribosomal subunits containing L5 

but did not sedimented with those deficient in L5. These data indicated that L5 binds to 

PP1 and may act as a target molecule for PP1 in ribosomal function or other cell 

mechanisms. PSF (polypirimidine tract-binding protein associated splicing factor) (Hirano 

et al., 1996) was found to interact with and inhibit PP1�. PSF contains the consensus PP1-

binding motif and may therefore act as a PP1 target molecule in the spliceosome (Hirano et 

al., 1996). RIPP-1 (ribosomal inhibitor of PP1) (Beullens et al., 1996) is a 23 kDa basic 

polypeptide that is complexed with PP1 in rat liver ribosomes. In vitro, RIPP-1 is a potent 

inhibitor of PP1 (Ki=20nM) with some substrates, (phosphorylase a and myelin basic 

protein) but a much poorer inhibitor (Ki=400nM) with other substrates (histone IIA and 

casein). RIPP-1 inhibits PP1-mediated dephosphorylation of ribosomal S6, a component of 

the 40S ribosomal subunit and suggests a role in the control of protein synthesis (Beullens 

et al., 1996). PNUTS (Kreivi et al., 1997; Allen et al., 1998) was found to bind PP1 in a 

two hybrid assay. PNUTS is widely expressed in human tissues and shows a punctate 

nucleoplasmic staining with additional accumulation within the nucleolus. The C-terminus 

of PNUTS contains seven RGG RNA-binding motifs, and a putative zinc-finger domain. 

Recombinant PNUTS suppresses the phosphorylase phosphatase activity of PP1 and the 

canonical PP1-binding motif (residues 396-401) is unusual in that the phenylalanine is 

replaced by a tryptophan. Recently, PNUTS was shown to inhibit PP1 activity towards the 

retinoblastoma protein (Rb) (Udho et al., 2002). Also NIPP1 targets PP1 to the splicing 

machinery (Jagiello et al., 2000). This regulator was discussed in the previous chapter.  

Some PP1 binding proteins are brain specific. Cyclic GMP and cGMP-dependent 

protein kinase (PKG) mediate several of the actions of nitric oxide in the brain (Wang and 

Robinson, 1997). A specific substrate for PKG, termed G substrate (Hall et al., 1999), is 

highly expressed in Purkinje cells of the cerebellum. Purified recombinant G substrate has 
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recently been shown to be an inhibitor of PP1. The inhibition was dependent on 

phosphorylation by PKG (Hall et al., 1999). Despite its structural similarity to DARPP-32, 

which is highly specific for PP1, recombinant G substrate inhibits PP2A more effectively 

than PP1. Phosphorylation of G substrate may represent a novel pathway for regulation of 

neural PP1 and PP2A in response to nitric oxide production. Myr8 myosins comprise a 

new class of myosins that have been designated class XVI. The head domain contains a 

large N-terminal extension composed of multiple ankyrin repeats implicated in mediating 

an association with PP1α and γ1. The structural features and restricted expression patterns 

suggest that members of this novel class of unconventional myosins comprise a mechanism 

to target selectively the PP1 in developing brain (Patel et al., 2001). Neurofilament-L (NF-

L), a 70kDa membrane-bound protein, was identified as a PP1 binding protein in bovine 

brain cortex plasma membranes. Bovine NF-L, at nanomolar concentration, inhibited the 

phosphorylase phosphatase activity of rabbit skeletal muscle PP1c but not the activity of 

PP2A. PP1 binding to the bovine NF-L was mapped to the head region. NF-L may target 

the functions of PP1 in membranes and cytoskeleton of mammalian neurons (Terry-

Lorenzo et al., 2000). NCLK (neuronal Cdc2-like protein kinase) a heterodimer of Cdk5 

and the regulatory p25 subunit binds PP1 through Cdk5. In brain extracts PP1/I-2 and 

NCLK are associated within a 450kDa complex suggesting that NCLK is one of the PP1/I-

2 activating kinases in mammalian brain. In vitro NCLK phosphorylates I-2 on Thr72 and 

activates PP1/I-2 in an ATP/Mg-dependent manner, just like GSK3 (Agarwal-Mawal and 

Paudel, 2001). Neurabin I is a brain-specific actin-binding protein that binds PP1 and 

inhibits its activity. Phosphorylation of recombinant GST-neurabin I (residues 318-661) by 

PKA significantly reduced its binding to PP1. These findings identify a signaling 

mechanism involving the regulation of PP1 activity and localization mediated by the 

cAMP pathway (McAvoy et al., 1999). Dendritic spines receive the vast majority of 

excitatory synaptic contacts in the mammalian brain and are presumed to contain 

machinery for the integration of various signal transduction pathways. PP1 is greatly 

enriched in dendritic spines and has been implicated in both the regulation of ionic 

conductance and long-term synaptic plasticity. A novel PP1 binding protein, spinophilin 

(neurabin II), was identified by the yeast two hybrid approach that is a potent modulator of 

PP1 enzymatic activity in vitro. Spinophilin has the properties expected of a scaffold 

protein localized to the cell membrane. Spinophilin represents a novel targeting subunit for 
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PP1 which directs the enzyme to those substrates in the dendritic spine compartment, e. g., 

neurotransmitter receptors, which mediate the regulation of synaptic function by PP1 

(Allen et al., 1997). PP1 is distributed in many regions of neurons, in addition to dendritic 

spines where it is target by spinophilin, suggesting the existence of multiple targeting 

proteins (Ouimet et al., 1995). PP1 is associated with neurofilaments. As phosphorylation 

of neurofilament proteins is associated with depolymerization, neurofilament-associated 

PP1 may regulate neurofilament stability. PP1c also associates with brain microtubules 

where it appears to be tethered by the microtubule-associated protein tau. Tau acts as 

targeting protein that bridges PP1 to microtubules and can also be a substrate for the 

phosphatase (Liao et al., 1998).  

The protein kinase Nek2 (Fry et al., 1998b) targets PP1 to the centrosomes and it 

was extensively discussed in Chapter III.   Regulatory subunits that do not target PP1 to 

any particular location may instead act on its specificity to certain substrates.  For instance, 

RB (retinoblastoma) interacts with many cellular proteins in complexes potentially 

important for its growth-suppressing function (Durfee et al., 1993). A yeast two hybrid 

screen using RB as bait was performed and PP1α2 was found to interact with it. PP1α2 

differs from the originally defined PP1α isoform by an amino-terminal 11 amino acid 

insert. PP1� isoforms preferentially bind the hyperphosphorylated form of RB. Cell cycle 

synchrony experiments revealed that this association occurs from mitosis to early G1. 

More recent studies have shown that PP1 is associated with the direct dephosphorylation of 

RB while PP2A is involved in pathways regulating G1 cyclin-dependent kinase activity 

(Yan and Mumby, 1999). The p53 binding protein (p53BP2) (Helps et al., 1995) was 

identified as a protein interacting with PP1 also in a yeast two hybrid screen. The p53BP2-

PP1 complex was stable at NaCl concentrations that dissociate the p53-p53BP2 complex, 

and the binding of PP1 and p53 to p53BP2 was found to be mutually exclusive. The region 

required for interaction with PP1 was shown to be contained within amino acids 297-431 

of p53BP2, which includes two ankyrin repeats. The phosphorylase phosphatase activity of 

PP1 was inhibited by p53BP2 at nanomolar concentrations. These results suggest that PP1 

may be involved in dephosphorylation and regulation of p53 through interaction with 

p53BP2 (Helps et al., 1995). Bcl-2 was also found to interact with PP1α and Bad. Bcl-2 

depletion decreased phosphatase activity and association of PP1α and Bad. Bcl-2 contains 
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the PP1-binding motif RIVAF. So Bcl-2 seems to target PP1 to Bad, directly involving 

PP1 in apoptosis (Ayllon et al., 2001). 

Most PP1 inhibitor proteins are thermostable inhibitors of low molecular mass. The 

existence of such a high number of inhibitor proteins (I-1, DARPP-32, I-2, I-3, CPI-17, 

PHI-2, PHI-1, I-4, I1PP2A, I2PP2A) indicates that the activity of free PP1 catalytic subunit 

must be kept under strict control.  

The role of I-1  in regulating PP1 function has been investigated in many different 

physiological settings: hormonal control of glycogen metabolism, synaptic plasticity 

controlled by neurotransmitters, growth of pituitary tumor cells and the control of muscle 

contraction (F. L. Huang and W. H. Glinsmann, 1976). Some but not all hormones that 

elevate intracellular cAMP activate I-1. Hormones that activate I-1 induce much larger and 

more rapid changes in signal transduction pathways transduced by PP1 substrates. 

Hormones, like adrenalin, which activate PKA result in increased phosphorylation and 

inactivation of glycogen synthase in mammalian skeletal muscle. This activation is not due 

to the direct action of PKA on glycogen synthase. Although PKA can phosphorylate and 

inactivate glycogen synthase in vitro, adrenalin promotes the phosphorylation of glycogen 

synthase at serine residues that are not PKA targets (Poulter et al., 1988). Moreover, the 

protein kinase, GSK3, that phosphorylates these serines is itself not activated by PKA. So, 

it was determined that the mechanism for enhanced glycogen synthase phosphorylation 

was the PKA-mediated activation of I-1 and the consequent inhibition of PP1 (Nakielny et 

al., 1991). This revealed a new mechanism for hormone action in that PP1 modulation via 

I-1 mediated cAMP regulation of proteins that are substrates for kinases other than PKA. 

Other hormones, such as insulin, result in the dephosphorylation and activation of 

glycogen synthase. Numerous studies have reported that insulin activates PP1 in insulin-

sensitive cells (Chan et al., 1988). In contrast to GM, some of the G-subunits present in 

other tissues are not subject to regulation by insulin (Brady et al., 1997). This makes the 

role of I-1 in hormonal control of glycogen metabolism even more important in these 

tissues.  

Changes in synaptic transmission elicited by prior neuronal activity have been 

extensively studied in the hippocampus as a potential model for learning and memory. 

Activity-dependent enhancement of synaptic transmission is seen as long term potentiation 

or LTP. Other stimuli depress the functions of hippocampal synapses leading to long term 
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depression or LTD. Several protein kinases, including CaM-kinase II, PKC (Malinow et 

al., 1989) and fyn (Grant et al., 1992), have been implicated in LTP. Recent studies have 

established that two protein phosphatases, PP1 and PP2B, act in tandem to regulate LTD 

(Mulkey et al., 1994). I-1 is highly expressed in the hippocampus and functions as the link 

between PP2B and PP1. LTP and LTD are both activated by the excitatory 

neurotransmitter glutamate, acting via the second messenger calcium. A single second 

messenger mediates such opposing physiological effects because of the different calcium 

sensitivities of PP2B and CaM-kinase II in neurons. Low calcium levels activate PP2B and 

induce LTD, while higher concentrations of calcium activate CaM-kinase II which is 

required to trigger LTP. Thus, the current model is that LTP-generating stimuli result in the 

activation of both CaM-kinase II and calcium/calmodulin-stimulated adenylyl cyclase. The 

role of cAMP in the LTP pathway is to activate I-1 and suppress PP1 activity which 

reverses the actions of CaM-kinase II. Hence, I-1 functions as the gatekeeper which 

determines whether the neuron will transition from early to intermediate or late phases of 

LTP. In contrast to LTP, LTD results from the small influx of calcium which is unable to 

activate either CaMKII or adenyl cyclase, and the predominant signal transducer for LTD 

is PP2B. 

The β-adrenergic agonist isoproterenol has a positive ionotropic effect in the heart. 

Isoproterenol increases I-1 phosphorylation and results in the inhibition of PP1 activity in 

the myocardium (Neumann et al., 1991). This decrease in PP1 activity enhances cardiac 

contractility by preventing the dephosphorylation of proteins such as the Na/K-ATPase, 

phospholamban, troponin I and voltage sensitive calcium channels which are all involved 

in maintaining the contractile state of heart muscle (Lindmann and Watanabe, 1989). On 

the other hand, smooth muscle PP1 is tightly bound to myosin and is the primary myosin 

phosphatase (Chisholm and Cohen, 1988). Dephosphorylation of myosin light chain results 

in the relaxation of smooth muscle. Thus, hormones such as epinephrine that increase 

intracellular cAMP and lead to I-1 phosphorylation promote the relaxation of smooth 

muscle. This paradox was resolved by the finding that smooth muscle myosin light chain 

kinase (MLCK) is phosphorylated at an inhibitory site in response to cAMP. The 

dephosphorylation of MLCK at this site is also mediated by PP1. Thus, it has been 

proposed that hormonal activation of I-1 leads to the predicted inhibition of PP1 that acts 

on MLCK. MLCK is inactivated and smooth muscle relaxation occurs. Unlike CaM-kinase 
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II which is inactivated by PP1, MLCK requires PP1 activity to remain active. So, I-1 

functions in opposing ways to control protein kinases in neurons and smooth muscle. This 

model also predicts that the myosin bound PP1 is not regulated by I-1. This may be 

consistent with the presence of the common PP1-binding motif in I-1 and the 110kDa 

myosin-targeting subunit of PP1 (MYPT1), see below. Alternatively, the interplay between 

I-1, the myosin and the MLCK phosphatases may modulate the rate of protein 

phosphorylation and dephosphorylation that set the contractile tone of the smooth muscle.      

DARPP-32 (dopamine and cAMP-regulated phosphoprotein) (Hemmings et al., 

1984c) although originally identified by its enhanced phosphorylation in response to 

dopamine, is activated by many hormones and neurotransmitters that modulate cAMP 

levels (Snyder et al., 1992). DARPP-32 shows a more complex mode of regulation than I-

1. For instance, DARPP-32 is phosphorylated in vivo by both PKA and casein kinase I. 

Phosphorylation by casein kinase I impairs the turnover of phosphate at the activating Thr-

34 site (Desdouits et al., 1995b). Indeed, two different phosphatases, PP2B acting on 

Thr34 and PP2C dephosphorylating the casein kinase I sites, may regulate DARPP-32 

function. In brain, dopamine and glutamate have antagonic effects on the excitability of 

neurons, possibly mediated by their opposing effects on DARPP-32. Dopamine acting via 

D1 receptors activates adenyl cyclase, and through PKA, activates DARPP-32 (Walaas et 

al., 1983). Glutamate on the other hand, working through NMDA receptors, increases 

intracellular calcium that activates PP2B and reverses DARPP-32 activity. DARPP-32 also 

appears to be a critical component of the control of salt balance in the mammalian kidney. 

Use of DARPP-32 phosphopeptides showed that PP1 inhibition increased the 

phosphorylation of Na/K-ATPase. This resulted in increased sodium excretion as the 

ATPase no longer pumped sodium from the urine back into the blood stream. Vasodilation 

occurs as water flows into the kidney to maintain the ion gradient (Aperia et al., 1991).   

DARPP-32, but not I-1, is present in 3T3-L1 adipocytes and in these cells it is required for 

adipogenesis. Active DARPP-32 maintains low PP1 activity in differentiated fat cells and 

is essential for insulin to stimulate PP1 activity and facilitate triglyceride biosynthesis 

(Brady et al., 1997). cAMP- mediated activation of DARPP-32 may be critical for 

amplifying the phosphorylation events that lead to activation of hormone-sensitive lipase 

and enhanced lipolysis. 
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I-2 (F. L. Huang and W. H. Glinsmann, 1976) forms a stable and inactive complex 

with PP1c. This inactive complex was isolated as an ATP-Mg-dependent phosphatase 

activity which remained inactive until incubated with ATP-Mg. Activation of the latent 

complex is accompanied by the phosphorylation of I-2 on Thr-72 by GSK3. I-2 is also 

phosphorylated on three serines by casein kinase II (CK2). Phosphorylation by CK2 does 

not alter I-2 activity but greatly facilitates the subsequent phosphorylation by GSK3 

(DePaoli-Roach, 1984; Holmes et al., 1986b). The activation cycle for the ATP-Mg-

dependent phosphatase is complicated and controversial. The fundamental aspect of this 

cycle is that I-2 phosphorylation by GSK3 promotes a conformational change in the PP1/I-

2 complex which does not by itself activate the enzyme. The slow auto-dephosphorylation 

of I-2 correlates best with the increase in PP1 activity. Throughout this process I-2 remains 

bound to PP1 and in a longer time frame the complex relaxes back to its original inactive 

conformation. Recent studies show that multiple domains mediate the rapid and reversible 

inhibition of PP1 and the slower inactivation to the stable complex that can be reactivated 

by GSK3 (Park and DePaoli-Roach, 1994). The active PP1/I-2 complex can itself be 

inhibited by addition of exogenous I-2. In vitro studies suggest that I-2 interacts with 

denaturated PP1 to promote a rapid and effective refolding of this protein and yield an 

active enzyme. According to this idea recombinant PP1 behaves much more like the native 

enzyme after incubation with I-2 and reactivation by GSK3 (Alessi et al., 1993; Tung et 

al., 1995; MacKintosh et al., 1996). This led to the proposal that I-2 might be acting as a 

chaperone for PP1. This hypothesis may also be consistent with preliminary reports that 

overexpression of I-2 in mammalian cells does not inhibit cellular PP1 activity but in fact 

elevates the cellular content of PP1c. Studies with Glc8, the yeast homologue of I-2, came 

to a more complex conclusion, suggesting that under different circumstances, Glc8 was 

either an inhibitor or an activator of yeast PP1 (Tung et al., 1995). So, despite extensive 

studies, the functions of I-2 remain elusive. Perhaps the most intriguing property of I-2 is 

that its protein and mRNA levels fluctuate during the cell cycle, peaking twice, at S phase 

and mitosis (Brautigan et al., 1990). More recent studies used I-2 fused to the green 

fluorescent protein to show that I-2 was cytosolic during G1 and translocated to the 

nucleus in S phase (Kakinoki et al., 1997). As I-2 localization failed to correlate with PP1 

distribution in cells, this has raised questions about I-2’s role as a PP1 regulator, but no 

other functions have been described for I-2. However, Brautigan and coworkers, 
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discovered that I-2 is concentrated in the nucleus of cells cultured at low densities, while 

cells growing at high density excluded I-2 from the nucleus (Leach et al., 2003). This 

change in I-2 localization may direct I-2 to different forms of PP1 or change the 

localization of PP1 in response to cell-cell contacts at high density. 

In testis and sperm a few PP1 regulators have been identified. Indeed, the only 

physiological role proposed for I-2 is in the control of sperm motility. The testis-specific 

isoform PP1γ2 forms an inactive complex with an I2-like activity. The increased PP1 

activity seen in nonmotile immature sperm was accredited to an elevation in GSK3 activity 

which activates the PP1/I-2 complex. Incubation of immature sperm with phosphatase 

inhibitors, okadaic acid and calyculin A, induced motility (Vijayaraghavan et al., 1996), 

suggesting that I-2 inhibits PP1 activity in mature mammalian sperm to facilitate their 

motility. In this work we may have identified this I2-like activity, the I2-like protein, 

discussed in the previous chapter.     

Sds22 (Dinischiotu et al., 1997) is a regulatory polypeptide of PP1 that is required 

for the completion of mitosis in both fission and budding yeast. Renouf and coworkers 

(Renouf et al., 1995) reported the cDNA cloning of a human polypeptide that is 46% 

identical to yeast sds22. In S. cerevisiae, sds22 is largely a nuclear protein mostly present 

as a stable 1:1 complex with yeast PP1 (Glc7p). It was suggested recently (Peggie et al., 

2002) that sds22 functions positively with Glc7p to promote dephosphorylation of nuclear 

substrates required for faithful transmission of chromosomes during mitosis and that this 

role is at least partly mediated by effects of sds22 on the nuclear distribution of Glc7p. 

Interestingly, a new splice variant of sds22 is associated with PP1γ2 in rat testis (Chun et 

al., 2000). Bovine PP1γ2 was also found to bind sds22 (Huang et al., 2002) and both 

proteins were shown to be present in the spermatozoid tail and head. Therefore, 

mechanisms regulating sds22 binding to PP1γ2 are likely to be important in understanding 

the biochemical basis underlying development and regulation of sperm function. 

Recently,  a new PP1 testis specific regulator, GBPI-2 (gut and brain phosphatase 

inhibitor) was identified (Liu et al., 2004) that belongs to the PKC-potentiated PP1 

inhibitors (such as CPI, KEPI and PHI). A shorter mRNA encodes another isoform, GBPI-

1 that is expressed in brain, stomach, small intestine, colon and kidney. GBPI-1 inhibits 

PP1 only after phosphorylation by PKC. Interestingly when PKC-phosphorylated GBPI-1 

is phosphorylated by PKA it is unable to inhibit PP1. This new protein may be involved in 
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the integration of the PKC and PKA signal transduction mechanisms. It would be 

interesting to study the effect of GBPI-2 on PP1�2 activity in testis and its relation to 

sperm motility. 

For several targeting subunits there is a strong association with PP1 through the 

canonical PP1 binding motif allowing the formation of a weaker interaction with other 

regulator motifs that enhance binding or modulate PP1 activity and specificity. One of 

these other motifs are the ankyrin repeats that acts as additional contacts for the interaction 

with PP1. PP1 regulators that possess these domains include Myr8, MYPT1, MYPT3 and 

p53BP2. MYPT1 has seven ankyrin repeats and p53BP2 has four of these domains. 

Ankyrin repeats are motifs usually involved in protein/protein interactions. In the PP1 

binding partners this motifs are usually preceded by the RVxF PP1 binding motif.   

Interestingly, in the YTH1 screen a unique clone was identified encoding a 

previously unknown protein that possesses eight ankyrin repeats and other interesting 

features that attracted us for further studies. We named this protein SEARP (Six to Eight 

Ankyrin Repeat Protein). SEARP, although having been identified as a PP1�1 binding 

protein, also binds to PP1�2. Several studies were performed in order to describe SEARP’S 

localization, tissue distribution and possible function in the human testis and sperm 

motility. SEARP is present in a variety of tissues, mainly in testis. There are two splice 

variants of SEARP, one in testis and another in other tissues. The levels of SEARP mRNA 

are amazingly high in testis when compared to other tissues. Immunolocalization studies 

revealed that SEARP in present in the cell cytoplasm and is present throughout 

spermatogenesis and spermiogenesis.   

 

IV.2 MATERIALS AND METHODS 
 

For the complete composition of all reagents, media and solutions used, see the 

list presented in Appendix I. All reagents were cell culture grade or ultrapure. 

 
IV.2.1 Tissue preparation 

 

Rat tissues were obtained from sacrificed animals and immediately frozen on dry 

ice. Frozen rat tissues were resuspended in boiling 1%SDS and sonicated for 30sec. 

Human testis samples were obtained via the kind efforts of  Dr. Jorge Oliveira (IPO, Porto) 
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and processed in the same way as rat tissues. Testes from mature bulls with intact tunica 

were obtained from a local slaughter house and spermatozoa were isolated from caput and 

caudal epididymis (Fig. IV.1). Bovine testes were treated as previously described for rat 

testis for immunoblot analysis. Human semen samples were collected from healthy 

volunteer adult men and had an average sperm concentration of 2.2x108cells/ml (range: 12-

440x106), and an average 62% motility (range 31-85%). The average volume was 2.7ml 

(range 1.5-3.5ml). Samples were washed and processed for preparation of sperm sonicates 

(in boiling 1%SDS), immunoprecipitation (see below), immunocytochemistry (see below), 

or directly mounted on glass slides for motility video capture. 

 

 
Figure IV.1: Adult bovine testis (left) and epididymis (right). Corpus (1), caput (2) and caudal (3) 

sections of the epididymis are indicated.  

 
IV.2.2  Immunoprecipitation 

 

Fresh rat testis (1-10mg) were lysed in 100µl of lysis buffer (see Appendix) for 

15min on ice and sonicated for 30sec. The lysates were precleared with 25µl of Protein A 

Sepharose slurry (Pharmacia) for 1h at 4ºC with agitation. After centrifuging the sample 

for 1min at 4ºC at 10,000g, the supernatant was transferred to a new tube and 25µl of 

Protein A Sepharose slurry and the primary antibody were added. The mixture was 

incubated overnight at 4ºC with agitation. For the anti-PP1�2 antibody 25µl were used for 

10mg of rat testis and 5µl of anti-PP1� or 5µl of anti-PP1� were used for 1mg of rat testis; 

25µl of pre-immune serum were used with 10mg of rat testis homogenate as a negative 

control. The mixture was then centrifuged for 1min at 4ºC at 10,000g and the pellet washed 

4 times for 15min with 500µl of 50mM Tris-HCl (pH8.0), 120mM NaCl. Finally, 2 washes 
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were performed with 50mM Tris-HCl (pH8.0). The pellet was ressuspended in 100µl of 

electrophoresis buffer (loading buffer for SDS-PAGE of the immunoprecipitation with 

1mg of testis or re-hydratation solution for 2D electrophoresis of the immunoprecipitation 

with 10mg of testis). Before loading, the samples for SDS-PAGE were boiled for 3min and 

briefly centrifuged to pellet the Sepharose beads; for the 2D gel analysis, the samples were 

only centrifuged, but not boiled. 

 For the immunoprecipitation of human sperm, the samples were centrifuged at 350g 

for 7min at RT and the pellet resuspended in 1ml of lysis buffer. 250µl of sperm 

homogenate (corresponding to 500mg of protein) were used for immunoprecipitation with 

2µl anti-PP1�2 or 2µl of anti-PP1�1 or 2µl of pre-immune serum or 2µl anti-SEARP (gift 

from P. T. Cohen), using the procedure described above. 

 
IV.2.3  2D Gel Electrophoretic Analysis 
 

Two dimensional gel electrophoresis combines protein separation by isoelectric 

focusing (IEF), in the first dimension, with SDS-PAGE in the second dimension. In a pH 

gradient, under the influence of an electric field, proteins migrate to the position in the 

gradient where their net charge is zero; proteins will separate according to their isoelectric 

point. The original method for the first dimension separation depended on carrier 

ampholyte-generated pH gradients in polyacrylamide tube gels. Because of the limitations 

of this method, an alternative technique for pH gradient formation was developed more 

recently: immobilized pH gradients (IPG) (Bjellqvist et al., 1982; Gorg et al., 1988). This 

type of gradient is created by covalently incorporating a gradient of acidic and basic 

buffering groups into a polyacrylamide gel at the time it is cast. 

The pelleted samples from the immunoprecipitation experiments were resuspended 

and properly solubilized in 100µl re-hydration buffer [lysis buffer supplemented with 0.5% 

of IPG buffer (in the 3-10 pH range), 0.7mg of DTT per strip and 0.002% of bromophenol 

blue]. Each sample thus prepared was pipeted into a strip holder and overlaid with dry strip 

cover fluid (Amersham Pharmacia). The strips were placed in the IPGphor electrophoresis 

equipment and the electrophoresis was started. The IEF program used was as follows: 
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Step Voltage (V) Duration (h) 

          Rehydration of the strip under voltage 30 12 

Ionic impurities removal 150 2 

Sample entry into the strip 500 1 

Protein movement 1000 1 

High definition isoelectric focusing 8000 2 

 

For the second dimension (SDS-PAGE), 11% gels were cast using a 14x16cm gel 

apparatus (Hoefer SE 600 system) and the strips from the first dimension were placed on 

top of the casting gel. Electrophoretic separation was performed at 90mA until the tracking 

dye reached the bottom of the gel. Proteins were later visualized by silver staining or 

transferred to nitrocellulose membranes for immunoblot with anti-SEARP and anti-PP1�2 

antibodies. 

 

IV.2.4  Silver Staining 

 

For increased sensitivity in protein detection the reversible silver staining procedure 

was used. In this technique the gel is impregnated with soluble silver ions and developed 

by treatment with formaldehyde, which reduces silver ions to form an insoluble brown 

precipitate. Proteins promote this reduction. Gels from the 2D electrophoresis were 

incubated overnight in fixing solution and then transferred into sensitizing solution for 30 

min. The gels were washed three times with distilled water and incubated for 20 min in 

silver solution, in the dark. Following two washes with distilled water to remove excess 

silver nitrate, the gels were placed in developing solution until protein bands appeared. The 

reaction was stopped with stop solution. Finally, the gels were washed with distilled water 

and scanned in a GS-710 calibrated imaging densitometer (Amersham-Pharmacia) and 

analyzed with Quantity One software (version 4.2.1). Alternatively, gels were destained 

with 100mM potassium ferricyanide for a few minutes, rinsed several times in water and 

then transferred to nitrocellulose membranes for immunoblot analysis. 
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IV.2.5  Cell Culture 

 

COS-7 cells were grown in Dulbecco’s modified Eagle’s medium (DMEM) 

supplemented with 10% heat-inactivated fetal calf serum (Invitrogen). Cells were grown in 

10cm plates or 6-well plates in a 5%CO2 humidified incubator at 37ºC and subcultured 

every 2-3 days.  

 

IV.2.6  Cell transfection  

 

For expression in COS-7 cells, the cDNA insert from clone 40Q was PCR-

amplified using high fidelity Pfu polymerase (Stratagene) with two different set of primers 

(40Q3P1/40Q3P2 and 40Q3P2/40Q3P3) and subcloned between the EcoRI and BamHI 

sites of the pEGFP vector, upstream of the enhanced green fluorescent protein (EGFP) 

cassette. The cDNA for PP1�2 was also subcloned into the EcoRI site of the pcDNA3.1 

expression vector (Invitrogen). Lipofectamine (Invitrogen) was used for transfection of 

COS-7 cells using the pcDNA3.1-PP1�2 expression vector, the pEGFP expression vectors 

encoding GFP-40Q or GFP-32240Q (starting at amino acid 322, Fig. IV.II), or GFP alone, 

as a control. One day before transfection, the cells were plated in DMEM with 10% fetal 

fetal calf serum so they were 90% confluent at the time of transfection. For each 

transfection sample in 6-well plates the DNA/Lipofectamine complexes were prepared as 

follows: 10µl of Lipofectamine were diluted in 500µl DMEM without serum or antibiotics 

and added to 1µg of plasmid DNA previously diluted in 500µl of the same medium. The 

mixture was allowed to complex for 20min at RT and then the 1ml sample was added to 

each well and gently mixed by rocking the plate back and forth. 20h after transfection, 

cells were harvested and replated in poly-L-ornithine coated cover slips placed in 6-well 

plates. After 4h, cells were washed 3 times with DMEM without serum and fixed for 

25min with 4% paraformaldheyde. After 3 washes with 1XPBS the cover slips were 

mounted on a slide with one drop of Fluoroguard. Cells were then visualized in an 

epifluorescence Olympus microscope.   
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IV.2.7  Immunocytochemistry  

 

COS-7 cells were fixed with 4% paraformaldehyde and washed with PBS as 

described above. Then were permeabilized with methanol for 2min and immediately 

washed with 1XPBS. After, cells were incubated with primary antibody diluted in 3%BSA 

in PBS (50µl) for 1h at RT (diluted 1:1000 for anti-PP1�2, or 1:250 for anti-SEARP). The 

primary antibody was removed by washing 3 times with 1XPBS and the secondary 

antibody placed over the cells for 1h at RT (the secondary antibody, Texas Red conjugated 

Goat Anti-Rabbit was diluted 1:300 according to the manufacturer’s instructions). After 

washing 3 times with 1XPBS the cover slips were mounted in one drop of Fluoroguard in a 

glass slide. Cells were visualized in an Olympus epifluorescence microscope.   

 The immunocytochemistry protocol used for spermatozoa was very similar to that 

described above. Briefly, bovine or human spermatozoa were resuspended in 1XPBS after 

centrifugation at 350g for 7min. Samples (500µl) were then plated in poly-L-ornithine 

coated cover slips placed in 6-well plates for 15min. The spermatozoa were then fixed with 

500µl of 4% paraformaldehyde, washed with 1XPBS and permeabilized with methanol for 

2min or 0.2%Triton for 7min. The spermatozoa were then treated for 

immunocytochemistry as described above.  

 

IV.2.8 Immunohistochemistry 

 

Adult mice were perfused with formaldehyde to fix all tissues. Testis were removed 

and submersed in formaldehyde overnight with agitation. The fixed testes were cut in 

slices and put in minicassettes. The tissue was then washed 6 times for 15min with 

30%ethanol and left overnight in 30%ethanol. Afterwards, the samples were processed 

according to the manufacturer’s instructions in a sample processor (Table IV.2). 
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Table IV.2: Paraffin embedding of fixed rat testes. 

Step Solution Time/h 
1 70%ethanol 1 
2 70%ethanol 1 
3 90%ethanol 1 
4 96%ethanol 1 
5 96%ethanol 1 
6 Toluene 1 
7 Toluene 1 
8 Toluene 1 
9 Paraffin 10 

10 Paraffin 4 
 

 The processed tissue was mounted on paraffin and stored at -20ºC. The tissue was 

sliced into 3µm sections using a microtome (Leica). Sections were then stretched on a 

histological water bath with gelatine (Sigma) at 37ºC, put on a glass slide and dried for 

30min in a 60ºC incubator. To check tissue integrity, samples were stained with 

haematoxylin and eosin as illustrated in Table IV.3. 

 

Table IV.3: Haematoxylin and eosin staining procedure. 

Step Solution Time/min 
1 Xylene 15 
2 Xylene 10 
3 96%ethanol 10 
4 96%ethanol 10 
5 70%ethanol 10 
6 H2O 10 
7 Haematoxylin 2-10 
8 H2O 5 
9 Ethanol-HCl 5-30sec 
10 96%ethanol 10 
11 H2O 10 
12 Eosin 2-6 
13 70%ethanol 5 
14 90%ethanol 5 
15 96%ethanol 10 
16 96%ethanol 10 
17 Xylene 5 
18 Xylene 5 
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 After this procedure the tissue was mounted in DPX and visualized in a phase 

contrast microscope. After verification of tissue integrity, immunohistochemistry was 

performed (Table IV.4): 

 

Table IV.4: Immunohistochemistry method. 

Step Solution Time/min 
1 Xylene 10 
2 Xylene 10 
3 96%ethanol 5 
4 90%ethanol 5 
5 70%ethanol 5 
6 H2O 5 

7 0.04%pepsine in 
0.1M HCl pH2.0, 37ºC 30 

8 1XPBS 5 
 

 The samples were then treated for 5min with a solution to block endogenous 

peroxidase activity (160ml 1XPBS, 20ml methanol, 20µl 30%H2O2). This step was 

omitted for immunofluorescence. After three 5min washes with 1XPBS, samples were 

incubated for 1h with serum of the animal of the secondary antibody diluted 1:30 in 

1XPBS, to block non-specific background. Afterwards, the samples were incubated with 

the primary antibody diluted in 1XPBS for 1h at RT, or overnight at 4ºC. The primary 

antibodies used and their working dilutions are summarized below (Table IV.5). 

 

Table IV.5: Primary antibody dilution. 

Antibody Dilution 
Preimmune serum 1:1000 
Anti-PP1�2 1:500 
Anti-PP1� 1:500 
Anti-SEARP 1:250 

 

 Following three 5min washes with 1XPBS, the samples were incubated for 1h with 

secondary antibody diluted in 1XPBS, and washed again as before. If the secondary 

antibody was conjugated with peroxidase, a developing solution [198ml 1XPBS, 2ml DAB 

(diaminobenzine), 200ml 30%H2O2 solution, previously filtered with a 0.22µm filter], was 

left over the sample until a brown colour appeared (~10min). Samples were finally stained 

with haematoxylin (as described above) and mounted in DPX. If the secondary antibody 
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was conjugated with a fluorocrome (Cy3, cyanide dye), the sample was directly mounted 

with Fluoroguard and kept in the dark until visualization in the microscope. 

 

IV.3 RESULTS 
 

IV.3.1  SEARP sequence analysis 

 

Clone number 40Q, identified in YTH1, encoded a protein displaying interesting 

characteristics that warranted its further study. First, the clone was completely sequenced 

with the primers GAL4-AD, OLIGO40Q3, OLIGO40Q3/2, OLIGO40Q3/3 and 

OLIGO40Q3/4 (see Appendix). After complete insert sequencing and database searching it 

was concluded that the encoded protein was a completely new protein. When we first 

identified this clone it only existed in the database at the genomic level, mapping to 

chromosome 11. After a few months, a putative coding sequence (Gi: 21754395) was 

submitted containing part of our clone. This cDNA starts at position 964 below (Fig. IV.2), 

whereas the 40Q sequence starts at position 169 and is 2415 nt long: 

 
1 
1 
61 
21 
121 
41 
181 
61 
241 
81 
301 
101 
361 
121 
421 
141 
481 
161 
541 
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221 
721 
241 
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281 
901 
301 
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321 
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atgcccctggagggcaggcgacggccctgctgcctctccagccaagtggctggagtcggg 
 M  P  L  E  G  R  R  R  P  C  C  L  S  S  Q  V  A  G  V  G  
aggctggaaagagactccgagaaagtaccagcggaaggcggccgccgctacggcgattcg 
 R  L  E  R  D  S  E  K  V  P  A  E  G  G  R  R  Y  G  D  S  
cagggagtagcagacgaagacggtggccgccgcactagccaccacgtgtggaggataaac 
 Q  G  V  A  D  E  D  G  G  R  R  T  S  H  H  V  W  R  I  N  
ggtctacacggccattccggcgccgagtctagggaaagagttagcgacgacggggaaaga 
 G  L  H  G  H  S  G  A  E  S  R  E  R  V  S  D  D  G  E  R  
aaatgtgaagagagcgaccgccgctccagggtcgctgcaggaagcctaagtgcagacgcc 
 K  C  E  E  S  D  R  R  S  R  V  A  A  G  S  L  S  A  D  A  
ggcttctcccgcagtgacttgagaagggtcagtgaaaacctcggccactgccgcagcgtc 
 G  F  S  R  S  D  L  R  R  V  S  E  N  L  G  H  C  R  S  V  
tctagggagagagttaggggagatagtggccacagtcacagctgctcttgggagagagtt 
 S  R  E  R  V  R  G  D  S  G  H  S  H  S  C  S  W  E  R  V  
aggggagacagcaccttctgcagcagcgacgtgaattttagtgaagttggaggccaccaa 
 R  G  D  S  T  F  C  S  S  D  V  N  F  S  E  V  G  G  H  Q  
actaccgactccaggggaacagccagagaagaccgaggcctccgcctcagtggtccttgg 
 T  T  D  S  R  G  T  A  R  E  D  R  G  L  R  L  S  G  P  W  
gagggagtcagtgacattcgggacccgcgaactagtgacttcggggatagagtcagtgac 
 E  G  V  S  D  I  R  D  P  R  T  S  D  F  G  D  R  V  S  D  
gatcgcagtcgccgcttcagtggctcctgggagggagggagtgtcgaaggcggccacagc 
 D  R  S  R  R  F  S  G  S  W  E  G  G  S  V  E  G  G  H  S  
gttggtagttcttgggaggaagtaagtggagaccgcggctacgcagccagcgactcctct 
 V  G  S  S  W  E  E  V  S  G  D  R  G  Y  A  A  S  D  S  S  
ggtgtgagcggcagtgaagacgccagctaccgcttcagtggcttttgggagagagaaagt 
 G  V  S  G  S  E  D  A  S  Y  R  F  S  G  F  W  E  R  E  S  
gaagacgaaggtttccgctgcagcttctgggagagagcaagagaggaccttgggccccgt 
 E  D  E  G  F  R  C  S  F  W  E  R  A  R  E  D  L  G  P  R  
cctagtgacgacggagaagagggccgctgccgctgcagtggctcgtgggtgagagcaagt 
 P  S  D  D  G  E  E  G  R  C  R  C  S  G  S  W  V  R  A  S  
gaagaccgccgcagcatcaggggcctggactcaactcctccccagagtcggaggtgttgc 
 E  D  R  R  S  I  R  G  L  D  S  T  P  P  Q  S  R  R  C  C  
gccatgcccggggtggccaattcaggcccctccacttcctctagggagactgcaaacccc 
 A  M  P  G  V  A  N  S  G  P  S  T  S  S  R  E  T  A  N  P  
tgttccaggaagaaggtgcattttggcagcatacatgatgcagtacgagctggagatgta 
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 C  S  R  K  K  V  H  F  G  S  I  H  D  A  V  R  A  G  D  V  
aagcagctttcagaaatagtggtacgtggagccagcattaatgaacttgatgttctccat 
 K  Q  L  S  E  I  V  V  R  G  A  S  I  N  E  L  D  V  L  H  
aagtttacccctttacattgggcagcacattctggaagtttggagtgtcttcattggctg 
 K  F  T  P  L  H  W  A  A  H  S  G  S  L  E  C  L  H  W  L  
ctctggcatggagctgatatcacacacgtaacaacgagaggttggacagcatctcacata 
 L  W  H  G  A  D  I  T  H  V  T  T  R  G  W  T  A  S  H  I  
gctgcaatcaggggtcaggatgcttgtgtacaggctcttataatgaatggagcaaatctg 
 A  A  I  R  G  Q  D  A  C  V  Q  A  L  I  M  N  G  A  N  L  
acagcccaggatgaccggggatgcactcctttacatcttgctgcaactcatggacattct 
 T  A  Q  D  D  R  G  C  T  P  L  H  L  A  A  T  H  G  H  S  
ttcactttacaaataatgctccgaagtggagatcccagtgtgactgataagagagaatgg 
 F  T  L  Q  I  M  L  R  S  G  D  P  S  V  T  D  K  R  E  W  
agacctgtgcattatgcagcttttcatgggcggcttggctgcttgcaacttcttgttaaa 
 R  P  V  H  Y  A  A  F  H  G  R  L  G  C  L  Q  L  L  V  K  
tggggttgtagcatagaagatgtggactacaatggaaaccttccagttcacttagcagcc 
 W  G  C  S  I  E  D  V  D  Y  N  G  N  L  P  V  H  L  A  A  
atggaaggccaccttcactgtttcaaattcctagtcagtagaatgagcagtgcgacgcaa 
 M  E  G  H  L  H  C  F  K  F  L  V  S  R  M  S  S  A  T  Q  
gttttaaaagctttcaatgataatggagaaaatgtactggatttggcccagaggttcttc 
 V  L  K  A  F  N  D  N  G  E  N  V  L  D  L  A  Q  R  F  F  
aagcagaacattttacagtttatccagggggctgagtatgaaggaaaagacctagaggat 
 K  Q  N  I  L  Q  F  I  Q  G  A  E  Y  E  G  K  D  L  E  D  
caggaaactttagcatttccaggtcatgtggctgcctttaagggtgatttggggatgctt 
 Q  E  T  L  A  F  P  G  H  V  A  A  F  K  G  D  L  G  M  L  
aagaaattagtggaagatggagtaatcaatattaatgagcgtgctgataatggatcaact 
 K  K  L  V  E  D  G  V  I  N  I  N  E  R  A  D  N  G  S  T  
cctatgcataaagctgctggacaaggccacatagagtgtttgcagtggttaattaaaatg 
 P  M  H  K  A  A  G  Q  G  H  I  E  C  L  Q  W  L  I  K  M  
ggagcagacagtaatattaccaacaaagcaggggagagacccagtgatgtggcaaagagg 
 G  A  D  S  N  I  T  N  K  A  G  E  R  P  S  D  V  A  K  R  
tttgcccatttggcagcagtgaagctgttagaggagctacagaaatatgatatagatgac 
 F  A  H  L  A  A  V  K  L  L  E  E  L  Q  K  Y  D  I  D  D  
gaaaatgaaattgatgaaaatgatgtgaaatattttataagacatggtgttgagggaagc 
 E  N  E  I  D  E  N  D  V  K  Y  F  I  R  H  G  V  E  G  S  
actgatgccaaggatgatttatgtctgagtgacttggataaaacagatgccagaatgaga 
 T  D  A  K  D  D  L  C  L  S  D  L  D  K  T  D  A  R  M  R  
gcttacaagaaaattgtagaattgagacacctcctggaaattgccgagagcaactataaa 
 A  Y  K  K  I  V  E  L  R  H  L  L  E  I  A  E  S  N  Y  K  
cacttgggaggcataacagaagaagatttaaagcagaagaaagaacagcttgagtctgaa 
 H  L  G  G  I  T  E  E  D  L  K  Q  K  K  E  Q  L  E  S  E  
aagaccatcaaagaactgcagggccagctggagtatgaacgactacgtagagaaaaatta 
 K  T  I  K  E  L  Q  G  Q  L  E  Y  E  R  L  R  R  E  K  L  
gaatgtcagcttgatgaatatcgagcagaagttgatcaactcagggaaacactggaaaaa 
 E  C  Q  L  D  E  Y  R  A  E  V  D  Q  L  R  E  T  L  E  K  
attcaagtcccaaactttgtggctatggaagacagcgcttcttgtgagtcaaacaaagag 
 I  Q  V  P  N  F  V  A  M  E  D  S  A  S  C  E  S  N  K  E  
aagaggcgagtaaaaaaaaaaggtttcttctggaggggtgtttgtgagaaggtactaatc 
 K  R  R  V  K  K  K  G  F  F  W  R  G  V  C  E  K  V  L  I  
agtgaaataactaaattgacctgctagatttttctctttcattaaaaaaattgatataaa 
 S  E  I  T  K  L  T  C  * 
tgtg 

Figure IV.2: Nucleotide and amino acid sequence of SEARP. Clone 40Q starts at nt 169 while the 

database clone (Gi: 21754395) starts at nt 964 and exhibits a different splicing pattern. The PP1 

binding motif is in green. The red and blue colours identify different exons. 

 

Examination of the amino acid sequence for signaling motif (Sigrist et al., 2002) identified 

the existence of eight ankyrin repeats. Arround the same time, a lymphocyte specific 

isoform was also reported (Cohen P. T., personal communication), but with a different C-

terminal sequence (Fig. IV.3). The protein encoded by the 40Q cDNA was termed SEARP-

T, whereas the lymphocyte protein was termed SEARP-L. 
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SEARP-L           MPLEGRRRPCCLSSQVAGVGRLERDSEKVPAEGGRRYGDSQGVADEDGGRRTSHHVWRIN 
SEARP-T           --------------------------------------------------------WRIN 
                                                                          **** 
 
SEARP-L           GLHGHSGAESRERVSDDGERKCEESDRRSRVAAGSLSADAGFSRSDLRRVSENLGHCRSV 
SEARP-T           GLHGHSGAESRERVSDDGERKCEESDRRSRVAAGSLSADAGFSRSDLRRVSENLGHCRSV 
                  ************************************************************ 
 
 
SEARP-L           SRERVRGDSGHSHSCSWERVRGDSTFCSSDVNFSEVGGHQTTDSRGTAREDRGLHLSGPW 
SEARP-T           SRERVRGDSGHSHSCSWERVRGDSTFCSSDVNFSEVGGHQTTDSRGTAREDRGLRLSGPW 
                  ******************************************************:***** 
 
SEARP-L           EGVSDIRDPRTSDFGDRVSDDRSRRFSGSWEGGSVEGGHSVGSSWEEVSGDRGYAASDSS 
SEARP-T           EGVSDIRDPRTSDFGDRVSDDRSRRFSGSWEGGSVEGGHSVGSSWEEVSGDRGYAASDSS 
                  ************************************************************ 
 
SEARP-L           GVSGSEDASYRFSGFWERESEDEGFRCSFWERAREDLGPRPSDDGEEGRCRCSGSWVRAS 
SEARP-T           GVSGSEDASYRFSGFWERESEDEGFRCSFWERAREDLGPRPSDDGEEGRCRCSGSWVRAS 
                  ************************************************************ 
 
SEARP-L           EDRRSIRGLDSTPPQSRRCCAMPGVANSGPSTSSRETANPCSRKKVHFGSIHDAVRAGDV 
SEARP-T           EDRRSIRGLDSTPPQSRRCCAMPGVANSGPSTSSRETANPCSRKKVHFGSIHDAVRAGDV 
                  ************************************************************ 
 
SEARP-L           KQLSEIVVRGASINELDVLHKFTPLHWAAHSGSLECLHWLLWHGADITHVTTRGWTASHI 
SEARP-T           KQLSEIVVRGASINELDVLHKFTPLHWAAHSGSLECLHWLLWHGADITHVTTRGWTASHI 
                  ************************************************************ 
 
SEARP-L           AAIRGQDACVQALIMNGANLTAQDDRGCTPLHLAATHGHSFTLQIMLRSGVDPSVTDKRE 
SEARP-T           AAIRGQDACVQALIMNGANLTAQDDRGCTPLHLAATHGHSFTLQIMLRSG-DPSVTDKRE 
                  ************************************************** ********* 
 
SEARP-L           WRPVHYAAFHGRLGCLQLLVKWGCSIEDVDYNGNLPVHLAAMEGHLHCFKFLVSRMSSAT 
SEARP-T           WRPVHYAAFHGRLGCLQLLVKWGCSIEDVDYNGNLPVHLAAMEGHLHCFKFLVSRMSSAT 
                  ************************************************************ 
 
SEARP-L           QVLKAFNDNGENVLDLAQRFFKQNILQFIQGAEYEGKDLEDQETLAFPGHVAAFKGDLGM 
SEARP-T           QVLKAFNDNGENVLDLAQRFFKQNILQFIQGAEYEGKDLEDQETLAFPGHVAAFKGDLGM 
                  ************************************************************ 
 
SEARP-L           LKKLVEDGVININERADNGSTPMHKAAGQGHIECLQWLIKMGADSNITNKAGERPSDVAK 
SEARP-T           LKKLVEDGVININERADNGSTPMHKAAGQGHIECLQWLIKMGADSNITNKAGERPSDVAK 
                  ************************************************************ 
 
SEARP-L           RFAHLAAVKLLEELQKYDIDDENEIDENDVKYFIRHGVEGSTDAKDDLCLSDLDKTDARM 
SEARP-T           RFAHLAAVKLLEELQKYDIDDENEIDENDVKYFIRHGVEGSTDAKDDLCLSDLDKTDARM 
                  ************************************************************ 
 
SEARP-L           RAYKKIVELRHLLEIAESNYKHLGGITEEDLKQKKEQLESEKTIKELQGQLEYERLRREK 
SEARP-T           RAYKKIVELRHLLEIAESNYKHLGGITEEDLKQKKEQLESEKTIKELQGQLEYERLRREK 
                  ************************************************************ 
 
SEARP-L           LECQLDEYRAEVDQLRETLEKIQVPNFVAMTALLVSQTKRRGE----------------- 
SEARP-T           LECQLDEYRAEVDQLRETLEKIQVPNFVAMEDSASCESNKEKRRVKKKGFFWRGVCEKVL 
                  ******************************     .::::. .                  
 
SEARP-L           --------- 
SEARP-T           ISEITKLTC 

Figure IV.3: Comparison of the amino acid sequences of SEARP-L and SEARP-T. 

 

Other motifs present include a EF-calcium binding domain (aa 677-689), a BZip-

Maf transcription factor domain (aa 721-618) and the PP1 binding domain (aa 345-348) 

upstream of the eight ankyrin repeats (aa 346-375, 380-409, 413-442, 446-476, 478-507, 

511-540, 583-613, 617-646). The ankyrin repeats mediate interaction between a wide 

spectrum of proteins. Ankyrin repeats are tandemly repeated modules of about 33 amino 

acids that occur in a large number of functionally diverse proteins. This domain has been 

described as an L-shaped structure consisting of a beta-hairpin and two alpha helices 

(Gorina and Pavletich, 1996). The appearance of the PP1 binding motif just before the 
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eight ankyrin repeats also occurs in another well known PP1 binding protein, the p53BP2 

or PPP1R13A (Helps et al., 1995). SEARP also possesses consensus sites for 

phosphorylation by Protein kinase C, Casein kinase II, cAMP- and cGMP-dependent 

protein kinases and tyrosine kinases. Thus, SEARP itself may be regulated by 

phosphorylation. 

The exon-intron organization of SEARP was determined by aligning SEARP 

cDNA sequence with the nucleotide sequence of chromosome 11 (Table IV.6). The 

SEARP-T transcript spreads over 63Kb on chromosome 11 and is 2604bp long. 
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Table IV.6: Exon-intron organization of SEARP-T. 

Exon 

nº 
Exon seq Intron sequence Exon seq 

Exon 

nº 

1 gagggcag17 63058gtaattct….tttccaag63812 18gcgacggc 2 

2 aaacccct1041 64817gtgagtca….ttcaatag68566 1042gttccagg 3 

3 gtttggag1206 68731gtaagaaa….tttcttag76145 1207tgtcttca 4 

4 gtgtacag1314 76254gtaataat….atttttag80387 1315gctcttat 5 

5 gaagtgga1431 80505gtggtgag….acctctag81382 1432gatcccag 6 

6 ccttccag1567 81519gtatttta….tcctctag94942 1568ttcactta 7 

7 tcaggaaa1767 95144gtaagtaa….attcatag97834 1768ctttagca 8 

8 gcataaag1893 97961gtgagtta….ttgaacag106491 1894ctgctgga 9 

9 gcaaagag1999 106598gtataaat…ttctacag110846 2000gtttgccc 10 

10 tgccagaa2175 111023gtaagtat….tcttgcag115585 2176tgagagct 11 

11 tctgaaaa2302 115613gtaatgtc….tttgatag118030 2303gaccatca 12 

12 tggctatg2448 118176gttggtgt….gcttatag125932 2449gaagacag 13 

Nucleotide sequences around the identified splice junctions of the human testis specific SEARP-T 

transcript. The conserved gt-ag of splice donor and acceptor sites are shown in bold. The exon 

nucleotide numbers related to Figure IV.2 and the introns nucleotides correspond to the sequence 

of chromosome 11 (Gi:13094222). 

 

IV.3.2  Tissue distribution of SEARP 

 

Table IV.7 compares the general properties of SEARP-T and SEARP-L. The two 

proteins arise by alternative splicing but are very similar, as already pointed out above 

(Fig. IV.3).  

 

Table IV.7: Features of SEARP-testis specific and SEARP-lymphocyte specific. 

Characteristic SEARP-T SEARP-L 

No. of amino acids 848 823 

Molecular weight (KDa) 94.5 91.5 

pI 5.99 5.89 

 

The tissue distribution of SEARP was evaluated by immunoblot analysis of 

different rat tissues, human testis (Fig. IV.4), bovine testis (Fig IV.5) and human sperm 
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(Fig. IV.5). From Figure IV.4 it is evident that SEARP is present in human and rat testis 

and also in ovary. Besides these reproductive tissues, SEARP is also expressed in lung and 

liver, and is apparently also present in the other tissues examined but in much lower 

abundance. The observed slight difference in mobility in rat testis (RT) and ovary (Ov) is 

in agreement with the predicted higher molecular mass of SEARP-T (TableIV.7). In the 

brain, SEARP was only detected in cerebellum and olfactory bulb although at much lower 

levels. Since high levels of PP1 activity were co-immunoprecipitated with SEARP from 

brain (P. T. Cohen, personal communication), the possibility exists that another, different 

796alternatively spliced SEARP isoform may occur in brain. The tissue distribution of 

PP1�2 is also shown in Fig. IV.4 for comparison. PP1�2 is most abundant in testis as 

reported before (Vijayaraghavan et al., 1996) but is also found in other tissues. As for 

SEARP, high levels of PP1�2 were also detected in testis, ovary and lung. Additionally, 

PP1�2 seems to be also highly expressed in striatum, olfactory bulb and hippocampus. 

 

         

39KDa PP1�2

90KDa SEARP

HT   RT  Ov Ki M   Lu  He   Li    Co   St    MB  BS   Ce OB   Th Ht   Hc

39KDa PP1�2

90KDa SEARP

HT   RT  Ov Ki M   Lu  He   Li    Co   St    MB  BS   Ce OB   Th Ht   Hc

 

Figure IV.4: Immunoblot analysis using anti-SEARP and anti-PP1�2 antibodies with different rat 

tissues and human testis (100µg). HT, human testis; RT, rat testis; Ov, rat ovary; Ki, rat kidney; M, 

rat skeletal muscle; Lu, rat  lung; He, rat heart; Li, rat liver; Co, rat cortex; St, rat striatum; MB, 

rat mid brain; BS, rat brain stem; Ce, rat cerebellum; OB, rat olfactory bulb; Th, rat thalamus; Ht, 

rat hypothalamus; Hc, rat hippocampus. 

 

 It is also apparent by analyzing Fig. IV.4 that there is a huge difference in the 

amount of PP1�2 in rat testis compared with human testis. For that reason, the abundance of 

PP1�2 in bovine testis was also verified (Fig. IV.5). 
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Figure IV.5: Immunoblot analysis of PP1�2 in human (100µg), rat (10µg) and bovine (10µg) 

testis. 

 

Whereas bovine and rat testis express approximately the same amounts of PP1�2, 

human testis contains more than 10-fold less PP1�2, as can be seen in Fig. IV.5. However, both 

SEARP-T and PP1�2 appear to be relatively enriched in sperm (Fig. IV.6), in contrast to 

PP1�, which is equally expressed in both samples. Using an anti-PP1� antibody 

recognizing both PP1�1 (37kDa) and PP1�2 (39kDa), it is apparent that while human testes 

express both PP1�1 and PP1�2, human sperm has only PP1�2 (Fig. IV.6B). In comparison, 

very little PP1�2 is detected in rat cortex.  

Human 
Testis

Human 
Sperm

94KDa SEARP

PP1�239KDa

PP1�37KDa

Human 
Sperm

Human 
Testis

Human 
Sperm

94KDa SEARP

PP1�239KDa

PP1�37KDa

Human 
Sperm

Human 
Testis

Human 
Sperm
Human 
Sperm

Rat 
Cortex

94KDa SEARP

37KDa
39KDa

PP1�

Human 
Testis

Human 
Sperm
Human 
Sperm

Rat 
Cortex

Human 
Testis

Human 
Sperm
Human 
Sperm

Rat 
Cortex

94KDa SEARP

37KDa
39KDa

PP1�

 
A)                                                                     B) 

Figure IV.6: A) Immunoblot analysis of SEARP, PP1�2 and PP1� expression in human testis 

and human sperm (50µg). B)  Immunoblot comparison of SEARP (100µg each tissue), and PP1� 

(25µg of rat cortex, 200µg human testis and 100µg human sperm) expression in rat cortex and 

human testis and sperm.  

 

 In order to verify the expression of 40Q mRNA in different tissues, Northern blot 

analysis was performed using a Rat Multiple Tissue Northern (MTN) Blot. Using the 40Q 

cDNA as probe, SEARP transcript of 3.6kb was detected (Fig. IV.7). The expression of 

SEARP in testis is amazingly high when compared to the expression of SEARP in the 
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other tissues analyzed. Brain and liver also expressed detectable levels of SEARP mRNA. 

As control we used a �-actin probe that detected a transcript of 2.1kb in non-muscle tissues 

and another transcript of 1.6kb in both cardiac and skeletal muscle. 

He      Br      Sp     Lu     Li      M       Ki Te

SEARP

�-Actin

3.6 kb

1.6 kb
2.1 kb

He      Br      Sp     Lu     Li      M       Ki Te

SEARP

�-Actin

3.6 kb

1.6 kb
2.1 kb

He      Br      Sp     Lu     Li      M       Ki Te

SEARP

�-Actin

3.6 kb

1.6 kb
2.1 kb

 
Figure IV.7: MTN blot analysis of different rat tissues using the cDNA of clone 40Q as probe.He, 

heart; Br, brain; Sp, spleen; Lu, lung; Li, liver; M, muscle; Ki, kidney; Te, testis. 

 

Densitometric analysis of the SEARP mRNA band, corrected against the 2.1kb 

actin control yielded the results shown in Table IV.8. Skeletal muscle was excluded from 

this analysis since it expresses little or none of this actin transcript. Clearly, SEARP 

mRNA is more abundant in testis than in all the other tissues analysed. 

 

Table IV.8: Relative abundance of SEARP mRNA. 

Tissue Heart Brain Spleen Lung Liver Kidney Testis 

%SEARP mRNA 2.3 5.6 0.24 2.4 3.9 1.9 100 

The value for testis was set at 100% and all other tissues were expressed as a percentage of this 

value. 
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IV.3.3  Confirmation of SEARP/PP1�2 interaction 

 
Sequential transformation of yeast with the bait and the prey vectors performed in 

order to confirm the YTH interaction (Fig. IV.8). 

PREY –SEARP-T

BAIT         PP1�1              PP1�2            PP1�2end

PREY –SEARP-T

BAIT         PP1�1              PP1�2            PP1�2end

 
Figure IV.8: Sequential transformation of yeast AH109 (see Appendix) first with the bait plasmid 

(pAS2PP1�1 or pAS2PP1�2 or pAS2PP1�2end) and then the prey plasmid (pACT-2-40Q). 

 

 The results obtained (Fig. IV.8) indicate that SEARP-T interacts with PP1�1 and 

PP1�2 but not with the unique C-terminal domain of PP1�2. The interaction of SEARP-T 

with PP1�2 appear to be stronger than with PP1�1, since with the latter the colony grew 

white and only turned blue after several days. 

Since it was developed, 2D gel electrophoresis has been the technique of choice to 

study the protein content of a certain tissue or to compare protein expression profiles of 

sample pairs, for instance, healthy versus disease conditions.  2-D technology can provide 

a huge amount of putative protein targets for drug development strategies. Protein spots 

can be further analyzed by mass spectrometry, peptide sequencing and 2D 

immunoblotting. Information taken from 2-D gel analysis can be stored in databases like 

http://biobase.dk/cgi-bin/celis and http://expasy.hcuge.ch/ch2d/2d-index.html.  

Here, we made use of this technique to further characterize the PP1�2 interactome 

from rat testis and human sperm. Thus, to obtain a global picture of the proteins from rat 

testis or human sperm that interact with PP1�2 we performed immunoprecipitation of 

protein extracts from these tissues with the highly specific anti-PP1�2 antibody. 

Furthermore, this experiment was also important to provide biochemical evidence of the 

interaction of SEARP with PP1�2. After immunoprecipitation, the samples were subjected 
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to 2D gel electrophoresis and the gel was silver stained to visualize the protein spots (Fig. 

IV.9). Many protein spots were obtained, consistent with the multiple interactions 

postulated for PP1 isoforms. The pattern obtained from the immunoprecipitation of human 

sperm was very similar (data not shown). To confirm the interaction of PP1�2 with 

SEARP, the destained 2D gel from human sperm was transferred to a nitrocellulose 

membrane and immunoblotted with anti-SEARP antibody (Fig. IV.10A). A similar 

analysis was performed with the rat testis immunoprecipitated sample (Fig. IV.10B). In 

both cases a single immunoreactive spot was detected with the anti-SEARP antibody. 

Afterwards both blots were stripped and immunoblotted with anti-PP1�2 antibody.  

 
Figure IV.9: Silver stained 2D gel of the immunoprecipitation of 10mg of rat testis homogenate 

with anti-PP1�2. The arrow points to the anti-SEARP immunoreactive spot (see Fig. IV.10).  
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Figure IV.10: Anti-SEARP immunoblot of the anti-PP1�2 immunoprecipitates from human sperm 

(A) and rat testis (B). 

 

By analyzing Figure IV.10 it is clear that SEARP co-immunoprecipitates with 

PP1�2 from human sperm and rat testis. Although the predicted molecular mass for 

SEARP was 94.5kDa (Table IV.7) the spot detected was approximately 63kDa. Since 

proteolysis is an unlikely explanation, given the use of protease inhibitors, this observation 

leads us to believe that the complete protein may be cleaved before it interacts with PP1�2. 

Alternatively, the detected protein may result from translation initiation from an internal 

initiation codon. Indeed, if Met322 is used as the initiator codon, then a protein of 

approximately 60kDa would be expected. Further experimentation will be required in order 

to clarify this point.  

This experiment clearly shows that SEARP interacts with PP1�2 in rat testis and 

human sperm. Appropriate negative controls, including immunoprecipitating rat testis or 

human sperm with rabbit pre-immune serum, as expected, failed to produce protein spots, 

as visualized by silver staining (data not shown). 

 Immunoprecipitations of rat testis with anti-PP1� and anti-PP1� were also 

performed. Samples were run on a SDS-PAGE gel and immunoprecipitated proteins 

detected by silver staining (Fig. IV.11) to compare with the anti-PP1�2 immunoprecipitate. 
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No. 

MW 

(kDa) 

1 282 

2 211 

3 164 

4 130 

5 110 

6 87 

7 50 

8 45 

9 40 
 

I II 

Figure IV.11: I, SDS-PAGE gel showing rat testis immunoprecipitates with anti-PP1�2 (A), anti-

PP1� (B) and anti-PP1� (C). II, Corresponding table of the molecular masses of the protein bands 

indicated with arrows. 

 

From the analysis of the results obtained (Fig. IV.11) it was concluded that several 

proteins co-immunoprecipitated with PP1�2, when compared with the proteins that are 

immunoprecipitated with the other two antibodies (anti-PP1� and anti-PP1�). The strongest 

bands in the gel of approximately equal molecular mass correspond to the antibodies used 

to immunoprecipitate the proteins. 

In the future, we will subject the SEARP immunoreactive spot to mass 

spectrometry analysis to confirm its identity, and other spots will also be analysed to obtain 

their identification. Thus, a comparative picture will be obtained of the PP1�2 interactome 

from human sperm, in relation to the interactome defined by the YTH analysis. The 2D 

electrophoresis turned out to be a valuable complementary technique to the Yeast Two 

Hybrid System since it confirmed the SEARP/PP1�2 interaction in vivo. Without an 

antibody against the putative interactor, the only way to confirm an interaction would be 

by mass spectrometry analysis of the spots in the gel. Further analysis of the 

immunoprecipitated protein spots will continue in the future. 
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IV.3.4  Intracellular localization of SEARP and PP1�2 in COS-7 cells 

 

The cDNA corresponding to clone 40Q was subcloned into the pEGFP vector in 

frame with the GFP (Green Fluorescent Protein) protein. GFP was first described by 

Davenport and Nicol (1955) who reported that the jellyfish Aequorea victoria fluoresced 

green when irradiated with UV light. However, interest on this protein has grown 

enormously since its cloning (Prasher et al., 1992; Chalfie et al., 1994). The usefulness of 

GFP derives from the finding that the protein’s fluorescence is due to the cyclization of the 

peptide backbone, and no other cofactor is needed in order to have fluorescence. Another 

advantage of GFP is that it can be examined in living cells without fixation and 

permeabilization. In our study, GFP was used as a biological marker, overcoming the need 

to have an antibody against SEARP. It allowed us to evaluate the subcellular localization 

of SEARP in cultured cells by expressing a SEARP-GFP fusion protein and monitoring the 

green fluorescence within the cells. COS-7 cells were transfected with the recombinant 

construct (pEGFP-SEARP) and the cells were immunostained with the anti-PP1�2 

antibody (Fig. IV.12 and Fig. IV.13). The results demonstrate that PP1�2 is present 

throughout the cell (Fig. IV.12, C and IV.13, C), but may be particularly enriched in the 

nucleus. In contrast, SEARP is mostly absent from the nucleus, but in some cells it was 

observed in cytoplasmic structures surrounding the nuclear membrane (Fig. IV.12, D). 

This unusual distribution warrants further studies. In other cells, SEARP appears to be 

enriched in the Golgi apparatus (Fig. IV.13, D) and may also be associated with the 

cytoskeleton. In this case, SEARP co-localizes with PP1�2 in some regions (Fig. IV.13, E 

and F). 
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Figure IV.12: Intracellular localization of SEARP-GFP and PP1�2 in COS-7 cells (60X 

magnification). A, Control COS-7 cells transfected with the pEGFP vector; B, phase contrast; C, 

COS-7 cells immunostained with anti-PP1�2 antibody; D, COS-7 cells transfected with pEGFP-

SEARP; E, composite image of the immunostaining with anti-PP1�2 antibody and GFP-SEARP 

fluorescence overlaid onto the phase contrast image; F, same as E, but without phase contrast. 

B C

D E F

SEARP-GFP SARP/PP1�2/Ph C SEARP/PP1�2

PP1�2GFP Ph C

A B C

D E F

SEARP-GFP SARP/PP1�2/Ph C SEARP/PP1�2

PP1�2GFP Ph C

A

 
Figure IV.13: Intracellular localization of SEARP-GFP and PP1�2 in COS-7 cells (60X 

magnification). A, Control COS-7 cells transfected with the pEGFP vector; B, phase contrast of 

COS-7 cell ; C, COS-7 cells immunostained with anti-PP1�2 antibody; D, COS-7 cells transfected 

with pEGFP-SEARP; E, composite image of the immunostaining with anti-PP1�2 antibody and 

GFP-SEARP fluorescence overlaid onto the phase contrat image; F, same as E, but without phase 

contrast. 
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 Nevertheless, some interesting differences were observed in the distribution of 

COS-7 cells endogenous SEARP using specific antibodies to detect endogenous SEARP 

and PP1� (Fig. IV.14). 

  

1 

 

2 

     

B

C D

A BB

C D

A

 
 

Figure IV.14: Co-localization 

of SEARP and PP1�2 in COS-

7 cells by 

immunocytochemistry using 

anti-SEARP and anti-PP1�2 

antibodies, and specific 

secondary antibodies 

conjugated with FITC and 

Texas Red, respectively. 1: A, 

phase contrast micrograph of 

high density COS-7 cells; B, 

immunostaining for SEARP; 

C, immunostaining for PP1�2; 

D; combined phase contrast 

and fluorescent micrograph of 

the co-localization of SEARP 

and PP1�2; E, overlay of the 

co-localization of SEARP and 

PP1�2 (20X magnification). 2: 

A, phase contrast micrograph 

of a low density COS-7 cell; 

B, immunostaining for 

SEARP; C, immunostaining 

for PP1�2; D; overlay of the 

co-localization of SEARP and 

PP1�2 (60X magnification). 
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PP1�2 is present mainly in the nucleus, although it is also found all over the 

cytoplasm. Some regions in the nucleus are not stained, indicating that there may be 

selective PP1�2 enrichement in specific nuclear loci. In what concerns SEARP, it is also 

found in the nucleus and albeit with lower intensity, in some areas of the cytoplasm. The 

different distributions of SEARP fused to GFP compared to endogenous SEARP, may be 

due to the absence of the complete N-terminal sequence from the former. This N-terminal 

sequence might be essential to target SEARP to the nucleus, or for its interaction with 

some other protein responsible for taking SEARP into the nucleus. 

 Recent studies point to the importance of PP1 regulators as targeting subunits in 

response to cell-cell contact. For instance, I-2 is concentrated in the nucleus of cells 

cultured at low densities, whereas high densities cells excluded I-2 from the nucleus. The 

change in I-2 localization may direct I-2 to different forms of PP1 or directly change PP1 

localization in response to different cell confluency signals (Leach et al., 2002). Similar 

results were observed with SEARP. At low density, in the absence of intercellular contacts, 

SEARP is found throughout the cell but mainly in the cytoplasm (Fig. IV.14-2). However, 

when cells become confluent, SEARP becomes more highly enriched in the nucleus (Fig. 

IV.14-1) but can also be detected in the Golgi apparatus. Probably, the putative nuclear 

targeting sequence present in the N-terminal of full length SEARP is absent from the 

truncated SEARP-GFP fusion protein, (Fig. IV.12 and IV.13) leading to the retention of 

expressed recombinant SEARP in the cytoplasm. PP1 localizes mostly to the nucleus of 

low-density cells. Interestingly, in Fig. IV.14-1D a dividing cell is visible in the lower left 

corner and exhibits an interesting distribution of PP1�2 and SEARP, suggesting their 

possible involvement in mitotic mechanisms. There is intense PP1�2 staining around the 

nucleus, forming a ring structure, and SEARP staining is clearly visible in the nuclei of the 

daughter cells. 

 

IV.3.5  Sperm maturation and SEARP expression 

 

Immunohistochemistry was performed on rat testes sections in order to evaluate the 

presence of SEARP and its relationship with PP1�2 and PP1�. First, rat testes sections 

were analyzed to verify the integrity of cellular structures by haematoxylin/eosin staining 
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(Fig. IV.15). Haematoxylin is a natural dye that after oxidation gives haematin, a basic dye 

that stains the nucleic acids in the nuclei blue. Eosin is an acidic dye that stains red the 

components of the cytoplasm.    

 
Figure IV.15: Haematoxylin/eosin staining to confirm testes integrity. A, Several seminiferous 

tubules (10X magnification); B, Seminiferous tubule where the arrows mark meiotic figures (40X 

magnification). 

 

 The seminiferous tubule is the structural unit of the testis, being approximately 180-

300µm in diameter and 80cm long in men. The total length of all tubules in each human 

testis has been calculated to be around 300-900m. In a sexually mature adult, each 

seminiferous tubule has a central lumen surrounded by an actively replicating epithelium, 

mixed with supporting cells, the Sertoli cells (Fig. IV.16). Blood vessels and Leydig cells, 

that synthesize the hormone testosterone, are localized in the interstitials space between 

seminiferous tubules. The replicating epithelium (or germinal epithelium) lining the 

seminiferous tubules produces the haploid male gametes (spermatozoa), by a series of 

steps called spermatogenesis and spermiogenesis. Spermatogenesis begins with the 

development of spermatogonia, of which three types are recognized according to their 

nuclear appearance: A1, dark nuclei, A2, pale nuclei and B, coarsely clumped chromatin 

and pale central nucleolus. Spermatogonia type A1 undergo mitosis to give more 

spermatogonia type A1 or type A2. Type A2 mature giving rise to type B. Types A2 and B 

can still undergo mitosis to give more daughter cells. Diploid type B matures into primary 

spermatocytes, which duplicate their DNA in order to undergo the first meiotic division 

(lasting about 22 days). Primary spermatocytes are similar to type B spermatogonia but 

located further away from the basal lamina, and often the different stages of meiosis can be 

identified. Meiosis ends with the formation of diploid secondary spermatocytes which 
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rapidly (within a few hours) undergo the second meiotic division to produce haploid 

spermatids. The spermatids will subsequently undergo maturation, producing mature but 

immotile spermatozoa. 

 

 
Figure IV.16: Diagram of spermatogenesis and spermiogenesis stages in the seminiferous tubules 

(adapted from www.erin.utoronto.ca/~w3bio380/Lectsked/Lect06/Sperm.2htm). 

 

 Only after going through the epididymis do the spermatozoa become motile (this 

process will be addressed later in this chapter). 

In order to determine in which cell types SEARP, PP1�2 and PP1� were expressed, 

immunohistochemistry analysis was performed on sections prepared from the testes of 8-

week-old adult mice. These were incubated with the appropriate primary antibody and with 

peroxidase-conjugated secondary antibody (Fig. IV.17) or, for PP1�2 and PP1� with a 

Cy3-conjugated secondary antibody, a red fluorescent dye (Fig. IV.18). As can be seen 

from the brown peroxidase staining in Fig. IV.17, all three proteins are present in rat testes. 

PP1�2, PP1� and SEARP are found in the spermatozoa tails and possibly in the acrosome 

region of the head. Other cells present in the seminiferous tubule exhibit immunoreactive 

staining indicating the presence of PP1�2, PP�1 and SEARP mainly in the cytoplasm of 

those cells and in the basal lamina. 
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PP1�2 PP1� SEARPPP1�2 PP1� SEARPPP1�2 PP1� SEARP  
Figure IV.17: Immunolocalization of SEARP, PP1�2 and PP1� in the mouse testis using a 

peroxidase- conjugated secondary antibody (100X magnification).  

 

 Using the Cys3-conjugated secondary antibody, red fluorescence was clearly 

detected in the spermatozoa tails (Fig. IV.18, 1). Especially for PP1�2 red fluorescence 

was also detected in the basal lamina (Fig. IV.18, 3), in other cells (Fig. IV.18, 2), and in 

Leydig cells (Fig. IV.18, 4).  
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Figure IV.18: Localization of PP1�2 and PP1� in the mouse testis using a fluorescent secondary 

antibody (Cy3- conjugate Goat anti-rabbit). Arrow 1, spermatozoa tails; Arrow 2, other cells; 

arrow 3, basal lamina; Arrow 4, Leydig cells (40X magnification). 

 

Spermatogenesis occurs in waves along the seminiferous tubules and thus adjacent 

areas of the same tubule show different stages of spermatogenesis and spermiogenesis 

(Fig. IV.19). Each stage is characterized by a combination of certain cell types. The most 

frequently encountered is stage XIV, since it lasts approximately 22h.       
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Figure IV.19: Diagram of the different stages of the cycle of the seminiferous epithelium. Notice 

the different cell types present in each stage (adapted from 

www.users.von.uc.edu/hnaskor/plasmalemma_vesicle_protein.htm). 

 

SEARP, PP1�2 and PP1� are all present during stage XIV in the tails of 

spermatozoa and in the cytoplasm of the different types of cells involved in 

spermatogenesis and spermiogenesis (Fig. IV.20). SEARP is present in spermatozoa tails, 

in the basal lamina and in Leydig cells. Also the cytoplasms of spermatids and the meiotic 

or mitotic fuse seem to be immunoreactive for SEARP. Clearly, PP1�2 is present in the 

cytoplasm of secondary spermatocytes, in the basal membrane, in Leydig cells and in 

spermatids. Spermatozoa tails are also immunoreactive for PP1�2. PP1� detected in 

spermatozoa flagella, basal membrane and in the cytoplasm of spermatids. The feature that 

is more relevant in Fig. IV.20, for PP1�, is the existence of very distinguishable meiotic 

figures that are likely to have PP1� somewhere around the condensed chromosomes, 

consistent with the postulated central role of PP1� in the control of cell division in other 

cell types. 

Thus, it is obvious that all three proteins (SEARP, PP1�2 and PP1�) are present in a 

variety of cells from the events of spermatogenesis and spermiogenesis. Their exact co-

localization within the same subcellular structure still needs to be investigated.  
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Figure IV.20: Stage XIV of the cycle of 

the rat seminiferous tubules. Top panel: 

section of a rat seminiferuos tubule 

immunostained with anti-SEARP 

antibody; Middle panel:seminiferous 

tubule section immunostained with anti-

PP1�2 antibody; Lower panel: 

seminiferous tubule immunostained with 

Anti-PP1� antibody. All three 

micrographs were taken after incubation 

of the sections with a peroxidase-

conjugated secondary antibody. 

Magnification used: 40X (top) and 100X 

(middle and lower oanels). 1, 

spermatogonia type A1; 2, Primary 

spermatocyte; 3, Meiotic secondary 

spermatocyte; 4, Spermatid; 5, 

Spermatozoa; 6; Basal membrane; 7; 

Leydig cell. 

 

Images obtained by immunohistochemistry with the fluorescent secondary 

antibodies were also analysed by confocal microscopy (Figure IV.21). The presence of 

PP1�2 and PP1� in the rat spermatozoa tails was thus further confirmed. An interesting 

observation was that PP1� staining seemed to be restricted to the tail periphery. That is, the 

inner part of the tails is devoid of PP1� immunoreactive material. This raises interesting 

questions in relation to the structure of the spermatozoa tail (Fig. IV.22). Spermatozoa are 

among the smallest cells in the human body. They can be divided in head (5µm) and tail, 

and the tail comprises the neck, middle piece (7µm), principal piece (40µm) and end piece 
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(5-10µm). Along the tail is the axoneme that is responsible for spermatozoa motility. 

Essentially, it is a long, specialized cilium with nine outer doublet tubules organized 

around a central tubule pair. The proximal part of the tail is the neck, containing a pair of 

centrioles and a connecting piece which forms the nine fibrous rings surrounding the 

axoneme. The axoneme runs through the centre of the middle piece, and is surrounded by 

nine longitudinal fibers and elongated mitochondria. The principal piece is the longest part 

of the tail and comprises the axoneme, the nine longitudinal fibers surrounded by external 

fibers oriented circumferentially. The end piece is composed of axoneme only. So, it seems 

that PP1� is not present in the axoneme but might be in the fibrous sheath or, what might 

be more important, in the mitochondria that surround the fibrous sheath and the axoneme 

and are responsible for generating energy for sperm movement.  

 

A BA B
 

Figure IV.21: Confocal microscopy of rat testis sections immunostained with Anti-PP1�2 A) and 

Anti-PP1� B). The arrow marks a tail in a transverse section (100X magnification). 
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Figure IV.22: Schematic representation of a mammalian spermatozoon. This is a phase contrast 

micrograph of a bovine caudal spermatozoon with a 60X magnification. A transverse section 

through the end piece is shown to illustrate the axonemal 9+2 structure.   

 

IV.3.6  Colocalization of SEARP and PP1�2 in human spermatozoa 

 

Human sperm has a corpuscular and a liquid component (Fig. IV.23). The 

corpuscular components are spermatozoa, immature germ cells, sloughed-off epithelial 

cells from the seminiferous tubules, spermatophages, cytoplasmic droplets and leukocytes. 

Cells of the testes, epididymis and accessory glands secrete the liquid components of the 

seminal plasma. The seminal plasma also contains proteolytic enzymes produced by the 

prostate gland. Normally, the volume of the human sperm ejaculate is approximately 3ml 

and contains 50-150 million spermatozoa per ml. In fertile men 25% of the spermatozoa 

are abnormal or degenerated. Ejaculated spermatozoa are motile but they need to undergo 

capacitation in the female genital tract before they can fertilize an oocyte. 
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Figure IV.23: Phase contrast micrograph of Human sperm (20X amplification). 

 

Immunofluorescence was used to localize PP1�2 and SEARP within human 

spermatozoa. As seen in Fig. IV.24, PP1�2 is present along the entire length of the 

flagellum including the middle piece. In the head staining is intense in the equatorial 

segment (because of the different flourescence intensities observed in the tail and in the 

equatorial region it is not possible to visualize both patterns in the same image). SEARP 

immunoreactivity was detected in the principal piece of the flagellum and the head-neck 

junction. Staining is relatively weak in the middle piece. In the head region, staining 

appears also in the equatorial region. Thus, there are regions within spermatozoa where 

PP1�2 and SEARP co-localize (Fig. IV.25). The staining appears to be specific since there 

was no fluorescence observed when the primary antibodies were omitted (data not shown).   
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Figure IV.24: Immunolocalization of PP1�2 and SEARP in human spermatozoa. Human 

spermatozoa were labeled with anti-PP1�2 and anti-SEARP antibodies.Ph C, phase contrast; IF, 

immunofluorescence (60X magnification). 
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Figure IV.25: Co-Immunolocalization of PP1�2 and SEARP in human spermatozoa. A, phase 

contrast micrograph of human spermatozoa; B, immunolocalization of SEARP; C, 

immunolocalization of PP1�2; D , overlay of PP1�2 and SEARP immunoreactivity. 

 

IV.4  DISCUSSION 
 

SEARP (Six to Eight Ankyrin Repeat Protein) was identified in a Yeast Two Hybrid 

screen using PP1�1 as bait with a human testis cDNA library. Subsequently, it was shown 

by sequential transformation with the bait plasmid (pASPP1�2) and the prey plasmid 

(pACT-2SEARP), that SEARP also interacts with PP1�2. 

This new protein was characterized in several ways. First, the complete nucleotide 

sequence was analyzed in what concerns, for instance, its genomic or exon-intron 

boundaries. Afterwards, bioinformatic analysis of the encoded protein revealed several 

interesting features of the protein. Eight ankyrin repeats were identified, as well as a PP1 

consensus binding motif just upstream of these ankyrin repeats. Several putative 

phosphorylation sites were also identified, strongly suggesting that SEARP may be 

regulated itself by phosphorylation mechanisms. 

Immunoblot analysis of several rat tissues, and bovine and human testis and sperm, 

showed that SEARP is present in residual amounts in most of the analyzed tissues (such as 

brain) but is expressed in testis, sperm, ovary, lung and liver in relatively large amounts. 
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The relatively slower electrophoretic mobility of testis SEARP compared to other tissues is 

in agreement with the existence of an alternatively spliced SEARP isoform, detected in a 

Yeast Two Hybrid screen of a human lymphocyte library (P. T. Cohen, personal 

communication). Thus, SEARP-L has a shorter C-terminus compared to SEARP-T. 

Northern blot analysis revealed that SEARP mRNA is strongly enriched in testis, 

compared with other tissues, and that the transcript is 3.6kb. 

Analysis with anti-SEARP antibody of a 2D-gel immunoblot of immunoprecipitated 

samples of rat testis and human sperm with anti-PP1�2 antibody clearly demonstrated the 

in vivo biochemical interaction between PP1�2 and SEARP in both testis and sperm. 

SEARP co-localizes with PP1�2 in some regions of COS-7 cells and, more 

importantly, in some areas of spermatozoa, specially in the principal piece of the tail and 

the equatorial segment of the head (involved in the acrosome reaction). In COS-7 cells 

SEARP is mainly nuclear in confluent cells but is enriched in the cytoplasm in low density 

cells. However, when COS-7 are transfected with our truncated SEARP sequence 

(corresponding to clone 40Q) fused to GFP, the immunofluorescence is detected almost 

exclusively in the cytoplasm. This may be explained by the absence of the N-terminus. 

This region might be responsible for targeting SEARP to the nucleus or may interact with 

another protein that targets it to the nucleus.  

Considering the above data, it seems reasonable to hypothesise two possible roles for 

SEARP in sperm function. First, being associated with PP1�2 in the sperm tail, it might be 

involved in the control of sperm motility. Secondly, the COS7 confluency experiments 

might indicate that in sperm, SEARP is present in the cytoplasm (as confirmed by its 

localization in the equatorial head region) being thus essential for the acrossome reaction. 

After sperm-egg interaction, SEARP might translocate to the nucleus where it may alter 

gene expression. This hypothesis is supported by the presence, on the C-terminal domain 

of SEARP, of a putative transcription factor motif. Finally, SEARP is also present in cells 

involved in spermatogenesis and spermiogenesis. The mechanism by which SEARP may 

be involved in these events still needs to be investigated.  

Sds22 (suppressor of the dis2-mutant) was originally identified in yeast as a PP1 

regulatory subunit essential for the completion of mitosis (MacKelvie et al., 1995). The 

mammalian counterpart, PPP1R7, was cloned by Renouf et al. (1995) and inhibits PP1 in 

rat liver nuclei (Dinischiotu et al., 1997). Sds22 consists of a poorly conserved N-terminus 
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which appears to be essential for protein stability and a well conserved C-terminus that is 

probably involved in the nuclear localization of sds22. The central domain of sds22 has 

highly conserved tandem array of 11 leucine–rich repeats of 22 residues that mediate the 

binding to PP1. Sds22 is ubiquitously expressed in human tissues and up to six transcripts 

can be generated from PPP1R7 gene by alternative polyadenylation and skipping of exon 2 

(Ceulemans et al., 1999). It was shown that sds22 functions positively with GLC7 (yeast 

PP1) to promote dephosphorylation of nuclear substrates required for faithful transmission 

of chromosomes during mitosis (Peggie et al., 2002), primarily by keeping PP1 in the 

nucleus. A sds22 homolog was identified in rat testis that associates with PP1�2 (Chun et 

al., 2000). The expression pattern of the rat sds22 homolog matches with that of PP1�2, 

suggesting that it is involved in spermatogenesis by controlling PP1�2 activity. Using 

immunoaffinity choromatography, sds22 was identified in motile caudal spermatozoa as a 

regulator of  PP1�2 catalytic activity (Huang et al., 2002). In contrast, PP1�2 and sds22 do 

not interact in caput bovine sperm (Mishra et al., 2003). This same study showed that caput 

sds22 is bound to a p17kDa protein suggesting that binding to PP1�2 requires sds22 

dissociation of p17 or some other post-translational modification. This protein, like 

SEARP, is present in the principal piece of the spermatozoa flagellum and in the head-neck 

junction although in somatic cells they are mainly nuclear. Possibly, SEARP may also 

need to be cleaved to interact with PP1�2, as seen in the 2D-gel immunoblot with anti-

SEARP antibody (Fig. IV.10).  

SEARP also has a putative calcium binding domain, indicating that SEARP could 

act as an intermediary between calcium signaling and PP1�2 regulation of sperm motility. 

Mechanisms regulating binding of SEARP to PP1�2 should be important in 

understanding the biochemical events that underline sperm maturation and movement. 

Studies are underway to use recombinant PP1�2 and recombinant SEARP to further 

analyze the nature of the interaction between these proteins. The complex set off signaling 

motifs detected in SEARP, its restricted expression in specific tissues, and its subcellular 

localization, coupled with the intriguing cell contact-dependent expression pattern, make 

SEARP an ideal target for signal transduction therapeutics. Future work will evaluate its 

usefulness as a target for the development of a male contraceptive or a target for the 

treatment of male infertility. 
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V DISCUSSION AND CONCLUSION 
 

In somatic cells, PP1 isoforms are regulated by a large number of ubiquitous and cell-

specific regulatory and targeting proteins (Oliver and Shenolikar, 1998). Germ cell-specific 

phosphatase PP1�2 is the predominant serine/threonine phosphatase in spermatozoa (Smith 

et al., 1996; Vijayaraghavan et al., 1996). PP1�2 activity is inversely correlated with sperm 

motility. Enzyme inhibition with okadaic acid or calyculin A induces motility initiation 

and stimulation. Thus, our goal was to understand how PP1�2 activity is regulated during 

sperm maturation and to identify the sperm-specific partners in this event. Therefore, in 

order to identify the sperm proteins that interact with PP1, we performed 2 separate yeast 

two-hybrid screens of a human testis cDNA library using the baits PP1�1 and PP1�2. The 

validity of the results obtained was confirmed by a variety of criteria, including the 

isolation of bona fide PP1 binding proteins and the occurrence of a PP1 consensus binding 

motif in the newly identified proteins. We recovered 120 positive clones in the YTH1 and 

155 positive clones in the YTH2. Among these were clones encoding previously known 

PP1 interactors, such as Nek2 and NIPP1, and also previously uncharacterized proteins. 

We performed a detailed study of one such novel protein of 93kDa that is expressed 

mainly in testis. We named this protein SEARP-T (Six to Eight Ankyrin Repeat Protein 

from Testis). Fluorescence immunocytochemistry was used to compare the intra sperm 

localization of PP1�2 and SEARP-T. Both proteins co-localize in the tail and in the 

equatorial segment of the head. 

These results provide new insights into PP1 function in human testis and sperm 

motility and validate the Yeast Two Hybrid System as a mean to understand the roles 

played by PP1 in diverse cellular regulatory events, thereby allowing possible targets to be 

investigated for pharmacological intervention, particularly regarding infertility and 

contraception. 

 

V.1 THE YEAST TWO HYBRID SYSTEM 
 

The availability of complete genome sequences from a variety of organisms initiated 

the development of new approaches to deal with a huge amount of genomic information 

(Table V.1). Thus, high-throughoutput methods for detecting protein interactions were 
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developed. Among them, the most used are the Yeast Two Hybrid System, Affinity 

Purification coupled to Mass Spectrometry and, on a smaller scale, proteome chips 

(Auerbach et al., 2002), which have yielded vast amounts of data that can be exploited to 

infer protein function and regulation. These methods together with the availability of 

sophisticated databases help to decode complex interactions among proteins and to 

integrate interacting proteins in complex cellular pathways. 

 

Table V.1: Genome sequences of some organisms. 

Organism 
Sequence 

published (year) 

No. of Predicted 

ORFs 
Reference 

Haemophilus influenzae 
(bacteria) 1995 1720 (Fleischmann et 

al., 1995) 
Saccharomyces cerevisiae 

(Yeast) 1996 6234 (Goffeau et al., 
1996) 

Caenorhabditis elegans 
(Worm) 1998 19099 (consortium, 

1998) 
Drosophila melanogaster 

(Fruit fly) 2000 13061 (Adams et al., 
2000) 

Arabidopsis thaliana 
(Plant) 2000 ~25000 (Initiative, 2000) 

Homo sapiens  
(Human) 2001 ~35000 

(Lander et al., 
2001; Venter et 

al., 2001) 

Plasmodiumfalciparum 
(Parasite) 2002 5279 

(Lander et al., 
2001; Hall et al., 
2002; Hyman et 

al., 2002) 
Mus musculus 

(Mouse) 

 

2002 ~30000 (Waterston et al., 
2002) 

ORFs: open reading frames.   

 However, sequencing the genome of an organism does not mean decoding the 

functions of the proteins it encodes. Thus, the more challenging issue is to clarify the 

proteome of a given organism, and even more importantly, to characterize the interactions 

between its constituent proteins. Additionally, the goal of proteomics is also to determine 

when and where the proteome of an organism is expressed and to identify post-

translational modifications that regulate protein function, ultimately elucidating how an 

organism or cell in that organism behaves. Proteomics tries to identify the interactions 



Characterization of the PP1 Interactome from Human Testis Chapter V  
 

Centro de Biologia Celular 
Universidade de Aveiro 

191 

between proteins in a normal versus a disease state, being of great biomedical value in 

order to identify putative protein targets to cure a certain disease and disease markers.   

The Yeast Two Hybrid System has been rapidly adopted since it was first developed 

by Fields and Song (1989) with the number of papers citing “Two-Hybrid” growing 

markedly since its original introduction (Fig. V.1). 
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Figure V.1: Number of publications obtained by searching PubMed (www.ncbi.nlm.nih.gov) with 

the words “Two-Hybrid” from 1989 to 2003. 

 

Only the Yeast Two Hybrid System will be discussed in detail here. The main 

advantages of this method are that the interactions are detected in vivo, there are no 

artificial lyses or washing steps and it has the potential to detect weak or transient 

interactions. Its drawbacks are that it mostly detects binary interactions and the forced 

nuclear localization of the interacting proteins can create false positives or false negatives. 

Also, artificial fusion may inhibit certain interactions and some interactions are preferred 

with regard to cellular compartments. The Yeast Two Hybrid System is a genetic method 

in which an interaction between a bait protein and its library expressed partner is detected 

via reconstitution of a transcription factor and subsequent activation of a set of reporter 

genes. Large scale two hybrid approaches have used the complementary methods called 

“matrix approach” and the “library screening approach” for screening large sets of 

proteins. In the matrix approach a yeast strain expressing the bait protein is mated with an 

array of yeast strains expressing many different prey proteins. The interactions are detected 

by growth on selective media. Here, a library screening method was used to screen our bait 
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proteins (PP1�1 and PP1�2) against a human testis cDNA library. Colonies expressing the 

interacting proteins are selected and the library plasmids are isolated and sequenced to 

determine the identity of the interacting prey proteins. 

Overall, our results were very satisfying (Table III.3). Several previously known PP1 

binding proteins were identified in our screens, thus validating the method used. Among 

them are Nek2 and NIPP1 (discussed in Chapter III). Additionally, proteins known in other 

contexts were also identified as putative PP1 regulators, for example, RANBPM 

(Nakamura et al., 1998) and DAPPER1 (Katoh, 2003). Even more interesting was the fact 

that the vast majority of the proteins identified were completely new proteins. Chapter IV 

describes the characterization of a new protein that we named SEARP-T.  

 

V.2 MECHANISMS INVOLVED IN SPERM MOTILITY 
 

Several studies demonstrate the involvement of cyclic nucleotides, bicarbonate, 

cholesterol and protein phosphorylation in acquisition of progressive motility, capacitation, 

hyperactivation of motility, directed motility or induction of acrosome reaction (Garbers 

and Kopf, 1980; Smith et al., 1996; Vijayaraghavan et al., 1996; Vijayaraghavan et al., 

1997; Cross, 1998; Visconti and Kopf, 1998; Smith et al., 1999; Huang et al., 2002; 

Mishra et al., 2003). Calcium ions are also primary determinants of sperm cell behavior 

being absolutely required for the processes described above. Immunostaining studies and 

transcript analysis revealed that spermatozoa possess several calcium channels.  

Ren et al. (2001) discovered a new protein, crucial to sperm swimming in mice that 

could be a target for male contraceptives or fertility treatments. The protein forms a 

channel through the membrane of sperm tail and controls the inflow of calcium ions that 

triggers swimming. This protein was named CatSper and is located mainly in the principal 

piece of the sperm tail. This channel contains 6 transmembrane segments and maps to 

chromosome 15q13 in humans. This explains, at least in part, the role of calcium in sperm 

function, that despite having been known for a long time, the details have been always 

elusive. Mutant mice lacking this channel are sterile. Sperm motility is markedly decreased 

and sperm are unable to fertilize intact eggs.  All humans have the gene that encodes the 

channel, but it is switched on only is sperm cells.  
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Another putative ion channel, CatSper2, was also found to contain 6 

transmembrane segments and also mapped to human chromosome 15q13 (Quill et al., 

2001). CatSper represents a target for non-hormonal male contraceptives.  

Worldwide, the market for oral contraceptives is worth billions of euros and the 

demand for a non-hormonal oral male contraceptive is likely to be phenomenal.  

In our group we are especially interested in the involvement of protein 

phosphorylation on sperm motility. There are several evidences demonstrating that protein 

phosphatases are direct players in the acquisition of sperm movement. Indeed, PP1 

inhibition of immotile caput sperm with specific inhibitors, results in them acquiring 

normal motility parameters. Intriguingly, these effects are completely independent of 

calcium. 

 

V.2.1 PP1�2/I2-L/GSK-3 
 

Sperm contains a specific PP1 isoform (PP1�2) as well as the kinase glycogen 

synthase kinase-3 (GSK-3) (Smith et al., 1996; Vijayaraghavan et al., 1996). PP1�2 and 

GSK-3 activities are two- and six-fold higher, respectively, in immotile caput compared to 

motile caudal epididymal sperm. The PP1�2 catalytic activity is regulated by its interaction 

with an inhibitor similar to somatic cells I-2. This inhibitor may correspond to a clone we 

identified in our screen, that we named I2-L (Inhibitor 2 Like, XM_018216). The inactive 

PP1�2-inhibitor complex is activated by phosphorylation of this I2-L inhibitor by GSK-3 

(Fig V.2). Interestingly, the I2-L protein has a Thr/Pro substitution at position 72. The 

absence of the most important regulatory residue of I-2 in I2-L must have consequences on 

the regulation of PP1 and ultimately on the acquisition of sperm motility. Apparently, I2-L 

represents a constitutive inhibitor of PP1 that is independent of GSK-3 phosphorylation.  

One hypothesis might be that I2-L is only expressed in caudal motile sperm, leading to 

constitutive inactivation of PP1�2. Another hypothesis is that I2-L is bound to a protein 

that keeps it from binding PP1�2 in immotile caput sperm, paralleling what happens with 

sds22. To test these hypotheses, two parallel sperm immunoprecipitation experiments need 

to be performed with caudal and caput epididymal sperm, followed by a 2D analysis, 

allowing the differences in the I2-L and I-2 spots to be detected. I2-L has a theoretical 

molecular mass of 23.1kDa and a pI of 4.77, whereas I-2 has a molecular mass of 23kDa 

and a pI of 4.64, although it migrates with an apparent molecular mass of 31kDa in SDS-
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PAGE gels. The study of I2-L is difficult, since it is very similar to I-2. They are 96% 

similar at the nucleotide level and 96.5% similar at the protein level. It is therefore very 

difficult to produce I2 or I2-L specific molecular tools (antibodies, probes, etc) for further 

analysis. The protein complex PP1�2/I2-L/GSK-3 may explain the observed sperm 

motility changes during epidydimal transit. 
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Figure V.2: Possible mechanism of regulation of PP1�2 by I2-L and GSK-3 in sperm. 

 

V.2.2 PP1�2/sds22 
 

 A sds22 homologue was recently identified in sperm (Mishra et al., 2003). The 

mammalian counterpart, PPP1R7 inhibits PP1 catalytic subunit in rat liver nuclei 

(Dinischiotu et al., 1997). A sds22 homolog was identified in rat testis that associates with 

PP1�2 (Chun et al., 2000). The expression pattern of the rat sds22 homolog matches that of 

PP1�2, suggesting that its involvement in spermatogenesis relates to the control of PP1�2 

activity. Sds22 was identified in motile caudal spermatozoa as a regulator of PP1�2 

catalytic activity (Huang et al., 2002). In contrast, PP1�2 and sds22 do not interact in caput 

bovine sperm (Mishra et al., 2003). This same study showed that caput sds22 is bound to a 

17kDa protein, suggesting that binding to PP1�2 requires sds22 dissociation from p17 or 

some other post-translational modification. This protein is present in the principal piece of 

the spermatozoa flagellum and in the head-neck junction although in somatic cells it is 

mainly nuclear. Sds22 has consensus sites for phosphorylation by GSK3, PKA and CDKII 

(calmodulin dependent kinase II), all present in sperm (Fig. V.3). 
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Figure V.3: Possible mechanism of regulation of PP1�2 by sds22 in sperm. 

 

V.2.3 PP1�2/AKAP220/PKARII 
 

The cyclic AMP (cAMP)-dependent protein kinase (PKA) and PP1 are broad 

specificity signaling enzymes with opposing actions that catalyse changes in the 

phosphorylation state of cellular proteins. PKA is a ubiquitous, multifunctional enzyme 

involved in the regulation of several cellular events. PKA holoenzyme consists of four 

subunits, two catalytic and two regulatory (RI and RII). Subcellular targeting to the 

vicinity of preferred substrates is a means of restricting the specificity of these enzymes 

(Hubbard and Cohen, 1993; Faux and Scott, 1996). Several PP1 targeting subunits direct 

PP1 to specific locations (Egloff et al., 1997), while compartmentalization of PKA is 

mediated through association of the its regulatory subunits with A-kinase anchoring 

proteins (AKAPs) (Faux and Scott, 1996). Over 40 AKAPs have been identified to date, 

targeting PKA to the plasma membrane, cytoskeleton, endoplasmic reticulum, Golgi, 

mitochondria and nuclear matrix (Schillace et al., 2001). This high level of molecular 

organization ensures selectivity in cAMP-responses. Several anchoring proteins have been 

identified that can simultaneously associate with kinases and phosphatases (Faux and 

Scott, 1996). Neuronal AKAP79 binds to PKA, PKC and PP2B, and AKAP149 recruits 

PKA and PP1 to the lamina of nuclear membranes (Steen et al., 2000). Similarly, the 

NMDA receptor-associated protein Yotiao maintains an anchored PKA constitutively 

active PP1 to regulate the phosphorylation state of the NMDA receptor ion channel 

(Westphal et al., 1999b). Another example is AKAP220 that binds PKA and PP1, being a 

competitive inhibitor of PP1 (Schillace et al., 2001). AKAP220 also associates with PKA 

in testis, where it may target the kinase to peroxisomes. AKAP220 mRNA is expressed at 

high levels in human testis and in isolated human pachytene spermatocytes and round 

spermatids. AKAP220 is present in human male germ cells and mature sperm. In sperm, 
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AKAP220, as well as RII�, is located in the middle-piece and is probably associated with 

cytoskeletal structures (Reinton et al., 2000). AKAP220 binds the RI�, RII� and RII� 

subunits of PKA in human testis. The centrosomal AKAP220/PKA complex may regulate 

spindle formation during meiosis. The middle-piece associated AKAP220 could serve to 

anchor PKA and /or PP1�2, directly regulating the contractile machinery in the sperm 

axoneme (Fig. V.4). Furthermore, it has been shown that disruption of RII interaction with 

AKAPs, by membrane-permeable peptides, causes the arrest of sperm motility 

(Vijayaraghavan et al., 1997). Together, this data suggest that the AKAP/PKA/PP1 

complex is important for regulation of sperm motility.  

 

AKAP220

RII

PP1�2

AKAP220

RII

PP1�2

 
Figure V.4: Putative AKAP220/PP1�2/PKARII complex involved in the regulation of sperm 

motility. 

   

V.2.4 PP1�2/AKAP110/PKA 
 

Several AKAPs have been shown to be present in germ cells. Among them is S-

AKAP84 that localizes in the middle-piece of mouse elongating spermatids (Lin et al., 

1995); its splice variants D-AKAP-1 (L. J. Huang et al., 1999) and AKAP121 (Feliciello et 

al., 1998) are also present in condensing spermatid middle-piece. AKAP82 (Turner et al., 

1998) and TAKAP80 (Mei et al., 1997) are found in the sperm fibrous sheath. Finally, 

AKAP110, recently identified by Vijayaraghavan et al. (1999), is localized to the fibrous 

sheath and acrosomal region. There seems to be an abundance of dual specificity AKAPs, 

which bind RI and RII PKA regulatory subunits. RI subunit localizes primarily in the 

acrosomal region and RII exclusively to the tail.  

 Northern analysis and in situ hybridization detected AKAP110 only in testis, more 

specifically in round spermatids. In the spermatozoon AKAP110 localizes to the acrosome 
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and tail (Smith et al., 1999). In sperm AKAP110 apparently binds RII on the mitochondria 

membrane. AKAP110 may also bind PP1�2 that, as we demonstrated in Chapter IV, is also 

present in the tail (Fig. V.5). 
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RII
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membrane

AKAP110

PP1�2

RII

Mitochondrial
membrane

 
Figure V.5: Putative AKAP110/PP1�2/PKARII complex involved in the regulation of sperm 

motility. 

 

Sperm specific AKAPs seem to be a very directional target for the development of a 

male contraceptives or for infertility therapeutics. Although none of these AKAP proteins 

has been identified in the YTH screens performed, they might be present in the 

immunoprecipitate samples from human sperm and rat testis. Several putative spots 

corresponding to these proteins can be seen in the 2D-gel (Fig. IV.9). Mass spectrometric 

analysis of the identified spots should resolve this question. 

 

V.3 SPLICING AS A FEASIBLE THERAPEUTICAL TARGET 
 

Mammalian genes are organized on chromosomes in an exon-intron structure, with 

an average of 8.7 exons per gene (Waterston et al., 2002). After transcription, the pre-

mRNA undergoes splicing, the process of intron excision, performed by a huge RNA-

protein complex, the spliceosome (Will and Luhrmann, 2001). This complex recognizes 

conserved sequences on exon-intron boundaries (the splice sites) and joins exons together 

removing the intermediate introns. Alternative splicing occurs when the introns from a pre-

mRNA are spliced in more than one way resulting in more than one mature mRNA per 

gene. Therefore, one gene can yield several, sometimes functionally different, proteins 

(Graveley, 2001). 
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As was evident from the results of the YTH screens presented, a large number of the 

proteins identified as putative PP1 binding partners derive from an alternative splice of the 

pre-mRNA (Fardilha et al., 2004a; Fardilha et al., 2004b). For instance, Nek2A-T derives 

from an alternative 3’splice-site of the pre-mRNA; NIPP1-T mRNA suffers an excision of 

part of exon 7; SEARP-T and SEARP1 differ by alternative 3’ splice-site (Browne et al., 

2004) (Fig. V.6).  
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Figure V.6: Spliced variants of Nek2A-T, NIPP1-T and SEARP-T. Pink cilinders are the 

alternative spliced  parts of the respective exon. Exons and introns are not drawn to scale. 

 

Interestingly, for unknown reasons, several testis mRNAs are alternatively spliced. 

This is also true for PP1� (da Cruz e Silva et al., 1995b). The alternatively spliced PP1�2 

(Fig. V.7) protein appears to be the major PP1 isoform expressed in mammalian sperm 

(Vijayaraghavan et al., 1996), although other PP1 isoforms can be detected in other cell 

types in testis. 

 



Characterization of the PP1 Interactome from Human Testis Chapter V  
 

Centro de Biologia Celular 
Universidade de Aveiro 

199 

A) PP1�1

B) PP1�2

DNA

mRNA1 2 4 5 63 7a

STOP

mRNA1 2 4 5 63 7

GMITKQAKK

STOP

21 4 5 63 7

VGSGLNPSIQKASNYRNNTVLYE

A) PP1�1

B) PP1�2

DNA

mRNA1 2 4 5 63 7a

STOP

mRNA1 2 4 5 63 7

GMITKQAKK

STOP

21 4 5 63 7

A) PP1�1

B) PP1�2

DNA

mRNA1 2 4 5 631 2 4 5 63 7a

STOP

mRNA1 2 4 5 63 7

GMITKQAKK

STOP

21 4 5 63 7

VGSGLNPSIQKASNYRNNTVLYE
 

Figure V.7: PP1�1 and PP1�2 splice variants. Exons and introns are not drawn to scale. 

 

Alternative splicing is a mechanism strictly regulated, being specific to a tissue, to a 

development stage, to a condition or to a pathological stage. Different splice variants of the 

same gene may also exist in the same place (cell or tissue), and act as regulators of each 

other. Errors that occur during splicing can lead to a pathological situation, and splice 

variants can be good diagnostic markers for disease conditions. In addition, different splice 

variants, being tissue specific, can function as ideal targets for the development of new 

drugs that will not affect similar mechanisms occurring in other tissues. For instance, if a 

drug is designed against the C-terminus of testis-enriched PP1�2, it is unlikely to affect 

other organs except testis. However, an even more specific scenario would be to target a 

PP1�2 binding protein that, presumably, would be involved in a much more restricted 

number of cellular events than the phosphatase catalytic subunit (Amador et al., 2004). Our 

results indicate the existence of a large number of putative PP1�2 binding proteins, some 

of which may ultimately be used as targets to develop new drugs to modulate sperm 

motility and other testis specific processes (Fardilha et al., 2004a). The possibility of 

precise and specific modulation of sperm motility should prove inestimable for the 

treatment of male infertility and for developing efficient male contraceptives. Male 

infertility is a growing concern in the industrialized nations and defects in sperm motility 

appear to be one of the main underlying causes. In fact, this approach may also be used to 

identify novel therapeutic targets for other conditions, including neurodegenerative 

diseases (da Cruz e Silva and da Cruz e Silva, 2003; da Cruz e Silva et al., 2004). 

In conclusion, alternative splicing appears to have a significant dimension in 

functional genomics, possibly explaining the much lower number of human protein coding 
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genes that were revealed when the human genome was published than was previously 

estimated. Alternative splicing has thus acquired renewed importance as a mechanism for 

generating biological diversity, probably accounting for the observed discrepancy between 

the sizes of mammalian genome and proteome. For reasons that still need to be fully 

elucidated, alternatively spliced proteins predominate in mammalian testis. The 

identification of testis-specific variants of PP1 regulatory proteins may therefore constitute 

excellent candidates to develop new drugs to control testis-specific processes (including 

infertility/contraception), without affecting other PP1-dependent signal transduction 

pathways in other organs (Fig. V.8). This approach should be useful for designing rational 

intervention strategies both for the development of male contraceptives and for the 

treatment of male infertility.  
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Figure V.8: Signal transduction therapeutics for testis-specific processes based on the targeting of 

alternatively spliced protein domains expressed specifically in testis.  RT, testis-specific, 

alternatively spliced PP1 regulatory subunit; ROT, alternative splice variant(s) of the regulatory 

protein expressed in other tissues. 

 

V.4  CONCLUDING REMARKS 
 

Reversible protein phosphorylation is the major control mechanism of eukaryotic 

cells. Many diseases and dysfunctional states are associated with abnormal 

phosphorylation of key proteins (e.g. cancer, diabetes, Alzheimer’s disease, etc.) (da Cruz 
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e Silva et al., 2004).  As a result, protein phosphorylation systems represent attractive 

targets for diagnostics and therapeutics.  An increasing number of proteins have been 

identified in diverse cell types that regulate the catalytic activity of PP1.  Indeed, the 

diversity of such PP1 regulatory subunits makes them attractive pharmacological targets.  

Besides, PP1 isoforms are highly mobile in cells and can dynamically relocalize through 

the direct interaction with targeting subunits (Trinkle-Mulcahy et al., 2001). Clearly, a full 

understanding of the regulation of different cellular processes by PP1 requires the 

identification and characterization of the various PP1 regulatory proteins and holoenzyme 

complexes. The PP1� gene is known to undergo alternative splicing to yield the ubiquitous 

PP1�1 and the testis-specific PP1�2 isoforms.  Previous work has also shown that PP1�2 is 

specifically expressed in sperm and that PP1 plays a key role in the control of sperm 

motility.  Therefore, in order to identify the sperm proteins that interact with PP1 two 

separate yeast two-hybrid screens of a human testis library were performed using PP1�1 

and PP1�2 as bait. Several new proteins were identified as PP1 regulatory subunits in 

human testis. These proteins represent potential specific targets to treat infertility and to 

develop new non-hormonal contraceptives. SEARP-T, is a new protein that interacts both 

with PP1�1 and PP1�2, and is a good candidate target to interfere with sperm motility. 

Mechanisms regulating binding of SEARP-T to PP1�2 should be important in 

understanding the biochemical events that underlie sperm maturation and movement. 

PP1�1 and PP1�2 interactomes described here constitute important tools for future 

studies, and represent a significant advance in our understanding of PP1 mediated signal 

transduction mechanisms.  
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Appendix I - Culture media and solutions 
 
- LB (Luria-Bertani) Medium 

To 950ml of deionised H2O add: 

Bacto-tryptone 10g 

Bacto-yeast extract 5g 

 NaCl 10g  

Shake until the solutes have dissolved. Adjust the pH to 7.0 with 5N NaOH. Adjust 

the volume of the solution to 1 liter with deionised H2O. Sterilize by autoclaving. 

 

- SOB Medium 

To 950ml of deionised H2O add: 

Bacto-tryptone 20g 

Bacto-yeast extract 5g 

NaCl 0.5g 

Shake until the solutes have dissolved. Add 10ml of a 250mM KCl (prepared by 

dissolving 1.86g of KCl in 100ml of deionised H2O). Adjust the pH to 7.0 with 5N NaOH. 

Adjust the volume of the solution to 1 liter with deionised H2O. Sterilize by autoclaving. 

Just prior to use add 5ml of a sterile solution of 2M MgCl2 (prepared by dissolving 19g of 

MgCl2 in 90ml of deionised H2O; adjust the volume of the solution to 100ml with 

deionised H2O and sterilize by autoclaving). 

 

- SOC Medium 

SOC is identical to SOB except that it contains 20mM glucose. After the SOB 

medium has been autoclaved, allow it to cool to 60ºC and add 20ml of a sterile 1M glucose 

(this solution is made by dissolving 18g of glucose in 90ml of deionised H2O; after the 

sugar has dissolved, adjust the volume of the solution to 100ml with deionised H2O and 

sterilize by filtration through a 0.22-micron filter). 
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- 50X TAE Buffer 

 242g Tris base 

 57.1ml glacial acetic acid 

 100ml 0.5M EDTA (pH 8.0) 

 

- TE buffer (pH 7.5) 

10mM Tris-HCl (pH 7.5) 

1mM EDTA, pH 8.0 

 

- Competent cell solutions: 

Solution I (1L): 9.9g MnCl2.4H2O, 1.5g CaCl2.2H2O, 150g glycerol, 30ml KHAc 

1M; adjust pH to 5.8 with HAc, filter through a 0.2�m filter and store at 4ºC. 

Solution II (1L): 20ml 0.5M MOPS (pH 6.8), 1.2g RbCl, 11g CaCl2.2H2O, 150g 

glycerol; filter through a 0.2�m filter and store at 4ºC.   

- RNAase stock solution  

10mg/ml (ddH2O) 

 

SDS-PAGE Solutions  
 

- Loading Gel Buffer 

250mM Tris-HCl (pH 6.8) 

8% SDS 

40% Glycerol 

2% 2-mercaptoethanol 

0.01% Bromophenol blue 

 

- LGB (Low Gel Buffer) 

 To 900ml of deionised H2O add:  

181.65g Tris  

 4g SDS  

 Shake until the solutes have dissolved. Adjust the pH to 8.9 and adjust the volume 

to 1L with deionised H2O. 
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- UGB (Upper Gel Buffer) 

 To 900ml of deionised H2O add:  

75.69g Tris  

 Shake until the solute has dissolved. Adjust the pH to 6.8 and adjust the volume to 

1L with deionised H2O. 

 

- 30%Acrylamide/0.8% Bisacrylamide 

 To 70ml of deionised H2O add: 

 29.2g Acrylamide  

 0.8g Bisacrylamide  

 Shake until the solutes have dissolved. Adjust the volume to 100ml with deionised 

H2O. Store at 4ºC. 

 

- Coomassie blue staining solutions: 

Staining solution 

0.1% Coomassie Brilliant Blue R250 

25% Methanol 

10% Acetic Acid 

Fixing solution  

25% Methanol 

10% Acetic Acid 

 

-1X Running Buffer 

25mM Tris-HCl (pH8.3) 

250mM Glycine 

0.1% SDS 

 

-1X Transfer buffer 

25mM Tris-HCl (pH8.3) 

192mM Glycine 

20% Methanol 
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-10X TBS  

10mM Tris-HCl (pH 8.0) 

150mM NaCl 

 

-10X TBST 

10mM Tris-HCl (pH 8.0) 

150mM NaCl 

0.05% Tween 

 

- Stripping solution 

 100mM �-mercaptoethanol 

 2% SDS 

 62.5mM Tris-HCl (pH 6.7) 

 

Yeast Two-Hybrid Solutions 
 

- YPD medium 

 To 950ml of deionised H2O add:  

20g Difco peptone  

 10g Yeast extract  

 20g Agar (for plates only) 

 Shake until the solutes have dissolved. Adjust the volume to 1L with deionised H2O 

and sterilize by autoclaving. Allow medium to cool to 60ºC and add glucose to 2% (50ml 

of a sterile 40% stock solution).  

 

- SD synthetic medium 

 To 800ml of deionised H2O add:  

6.7g Yeast nitrogen base without amino acids (DIFCO)  

 20g Agar (for plates only) 

 Shake until the solutes have dissolved. Adjust the volume to 850ml with deionised 

H2O and sterilize by autoclaving. Allow medium to cool to 60ºC and add glucose to 2% 

(50 ml of a sterile 40% stock solution) and 100ml of the appropriate 10X dropout solution . 
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- 10X dropout solution (DO) 

 This solution contains all but one or more of the following components: 

             10X concentration (mg/L) SIGMA # 

L-Isoleucine     300       I-7383 

L-Valine     1500      V-0500 

L-Adenine hemisulfate salt   200      A-9126 

L-Arginine HCl    200      A-5131 

L-Histidine HCl monohydrate  200      H-9511 

L-Leucine     1000      L-1512 

L-Lysine HCl     300      L-1262 

L-Methionine     200      M-9625 

L-Phenylalanine    500                 P-5030 

L-Threonine     2000      T-8625 

L-Tryptophan     200      T-0254 

L-Tyrosine     300      T-3754 

L-Uracil     200      U-0750 

 

10X dropout supplements may be autoclaved and stored for up to 1 year. 

 

- 2X YPDA 

 Prepare YPD as above. After the autoclaved medium has cooled to 55ºC add 15ml 

of a 0.2% adenine hemisulfate solution per liter of medium (final concentration is 0.003%). 

 

- Solutions for preparation of yeast protein extracts 

a) Protease inhibitor solution 

Always prepare solution fresh just before using. Place on ice to prechill. To prepare 

688µl add in a microfuge tube: 

66µl Pepstatin A (1mg/ml stock solution in DMSO) 

2µl Leupeptin (10.5mM stock solution) 

500µl Benzamidine (200mM stock solution) 

120µl Aprotinin (2.1mg/ml stock solution) 
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b) PMSF (phenylmethyl-sulfonyl fluoride) stock solution (100X) 

Dissolve 0.1742g of PMSF (SIGMA) in 10ml isopropanol. Wrap tube in foil and 

store at RT. 

c) Cracking buffer stock solution 

 To 80ml of deionised H2O add:  

 48g Urea  

 5g SDS 

 4ml 1M Tris-HCl (pH6.8) 

 20µl 0.5M EDTA  

 40mg Bromophenol blue  

Shake until the solutes have dissolved. Adjust the volume to 100ml with deionised 

H2O. 

d) Cracking buffer 

To prepare 1.13ml add in a microfuge tube: 

1ml Cracking buffer stock solution (recipe above) 

10µl �-mercaptoethanol  

70µl Protease inhibitor solution (recipe above) 

50µl 100X PMSF stock solution 

 

Solutions for yeast colony hybridization experiments 
 

a) SCE solution 

1M sorbitol     

100mM sodium citrate   

60mM EDTA    

b) SCE/DTT/Lyticase 

40ml SCE 

300µl 2M DTT 

5600 units Lyticase 

 

c) 20X SSC 

87.65g NaCl  

44.1g Sodium citrate  
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Dissolve in 400ml dH2O, adjust pH to 7.0 with NaOH, adjust the volume to 500ml 

and sterilize by autoclaving 

d) 200mM Tris/2X SSC 

200ml 1M Tris-HCl (pH7.5) 

100ml 20X SSC 

700ml dH2O 

e) 3X SSC/ 0.1%SDS/ 1mM EDTA 

7.5ml 20XSSC 

0.5g SDS 

1ml EDTA 0.5M 

Adjust the volume to 50ml with dH2O 

f) 60mM Tris-HCl (pH 7.8)/ 10mM MgCl2 / 14mM 2-mercaptoethanol 

3ml 1M Tris-HCl (pH7.8) 

0.5ml 1M MgCl2 

48.5µl 2-mercaptoethanol  

Adjust the volume to 50ml with dH2O 

 g) Hybridization solution 

 0.009M Tris-HCl (pH7.4)                   

 0.9M NaCl   

 6mM EDTA     

 0.5% Nonidet P40    

 2X Denhart’s solution    

 0.2%SDS      

0.05% sodium pyrophosphate  

 (70µg/ml) E. coli tRNA  

 (100µg/ml) E. coli DNA  

h) 50X Denhart’s solution 

1% Ficoll 400 

1% polyvinylpyrrolidone 

1% BSA (Pentax fraction V) 
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 Solutions for Northern Analysis 
 

a) 5X formaldehyde gel-running buffer 

0.1M MOPS (pH7.0) 

40mM sodium acetate 

5mM EDTA (pH8.0) 

b) Formaldehyde gel-loading buffer 

 50% glycerol 

 1mM EDTA (pH8.0) 

 0.25% bromophenol blue 

 0.25% xylene cyanol FF 

 

 Solutions for the 2D gel electrophoresis 
 

a) Lysis buffer 

9M Urea 

4% CHAPS 

b) Equilibration buffer 

50mM Tris-HCl (pH8.8) 

6M Urea 

30% Glycerol 

2% SDS 

0.002% Bromophenol blue 

 

-Silver Staining 

a) Fixing solution 

40%Methanol 

10%Acetic Acid 

b) Sensitizing solution 

30% Methanol 

0.2% Sodium Thiossulfate 

6.8% Sodium Acetate 
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c) Silver solution 

2.5% AgNO3 

d) Developing solution 

2.5% Sodium carbonate 

0.04% Formalin 

e) Stop solution 

1.46% EDTA 

 

 Immnunoprecipitation Solutions 
 

-Lysis buffer  

 50mM Tris-HCl (pH8.0) 

 120mM NaCl 

 4% CHAPS 

0.1mg/ml Pepstatin A 

0.03mM Leupeptin 

145mM Benzamidine 

0.37mg/ml Aprotinin 

4.4mM PMSF in isopropanol 

 

- 1X PBS 

 8mM Sodium Phosphate  

 2mM Potassium Phosphate 

140mM NaCl 

10mM KCl 
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Appendix II - Primers  
 

PRIMER SEQUENCE (5’:::: 3’) Nt  

No. 

MT

(ºC) 

GAL4 AD TACCACTACAATGGATG  17  48 

GAL4 BD  TCATCGGAAGAGAGTAG  17 50 

OLIGONEK CAGCCCTGTATTGAGTGAGC  20 62 

OLIGONEK2 TCTTCTTAATTACTGGATTACTTG  24 62 

OLIGONEK3 CTGAGGATGGAAGATTAAGAAG 22 62 

OLIGONEK4 GAATACTTTCTTGGTTGGGC 20 58 

OLIGONEK5 GGCTTCACGCTGCCCAGCTG 20 68 

OLIGONIPP GACTCCTGTTGTGCCGTCAG 20 64 

OLIGONIPP2 TGGAGCATTGCCTCCCAAGC 20 64 

OLIGO40Q3 GAGTCAGTGACATTCGGGAC 20 62 

OLIGO40Q3/2 TCTGGCATGGAGCTGATATC 20 60 

OLIGO40Q3/3 CCAGGTCATGTGGCTGCCTT 20 64 

OLIGO40Q3/4 GTAGAATTGAGACACCTCCTG 21 62 

40Q3P1 CGGAATTCGCCATGTGGAGGATAAACGG 28 86 

40Q3P2 CGGAATTCGCCATGCCCGGGGTG 23 78 

40Q3P3 

(reverse) 

CGGGATCCGCAGGTCAATTTAGTTA 25 74 

Amplimer 3’ 

(reverse)  

ATCGTAGATACTGAAAAACCCCGCAAGTTCAC                                                                                                                                                                                                                    32 84 

Amplimer 5’ CTATTCGATGATGAAGATACCCCACCAAACCC 32 94 

OLIGO4Q1 CTGAAGATCCTGGAGCCCGG 20 58 

OLIGO4Q1/2 TTGACCACAGCCTGGTTTAC 20 60 

OLIGO4Q1/3 GCACTCGTCTCTCTGGGAGG 20 66 

OLIGO275.2 CCTGGAGAGGGCCGAATAA 19 60 

OLIGO275.2/2 GACGTTCTTTCTGGAGGAAG 20 60 
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Appendix III - Bacteria and yeast strains 
 
- E. coli XL1- blue: recA endA1 gyrA96 thi-1 hsdR17 supE44 relA1 lac[F’ proAB 

lacZ∆M15 Tn10(Tetr)] 

 

- S. cerevisiae AH109: MATa, trp1-901, leu2-3, 112, ura3-52, his3-200, gal4∆, gal 80∆, 

LYS2:: GAL1UAS-GAL1TATA-HIS3, GAL2UAS-GAL2TATA-ADE2, URA3::MEL1UAS-

MEL1TATA-lacZ, MEL1 

 

- S. cerevisiae Y187: MATα, ura3-52, his3-200, ade2-101, trp1-901, leu2-3, 112, gal4∆, 

met-, gal 80∆, URA3:: GAL1UAS-GAL1TATA-lacZ, MEL1 
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Appendix IV - Plasmids 
 

 
 

       
       
 

 
 
Figure 1: pACT2 (CLONTECH) map and MCS. Unique sites are coloured blue. pACT2 is 

used to generate a hybrid containing the GAL4 AD, an epitope tag and a protein encoded 

by a cDNA in a fusion library. The hybrid protein is expressed at medium levels in yeast 

host cells from an enhanced, truncated ADH1 promoter and is target to the nucleus by the 

SV40 T-antigen nuclear localization sequence. pACT2 contains the LEU gene for selection 

in Leu- auxotrophic yeast strains. 
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Figure 2: pAS2-1 (CLONTECH) map and MCS. Unique sites are coloured blue. pAS2-1 is a 

cloning vector used to generate fusions of a bait protein with the GAL4 DNA-BD. The hybrid 

protein is expressed at high levels in yeast host cells from the full-length ADH1 promoter. The 

hybrid protein is target to the yeast nucleus by nuclear localization sequences. pAS2-1 contains the 

TRP1 gene for selection in Trp- auxotrophic yeast strains.   
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Figure 3: pBluescript II SK map and MCS. This vector is a 2961 bp phagemid derived from 

pUC19. The SK designation indicates that the polylinker is oriented such that lacZ transcription 

proceeds from SacI to KpnI. 
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Figure 4: pEGFP vector map (Clontech). This eukaryotic exppression vector was used to produce 

GFP fusion proteins 

 

 

 
 
 
 
 
 
 




