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resumo 
 
 

Neste trabalho provamos que as adjunções Cat ?  Preord e Cat ?  Ord da 
categoria de todas as categorias na categoria das pré-ordens e na das ordens, 
respectivamente, determinam ambas distintos sistemas de factorização 
“monotone-light” em Cat. 
Caracterizamos para as duas adjunções acima os morfismos de cobertura 
trivial, os de cobertura, os verticais, os verticais estáveis, os separáveis, os 
puramente inseparáveis, os normais e os dissonantes.  Daqui se segue que os 
sistemas de factorização “monotone-light”, concordante-dissonante e 
inseparável-separável em Cat coincidem para a adjunção Cat ?  Preord. 
 

 



 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
 

abstract 
 

It is shown that the reflections Cat ?  Preord and Cat ?  Ord of the category of 
all categories into the category of preorders and orders, respectively, determine 
both distinct monotone-light factorization systems on Cat. 
We give explicit descriptions of  trivial coverings, coverings, vertical, stably-
vertical, separable, purely inseparable, normal and dissonant morphisms with 
respect to those two reflections. It follows that the monotone-light, concordant-
dissonant and inseparable-separable factorizations on Cat do coincide in the 
reflection Cat ?  Preord. 
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Introduction

Monotone-light factorization of morphisms in an abstract category C, with re-
spect to a full reflective subcategory X, was studied by A. Carboni, G. Janelidze,
G. M. Kelly, and R. Paré in [3].

According to [3], the existence of such factorization requires strong additional
conditions on the reflection C → X, which hold in the (Galois theory of the) ad-
junction between compact Hausdorff and Stone spaces, needed to make the classical
monotone-light factorization of S. Eilenberg (cf. [5]) and G. T. Whyburn (cf. [16])
a special case of the categorical one.

In fact, A. Carboni and R. Paré studied in categorical terms the classical
monotone-light factorization, relating this factorization system with the reflection
CompHaus → Stone of compact Hausdorff spaces into Stone spaces. But the
connection between adjunctions and factorization systems was already known by
M. Kelly (from [4]), and surprisingly the (reflective) factorization system associated
to CompHaus → Stone did not coincide with the one of Carboni and Paré.

The connection between the two distinct factorization systems was to be made
by the categorical Galois theory of G. Janelidze: the right-hand class of the former
factorization system (E ′,M∗) is the class of all coverings, while the right-hand class
of the latter (E ,M) only includes the trivial coverings.

There are few known similar situations where there is a (categorical) monotone-
light factorization. The “purely inseparable-separable” factorization for field exten-
sions is an example, where the associated reflection is the one from the opposite
category of finite dimensional algebras over a fixed field to the category of finite
sets. There is also another example involving torsion theory (cf. [3]).

We showed that monotone-light factorization also does exist for C = Cat, the
category of all categories, and X being either the category Ord of (partially) or-
dered sets, or the category Preord of preorders (cf. [17]). A crucial observation
here is that the reflections Cat → Ord and Cat → Preord have stable units in
the sense of [3]. This gives two different factorization systems on Cat, and it turns
out that the light morphisms (=coverings) with respect to Preord are precisely the
faithful functors. Therefore Galois theories of categories via orders and preorders
are much richer, i.e., have more covering morphisms, than the “standard” one (via
sets, regarded as discrete categories).

We will also give explicit descriptions of normal, separable, and other types of
morphisms that occur in Galois theory of categories via orders and preorders.

In this way, we were able to conclude that the monotone-light factorization

vii



viii INTRODUCTION

for Cat → Preord coincides with the concordant-dissonant and the inseparable-
separable factorization, in the sense of G. Janelidze and W. Tholen in [12].

This also occurs for the reflection Preord → Ord of preorders into orders,
which is of course just a simplified version of the reflection of categories into orders,
where it does not happen.

So, we have that the composite of two well-behaved adjunctions Cat → Preord →
Ord is not so well behaved.

Finally, we end our work by studying the case of the reflection of categories
into sets, which can be thought as an extension of the previous reflections:
Cat → Preord → Ord → Set.

For this last adjunction we will prove that it also has stable units but it does
not have a monotone-light factorization system.

The reason for this failure is that the effective descent morphisms in Cat can-
not be chosen anymore so that their domain belongs to the “smaller” category, as
it was the case for the reflections into preorders and orders, where we could choose
effective descent morphisms over any category with domain an ordered set.

Indeed, a functor from a set to a category which is not discrete cannot be an
effective descent morphism.



CHAPTER 1

Basic concepts of categorical Galois theory

In this first chapter we put together some well-known notions and results of
categorical Galois theory and factorization systems to which we will refer in the
next. We have tried to choose these in the most economic way for our purposes.

For the sake of completeness, we also give some proofs in this chapter, whenever
these are not too long or too complicated.

1.1. Factorization systems

Definition 1.1. A weak factorization on the category C is a functor F : C2 →
C such that F · E = 1C, with E : C → C2 the canonical embedding of C into its
category of arrows.

For a morphism α : A → B in C, if we apply F to the general factorization
(α, 1B) · (1A, α) of E(α) = (α, α) : 1A → 1B , we obtain the decomposition α =
mα · eα.

With respect to this decomposition we define two classes of morphisms in C:

• E := {α | mα iso} is the class of all morphisms α : A → B such that in
the above decomposition mα is an isomorphism;

• M := {α | eα iso} is the class of all morphisms α : A → B for which eα

is an isomorphism.

A factorization system is a weak factorization such that in every decomposi-
tion α = mα ·eα the morphisms mα and eα belong always to M and E , respectively.

The above definition of a factorization system was presented in [13]. There
it was also proved that this is equivalent to the more usual definition as a prefac-
torization system (E ,M) on a category C, such that every morphism in C can be
written as m · e with m in M and e in E (cf. [3] and [12]).

Notice that a factorization system is completely determined by any of the two
classes in the pair (E ,M) (cf. [3, §2.8]).

1.2. Vertical morphisms and trivial coverings

Consider the adjunction

(1.1) (I, H, η, ε) : C→ X,

1



2 1. BASIC CONCEPTS OF CATEGORICAL GALOIS THEORY

in which C is a finitely-complete category.

For each object B in C, consider also the induced adjunction

(1.2) (IB ,HB , ηB , εB) : C/B → X/I(B),

from the category of objects over B in C to the category of objects over I(B) in
X, whose right adjoint HB sends (X, ϕ) to the pullback of (H(X), H(ϕ)) along the
unit morphism ηB , and whose left adjoint simply sends (A,α) to (I(A), I(α)).

At last, consider the commutative diagram

B

C

HI(B)

HI(A)

mα HI(α) (1.3)
ηB

dα

-

-

? ?

A

α

ηA
eα

@
@

@
@R

A
A
A
A
A
A
A
A
AU

PPPPPPPPPPPPPPq

whose square part is a pullback and which defines a weak factorization on C.

Definition 1.2. With respect to the weak factorization of diagram 1.3 above,
we call vertical to the morphisms in E , i.e., to the morphisms α : A → B in C
characterized by the existence of a morphism d such that

B

B

HI(B)

HI(A)

1B HI(α) (1.4)
ηB

d

-

-

? ?

is a pullback diagram.

The following lemma will be useful in characterizing vertical morphisms for our
specific adjunctions in the next chapters. It plays also an important role in proving
some statements that are crucial for our purposes, later on in this chapter.

Lemma 1.3. If in the adjunction 1.1 the right adjoint H is fully faithful, i.e.,
the counit ε : IH → 1 is an iso1, a morphism α : A → B in C is vertical if and
only if I(α) is an isomorphism.

In particular, every unit morphism ηC is vertical.

1Cf. [14, §IV.3].



1.3. ADMISSIBILITY 3

Proof. If I(α) is an isomorphism then HI(α) is an isomorphism and therefore
α is vertical.

On the other hand, if α is vertical then, applying the functor I to the pullback
diagram 1.4, we obtain IHI(α) · I(d) = I(ηB) and I(d) · I(α) = I(ηA).

As for any other adjunction, the triangular identity εI(C) · I(ηC) = 1I(C) holds
for every object C in C. So, being the counit ε : IH → 1 an iso by hypothesis,
I(ηA) and I(ηB) are isomorphisms. Which implies that I(α) ∼= IHI(α) is also an
isomorphism.

¤

Definition 1.4. With respect to the weak factorization given in diagram 1.3,
we call trivial coverings to the morphisms in M, i.e., to the morphisms α : A → B
in C for which

B

A

HI(B)

HI(A)

α HI(α) (1.5)
ηB

ηA

-

-

? ?

is a pullback square.

In other words, a morphism α : A → B is a trivial covering if and only if the
unit morphism ηB

(A,α) of the induced adjunction 1.2 is an isomorphism. Indeed, one
easily checks that ηB

(A,α) = eα : (A,α) → (C, mα) (cf. diagram 1.3).

Lemma 1.5. For the adjunction 1.1, when the right adjoint H is fully faithful,
a morphism with codomain of the form H(X) is a trivial covering if and only if it
is up to an iso of the form H(ϕ), for some morphism ϕ in X.

Proof. As for any other adjunction, the triangular identity H(εX) · ηH(X) =
1H(X) holds for every object X in X. So, as in this case the counit is an iso, ηH(X)

is an isomorphim for every object X in X. The proof of the lemma follows trivially
from this fact.

¤

1.3. Admissibility

Definition 1.6. The adjunction 1.1 is said to be admissible if all the induced
adjunctions 1.2 have fully faithful right adjoints, that is, for every object B in C
the counit εB : IBHB → 1 is an iso.

In the specific case when also the right adjoint H is fully faithful, that is,



4 1. BASIC CONCEPTS OF CATEGORICAL GALOIS THEORY

ε : IH → 1 is an iso, the adjunction 1.1 is admissible2 if and only if in every
pullback diagram of the form

B

B ×HI(B) H(X)

HI(B)

H(X)

π1 H(ϕ) (1.6)
ηB

π2

-

-

? ?

the projection π2 is in E . That this is so follows immediately from Lemma 1.3
and εB

(X,ϕ) = εX · I(π2), where π2 is the projection at the pullback diagram 1.6
above.

Lemma 1.7. If the adjunction 1.1 is admissible then, for every object B in C,
the functor HB in the adjunction 1.2 induces an equivalence X/I(B) ∼M/B, be-
tween the category of objects over I(B) in X and the full subcategory of C/B whose
objects are the trivial coverings over B.

Proof. As for any adjunction such that its counit is an iso, ηB
(A,α) is an iso-

morphism if and only if there exists an object (X, ϕ) in X/I(B) with (A,α) ∼=
HB(X, ϕ). That is, being fully faithful, HB induces an equivalence between the
comma categories in the statement.

¤

Given a morphism p : E → B in C, consider another adjunction

(1.7) p! a p∗ : C/B → C/E,

in which the right adjoint p∗ sends an object (A,α) over B to the pullback of α
along the morphism p, and p!(D, δ) = p · δ.

Lemma 1.8. If the adjunction 1.1 is admissible then the class M of trivial cov-
erings is pullback-stable.

Proof. Consider the two diagrams:

C/B

C/E

X/I(B)

X/I(E)

p! I(p)! (1.8)
IB

IE

-

-

? ?

2Also called semi-left-exact in [4].



1.4. STABLE UNITS 5

C/B

C/E

X/I(B)

X/I(E)

p∗ I(p)∗ (1.9)
HB

HE

¾

¾

6 6

where p : E → B is a general morphism in C.

The diagram 1.8 obviously commutes, and since the diagram 1.9 is obtained
from 1.8 by replacing all arrows with their right adjoints, it commutes too, up to a
canonical isomorphism.

Then, as HB and HE were seen above in Lemma 1.7 to induce equivalences
respectively into M/B and M/E, diagram 1.9 tells us that p∗ carries trivial cov-
erings to trivial coverings.

¤

Proposition 1.9. If the adjunction 1.1 is admissible and its counit ε : IH → 1
is an iso then (E ,M) is a factorization system.

Proof. We have to show that in diagram 1.3 the morphism mα is a trivial
covering and eα is vertical. The former assertion follows from Lemma 1.8 and
Lemma 1.5. The latter from I(dα) · I(eα) = I(ηA), Lemma 1.3 and admissibility.

¤

1.4. Stable units

Definition 1.10. The reflection 1.1 is said to have stable units3 when the
functor I : C→ X preserves every pullback of the form

A

A×H(X) B

H(X) .

B

π1

π2

β (1.10)
α

-

-

? ?

We shall show that the specific full reflections we are about to study have all
stable units. Hence, next proposition tells that they will always have an (E ,M)-
factorization system associated, and that we can apply categorical Galois theory to
them, since there is admissibility (cf. [3] and [7]).

Proposition 1.11. If the adjunction 1.1 has stable units and its counit ε :
IH → 1 is an iso then it is admissible.

3In the sense of [4] and [3].
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Proof. If we apply the functor I to the pullback diagram 1.6 we still obtain a
pullback diagram, since the adjunction has stable units. Moreover, by Lemma 1.3
the bottom row I(ηB) is then an isomorphism, since the counit is an iso. Hence,
I(π2) must also be an isomorphism, i.e., the projection π2 is in E .

¤

1.5. Monotone-light factorization

Definition 1.12. The morphism p : E → B in C is said to be an effective
descent morphism or (E, p) is called a monadic extension of B if the pullback func-
tor p∗ : C/B → C/E is monadic, i.e., the comparison functor associated to the
adjunction 1.7 is an equivalence of categories (cf. [14, §VI.3]).

We give in the example 1.13 just below the only two characterizations of
monadic extensions that will be needed in our work.

Example 1.13. The effective descent morphisms in the category of preordered
sets Preord are known to be the morphisms p : E → B such that for every
b2 → b1 → b0 in B there exists e2 → e1 → e0 in E with p(ei) = bi, for i = 0, 1, 2
(cf. [10]).

Consider, for instance, the following functor p : 3 · 3 → 5, which is the obvious
projection from the coproduct of three copies of the ordinal number 3 to the ordinal
number 5:4

0

6

1

6

2

1

6

2

6

3

2

6

3

6

4

-
p

0

6

1

6

2

6

3

6

4

And the effective descent morphisms in Cat are known to be the functors sur-
jective on composable triples of morphisms (cf. [11]).

Consider, for instance, the following functor p : 2 · 4 → 5, which is the obvious
projection from the coproduct of two copies of the ordinal number 4 to the ordinal
number 5:

4Where the obvious composite and identity morphisms are not represented for the sake of
simplicity.



1.5. MONOTONE-LIGHT FACTORIZATION 7

0

6

1

6

2

6

3

1

6

2

6

3

6

4

-
p

0

6

1

6

2

6

3

6

4

Definition 1.14. We define two new classes of morphisms with respect to the
adjunction 1.1:

• E ′ is the class of stably-vertical morphisms, i.e., of all morphisms α : A →
B in C such that every pullback of α is in E (E ′ is therefore the largest
pullback-stable class contained in E);

• M∗ is the class of all coverings, i.e., of all morphisms α : A → B in C
such that some pullback p∗(A,α) of α along a monadic extension (E, p)
of B is in M.

It is immediate from the following proposition that the defined coverings are
stable under pullbacks whenever trivial coverings are, for instance, when there is
admissibility (cf. Lemma 1.8).

This proposition is very simple to prove if one knows that effective descent
morphisms are pullback-stable in any finitely-complete category, a result presented
in [15] (cf. [3, §6.1]).

Proposition 1.15. For any pullback-stable class N of morphisms in a finitely-
complete category C, the class N ∗ of all morphisms α : A → B in C such that some
pullback p∗(A,α) of α along a monadic extension (E, p) of B is in N , is again
pullback-stable.

Next, we have another proposition giving information about coverings in the
stable-units case. Its proof is given in [3, §5.4].

Proposition 1.16. If the adjunction 1.1 has stable units then every covering
morphism whith codomain of the form H(X) is a trivial covering.



8 1. BASIC CONCEPTS OF CATEGORICAL GALOIS THEORY

When the pair (E ′,M∗) is a factorization system, it is said to arise by simul-
taneously stabilizing E and localizing M. We will call monotone-light to the stable
factorization systems obtained through this general process.

The following proposition was proved in [3, §6]. And the next theorem is the
main result of that same paper. Notice that both the proposition and the theo-
rem apply more generally to any factorization system (E ,M) on a finitely-complete
category C.

Proposition 1.17. When the adjunction 1.1 is under the conditions of Propo-
sition 1.9, the pair (E ′,M∗) is a factorization system if and only if every morphism
α : A → B in C has a factorization α = m∗ · e′ with m∗ ∈M∗ and e′ ∈ E ′.

We call the (E ,M)-factorization of α = me stable if e ∈ E ′. And locally stable
if there is some monadic extension (E, p) of B for which the (E ,M)-factorization
of the pullback p∗(A,α) of α along p is stable.

Theorem 1.18. When the adjunction 1.1 is under the conditions of Proposi-
tion 1.9, the pair (E ′,M∗) is a factorization system if and only if every (E ,M)-
factorization is locally stable.

1.6. The categorical form of fundamental theorem of Galois theory

We will assume at this section that the adjunction 1.1 is admissible and that
the category X in it is finitely-complete.

The following two definitions collect all that is needed to state the categorical
form of fundamental theorem of Galois theory.

Definition 1.19.

(a) An internal precategory P in the category X is a diagram

P2

-

-

-q

m

p

P1

-

¾

-c

e

d

P0 (1.11)

in X with de = 1 = ce, dp = cq, dm = dq, and cm = cp.

The internal precategory P is called a category precisely when the
square represented by the equation dp = cq is a pullback and the “com-
position” morphism m satisfies the associativity and unit laws.

An internal category P in X is called a groupoid, or a preorder, or an
equivalence relation, when the elementary formulations of these proper-
ties in terms of internal diagrams in X hold. Of course that an internal
category is an equivalence relation precisely when it is both a groupoid
and a preorder.



1.6. THE CATEGORICAL FORM OF FUNDAMENTAL THEOREM OF GALOIS THEORY 9

(b) A morphism f : P → Q of internal precategories in X, given by com-
ponents fi : Pi → Qi, is said to be a discrete opfibration if each of the
squares

Q2

P2

Q1

P1

f2

p

p d

f1

-

-

? ?
-

- P0

Q0

?

f0 (1.12)

d

is a pullback.

(c) Given an internal precategory Q in X, we write XQ for the full subcate-
gory of the category PreCat(X)/Q, of internal precategories in X over Q,
determined by the discrete opfibrations P → Q.

For reasons clear to those familiar with internal category theory, XQ

is called the category of internal actions of the precategory Q in X.

(d) The kernel-pair (d, c) : E ×B E → E of any map p : E → B extends in an
obvious way to an equivalence relation

E ×B E ×B E

-

-

-q

m

p

E ×B E

-

¾

-c

e

d

P0 (1.13)

in C.

Consider in particular that p : E → B is an effective descent mor-
phism.

Then, the internal precategory I(Eq(p)) in X, that is, the image under
the left adjoint I : C→ X of the internal equivalence relation associated to
the kernel-pair of p, is to be called the Galois precategory of the extension
(E,p) and denoted by Gal(E, p).

Definition 1.20. Consider the monadic extension (E, p) in C.

A morphism α : A → B in C is said to be split over (E, p), if the pullback of α
along p is a trivial covering of E: p∗(A,α) ∈M/E.

The full subcategory of M∗/B determined by the morphisms in C split over
(E, p) will be denoted by Spl(E, p). In other words Spl(E, p) is defined as the
pullback
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C/B

Spl(E, p)

C/E

M/E

(1.14)
p∗

-

-

? ?

where the vertical arrows are inclusion functors.

The next simpler version (we restrict ourselves to the absolute case where all
morphisms are considered) of the fundamental theorem of categorical Galois theory
developed by Janelidze, will give us more information on the category C/B using
the category X than Lemma 1.7. In effect, notice that the category Spl(E, p)
is larger than M/B, since the trivial coverings are pullback-stable when there is
admissibility.

Theorem 1.21. If the adjunction 1.1 is admissible, and not only the category
C but also X has finite limits, and p : E → B is an effective descent morphism in
C, then there is an equivalence of categories

Spl(E, p) ' XGal(E,p)

from the category Spl(E, p) of the morphisms over B in C split by (E, p), to the
category of internal actions of the precategory Gal(E, p) := I(Eq(p)) in X.

Confer [3, §5] for the proof of the fundamental theorem.

1.7. Locally semisimple coverings

At this section we reproduce the two crucial definitions and the central result
of the paper [9], restricting ourselves to the absolute case where all morphisms in
the category C are considered, and switching from regular epis to effective descent
morphisms.

This last change is needed because we are going to work on the category of all
small categories Cat, which is not a regular category.

Definition 1.22. A class X0 of objects in a category C is said to be a gener-
alized semisimple class if, for any pullback diagram

E

E ×B A

B

A

u

v

α (1.15)
p

-

-

? ?

in C in which p is an effective descent morphism, the following conditions hold:
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(a) if E and A are in X0 so is E ×B A,

(b) if B, E and E ×B A are in X0 then so is A.

Example 1.23. The preordered sets, the ordered sets and the sets constitute
generalized semisimple classes of objects in the category of all categories Cat. And
the ordered sets are in addition a generalized semisimple class of the category of
preordered sets Preord.

It is easy to check that they obey the first condition of the immediately above
Definition 1.22 .

The second condition holds since they correspond to reflections having stable
units, as we shall show. Hence, being u : E ×B A a trivial covering by Lemma 1.5,
α is a covering; which implies by Proposition 1.16 that α is trivial, and so again by
Lemma 1.5 that it is of the form H(ϕ) for some ϕ in X.

Definition 1.24.

(a) A morphism α : A → B in C is said to be a semisimple covering if
A,B ∈ X0.

(b) A morphism α : A → B is said to be a locally semisimple covering if there
exists a pullback diagram like 1.15 at previous definition in which p is an
effective descent morphism and u : E×B A → E is a semisimple covering;
we will also say that (A, α) is split over (E, p).

Theorem 1.25. Let X0 be a generalized semisimple class of objects in a category
C, and p : E → B be an effective descent morphism in C with E ∈ X0.

And let X denote the full subcategory of C determined by the objects in X0.

Then, there exists a category equivalence

Cov(B) ' XEq(p)

from the full subcategory of C/B, determined by the locally semisimple coverings
over B, to the category of internal actions of the internal equivalence relation Eq(p),
determined by the kernel pair of p, in X.

1.8. Inseparable-separable factorization

Definition 1.26. Consider the following commutative diagram
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A

A×B A

B

A

u α (1.16)
α

v

-

-

? ?

A

1A

1A
δα

@
@

@@R

A
A
A
A
A
A
A
A
AU

PPPPPPPPPPPPq

where (u, v) is the kernel-pair of the morphism α : A → B.

Then, with respect to the adjunction 1.1,

• α is called a separable morphism if δα is a trivial covering;

• α is called a purely inseparable morphism if δα is vertical;

• α is called a normal morphism if u : A×B A → A is a trivial covering.

We will denote the classes of separable, purely inseparable and normal mor-
phisms by Sep, Pin and Normal, respectively.

In the following two remarks the reader should refer to the diagram 1.16 at the
previous definition.

Remark 1.27. Notice that every normal morphism is separable, since u · δα =
1A and trivial coverings are weakly left cancellable (i.e., g · f, g ∈ M ⇒ f ∈ M).
And if trivial coverings are pullback stable then they are of course normal:

M⊆ Normal ⊆ Sep.

Remark 1.28. If in the adjunction 1.1 the right adjoint is fully faithful then
every stably-vertical morphism is a purely inseparable one:

E ′ ⊆ Pin.

Indeed, as I(u) · I(δα) = 1I(A) and being the morphism u : A ×B A → A vertical
then by Lemma 1.3 the fibred product δα is vertical.

Throughout the rest of this section, let our finitely-complete C have coequal-
izers and suppose in addition that the adjunction 1.1 is under the conditions of
Proposition 1.9.

For the factorization system (E ,M) we can form a derived weak factorization
system as follows:
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A -
δα

A×B A --
u

v
A - B

α




Á J
J

JĴ

eδα
mδα




Á J
J

JĴ

e′α m∗
α (1.17)

Here, e′α is just the coequalizer of (u ·mδα , v ·mδα), where (u, v) is the kernel-
pair of α and mδα

· eδα
is of course the (E ,M)-factorization of the morphism δα of

diagram 1.16.

Definition 1.29. A morphism α : A → B is called inseparable with respect
to the adjunction 1.1 if, in its decomposition given at diagram 1.17, m∗

α is an
isomorphism.

So, we define the class of inseparable morphisms

Ins := {α | m∗
α iso}.

The proofs of next lemma and proposition can be found in [12, §3,§4]. Notice
nevertheless that the first inclusion in the lemma is trivial.

Lemma 1.30. For the factorization given at diagram 1.17 the following two
inclusions and one equality hold, where RegEpi is the class of regular epimorphisms
in C:

• Pin ∩RegEpi ⊆ Ins ⊆ E ∩RegEpi;

• Sep = {α | e′α iso}.

Proposition 1.31. The pair (Ins, Sep) is a factorization system if and only
if the class of morphisms Ins is closed under composition.

The statement of the next proposition and its proof are given in [11]. Its
following corollary will be used in proving that the two reflections of categories
into preordered sets and of these into ordered sets have both inseparable-separable
factorization systems.

Proposition 1.32. A composite β · α of regular epimorphisms in C is also a
regular epi whenever α is a pullback stable epimorphism.

In particular, the class of stably-regular epimorphisms in C is closed under com-
position. And if the stably-vertical morphisms are all epis, E ′ ⊆ Epi, then the class
of stably-vertical regular epimorphisms E ′ ∩RegEpi is closed under composition.

Example 1.33. It is known that the class of stably-regular epis in the category
of all small categories Cat is the class of all functors surjective on composable pairs
of morphisms.

Corollary 1.34. If the counit ε : IH → 1 is an iso, every stably-vertical
morphism is an epi and every vertical regular epi is stably-vertical, E ∩ RegEpi ⊆
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E ′ ⊆ Epi, then there is an inseparable-separable factorization system (Ins, Sep)
with Ins = E ′ ∩RegEpi = E ∩RegEpi.

Proof. We know from Remark 1.28 that E ′ ⊆ Pin. Therefore, it follows from
Lemma 1.30 that

E ′ ∩RegEpi ⊆ Ins ⊆ E ∩RegEpi.

Then, the given hypothesis E ∩RegEpi ⊆ E ′ implies that

Ins = E ′ ∩RegEpi = E ∩RegEpi.

As the stably-vertical morphisms are by hypothesis all epis, we conclude from
the previous Proposition 1.32 that Ins = E ′ ∩RegEpi is closed under composition.

Which in turn implies by Proposition 1.31 that (Ins, Sep) is a factorization
system.

¤

1.9. Concordant-dissonant factorization

The next proposition is stated and proved in [3, §3.9].

Proposition 1.35. If (F ,N ) is a factorization system on C, for which F is
contained in the class of epimorphisms, then there is a factorization system (Ē ,M̄)
such that

• Ē = E ∩ F is the class of vertical morphisms in F , and

• a morphism α : A → B is in M̄ if and only if the following arrow 〈α, ηA〉 :
A → B ×HI(A) with components α : A → B and ηA : A → HI(A) is in
N :

B B × I(A) I(A)

A

?

HHHHHHHj

ηA

´
´

´
´

+́

α
〈α, ηA〉

¾ -

The (Ē ,M̄)-factorization of a morphism α : A → B in C is then given by
(mα · n) · f , with n · f the (F ,N )-factorization of eα and mα · eα the (E ,M)-
factorization of α:
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A - B
α








Á J

J
J

J
JĴ

eα mα (1.18)6

©©©©*

f

n

The following definition generalizes slightly the sense of concordant and dis-
sonant as presented in [12]. In this way, the class of concordant morphisms can
include not only regular epis but also extremal epis.

Definition 1.36. If the class of morphisms N at previous Proposition 1.35
equals the class Mono of all monomorphisms, as it is the case when C is a regular
category and (F ,N ) = (RegEpi, Mono), then we call concordant to a morphism
in C which belongs to

Conc := Ē = E ∩ F ⊆ Epi,

and dissonant if it belongs to

Diss := M̄ ⊇M∪Mono.





CHAPTER 2

The reflection of Cat into Preord

In this chapter, all notions and classes of morphisms defined in previous chapter
1, are to be considered, unless stated otherwise, with respect to the following full
reflection:

(2.1) (I,H, η, ε) : Cat → Preord,

where:
• H(X) is the preordered set X regarded as a category;

• I(A) = A0 is the preordered set of objects a in A,

in which a ≤ a′ if and only if there exists a morphism from a to a′;

• ηA : A → HI(A) is the unique functor with ηA(a) = a

for each object a in A;

• ε : IH → 1 is the identity natural transformation.

2.1. Preamble

2.1.1. Monotone-light factorization.

Every map α : A → B of compact Hausdorff spaces has a factorization α = me
such that m : C → B has totally disconnected fibres and e : A → C has only
connected ones. This is known as the classical monotone-light factorization of S.
Eilenberg [5] and G. T. Whyburn [16].

Consider now, for an arbitrary functor α : A → B, the factorization α = me
such that m is a faithful functor and e is a full functor bijective on objects. We
shall show that this familiar factorization for categories is as well monotone-light,
meaning that both factorizations are special and very similar cases of the categor-
ical monotone-light factorization in an abstract category C, with respect to a full
reflective subcategory X, as was studied in [3].

It is well known that any full reflective subcategory X of a category C gives rise,
under mild conditions, to a factorization system (E ,M). Hence, each of the two
reflections CompHaus → Stone, of compact Hausdorff spaces into Stone spaces,
and Cat → Preord, of categories into preorders, yields its own reflective factor-
ization system. For the former reflection, the maps in E are known to be those
which induce a bijection between the connected components; and a map α : A → B
is in M if, for each connected component H of B, every connected component of
α−1(H) is mapped by α homeomorphically onto H. Explicit descriptions of the

17
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same two classes for the latter reflection are given ahead in this chapter.

Moreover, the process of simultaneously stabilizing E and localizing M, in the
sense of [3], was already known to produce a new non-reflective and stable factor-
ization system (E ′,M∗) for the adjunction CompHaus → Stone, which is just
the (Monotone,Light)-factorization mentioned above. But this process does not
work in general, the monotone-light factorization for the reflection CompHaus →
Stone being just one of a few known examples. Nevertheless, we shall prove that
the (Full and Bijective on Objects, Faithful)-factorization for categories is an-
other instance of a successful simultaneous stabilization and localization.

What guarantees the success is the following pair of conditions, which hold in
both cases:

(1) the reflection I : C→ X has stable units (in the sense of [4]);

(2) for each object B in C, there is a monadic extension1 (E, p) of B such
that E is in the full subcategory X.

Indeed, the two conditions (1) and (2) trivially imply that the (E ,M)-factorization
is locally stable, which is a necessary and sufficient condition for (E ′,M∗) to be a
factorization system (cf. Theorem 1.18, which is the central result of [3]).

Actually, we shall prove that the reflection Cat → Preord also has stable
units, as the reflection CompHaus → Stone was known to have. And, for the
reflection Cat → Preord, the monadic extension (E, p) of B may be chosen to be
the obvious projection from the coproduct E = Cat(4, B) · 4 of sufficiently many
copies of the ordinal number 4, one copy for each triple of composable morphisms
in B. As for CompHaus → Stone, it was chosen to be the canonical surjection
from the Stone-Čech compactification E = β|B| of the underlying set of B.

In both cases these monadic extensions are precisely the counit morphisms of
the following adjunctions from Set: the unique (up to an isomorphism) adjunction
Cat(4,−) a (−) · 4 : Set → Cat which takes the terminal object 1 to the ordinal
number 4, and the adjunction | · | a β : Set → CompHaus, where the standard
forgetful functor | · | is monadic, respectively.

Notice that this perfect matching exists in spite of the fact that CompHaus
is an exact category and Cat is not even regular.2

The reader may even extend the analogy, to the explicit descriptions of the
classes in (E ,M) and (E ′,M∗), by simply making the following naive correspon-
dence between some concepts of spaces and categories: “point”/“arrow”; “con-
nected component”/“hom-set”; “fibre”/“inverse image of an arrow”; “connected”/“in
the same hom-set”; “totally disconnected”/“every two arrows are in distinct hom-
sets”.

The two reflections may be considered as admissible Galois structures, in the

1It is said that (E, p) is a monadic extension of B, or that p is an effective descent morphism,
if the pullback functor p∗ : C/B → C/E is monadic.

2A monadic extension in CompHaus is just an epimorphism, i.e., a surjective mapping,
while on Cat epimorphisms, regular epimorphisms and monadic extensions are distinct classes.
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sense of categorical Galois theory as presented in [7], since having stable units im-
plies admissibility.

Therefore, in both cases, for every object B in C, one knows that the full sub-
category TrivCov(B) of C/B, determined by the trivial coverings of B (i.e., the
morphisms over B in M), is equivalent to X/I(B) (cf. Lemma 1.7).

Moreover, the categorical form of the fundamental theorem of Galois theory
gives us even more information on each C/B using the subcategory X. It states
that the full subcategory Spl(E, p) of C/B, determined by the morphisms split by
the monadic extension (E, p) of B, is equivalent to the category XGal(E,p) of inter-
nal actions of the Galois precategory of (E, p) (cf. section 1.6 and Theorem 1.21).

In fact, conditions (1) and (2) above imply that Gal(E, p) is really an internal
groupoid in X (see section 5.3 of [3]).

And, as all the monadic extensions (E, p) of B described above are projective3,
one has in both cases that Spl(E, p) = Cov(B), the full subcategory of C/B deter-
mined by the coverings of B (i.e., the morphisms over B in M∗).

Condition (1) implies as well that any covering over an object which belongs
to the subcategory is a trivial covering (cf. Proposition 1.16).

An easy consequence of this previous statement, condition (2), and of the fact
that coverings are pullback stable, is that a morphism α : A → B is a covering over
B if and only if, for every morphism φ : X → B with X in the subcategory X, the
pullback X ×B A of α along φ is also in X (cf. Lemma 2.9).

In particular, when the reflection has stable units, a monadic extension (E, p)
as in condition (2) is a covering if and only if the kernel-pair of p is in the full
subcategory X of C.

Thus, since the monadic extensions considered for the two cases are in fact
coverings, one concludes that Gal(Cat(4, B) · 4, p) and Gal(β|B|, p) are not just
internal groupoids, but internal equivalence relations in Preord and Stone, re-
spectively.

In symbols, specifically for the reflection Cat → Preord:

• Faithful(B) ' PreordGal(Cat(4,B)·4,p), for a general category B, and

• Faithful(X) ' Preord/X, when X is a preorder.

As for CompHaus → Stone:

• Light(B) ' StoneGal(β|B|,p), for a general compact Hausdorff space B,
and

• Light(X) ' Stone/X, when X is a Stone space.

The fact that Gal(β|B|, p) is an internal equivalence relation in Stone was

3I.e., for each monadic extension (A, f) of B there exists a morphism g : E → A with fg = p.
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already stated in [9].

Actually, the Stone spaces constitute what was defined there to be a generalized
semisimple class of objects in CompHaus, and such that every compact Hausdorff
space B is a quotient of a Stone space (in fact, the above effective descent mor-
phisms β|B| → B are of course regular epis).

In this way, the equivalence Light(B) ' StoneGal(β|B|,p) is just a special case
of its main Theorem 3.1. Which can be easily extended to non-exact categories, by
using monadic extensions instead of regular epis, and in such a manner that the
equivalence Faithful(B) ' PreordGal(Cat(4,B)·4,p) is also a special case of it.

Hence, the preordered sets do constitute a generalized semisimple class of ob-
jects in Cat, the faithful functors coincide with the locally semisimple coverings4,
Gal(Cat(4, B) · 4, p) is an internal equivalence relation in Preord, and the reflec-
tion Cat → Preord stands now as an interesting non-exact example of the case
studied in [9].

In fact, remark that we have proved implicitly above in this preamble the fol-
lowing proposition:

Proposition 2.1. Theorem 1.25 follows from Theorem 1.21 if:

• the first condition in Definition 1.22 holds for the category C,

• the adjunction 1.1 has stable units and its counit is an iso, and

• in the monadic extension (E, p) of B, E = H(X) for some X ∈ X.

We shall show that faithful functors are the covering morphisms with respect
to the reflection Cat → Preord of categories into preorders. And that they also
constitute the right-hand side of the monotone-light factorization system (E ′,M∗)
on Cat, which arises by simultaneously stabilizing E and localizing M in the re-
flective factorization system (E ,M) associated to Cat → Preord.

In fact, Cat → Preord stands as a non-exact counterpart of the reflection
CompHaus → Stone, of compact Hausdorff spaces into Stone spaces, in what
concerns categorical Galois theory.

2.1.2. Inseparable-separable and concordant-dissonant factorizations.

Moreover, both reflections have concordant-dissonant factorization systems
(Conc, Diss), in the sense of [12, §2.11], where Conc is the class E ∩ RegEpi of
regular epimorphisms in the left-hand side E of the reflective factorization system
(E ,M).

One concludes from Corollary 2.11 in [12] that (Conc, Diss) is a factorization

4Under the condition that one replaces regular epis by monadic extensions in the Definition
2.1 of [9].
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system on CompHaus, since CompHaus is an exact category and so it has a
regular epi-mono factorization system (RegEpi, Mono).

On the other hand, the existence of an extremal epi-mono factorization system
(ExtEpi, Mono) on Cat implies that (E ∩ExtEpi, Diss) is also a factorization sys-
tem on Cat (see [3, §3.9] which generalizes Corollary 2.11 in [12]), where E∩ExtEpi
is the class of extremal epis in E .

Finally, remark that the two classes E ∩ ExtEpi and Conc coincide on Cat.
This follows easily from the known characterizations of extremal epis and regular
epis on Cat, and from Proposition 2.7.

So far, the analogy between the two reflections continues.

Now, notice that for Cat → Preord the concordant morphisms are exactly the
monotone morphisms, i.e., the full functors bijective on objects, but for CompHaus →
Stone it is not so.

Indeed, consider the map

X ¡
¡

¡

@
@

@

⇓ f- Y
@

@
@

which bends a closed segment in the Euclidean plane through its middle point,
identifying in this way its two halves.

It is a concordant map, i.e., a surjection whose fibres are contained in connected
components5, since X has only one component. But it is not monotone, i.e., a map
whose fibres are all connected, since every point of Y , excepted one of the vertices,
has disconnected two-point fibres.

Hence, we have:
• (E ′,M∗) = (Conc, Diss), for Cat → Preord;

• M∗ contains strictly the maps in Diss, i.e., the maps whose fibres meet the
connected components in at most one point, for CompHaus → Stone.

One also knows from [12, §4.1] that

Pin ∩RegEpi = Pin∗ ⊆ Ins ⊆ Conc ,

where Ins and Pin are respectively the classes of inseparable and purely inseparable
morphisms on Cat.

By Proposition 2.16 a functor is in Pin if and only if it is injective on objects.
So, one easily concludes that

Pin∗ = Ins = Conc = E ′ .

5Every given description of a class of maps of compact Hausdorff spaces, was either taken
from [3, §7] or obtained from the Example 5.1 in [12]. At the latter, those descriptions were
stated for the reflection of topological spaces into hereditarily disconnected ones, which extends
CompHaus → Stone.
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And, by Proposition 1.31, the monotone-light factorization on Cat, besides be-
ing also a concordant-dissonant factorization, is in addition an inseparable-separable
factorization:

(E ′,M∗) = (Conc,Diss) = (Pin∗, Sep) = (Ins, Sep) .

Proposition 2.15 gives a direct proof of this fact by stating that the separable
morphisms on Cat are just the faithful functors, i.e., the light morphisms on Cat.

Notice that, for an inseparable-separable factorization m∗
α · e′α of any functor

α : A → B (see diagram 1.17), e′α is the coequalizer of (u · mδα
, v · mδα

), where
(u, v) is the kernel-pair of α and mδα · eδα is the reflective (E ,M)-factorization of
the fibred product δα : A → A×B A (see [12, §3.2]).

Hence, one has two procedures for obtaining the monotone-light factorization
of a functor via preorders:

• the one given in diagram 1.17, corresponding to the inseparable-separable
factorization;

• another one in diagram 1.18, associated with the concordant-dissonant
factorization considered above: α = (mα ·n) ·f , such that eα = n ·f is the
extremal epi-mono factorization of eα, and α = mα · eα is the reflective
(E ,M)-factorization of α.

As for the reflection CompHaus → Stone, the classes Pin and Pin∗ are not
closed under composition, and so they cannot be part of a factorization system.
This was shown in [12, §5.1] with a counterexample. One can also infer from the
same counterexample that Ins 6= Pin∗.6

Remark that, as far as separable and dissonant morphisms are concerned, and
unlike the reflection CompHaus → Stone, the reflection Top → T0 of topological
spaces into T0-spaces is analogous to the reflection Cat → Preord. Indeed, one
has as well for the reflection Top → T0 that (see [12, §5.4]):

Conc = Ins = Pin∗ and Diss = Sep .

2.1.3. Normal morphisms.

We shall also give in this chapter an explicit description of normal morphisms
of categories via preorders. That is, of functors α which are split over themselves,
meaning that the pullback u : A ×B A → A of α : A → B along itself is a trivial
covering, in the sense of categorical Galois theory as presented in [7], with respect
to the adjunction Cat → Preord.

Notice that a trivial covering is a normal morphism, since the trivial coverings
are pullback stable7. And every normal morphism is a separable morphism, since

6Cf. the last sentence in the previous footnote.
7It is so because the adjunction Cat → Preord is semi-left-exact, in the sense of [4] and [3],

or admissible in the sense of categorical Galois theory.
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u · δα = 1A is a trivial covering8 and trivial coverings are weakly left-cancellable9

(cf. Definition 1.26 and Remark 1.27).

One easily checks with Proposition 2.20 that the effective descent morphisms
above are normal morphisms, with respect to the reflection of categories into pre-
orders.

This fact combined with the existing admissibility implies that, for every object
B in Cat, Faithful(B) = M∗/B is reflective in Cat/B, by Theorem 7.1 in [8].
And, as M∗ is a pullback-stable class closed under composition, we could conclude
a priori that M∗ is the right-hand class of a certain factorization system, before
knowing that it was part of a stable factorization system: see [3, §2.12].

2.2. Monotone-light factorization for categories via preorders

2.2.1. The reflection of Cat into Preord has stable units.

The following obvious lemma will be used many times below:

Lemma 2.2. A commutative diagram

C

D

B

A

u

v

α (2.2)
γ

-

-

? ?

in Cat is a pullback square if and only if its object version

C0

D0

B0

A0

u0

v0

α0 (2.3)
γ0 -

-

? ?

is a pullback square in Set, and also its hom-set version

HomC(u(d), u(d′))

HomD(d, d′)

HomB(αv(d), αv(d′))

HomA(v(d), v(d′)

(2.4)

-

-

? ?

for arbitrary objects d and d′ in D, where the maps are induced by the arrow func-
tions of the functors in diagram 2.2.

8The morphism δα is of course the fibred product of Definition 1.26.
9I.e., (gf, g ∈ TrivCov ⇒ f ∈ TrivCov) for all f , g.
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Proposition 2.3. The adjunction 2.1 has stable units, that is, the functor
I : Cat → Preord preserves every pullback of the form

A

A×H(X) B

H(X) .

B

π1

π2

β

α
-

-

? ?

Proof. Since the reflector I does not change the sets of objects (i.e., the
underlying set of I(A) is the same as the set of objects in A), the underlying
sets of the two preorders I(A ×H(X) B) and I(A) ×IH(X) I(B) are both equal to
A0 ×H(X)0 B0.

Moreover, for any pair of objects (a, b) and (a′, b′) in A0×H(X)0 B0, we observe
that:

(a, b) ≤ (a′, b′) in I(A×H(X) B) ⇔
there exist two morphisms f : a → a′ in A and g : b → b′ in B

such that α(f) = β(g) ⇔

(since H(X) has no parallel arrows!)

there exist two morphisms f : a → a′ in A and g : b → b′ in B ⇔
a ≤ a′ in I(A) and b ≤ b′ in I(B) ⇔
(a, b) ≤ (a′, b′) in I(A)×IH(X) I(B).

¤

2.2.2. Trivial coverings and vertical morphisms.

In this section we give explicit descriptions of the two classes M and E , which
do constitute a factorization system, as we now know after proving Proposition 2.3
and recalling Propositions 1.11 and 1.9.

Proposition 2.4. A functor α : A → B belongs to M if and only if for every
two objects a and a′ in A with HomA(a, a′) nonempty, the map HomA(a, a′) →
HomB(α(a), α(a′)) induced by α is a bijection.

We will also express this by saying that α is a trivial covering if and only if α
is a faithful and “almost full” functor.

Proof. According to Lemma 2.2, the diagram
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B

A

HI(B)

HI(A)

α HI(α) (2.5)
ηB

ηA

-

-

? ?

is a pullback square in Cat if and only if the diagram

B0

A0

B0

A0

α0

1

α0 (2.6)
1

-

-

? ?

and the diagrams

HomB(α(a), α(a′))

HomA(a, a′)

HomHI(B)(α(a), α(a′))

HomHI(A)(a, a′)

(2.7)

-

-

? ?

for arbitrary objects a and a′ in A, whose maps are induced by the arrow functions
of the functors at diagram 2.5, are all pullback squares in Set.

We then observe:

the functor α : A → B belongs to M⇔
(since the diagram 2.6 is obviously a pullback square)

for every two objects a and a′ in A,

the diagram 2.7 is a pullback square ⇔
(if HomA(a, a′) is empty then HomHI(A)(a, a′) is also empty!)

for every two objects a and a′ in A, provided HomA(a, a′) is nonempty,

the diagram 2.7 is a pullback square ⇔
(if HomA(a, a′) is nonempty then HomHI(A)(a, a′) ∼= 1 ∼= HomHI(B)(α(a), α(a′)))

for every two objects a and a′ in A, provided HomA(a, a′) is nonempty,

the induced map HomA(a, a′) → HomB(α(a), α(a′)) is a bijection.
¤

Remark 2.5. In the internal diagrams, we are going to present in the exam-
ples below, the identity morphisms will always be omitted. Sometimes some other
morphisms will also be omitted, but in that case we will always mention the fact.
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Example 2.6. The following functor α : A → B, such that α(a0) = b1 and
α(ai) = bi, for i = 1, 2, 3, is a trivial covering:

a3

6

a2

a1

?

a0

-α

b3

6

b2

?

b1

?

6

b0

(Notice that we have omitted in the diagram the unique arrow from b0 to b2)

In fact, α is faithful and all the maps HomA(ai, aj) → HomA(α(ai), α(aj)) it
induces are surjections except for the three cases where HomA(a1, a2), HomA(a1, a0)
and HomA(a0, a2) are empty.

If one adds an idempotent morphism to any of the three objects b1, b2 and b3

in B, the functor α will be no longer almost full. And if one adds an idempotent
to an object in A, one loses the faithfulness.

Proposition 2.7. A functor α : A → B belongs to E if and only if the following
two conditions hold:

(1) the functor α is bijective on objects;

(2) for every two objects a and a′ in A, if HomB(α(a), α(a′)) is nonempty
then so is HomA(a, a′).

Proof. The condition 2 reformulated in terms of the functor I becomes:

• for every two objects a and a′ in I(A), a ≤ a′ in I(A) if and only if

α(a) ≤ α(a′) in I(B).

Therefore, the two conditions together are satisfied if and only if I(α) is an
isomorphism, i.e., α is in E (cf. Lemma 1.3).

¤

Example 2.8. The functor bijective on objects α : 2 → ↓↓, from the ordinal
number 2 to the category consisting of two parallel arrows, is vertical but not full:
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1
?

0

-α

??

2.2.3. Coverings and stably-vertical morphisms.

The following simple Lemma 2.9 refers to the general case of adjunction 1.1
in previous chapter 1. It is needed to prove next Lemma 2.10, from which the
characterization of coverings at Proposition 2.11 becomes an easy task.

Lemma 2.9. If the adjunction 1.1 has stable units then the following pullback
u : H(X)×B A → H(X)

H(X)

H(X)×B A

B

A

u α

ϕ
-

-

? ?

of any covering morphism α : A → B along a morphism of the form ϕ : H(X) → B
is a trivial covering, with respect to the adjunction 1.1.

Proof. The lemma follows immediately from Propositions 1.15 and 1.16.
¤

Lemma 2.10. A functor α : A → B in Cat is a covering if and only if, for ev-
ery functor ϕ : X → B over B from any preorder X, the following pullback X×B A

X

X ×B A

B

A

α

ϕ
-

-

? ?

of α along ϕ is also a preorder.

Proof. By Proposition 2.3 and Lemmas 1.5 and 2.9, if one shows that for every
category B in Cat there is a monadic extension (X, p) of B with X a preorder,
then the proof will be done.

Hence, we complete the proof by presenting, for each category B in Cat, a
monadic extension (X, p) of B with X a preorder (cf. Example 1.13):

make X the coproduct of all composable triples of morphisms in B,

and then let p be the obvious projection of X into B.
¤

Proposition 2.11. A functor α : A → B in Cat is a covering if and only if
it is faithful.
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Proof. We have:

the functor α : A → B in Cat is a covering ⇔ (by Lemma 2.10)

for every functor ϕ : X → B from a preorder X,

the following pullback X ×B A is a preorder:

X

X ×B A

B

A

α

ϕ
-

-

? ?

⇔
for every functor ϕ : X → B from a preorder X,

for any (x, a) and (x′, a′) in X ×B A,

HomX×BA((x, a), (x′, a′)) has at most one element ⇔
for every functor ϕ : X → B from a preorder X,

if f is the unique morphism from x to x′ in X,

and if any two morphisms g : a → a′ and h : a → a′ in A

are such that α(g) = ϕ(f) = α(h), then g = h ⇔
the functor α : A → B is faithful.

¤

Proposition 2.12. A functor α : A → B belongs to E ′ if and only if it is a
full functor bijective on objects.

Proof. We have:

a functor α : A → B belongs to E ′ ⇔
(according to the definition of E ′ and Lemma 1.3)

for every pullback u of α, I(u) is an isomorphism ⇔
I(α) is an isomorphism and I preserves every pullback of α ⇔
(according to Proposition 2.7)

α is bijective on objects

and

HomA(a, a′) is empty if and only if HomB(α(a), α(a′)) is so,

for arbitrary a and a′ in A

and

(by Lemma 2.2, and since the reflector I does not change the sets of objects)
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for every pullback

C

C ×B A

B

A

u

v

α (2.8)
γ

-

-

? ?

of α, the hom-set version

HomI(C)(c, c′)

HomI(C×BA)((c, a), (c′, a′))

HomI(B)(α(a), α(a′))

(2.9)

HomI(A)(a, a′)

-

-

? ?

of its image by I is also a pullback square in Set,

for arbitrary objects (c, a) and (c′, a′) in C ×B A ⇔
α is bijective on objects

and

HomI(A)(a, a′) ∼= HomI(B)(α(a), α(a′)), for arbitrary a and a′ in A

and

for every pullback C ×B A of α, HomI(C×BA)((c, a), (c′, a′)) ∼= HomI(C)(c, c′)

for arbitrary objects (c, a) and (c′, a′) in C ×B A ⇔
α is bijective on objects

and

α is full.
¤

Notice that the following lemma, as it was the case in the precedent lemma 2.9,
refers to the general adjunction 1.1 in chapter 1.

Lemma 2.13. If the adjunction 1.1 has stable units, its counit ε : IH → 1 is
an iso, and for each object B in C there is a monadic extension (E, p) of B such
that E is of the form H(X), then (E ′,M∗) is a factorization system, with respect
to adjunction 1.1.

Proof. Consider the pullback u : H(X) ×B A → H(X) of an arbitrary mor-
phism α : A → B along a monadic extension as in the statement.

Then, in the following factorization u = u′ · ηH(X)×BA
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H(X)

H(X)×B A

B

A

α

p
-

-

? ?PPPq

³³³³)
HI(H(X)×B A)

u′

ηH(X)×BA

through the universal arrow ηH(X)×BA from H(X)×B A to H, the unit ηH(X)×BA

is stably-vertical and u′ is a trivial covering. Indeed, the fact that every unit mor-
phism is stably-vertical, under the conditions of the statement, follows trivially
from Lemma 1.3 and Definition 1.10. Since u′ is a morphism in H(X) it is a trivial
covering by Lemma 1.5.

Hence, being every (E ,M)-factorization locally stable, (E ′,M∗) is a factoriza-
tion system by Theorem 1.18.

¤

Conclusion 2.14. As follows from the previous Lemma 2.13, (E ′,M∗) is a
factorization system.

Moreover, Propositions 2.11 and 2.12 also tell us that it is a well-known one.
Notice therefore that we could draw the same conclusion by using the character-

izations of coverings and stably-vertical morphisms given in those two propositions
and Proposition 1.17.

2.3. Inseparable-separable and concordant-dissonant factorizations

2.3.1. Separable morphisms.

Proposition 2.15. A functor α : A → B in Cat is a separable morphism if
and only if it is faithful.

Proof. According to Definition 1.26 and Proposition 2.4 one has to show that
the following functor δα : A → A×B A

A

A×B A

B

A

u α

α

v

-

-

? ?

A

1A

1A
δα

@
@

@@R

A
A
A
A
A
A
A
A
AU

PPPPPPPPPPPPq
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is faithful and “almost full” if and only if α is faithful.

We then observe:

for every two objects a and a′ in A with HomA(a, a′) nonempty,

the map HomA(a, a′) → HomA×BA((a, a), (a′, a′)) induced by δα

is a bijection ⇔
(since the maps HomA(a, a′) → HomA×BA((a, a), (a′, a′))

induced by δα are obviously injective)

for every two objects a and a′ in A with HomA(a, a′) nonempty,

the map HomA(a, a′) → HomA×BA((a, a), (a′, a′)) induced by δα

is a surjection ⇔
(since if HomA(a, a′) is empty then so is HomA×BA((a, a), (a′, a′)))

the maps HomA(a, a′) → HomA×BA((a, a), (a′, a′)) induced by δα

are all surjections ⇔
for every two morphisms f and g in A with the same domain and codomain,

if α(f) = α(g) then f = g ⇔
α is a faithful functor.

¤

2.3.2. Purely inseparable morphisms.

Proposition 2.16. A functor α : A → B in Cat is a purely inseparable mor-
phism if and only if its object function is injective.

Proof. According to Definition 1.26 and Proposition 2.7, α : A → B is purely
inseparable if and only if the following two conditions hold:

(1) the following functor δα : A → A×B A

A

A×B A

B

A

u α

α

v

-

-

? ?

A

1A

1A
δα

@
@

@@R

A
A
A
A
A
A
A
A
AU

PPPPPPPPPPPPq
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is bijective on objects;

(2) for every two objects a and a′ in A, if HomA×BA(δα(a), δα(a′)) is nonempty
then so is HomA(a, a′).

We then observe:

the functor α is purely inseparable ⇔
(the condition (2) holds trivially, since δα(a) = (a, a) for every object a in A,

and the morphisms in A×B A are the ordered pairs (f, g)

of morphisms in A such that α(f) = α(g))

the functor δα is bijective on objects ⇔
(since the object function of δα is injective)

the functor δα is surjective on objects ⇔
the functor α is injective on objects.

¤

2.3.3. The light, separable and dissonant morphisms coincide.

According to the given explicit descriptions above, it is easy to verify that
every stably-vertical functor is an epi, in fact it is even a stably-regular epi (cf.
Example 1.33), E ′ ⊆ RegEpi. And that every vertical regular epi is stably-vertical,
E ∩ RegEpi ⊆ E ′, since every epimorphism in Cat which is a bijection on objects
must also be a full functor.

Hence, the conditions of Corollary 1.34 hold and we can conclude that (Ins, Sep)
is a factorization system with Ins = E ′.

On the other hand, the known existence of an extremal epi-mono factoriza-
tion system (ExtEpi, Mono) on Cat implies by Proposition 1.35 that Conc :=
E ∩ ExtEpi is the left-hand class of a factorization system on Cat.

But it is very easy to check that Ins = E∩RegEpi = E∩ExtEpi. Therefore, we
conclude that our monotone-light factorization, besides being inseparable-separable
as just seen, is in addition concordant-dissonant:

Conclusion 2.17. (Ins, Sep) is an inseparable-separable factorization system.

It is in fact the monotone-light factorization of previous section 2.2. And it is
also a concordant-dissonant factorization:

(E ′,M∗) = (Ins, Sep) = (Conc, Diss).



2.3. INSEPARABLE-SEPARABLE AND CONCORDANT-DISSONANT FACTORIZATIONS 33

Example 2.18. Every functor from and to one-object categories, i.e., a monoid
homomorphism or in particular a group homomorpism, is vertical.

Therefore, its (E ,M)-factorization is the trivial one.

On the other hand, its (E ′,M∗)-factorization is the usual epi-mono factoriza-
tion of an homomorphism.

Example 2.19. The pullback diagram

a

ā1

ā2

©©©*

HHHjHHHj

A

@
@

@
@

@
@R

eα

HHj
f

(b, a)

(b̄, ā1)

(b, ā2)

©©©*©©©*

HHHj

B ×HI(B) HI(A)

-dα

?

mα

a

ā1

ā2

©©©*

HHHj

HI(A)

?

HI(α)

b

b̄

©©©*©©©*
B -ηB

b

b̄

©©©*

HI(B)

(b, a)

(b̄, ā1)

(b, ā2)

©©©*

HHHj

¡
¡ª n

C

displays, for a specific functor α : A → B such that α(ā1) = b̄ and α(a) = α(ā2) = b,
both the (E ,M)-factorization mα ·eα and the (Conc, Diss)-factorization (mα ·n) ·f
(cf. diagrams 1.3 and 1.18).

As we now know, the (Conc, Diss)-factorization α = (mα · n) · f is also its
(Ins, Sep)-factorization, and so it can also be obtained using the diagram 1.17:
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a

ā1

ā2

©©©*

HHHjHHHj

A

J
J

J
J

J
J

J
JĴ

δα

HHHHHHj

eδα

¢
¢

¢
¢

¢
¢

¢
¢¢®

mδα

(ā1, ā1)

©©©*

(a, a)

(ā2, ā2)

Q
Q

Q
QQs

Q
Q

Q
QQs

Q
Q

Q
QQs

Q
Q

Q
QQs

D

(ā1, ā1)

©©©*

(a, a) (ā2, a)

(a, ā2) (ā2, ā2)

--

--
?? ??

Q
Q

Q
QQs

Q
Q

Q
QQs

Q
Q

Q
QQs

Q
Q

Q
QQs

A×B A

-v

?

u

a

ā1

ā2

©©©*

HHHjHHHj

A

?

α

a

ā1

ā2

©©©*

HHHjHHHj

A -α

@
@

@@R

e′α = f

b

b̄

©©©*©©©*
B

(b, a)

(b̄, ā1)

(b, ā2)

©©©*

HHHj

C

¡
¡

¡
¡µ

m∗
α



2.4. NORMAL MORPHISMS 35

2.4. Normal morphisms

Proposition 2.20. A functor α : A → B in Cat is a normal morphism if and
only if the following two conditions hold:

(1) α is a faithful functor;

(2) for every two morphisms f : a → a′ and f̄ : ā → ā′ in A, if α(f) = α(f̄)
then α(HomA(a, a′)) = α(HomA(ā, ā′)).

Of course that, for instance, α(HomA(a, a′)) stands for the subset of HomB(α(a), α(a′))
whose elements are in the image of α.

Proof. According to Definition 1.26 and Proposition 2.4, we have to show
that conditions (1) and (2) hold if and only if the following pullback u : A×B A → A

A

A×B A

B

A

u α

α

v

-

-

? ?

of α : A → B along itself, is faithful and “almost full”.

Claim 1. The maps HomA×BA((a, ā), (a′, ā′)) → HomA(a, a′), induced by u
for every two objects (a, ā) and (a′, ā′) in A ×B A, are all injections if and only if
(1) holds.

Indeed, we have

the maps HomA×BA((a, ā), (a′, ā′)) → HomA(a, a′) induced by u

are all injections ⇔
(since u is displayed as u(h, h̄) = h, for every morphism (h, h̄) in A×B A,

i.e., for any pair (h, h̄) of morphisms in A such that α(h) = α(h̄))

for any three morphisms h : a → a′ and h̄1, h̄2 : ā → ā′ in A,

if α(h) = α(h̄1) and α(h) = α(h̄2) then h̄1 = h̄2 ⇔
α is a faithful functor.

Claim 2. The maps HomA×BA((a, ā), (a′, ā′)) → HomA(a, a′), induced by u for
every two objects (a, ā) and (a′, ā′) in A×B A, provided HomA×BA((a, ā), (a′, ā′))
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is nonempty, are all surjections if and only if (2) holds.

We have

the maps HomA×BA((a, ā), (a′, ā′)) → HomA(a, a′), induced by u for every two

objects (a, ā) and (a′, ā′) in A×B A, provided HomA×BA((a, ā), (a′, ā′)) is

nonempty, are all surjections ⇔
for every two morphisms f : a → a′ and f̄ : ā → ā′ in A such that α(f) = α(f̄),

the map HomA×BA((a, ā), (a′, ā′)) → HomA(a, a′) induced by u is always a

surjection ⇔
for every two morphisms f : a → a′ and f̄ : ā → ā′ in A, if α(f) = α(f̄) then

for every morphism h in HomA(a, a′) there is some morphism h̄ in HomA(ā, ā′)

such that α(h̄) = α(h) ⇔
for every two morphisms f : a → a′ and f̄ : ā → ā′ in A,

if α(f) = α(f̄) then α(HomA(a, a′)) ⊆ α(HomA(ā, ā′)) ⇔
(by the symmetry in f and f̄ !)

for every two morphisms f : a → a′ and f̄ : ā → ā′ in A,

if α(f) = α(f̄) then α(HomA(a, a′)) = α(HomA(ā, ā′)).
¤

Example 2.21. The following functor α : A → B, such that and α(f) = α(g)
is normal but it is not a trivial covering:

a3

?
g

a2

a1

f
?

a0

-α

b2

??

b1

Indeed, α is faithful and any two maps HomA(ai, aj) → HomA(α(ai), α(aj))
induced by it which have the same codomain also have the same image, but α is
not almost full.

Notice that the Example 3.23 in next chapter 3 also holds in the present context
of the reflection of categories into preorders, showing that normal morphisms are
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not closed under composition.





CHAPTER 3

The reflection of Cat into Ord

In this chapter, every notion and class of morphisms defined in chapter 1 is to
be considered, unless stated otherwise, with respect to the following full reflection:

(3.1) (I,H, η, ε) : Cat → Ord,

where:

• H(X) is the ordered set X regarded as a category;

• I(A) = A0/ ∼ is the ordered set of classes [a] of objects a in A,
in which [a] ≤ [a′] if and only if there exists a morphism from a to a′;

• ηA : A → HI(A) associates with each object a ∈ A0 its equivalence class
under [a];

• ε is the canonical isomorphism IH → 1.

3.1. Preamble

3.1.1. Monotone-light factorization.

Considerations completely analogous to the ones given at the beginning of
previous chapter 2 remain valid for the reflection Cat → Ord, of categories into
orders.

In fact this reflection is the composite of the following two:

Cat → Ord = Cat → Preord → Ord,

the reflection of categories into preordered sets already studied and the reflection of
preordered sets into ordered sets. Observe that the latter one is a simplified version
of the “larger” one in what concerns categorical Galois theory.

For each one of the three reflections just mentioned, as for the known case of
the reflection CompHaus → Stone, the process of simultaneously stabilizing the
class of vertical morphisms and localizing the class of trivial coverings produces a
new non-reflective and stable factorization system.

And what guarantees the success, in each one of the four, are the same two
conditions already mentioned in the preamble to the previous chapter:

(1) the reflection I : C→ X has stable units (in the sense of [4]);

39
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(2) for each object B in C, there is a monadic extension1 (E, p) of B such
that E is in the full subcategory X.

Indeed, we shall prove that the reflection Cat → Ord also has stable units; and
remark that the counit morphisms of the adjunction Cat(4,−) a (−) · 4 : Set →
Cat continue to make the second condition hold, for the reflection into orders. As
for the reflection of preorders into orders one can of course choose the counits of
the adjunction Preord(2,−) a (−) · 2 : Set → Preord which takes the terminal
object 1 to the ordinal number 2.

Exactly in the same way as before, one concludes that Gal(Cat(4, B) · 4, p)
and Gal(Preord(2, B) · 2, p) are internal equivalence relations in Ord.

In symbols, for the reflection Cat → Ord:
• M∗/B ' OrdGal(Cat(4,B)·4,p), for a general category B, and

• M∗/X ' Ord/X, when X is an ordered set.

As for Preord → Ord:
• M∗/B ' OrdGal(Preord(2,B)·2,p), for a general preordered set B, and

• M∗/X ' Ord/X, when X is an ordered set.

We are also going to present, for the reflections Cat → Ord and CompHaus →
Stone, another näıve correspondence between some concepts of spaces and cate-
gories which, if the reader is patient enough to compare the explicit descriptions of
E ,M, E ′ andM∗, will reveal a surprising analogy: “point”/“any identity arrow 1a”;
“connected component”/“full subcategory determined by any [a]”; “fibre”/“inverse
image of an identity arrow”; “connected”/“in the same full subcategory determined
by some [a]”; “totally disconnected”/“every two arrows are in distinct hom-sets and
there are no two arrows with reversed domain and codomain”.

Notice finally that these two reflections of categories into orders and of pre-
orders into orders are also non-exact examples of the case studied in [9]. In fact,
the conditions of Proposition 2.1 are also verified for the two reflections to be stud-
ied in this chapter.

See the ending remarks in section 2.1.1.

3.1.2. Inseparable-separable and concordant-dissonant factorizations.

For the reflection Preord → Ord, which is a simplified version of the reflec-
tion of categories into orders, we will show that there exist a monotone-light and
an inseparable-separable factorization system, and that in fact they coincide with
the concordant-dissonant factorization system.

Hence, the reflection of preorders into orders behaves exactly as the reflection

1It is said that (E, p) is a monadic extension of B, or that p is an effective descent morphism,
if the pullback functor p∗ : C/B → C/E is monadic.
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of categories into preorders already studied:

(E ′,M∗) = (Conc,Diss) = (Pin∗, Sep) = (Ins, Sep) .

And the reason for the equality (E ′,M∗) = (Ins, Sep) is the same as before
(cf. Corollary 1.34):

E ′ ⊆ E ′ ∩RegEpi ⊆ Ins ⊆ E ∩RegEpi ⊆ E ′.

In fact, Preord → Ord is a simplified version of the reflection of topological
spaces into T0-spaces Top → T0, since preorders are up to an iso the Alexandroff
spaces, Preord ∼= Alexandroff , and orders are up to an iso the T0-Alexandroff
spaces, Ord ∼= T0 −Alexandroff .

We know from [12] that for the reflection Top → T0 one has (Conc, Diss) =
(Ins, Sep) = (Quotient maps with indiscrete fibres, F ibres are T0−spaces)) and
Ins = Conc = E ∩ RegEpi, as for the reflections Cat → Preord and Preord →
Ord.

But, for the composite

Cat → Ord = Cat → Preord → Ord,

of the two well-behaved reflections, the facts are surprisingly quite different:

• (E ′,M∗) and (Conc,Diss) are factorization systems;

• the dissonant functors are strictly included in the separable, which are
strictly included in the coverings, Diss ⊂ Sep ⊂M∗.

Remark that these strict inclusions imply that the existing factorization sys-
tems are all distinct.

The question about the existence of an inseparable-separable factorization sys-
tem (Ins, Sep) remains open; but if the answer to that question is yes then such
factorization system is a distinct one!

Remark that in this case we mean by a concordant morphism not a vertical
functor which is regular epi, but a vertical functor which is an extremal epimor-
phism, in the sense of our generalization of the meaning of Conc in Definition 1.36.

So, for the case of the reflection Cat → Ord the (partial) analogy seems to be
with the reflection CompHaus → Stone (see section 2.1.2 in the preamble of the
previous chapter, where we give the facts about this reflection from the compact
Hausdorff spaces to the Stone ones).

3.1.3. Normal morphisms.

We refer the reader to the remarks given in the homonymous section 2.1.3 of
last chapter 2, which apply exactly to the adjunction into orders of this chapter.

In particular, effective descent morphisms remain normal.
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3.2. Monotone-light factorization for categories via orders

3.2.1. The reflection of Cat into Ord has stable units.

Proposition 3.1. The adjunction 3.1 has stable units, that is, the functor
I : Cat → Ord preserves every pullback of the form

A

A×H(X) B

H(X) .

B

π1

π2

β

α
-

-

? ?

Proof. We have to show that the map

〈I(π1), I(π2)〉 : I(A×H(X) B) → I(A)×IH(X) I(B)

is an isomorphism of orders. Displaying this map as

〈I(π1), I(π2)〉([(a, b)]) = ([a], [b]) ,

we then observe:

([a], [b]) ≤ ([a′], [b′]) in I(A)×IH(X) I(B) ⇒
[a] ≤ [a′] in I(A) and [b] ≤ [b′] in I(B) ⇒
there exist a → a′ in A and b → b′ in B ⇒
there exists (a, b) → (a′, b′) in A×B ⇒
(since H(X) has no parallel arrows!)

there exists (a, b) → (a′, b′) in A×H(X) B ⇒
[(a, b)] ≤ [(a′, b′)] in I(A×H(X) B),

and so the map 〈I(π1), I(π2)〉 induces an isomorphism between I(A×H(X) B) and
its image in I(A)×IH(X) I(B). After that we only need to show that 〈I(π1), I(π2)〉
is surjective. For objects a in A and b in B we have:

([a], [b]) belongs to I(A)×IH(X) I(B) ⇒
[α(a)] = [β(b)] in IH(X) ⇒
(since ε : IH → 1 is an isomorphism!)

α(a) = β(b) in X ⇒
(a, b) belongs to A×H(X) B ⇒
[(a, b)] belongs to I(A×H(X) B)

and hence has ([a], [b]) as its image under 〈I(π1), I(π2)〉,
which proves the surjectivity.

¤
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3.2.2. Trivial coverings and vertical morphisms.

Before giving explicit descriptions of trivial coverings and vertical morphisms,
we notice again, exactly as we did for the reflection into preorders in chapter 2,
that by Propositions 3.1, 1.11 and 1.9 the pair (E ,M) is a factorization system.

Proposition 3.2. A functor α : A → B belongs to M if and only if the
following maps induced by α are bijections:

(1) [a] → [α(a)], for every object a in A;

(2) HomA(a, a′) → HomB(α(a), α(a′)), for every two objects a and a′ in A
provided HomA(a, a′) is nonempty.

Equivalently, α is a trivial covering if and only if the following two conditions hold:

• for every object a in A, α induces an isomorphism between the full sub-
categories of A and B determined by [a] and [α(a)] respectively;

• α is faithful and “almost full”, which means that the maps HomA(a, a′) →
HomB(α(a), α(a′)) are required to be bijective whenever HomA(a, a′) is
nonempty.

Proof. Consider again the pullback diagram 1.3:

B

C

HI(B)

HI(A)

mα HI(α)
ηB

dα

-

-

? ?

A

α

ηA
eα

@
@

@
@R

A
A
A
A
A
A
A
A
AU

PPPPPPPPPPPPPPq

The functor α : A → B is a trivial covering if and only if eα = 〈α, ηA〉 is
an isomorphism, i.e., it is a fully faithful functor bijective on objects. Accordingly
it suffices to check the following three simple claims:

Claim 1. The functor 〈α, ηA〉 : A → C is injective on objects if and only if the
maps in (1) are injective.

Indeed, we have

〈α, ηA〉 is an injection on objects ⇔
(α(a), [a]) = (α(a′), [a′]) implies a = a′ ⇔
if [a] = [a′], then α(a) = α(a′) implies a = a′ ⇔
all the maps [a] → [α(a)] are injective.

Claim 2. The functor 〈a, ηA〉 : A → C is surjective on objects if and only if the
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maps in (1) are surjective.

We have

〈a, ηA〉 is a surjection on objects ⇔
for every object a in A and every object b in B with [b] = [α(a)],

there exists a′ in A with (α(a′), [a′]) = (b, [a]) ⇔
for every object a in A and every b in [α(a)],

there exists a′ in [a] with α(a′) = b ⇔
all the maps [a] → [α(a)] are surjective.

Claim 3. The functor 〈a, ηA〉 : A → C is fully faithful if and only if all the maps in
(2) with nonempty HomA(a, a′) are bijective.

For, consider the commutative diagram

HomA(a, a′)

HomB(α(a), α(a′))

HomC((α(a), [a]), (α(a′), [a′]))-

?

PPPPPPPPPPPq

obtained from the hom-set version of the left hand triangle in diagram 1.3, for
arbitrary a and a′.

If HomA(a, a′) is empty, then so is HomC((α(a), [a]), (α(a′), [a′])); otherwise
the vertical arrow is a bijection.

Therefore the horizontal arrow is a bijection if and only if either HomA(a, a′)
is empty, or HomA(a, a′) → HomB(α(a), α(a′)) is a bijection, as desired.

¤

Example 3.3. The following faithful functor α : A → B, such that α(a3) = b2,
α(ā3) = b̄2, α(ai) = bi and α(āi) = b̄i, for i = 0, 1, 2, is a trivial covering:

a3

6

a2

a1

?

a0
--

-

-

¾¾

¾

¾ ā3

6

ā2

ā1

?

ā0

-α

b2

6

b1

?

b0
--

-

¾¾

¾ b̄2

6

b̄1

?

b̄0
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(We have omitted the unique left and right diagonal arrows in the squares at the
above diagram)

In fact, α is faithful, almost full and it induces an iso between the full subcat-
egories of A and B determined by the equivalence classes on the objects.

Proposition 3.4. A functor α : A → B belongs to E if and only if the following
two conditions hold:

(1) for every two objects a and a′ in A, if HomB(α(a), α(a′)) is nonempty
then so is HomA(a, a′);

(2) for every object b in B, there exists an object a in A such that b is in
[α(a)].

Proof. The conditions (1) and (2) reformulated in terms of the functor I
become:

(1) the map I(α) : I(A) → I(B) induces an isomorphism of orders between
I(A) and its image in I(B);

(2) the map I(α) : I(A) → I(B) is surjective.
Therefore, the two conditions together are satisfied if and only if I(α) is an

isomorphism, that is, according to Lemma 1.3, α is vertical.
¤

Example 3.5. The following functor α : A → B, such that α(a0) = α(a1) = b1

and α(a2) = α(a3) = b2 is vertical:

a3

a2

??

a1

a0

?

6

6

?

-α

b3

b2

?

b1

6

?

(Notice that we have omitted in the diagram the unique arrows from a0 to a2

and to a3, from a1 to a3, and from b1 to b3)

Indeed, α induces a surjection on the full subcategories of B determined by
the equivalence classes on objects, and it never takes an empty hom-set into a non-
empty hom-set.

Remark also that α is not stably-vertical with respect to the reflection from
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categories into preorders, since it is not bijective on objects.

3.2.3. Coverings and stably-vertical morphisms.

The next Lemma 3.6 makes easier the characterization of coverings in Propo-
sition 3.7. Its proof is mutatis mutandis the one given for Lemma 2.10.

Lemma 3.6. A functor α : A → B in Cat is a covering if and only if, for every
functor ϕ : X → B over B from any order X, the following pullback X ×B A

X

X ×B A

B

A

α

ϕ
-

-

? ?

of α along ϕ is also an order.

Proposition 3.7. A functor α : A → B in Cat is a covering if and only if the
following two conditions hold:

(1) the functor α : A → B is faithful;

(2) for every two morphisms, with reversed domain and codomain, f : a → a′

and f ′ : a′ → a in A, if α(f) = 1α(a) = α(f ′) then a′ = a.

Proof. We have:

the functor α : A → B in Cat is a covering ⇔ (by Lemma 3.6)

for every functor ϕ : X → B from any order X,

the pullback X ×B A is an order ⇔
for every functor ϕ : X → B from any order X,

for every two objects (x, a) and (x′, a′) in X ×B A,

the following two conditions hold:

(i) HomX×BA((x, a), (x′, a′)) has at most one element;

(ii) if both HomX×BA((x, a), (x′, a′)) and HomX×BA((x′, a′), (x, a)) are nonempty
then (x, a) = (x′, a′).

⇔ (as X is an order, if x 6= x′ and there exists x → x′ then HomX(x′, x) = ∅,
and so HomX×BA((x′, a′), (x, a)) = ∅)
for every functor ϕ : X → B from any order X,

the following two conditions hold:
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(i) for every two objects (x, a) and (x′, a′) in X ×B A,

HomX×BA((x, a), (x′, a′)) has at most one element;

(ii’) for every x in X and every two objects a and a′ in A

such that α(a) = ϕ(x) = α(a′), if both HomX×BA((x, a), (x, a′)) and
HomX×BA((x, a′), (x, a)) are nonempty then a′ = a.

Accordingly it suffices to check the next two claims:

Claim 1. The condition (1) in the statement holds if and only if for every functor
ϕ : X → B from any order X the condition (i) above holds.

Indeed, we have

for every functor ϕ : X → B from any order X,

for every two objects (x, a) and (x′, a′) in X ×B A,

HomX×BA((x, a), (x′, a′)) has at most one element ⇔
for every functor ϕ : X → B from any order X,

if f is the unique morphism from x to x′ in X,

and if any two morphisms g : a → a′ and h : a → a′ in A

are such that α(g) = ϕ(f) = α(h) then g = h ⇔
the functor α : A → B is faithful.

Claim 2. The condition (2) in the statement holds if and only if for every functor
ϕ : X → B from any order X the condition (ii’) above holds.

We have

for every functor ϕ : X → B from any order X,

for every x in X and every two objects a and a′ in A

such that α(a) = ϕ(x) = α(a′),

if both HomX×BA((x, a), (x, a′)) and HomX×BA((x, a′), (x, a))

are nonempty then a′ = a ⇔
(since the only morphism x → x in an order X is the identity one 1x)

for every two morphisms, with reversed domain and codomain,

f : a → a′ and f ′ : a′ → a in A, if α(f) = 1α(a) = α(f ′) then a′ = a.
¤

Example 3.8. The following functor α : A → B, which takes the four non-
identity morphisms in A to the non-identity idempotent morphism g in B, is a
covering:
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a1 i
I

a0 i
I6

?
-α b i

I

g

Remark that, if the non-identity morphisms in A did go instead to the identity
morphism in B then α would not be a covering morphism. And notice also that α
is not a trivial covering, in fact it is vertical.

Example 3.9. Suppose that, in the following diagram, the monoid associated
to each object is the additive one of non-negative integers. And that HomA(a0, a1)
and HomA(a1, a0) are both just the set of positive integers. The composite of any
two morphisms is then given by the integers sum.

Hence, the functor α : A → B, which takes any integer in A to the same integer
in B, is a covering:

a1 i
I

a0 i
I6

?
1

1

1 1

· · ·

· · ·
· · · · · · -α b 1i

I
· · ·

This functor α is indeed faithful and obviously no pair of morphisms with
reversed and distinct domain and codomain go to the identity 0 in B.

Proposition 3.10. A functor α : A → B belongs to E ′ if and only if it is a
full functor surjective on objects.

Proof. We will first prove the only if part, through claims 1 and 2 below,
which state respectively that if a functor α is not surjective on objects or if it is
not full then it cannot belong to E ′.

In what follows 0, 1, and 2 are the usual discrete categories, and 2 is the cate-
gory with two objects and just one arrow not the identity.

Claim 1. If the functor α is not surjective on objects then it does not belong to E ′.
Indeed, we have

the object b in B is not in the image of A under α ⇒
the empty functor u : 0 → 1 is the following pullback of α
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1

0

B

A

u α

ϕ
-

-

? ?

along the functor ϕ : 1 → B such that ϕ(∗) = b ⇒
the reflection I(u) : 0 → I(1) is no isomorphism ⇒
the functor u does not belong to E ⇒
the functor α does not belong to E ′.

Claim 2. If the functor α is not full then it does not belong to E ′.
Consider the pullback diagram

2

2×B A

B

A

u

v

α

ϕ
-

-

? ?

where ϕ is the functor which takes the unique non-identity morphism (0, 1) : 0 → 1
of 2 to a morphism g : α(a) → α(a′) in B.

We then observe:

the morphism g : α(a) → α(a′) in B is not in the image of HomA(a, a′)

under the map induced by α ⇒
(since Hom2(0, 1) = {(0, 1)} and Hom2×BA((0, a), (1, a′)) is empty)

the reflection I(u) : I(2×B A) → I(2) is no isomorphism of orders ⇒
the functor u does not belong to E ⇒
the functor α does not belong to E ′.

We are going to do now the if part of the proof.

Suppose that the following pullback u of α along some γ : C → B

C

C ×B A

B

A

u α

γ
-

-

? ?
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does not belong to E , i.e., I(u) : I(C ×B A) → I(C) is no isomorphism of or-
ders:

the functor α is surjective on objects ⇒
(since u is the pullback of α along γ)

the functor u : C ×B A → C is surjective on objects ⇒
the reflection I(u) : I(C ×B A) → I(C) is surjective on objects ⇒
(since, by hypothesis, I(u) is not an isomorphism of orders!)

there are two objects [(c, a)] and [(c′, a′)] in I(C×B A) such that the morphism

[(c, a)] ≤ [(c′, a′)] is not in I(C ×B A) and the morphism [c] ≤ [c′] is in I(C) ⇒
there are two objects (c, a) and (c′, a′) in C ×B A such that

HomC×BA((c, a), (c′, a′)) is empty and HomC(c, c′) is nonempty ⇒
there is some morphism f : c → c′ in C such that the morphism

γ(f) : α(a) → α(a′) in B is not in the image of HomA(a, a′)

under the map induced by α ⇒
the functor α is not full.

¤

Remark that the following proposition 3.11 is an immediate consequence of
Lemma 2.13. Nevertheless, we give in addition a proof in which we actually produce
the monotone-light factorization for a general functor α.

Proposition 3.11. (E ′,M∗) is a factorization system on Cat.

Proof. As follows from Proposition 1.17, we have to check that every functor
α : A → B has a factorization α = m∗ · e′, with e′ : A → C in E ′ and m∗ : C → B
in M∗.

Consider first the following equivalence relation on the objects of A: two
objects a and a′ are related, a ∼ a′, if and only if there are two morphisms
f : a → a′ and f ′ : a′ → a in A (with reversed domain and codomain) such
that α(f) = 1α(a) = α(f ′).

Using the previous equivalence relation on the objects of A, define a new equiv-
alence relation on the morphisms of A: two morphisms f and g in A are related,
f ∼ g, if and only if dom(f) ∼ dom(g) and cod(f) ∼ cod(g)2 and α(f) = α(g).

Now, let C be the category such that:
(1) its objects are the equivalence classes [a] of the former equivalence relation;

(2) its morphisms are the equivalence classes [f ] of the latter equivalence
relation;

2Where dom and cod stand of course for domain and codomain, respectively.
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(3) its domain and codomain maps are displayed as, for an arbitrary f : a →
a′, dom([f ]) = [a], cod([f ]) = [a′];

(4) its identity morphisms 1[a] are given by [1a];

(5) its composition law is displayed as [g] · [f ] = [g ·h ·f ], for any h : cod(f) →
dom(g) such that α(h) is an identity morphism.

Finally, let e′ : A → C and m∗ : C → B be the functors displayed as

e′(a) = [a], e′(f) = [f ]

and

m∗([a]) = α(a), m∗([f ]) = α(f).

By simple inspection we conclude that:

(1) α = m∗ · e′;
(2) e′ is a full functor surjective on objects;

(3) m∗ is a faithful functor.

So, in order to complete the proof, it is only left to show that there cannot be
two morphisms [g] and [g′] in C with reversed and distinct domain and codomain
such that their common image under m∗ is an identity morphism.

Indeed, we have

there are two morphisms [g] and [g′] in C such that dom([g]) = cod([g′]) and

dom([g′]) = cod([g]) and m∗([g]) = 1 = m∗([g′]) ⇒
there are two morphisms f : a → a′ and f ′ : a′ → a in A such that

[f ] = [g] and [f ′] = [g′] and m∗([f ]) = 1 = m∗([f ′]) ⇒
there are two morphisms f : a → a′ and f ′ : a′ → a in A such that

f ∼ g and f ′ ∼ g′ and α(f) = 1 = α(f ′) ⇒ (since a ∼ a′ and f ∼ g)

dom(g) ∼ cod(g) ⇒
cod([g]) = dom([g]).

¤

Example 3.12. The factorizations of functors from and to one-object cate-
gories, i.e., a monoid homomorphism or in particular a group homomorpism, with
respect to the reflection of categories into orders are analogous to the ones with
respect to the reflection into preorders (cf. Example 2.18); that is, each (E ,M)-
factorization is the trivial one, and every (E ′,M∗)-factorization is the usual epi-
mono factorization of an homomorphism.
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Example 3.13. The pullback diagram

a

ā1

ā2

©©©*

HHHjHHHj

A

@
@

@
@

@
@R

eα

HHj
f

(b, a)

(b̄, ā1)

(b, ā2)

©©©*©©©*

HHHj

B ×HI(B) HI(A)

-dα

?

mα

a

ā1

ā2

©©©*

HHHj

HI(A)

?

HI(α)

b

b̄

©©©*©©©*
B -ηB

b

b̄

©©©*

HI(B)

(b, a)

(b̄, ā1)

(b, ā2)

©©©*

HHHj

¡
¡ª n

C

displays, for a specific morphism α : A → B of preorders such that α(ā1) = b̄ and
α(a) = α(ā2) = b, both the (E ,M)-factorization mα · eα and the (Conc,Diss)-
factorization (mα · n) · f (cf. diagrams 1.3 and 1.18).
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3.3. Separable and purely inseparable morphisms

Proposition 3.14. A functor α : A → B in Cat is a separable morphism if
and only if the following two conditions hold:

(1) α is a faithful functor;

(2) for every three morphisms g : a → a, f : a → a′ and f ′ : a′ → a in A, if
α(f) = α(g) = α(f ′) then a′ = a.

Proof. According to Definition 1.26 and Proposition 3.2, one has to show that
the maps HomA(a, a′) → HomA×BA((a, a), (a′, a′)) and [a] → [(a, a)], induced by
the following functor δα

A

A×B A

B

A

u α

α

v

-

-

? ?

A

1A

1A
δα

@
@

@@R

A
A
A
A
A
A
A
A
AU

PPPPPPPPPPPPq

for every two objects a and a′ in A with HomA(a, a′) nonempty, are all bijec-
tions if and only if conditions (1) and (2) in the statement hold.

Hence it suffices to check the following three simple claims:

Claim 1. The maps HomA(a, a′) → HomA×BA((a, a), (a′, a′)), induced by δα for
every two objects a and a′ in A, are all surjections if and only if α is a faithful



54 3. THE REFLECTION OF Cat INTO Ord

functor.

(Notice that the maps HomA(a, a′) → HomA×BA((a, a), (a′, a′)) are obviously in-
jective, and that if HomA(a, a′) is empty then so is HomA×BA((a, a), (a′, a′)))

Indeed, we have

the maps HomA(a, a′) → HomA×BA((a, a), (a′, a′)) induced by δα

are all surjections ⇔
for every two morphisms f and g in A with the same domain and codomain,

if α(f) = α(g) then f = g ⇔
α is a faithful functor.

Claim 2. If condition (2) in the statement holds then the maps [a] → [(a, a)], in-
duced by δα for every object a in A, are all surjections.

(Notice that the maps [a] → [(a, a)] induced by δα are obviously injective)

We have

the map [a] → [(a, a)] induced by δα is not a surjection ⇒
(if any pair (a′, a′) with equal components is in [(a, a)] then necessarily

a′ is in [a], implying that (a′, a′) is in the image of the considered map)

there is an object (a′, a′′) in A×B A such that it is in [(a, a)] and a′′ 6= a′ ⇒
there are two morphisms (f, g) : (a, a) → (a′, a′′) and (f ′, g′) : (a′, a′′) → (a, a)

in A×B A such that a′′ 6= a′ ⇒
the three morphisms g · g′ : a′′ → a′′, g · f ′ : a′ → a′′ and f · g′ : a′′ → a′ in A

are such that α(gf ′) = α(gg′) = α(fg′) and a′′ 6= a′.

Claim 3. If the maps [a] → [(a, a)], induced by δα for every object a in A, are all
surjections then condition (2) in the statement holds.

Indeed, we have

the morphisms g : a → a, f : a → a′ and f ′ : a′ → a in A are such that

α(f) = α(g) = α(f ′) and a′ 6= a ⇒
the morphisms (f, g) : (a, a) → (a′, a) and (f ′, g) : (a′, a) → (a, a) in A×A

are also morphisms of A×B A and a′ 6= a ⇒
there is an object (a′, a) in A×B A such that it is in [(a, a)]

and a′ 6= a ⇒
the map [a] → [(a, a)] induced by δα is not a surjection.

¤
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Example 3.15. The following functor α : A → B, which takes the two non-
identity morphisms in A to the non-idempotent morphism g in B ∼= Z/2Z, is
separable:

a1

a0

6

?
-α b i

I

g

Notice that, if the two non-identity morphisms in A did go instead to the
identity morphism in B ∼= Z/2Z then α would not be separable. In fact, it would
not even be a covering.

Proposition 3.16. A functor α : A → B in Cat is a purely inseparable mor-
phism if and only if, for every two objects a and a′ in A, if α(a) = α(a′) then
there exist three morphisms h : a → a, f : a → a′ and f ′ : a′ → a in A such that
α(f) = α(h) = α(f ′).

Proof. According to Definition 1.26, one has to check that the condition in
the statement holds for α if and only if conditions (1) and (2) in Proposition 3.4
also hold for the following functor δα : A → A×B A

A

A×B A

B

A

u α

α

v

-

-

? ?

A

1A

1A
δα

@
@

@@R

A
A
A
A
A
A
A
A
AU

PPPPPPPPPPPPq

In fact, as HomA×BA((a, a), (a′, a′)) being nonempty implies that HomA(a, a′)
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is also so, the condition (1) of Proposition 3.4 holds trivially for the functor δα.

We then observe:

for every object (a, a′) in A×B A, there exists an object ā in A such that

(a, a′) is in [(ā, ā)] ⇔
for every two objects a and a′ in A, if α(a) = α(a′) then there exists an object

ā in A and there exist two morphisms (g, g′) : (a, a′) → (ā, ā) and

(ḡ, ḡ′) : (ā, ā) → (a, a′) in A×B A ⇔
(just make f ′ = ḡ · g′, f = ḡ′ · g and h = ḡ · g, noticing that

α(ḡ · g′) = α(ḡ · g) = α(ḡ′ · g), for the implication downwards;

and make ā = a, ḡ = g = h, g′ = f ′ and ḡ′ = f for the implication upwards)

for every two objects a and a′ in A, if α(a) = α(a′) then there exist

three morphisms h : a → a, f : a → a′ and f ′ : a′ → a in A, such that

α(f) = α(h) = α(f ′).
¤

The next example shows that the purely inseparable morphisms, with respect
to the reflection of categories into orders, are not closed under composition.

Example 3.17. Consider the two functors α : A → B and β : B → 1, such
that the former is the inclusion of the discrete category A in B and the latter is
the unique functor to the terminal object in Cat:

a′

a

-α 6

a′

a

?
-β

c

It is easy to check that α and β are purely inseparable but its composite β · α
is not.

3.4. Concordant-dissonant factorization

We are going to consider as before the factorization system (ExtEpi, Mono)
on Cat, for the definition of concordant-dissonant factorization, now with respect
to the reflection of categories into ordered sets.

Hence, according to Proposition 1.35 and Definition 1.36, the pair (E∩ExtEpi, Diss)
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is a factorization system. The following proposition gives an explicit description of
the functors in its second component Diss.

Proposition 3.18. A functor α : A → B in Cat is dissonant if and only if α
is faithful and the following maps induced by α are injections:

[a] → [α(a)], for every object a in A.

We can also express the latter condition by saying that, for every object a in A,
α induces a monomorphism between the full subcategories of A and B determined
respectively by [a] and [α(a)].

Proof. According to Proposition 1.35 and Definition 1.36, the functor α :
A → B is dissonant if and only if the following functor 〈α, ηA〉 : A → B × I(A) is
monic:

B B × I(A) I(A)

A

?

HHHHHHHj

ηA

´
´

´
´

+́

α
〈α, ηA〉

¾ -

The functor 〈α, ηA〉 : A → B × I(A) is displayed as

〈α, ηA〉(a) = (α(a), [a]).

Now it is easy to conclude that 〈α, ηA〉 is a monic functor if and only if α is
faithful and induces the injections in the statement.

¤

Example 3.19. The functor α : 2 → Z/2Z from the ordinal number to the
integers modulo 2, such that the unique non-identity morphism in 2 goes under α
to the identity morphism, is dissonant:

1
?

0

-α b 1i
I

Notice that α is not a trivial covering, since it is not “almost” full.

Conclusion 3.20. Consider the separable functor α of Example 3.15:
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a1

a0

6

?
-α b i

I

g

It is easy to check that it is not dissonant. In effect, its induced map [a0] → [b]
is no injection.

Hence, we conclude that the class of dissonant morphisms is strictly contained
in the class of separable morphisms, Diss ⊂ Sep.

Therefore, if (Ins, Sep) is an inseparable-separable factorization system, it does
not coincide with the concordant-dissonant factorization system.

In fact, in that case we have three distinct factorization systems for categories
into orders, since Example 3.8 shows that the separable morphisms are strictly con-
tained in the coverings. A situation opposite to what happened in the reflection of
categories into preorders (cf. Conclusion 2.17).
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3.5. Normal morphisms

The next Lemma 3.21 has a very straightforward proof, although its character-
ization of normal morphisms is not the simpler. Actually, its last two items will be
simplified in the following Proposition 3.22.

Lemma 3.21. A functor α : A → B in Cat is a normal morphism if and only
if the following four conditions hold:

(1) α is a faithful functor;

(2) for every two morphisms f : a → a′ and f̄ : ā → ā′ in A,

if α(f) = α(f̄) then α(HomA(a, a′)) = α(HomA(ā, ā′));

(3) for every four morphisms f̄ , f̄ ′ : ā → ā, f : a → a′ and f ′ : a′ → a in A,

if α(f) = α(f̄) and α(f̄ ′) = α(f ′) then a′ = a;

(4) for every object ā in A and for every two morphisms f : a → a′ and
f ′ : a′ → a in A, if α(a) = α(ā) then there is an object ā′ in A and four
morphisms g : a → a′, g′ : a′ → a, f̄ : ā → ā′ and f̄ ′ : ā′ → ā in A such
that α(g) = α(f̄) and α(g′) = α(f̄ ′).

Of course that, for instance, α(HomA(a, a′)) stands for the subset of HomB(α(a), α(a′))
whose elements are in the image of α.

Proof. We will show that conditions (1), (2), (3) and (4) hold respectively if
and only if the following pullback u : A×B A → A

A

A×B A

B

A

u α

α

v

-

-

? ?

of α : A → B along itself, is faithful, “almost full”, and the maps [(a, ā)] → [a],
induced by u for every object (a, ā) in A×B A, are all injections and surjections (i.e.,
bijections). Hence, according to Definition 1.26 and Proposition 3.2, the statement
will be proved.

Claim 1. The maps HomA×BA((a, ā), (a′, ā′)) → HomA(a, a′), induced by u
for every two objects (a, ā) and (a′, ā′) in A ×B A, are all injections if and only if



60 3. THE REFLECTION OF Cat INTO Ord

(1) holds.

Indeed, we have

the maps HomA×BA((a, ā), (a′, ā′)) → HomA(a, a′) induced by u

are all injections ⇔
(since u is displayed as u(h, h̄) = h, for every morphism (h, h̄) in A×B A,

i.e., for any pair (h, h̄) of morphisms in A such that α(h) = α(h̄))

for any three morphisms h : a → a′ and h̄1, h̄2 : ā → ā′ in A,

if α(h) = α(h̄1) and α(h) = α(h̄2) then h̄1 = h̄2 ⇔
α is a faithful functor.

Claim 2. The maps HomA×BA((a, ā), (a′, ā′)) → HomA(a, a′), induced by u for
every two objects (a, ā) and (a′, ā′) in A×B A, provided HomA×BA((a, ā), (a′, ā′))
is nonempty, are all surjections if and only if (2) holds.

We have

the maps HomA×BA((a, ā), (a′, ā′)) → HomA(a, a′), induced by u for every two

objects (a, ā) and (a′, ā′) in A×B A, provided HomA×BA((a, ā), (a′, ā′)) is

nonempty, are all surjections ⇔
for every two morphisms f : a → a′ and f̄ : ā → ā′ in A such that α(f) = α(f̄),

the map HomA×BA((a, ā), (a′, ā′)) → HomA(a, a′) induced by u is always a

surjection ⇔
for every two morphisms f : a → a′ and f̄ : ā → ā′ in A, if α(f) = α(f̄) then

for every morphism h in HomA(a, a′) there is some morphism h̄ in HomA(ā, ā′)

such that α(h̄) = α(h) ⇔
for every two morphisms f : a → a′ and f̄ : ā → ā′ in A,

if α(f) = α(f̄) then α(HomA(a, a′)) ⊆ α(HomA(ā, ā′)) ⇔
(by the symmetry in f and f̄ !)

for every two morphisms f : a → a′ and f̄ : ā → ā′ in A,

if α(f) = α(f̄) then α(HomA(a, a′)) = α(HomA(ā, ā′)).

Claim 3. The maps [(ā, a)] → [ā], induced by u for every object (ā, a) in A×BA,



3.5. NORMAL MORPHISMS 61

are all injections if and only if (3) holds.

Indeed, we have

the maps [(ā, a)] → [ā] induced by u are all injections ⇔
for every object (ā, a) in A×B A, if (ā, a′) is in [(ā, a)] then a′ = a ⇔
for every four morphisms f̄ , f̄ ′ : ā → ā, f : a → a′ and f ′ : a′ → a in A,

if α(f) = α(f̄) and α(f̄ ′) = α(f ′) then a′ = a.

Claim 4. The maps [(a, ā)] → [a], induced by u for every object (a, ā) in A×BA,
are all surjections if and only if (4) holds.

We have

the maps [(a, ā)] → [a] induced by u are all surjections ⇔
for every object (a, ā) in A×B A and a′ in [a], there is another object ā′ in A

such that (a′, ā′) is in [(a, ā)] ⇔
for every two objects a and ā in A such that α(a) = α(ā), and for every two

morphisms f : a → a′ and f ′ : a′ → a in A, there exist two such morphisms

(g, f̄) : (a, ā) → (a′, ā′) and (g′, f̄ ′) : (a′, ā′) → (a, ā) in A×B A ⇔
for every object ā in A and for every two morphisms f : a → a′ and f ′ : a′ → a

in A, if α(a) = α(ā) then there is an object ā′ in A and four morphisms
g : a → a′,

g′ : a′ → a, f̄ : ā → ā′ and f̄ ′ : ā′ → ā in A such that

α(g) = α(f̄) and α(g′) = α(f̄ ′) .

¤

Proposition 3.22. A functor α : A → B in Cat is a normal morphism if and
only if the following four conditions hold:

(a) α is a faithful functor;

(b) for every two morphisms f : a → a′ and f̄ : ā → ā′ in A,

if α(f) = α(f̄) then α(HomA(a, a′)) = α(HomA(ā, ā′));

(c) for every two morphisms f : a → a′ and f ′ : a′ → a in A,

if α(f) = 1α(a) = α(f ′) then a′ = a;

(d) for every object ā in A and for every two morphisms f : a → a′ and
f ′ : a′ → a in A, if α(a) = α(ā) then there is an object ā′ in A and two
morphisms f̄ : ā → ā′ and f̄ ′ : ā′ → ā in A such that α(f) = α(f̄) and
α(f ′) = α(f̄ ′).



62 3. THE REFLECTION OF Cat INTO Ord

Proof. According to the previous Lemma 3.21, we have to show that our
present conditions (a), (b), (c) and (d) are equivalent to the former conditions (1),
(2), (3) and (4).

As the two conditions (1) and (a) are identical, and so are also (2) and (b), the
following first two claims assert that the former conditions imply the present ones.

Claim 1. The condition (3) implies (c).

Indeed, we only need to make f̄ ′ = 1a = f̄ in (3) in order to obtain (c).

Claim 2. The conditions (2) and (4) imply (d).

We have

the object ā in A and the two morphisms f : a → a′ and f ′ : a′ → a in A are

such that α(a) = α(ā) ⇒ (by condition (4))

there is an object ā′ in A and four morphisms g : a → a′, g′ : a′ → a,

ḡ : ā → ā′ and ḡ′ : ā′ → ā in A such that α(g) = α(ḡ) and α(g′) = α(ḡ′)

⇒ (applying the condition (2) twice)

there is an object ā′ in A such that

α(HomA(a, a′)) = α(HomA(ā, ā′)) and α(HomA(a′, a)) = α(HomA(ā′, ā)) ⇒
there is an object ā′ in A and two morphisms f̄ : ā → ā′, f̄ ′ : ā′ → ā in A,

such that α(f) = α(f̄) and α(f ′) = α(f̄ ′).

For the same reason stated above, before the first claim, the next two and final
claims assert that our present conditions imply the former ones.

Claim 3. The condition (d) implies (4).

In fact, in order to conclude so we only need to take g to be f and g′ to be f ′ in
(4).

Claim 4. The conditions (b) and (c) imply (3).

We have

the four morphisms f̄ , f̄ ′ : ā → ā, f : a → a′ and f ′ : a′ → a in A

are such that α(f) = α(f̄) and α(f̄ ′) = α(f ′) ⇒
(applying the condition (b) twice)
α(HomA(a, a′)) = α(HomA(ā, ā)) = α(HomA(a′, a)) ⇒
there are two morphisms g : a → a′ and g′ : a′ → a in A

such that α(g′) = 1α(a) = α(g) ⇒ (by condition (c))

a′ = a.
¤

Example 3.23. Consider the two functors α : A → B and β : B → C, such
that both of them are faithful and α(ai) = bi, for i = 0, 1, 2, 3:
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a3

?

a2

a1

??

a0

-α

b3

??

b2

b1

??

b0

-β

c2

??

c1

It is easy to check that α and β are normal but that their composite β ·α is not.

3.6. The reflection of Preord into Ord

The following full reflection is a simplified version of the reflection of categories
into orders:

(3.2) (I, H, η, ε) : Preord → Ord,

where:
• H(X) is the ordered set X regarded as a preordered set;

• I(A) = A0/ ∼ is the ordered set of classes [a] of objects a in A,
in which [a] ≤ [a′] if and only if a ≤ a′;

• ηA : A → HI(A) associates with each object a ∈ A0 its equivalence class
under [a];

• ε is the canonical isomorphism IH → 1.

We are going to list, in the rest of the chapter, with respect to the adjunc-
tion 3.2 above, the results and explicit descriptions analogous to the ones already
presented for the reflections of categories into orders and preorders.

The fact that this adjunction has stable units and a (non-trivial) monotone-
light factorization follows immediately from the same fact for the reflection into
orders.

The characterizations of the classes M, E , M∗, E ′, Sep, Pin and the class of
normal morphisms in Cat, with respect to the adjunction 3.2, may be obtained
simply by removing, from the same characterizations for the adjunction 3.1, the
conditions that become redundant when one just considers preorders. For instance,
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faithfulness is not needed anymore, since “functors” between preorders are neces-
sarily faithful.

We will also find that the classes of coverings and separable morphisms, which
were distinct for the reflection of categories into orders, collapse into each other for
the reflection of preorders into orders, although this does not happen with any of
the other classes of morphisms studied.

In fact, the reflection of preorders into orders behaves in the same way as the
reflection of categories into preorders: the monotone-light factorization coincides
with the inseparable-separable and the concordant-dissonant one.

3.6.1. The reflection of Preord into Ord has stable units.

Proposition 3.24. The adjunction 3.2 has stable units, that is, the functor
I : Preord → Ord preserves every pullback of the form

A

A×H(X) B

H(X) .

B

π1

π2

β

α
-

-

? ?

Remember that this implies at once that the pair (E ,M) is a factorization sys-
tem (cf. Propositions 1.9 and 1.11).

3.6.2. Trivial coverings and vertical morphisms.

Proposition 3.25. A morphism α : A → B of preorders is a trivial covering
if and only if the maps [a] → [α(a)], induced by α for every object a in A, are
bijections.

Example 3.26. The morphism α : A → B of preorders, such that α(a0) =
α(a3) = b0, α(a1) = b1 and α(a2) = b2, is a trivial covering:

a3

6

a2

6

?

a1

?

a0

-α

b2

6

?

b1

b0
@@I

¡¡ª
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Notice that, in order to simplify the diagram, we have omitted two composite
morphisms in the preordered set A.

Proposition 3.27. A morphism α : A → B of preorders is vertical if and only
if the following two conditions hold:

• for every two objects a and a′ in A, if α(a) ≤ α(a′) then a ≤ a′;

• for every object b in B, there exists an object a in A such that b is in
[α(a)].

Example 3.28. If one applies the reflector I : Cat → Preord in adjunction
2.1 to the Example 3.5, one obtains the vertical morphism I(α) : I(A) → I(B) of
preorders, such that I(α)(a0) = I(α)(a1) = b1 and I(α)(a2) = I(α)(a3) = b2:

a3

a2

?

a1

a0

?

6

6

?

-I(α)

b3

b2

?

b1

6

?

(Notice that we have omitted in the diagram the composite arrows from a0 to
a2 and to a3, from a1 to a3, and from b1 to b3)

3.6.3. Coverings and stably-vertical morphisms.

Proposition 3.29. A morphism α : A → B of preorders is a covering if and
only if, for every two objects a and a′ in A, if α(a) = α(a′) and a ≤ a′ and a′ ≤ a
then a′ = a.

Example 3.30. Notice that, if one applies the reflector I : Cat → Preord
in adjunction 2.1 to the functor α of Example 3.8, the resulting morphism I(α) of
preorders is not a covering:
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a1

a0

6

?
-I(α) b

But the unique morphism of preorders from the ordinal number 2 to the ter-
minal object 1 in Preord is a covering:

1

0

?
- 0

Proposition 3.31. A morphism α : A → B of preorders is stably-vertical if
and only if it is surjective on objects and, for every two objects a and a′ in A, if
α(a) ≤ α(a′) then a ≤ a′.

The following proposition is an immediate consequence of Lemma 2.13, since
for each preordered set B there is a monadic extension (E, p) over B in Preord
(see in the Preamble the section 3.1.1, and Example 1.13).

Nevertheless, in the proof of Proposition 3.11 we produce in particular the
monotone-light factorization of a morphism of preorders with respect to the reflec-
tion Preord → Ord.

Proposition 3.32. (E ′,M∗) is a factorization system on Preord.

3.6.4. Separable and purely inseparable morphisms.

Proposition 3.33. A morphism α : A → B of preorders is separable if and
only if it is a covering (cf. Proposition 3.29).

Proposition 3.34. A morphism α : A → B of preorders is purely inseparable
if and only if, for every two objects a and a′ in A, if α(a) = α(a′) then a ≤ a′ and
a′ ≤ a.
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Remark 3.35. Notice that Example 3.17 shows that the purely inseparable
morphisms are not closed under composition with respect to the reflection of pre-
orders into orders.

Example 3.36. A morphism α : A → 1 of preorders to the terminal object 1 in
Preord is purely inseparable if and only if its domain A is a connected equivalence
relation, meaning that a ≤ a′ for every two objects a, a′ ∈ A.

As any epimorphism in Preord is a surjection on objects, one easily concludes,
from the characterizations given above, that

E ∩RegEpi ⊆ E ′ ⊆ RegEpi

for the reflection of preorders into orders.

Then, we have

E ′ ⊆ Pin ∩RegEpi ⊆ Ins ⊆ E ∩RegEpi ⊆ E ′

by Lemma 1.30 and Remark 1.28.

Hence, Pin ∩ RegEpi = Ins = E ∩ RegEpi = E ′, and by Corollary 1.34 we
conclude that (Ins, Sep) is a factorization system.

On the other hand, the known existence of an extremal epi-mono factorization
system (ExtEpi, Mono) on Preord implies by Proposition 1.35 that E ∩ ExtEpi
is the left-hand class of a factorization system on Preord.

And it is very easy to check that Conc := E ∩ ExtEpi = E ∩RegEpi.

Therefore, we conclude that our monotone-light factorization, besides being
inseparable-separable as just seen, is in addition concordant-dissonant:

Conclusion 3.37. (Ins, Sep) is a factorization system.

It is in fact the monotone-light factorization of Proposition 3.32. And it is also
a concordant-dissonant factorization:

(E ′,M∗) = (Ins, Sep) = (Conc, Diss).

Example 3.38. In the pullback diagram
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a

ā1

ā2

©©©*

HHHj ?

6

A

@
@

@
@

@
@R

eα

HHj
f

(b, [a]) (b̄, [a])

(b, [ā]) (b̄, [ā])

-¾

-¾
? ?

Q
Q

Q
Q

Qs

B ×HI(B) HI(A)

-dα

?

mα

[a]

[ā]

Q
Q

Q
Q

QQs

HI(A) ∼= 2

?

HI(α)

b b̄-¾
B -ηB

[b]
HI(B) ∼= 1

(b, [a])

(b̄, [ā])

Q
Q

Q
Qs

¡
¡ª n

C

it is given the (E ,M)-factorization mα ·eα and the (Conc, Diss)-factorization (mα ·
n) · f of a specific morphism α : A → B of preorders (cf. diagrams 1.3 and 1.18),
such that α(a) = b, α(āi) = b̄, for i = 1, 2.

As concluded before, the (Conc,Diss)-factorization α = (mα · n) · f is also its
(Ins, Sep)-factorization, and so it can be obtained using the diagram 1.17:
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a

ā1

ā2

©©©*

HHHj ?

6

A

@
@

@
@

@
@R

δα

@
@

@@R

eδα
= δα

A×B A

£
£

£
££°

mδα
= 1A×BA

(a, a) ©©©*

HHHj

(ā1, ā1) (ā1, ā2)

(ā2, ā2) (ā2, ā1)

-¾

-¾
?

6

?

6Q
Q

Q
Q

QsQ
Q

Q
Q

Qk

A×B A

-v

?

u

a

ā1

ā2

©©©*

HHHj ?

6

A

?

α

a

ā1

ā2

©©©*

HHHj ?

6A -α

@
@

@@R

e′α = f

b b̄-¾
B

(b, [a])

(b̄, [ā])

Q
Q

Q
Qs

C

¢
¢
¢
¢
¢̧

m∗
α

Remark that, as in this example the morphism δα : A → A×B A of preorders
is vertical, e′α is simply the coequalizer of the kernel-pair (u, v) of α : A → B.

Notice also that, in order to simplify the diagram, we have omitted four mor-
phisms in the preorder A×B A, the ones corresponding to (a, a) ≤ (ā1, ā2), (a, a) ≤
(ā2, ā1), (ā1, ā2) ≤ (ā2, ā2) and (ā2, ā2) ≤ (ā1, ā2).
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3.6.5. Normal morphisms.

Proposition 3.39. A morphism α : A → B of preorders is normal if and only
if the following two conditions hold:

• for every two objects a and a′ in A,
if α(a) = α(a′) and a ≤ a′ and a′ ≤ a then a′ = a (it is a covering!);

• for every three objects a, a′ and ā in A, if α(a) = α(ā) and a ≤ a′ and
a′ ≤ a then there exists an object ā′ in A such that α(a′) = α(ā′) and
ā ≤ ā′ and ā′ ≤ ā.

Example 3.40. The morphism α : A → B of preorders, such that α(a1) = b1

and α(a2) = b2, is normal:

a2

6

?

a1

-α

b2

6

?

b1

b0
@@I

¡¡ª

@@R

¡¡µ

Notice that α is not a trivial covering, since the map [a1] → [b1] it induces
is not a bijection, and that it is in addition dissonant.

Example 3.41. The morphism α : A → B of preorders, such that α(a1) =
α(ā1) = b1 and α(a2) = b2, is a covering which is not normal:

a2

6

?

a1ā1

-α

b2

6

?

b1

-α

Example 3.42. Consider the two functors α : A → B and β : B → C, such
that α(ai) = bi for i = 0, 1, 2, and α(bi) = α(bi+2) = α(ci+1) for i = 0, 1:
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a2

a1

?

6

a0

-α

b3

?

6

b2

b1

?

6

b0

-β

c2

?

6

c1

It is easy to check that α and β are normal but that their composite β ·α is not.

Remark 3.43. Notice that by the Examples 3.23 and 3.42 normal morphisms
are not closed under composition with respect to any of the three reflections Cat →
Preord → Ord.





CHAPTER 4

The reflection of Cat into Set

As in the previous chapters we will always refer (unless stated otherwise) to
a certain reflection of the category of all (small) categories. This time it is the
reflection into the category of all (small) sets, which is presented right after the
following definition of connected component of a category.

Definition 4.1. An object A in Cat is connected if and only if it is not the
empty category and for every two objects a and a′ in A, there exists a zigzag of
morphisms a →← · · · →← a′ between a and a′.1

Hence, every small category A is a disjoint union of connected (small) cate-
gories, called the connected components of A.2

Consider the adjunction

(4.1) (I, H, η, ε) : Cat → Set,

where:

• H(X) is the set X regarded as a (discrete) category;

• I(A) is the set of connected components of A;

• ηA : A → HI(A) associates with each object a in A the connected com-
ponent [a] to which it belongs;

• ε is the canonical isomorphism IH → 1.

4.1. Preamble

At this chapter we will show that, although the reflection 4.1 has stable units,
it does not have an associated monotone-light factorization system.

In fact, one of the conditions of Lemma 2.13 fails in this case: for each category
B there is no effective descent morphism p : E → B with E a set.

In [6] another example of an adjunction of the kind Fam(Conn(C)) → Set

1In fact this definition is a special case of the following more general one: an object C in a
category C with coproducts and finite limits is said to be connected if the functor Hom(C,−) :
C→ Set preserves coproducts.

2I.e., Cat is locally connected: a category C is said to be locally connected if every object in
C is a coproduct of connected objects.

73
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having stable units but not a monotone-light factorization system is presented.3

The coverings for this reflection of categories into sets are the functors which
are simultaneously discrete fibrations and discrete opfibrations (cf. Definition 4.8).
This result was obtained some years ago by Steven Lack. However, not having
appropriate reference, we included below our own proof.

From this characterization, one easily checks that the effective descent mor-
phisms given in section 2.1.1 in the Preamble of chapter 2, which are the projection
of sufficiently many copies of the ordinal number 4, are not coverings (cf. Lemma
4.9).

That is, they are no more normal morphisms, as they were for the reflections of
categories into orders and preorders, since they do not split over themselves. And
so, we cannot use the Theorem 7.1 in [8] to prove that the coverings constitute the
right-hand side of a certain factorization system (E∗,M∗), as we did for the other
reflections.

Nevertheless, Theorem 6.8 in the same reference [8] shows that such a fac-
torization system (E∗,M∗) does exist, with the class E∗ strictly containing the
stably-vertical morphisms E ′, since the category Set is locally bounded in the sense
of [8].

We also give explicit descriptions of stably-vertical, separable, purely insepara-
ble and dissonant functors.

Of course that the latter do constitute the right-hand of a concordant-dissonant
factorization system (in our sense, cf. Definition 1.36), in which the left-hand is the
class of extremal epis which induce a bijection on connected components.

But what is more interesting is the need for the new notion “full on zigzags”
in order to characterize the stably-vertical functors (see Definition 4.11).

Notice that the class of separable functors contains strictly the coverings,
whereas in the other reflections studied at the precedent chapters it was the class
of coverings that included the separable morphisms.

Remark finally that it remains an open question if there is an inseparable-
separable factorization system for the reflection of categories into sets (remember
that it is also so with the reflection into orders).

4.2. Stabilization fails

4.2.1. The reflection of Cat into Set has stable units.

The proof of next Lemma 4.2 will not be given here since it is trivial. Anyway,
concerning it and the all subject behind it, we refer the reader to [2, §6].

That lemma and the following will be useful in proving that the reflection 4.1
has stable units, at the subsequent Proposition 4.4.

Lemma 4.2. Let Fam(Conn(Cat)) denote the category whose objects are the
families (Ai)i∈I(A) of connected objects of Cat, and whose morphisms consist in
a map I(α) : I(A) → I(B) and an I(A)-indexed family of morphisms αi : Ai →

3Our section 4.2 has the same title as section 4 there.
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BI(α)(i).

Then, the coproduct functor Fam(Conn(Cat)) → Cat which associates with
each family of connected categories its coproduct in Cat is an equivalence of cate-
gories.

Lemma 4.3. If A and B are two connected objects in Cat then their product
A×B is also connected.

Proof. Indeed, we have:

(a, b) and (a′, b′) are objects in A×B ⇒
(since A and B are connected)

there exist two zigzags of morphisms joining respectively a to a′ in A

and b to b′ in B ⇒
(by adding to the shorter zigzag sufficient identity arrows!)

there exist two zigzags of morphisms with the same length

joining respectively a to a′ in A and b to b′ in B:

a = a1 → a2 ← · · · ← an = a′

b = b1 → b2 ← · · · ← bn = b′

⇒
there exists a zigzag joining (a, b) to (a′, b′) in A×B:

(a, b) = (a1, b1) → (a2, b2) ← · · · ← (an, bn) = (a′, b′)

¤

Proposition 4.4. The adjunction 4.1 has stable units, that is, the functor
I : Cat → Set preserves every pullback of the form

A

A×H(X) B

H(X) .

B

π1

π2

β

α
-

-

? ?

Proof. The equivalence of Lemma 4.2 associates respectively to the cate-
gories A, B, H(X) and A×H(X) B the families of connected categories (Ai)i∈I(A),
(Bj)j∈I(B), (H(X)k)k∈IH(X) and (A×H(X) B)l∈I(A×H(X)B).

Therefore, the functor I preserves the pullback in the statement if and only if
I preserves every pullback of the form
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Ai

Ai ×H(X)k
Bj

H(X)k

Bj

(4.2)βj

αi -

-

? ?

where of course I(α)(i) = k = I(β)(j).

Hence, as I(Ai), I(Bj) and I(H(X)k) are one-point sets, the functor I preserves
the pullback above if and only if I(Ai×H(X)k

Bj) is one-point set, i.e., Ai×H(X)k
Bj

is connected.

In fact, H(X)k is a terminal object in Cat since H(X) is a discrete category,
and so Ai ×H(X)k

Bj is the cartesian product Ai ×Bj which by Lemma 4.3 is con-
nected.4

¤

4.2.2. Trivial coverings, vertical morphisms, coverings and stably-
vertical morphisms for the reflection of Cat into Set.

We will give now explicit descriptions of trivial coverings, vertical morphisms,
coverings and stably-vertical morphisms.

The next two propositions, characterizing trivial coverings and vertical mor-
phisms, follow trivially from the respective definitions.5

Proposition 4.5. A functor α : A → B is a trivial covering if and only if
each αi in the presentation of α as the family (αi : Ai → BI(α)(i)) of morphisms in
Conn(Cat), is an isomorphism.

Proposition 4.6. A functor α : A → B is vertical if and only if it induces a
bijection between the connected components of A and B.

We are going now to pave the way, through the following small Lemmas 4.7
and 4.9, and Definition 4.8, for the characterization of coverings in Proposition 4.10,
which says that a functor is a covering if and only if it is simultaneously a discrete
fibration and a discrete opfibration.

The Lemma 4.9 follows trivially from the Definition 4.8, and so we do not
present its obvious proof.

Lemma 4.7. A functor α : A → B in Cat is a covering with respect to a certain
admissible reflection of Cat into one of its full subcategories, if and only if each

4Notice that, for any category C with coproducts and finite limits, such that every object is
a coproduct of connected objects and its terminal object is connected, the reflection associated
to the functor I : C → Set has stable units if the product of two connected objects is always
connected. In fact, the proof is completely analogous to the one just given for I : Cat → Set.

5These two results are special instances of the obvious more general ones applying to the case
mentioned in the previous footnote.
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following pullback of α

4

4×B A

B

A

α

-

-

? ?

along any functor from the ordinal number 4 is always a trivial covering with re-
spect to that same reflection.

Proof. The if part of the proof follows easily from the fact that the monadic
extension (E, p) of any object B in Cat may be choosen to be the obvious projec-
tion from the coproduct E = Cat(4, B) ·4 of sufficiently many copies of the ordinal
number 4, one copy for each triple of composable morphisms in B.

As for the only if part of the proof it is sufficient to observe that the ordinal
number 4 is projective with respect to monadic extensions, i.e., Cat(4, p) is a sur-
jection in Set for every monadic extension (E, p). Notice that the trivial coverings
in the statement are pullback-stable, since the reflection is supposed to be admis-
sible (cf. Lemma 1.8).

¤

Definition 4.8. A functor α : A → B in Cat is said to be

(1) a discrete fibration, if the diagram in Set

{Morphisms in B}

{Morphisms in A}

{Objects in B}

{Objects in A}

(4.3)

codomain

codomain
-

-

? ?

(where the vertical arrows display the functor α) is a pullback;

(2) a discrete opfibration if the diagram in Set

{Morphisms in B}

{Morphisms in A}

(4.4)

{Objects in B}

{Objects in A}
domain

domain
-

-

? ?

(where the vertical arrows display the functor α) is a pullback.
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Lemma 4.9. A functor α : A → B in Cat is both a discrete fibration and
a discrete opfibration if and only if, for every object a in A and every morphism
g : b → b′ in B, the following two conditions hold:

(a) if α(a) = b then there exists in A a unique morphism f such that its domain
is a and α(f) = g;

(b) if α(a) = b′ then there exists in A a unique morphism f ′ such that its codomain
is a and α(f ′) = g.

Proposition 4.10. For any functor α : A → B in Cat the following three
conditions are equivalent:

(1) the functor α is a covering;

(2) every following pullback of α

2

2×B A

B

A

α

-

-

? ?

along any functor from the ordinal number 2 is a trivial covering;

(3) the functor α is both a discrete fibration and a discrete opfibration.

Proof. In order to show that the conditions 1, 2 and 3 in the statement are
equivalent, we will assert the chain of implications 1⇒2⇒3 ⇒1.

Claim 1. The condition 1 implies the condition 2.

As every functor β from 2 to B can be factorized through 4, we may form the
diagram

2

C

4

4×B A

u′

v′

u

-

-

? ?
-

- A

B
?

α (4.5)

v

wherein both squares are pullbacks, and the composite of the two unnamed functors
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at the bottom is β : 2 → B.

Then, we have

the functor α is a covering ⇒ (by Lemma 4.7)

the functor u is a trivial covering ⇒
(the trivial coverings are pullback-stable since the reflection has stable units)

the functor u′ is a trivial covering.

Claim 2. The condition 2 implies the condition 3.

We are going to prove this claim in two steps (a) and (b), corresponding respec-
tively to the two conditions that Lemma 4.9 states to be equivalent to condition 3.

For any object a in A and every morphism g : b → b′ in B we have:

(a)

α(a) = b ⇒
the ordered pair (0, a) is an object in the pullback 2×B A of α

along the functor which sends the unique non-identity morphism

(0, 1) : 0 → 1 in the ordinal number 2, to g : b → b′ in B ⇒
(since by condition 2 the projection 2×B A → 2 is a trivial covering,

and according to the explicit description of trivial coverings given

in Proposition 4.5)

the connected component [(0, a)] of 2×B A is isomorphic to 2 ([(0, a)] ∼= 2) ⇒
there exists in A a unique morphism f : a → a′ such that

its domain is a and α(f) = g;

(b)

α(a) = b′ ⇒
the ordered pair (1, a) is an object in the pullback 2×B A of α

along the functor which sends the unique non-identity morphism

(0, 1) : 0 → 1 in the ordinal number 2, to g : b → b′ in B ⇒
(since by condition 2 the projection 2×B A → 2 is a trivial covering,

and according to the explicit description of trivial coverings given

in Proposition 4.5)

the connected component [(1, a)] of 2×B A is isomorphic to 2 ([(1, a)] ∼= 2) ⇒
there exists in A a unique morphism f ′ : a′ → a such that

its codomain is a and α(f ′) = g.

Claim 3. The condition 3 implies the condition 1.

Indeed, for any functor α : A → B which is both a discrete fibration and a
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discrete opfibration, we have

(b0, g1, b1, g2, b2, g3, b3) is a chain of three composable morphisms

gi : bi−1 → bi in B, such that at least one of its objects bi is in

the image of α : A → B ⇒
(by the existence assertions given at (a) and (b) of Lemma 4.9)

there exists a chain (a0, f1, a1, f2, a2, f3, a3) of three composable morphisms

fi : ai−1 → ai in A, such that α(fi) = gi for i = 1, 2, 3 ⇒
(by the uniqueness assertions given at (a) and (b) of Lemma 4.9)

the connected component [(0, a0)] of 4×B A, which is the pullback of α along

the functor β : 4 → B corresponding to the above chain of three

composable morphisms, is isomorphic to 4 ([(0, a0)] ∼= 4),

and so we proved that any pullback of any discrete fibration and opfibration α :
A → B along every functor from 4 to B is a trivial covering. Notice that, in case
none of the objects in the image of β : 4 → B is in the image of α : A → B the
pullback 4×B A of α along β is the empty category.

Hence, according to Lemma 4.7, any functor which is both a discrete fibration
and a discrete opfibration is also a covering.

¤

Definition 4.11. We will say that a functor α : A → B is “full on zigzags” if,
for any pair of objects a and a′ in A and any zigzag ḡ = (g1, g2, ..., gm) from α(a)
to α(a′) in B, there exists a zigzag f̄ = (f1, f2, ..., fn) from a to a′ in A from which
we can obtain the zigzag ḡ by just erasing some identity arrows in the sequence
α(f̄) = (α(f1), α(f2), ..., α(fn)).

Remark that requiring only that each morphism in B is the image under α of
a zigzag in A, in the above sense, i.e., up to some identity arrows, is not sufficient
for α to be “full on zigzags”.

Example 4.12. Consider the functor α from the category a ← b → c, with
three objects and only two non-identity arrows, to the ordinal number 2 = 0 → 1,
such that α(a) = 0 = α(b) and α(c) = 1.

One easily concludes that although α is not a full functor it is nevertheless “full
on zigzags”, in the sense of previous Definition 4.11.

Proposition 4.13. A functor α : A → B in Cat is stably-vertical if and only
if it is “full on zigzags” and surjective on objects.
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Proof. We have:

a functor α : A → B is stably-vertical ⇔
(according to the above definitions of stably-vertical and vertical morphisms)

for every pullback u of α, I(u) is an isomorphism ⇔
I(α) is an isomorphism and I preserves every pullback of α

(see diagram 2.8) ⇔
I(α) is an isomorphism and I preserves every pullback

C

C ×BI(α)(i) Ai

BI(α)(i)

Ai

αi (4.6)
γ

-

-

? ?

of each αi in the presentation of α as the family (αi : Ai → BI(α)(i))

of morphisms in Conn(Cat) ⇔
I(α) is an isomorphism and if C is connected then C ×BI(α)(i) Ai is connected,

for every pullback square as above.

If α is “full on zigzags” and surjective on objects then one easily checks that
the statement immediately above, which was seen to be equivalent to α being a
stably-vertical morphism, is true.

So, in order to complete the proof we have to show the converse conditional
statement.

Suppose first that α is not surjective on objects: if the object b in BI(α)(i) is
not in the image of αi then the empty functor u : 0 → 1 (notice that 0 is not con-
nected!) is the pullback of αi along the functor ϕ : 1 → BI(α)(i) such that ϕ(∗) = b.

Suppose at last that α is not “full on zigzags”: take a zigzag ḡ = (g1, g2, ..., gm)
from α(a) to α(a′) in BI(α)(i) which is not up to some identity arrows the image of
any zigzag from a to a′ in Ai, in the sense of Definition 4.11.

Then, consider the category Z(ḡ) consisting of just one zigzag

z(ḡ) = (z(g1), z(g2), ..., z(gm))

from z(α(a)) to z(α(a′)), with the same length as ḡ, and whose arrows have the same
directions as the corresponding arrows in ḡ, but in which all objects are distinct
(the sequence z(ḡ) keeps therefore just the “zigzag” structure of ḡ, leaving out all
other information about the nature of the morphisms in ḡ).

The pullback of αi along the obvious projection of Z(ḡ) into BI(α)(i) is obviously
not connected, since by hypothesis there cannot be no zigzag between (z(α(a)), a)
and (z(α(a′)), a′) in Z(ḡ)×BI(α)(i) Ai. In effect, if there was such a zigzag then the
image under αi of its projection into Ai would be up to some identity arrows the
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zigzag ḡ.
¤

Consider for instance the inclusion ι : 1 → 2 of the ordinal number 1 into the
ordinal number 2, taking the only object in 1 to the object 0 in 2(= 0 → 1). Using
the characterizations given in Proposition 4.13 and Lemma 4.9 one easily checks
that the functor ι does not have a (E ′,M∗)-factorization. Therefore:

Conclusion 4.14. The pair (E ′,M∗) is not a factorization system on Cat.

We could also arrive to the conclusion above by using a proposition in [6].

There it was stated that, for the factorization system associated with a reflec-
tion of the kind Fam(Conn(C)) → Set, if there exists a pullback diagram

U

0

E

V

(4.7)

-

-

? ?

in Fam(Conn(C)), with 0 denoting the initial object (the empty family), U and V
non-initial, and E connected projective, then the factorization system is not locally
stable (cf. Theorem 1.18).

Now, in our case, if we make U and V the terminal object in Cat and E the
ordinal number 2, it is obvious that we have such a pullback diagram 4.7.

4.3. Separable and purely inseparable morphisms

Proposition 4.15. A functor α : A → B in Cat is separable if and only if,
for every two morphisms f : a → a′ and f̄ : ā → ā′ in A, if α(f) = α(f̄) and either
its domains or its codomains coincide (a = ā or a′ = ā′) then f = f̄ .

Notice that this characterization corresponds to the removal from Lemma 4.9
of the existence demands, and to ask only for uniqueness.

Proof. We have to show that the following functor δα : A → A×B A

A

A×B A

B

A

u α

α

v

-

-

? ?

A

1A

1A
δα

@
@

@@R

A
A
A
A
A
A
A
A
AU

PPPPPPPPPPPPq
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displayed for any object a as δα(a) = (a, a), belongs to M if and only if the
condition given in the statement above holds.

We already know that δα : A → A×B A belongs to M if and only if, for every
object a in A,the functor induced by δα from the connected component [a] of A
into the connected component [(a, a)] of A ×B A is an iso ([a] ∼= [(a, a)]). That is,
if the functor induced by δα from [a] to [(a, a)] is fully faithful and a bijection on
objects.

As δα : A → A×B A is obviously injective on objects and faithful, we only need
to show that, for every object a in A, the functor induced by δα from [a] to [(a, a)]
is full and a surjection on objects.

Indeed, we have

for every object a in A,

the functor induced by δα from [a] to [(a, a)],

displayed for a morphism f in [a] as δα(f) = (f, f), is full ⇔
(i) the functor α : A → B is faithful,

and

for every object a in A,

the functor induced by δα from [a] to [(a, a)],

displayed for an object a in [a] as δα(a) = (a, a), is a surjection on objects ⇔
(ii) for any triple of objects a, a′ and a′′ in A, such that α(a′) = α(a′′) and a′ 6=

a′′, the hom-sets HomA×BA((a, a), (a′, a′′)) and HomA×BA((a′, a′′), (a, a)) are
empty.

Now it is easy to check that conditions (i) and (ii), proved above to be equivalent
to α being a separable functor, are also equivalent to the condition in the statement.

¤

Proposition 4.16. A functor α : A → B in Cat is purely inseparable if
and only if, for every two objects a and a′ in A, if α(a) = α(a′) then there exist
two zigzags of the same length in A, h̄ = (h1, h2, ..., hn) between a and a, and
f̄ = (f1, f2, ..., fn) between a and a′, such that

α(h̄) = (α(h1), α(h2), ..., α(hn)) = (α(f1), α(f2), ..., α(fn)) = α(f̄).

Proof. According to Definition 1.26 and Proposition 4.6, we have to show
that the following functor δα : A → A×B A
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A

A×B A

B

A

u α

α

v

-

-

? ?

A

1A

1A
δα

@
@

@@R

A
A
A
A
A
A
A
A
AU

PPPPPPPPPPPPq

induces a bijection between the connected components of A and A×B A.

The fact that δα induces an injection between the connected components holds
trivially, since if there is no zigzag between the objects a and a′ in A there can be
obviously no zigzag between δα(a) = (a, a) and δα(a′) = (a′, a′) in A×B A.

We then observe:

the functor δα : A → A×B A induces a bijection between

the connected components of A and A×B A ⇔
for every two objects a and a′ in A, if α(a) = α(a′) then

there exists an object ā in A such that

there exists a zigzag between (a, a′) and (ā, ā) in A×B A ⇔
for every two objects a and a′ in A, if α(a) = α(a′) then

there exists a zigzag between (a, a′) and (a, a) in A×B A ⇔
for every two objects a and a′ in A, if α(a) = α(a′) then

there exist two zigzags of the same length in A,

h̄ = (h1, h2, ..., hn) between a and a, and

f̄ = (f1, f2, ..., fn) between a and a′, such that

α(h̄) = (α(h1), α(h2), ..., α(hn)) = (α(f1), α(f2), ..., α(fn)) = α(f̄).

¤

Example 4.17. Consider the two functors α : A → B and β : B → C, such
that α(a) = b′ = α(a′), α(ā) = b̄, α(ā′) = b̄′, α(a′′) = b′′, β(b̄) = c̄, β(b̄′) = c̄′ and
β(b′) = c′ = β(b′′):

a′′

a′

a

⇓

ā′

ā

©©©©¼

HHHHY

©©©©¼

HHHHY

α -

b′′

⇑
b′

b̄′

b̄

©©©©¼

HHHHY

©©©©¼ β - c′

c̄′

c̄

HHHHY

©©©©¼
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It is easy to check that α and β are purely inseparable but its composite β · α
is not.

Moreover, these three functors α, β and β ·α between orders are all regular epis
but none of them is stably-vertical, and β · α is inseparable, as it is easy to check.

Conclusion 4.18. The information given by the last example 4.17 allows us
to conclude that the classes Pin and Pin ∩ RegEpi can never be part of a factor-
ization system, since they are not closed under composition, and that the following
inclusions are all strict (cf. Remark 1.28 and Lemma 1.30):

E ′ ⊂ Pin ∩RegEpi ⊂ Ins

4.4. Concordant-dissonant factorization

We are going again to consider the factorization system (ExtEpi, Mono) on
Cat, for the definition of concordant-dissonant factorization, now with respect to
the reflection of categories into sets.

Hence, according to Proposition 1.35 and Definition 1.36, the pair (E∩ExtEpi, Diss)
is a factorization system. The following proposition gives a characterization of the
functors in its second component Diss.

Proposition 4.19. A functor α : A → B in Cat is dissonant if and only if
each αi in the presentation of α as the family (αi : Ai → BI(α)(i)) of morphisms in
Conn(Cat), is a monomorphism.

We will also express this by saying that, for every object a in A, α induces
a monomorphism between the connected components [a] and [α(a)] of A and B,
respectively.

Proof. According to Proposition 1.35 and Definition 1.36, the functor α :
A → B is dissonant if and only if the following functor 〈α, ηA〉 : A → B × I(A) is
monic:

B B × I(A) I(A)

A

?

HHHHHHHj

ηA

´
´

´
´

+́

α
〈α, ηA〉

¾ -

The functor 〈α, ηA〉 : A → B × I(A) is displayed as

〈α, ηA〉(a) = (α(a), [a]).

Now it is easy to conclude that 〈α, ηA〉 is a monic functor if and only if
every restriction of α : A → B to any connected component of A is always a
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monomorphism.
¤
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