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Resumo O detector ultra-s�onico de uxo sangu��neo usa o efeito Doppler para estimar de

forma n~ao invasiva a velocidade do sangue na circula�c~ao. Tem sido bastante usado

nas �ultimas quatro d�ecadas para detectar a presen�ca de estenoses.

O desenvolvimento de novas t�ecnicas de processamento do sinal Doppler necessita

de sinais de teste cujas caracter��sticas sejam conhecidas ou possam ser medidas

com precis~ao. Isto �e dif��cil de obter com sinais Doppler medidos in vivo devido

�a elevada varia�c~ao do uxo sangu��neo de pessoa para pessoa e tamb�em com o

estado �siol�ogico da pessoa no momento da medida, por exemplo a tens~ao arte-

rial inuencia signi�cativamente o uxo sangu��neo. Um modelo para gerar sinais

Doppler simulados cujas caracter��sticas sejam control�aveis e/ou mensur�aveis �e uma

ferramenta bastante �util, pois permite que as novas t�ecnicas de processamento do

sinal Doppler sejam testadas em condi�c~oes controladas. Permite, tamb�em, estudar

o efeito de v�arios factores que afectam o espectro do sinal Doppler. Habitualmente

o efeito individual dos v�arios factores n~ao pode ser identi�cado quando s~ao usados

sinais medidos in vivo.
Neste trabalho foi desenvolvido um modelo para gerar sinais Doppler ultra-s�onicos

simulados. O modelo cont�em dois sub-modelos, um para o uxo sangu��neo nos

membros inferiores de um ser humano e outro para gerar os sinais simulados a

partir do campo de velocidades do sangue e das caracter��sticas do instrumento.

O uxo sangu��neo nos membros inferiores foi simulado com um an�alogo el�ectrico

para a rede vascular dos membros inferiores. Cada art�eria foi simulada por uma

linha de transmiss~ao com perdas e as redes vasculares perif�ericas por um circuito

Windkessel com três elementos. O circuito el�ectrico foi implementado com o

simulador de circuitos SPICE.
Para simular a interac�c~ao entre os gl�obulos vermelhos e o campo de ultra-sons o

vaso sangu��neo foi dividido em pequenos volumes elementares. As contribui�c~oes

dos volumes elementares foram todas somadas para gerar o sinal Doppler simulado.

O modelo fez algumas aproxima�c~oes como sejam, por exemplo, considerar o uxo

sangu��neo laminar e sem rota�c~ao.

As caracter��sticas dos sinais gerados pelo modelo s~ao bastante parecidas com as

esperadas para o sinal Doppler real. O modelo desenvolvido foi usado para estudar

a inuência que a acelera�c~ao sangu��nea, o tamanho do volume de amostragem e

a dura�c~ao da janela de amostragem têm na largura de banda e�caz do espectro

do sinal Doppler. Foi deduzida uma f�ormula que estima a largura de banda e�caz

a partir das contribui�c~oes individuais do alargamento espectral devido �a n~ao esta-

cionaridade, do alargamento espectral intr��nseco, do alargamento espectral devido

�a dura�c~ao da janela de amostragem e ainda da gama das velocidades que passam

pelo volume de amostragem.

Foram, ainda, deduzidas express~oes em forma fechada para o espectro de potência

do sinal Doppler devido unicamente �a gama de velocidades que atravessam um

volume de amostragem com forma Gaussiana colocado num per�l de velocidades

com forma exponêncial. Foram, tamb�em, obtidas express~oes para a largura de

banda e�caz no caso especial do volume de amostragem Gaussiano ter simetria

esf�erica e estar colocado no centro do vaso sangu��neo.



Abstract The Doppler ultrasonic blood ow detector estimates non-invasively the
velocity of blood in the circulatory system. It has been extensively used in
the last four decades for the detection of stenoses in the circulation.
The development of new signal processing techniques for the Doppler signal
requires test signals with known or measurable characteristics. This is very
di�cult to achieve with Doppler signals obtained in vivo because of the
variability of blood ow between persons and with physiological state, for
example blood pressure. A model for generating simulated Doppler signals
whose characteristics are controllable and/or measurable is a useful tool
because it permits the test of new processing techniques under controlled
conditions. It permits also the study of the e�ect of various factors on the
Doppler spectrum. Usually these e�ects cannot be isolated with in vivo

measurements.
During this work a model for the generation of simulated Doppler ultrasound
signals was developed. It comprised two sub-models one for blood ow in
the human lower limb and the other for generating simulated signals from
the blood velocity �eld and the instrument's characteristics.

Blood ow in the lower limb was modelled by an electric analogue for the
lower limb vascular tree. Each artery was modelled by a lossy transmission
line and the peripheral vascular beds by three{element Windkessel mod-
els. The electric analogue circuit was implemented with the SPICE circuit
simulator.
To simulate the inter-action of the blood cells with the ultrasonic �eld the
vessel was divided into small elemental volumes whose contributions were
added together to generate the simulated Doppler signal. The model as-
sumed irrotational laminar ow and some other simplifying approximations.

The characteristics of the signals generated by the model were similar to
those expected for the Doppler signal. The model was used to study the in-
uence of blood acceleration, sample volume size and data segment duration
on the root mean square (rms) width of the Doppler spectrum. A simple
formula was derived for estimating the Doppler rms spectral width from the
individual contribution of non-stationarity broadening, intrinsic broadening,
window broadening and the range of blood velocities passing through the
sample volume.

In addition closed form expressions were derived for the Doppler power spec-
trum due solely to the range of blood velocities passing through a Gaussian
sample volumes placed in irrotational laminar ow with a velocity pro�le
obeying a simple power law. Closed form expressions were also obtained
for the root mean square spectral width in the special case of a spherically
symmetric Gaussian sample volume placed in the centre of the vessel.
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Chapter 1

Introduction

1.1 Overview

Cardiovascular diseases like heart attacks and embolic strokes are leading causes of death

or severe disability in the population of the so called \developed world". Better and more

sensitive techniques capable of detecting, at an early stage, the conditions that often precede

such diseases, for example the formation of arterial plaque and the partial blockage of the

vessel lumen by stenoses, are needed in order to improve the e�ciency and the outcome of

medical treatments. These diagnostic techniques should be low cost, since expensive methods

are not suitable for the large scale testing required to detect the diseases at an early stage.

The ultrasonic Doppler blood ow detector, usually in conjunction with an ultrasonic

imaging instrument, has been the technique of choice in the detection of stenosed vessels

because it is a non-invasive technique performed at lower cost than some other diagnostic

modalities, e.g. magnetic resonance imaging.

The ultrasonic Doppler blood ow detector determines the blood velocity by measuring

the Doppler shift in the frequency of ultrasound backscattered by the moving blood cells

making use of the Doppler e�ect named after the Austrian physicist Christian Doppler (1803-

1853). The Doppler e�ect is the change in frequency sensed by an observer when moving in

relation to a wave source.

In essence, ultrasound is transmitted towards the blood vessel under investigation, back-

scattered ultrasound is received on a transducer and the electrical signal from this is demod-

ulated, i.e. multiplied by the transmitted signal, and low pass �ltered to produce a signal,

the Doppler signal, whose frequency is proportional to the velocity of the moving blood cells.

The Doppler signal is random because the ultrasound is scattered from a large number

of blood cells with a random distribution. Due to the range of blood cells velocities passing

through the instrument's resolution cell (sample volume), amongst other e�ects discussed

later, the Doppler signal contains a complete spectrum of frequencies instead of a single

frequency [Evans et al. 1989]. Even the Doppler signal scattered from a single blood cell

1
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contains a spectrum of frequencies rather than a single frequency due to the �nite path

length of the blood cell within the resolution cell.

Blood ow is pulsatile due to the intermittent pumping action of the heart and as a con-

sequence the frequency content of the Doppler signal also varies with time. Thus the Doppler

signal is non-stationary, that is its statistics change with time and is usually approximately

cyclo-stationary because the cardiac cycle and the physiological state change slowly with

time.

The velocity waveform at any site of the arterial circulation is determined by the condition

of the complete vascular system and its physiological state. For example, vasodilatation of

vessels of one limb a�ects not only the local blood velocity waveforms, by changing the local

ow impedance, but also the waveforms at other sites in the circulation and eventually even

the output of the heart.

The shape of the time variation of the mean or maximum frequency of the Doppler spec-

trum and any abnormal increase in the range of frequencies (spectral width) are used to

detect the presence of stenoses in vessels. Usually a broader Doppler spectrum is associated

with disturbed ow created by an obstructive lesion. Thus, the lower limit of stenoses that

can be detected is determined by the sensitivity to small degrees of ow disturbance and this

is conditioned by the method of spectral analysis used [Fish 1991] and the characteristics of

the measuring system.

Ideally, the width of the Doppler spectrum should be determined only by the range of

blood velocities passing through the instrument's sample volume, but in practice several other

factors like blood acceleration, scattering characteristics of blood, sample volume character-

istics and window duration, contribute to the spectrum [Gill 1985, Fish 1991, Jones 1993].

In order to lower the limit of detectable ow disturbances it is necessary to understand and

quantify the e�ect of each factor on the Doppler spectrum allowing the development of new

analysis techniques.

The impossibility of controlling vascular conditions in a person and the high variability

of the Doppler signal obtained from di�erent persons (even from the same person at di�erent

times) makes the task of obtaining clinical Doppler signals under controlled conditions almost

impossible.

It seemed, then, interesting to develop a model for the generation process of the Doppler

signal. This would allow the generation of simulated Doppler signals under controlled con-

ditions thus enabling the study of the relative importance of various factors on the Doppler

spectral width. The use of the model would also help in the development of new methods

of waveform analysis and disease state prediction and their test under controlled conditions,

avoiding the use of long, time consuming, clinical trials in the development phases.
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The work presented here is part of a broader e�ort, by our research group, aimed at

improving the sensitivity of the Doppler ow detector to smaller degrees of arterial stenoses.

This broader goal includes also the study of the autonomous regulation of blood ow and the

development of techniques for model based vascular disease detection.

This is an interdisciplinary work involving knowledge in various areas like physiology of

the circulation, uid dynamics, physics, signal processing and electrical engineering.

1.2 Objectives

The main objective of this work is the development of a computer model for the generation

process of the ultrasonic Doppler signal capable of producing signals with controllable and

repeatable characteristics. The model can be subdivided into the following two models:

� Computer model of the blood ow in the lower limb arterial tree.

� Computer model for the beam/velocity �eld interaction with input of sample volume

characteristics and the velocity �eld produced by the blood ow model, and output of

the simulated Doppler signal.

We have chosen to model the blood ow of the lower limb arterial tree because it is one

of the parts of the arterial circulation were stenosis are more common and also because it is

composed of relatively straight and long vessels.

Another important objective of this work is to study the inuence of blood acceleration,

sample volume size and window duration on the width of the Doppler spectrum.

1.3 Thesis organization

This �rst Chapter presents a general overview of medical Doppler ultrasound and the motiva-

tions for this work. This Chapter also lists the main objectives of this work and achievements.

Chapter 2 has some background on the areas of knowledge relevant to this work, that is,

blood ow, medical Doppler ultrasound theory and instrumentation, and spectral estimation

of Doppler signals. It briey describes the circulatory system and the di�erent types of blood

ow usually found in the circulation. The section on Doppler ultrasound introduces the

Doppler e�ect and Doppler ultrasound instruments used as medical diagnosis tools; it also

describes contributing factors to the Doppler spectrum as well as models for the Doppler

signal. The section on spectral estimation describes the various techniques that have been

used to estimate the spectrum of the Doppler signal.

Chapter 3 describes the implementation of an electric analogue for the lower limb arterial

circulation using the SPICE circuit simulator.

Chapter 4 presents a new computer model for the generation of simulated Doppler signals

from non steady laminar blood ow. The model uses as inputs the characteristics of the
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sample volume and the velocity �eld. It can generate either simulated Doppler signals or the

expected spectrum of the signals.

Chapter 5 presents the derivation of a closed expression for the Doppler power spectrum

from a sample volume with a Gaussian sensitivity variation placed anywhere in a vessel with

a power law velocity pro�le. It presents, also, closed form expressions for the mean frequency

and root mean square (rms) width of the Doppler spectrum in the special case of a symmetric

Gaussian sample volume centred in the vessel.

In Chapter 6 the new formulation for the Doppler signal introduced in Chapter 4 is used

as the basis for an investigation into the various factors a�ecting the Doppler spectrum. This

allowed the study of the relative contribution of blood acceleration, sample volume size and

window duration to the spectral width of the Doppler signal.

This thesis ends in Chapter 7 with a summary of the work carried out and some sugges-

tions for future work.

1.4 Main contributions

� Development of an electric analogue model of the blood ow in the lower limb arterial

circulation using SPICE, an industry standard for the simulation of electric circuits.

This was an ideal platform on which to develop the model because it was very easy to

change the model parameters and the circuit description �le is highly portable. The

qualitative validation of the model looked into the Pulsatility Index (PI) of the ow

waveforms in addition to other model outputs.

� Development of a software model for the generation of simulated Doppler ultrasound

signals received from irrotational non steady blood ow in straight rigid vessels. The

model is closely linked to physical the characteristics of the Doppler instrument and

since the velocity of the scatterer's is allowed to vary while crossing the sample volume

the model is suitable to study the e�ects of acceleration on the Doppler spectrum.

The way in which the Doppler system was modelled permitted the computation of

the expected power spectrum thus enabling the removal of the randomness from the

simulated spectrum.

� Derivation of closed form expressions for the Doppler power spectrum from Gaussian

sample volumes placed anywhere in a vessel with a nth power velocity pro�le1.

� Derivation of closed form expressions for the mean frequency and root mean square

(rms) spectral width of Doppler signals from symmetric Gaussian sample volumes

placed in the centre of vessels with a power law velocity pro�le.

1The solution of the integral
R 2�

0
exp (a cos(�� �) + b cos(2�)) d� presented in Appendix A was found with

the help of Dr. Robin Steel from the University of Wales, Bangor, UK.



1.4 Main contributions 5

� New formulation for the Doppler ultrasound signal that allows the separation of the ef-

fect of blood acceleration, sample volume size and data window duration on the spectral

width of the Doppler signal2.

� Model based numerical study of the e�ect of blood acceleration, data window duration

and sample volume size on the rms spectral width of the Doppler spectrum.

� Introduction of a simple formula for estimating the rms spectral width under some

idealised conditions2.

2The theoretical development presented in Chapter 6 resulted from collaborative work between the author
and one of his supervisors, Mr. Peter Fish.





Chapter 2

Background

2.1 Introduction

This chapter describes the background knowledge for the general areas of this interdisciplinary

work.

Firstly, blood ow in humans is described in section 2.2. The description includes the

circulatory system, types of blood ow encountered in humans and models and theories to

describe blood ow in the circulatory system.

Secondly, Doppler ultrasound is presented in section 2.3. The section includes: a de-

scription of the basic physical principles behind the Doppler e�ect; a description of the most

common Doppler ultrasound instruments; the description of the origins of the Doppler spec-

trum and models proposed in the past to describe the Doppler signal backscattered by blood.

Finally, the basics of spectral estimation techniques usually used to process the Doppler

signal are presented in section 2.4. The periodogram, parametric modelling and time-

frequency spectral estimation techniques are all briey described.

2.2 Blood ow

This section briey describes the ow of blood in the human circulatory system. It starts

with the physiology of the circulatory system and its main components: heart, vessels and

blood. The types of blood ow commonly found in the human circulation are also described

and the section ends with the description of models for the blood ow in arteries.

No outline of the history of hemodynamics is made in this work. Very good reviews on

the main contributions to the present knowledge on blood ow in the human circulation can

be found in [Fich & Li 1983, Milnor 1989, Nichols & O'Rourke 1990, Noordergraaf 1969].

2.2.1 The circulatory system

The circulatory system consists of the heart, which pumps the blood, the blood vessels and the

blood. Its main functions are the transport of substances (nutrients, oxygen and hormones)

7
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to the cells and the removal of products and wastes of the cellular metabolism (e.g., carbon

dioxide).

The human vascular system is shown diagrammatically in �gure 2.1 to illustrate how the

various components of the circulation are interconnected and how the blood is distributed in

the di�erent parts of the circulatory system.

Figure 2.1: Diagram of the human vascular system and the distribution of blood volume in
the di�erent portions of the circulatory system (from [Guyton 1991]).

The heart

The human heart is a hollow muscle situated in the chest cage between the lungs. It has the

general shape of a pyramid turned up side down [Reith et al. 1978].

The heart functions as two pumps arranged in series. The right side of the heart pumps

blood to the lungs (pulmonary circulation) via the pulmonary artery and the left side to the

rest of the body (systemic circulation) via the aorta [Stanier & Forsling 1990].

The heart is divided into four chambers: right atrium, left atrium, right ventricle and

left ventricle. The blood enters the heart at the atria and leaves it forced by the ventricular
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contractions. The blood ow in the heart is unidirectional due to the use of valves; the

atrioventricular valves between the atria and the ventricles, and the semilunar valves in the

base of the main arteries (aorta and pulmonary artery) leaving the ventricles. Figure 2.2

shows the heart and the major blood vessels connected to it.

Figure 2.2: The structure of the heart and the ow of blood through the heart chambers
(from [Guyton 1991]).

During its life, the heart is constantly pumping blood to the arteries in a cyclic succession

of muscle contraction and relaxation.

The normal cardiac rate in humans is on average approximately 70 beats per minute

[Jacob et al. 1990]. This rhythmic nature of the heartbeat is an intrinsic property of some

parts of its musculature (myocardium �bres). The heart rate may be modi�ed by several

factors (chemical composition of blood, temperature and nerve impulses), but the initiation

of the beat is myogenic: that is to say, a property of the myocardium muscle �bres themselves

[Stanier & Forsling 1990]. The resting heart rate is mainly determined by the inherent rhythm

of the fastest beating portion of the myocardium, and by signals from two sets of nerve �bres

(one to accelerate and another to slow down the heart) that connect heart to the central

nervous system (CNS). The CNS uses the blood temperature and the information received

from several strategically placed sensory organs, which measure the pressure (baroreceptors)

and the chemical composition of blood (chemoreceptors), to regulate the heart rate.
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Blood vessels

The blood vessels in the human body are classi�ed into the following groups: arteries, arte-

rioles, capillaries, venules, and veins.

The arteries carry the blood from the heart to the main regions of the body: head, trunk

and limbs. The arteries close to the heart have large diameters in order to accommodate

the high blood ow rates, but as the arteries successively branch they get narrower. The

walls of the large arteries have a signi�cant percentage of elastic �bres that contribute to

smoothing out the pressure wave delivered by the heart. The elasticity of the arterial walls

allows the sudden intake of blood ejected from the ventricles during systole, the walls then

recoil squeezing the blood into the arterioles [Stanier & Forsling 1990]. With age, arteries

lose their elasticity, resulting in strain on the arterial wall. Figure 2.3 shows the physical

structure of the arterial wall.

Figure 2.3: Cross-section of an artery (from [Stanier & Forsling 1990]).

From the arteries, the blood passes to the arterioles that are directly connected to the

capillaries. The arterioles may be dilated or constricted through the action of the smooth

muscle contained in their walls. This ability of the arterioles to change their diameter al-

lows the CNS to adjust the blood ow rate to the various parts of the body according to

their physiological needs. The CNS controls the diameter of the arterioles by changing the

frequency of the nervous impulses sent to the smooth muscle of the arterioles.

From the arterioles, the blood passes to the capillaries where the exchange of nutrients,

waste products and gases with the individual cells occurs. The capillaries are the smaller

vessels of the circulatory system, their walls consist of a single layer of endothelial cells and

do not contain any smooth muscle or elastic �bres. The capillaries connect the arterial and
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venous trees.

The veins and the venules are the vessels that transport the blood back to the heart.

They have thinner walls than their arterial counterparts, arteries and arterioles respectively,

because the blood pressure on their walls is much smaller. While arterial blood is propelled

by the action of the heart, venous blood is manly propelled by the action of the muscles

surrounding the veins. The muscles squeeze the thin walls of the veins forcing the blood

forward to the heart. Valves prevent blood from owing backwards.

Blood

The blood is the liquid substance that is pumped through the blood vessels by the heart. It is

the medium for the transport of substances between the di�erent parts of the body. Among

the many functions of blood some of the most important are:

� Transport of nutrients to the cells;

� Transport of oxygen from the lungs to the cells;

� Transport of metabolism waste products (for example, carbon dioxide) from the cells

to the organs of excretion;

� Transport of hormones through the body.

The blood is formed essentially of erythrocytes (red blood cells), leukocytes (white blood

cells), and platelets in suspension in the plasma.

The main function of the erythrocytes is to transport oxygen from the lungs to the tissues

and carbon dioxide (CO2) from the tissues to the lungs. The oxygen combines in the lungs

with hemoglobin (a molecule contained in the erythrocytes) and is then transported to the

cells where it oxidises the nutrients for energy.

Although, about 98% of the oxygen in the blood is carried by the hemoglobin, only about

25% [Reith et al. 1978] of the CO2 is carried by the hemoglobin. The major fraction of

CO2 present in the blood reacts with the water contained in the blood. This is possible

because of the carbonic anhydrase enzyme contained in the erythrocytes which is responsible

for accelerating the rate of reaction between water and CO2 about 5000-fold [Guyton 1991].

The leukocytes are the cells that provide defences against any infectious agent that might

be present in the body and the platelets help to prevent blood loss from ruptured vessels.

2.2.2 Types of blood ow

When two adjacent layers of a uid slide over each other a frictional force arises between

them due to viscosity.

Viscosity is a physical property of a uid. For most simple uids (e.g. water) viscosity is

independent on the rate at which the adjacent uid layers slide over each other (shear rate)

and those uids are usually referred as Newtonian uids.
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Blood is a mixture of solid cells (erythrocytes, leukocytes and platelets) in suspension

in the liquid plasma therefore the viscous properties of blood are complex. Fortunately, it

is possible to neglect the non-Newtonian behaviour of blood viscosity for the major arteries

in the human circulation [Caro et al. 1978, Evans et al. 1989, Hatle & Anglesen 1985] and

consider the asymptotic value of blood viscosity, that is the value to which the apparent

viscosity tends at high shear rates. Although asymptotic viscosity depends on both hemat-

ocrit (percentage of blood volume that is made of cells) and temperature, its value at normal

physiological conditions is in the range 3{4 �10�3Nsm�2 [Caro et al. 1978, Milnor 1989].

The ow of a uid within closed vessels may be of two di�erent types: laminar or turbulent.

In laminar (or streamline) ow the uid particles move along smooth paths in layers with

every layer sliding smoothly over its neighbour [Evans, 1989, pp 7]. As the velocity increases,

laminar ow becomes unstable, vortices start to form, and eventually ow becomes turbulent.

When the ow is turbulent the velocity vectors of the uid particles change rapidly with

time, both in magnitude and direction.

Blood ow in arteries is complex. The ow is pulsatile, the blood is an inhomogeneous

uid, and branches, curves, tapers, and arterial obstructions cause even more complexity

[Evans et al. 1989].

Laminar ow

In a circular long rigid straight tube, steady laminar ow of a Newtonian uid gives rise to

a parabolic velocity pro�le across the tube lumen. The uid moves in cylindrical layers; the

central layer moves with maximal velocity and the uid near the wall is almost stationary.

The parabolic velocity pro�le of laminar ow is:

v(r) = v0

"
1�

�
r

R0

�2
#

, 0 � r � R0 (2.1)

where v(r) is the velocity of the uid layer at distance r from the centre of the tube, v0 is

the velocity of the central layer and R0 is the internal radius of the tube.

The rate of uid ow, Q, sometimes also referred as volumetric ow, may be calculated

by integrating v(r) over the tube cross-section:

Q =

Z 2�

0

Z R0

0
v(r)r drd�

= �R2
0

v0
2

(2.2)

The mean velocity, v = v0=2, is obtained by dividing the volumetric ow by the tube cross-

sectional area.

The relationship between volumetric ow and pressure gradient in a segment of a circular
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rigid tube with steady laminar ow is given by Poiseuille's (1799-1869) law:

�p = p1 � p2 =
8�Ql

�R4
0

(2.3)

where p1 and p2 are the pressures at the beginning and end of the tube, � is the uid viscosity

and l is the length of the tube.

If we rewrite Poiseuille's law as:

�p

Q
=

8�l

�R4
0

�p = RQ , R =
8�l

�R4
0

(2.4)

it is easy to see the parallel with the familiar Ohm's law, which relates a steady electrical

current trough a device to the potential di�erence across its terminals. Due to this analogy

between the electrical and uid realities, the constant R is usually referred as the uid

resistance.

Turbulent ow

At high velocities, laminar ow tends to become turbulent; the trajectories of the uid par-

ticles seem to be erratic and random.

The velocity at which ow becomes turbulent depends on the geometry of the tube and

on the physical properties of the uid. This critic velocity cannot be exactly predicted, but

it is closely related to the Reynolds number, Re, which for a circular pipe is:

Re =
2R0v

�
(2.5)

where � is the kinematic viscosity of the uid.

Although, the critical Reynolds number (at which the ow becomes turbulent) depends

on the tube geometry, for most practical purposes related to blood ow in human arteries, it

is taken to be approximately 2000 [Evans et al. 1989]. Whenever there is any intrusion, like

for example a stenosis, into the vessel lumen turbulence can develop at much lower Reynolds

numbers.

The average velocity pro�le found in turbulent blood ow is atter than that found in

laminar ow [Evans et al. 1989].

When the ow is turbulent a signi�cant fraction of blood ow energy is lost to form

eddies resulting in a higher ow resistance to ow than in the case of laminar ow [Hatle &

Anglesen 1985].

Turbulent blood ow is rarely seen in the normal human circulation but vortices do form

in and near the heart. Turbulent ow in the circulation usually develops as a result of

vascular disease (e.g. arterial stenoses). This is explored by some diagnostic techniques, such

as Doppler ultrasound, to detect sites with arterial disease.
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Pulsatile ow

The blood ow in arteries is pulsatile due to the intermittent pumping of the heart. The

pulsatile nature of arterial blood ow and the viscoelastic properties of the arterial walls

imply the propagation of pressure and velocity waves along the arterial tree with a �nite

pulse velocity.

The equation for the velocity of pulse propagation in a thin-walled eslastic tube �lled

with and incompressible and nonviscous liquid was �rst derived in the 19th century by two

Dutch scientists and is known as the Moens-Korteweg equation,

c0 =

s
Eh

2�R0
(2.6)

where c0 is the pulse wave velocity, E is the Young's modulus of the tube wall, � is the density

of the uid and h is the wall thickness.

A number of more complex equations taking into account parameters such as the viscosity

of the liquid were also derived. Nevertheless, equation (2.6) predicts the pulse wave velocity

with an error not exceeding 15% of the values measured in the human arteries, which is well

within normal experimental error and physiological variability [Caro et al. 1978].

Poiseuille's law gives the relationship between the pressure gradient and the volumetric

ow for steady ow. [Womersley 1955a] showed that a similar expression holds for the case

of sinusoidal ow in a rigid circular tube,

Q =
M 0

10

�2
� �R4

0

�l
�p sin

�
!t+ �+ �010

�
(2.7)

for a pressure gradient of �p cos (!t+ �) =l, ! is the angular frequency of the velocity wave-

form, t is time and � is a phase shift angle. M 0
10 and �010 are both functions of the non-

dimensional parameter � know as Wormersley parameter de�ned as:

� = R0

r
!

�
(2.8)

From the above equation it is clear that the pressure and ow waveforms are generally not

in phase.

The velocity pro�le for steady ow in a circular pipe is parabolic. In the case of pulsatile

ow the velocity pro�le depends on �. The relationship between sinusoidal volumetric ow,

Q(t) = Q cos (!t+ �), and the velocity pro�le in a rigid tube was derived by Evans [1982a]

from Womersley's equations:

v(y) =
1

�R2
0

�Q j	(y)j cos (!t+ �+ �(y)) (2.9)
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where y = r=R0 and j	(y)j and � are respectively the magnitude and phase of function:

	(y) =
�J0(�)� �J0(y�)

�J0(�)� 2J1(�)
,� = �j3=2 (2.10)

where j is the unit imaginary number, J0 and J1 are Bessel functions of the �rst kind and

orders 0 and 1.

If the ow waveform is periodic, then it may be expressed as a Fourier series:

Q(t) = Q0 +

1X
k=1

Qk cos (k!t+ �k) (2.11)

and the actual velocity pro�le is given by the summation (assuming that the system is linear)

of the pro�les for each single frequency [Evans 1982b]:

v(y) =
1

�R2
0

"
2Q0

�
1� y2

�
+

1X
k=1

Qk j	kj cos (k!t+ �k + �k)

#
(2.12)

For very small � the ow varies very slowly and the velocity pro�le is approximately

parabolic.

2.2.3 The e�ects of geometric changes

Each curve, branch and constriction in the circulatory system changes both the velocity

pro�le and the local pressure gradient [Evans et al. 1989].

Curves

The ow pattern in a curved section of a vessel is changed by the centrifugal force acting

on the uid. This force is proportional to the velocity squared and inversely proportional to

the radius of curvature. When the pro�le at the entrance of the curve is parabolic the uid

at the centre has the highest velocity and will tend to move towards the outside wall of the

vessel [Evans et al. 1989] and the pro�le becomes skewed in that direction.

If the velocity pro�le is at at the entrance of the curve, the pro�le in the curve becomes

skewed in the direction of the inner wall because the radius of curvature is smaller for the

streamlines near the inner wall.

Branches

Blood ow at (or near) the branch point of a vessel is very complex. Factors like the mis-

match in size, characteristic impedance and angle of branching contribute to determine the

characteristics of the ow in the daughter and parent vessels.

The e�ect of the branch on the velocity pro�le depends on the exact geometry of the

junction. Normally, there is ow separation and secondary motion near the inner wall of the
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daughter vessel. These sites where ow separation and secondary motion occur naturally are

common sites for the occurrence of atherosclerosis, an example of such site in the circulation

is the carotid bifurcation.

The characteristic impedance mismatch at branches produces reected pressure and ow

waves that interact with the incident waves. Thus, arterial branches (and also stenosis)

change the pressure and ow waveforms both locally and globally.

It is important to note that the ow in curves and at branches is nonlinear and therefore

the behaviour of a pulsatile ow waveform cannot be predicted by adding the contributions

of individual sinusoidal waves [Evans et al. 1989].

Tapering

All the blood vessels, with the exception of the capillaries, taper. A converging lumen has the

e�ect of stabilising laminar ow, attening the velocity pro�le and rising the critical Reynolds

number.

The major blood vessels also show some degree of elastic tapering (i.e. the Young's mod-

ulus of the vessel changes progressively with distance), which also contributes to stabilising

the blood ow in the circulation.

Stenoses

The most frequent arterial disease is atherosclerosis in which atheromatous plaque develops

inside the arterial wall. With time these plaques may grow larger and invade the vessel lumen

thus reducing blood ow and eventually obstructing the vessel completely. The obstructive

lesions caused by the deposition of plaque in the arterial wall are normally called stenoses.

When a vessel has a stenosis the cross-section of the lumen is reduced and the stenosis

contributes with an extra resistance to the ow of blood. Since the volumetric ow remains

constant throughout the narrowing, the blood inside the stenosis needs to travel at a higher

velocity than outside the stenosis. The pressure drop in a stenosis is higher than that pre-

dicted by Poiseuille's law. In addition to the pressure drop due to viscous losses (Poiseuille's

law) there are also pressure drops due to nonlinear e�ects associated with the convergence and

divergence of the ow and to the pressure-di�erence needed to accelerate the blood [Young

et al. 1975]. The exact contribution of each of the above e�ects to the pressure drop at a

stenosis depends on the geometry of the stenosis.

Whenever the vessel widens suddenly (for example after a stenosis) the inertia of the

owing blood may lead to the separation of ow and eventually the formation of eddies.

Depending on the severity of the vessel narrowing and the volumetric blood ow, the eddies

produced by the stenosis may rapidly die away or the ow may even become turbulent [Evans

et al. 1989].

Doppler ultrasound is normally used to detect the ow disturbance caused by the stenoses.

Usually, the eddies and/or turbulence that occur after the stenosis produce broader Doppler
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spectra due to the higher range of velocities passing through the sample volume. The mean

frequency waveform is also usually changed in the vicinity of a stenosis; for example if there

is a mild to severe stenosis in the common femoral artery, the spectrogram downstream the

stenosis may not contain the negative frequencies normally associated with the reverse ow

in the lower limb.

If a vessel becomes blocked or the volumetric ow through it is signi�cantly reduced

(severe stenosis) the body usually adapts by developing and opening collateral vessels to

supply the vascular bed [Guyton 1991]. The ow supplied by the collateral circulation may

be enough to feed the vascular bed under resting conditions but the collateral vessels rarely

ever become large enough to supply the blood ow needed during strenuous activities.

2.2.4 Models of arterial blood ow

The Windkessel model

In 1733 Stephen Hales (cited in [Milnor 1989]) suggested that the arterial system is similar

to an old �re engine system. He viewed the arterial system as an elastic uid reservoir

that converted an intermittent inow into a fairly steady outow. His suggestion led Otto

Frank in 1899 to propose a theoretical model for the arterial system in order to compute the

cardiac output from arterial pressure recordings. The model proposed by Otto Frank (cited

in [Milnor 1989]) is known nowadays as the Windkessel which is the German word for the

compression chamber of the old �re engines. A schematic representation of the Windkessel

model is shown in �gure 2.4.

Rp

Qout(t)

v(t)
p(t)

Qin( t)

inf low outflow

Figure 2.4: The Windkessel model.

The Windkessel model represents the microcirculation by a single resistance to ow and

the systemic arterial circulation as an elastic chamber that expands when Qin > Qout and

recoils again when Qin < Qout. This bu�ering action was considered to be similar to the

smoothing of the ow waveform by the arterial system.

The Windkessel model may also be represented by an electric equivalent circuit as shown

in �gure 2.5. The capacitor Cp represents the compliance of the systemic arterial circulation

and Rp the total peripheral resistance.

TheWindkessel model assumes that any pressure perturbations are \felt" simultaneously

at any site within the arterial system, that is the same to say that the pressure waves travel

with in�nite wave velocity in the arterial system. This assumption is in clear contradiction

to the real behaviour of the mammalian arterial system.
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p(t) Rp

Q( t)

C p

Figure 2.5: Electric equivalent of the Windkessel .

Several attempts were made to improve the Windkessel model but its built-in contradic-

tions and its impossibility to model the pressure pulse in the circulation as a travelling wave

led to search for new ways to describe the dynamics of the circulation. Nevertheless, theWind-

kessel model and its derivations like theWestkessel [Westerhof et al. 1971, Noordergraaf 1978]

Q( t)

p(t) Rp

Z o

C p

Figure 2.6: The Westkessel model.

shown in �gure 2.6 are still being used to model the load impedance seen by the heart or

as termination impedances of large vessels. The Windkessel represents the load of the more

peripheral vessels and the microcirculation. The Westkessel model mimics the frequency

variation of the input impedance of the arterial tree much better than the Windkessel model

[Westerhof et al. 1971].

Some examples of the recent use of theWindkessel andWestkessel models can be found in

[Avanzolini et al. 1989, Burkho� et al. 1988, Chen et al. 1997, Mo et al. 1988, Toy et al. 1985].

Womersley's theory

Although, Womersley's work on pulsatile blood ow was not the �rst of its kind, his systematic

and extensive treatment of blood ow had tremendous impact on the study of hemodynamics.

Womersley successively studied the ow in a rigid cylindrical tube [Womersley 1955a], in a

thin-walled elastic tube [Womersley 1955b] and in a constrained elastic tube [Womersley 1957].

The model for pulsatile ow proposed by Womersley is sometimes referred as a linearized

model because he neglected the nonlinear terms of the Navier-Stokes equations after showing

that their e�ect should be small when applied to blood ow. A detailed description of several

linear models for blood ow may be found in [Cox 1969].
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The Navier-Stokes equations for a Newtonian incompressible uid ow free of rotational

ow are [Noordergraaf 1969]:
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= �
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where x is the longitudinal distance and vx and vr are respectively the longitudinal and radial

components of the velocity.

[Womersley 1955a] studied laminar irrotational ow of an incompressible Newtonian uid

in an in�nite long (with no reections) rigid cylindrical tube. Under these conditions equation

(2.14) is eliminated and vr, @vx=@x, and @
2vx=@x

2 are zero. The Navier-Stokes equations are

then reduced to:

�@p

@x
= �

@vx
@t

� �

�
@2vx
@r2

+
1

r

@vx
@r

�
(2.15)

Womersley further assumed that the pressure gradient was a function of time only and

considered a sinusoidal pressure gradient (expressed as a complex quantity for simplicity),

�@p

@x
= Aej(!t+�) (2.16)

substituting (2.16) into the equation of motion,
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Womersley considered then the longitudinal velocity as vx = u ej!t where u is a function

of r alone and made the following substitutions, y = r=R0 and � = R0

p
!=�. The equation

of motion was then rewritten as:
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The uid volumetric ow is the integral of the velocity across the tube cross-section:
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For a real pressure gradient given by �p=l cos(!t+ �) we get:

Q =
M 0
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�2
�R4
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�l
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�
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�
(2.21)

which is equal to (2.7). The quantities M 0
10 and �010 are the magnitude and phase of the

expression between the square brackets in (2.20).

The volumetric ow is only in phase with the pressure when �010 = 90o i.e. when �� 1.

Comparing (2.21) with Poiseuille's law (2.3) it can be seen that the frequency dependent

factor M 0
10=�

2 takes the place of the constant 1=8 in Poiseuille's law. Figure 2.7 shows the

variation of M 0
10, M

0
10=�

2 and �010 as functions of �.

Figure 2.7: M 0
10, M

0
10=�

2 and �010 as functions of Womersley's parameter � (from [Milnor
1989]).
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Transmission line models

The transmission of pressure and ow waves through arteries has strong similarities with

the propagation of voltage and current waves in electrical transmission lines [Noordergraaf

1969]. The correspondence between hemodynamic and electric quantities may be made in

two di�erent ways, but the most generally used is the one that \translates" pressure into

voltage and volumetric ow into electric current.

The equations that describe the transmission of the electric signals through an uniform

transmission line are usually known as the \telegraph equations":

�@V
@x

= L0
@I

@t
+R0I (2.22)

�@I
@x

= G0V + C 0@V
@t

(2.23)

where V is voltage, I is current, L0 is inductance per unit length, R0 is resistance per unit
length, G0 is conductance per unit length and C 0 is capacitance per unit length. The schematic
for an in�nitesimally small block of an electric transmission line is shown in �gure 2.8.

C'G'

R' L'

Figure 2.8: In�nitesimally small transmission line element.

The Navier-Stokes equation for @p=@x (2.13) may be simpli�ed to a form similar to that

of (2.22) [Milnor 1989, Noordergraaf 1969] if some basic assumptions are made:

� the inertial longitudinal and convective acceleration terms, vr
@vx
@r and vx

@vx
@x , can be

neglected;

� the three viscous terms are equivalent to a resistor multiplied by the volumetric ow;

� axial ow is una�ected by radial oscillations;

� \leakage" of ow through lateral branches or through the wall is directly proportional

to pressure.

These conditions are not fully met in the blood circulation. Nevertheless, it is remark-

able that experimental studies have found that pressure and ow harmonics in vivo closely

approximate those predicted by linear models [Milnor 1989]. The major discrepancy being

an underestimation of the DC resistance in the linear models, which may possibly arise from

neglecting the convective acceleration term [Milnor 1989].
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Making use of the above simpli�cations, the Navier-Stokes equations and a continuity

equation expressing the conservation of mass may be written as:
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where L0h is ow inertance per unit length, R0
h is ow resistance per unit length, G0

h is ow

leakage per unit length and C 0
h is vessel compliance per unit length.

De�ning the longitudinal ow impedance per unit length as Zlh and the transverse ow

admittance per unit length as Yth:

Zlh = �@p=@x
Q

(2.26)
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where Zth is called the transverse ow impedance times unit length.

The characteristic ow impedance, Z0h, and the propagation constant, h, are given by,

Z0h =
p
ZlhZth (2.28)

h =

r
Zlh
Zth

(2.29)

For sinusoidal ow the various impedances and the propagation constant are:

Zlh = R0
h + j!L0h (2.30)
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In order to use an electric transmission line to model an artery it is necessary to measure

or calculate the characteristics of the transmission line (for example R0
h, G

0
h, L

0
h and C 0

h).

Normally, it is very di�cult to measure directly (in an artery) the characteristics used in the

previous equations and they are usually calculated from some physical characteristics less

di�cult to measure, such as the Young's modulus, the length and the diameter of the artery.

Various electrical models for blood ow in the entire arterial system or in regional parts of

it based on the above equations were developed in the past [Avolio 1980, de Pater & van den

Berg 1964, McIlroy et al. 1986, Mo et al. 1988, Raines et al. 1974, Snyder et al. 1968, Westerhof

et al. 1969] to allow the study of the arterial system.
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2.3 Doppler ultrasound

The frequency seen by an observer moving in relation to a wave source is di�erent from the

frequency of the emitted wave. This simple but important phenomenon is known as the

Doppler e�ect after the Austrian physicist Johanes Christian Doppler (1803-1853).

Ultrasound has been extensively used since the �fties to visualise the interior of the

human body. Since the work of Satomura [1957] ultrasonic waves in conjunction with the

Doppler e�ect have been used to monitor moving structures within the body, for example

foetal movement or blood ow.

The Doppler ultrasound instrument transmits an ultrasonic beam into the body at a

certain frequency. The ultrasonic wave is reected/scattered in the body and if the reec-

tor/scatterer is moving in relation to the ultrasonic transducer the frequency of the received

wave is di�erent from that of the emitted one. The frequency di�erence (Doppler frequency

shift) is proportional to the relative velocity between the reector/scatterer and the ultrasonic

transducer.

In this section we describe the basics of Doppler ultrasound physics, some Doppler ultra-

sound instruments and models for the Doppler signal backscattered from moving blood.

2.3.1 Ultrasound

A sound wave consists of a mechanical disturbance propagating through a medium, unlike

the electromagnetic waves (e.g., light and radio waves) that even propagate in the absence

of matter (vacuum). Although the sound needs matter to propagate, the matter itself does

not travel from one point to another, only the mechanical perturbation.

Ultrasound is the sound whose frequency is so high that cannot be heard by an human

being (> 20 kHz).

The ultrasonic frequencies used in medical applications of ultrasound are in the 1{20 MHz

range [Fish 1990]. The speed of sound propagation depends on the compressibility and density

of the medium; usually di�erent media have di�erent propagation speeds. In soft tissues the

speed of sound varies slightly but clusters around 1540 m s�1 [Bamber 1986].

2.3.2 The Doppler e�ect

As already mentioned, when a wave source and an observer are moving in relation to each

other the wave frequency measured by the observer is di�erent from that emitted by the

source.

In medical applications of Doppler ultrasound the source (transmitting transducer) and

the �nal observer (receiving transducer) are stationary. It is the movement of any reector

or scatterer in the path of the ultrasonic radiation that produces the Doppler frequency shift.

Any reector or scatterer in the path of the radiation acts both as an observer and a source

of ultrasonic waves. The reector acts as an observer when it is picking up the ultrasonic

wave emitted by the transmitter and acts as a source when it reradiates the ultrasonic wave.
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Figure 2.9 shows diagrammatically the beam/scatterer arrangement.

-v
scatterer

�

transducer

Figure 2.9: Arrangement of ultrasonic beam and scatterer movement for systems with a single
transducer.

The apparent frequency of the ultrasonic wave received by the scatterer, frs, is:

frs =
c� v cos(�)

c
f0 (2.34)

where f0 is the frequency of the transmitted wave and c is the speed of propagation of the

radiation, v is the velocity of the scatterer (considered positive when the scatterer is moving

away from the transducer) and � is the angle between the ultrasonic beam axis and the

direction of the scatterer movement. The scatterer reradiates the ultrasonic wave and the

transducer receives a wave whose frequency is:

fr =
c

c+ v cos(�)
frs

=
c� v cos(�)

c
� c

c+ v cos(�)
f0

=

�
1� 2v cos(�)

c+ v cos(�)

�
f0

(2.35)

and the Doppler frequency shift is:

fd = fr � f0 = � 2v cos(�)

c+ v cos(�)
f0 (2.36)

In medical Doppler ultrasonic applications v � c and the previous expression can be

approximated by:

fd = �2v cos(�)

c
f0 (2.37)

which is usually referred as the Doppler equation. The minus sign in (2.37) reects the

convention that when the scatterer is moving away from the transducer the velocity is positive

and the frequency is reduced.

Continuous wave systems have separate transducers for transmitting and receiving the

ultrasound, thus a small correction must be introduced into (2.37) to account for the di�er-

ent angles between the transducers and the scatterer movement [Fish 1986]. The corrected
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equation is:

fd = �2v cos(�) cos(�=2)

c
f0 (2.38)

where � is the angle between the transmitter and receiver beams and � is, in this case, the

angle between the bisector of the transmitter and receiver beams and the direction of scatterer

movement. Often �=2 is small so that cos(�=2) � 1 and equation (2.37) can still be used.

2.3.3 Doppler ultrasound instruments

Doppler ultrasound instruments are usually used in conjunction with ultrasonic scanners so

that the position of the range cell is known. Hence we start this sub-section by describing

ultrasonic scanners. Then we describe continuous wave instruments, pulsed wave systems,

ow direction discrimination techniques and colour ow imaging.

Ultrasonic scanners

When an ultrasound beam passes from one medium to another (e. g., from soft tissue to bone)

part of the radiation passes through the boundary and the remaining radiation is reected

back. The degree of reection depends on the acoustic impedance mismatch between the two

media and on the angle of attack. The acoustic impedance is the ratio between the acoustic

pressure and the medium velocity [Morse & Ingard 1986, p. 259]. For uids and soft mediums

like tissue the acoustic impedance depends on the density and compressibility of the medium.

Several types of ultrasonic scanners were developed in the past to visualise the interior of

the body. Usually, the instrument sends an ultrasonic pulse into the body and measures the

time delays of the reections from the various interfaces in the wave's path.

The earliest and simplest ultrasonic scanner is the A-mode scanner in which the ultrasonic

beam is directed into the body along a single path. The echoes received from the tissue

boundaries along the beam path are displayed against time. The position of each echo is

determined by the corresponding time delay that is proportional to the depth of the reecting

interface. The echoes are displayed with an height determined by the strength (amplitude)

of the received signal. The structure and physical composition of the various interfaces and

the attenuation of beam along its path determine the amplitude of the received echo.

Since the A-mode scanner investigates a single beam path it can only generate a one-

dimensional representation of the signal amplitude versus depth.

A more complex system capable of generating two-dimensional images is the B-mode

scanner. The transducer is moved by hand along a scan plane and several beam paths are

investigated to calculate a single image. The time delays, the amplitude of the received echoes

and the position of the beam for the various scans are all combined together to calculate a

two-dimensional static image. The brightness of each pixel is determined by amplitude of the

echo signal corresponding to the position in the image.
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Major progress on transducer technology, electronics and computers allowed the develop-

ment of real-time scanners capable of displaying `moving' images in real-time. The real-time

scanners have almost totally replaced the static B-mode scanners. The ultrasonic beam of the

real-time scanners is rapidly swept, either mechanically or electronically, through the imaging

plane and several images are computed and displayed sequentially so that the resulting image

appears icker free.

When investigating blood ow in the circulatory system real-time scanners are frequently

combined with Doppler instruments. This arrangement allows the simultaneous visualisation

of the blood vessel anatomy and the blood velocity waveform (usually as a sonogram). If a

pulsed wave Doppler system is used the operator can even accurately control the position

of the sample volume in the vessel. The instrument incorporating a real-time scanner and

a Doppler system is commonly known as a Duplex scanner and an example of its output is

shown in �gure 2.10.

Figure 2.10: Example of the output image of a Duplex scanner from a popliteal artery with
a 70% stenosis (from [Polak 1995]). Top right is a longitudinal image of the vessel and
surrounding tissue. The dotted line indicates the ultrasound beam axis, the two solid lines
crossing this the extent of the sample volume and the remaining solid lines the vessel axis
markers. The spectrogram of the Doppler signal is displayed at the bottom of the �gure.

The Duplex scanner was further improved by superimposing a colour coded image of the

blood ow onto the greyscale image of the real-time scanner in what is known as colour ow

imaging.
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Continuous wave systems

The continuous wave (CW) Doppler instrument was introduced by Satomura [1957] to inves-

tigate blood ow.

Figure 2.11 shows a block diagram of a simple CW Doppler device. The CW instrument

has two distinct transducers: the transmitter (T) continuously emitting ultrasonic radiation

and the receiver (R) continuously picking up the ultrasonic radiation reected or scattered

from tissue. Usually the two crystals are mounted in the same probe with a slight inward tilt

so that their beams overlap. The region in which the two beams overlap is usually called the

sample volume.

oscillator demodulator
�lter and
ampli�er

ampli�er

Doppler

signal
- - -

6

-v

T
R

sample

volume

�

?

-

Figure 2.11: Continuous wave Doppler instrument (adapted from [Fish 1990]).

The signal picked up by the receiver is �rst ampli�ed and then multiplied in the demod-

ulator by a reference signal from the oscillator. The demodulator output signal contains

both the sum and the di�erence frequencies of the two input signals. In order to isolate

the di�erence frequency, the Doppler frequency shift, the demodulator's output is low-pass

�ltered.

The receiver transducer collects not only the radiation backscattered by the red blood

cells but also the radiation reected back by tissue interfaces along the beam path, such

as blood vessel walls. The amplitude of the reected radiation is, usually, much stronger

than that of the backscattered radiation. Thus, the signal must be high-pass �ltered so that

the strong signal arising from the wall reection is rejected. This high-pass �lter is usually

referred as the `wall thump' �lter (see for example [Kremkau 1995]). The downside of using

the `wall thump' �lter is that the signal backscattered by the slow moving red blood cells

is also removed from the output signal. This may be critical in some application like the

assessment of blood ow in small peripheral vessels and the investigation of blood ow near
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the wall of larger vessels.

The simple CW device presented in �gure 2.11 is not capable of discriminating the direc-

tion of the ow, that is to say that the output from ow moving towards the transducer is

indistinguishable from ow moving away from the transducer. Flow discrimination techniques

used in Doppler instruments will be described latter (see page 29).

Pulsed wave systems

The major limitation of the CW instrument is its lack of range resolution. As a consequence,

the CW instrument cannot separate the signals from any two vessels crossed by the beam

and cannot be used to examine the blood ow at di�erent parts of a vessel. For these reasons

the CW instrument is not suitable for examining deep structures like the heart nor vascular

organs as the brain [Evans et al. 1989].

Pulsed wave (PW) systems overcome the range resolution limitation by controlling the

distance from which the backscattered radiation is received. Pulsed wave systems use a single

transducer to transmit and receive the ultrasonic radiation. The transducer emits, at regular

intervals, short bursts of ultrasound, after a certain time delay the receiver gate opens and the

received signal from the selected region of the beam, (called the sample volume) is processed.

The time delay between the transmission and reception determines the distance between

the transducer and the sample volume and the duration of the transmission interval and of

the reception interval determine its axial length. The width of the sample volume corresponds

to the width of the ultrasonic beam at the depth being investigated. The operator can adjust

the position of the sample volume and its axial length by changing the parameters controlling

the operation of the gates.

Figure 2.12 presents the block diagram of a PW instrument with no ow direction discrim-

ination. The timing circuits control the opening and closure of the transmitter and receiver

gates.

The added versatility of the PW instruments comes at a price, the instruments are more

complex than the CW ones and also have other limitations. For each pulse repetition fre-

quency (PRF) there is a maximum frequency shift that can be unambiguously detected

fdmax = PRF=2 (the Nyquist limit). As the depth of interest increases the maximum PRF

that can be used decreases to allow for the ultrasound burst to travel the longer distance

and return. Since the PRF decreases the maximum detectable velocity also decreases. For a

given depth of interest and for a constant angle of attack the maximum detectable velocity

decreases as the transmitted frequency increases. As an example, a 5 MHz transducer with

an angle of attack of 0o can detect velocities up to 1.2 m s�1 at a depth of 5 cm and only up

to 0.6 m s�1 at a depth of 10 cm, for a 10 MHz with the same angle of attack and at the same

depths the maximum detectable velocities are half those for the 5 MHz transducer (values

tabulated by Hedrick et al. [1995]).

As in any sampling system, if the sampling rate of the PW system is not adequate for

the frequencies being measured, aliasing occurs and the frequencies above the Nyquist limit
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Figure 2.12: Pulsed wave Doppler instrument (adapted from [Fish 1990]).

are represented as low frequencies.

Although the PW instrument shown in �gure 2.12 has a single channel, it is possible to

replicate the demodulator and gate blocks so that several sample volumes are simultaneously

investigated in parallel. One of the uses of multi-channel PW systems is to evaluate blood

velocity pro�les.

Since the Doppler signal spectrum varies with time following the cardiac cycle, it is usually

displayed as a sonogram, also called a spectrogram, where the horizontal axis represents time,

the vertical axis represents frequency and the intensity of the greyscale plot is related to the

power of the spectrum. An example of a sonogram is shown in �gure 2.13.

Flow direction discrimination

The CW and PW instruments presented previously (�gures 2.11 and 2.12) are not capable of

di�erentiating between forward and reverse ow. Three techniques have been used to permit

ow direction detection: single sideband detection, heterodyne detection and quadrature

phase detection.

Single sideband detection consists on separately �ltering the frequencies above and below

the frequency of the reference signal. The received signal is split into two branches; one of the
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Figure 2.13: Sonogram of the Doppler signal from a common femoral artery (from [Evans
et al. 1989]).

branches is high-pass �ltered with the cut-o� frequency set to the frequency of the oscillator

while the other is low-pass �ltered with the same cut-o� frequency. Both signals are then

mixed with the reference signal and low-pass �ltered. The signal from one of the branches

corresponds to the forward ow and the other to the reverse ow. The major problem with

this ow direction detection method is the need for extremely sharp sideband �lters which

makes it inapplicable for pulsed systems due to the long ringing time of the sharp �lters.

Another method used for ow direction discrimination, the heterodyne detection, mixes

the received signal with a reference signal whose frequency has an o�set in relation to the

oscillator frequency. The demodulated signal is low-pass �ltered in the usual way. The posi-

tive frequency shifts, corresponding to forward ow (towards the transducer), are represented

above the o�set frequency while the negative frequency shifts, corresponding to reverse ow,

are represented below the o�set frequency.

Quadrature phase detection is the most commonly used method for ow direction dis-

crimination. Figure 2.14 illustrates the quadrature phase method for a CW instrument. The

same principle applies to PW instruments.

After ampli�cation the received signal is split into two channels to be demodulated with

two reference signals with quadrature phases. The in-phase channel is mixed with the os-

cillator signal while the in-quadrature channel is mixed with the oscillator signal 90o phase

shifted.

The two output channels have a phase di�erence of +90o or �90o. The sign of the phase
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Figure 2.14: In phase and quadrature ow direction discrimination for a continuous wave
Doppler instrument (adapted from [Fish 1990]).

di�erence is determined by the direction of ow and can be detected by a phase detector

circuit.

Colour ow imaging

Real-time colour ow imaging instruments allow the simultaneous visualisation of anatomical

structure and blood ow as a colour-coded image. Usually forward ow is represented with

shades of red, reverse ow shades of blue and turbulent ow with green.

Velocity information is obtained from a large number of sample volumes to calculate the

ow image. For each sample volume position the beam must stay stationary for a number of

transmitted pulses in order to estimate the mean velocity (typically 10 pulses). The methods

to estimate the velocity have to be very fast so that an acceptable frame rate is obtainable.

The most frequently used velocity estimation methods are the autocorrelation method [Kasai

et al. 1985], which measures the phase shift between successive echo signals, and time-domain

methods (for example, [Bonnefous & Pesqu�e 1986]), which use the cross-correlation between

the echoes following successive transmitted pulsed to track the movement of the scatterers.

Recently two new techniques for imaging the blood ow have emerged: pwer imaging

[Rubin et al. 1994] and harmonic imaging [Chang et al. 1995]. Power imaging uses the power

of the backscattered signal instead of the Doppler frequency shift. In harmonic imaging
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encapsulated bubble contrast agents are injected into the circulation to increase the power

of the backscattered signal. The second harmonic of the backscattered signal is then used

to generate the image. With this method much slower ow can be detected than with

conventional methods. The power of the second harmonic of the signal backscattered from

tissue is much lower than the power from the signal coming from the contrast agent.

A more detailed description of medical ultrasound instruments can be found in several

textbooks, for example [Evans et al. 1989, Fish 1990, Hedrick et al. 1995, Jensen 1996,

Kremkau 1995, Meire & Farrant 1995, Taylor et al. 1995].

2.3.4 The Doppler spectrum

The Doppler equation (2.37) is only valid for a single scatterer passing through an in�nitely

wide and uniform ultrasonic �eld.

Doppler ultrasound instruments do not meet these conditions when investigating blood

ow; blood contains a large number of particles (with various velocities) in suspension in

the plasma and the ultrasonic �elds produced by real systems are neither in�nitely wide nor

uniform. As a consequence, the Doppler signal contains a range of frequencies, a spectrum,

rather than a single frequency.

Ideally, it should be possible to directly relate the frequency content of the Doppler

spectrum with the distribution of the velocities of the scatterers passing through the sample

volume. In fact, external factors like the characteristics of the ultrasonic �eld, the shape and

size of the sample volume and the spectral estimation technique used to compute the spectrum

alter the measured Doppler spectrum. These alterations result in a widening (broadening)

of the Doppler spectrum and are commonly referred as spectral broadening.

The next sections describe the relation between the Doppler spectrum and the velocity

distribution of the red blood cells together with the various sources of spectral broadening.

Scattering of ultrasound from blood

As mentioned in section 2.2.1 the major particles in blood are erythrocytes (red blood cells),

leukocytes (white blood cells) and platelets. The dimensions, concentration and other physical

properties of these particles a�ect the way in which they scatter ultrasound. Table 2.1 presents

some of the characteristics of the blood particles.

There are many more red blood cells than white blood cells and the volume of red blood

cells is much larger than that of platelets. Thus, it is generally accepted that the scattering

of ultrasound by blood is mainly due to the red blood cells [Shung et al. 1976].

For medical applications of ultrasound, the diameter of the erythrocytes is much smaller

than the wavelength of the ultrasonic radiation. At low concentrations the erythrocytes act

as a random distribution of independent point targets, this type of scattering is know as

Rayleigh scattering after Lord Rayleigh's [1872] work.

In normal human whole blood the hematocrit (fraction of blood volume occupied by cells)
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Concentration Dimensions % total
(particles/mm3) (�m) blood volume

Erythrocytes 5� 106 7:2� 2:2 45
Leukocytes 8� 103 9� 25 � 0:8
Platelets 2:5 � 105 2� 3 � 0:2

Table 2.1: The dimensions and concentration of the major particles in normal human blood
(from [Evans et al. 1989, p. 117]).

is around 0.45. At this high concentration the distance between two red blood cells is only

about 10% of its diameter and the positions of the particles are no longer independent from

one another [Shung et al. 1976] and the backscattered power is less than would be produced

by an ensemble of independent particles.

The e�ect of hematocrit on backscattering of ultrasound from blood was studied by Shung

and associates [Shung et al. 1976, Shung 1982] and they observed that the peak of backscat-

tering occurred for an hematocrit between 20 and 30 percent. The same group also stud-

ied the e�ect of ow disturbance [Shung et al. 1984, Shung et al. 1992], shear rate [Shung

et al. 1992, Yuan & Shung 1988a] and �brinogen concentration [Yuan & Shung 1988b] on the

backscattering of ultrasound from blood. They observed that ow disturbance, low shear-rate

and increased �brinogen concentration increase the power of the backscattered ultrasound

signal. Cloutier & Shung [1993] found that the Doppler power changes cyclically with the

cardiac cycle for high hematocrit, large velocities and in the presence of turbulence. The

authors suggested that the cyclic power variation might be associated with changes in the

correlation among particles induced by the turbulence. Bascom & Cobbold [1995, 1996] pro-

posed a model that uses the spatial variation of a packing factor to explain the changes in

the backscattered Doppler power with ow conditions.

Aggregation of red blood cells to form rouleaux occurs specially at low shear rates with

high �brinogen concentration and is probably another process that a�ects the ultrasonic

backscatter from blood [Shung & Thieme 1993a, Yuan & Shung 1988b]. Cloutier et al. [1996]

used the variations in the Doppler power to study the dynamics of red blood cell aggregation

in porcine whole blood and concluded that their method is sensitive to the presence of red

blood cell aggregation for shear rates below 10 s�1.

A di�erent approach to describe the scattering of ultrasound from blood is to treat the

blood as an isotropic continuum and to consider that scattering arises from local uctuations

in the compressibility and mass density of the continuum [Angelsen 1980].

Velocity pro�le and beam pattern

The velocity �eld, the size of the sample volume and the pattern of the beam sensitivity have

a strong inuence on the shape of the Doppler spectrum. If spectral broadening e�ects are
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neglected, the range of frequencies contained in the Doppler spectrum corresponds directly

to the range of velocities passing through the sample volume. Under uniform insonation

conditions, the total power in any frequency interval is proportional to the volume occupied

by the particles with velocities in the corresponding range[Evans et al. 1989, p. 115].

It is possible to compute the theoretical Doppler spectrum for some simple velocity pro�les

and sample volume shapes. For example, for a uniform beam wider than the vessel and a

velocity pro�le obeying a power law, v(r) = v0[1 � (r=R0)
n], it is easy to compute the

expected Doppler spectrum (see section 5.2.1); v(r) represents the velocity of the streamline

at distance r from the centre of the vessel, v0 is the velocity at the centre of the vessel, R0

is the vessel radius and n is a parameter that controls the atness of the velocity pro�le.

Figure 2.15 shows the Doppler power spectrum for three velocity pro�les under an uniform

wide ultrasonic beam.
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Figure 2.15: Theoretical Doppler power spectrum [Fish 1986] for a wide uniform ultrasonic
beam insonating a vessel with a power law velocity pro�le v(r) = v0[1 � (r=R0)

n]; v0 is the
velocity at the centre of the vessel and fd0 is the corresponding Doppler frequency shift.

Several authors have studied the inuence of velocity pro�le, sample volume shape and

size on the Doppler spectrum shape. Evans [1982b] developed a theoretical model to predict

the e�ect of ultrasonic beam width on some frequency processors for rectangular beams

centred in vessels with parabolic and plug ow. He later extended his model [Evans 1985]

to non-centred beams. Cobbold et al. [1983] used a computational model to calculate the

Doppler spectrum for continuous wave systems using uniform and Gaussian beams, allowing

for tissue attenuation and improper alignment of the beam and vessel. Their work was latter

extended to include intrinsic spectral broadening (due to beam shape) by using a geometric

approach. They derived closed form expressions for the spectrum in the cases of a uniform

circular beam of equal radius to the vessel centred on the vessel [Bascom et al. 1986] and a

centred Gaussian beam [Bascom & Cobbold 1990].

Fish [1986] presented a theoretical study, based on previous work by Angelsen [1980], of

the origins of the Doppler spectrum for continuous wave and pulsed wave systems relating
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the spectral shape to sample volume sensitivity variation in the general case and allowing

for non-plane wave conditions. Censor et al. [1988] related the Doppler spectrum maximum

frequency to transducer geometry in the case of far-�eld insonation for long strip, rectangular

and circular transducers. Aldis & Thompson [1992] derived expressions for the Doppler

ultrasound spectral power density for continuous wave systems showing that, for axisymmetric

ow, these could be reduced to expressions involving single integrals|elliptic integrals for

uniform circular beams, and Bessel functions for Gaussian beams.

Spectral broadening

Of particular interest is the width of the spectrum since this inuences the sensitivity of ow

disturbance detection and mean velocity estimation. Several measures of spectral width can

be used in the Doppler spectrum: -3 dB frequency, root mean square (rms) width, etc.

In this work we use the rms width, �, de�ned by,

� =
1

2�

vuutR1�1 (! � !)2 S(!) d!R1
�1 S(!) d!

(2.39)

since this measure potentially allows correction for two spectral broadening mechanisms,

window and non-stationarity broadening [Wang & Fish 1997]; ! is the angular frequency and

! is the mean angular frequency of the Doppler power spectrum S(!).

It should be noted that the perceived width from a spectrogram will in general be larger

since this represents the width between spectral \edges" determined by the spectral estimator

word length, display monitor settings and any compression used.

Unfortunately the Doppler spectral width is not entirely determined by the blood velocity

�eld and the scattering characteristics of blood. Other factors like the �nite dimensions of

the sample volume, the variation of the velocity �eld during the time of observation and

the spectral estimation technique used to estimate the spectrum contribute to broaden the

measured spectrum. Detailed descriptions of some sources of error and spectral broadening

that a�ect the Doppler ultrasound signal can be found in [Gill 1985, Hoeks et al. 1991, Jones

1993]. The e�ects of the various types of spectral broadening are illustrated in �gure 2.16

and are briey described below.

The �nite dimensions of the ultrasonic transducer and the �nite pulse duration result

in a spreading of the Doppler spectrum known as intrinsic spectral broadening. This type

of spectral broadening is due to the properties of the measurement system rather than the

properties of the system being measured [Evans et al. 1989].

The intrinsic spectral broadening occurs even for a single scatterer and can be explained

in two di�erent ways. Either in terms of the range of angles subtended by the scatterer as

it crosses the beam (geometric broadening) or in terms of the amplitude modulation of the
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Figure 2.16: Illustration of various spectral broadening e�ects: a) ideal case of in�nite wide
uniform beam; b) transit time broadening due to the �nite size of the sample volume; c)
nonstationarity broadening due to variation of scatter's velocity during its passage through
the sample volume; d) window broadening due to the �nite time window (boxcar); and e)
window broadening with reduction of spectral leakage by using a smooth tapered window
(Hanning).

backscattered radiation due to the �nite transit time taken by the scatterer to cross the beam

(transit time broadening).

Green [1964] was the �rst to identify spectral spreading e�ects not related with the blood

velocity �eld. Latter Gri�th et al. [1976] and Newhouse et al. [1976] studied transit time

broadening and Newhouse et al. [1977] studied geometrical broadening. Bascom et al. [1986]

used the geometrical approach to compute intrinsic spectral broadening for continuous wave

systems.

Transit time and geometrical spectral broadening were considered for some time to be two

independent e�ects because the Doppler bandwidth predicted using transit time broadening

theory was much smaller than that observed experimentally for ow in the near �eld of
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the transducers. Under the same circumstances the bandwidth predicted with geometric

broadening theory agreed well with the experimental values [Newhouse et al. 1977]. Latter

Newhouse et al. [1980] showed that transit time broadening and geometrical broadening are

equivalent, the previous transit time calculations were erroneous because they did not take

into account the complex beam pattern in the near �eld. The equivalence between geometric

and transit time broadening had already been established previously in the Doppler laser

�eld [Angus et al. 1971, Edwards et al. 1971].

Cloutier et al. [1993] evaluated experimentally the e�ect of intrinsic spectral broadening

on the Doppler spectrum using porcine whole blood in a pulsatile ow model. They observed

that the relative Doppler bandwidth is independent of ow velocity for steady ow. This was

previously veri�ed by Tortoli et al. [1992] using a string phantom. Both works demonstrated

experimentally a theoretical proposition of Newhouse & Reid [1990] stating that the relative

bandwidth of the Doppler spectrum does not depend on the lateral displacement in the far

�eld of an unfocused transducer or near the focal plane of a focused transducer. Willink &

Evans [1996] studied the e�ect of intrinsic spectral broadening, using a geometrical approach,

on the estimation of the mean blood velocity.

When estimating the Doppler power spectrum only the signal between two time instants

(time window) is used. As a consequence, the spectral estimate is broadened (window broad-

ening) because it results from the convolution of the Doppler power spectrum with the en-

ergy spectrum of the time window [Fish 1991]. Spectral estimation techniques that require

a stationary signal like those based on the Fourier Transform are more sensitive to window

broadening than those developed speci�cally for nonstationary signals.

The acceleration and deceleration of the blood during the cardiac cycle give rise to the

variation of the mean Doppler frequency. The mean frequency variation causes spectral

broadening in the Doppler spectrum usually known as nonstationary (or nonstationarity)

spectral broadening. This type of spectral broadening occurs whenever the spectral esti-

mation technique, for example the short time Fourier transform, divides the Doppler signal

into segments to compute the frequency spectrum and the signal is not stationary during

the duration of the segment. The measured spectrum is an average of the signal's frequency

content for the duration of the data segment.

Several authors have studied nonstationary broadening. Kikkawa et al. [1987] analysed

the e�ect of blood acceleration on the bandwidth of the Doppler spectrum obtained from the

ascending aorta of the dog. They concluded that during the accelerative and decelerative

phases of the cardiac cycle the bandwidth is signi�cantly higher than that predicted for

steady ow. Fish [1991] studied the inuence of mean frequency variation and data segment

duration on the bandwidth of the Doppler spectrum. He concluded that for each rate of

frequency variation exists a segment duration that giving maximal spectral resolution. In an

experimental study Cloutier et al. [1993] veri�ed that the Doppler spectrum from pulsatile
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ow is broader during acceleration and deceleration of blood.

Since reducing the inuence of spectral broadening on the Doppler bandwidth is important

to allow the detection of lower levels of ow disturbance, Fish and co-workers have developed

methods to reduce/remove nonstationary broadening from the Doppler spectrum[Bastos 1990,

Cardoso et al. 1996, Wang & Fish 1997].

2.3.5 Models for the Doppler signal backscattered from moving blood

Since the early seventies, several models of the process leading to the generation of simulated

Doppler ultrasound signals have been developed and have contributed signi�cantly to im-

prove our understanding of the Doppler signal. Routh et al. [1989] say that \Mathematical

and physical models are essential tools in both fundamental and clinical applied Doppler

ultrasound research".

The randomness of the Doppler signal and the variability of physiological characteristics

among human subjects makes the study of in vivo Doppler signals under controlled conditions

almost impossible. Models allow the study, under controlled conditions, of the inuence of

various factors on the characteristics of the signal.

Several classi�cation schemes can be used to classify Doppler ultrasound signal models.

In this text we divide the Doppler models into: physical models, those that use the movement

of physical particles to mimic the ow of red blood cells; and mathematical models, those

that use mathematics to describe the characteristics of the Doppler signal. The mathematical

models are sometimes used to generate simulated Doppler signals with electronic circuits or

computer software.

Typically physical models have been used to measure and/or study the characteristics of

the Doppler signal at an experimental level and as test objects to calibrate Doppler systems;

physical models are also useful in the validation of mathematical models. Mathematical

models are used mainly to express quantitatively our current knowledge of the Doppler process

and the generation and interpretation of Doppler signals. Mathematical models are also used

to generate simulated Doppler signals with known characteristics that can then be used in

the development of new tools for interpreting Doppler ultrasound signals or for evaluating

the performance of existing tools.

In this section we describe some of the models for the Doppler ultrasound signal as well

as computer simulators that produce signals whose characteristics are similar to those of

clinically obtained Doppler signals. Our literature review on Doppler ultrasound models

does not pretend to be all-inclusive but simply to illustrate the various types of models and

simulators for the Doppler signal with particular emphasis on those models from which our

model evolved (see chapter 4).
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Physical models

At least two types of physical models have been used in Doppler ultrasound: ow rigs and

moving string phantoms. Figure 2.17 shows an example of a ow test-rig used to simulate

Doppler signals from steady ow.

Figure 2.17: Physical ow model for steady ow, the height between the two tanks controls
the volumetric ow in the tube circuit (taken from [Law et al. 1989]).

The incorporation of a pulsatile pump [Law et al. 1987, McCarty & Locke 1986] or a

pulsatile valve [Wendling 1991] in the tube circuit of �gure 2.17 can transform the model into

a pulsatile ow model.

Examples of applications of ow test-rigs in Doppler ultrasound are: the study of scat-

tering characteristics of blood [Shung et al. 1992]; study the e�ects of sample volume size

and position on the Doppler spectrum [Law et al. 1991]; calibration of Doppler owmeter

[McCarty & Locke 1986]; validation of a mathematical model [Wendling 1991].

Moving string phantoms consist basically on a motor-driven continuous loop of string (or

thread) immersed in a water bath. Examples of practical applications are quality assurance

of Doppler systems [Russell et al. 1993, Lange & Loupas 1996] and test signal processing

techniques [Hoskins 1996, Tortoli et al. 1994],.

One advantage of moving string phantoms is their ability to simulate the signal from a

single velocity streamline. This allows studies where knowing the trajectory of the scatterers

along the sample volume is important like the one by Tortoli et al. [1992] to experimentally

prove the Doppler bandwidth invariance theorem [Newhouse & Reid 1990].
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Mathematical models

Several theoretical models of the physics of the generation of the Doppler ultrasound signal

have been published.

Brody & Meindl [1974] considered the red blood cells as independent random positioned

scatterers and derived the Doppler power spectral density for continuous wave systems.

Garbini et al. [1982a] also assumed scattering from random independent scatterers in their

analytical model of the Doppler pulsed wave owmeter used to study uid turbulence [Garbini

et al. 1982b].

In whole blood the distance between red blood cells is about 10% of the cells diameter

[Shung et al. 1976]. At these high concentrations the movement of the scatterers is hindered

by the presence of other scatterers and their position can no longer be considered independent

[Shung et al. 1976], the power backscattered by whole blood is signi�cantly lower than that

from independent scatteres. A di�erent approach was used by [Angelsen 1980] who considers

that the scattering arises from local uctuations in the mass density and compressibility of

blood. This was previously proposed by Gore & Leeman [1977] for the scattering of ultrasound

from human tissue. Fish [1986] extended Angelsen's work to nonplane wave conditions.

None of these theoretical works aimed at producing time series signals but formed the

basis for much of the models later developed to generate simulated Doppler signals.

One of the simplest possibilities to generate simulated Doppler signals is to consider the

signal to be �ltered broadband Gaussian noise. Some examples of the application of this idea

to simulate Doppler signals are mentioned below.

Sheldon & Duggen [1987] developed a signal simulator for stationary Doppler signal by

�ltering broad-band noise with a second order low-pass �lter implemented with a switched

capacitor integrated circuit. Bastos & Fish [1991] extended this idea to simulate nonsta-

tionary Doppler signals by controlling the cut-o� frequencies of a band-pass �lter with a

computer. Kristo�ersen & Angelsen [1988] used a FIR (Finite Impulse Response) �lter to

generate stationary Doppler signals used to �ll the gaps in the measured Doppler signal of

time-shared B-mode scanners and Doppler systems. Wang & Fish [1996] used a �lter with a

time-varying impulse response to simulate nonstationary Doppler signals.

Another approach to model the Doppler signal is to �rst specify the signal characteristics

in the frequency domain and then transform it into the time domain. In order to obtain

the time signal van Leeuwen et al. [1986] used the inverse fast Fourier transform while Mo &

Cobbold [1986] summed a large number of sinusoids with appropriate amplitudes and phases.

In the latter model the Doppler signal is expressed as:

s(t) =

MX
m=1

p
2P (fm)�f ym cos(2�fmt+ �m) (2.40)

where ym are chi-squared random variables with two degrees of freedom, P (fm) is the power
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spectral density of the desired Doppler spectrum (band limited to the interval [0; fmax]),

�f = fmax=M , fm = (m�1=2)�f and �m is uniformly distributed in the interval [0; 2�]. Mo

& Cobbold extended their model to simulate signals from pulsatile ow [Mo & Cobbold 1989]

by allowing P (fm) to be a function of time. Talhami & Kitney [1988] proposed a model

consisting of a frequency modulated sine wave,

s(t) = A(t) cos(�(t)) (2.41)

where A(t) is a stochastic function of time and �(t) is the time-variant phase. The signal

does not include the random phase that is usually present in Doppler signals.

The above models need a previous knowledge of the Doppler power spectrum and make

no attempt to directly relate the simulated signal to the Doppler instrument parameters, the

beam pattern or the blood velocity �eld.

Jones & Giddens [1990] proposed a time domain model for steady ow where the am-

plitude and phase of the signal are self-correlated random variables obtained by weighting

two independent sets of zero mean Gaussian random numbers with a sliding window that is

related to the shape of the sample volume. The spectrum of the simulated signal incorporates

transit time broadening. A modi�ed version of this model was developed by Wendling et al.

[1992] for pulsatile and non-steady ow. The signal from a single scatterer, i, in Wendling

et al.'s [1992] model is given by:

si(t) = Ai(t) cos(!0t+	D(t) + �i) (2.42)

	D(t) =
2!0 cos �

c

Z t

0
v(�) d� (2.43)

where Ai(t) incorporates the backscattering coe�cient of the particle and the shapes of the

transmitted pulse and receiver gate, 	D(t) is the time varying phase caused by the scatterer

motion and the phase �i is random and uniformly distributed between [0; 2�]. Although the

signal is statistically equivalent to that of Mo & Cobbold [1986] the time domain approach

provides additional information into the e�ects of transit time spectral broadening [Jones

1993] and allows the simulation of Doppler signals from accelerating (decelerating) blood.

Mo & Cobbold [1992] proposed an hybrid approach to model the Doppler signal in an ef-

fort to unify the particle and continuum approaches commonly used to model the scattering of

ultrasound from blood. They divide the vessel into small voxels (elemental volumes) contain-

ing a large number of red blood cells. The simulated Doppler signal is computed as the sum

of the contributions from all the voxels within the sample volume (particle approach). The

signal from each voxel is considered to arise from the random uctuations in local hematocrit

(continuum approach). Their model includes geometric broadening and monotonic velocity

pro�les. Mo & Cobbold's model was further improved by Bascom & Cobbold [1996] who

introduced a packing factor to explain the changes in the backscattered power with di�erent

ow conditions.
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The above models generate signals corresponding to the demodulated Doppler signal.

Other models exist that simulate directly the returned echoes from the blood. These models

are very important in the study and assessment of the new time domain methods for esti-

mating the blood velocity [Hein & O'Brien 1993, Jensen 1996]. Some examples of this type

of model are referred below.

Olinger & Siegel [1981] have used a model of this type to study the usefulness of some

Doppler signal processors. Azimi & Kak [1985] developed a model to study the e�ect of signal

bandwidth, tissue attenuation constants and transducer characteristics on pulsed Doppler

ultrasound systems. Bonnefous & Pesqu�e [1986] generated input signals for the time domain

correlation algorithm that included transit time e�ects. This model was latter extended to

generate two-dimensional colour ow images [Kerr & Hunt 1992a, Kerr & Hunt 1992b]. Oung

& Forsberg [1996] developed a model for Doppler signals from pulsatile ow that includes

nonaxial ow.

Good reviews on models of Doppler ultrasound signals can be found in [Jones 1993, Mo

1990, Mo & Cobbold 1993].

2.4 Doppler signal spectral estimation

In this section we describe some of the spectral estimation techniques commonly used to

estimate the Doppler spectrum. We describe the periodogram (based on the Fourier trans-

form), parametric methods, and time-frequency transforms. Although the short time Fourier

transform is based in the Fourier transform, its description is only introduced in section 2.4.4

because it also belongs to the class of time-frequency transforms.

We do not describe the time-domain methods used in colour ow imaging because we are

interested in the full frequency content of the Doppler signal and usually those methods are

only used to estimate the mean frequency and variance of the spectrum.

A recent review of signal processing techniques used in cardiovascular ultrasound can be

found in [Fish et al. 1997].

2.4.1 Spectral estimation basics

The Doppler signal received by the ultrasonic transducer arises from the scattering of the

ultrasonic �eld by a large number of red blood cells. Thus, the received signal is stochastic

(random) and its spectrum can only be estimated. The estimates of the Doppler spectrum

themselves are stochastic.

The power spectrum (also known as power spectral density) of a wide sense stationary

stochastic process, x(t), is [Papoulis 1991]:

S(!) =

Z 1

�1
rxx(�) e

�j!� d� (2.44)



2.4 Doppler signal spectral estimation 43

where,

rxx(�) = E[x(t+ �)x�(t)] (2.45)

is the autocorrelation function, E[ ] is the expectation operator, and x� denotes the complex
conjugate of x.

The autocorrelation function is de�ned as the expectation of x(t+ �)x�(t) obtained when

averaged over an ensemble of realisations of the stochastic process [Kay 1988], but usually only

a segment of a single realisation is available. For ergodic processes ensemble averages can be

substituted by time averages [Kay 1988]. Thus, under these circumstances the autocorrelation

function may be written [Kay & Marple 1981] as:

rxx(�) = lim
T!1

1

2T

Z T

�T
x(t+ �)x�(t) dt (2.46)

and the power spectrum may be represented [Kay & Marple 1981] by,

S(!) = lim
T!1

E

(
1

2T

����
Z T

�T
x(t) e�j!t dt

����2
)

(2.47)

Equations (2.44) and (2.47) are equivalent for stationary ergodic stochastic processes.

Nowadays, with the advent of the digital computer, the power spectrum and other sig-

nal processing techniques are usually evaluated digitally (Digital Signal Processing). The

continuous-time signals are �rst sampled, normally at equally spaced time intervals, and the

samples (discrete-time signals) are then processed numerically in the digital computer as sets

of numbers.

2.4.2 The periodogram

In practice it is impossible to compute the theoretical power spectrum of a stationary random

process because we can only observe the process for a limited time interval or the process

can only be considered approximately stationary during a short time interval. Although the

theoretical power spectrum cannot be computed, methods exist to estimate it. One of the

more frequently used methods is the periodogram.

The periodogram of a discrete signal is,

I(!) =
1

N

�����
N�1X
n=0

xne
�j!n

�����
2

(2.48)

where xn is the nth sample of the signal, The periodogram is periodic with period 2� and

for real signals is an even function of !. It can also be evaluated using an estimate of the
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autocorrelation function [Kay 1988]

I(!) =

N�1X
k=�(N�1)

r̂xx(k)e
�j!k (2.49)

in a procedure sometimes called the Blackmann-Tukey method; r̂xx is an estimate of the

autocorrelation function and may be computed as:

r̂xx(k) =

8>>>>><
>>>>>:

1

N

N�1�kX
n=0

x(n+ k)x�(n) , k = 0; 1; : : : ; N � 1

r̂�xx(�k) , k = �(N � 1);�(N � 2); : : : ;�1

(2.50)

If the peridogram is evaluated at uniformly spaced frequencies1 f!m = 2�m=N;

�N=2 � m < N=2g it takes the form,

I(!m) =
1

N

�����
N�1X
n=0

xne
�j2�mn=N

�����
2

(2.51)

which can be evaluated with the FFT (Fast Fourier Transform) algorithm.

Because the FFT is so popular and such a computationally e�cient algorithm the peri-

odogram is usually evaluated with expression (2.51).

A major limitation of spectral estimation techniques that apply the periodogram to non-

stationary processes is the trade o� between the time and the frequency resolutions. For

example, if the sampling time of each data segment is increased the frequency resolution of

the spectral estimate increases but the time resolution decreases.

The expected value of the periodogram is [Oppenheim & Schafer 1975]

E[I(!)] =

N�1X
k=�(N�1)

E
�
r̂xx(k)

�
e�j!k

=

N�1X
k=�(N�1)

N � jkj
N

rxx(k) e
�j!k (2.52)

E[I(!)] is not equal to the Fourier transform of rxx due to the �nite number of samples used

and due to the factor (N � jkj)=N . Thus the periodogram is a biased estimate of the power

spectrum, S(!). Equation (2.52) can be interpreted as the Fourier transform of the product

of the autocorrelation function by a Bartlett window [Kay 1988] and therefore the average

1Note that discrete-time angular frequency !m corresponds to a continuous-time frequency of mfs=N Ts,
where fs is the sampling frequency, Ts is the window duration and N is the number of samples.
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periodogram is the convolution of the true power spectrum with the Fourier transform of a

Bartlett window.

Computing the variance of the periodogram is in general very complex but Oppenheim

& Schafer [1975] have shown that for a Gaussian stochastic process the variance of the

periodogram spectral estimate is,

var[I(!)] = S(!)2

(
1 +

�
sin(!N)

N sin(!)

�2)
(2.53)

The fractional variance of the periodogram is always greater than unity even for large N ,

thus the periodogram is not a consistent estimate of the power spectrum. As N becomes very

large the variance tends to the square of the power spectrum and any individual estimate

uctuates wildly about the true spectrum value.

Since the periodogram is an inconsistent estimate of the power spectrum several methods

were developed to reduce its variance. We describe here one of such methods, periodogram

averaging.

Periodogram averaging

A simple procedure to reduce the variance of the periodogram is to divide the signal into

several segments, compute the periodogram of each segment and �nally average the individ-

ual periodograms [Porat 1994]. This method is sometimes referred as Bartlet's procedure

[Oppenheim & Schafer 1975].

A simple implementation of the method is as follows. The N samples of the signal are

divided into N2 segments each with N1 samples, so that N = N1 � N2. If the separate

periodograms are represented as:

Ip(!) =
1

N1

�����
N1�1X
n=0

xn+pN1 e
�j!n

�����
2

, 0 � p � N2 � 1 (2.54)

the averaged periodogram is then:

Iave(!) =
1

N2

N2�1X
p=0

Ip(!) (2.55)

If the separate segments are statistically independent the bias of Iave(!) is the same as

that of a single periodogram based on the same number of samples and the variance is reduced

by a factor of N2,

var[Iave(!)] =
1

N2
var[Ip(!)]

=
1

N2
S(!)2

(
1 +

�
sin(!N)

N sin(!)

�2) (2.56)
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for a Gaussian stochastic process. By using averaging, the variance of the spectral estimate

can be reduced but this comes at a price, the resolution of the estimate is also reduced because

the separate periodograms are computed using only N1 samples instead of the original N .

The averaging of the periodogram is frequently used to reduce the variance of the Doppler

spectrum [Evans et al. 1989], but due to the nonstationarity of Doppler signals the method

must be used with some caution.

Any spectral estimation technique based on the Fourier transform requires the signal to

be stationary, but the Doppler signal from arterial blood may not be considered stationary for

periods longer than 10{20 ms [Evans et al. 1989]. Thus, the minimum time interval over which

the signal may be considered stationary determines the maximum resolution of the spectral

estimate. Periodograms of Doppler signals may only be averaged if the averaging is performed

on the periodograms of corresponding parts from a number of heartbeats. This requires the

proper alignment of the signals from the di�erent heartbeats. Figure 2.18 illustrates how to

carry out the averaging of the periodograms of Doppler signals.
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Figure 2.18: Illustration of the averaging procedure. The periodograms of data segments
corresponding to the same part of the cardiac cycle (e.g. data segments 0 and 25) are
averaged to reduce the spectral variance.
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Periodograms of windowed signals

The periodogram su�ers from an additional problem, spectral leakage into sidelobes. In order

to reduce spectral leakage the time signals are, usually, multiplied by a smooth tapered win-

dow. As a result, the power spectrum is the convolution of the original power spectrum with

the square of the modulus of the Fourier transform of the window. In fact the periodogram

as de�ned in (2.48) results from the multiplication of the signal by a square window. The

Fourier transform of the square window has signi�cant side lobes that result in considerable

frequency leakage.

In the present context a window, wK(k), is a function de�ned for all K such that, �K �
k � K, with the following properties:

1. wK(k) = wK(�k);

2. wK(0) = 1;

3. 0 � wK(k) � 1.

The signal is multiplied by the window and the resulting periodogram is (assuming K<N):

Iwin(!) =
1

rww(0)

k=KX
k=�K

rww(k)r̂xx(k)e
�j!k (2.57)

where rww(k) represents the autocorrelation function of the window wK(k) computed as in

(2.50).

The inuence of the windowing on the periodogram is better understood if studied in the

frequency domain. It is clear from (2.57) that the windowed periodogram is the multiplica-

tion of two signals in the time domain. Multiplication in the time domain is equivalent to

convolution on the frequency domain and the windowed periodogram may also be represented

by

Iwin(!) =
1

2�

Z �

��
WK(�)I(! � �) d� (2.58)

where WK(!), know as the smoothing kernel, is the Fourier transform of the autocorrelation

of the window function. Using the autocorrelation theorem [Bracewell 1986, p. 115] it is

possible to compute WK(!) directly from the window, WK(!) is simply the square of the

absolute value of the Fourier transform of the window function.

The windows usually used in the Doppler signal to reduce the spectral leakage are the

Hanning and the Hamming. The de�nitions of these windows and their energy spectra are

shown in table 2.2 and in graphical form in �gure 2.19. The boxcar window is also presented

for comparison.
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Name De�nition (jkj � K) Energy Spectrum, WK(!)

Boxcar wK(k) = 1
�
WB(!)

�2

Hanning wK(k) = 1=2 + 1=2 cos � k
K

�
1

4
WB

�
! � �

K

�
+ 1

2
WB(!) + 1

4
WB

�
! + �

K

� �2

Hamming wK(k) = 0:54 + 0:46 cos � k
K

�
0:23WB

�
! � �

K

�
+ 0:54WB(!) + 0:23WB

�
! + �

K

� �2

Table 2.2: De�nition of various windows and their energy spectra (adapted from [Kay 1988,

p. 71]). In all the windows wK(k) = 0 for jkj > K and the function WB(!) = sin!(K+1=2)
sin!=2 is

the Fourier transform of the Boxcar window.
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Figure 2.19: Graphical representation of various windows and their energy spectra.

2.4.3 Parametric methods

Spectral analysis based on the Fourier transform of time limited signals makes the funda-

mental assumption that the signal outside the data segment is zero. As a consequence,

the estimated spectrum is broader than the spectrum of the original signal because it is con-

volved with the energy spectrum of the lime limited window. This is often referred as window

broadening.

Model-based approaches also know as parametric models, make the assumption that the

signal outside the data segment has the same statistical characteristics as that within. Based

on a priori knowledge of the underlying process that generated the signal a mathematical

model is chosen. Spectral estimation based on parametric model involves three di�erent steps

[Kay & Marple 1981]:

1. Selecting a times series model;

2. Estimating the parameters of the assumed model;
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3. Obtaining the power spectral density by substituting the estimated parameters into the

theoretical power spectral density implied by the model.

When modelling stationary random processes with parametric models, the signal is mod-

elled as the output of a digital �lter whose input is white noise.

A digital linear �lter can be represented by the following expression:

y(n) = �
pX

k=1

ak y(n� k) +

qX
k=0

bk x(n� k) , ap 6= 0 (2.59)

where y(n) is the output of the �lter, x(n) is the input signal, a zero mean white noise

with variance �2 and ak and bk are the model parameters. This type of model is called an

autoregressive-moving average model (ARMA).

The system transfer function, H(z), between the input and output of the digital �lter is:

H(z) =
B(z)

A(z)
(2.60)

where A(z) and B(z) are z transforms given by,

A(z) =

pX
k=0

akz
�k , a0 = 1 (2.61)

B(z) =

qX
k=0

bkz
�k (2.62)

For the system to be stable all the zeros of A(z) must lie inside the unit circle of the z-plane.

The white noise is �ltered by the digital �lter and the power spectral density of the output

is [Kay 1988]:

SARMA(!) = �2H(z)H�(1=z�)
����
z=ej!

= �2
����B(ej!)A(ej!)

����2 (2.63)

Two special cases of the ARMA model are the autoregressive model (AR) and the moving

average model (MA). If all the bk = 0 except b0 = 1 the model is an AR model, and if all

the ak = 0 except a0 = 1 the model is an MA model. The AR is the type of model most

frequently used.

The power spectral density for the AR and MA are simply,

SAR(!) = �2
���� 1

A(ej!)

����2 (2.64)

SMA(!) = �2
��B(ej!)��2 (2.65)
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Several methods exist to estimate the model parameters from the signal or from its autocor-

relation. Some of the more frequently used are methods based on the Yule-Walker equations,

Burg algorithm, modi�ed covariance, least square estimation and the maximum likelihood

estimation. The description of those methods is out of the scope of this work, it may be

found in any standard textbook on spectral estimation, e.g. [Kay 1988, Porat 1994].

Parametric methods can improve the resolution of the spectral estimate and are immune

to sidelobe spectral leakage, but there is still the assumption of signal stationarity and the

quality of the spectral estimate depends very much on the correctness of the chosen model

and its order.

A lot of work has been done on the estimation of the Doppler spectrum using parametric

modelling. Some works studied the applicability of parametric modelling to Doppler signals

and compared the performance of the parametric spectral estimators with other methods

[David et al. 1991, Kaluzynski 1987, Kaluzynski 1989, Vaitkus & Cobbold 1988, Vaitkus

et al. 1988]. Most of these works concluded that the spectral estimate provided by the

parametric models o�er an improved spectral resolution compared with the periodogram.

Schlindwein & Evans [1990] analysed the process of selecting the model order of AR mod-

els of the Doppler signal and concluded that overestimating the model order is better than

underestimating it when estimating spectral shape. Fort et al. [1995] proposed a method for

selecting optimum model orders for di�erent parts of the cardiac cycle, but Fan & Evans

[1994a] advert that AR modelling of narrow-band Doppler signals should be used with cau-

tion because the AR spectral estimate may not correctly represent the signal peak-power

relationship.

A real-time implementation of AR spectral estimation was present by Schlindwein &

Evans [1989]. When only some spectral parameters like the mean frequency, maximum fre-

quency or the bandwidth are needed, low-order models can be used so that the computa-

tional complexity is reduced allowing their possible use in colour ow imaging [Loupas &

McDicken 1990, Ruano & Fish 1993].

2.4.4 Time-frequency transforms

The periodogram and parametric modelling spectral estimation make the assumption that

the signal is stationary. However, the Doppler signal may only be considered approximately

stationary for periods up to 10{20 ms [Evans et al. 1989] depending on the phase of the cardiac

cycle being analysed. Thus, better spectral estimation techniques suitable for nonstationary

signals are needed for processing the Doppler signal.

The following sub-sections briey describe some of the time-frequency transforms that

have been applied to the Doppler signal: the spectrogram, the Wigner-Ville distribution,

the Choi Williams distribution and the Bessel distribution. The description of the various

time-frequency transforms is given here for completeness only.
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More detailed studies of time-frequency transforms can be found in [Cohen 1989, Cohen

1995, Porat 1994].

The short-time Fourier transform and the spectrogram

The short-time Fourier transform (STFT) and the square of its magnitude, the spectrogram,

are the most widely used methods for studying nonstationary signals [Cohen 1995]. In par-

ticular, the spectrogram is the time-frequency transform technique most frequently used to

process the Doppler signal.

The purpose of the STFT is to �nd the time variation of the frequency of the signal. It

does so by analysing small segments of the signal centred at time t.

The STFT of a signal x(t) is:

SSTFT(t; !) =

Z 1

�1
x(�)w(� � t)e�j!� d� (2.66)

where w(t) is an even window.

The spectrogram is simply the square of the magnitude of the STFT,

Sspec(t; !) = jSSTFT(t; !)j2

=

����
Z 1

�1
x(�)w(� � t)e�j!� d�

����2 (2.67)

The width of the time window, w(t) determines the time and frequency resolutions of

the spectrogram. A long time window will result in poor time resolution and good frequency

resolution; a short time window will have the opposite e�ect. The spectrogram may be

conceived as a series of windowed periodograms evaluated sequentially in time.

Other time-frequency transforms used to process the Doppler signal

Other time-frequency transforms were used recently to estimate the frequency content of the

Doppler spectrum. They all belong to Cohen's class of time-frequency transforms [Cohen

1989].

The �rst to be used was the Wigner-Ville distribution (WVD) which for a signal x(t) is

given by,

WVD(t; !) =

Z 1

�1
x
�
t+

�

2

�
x�
�
t� �

2

�
e�j!� d� (2.68)

Fan & Evans [1994b] used the WVD distribution to estimate the instantaneous mean

frequency of the Doppler signal. They concluded that the estimate produced by the WVD

is not very reliable when the signal contains more than one frequency component. This is

due to cross-terms between any two frequency components present in the signal resulting in



52 Chapter 2. Background

spurious terms in the time-frequency display.

[Zeira et al. 1994] compared the performance of the spectrogram with that of a smoothed

WVD called pseudo Wigner distribution. They found that the pseudo Wigner distribution

produces better results only for high signal to noise ratios.

Choi & Williams [1989] introduced a new distribution now called the Choi Williams

distribution (CWD) that reduces the cross terms of the time-frequency representation. The

CWD of a signal, x(t), is:

CWD(t; !) =

Z 1

�1

Z 1

�1

r
�

4��2
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4�2 x
�
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2

�
e�j!� d�d� (2.69)

where � > 0 is a scaling factor that inuences the resolution of the auto-terms and cross

terms in opposite directions; large � results in high resolution of the auto-terms and a small

(� < 1) reduces the e�ect of the cross-terms [Choi & Williams 1989].

Recently Guo et al. [1994b] proposed a new time-frequency distribution capable of e�ec-

tively suppressing the cross terms. It is called the Bessel distribution (BD) and is de�ned

as:

BD(t; !) =

Z 1
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(2.70)

where,

rect(x) =

8<
:1 , jxj � 1

0 , jxj > 1
(2.71)

Guo et al. [1994a] compared the performance of various spectral estimation techniques

like the spectrogram, AR modelling, CWD and BD for estimating the mean frequency of

simulated Doppler signals from the femoral artery. They concluded that the BD was the

technique that performed the best and the CWD and AR modelling also provided good

time-frequency estimates of the Doppler spectrum.

More recently Cardoso et al. [1996] analysed the performance of the spectrogram, WVD,

CWD and BD to estimate the Doppler spectral width. They concluded that on overall the

CWD gave the best performance. [Cardoso 1998] developed a real-time implementation of

the CWD using parallel processing techniques.
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2.5 Concluding remarks

This chapter presented some background knowledge on blood ow, Doppler ultrasound and

spectral signal analysis.

Some of the most important components of the human circulation like the heart, the

blood vessels, and the blood were described as well as the various types of blood ow usually

found in the circulation; laminar, turbulent, and pulsatile ow. Various models of the blood

ow in the arterial circulation were presented.

Some of the Doppler ultrasound instruments that have been used were described and the

main factors that contribute to the broadening of the Doppler spectrum were discussed. Part

of the spectral broadening arises from the physical characteristics of the measuring system

(intrinsic spectral broadening) and the spectral techniques used to estimate the spectrum

(window broadening), while the rest is inherent to the blood ow itself like the velocity

pro�le and the existence vortices or turbulence.

Various models for the Doppler ultrasonic signal backscattered by the moving red blood

cells were described.

The chapter ends with the description of several of the spectral estimation techniques

that have been applied to the Doppler signal. Some of these techniques like the periodogram

and the parametric methods assume that the signal is stationary. Since the Doppler signal

is non-stationary they can only be used in short data segments where the assumption of the

signal being stationary is reasonable. The more modern time-frequency methods are speci�c

for non-stationary signals and some of them have been tried successfully with the Doppler

signal.





Chapter 3

Model of blood ow in the human

lower limb

3.1 Introduction

The time-varying blood velocity �eld at any site in the circulation varies signi�cantly from

person to person because of the di�erent physical and physiological characteristics. Even

when measured from the same person but at di�erent times the blood velocity �elds may

change signi�cantly.

The high variability of the blood ow makes the testing of new diagnostic techniques

with in vivo measurements unreliable because the tests cannot be performed under controlled

conditions.

It seemed then appropriate to develop a model of the blood ow in a section of the arterial

tree to allow the generation of simulated time-varying blood velocity �elds.

The `correct' approach to model blood ow would be to solve the Navier-Stokes for the

complete section of the circulation being modelled. This would be a very complex task and

probably impossible because of the computer power needed and because the mechanical char-

acteristics of all the blood vessels are usually not known. In order to reduce the complexity

of the problem we have chosen to model blood ow using transmission lines. The electric

model generated pressure and volumetric blood ow waveforms and the time-varying velocity

pro�le was computed from the blood ow waveform and the characteristics of the artery at

the measurement site. As was shown in Chapter 2, the propagation of pressure and ow

perturbations in arteries is similar to the transmission of electrical signals in transmission

lines under certain simplifying conditions.

Two of the conditions required for the transmission line model to be valid are that the

arteries being modelled are long and straight, as a consequence we have chosen to model the

blood ow in the lower limb. In fact, this lower limb is one of the regions where stenoses are

more common.

55
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The model of the human arterial blood ow in the lower limb described in this chapter

generates simulated pressure and volumetric ow waveforms in the main human arteries

from the iliac bifurcation down to the pedal arteries. The model is an electric analogue of the

lower limb arterial tree in which electric voltage corresponds to blood pressure and electric

current corresponds to volumetric blood ow. It is possible to establish other correspondences

between hemodynamic and electric phenomena.

The electrical model of the lower limb arterial tree was implemented using the SPICE

circuit simulator, an industry standard for the simulation of electric and electronic circuits.

The use of the SPICE circuit simulator was signi�cantly advantageous over the construction

of an hardware circuit made of discrete electric components. For example, it is much easier

to change a software circuit description than to actually change a hardware circuit and the

results of the software simulation are insensitive to component aging and other external

factors like the temperature.

3.2 Lower limb arterial bed

The main arteries of a human lower limb are represented in �gure 3.1. Blood leaves the left

ventricle through the aorta artery to feed the entire body. The lower end of the aorta artery

is known as the abdominal aorta that divides into the left and right common iliac arteries

before entering in the legs.

Each one of the common iliac arteries feeds one leg and divides into the internal iliac,

also known as the hypogastric artery, that feeds the pelvic region and the external iliac

that continues down to the lower periphery. The external iliac artery is the �rst section

of the long artery that runs longitudinally in the lower limb down to the knee. The other

sections are usually called the common femoral artery, the super�cial femoral artery and

the popliteal artery. The external iliac becomes the common femoral artery as soon as it

enters the thigh passing through the inguinal ligament. Some centimetres below the inguinal

ligament the common femoral artery divides into the profunda femoral and the super�cial

femoral arteries. The profunda femoral artery runs deep into the thigh to feed its major

muscles, while the super�cial femoral artery continues down until the popliteus where its

name changes to popliteal.

Just after the knee the popliteal artery usually divides into three arteries, the anterior

tibial, the posterior tibial and the peroneal arteries, although the anatomy varies from person

to person [Gray 1973, p. 679] sometimes dividing only into two vessels the anterior and the

posterior tibial arteries.

One major problem faced when modelling blood ow in humans is the di�culty in �nding

accurate and reliable data on the physical characteristics of the arterial bed. It is very di�cult

to make accurate in vivo measurements and there is a high degree of variability in the human

population.

The physical characteristics of the lower limb arterial tree needed to implement the
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Figure 3.1: Major arteries of the lower limb (from [Reith et al. 1978]).

transmission line model (see section 2.2.4 ) were taken from two sources in the literature

[Avolio 1980] and [Westerhof et al. 1969]. Table 3.1 presents a compilation of the length,

radius and Young's modulus, E, found in the above mentioned references, for the main lower

limb arteries in a male subject of `normal height and weight'.

3.2.1 Some characteristics of the pressure and ow pulses in the lower limb

The ow waveform in the normal arterial circulation of the human limb is triphasic, it contains

a forward systolic ow component, reverse ow and a second forward ow component during

diastole [J�ager et al. 1985, Johnston et al. 1984]. A typical sonogram from a normal common

femoral artery was shown in �gure 2.13. The absence of the reverse ow component in the

waveform is a strong indication of arterial occlusive disease.

In the human arterial circulation the amplitude of the pressure pulse increases as it travels

to the periphery (see for example [Milnor 1989, p. 225]). This pressure pulse ampli�cation

is the result of the interaction of the incident wave with waves reected from the peripheral
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Internal Wall E

Artery Length radius thickness 106 Reference
(cm) (mm) (mm) (dyn=cm2)

Abdominal Aorta (a) 5.5 0.78 4 [Westerhof et al. 1969]

Common Iliac 5.8 3.7 0.63 4 [Westerhof et al. 1969]

Internal Iliac 5.0 2.0 0.40 16 [Avolio 1980]

External Iliac 8.3 2.9 0.55 4 [Westerhof et al. 1969]

Common Femoral 6.1 2.7 0.53 4 [Westerhof et al. 1969]

Profunda Femoral 12.6 2.3 0.49 16 [Avolio 1980]

Super�cial Femoral 25.4 2.4 0.50 8 [Avolio 1980]

Popliteal 18.8 2.0 0.47 8 [Avolio 1980]

Posterior Tibial I (b) 2.5 1.3 0.39 16 [Avolio 1980]

Posterior Tibial II 30.0 1.0 0.20 16 [Avolio 1980]

Anterior Tibial 32.2 1.8 0.45 16 [Avolio 1980]

Peroneal 31.8 1.3 0.39 16 [Avolio 1980]

a) data refers to the distal end of the abdominal aorta artery.

b) small arterial segment between the peroneal and anterior tibial rami�cations (see �gure 3.1).

Table 3.1: Typical values for physical characteristics of the human lower limb arteries.

vascular beds and arterial bifurcations. The ow pulse behaves di�erently and decreases as

it approaches the arterioles.

Table 3.2 shows values, published by J�ager et al. [1985], for the peak systolic and peak

reverse velocities of some arteries of the lower limb.

Artery Vsys (cm=s) Vrev (cm=s)

External Iliac 119.3 � 21.7 41.5 � 10.7
Common Femoral 114.1 � 24.9 40.6 � 9.2
Super�cial Femoral (proximal) 90.8 � 13.6 38.8 � 8.2
Super�cial Femoral (distal) 93.6 � 14.1 35.0 � 9.8
Popliteal 68.8 � 13.5 27.8 � 9.2

Values given as mean � standard deviation.

Vsys, peak systolic ow velocity.

Vrev, peak reverse ow velocity.

Table 3.2: Values of peak systolic and reverse blood velocity at �ve di�erent sites in the
normal lower limb (from [J�ager et al. 1985]).

Although the ow pulse decreases as it travels to the periphery the pulsatility of the

velocity waveform increases as it approaches the foot [Johnston et al. 1978]. Usually, when

an arterial segment of the lower limb has a stenosis, the pulsatility of the ow decreases

distally to the obstruction site. This is probably the result of the dampening of the ow

waveform at the stenosis and the local readjustment of the peripheral impedances in order

to compensate for the otherwise reduced ow.
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The Pulsatility Index (PI) de�ned as

PI =
peak-to-peak velocity

mean velocity
(3.1)

has been used for a long time as an estimator of the pulsatility of the velocity waveform

and to predict diseased states (see for example: [Johnston et al. 1978, Johnston et al. 1983,

Thompson & Trudinger 1990]).

3.3 Introduction to the SPICE circuit simulator

The simulation and testing of electric circuits before actually building them results normally

in time saving and allows the discovery of design faults at an early stage. Another advantage

of the use of circuit simulators is the ease with which individual components can be checked

and �ne-tuned at the design stage resulting in great savings of resources.

The SPICE program (Simulation Program with Integrated Circuit Emphasis) is the

industry-standard for circuit analysis and simulation of electric circuits. SPICE was de-

veloped at the University of California, Berkeley in the late 60s and early 70s and in its

original version is in the public domain. Over the years several commercial versions of the

SPICE were developed with some added capabilities. Most of the commercial versions in-

clude support software programs that facilitate the interaction between the designer and the

SPICE program, namely some allow the description of the circuit in schematic form and o�er

much improved graphical outputs.

In this work we have used PSPICE [1993] developed by MicroSim Corporation for per-

sonal computers. Two versions of the program were used, versions 4.04 and 5.3, during the

development of this work.

A detailed description of how to use SPICE and how it performs the simulation is out

of the scope of this thesis. Briey, SPICE solves, numerically, the Kircho� equations of the

electric circuit until it converges to the solution.

Detailed information on SPICE may be found in various books, for example [Kundert

1995, Rashid 1990, Tuinenga 1988] and the software user manual [PSPICE 1993]. However,

to illustrate its use a simple circuit simulation is described.

The input to the SPICE circuit simulator is a �le, called the netlist, containing the

description of all the components in the circuit and how they are connected with each other.

The netlist also contains lines specifying the type of analysis and output to be generated.

In SPICE the circuit description is simply a list of the circuit elements with the nodes

to which they are connected. Each circuit element is described in a separate line with the

following format:

name 1st node 2nd node : : : value

The type of the circuit elements is determined by the �rst letter of their name as shown
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in table 3.3, note that the order of the nodes is important for circuit elements having polarity

(eg., voltage sources, diodes) and for elements with more than two connections (e.g. bipolar

transistors, transmission lines).

C Capacitor
D Diode
E Voltage-controlled voltage source
F Current-controlled current source
G Voltage-controlled current source
H Current-controlled voltage source
I Independent current source
J Junction FET
L Inductor
M MOSFET
Q Bipolar transistor
R Resistor
T Transmission line
V Independent voltage source

Table 3.3: Correspondence between the �rst letter of the name and the circuit element
simulated by SPICE.

In order to illustrate how the circuit description is build from a circuit, �gure 3.2 shows

a simple RC circuit and the corresponding circuit description for SPICE.

a)

�Vin

R1

C1

0

1 2

b)

Vin 1 0 SIN(0 0.1 1MEGHZ)
R1 1 2 5.6 kOHM
C1 2 0 1 uF

Figure 3.2: Example of the simulation of a simple RC circuit in SPICE: a) the circuit diagram;
b) the SPICE circuit description. Resistor R1 connects nodes 1 and 2, capacitor C1 connects
nodes 2 and 0, and the voltage source Vin, which connects nodes 1 and 0, generates a sine
wave with 0 v o�-set voltage, 0.1 v peak voltage and a frequency of 1 MHz.

The output of the circuit can be the voltage between any two nodes or alternatively the

current passing through any of the components.
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3.4 SPICE model

Blood ow in the circulation is very complex as we have seen in Chapter 2. Modelling such a

complex system without some form of simpli�cation would be very di�cult. Thus, in order

make the problem of modelling blood ow in the lower limb more tractable we assume that:

� the non-linear terms of the Navier-Stokes equations can be neglected;

� the artery is circular;

� the variation of the arterial radius due to the pressure perturbation is small compared

to the radius of the artery;

� the artery is longitudinally constrained;

� the ow is laminar and axisymmetric;

� `leakage' of ow through lateral branches and the arterial wall is directly proportional

to pressure;

� the wavelength of the perturbations is large in relation to the radius of the arteries.

We also ignore inlet and branching point e�ects. The above assumptions are essentially those

used by Westerhof et al. [1969].

Under these conditions the Navier-Stokes equations may be written in a simpli�ed form

analogous to the `telegraph equations' (see section 2.2.4) and the transmission of ow and

pressure perturbations in the arterial tree is similar to the transmission of electric signals in

electrical transmission lines.

The analogy between hemodynamic phenomena and electric phenomena permits the use of

electric models to simulate the blood ow in the human circulation. Various correspondences

between the hemodynamic variables and the electric variables may be made. We have opted

to use the one in which blood pressure corresponds to electric voltage and volumetric blood

ow corresponds to electric current.

The centimetre-gram-second (cgs) system of units has been used here to express the values

of the hemodynamic parameters of the model because it is the one usually used to express

quantities related with blood ow in the human circulation. Another reason to chose the

cgs system of units rather than the SI (Sist�eme International d'Unit�es) is that when the cgs

system is used the range of numbers used for model parameters is lower and the PSPICE

algorithm converges to the solution more rapidly.

The values of the electric components of the model are expressed in the usual units of

the SI. Table 3.4 shows the correspondence between the hemodynamic and the electrical

quantities.

The model computes pressure in dyn=cm2 but whenever we refer to pressure values in

the text or plot pressure waveforms we use millimetres of mercury (mmHg) because it is
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Hemodynamic Electrical

Variable (symbol) Units Variable (symbol) Units

Pressure (p) dyn=cm2 Voltage (V ) volt
Flow (Q) cm3=s Current (I) ampere
Resistance (Rh) dyn s=cm5 Resistance (R) ohm
Inertance (Lh) g=cm4 Inductance (L) henry
Compliance (Ch) cm5=dyn Capacitance (C) farad
Leakage (Gh) cm5=dyn s Conductance (G) ohm�1

Impedance (Zh) dyn s=cm5 Impedance (Z) ohm

Table 3.4: Correspondence between hydrodynamic units and electrical units (adapted from
[Milnor 1989]).

the standard unit for blood pressure. At a temperature of 21o C, 1 mmHg ' 1329 dyn=cm2

[Milnor 1989].

The model is divided in three main parts: the input generator, the arteries and the

peripheral vascular beds. These parts of the model will be described in the following pages.

3.4.1 The input waveform

The systemic circulation above the iliac bifurcation is modelled in our circuit by a current

generator in parallel with an output resistor (Norton equivalent of a current generator).

According to Milnor [1989, p. 157], the pressure and ow waveforms in the circulation are

such that they may be represented, with a small error, by their �rst 10 harmonics. Thus, the

input of the arterial model was implemented as a direct current source, I0, in parallel with

10 sinusoidal current sources, I1{I10. Each one of the sinusoidal current sources corresponds

to one of the harmonics of the waveform. The amplitudes of the current sources are set so

that the current, Iout, driven to the model of the lower limb corresponds to the desired input

waveform for the model. Figure 3.3 shows diagrammatically the generator that drives the

blood ow model.

6 6 6I0 I1 I10 Rin

-Iout

Figure 3.3: Schematic of the input generator.

It is di�cult to obtain the value of the generator output resistor Rin from in vivo mea-

surements and as it was not available in the literature, its value was considered to be equal
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to the characteristic impedance of the abdominal aorta.

The input ow waveform was obtained by digitising the maximum frequency envelope of

a typical sonogram [Burns 1988] of the ow in the abdominal aorta just before the iliac bifur-

cation. The harmonics of the digitised waveform were scaled to a mean ow of 900 ml=min

(15 cm3 s�1) [Raines et al. 1974]. It was further assumed that the heart rate is 60 beats per

minute, this results in a fundamental frequency of 1 Hz.

Figure 3.4 shows the mean ow waveform used as the driving current of the model.
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Figure 3.4: Input current waveform.

3.4.2 Arteries

As already mentioned in Chapter 2 the arterial wall is elastic and the propagation of the pres-

sure and ow waveforms is, under some simplifying assumptions, similar to the propagation

of electric perturbations in electric transmission lines.

In our model each artery is simulated by a lossy transmission line whose electrical charac-

teristics are calculated from the corresponding physical characteristics presented in table 3.1

and some assumed values.

All the arteries except the small segment of 2.5 cm between the peroneal and anterior

tibial rami�cations are modelled by lossy transmission lines that include transverse losses to

account for the `leakage' of ow through smaller vessels and the vessel wall.

The versions of PSPICE available to implement the electrical model do not provide a

direct implementation of lossy transmission lines. Thus, a lumped model was used.

Implementation of a lossy transmission line with a lumped circuit in SPICE

The SPICE circuit used to model lossy transmission lines was a variation of the one proposed

by Gruodis [1979].
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The model was implemented by substituting a lossy transmission line of length l by a

cascade of N sections of ideal transmission line with length l=N interlaced by N�1 series

resistors Rs and N�1 parallel resistors Rt, as shown in �gure 3.5.

TL Rs

Rt

TL Rs

Rt

TL Rs

RtRt

Figure 3.5: Schematic of the implementation of a lossy transmission line as a lumped circuit

in SPICE; TL is a lossless transmission line, Rs = R0l=(N�1), Rt = (l=(G0�N�1)�, l is the
length of the transmission line and N is the number of lossless transmission line segments

used.

The number of sections of ideal transmission line that were used to simulate the lossy

transmission lines inuenced the accuracy of the simulation. Theoretically, as the number

of sections increases the better the approximation. However, this comes at a price, the time

taken by the SPICE algorithm to solve the equations of the circuit increases signi�cantly

and for very small sections the algorithm sometimes does not converge at all due to the

accumulation of numerical errors.

In order to chose the number of transmission line sections to use in our model the voltage

and current transfer functions and the input impedance of the lumped circuits were compared

with the corresponding variables of continuous lossy transmission lines. The comparison was

carried out using ABDC matrices techniques commonly used to analyse microwave circuits

(see for example [Rizzi 1988]). From the results of the comparison for the various arteries in

the lower limb we opted to use a lumped circuit with 5 sections of lossless transmission line

because the maximum error in the current and voltage transfer functions was below 2% for

the frequency range used in the model (0-10 Hz).

A lumped circuit with only 2 sections of ideal transmission line simulates the small segment

of the posterior tibial artery between the rami�cations of the peroneal and anterior tibial

arteries. The circuit simulating this vessel has no parallel resistor because the vessel is so

small that the leakage of ow may be neglected.

Computation of the transmission lines characteristics

For each artery the following parameters were computed, the characteristic impedance of

the segments of lossless transmission line, Z0h, the phase velocity, c0, the longitudinal resis-

tance per unit length, R0
h, and the conductance per unit length, G0

h. These haemodynamic

quantities were then converted to electrical quantities using the equivalencies in table 3.4.

The characteristic impedance was computed using the Water-Hammer equation,

Z0h =
�c0
�R2

0

(3.2)
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where � is the density of blood and R0 is the radius of the vessel.

The phase velocity was computed with a simpli�ed version [Nichols & O'Rourke 1990]

of the correction to Moens-Korteweg equation introduced by Bergel [1961] to account for a

`thick' wall,

c0 =

s
E h

2�R0 (1� �2)
(3.3)

where h is the thickness of the wall and � is the Poisson ratio of the wall, which in arteries is

very close to 0.5 [Nichols & O'Rourke 1990]. Assuming a Poisson ration of 0.5 for the arterial

wall, (3.3) yields a value for c0 which is higher than that predicted by the Moens-Korteweg

equation (2.6) by a factor of
p
4=3. This `corrected' value is closer to the values measured in

vivo [Nichols & O'Rourke 1990].

The value of the resistor, Rvh, accounting for viscous losses in each artery was computed

from Poiseuille's law (2.3)

Rvh =
8�

�R4
0

l (3.4)

note that R0
h = Rvh=l.

In the transmission line simulating each artery the value of the resistors Rs were given by

Rv=(N�1) (where Rv is the electrical equivalent of Rvh), which yields Rv=4 for all arteries

except the 2.5 cm segment of the posterior tibial that has only one series resistor.

Since no consistent quantitative data on the volumetric ow for all the major vessels of

the lower limb was, to the author's knowledge, available at the time when this work was

carried out the `leakage' of ow through the vessels had to be estimated. We assumed that

the ow `leakage' in the various arteries is the following:

� common iliac, external iliac and common femoral 10%

� super�cial femoral, popliteal, internal iliac and profunda femoral 25%

� anterior tibial, posterior tibial and peroneal 50%

The percentage of `leakage' of each artery was de�ned as,

%leakage =
Iin � Iout

Iin
� 100 (3.5)

where Iin and Iout are the mean volumetric blood ow entering and leaving the artery as

shown below.

-Iout-Iin

(proximal) (distal)
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To chose the above values for the ow `leakage' we have assumed that the `leakage'

increases towards the periphery as the arteries get closer to the capillary bed and we adjusted

the percentage of `leakage' in the model to obtain values for the PI similar to the ones

measured in vivo.

Recently Holland et al. [1998] have measured the volumetric blood ow in some of the

lower limb arteries and observed that only approximately 53% of the ow entering the com-

mon femoral artery reaches the super�cial femoral and only 48% of super�cial femoral artery

inow continues into the popliteal artery. Their �ndings suggest that we underestimated the

ow `leakage' in the arteries and future versions of the current blood ow model should take

Holland et al.'s [1998] data into account.

Table 3.5 shows the values of the parameters computed for the transmission lines corre-

sponding to each artery, note that the conductance of each artery, Gleak, was computed so

that the ow at the end of the artery is reduced by the desired percentage. The parame-

ters were computed using the following other characteristics, � = 1:06 g=cm3, � = 0:5 and

� = 0:035 poise.

Artery c0 Z0 Rv Gleak

(cm=s) (ohm) (ohm)
�
�ohm�1

�

Abdominal Aorta 597.3 666
Common Iliac 654.5 1613 27.6 5.625
Internal Iliac 1418.7 11967 278.5 6.328
External Iliac 690.7 2771 104.6 2.531
Common Femoral 702.7 3252 102.3 2.278
Profunda Femoral 1464.2 9339 401.3 2.563
Super�cial Femoral 1023.8 5997 682.3 2.563
Popliteal 1087.4 9172 1047.2 1.992
Posterior Tibial I (a) 1737.5 34689 780.1
Posterior Tibial II 1418.7 47867 26738.0 1.586
Anterior Tibial 1586.1 16517 2733.8 0.548
Peroneal 1737.5 34689 9923.4 0.750

a) small arterial segment between the peroneal and anterior tibial

rami�cations (see �gure 3.1).

Table 3.5: Electrical characteristics for the transmission lines that simulate the arteries in
the lower limb.

3.4.3 Peripheral arterial beds

The peripheral impedances were modelled by a three-element Windkessel model also known

as the Westkessel model [Noordergraaf 1978],which consists in one resistor in series with a

resistor-capacitor parallel circuit. Figure 3.6 shows diagrammatically the Westkessel circuit.
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Z0

Rp Cp

Figure 3.6: The Westkessel circuit used to model the impedance of the peripheral arterial
beds.

The value of the series resistor is equal to the characteristic impedance, Z0, of the artery

feeding the peripheral bed, Rp represents the peripheral resistance of the vascular bed and

Cp accounts for the vascular bed compliance.

To estimate values for Rp and Cp we followed the procedure outlined by Raines et al.

[1974]. They cite some studies performed during surgery that suggest that the ow in the

common iliac artery divides equally between the internal and external iliac artery. A similar

division of ow occurs at the end of the common femoral artery.

At the knee trifurcation we have assumed that the division of ow between the three

vessels is inversely proportional to the characteristic impedance of each vessel.

Raines et al. [1974] say that the compliance of the small vessels of a leg is 0.04 cm3=mmHg

(' 30 �cm5=dyne). We then computed the vascular compliance for each branch by assuming

that the compliance of one leg divides among the various branches in proportion to their

mean ow.

The computed values for the peripheral resistance and compliance of the various peripheral

beds are shown in table 3.6.

Artery Rp Cp

(kohm) (�farad)

Internal Iliac 52.7 15.0

Profunda Femoral 130.1 7.5

Posterior Tibial II 1825.0 1.4

Anterior Tibial 630.6 4.1

Peroneal 1334.0 2.0

Table 3.6: Values of the electric components of the peripheral vascular beds models.

3.4.4 Adjustment of model parameters

The description of the blood ow model made in the previous sections may convey the

impression that the model parameters were immutable from the beginning of the development

phase. That was not the case.

In fact various modi�cations and adjustments were made during the development of the
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model. For example, at �rst the arteries were modelled with lossy transmission lines without

shunt conductances but this resulted in ow waveforms whose PI was too low in the lower

leg vessels. The inclusion of shunt losses, to account for ow leakage through small vessels

and the vessel wall, increased the PI and as a consequence the model results mimicked the

physiological waveforms more closely. The values for the shunt conductance were adjusted

until the variation of PI along the leg resembled what had previously been published.

Another example of important adjustments that were made is the one concerning the pe-

ripheral impedances both in terms of values and circuits. Initially the peripheral impedances

were modelled by a Windkessel circuit (one resistor in parallel with one capacitor) but that

resulted in to high reections and the pressure and ow waveforms were highly distorted. To

circumvent this a Westkessel circuit was used and the reection at the periphery decreased.

3.5 Assessment of model results

It is very di�cult to measure in vivo all the parameters necessary to build this model. The

values of the parameters were collected from various published sources and consequently the

inputs of the model were obtained from various di�erent persons.

De�ning normality of blood ow in human circulation is rather di�cult because clinical

measurements show a high degree of variability between persons and even from the same

person at di�erent times. This di�erences are probably the result of biological variation,

body size, vasomotor state and blood pressure [Milnor 1989].

As a consequence the pattern of normality is generally a broad one but with some char-

acteristics being common to a large percentage of the persons with normal cardiovascular

systems.

Since there is no person whose physiological characteristics correspond to those used to

implement the model, it is not possible to make direct measurements in the system being

modelled to compare with the outputs of the SPICE model. Thus, the validation of our

model cannot be a direct quantitative one, it must, of necessity, be qualitative.

3.5.1 The complete model

The schematic of the complete model implemented in SPICE is shown in �gure 3.7. Pressure

and ow may be monitored at any point in the model. However, in order to validate the

model four points for which published information on these variables is available were chosen.

The pressure and ow waveforms measured in the model were also used to compute the input

impedance and the PI index at any of the measuring points.

The positions of the four measuring sites used are marked in �gure 3.7; AORT is at the

distal end of the abdominal aorta artery, CFA is at the distal end of the common femoral

artery, POP is at the distal end of the popliteal artery, and ATA is at the distal end of the

anterior tibial artery.
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Figure 3.7: Schematic of the electric analogue of the lower limb arterial circulation. Four
measuring sites used to monitor the model are marked as: AORT { distal end of abdominal
aorta, CFA { distal end of common femoral artery, POP { distal end of popliteal artery, ATA
{ distal end of anterior tibial artery.
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Note that all the arteries were modelled with a lossy transmission line that was im-

plemented in SPICE using the lumped circuit shown in �gure 3.5 with 5 sections of lossless

transmission line. The only exceptions were the small vessel segments designated as Posterior

Tibial I that were modelled with a circuit containing only 2 sections of lossless transmission

line because the arterial segments are very small (2.5 cm).

3.5.2 Input impedance

Figure 3.8 shows the normalised magnitude and the phase of the femoral input impedance in

the model against in vivo data [Patel et al. 1965].

0 2 4 6 8 10 12
0

10

20

30

40

50

frequency (Hz)

|Z
in

 /R
p|×

10
0

0 2 4 6 8 10 12
−100

−50

0

50

100

frequency (Hz)

ph
as

e 
(d

eg
)

Figure 3.8: Input impedance (normalised magnitude and phase) at the level of the femoral
artery in the model (bold line and blacktriangledown) and as measured in vivo by Patel
et al. [1965] in 11 di�erent patients. Zin is the input impedance and Rp is the peripheral
resistance, which has a value of 98:5�103 dyne s=cm5 in the model.

The modulus of the femoral input impedance in the model is high for steady ow and

decreases signi�cantly to a low value up to 2 or 3 Hz and then remains almost constant for

higher frequencies. This is consistent with clinical in vivo measurements and within the high

variability of the measurements.

The phase of the impedance is negative up to 10 Hz, which is common in the input

impedances measured in the leg [Patel et al. 1965] although in some cases the phase may

cross the zero level and become positive as illustrated by the clinical data in �gure 3.8.

3.5.3 Pressure and ow waveforms

It is known that the amplitude of the pressure pulse increases as it travels to the periphery

[Milnor 1989]. The shape of the pressure wave also changes as it moves to the periphery, the

pressure rises more steeply in the early stages of systole and the second peak becomes more

prominent.
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Figure 3.9 shows the pressure waveforms at 4 measuring sites in the lower limb. The 4

measuring sites are those marked in the model diagram shown in �gure 3.7 with the acronyms

AORT, CFA, POP and ATA.
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Figure 3.9: Pressure waveforms at the 4 measuring sites in the model; AORT - distal end of
abdominal aorta, CFA { distal end of common femoral artery, POP { distal end of popliteal
artery, ATA { distal end of anterior tibial artery.

As can be seen from �gure 3.9 the amplitude of the pressure pulses generated by the

model increases as it travels to the periphery and the second peak becomes more marked.

This is similar to what has been observed in vivo [Milnor 1989].

Figure 3.10 shows the pressure waveforms measured in the femoral artery and distal

end of the anterior tibial artery for a young adult [Kroecker & Wood 1955] as well as the

corresponding curves in the model.

As can be seen from �gure 3.10 the shape of the pressure waveform generated by the

model is similar to those obtained in vivo from the corresponding arteries.

As blood travels to the periphery it divides between the various vessels and as a conse-

quence the ow in more peripheral vessels is lower than in the more central ones.

Figure 3.11-a) shows the ow waveforms generated by the model at the 4 measuring sites

and �gure 3.11-b) shows the variation of the mean volumetric ow compared with clinical

data [Holland et al. 1998].

As expected, the mean volumetric ow decreases as the blood moves to the periphery.

The mean values for the ow generated by the model for the CFA and POP are in the lower

end of the range of measurements made by Holland et al. [1998] , this probably means that

the mean ow (15 cm3=s) assumed for the input ow waveform was too small and/or the

percentage (50%) of ow assumed to branch o� at the iliac bifurcation was to high.
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Figure 3.10: Comparison of the model pressure waveforms with pressure waveforms obtained
in a normal young adult [Kroecker & Wood 1955]. The solid line represents the clinical data
and the dashed line the model data; a) femoral pressure, b) pressure at the distal end of
anterior tibial artery. Note that the heart rates corresponding to the model and the clinical
data are di�erent.
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Figure 3.11: a) Volumetric ow waveforms at the 4 measuring sites in the model; AORT -
distal end of abdominal aorta, CFA { distal end of common femoral artery, POP { distal
end of popliteal artery, ATA { distal end of anterior tibial artery. b) Mean volumetric ow
at the same sites. The experimental values were measured by Holland et al. [1998] and are
represented by the sample mean, H, and the standard deviation of the measurements (vertical
bars).

3.5.4 Pulsatility Index

The pulsatility index (PI) de�ned by (3.1) has been used for a long time as an aid in the

diagnosis of arterial stenosis specially in the lower limb [Gosling 1976, Holland et al. 1998,

Johnston et al. 1978, Johnston et al. 1984].
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In persons with no arterial disease the PI usually increases toward the periphery being

progressivly higher in the femoral, popliteal and pedal arteries [Johnston et al. 1978]. When

a stenosis is present in an arterial segment of the lower limb the PI is usually reduced distally

and sometimes even before the stenosis. This is the result of dampening of the ow waveform.

In our model for the normal hemodynamic state the PI increases as the ow waveform

travels to the periphery. Figure 3.12-a) shows the mean velocity waveforms along the lower

limb and �gure 3.12-b) the variation of the model PI along the lower limb compared with

experimental values [Holland et al. 1998].
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Figure 3.12: a) Mean blood velocity waveforms at the 4 measuring sites in the model; AORT
- distal end of abdominal aorta, CFA { distal end of common femoral artery, POP { distal end
of popliteal artery, ATA { distal end of anterior tibial artery. b) The pulsatility index at the
same sites. The experimental values of PI are from [Holland et al. 1998] and are represented
by the sample mean, H, and the standard deviation of the measurements (vertical bars).

As can be seen from �gure 3.12-b) the PI obtained from the model is within one standard

deviation of the mean of the values measured experimentally.

During the development of the model it was found that the PI in the lower limb vessels

(specially in the more peripheral ones) depends heavily on the `leakage' ow that leaves the

arteries through the arterial wall and lateral branches. The `leakage' conductance a�ects

mainly the DC (Direct Current) component of the ow waveform because the peripheral

resistance is much higher than the other frequency components of the peripheral impedance;

in fact the peripheral impedances are almost matched loads for the transmission lines. Con-

sequently, the mean value of the ow waveform decreases more than the pulsatile component

and the PI increases.

3.6 Stenoses

The blood ow model described in this work generates simulated pressure and ow waveforms

of a human being with a normal lower limb circulation. It would be interesting to include in
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the model the possibility of modelling diseased states, in particular stenoses.

Although we did not implement a model for stenoses we would like to describe one pos-

sibility for modelling the blood pressure drop at a stenosis.

The pressure drop at a stenosis is higher than in the unobstructed vessel. Young and as-

sociates (see for example [Roth et al. 1976, Young & Tsai 1973a, Young & Tsai 1973b, Young

1979]) have investigated the ow characteristics in stenosis and found that the pressure drop,

�p, across a stenosis may be estimated with,

�P = Rv Q+Bt jQjQ+ L�
@Q

@t
(3.6)

where Q is the blood ow in the unobstructed vessel and Rv, Bt and L� are parameters

that depend on the geometry and severity of the stenosis. The �rst term on the right of (3.6)

represents the pressure drop due to viscous e�ects, the second term represents the nonlinear

e�ects associated with the convergence and divergence of the ow in stenosis and turbulence,

and the third term represents the pressure di�erential needed to accelerate the uid.

Equation (3.6) may be simulated in SPICE by an electric circuit as shown in �gure 3.13.

Rv L�

H1
{ +

H2
+ {

D1

D2

-I

Figure 3.13: Electric schematic of a model for the pressure drop at a stenosis. Rv is a resistor,
L� is an inductor, D1 and D2 are ideal diodes, and H1 and H2 are current controlled voltage
sources whose voltage is V = Bt jIjI.

The diodes D1 and D2 select one of the voltage sources so that the pressure drop is in

the correct direction.

3.7 Concluding remarks

In this Chapter we described the development of an electric analogue model for the ow of

blood in the human lower limb circulation.

Due to the complexity of blood ow some simplifying approximations had to be made,

examples of such approximations are considering the circulatory system as being linear and

the blood ow as laminar and axysimmetric.

Another problem was the sparse data on the vascular tree characteristics available in
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the literature and the numerous iterations needed to adjust the model parameters. This

is common with models of biological systems, as Milnor [1989, p. 177] says referring to

the development of mathematical models for vascular beds and to the comparison of model

results with experimentally observed data, \Certain discrepancies usually appear, and the

parameters of the model are then adjusted until it is consistent with as many of the exper-

imentally known facts as possible. Most investigators would agree that reasonable guesses

play a signi�cant role in this �nal process of �ne-tuning."

It is remarkable that in spite of all the approximations and assumptions made the pressure

and ow waveforms resemble so closely the waveforms obtained in the arterial tree.

The model described in this Chapter is an important part of the overall model for the

process of generation of the Doppler ultrasonic signal backscattered by blood cells. The model

relates the vascular tree characteristics to the blood velocity �eld.





Chapter 4

Doppler ultrasound signal model

4.1 Introduction

The frequency content of the Doppler power spectrum is determined by several factors [Jones

1993]: blood scattering characteristics, blood velocity �eld, sample volume characteristics,

range of velocities passing through the sample volume and spectral estimation method used.

Some these factors are inherent to the Doppler signal generation process while others are

introduced by the measuring system.

The Doppler ultrasound signal backscattered from moving blood is a very complex one

as pointed out in chapter 2. The signal is pulsatile due to the pumping action of the heart

and the signal is random because it results from the scattering of the ultrasonic �eld from a

large number of red blood cells. Branching, curving and tapering of the blood vessels and the

presence of disease induced turbulence only add to the signal's complexity. The variability

of the Doppler signal obtained from di�erent patients, or from the same patient at di�erent

times, greatly contributes to the di�culty in relating the signal characteristics to the blood

ow.

In spite of the complexity of the Doppler signal Doppler ultrasound systems have success-

fully detected moderate to severe arterial stenoses. The lower limit of percentage of stenoses

that can be detected depends on the sensitivity of the system to small blood ow distur-

bances. A better understanding of the Doppler process and quanti�cation of the various

factors determining the Doppler spectrum is needed to allow the development of more sensi-

tive systems [Fish 1992].

In order to be able to study the inuence of various factors on the spectrum of the Doppler

signal we have developed a model of the Doppler signal backscattered from pulsatile laminar

ow. The model described in this chapter considers the Doppler signal as resulting from

the summation of the signals backscattered from small elemental volumes passing through

the instrument's sample volume. The signal from each elemental volume arises from the

uctuations in local density and compressibility of blood.

77
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The model improves our understanding of the Doppler signal generation process and

allows the generation of simulated signals with known characteristics so that experiments

can be carried out under controlled conditions.

As mentioned in Chapter 2 various models have been proposed for the Doppler ultrasound

signal. Some of those models need a priori knowledge of the Doppler spectrum (for example

[Mo & Cobbold 1989, van Leeuwen et al. 1986]) and do not directly relate the Doppler

instrument characteristics to the simulated signal. Wendling et al. [1992] proposed a time-

domain model for simulating Doppler signals from pulsatile nonuniform blood ow, their

model provided additional insight into the e�ect of transit time broadening and allowed time-

varying ow. It was di�cult to use the model to study the e�ect of blood acceleration on the

Doppler spectrum and the triangular shape of the sample volume reduced its usefulness.

Our model was based on previous models proposed by [Mo & Cobbold 1992] and [Wendling

et al. 1992] and introduced a new formulation for the Doppler signal that allowed to study

the e�ects of blood acceleration and sample volume shape on the Doppler spectrum. The

new formulation allowed also the derivation of a simple formula for estimating the width of

the Doppler spectrum. Previous models of the Doppler ultrasound signal are described in

more detail in Chapter 2.

4.2 Model description

The Doppler signal can be conceived as the summation of the contribution of all scatterers

passing through the sample volume [Fish 1986]. Since the exact movement of each scatterer is

not know nor measurable it is impossible to simulate the Doppler signal without simplifying

the problem.

To reduce the complexity of the problem we divided the blood vessel into small elemental

volumes by making the following assumptions about the ow similar to those used by Fish

[1986]:

� the blood velocity is parallel to the vessel wall;

� the blood vessel is a cylindrical rigid tube;

� neighbouring scatterers have similar velocities and can be grouped into an elemental

volume;

� the pulse wave velocity of the blood velocity wave is su�ciently high such that at

any time instant the instantaneous velocities of all the elemental volumes within an

elemental tube and within the sample volume can be considered equal.

That this latter assumption is justi�ed can be seen by considering elements at either

extreme of the sample volume. The di�erence in blood velocity at these extremes is ad=c0
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where a is the local blood acceleration, d is the distance across the sample volume along the

elemental tube and c0 is the pulse wave velocity. This assumption is then:

ad=c0 � v

where v is the blood velocity. For example an extreme case, with c0 = 10 m s�1 , a =

30 m s�2 and d = 5 mm the above inequality becomes v � 1:5 cm s�1 and it is clear that the

assumption is valid for most conditions in practice.

Figure 4.1: Subdivision of the vessel into elemental volumes and elemental tubes.

Figure 4.1 shows how the vessel was divided into elemental volumes and tubes. All the

elemental volumes have the same size but the relative position of the elemental volumes of

di�erent tubes is not constant because di�erent tubes may have di�erent velocity waveforms.

The division of the sample volume is similar to that used by Mo & Cobbold [1992] but in

their model the elemental volumes are static while in this model the elemental volumes move

across the sample volume.

4.2.1 Signal from a single scatterer

The Doppler signal backscattered by a single scatterer travelling along trajectory~r(t) passing

through a plane wave unit-amplitude in�nite wide ultrasonic �eld is given by:

did(t) =
p
�bs e

�j(2~k�~r(t)+�) (4.1)

where did is the analytic Doppler signal (in phase and quadrature signals), �bs is the backscat-

tering cross-section of the particle, ~k is the wave vector, t represents time, � is a phase term

that depends on the time origin, ~k �~r(t) is the inner product between ~k and ~r(t), and j is

the imaginary unit number. The minus sign in the exponent of e arises from the convention

that scatterers travelling in the positive direction are moving away from the transducer and

consequently produce negative frequency shifts.

Since in�nite wide ultrasonic �elds are not feasible in practice, the backscattered signal

is amplitude modulated by the beam pattern across the scatterer's trajectory. So a better

approximation to the Doppler signal from a single particle under plane wave conditions and
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not taking attenuation into account is given by:

d(t) = did(t)G
�
~r(t)

�
(4.2)

where G
�
~r(t)

�
represents the sensitivity (combining transmitter and receiver sensitivities) of

the ultrasonic beam across the scatterer's path,~r(t), through the sample volume and includes

the e�ect of the demodulator �lter. Note that in general G
�
~r(t)

�
is complex and incorporates

a phase term describing the deviation from plane-wave conditions [Fish 1986].

Figure 4.2 shows an example of the Doppler signal generated by a single scatterer passing

with constant velocity through an ultrasonic �eld whose sensitivity is Gaussian along the

scatterer's trajectory.

Figure 4.2: Doppler signal from a single scatterer travelling with constant velocity through
an ultrasonic �eld with Gaussian sensitivity.

4.2.2 Signal from an elemental volume

To simulate the Doppler signal from an elemental volume we further assume that:

� multiple scattering does not contribute to the signal, i.e. only the signals scattered

directly from the incident wave are considered;

� the amplitude and phase of the backscattered signal from an elemental volume are

random and depend only on the random uctuation in the local mass density and

compressibility of the red blood cells [Angelsen 1980];

� the amplitude of the signal from an elemental volume is constant while travelling

through the sample volume;

� the sample volume is in a region where the ultrasonic signal is approximately a plane

wave.

The co-ordinate systems of the beam and vessel are de�ned in �gure 4.3.
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Figure 4.3: Geometry and coordinate systems for the beam/vessel arrangement (x; y; z for
the vessel and x0; y0; z0 for the beam), the origins O and O0 are in a plane perpendicular to
the vessel which includes the centre of the beam sample volume, the axes z and z0 are parallel
and point out of the diagram plane.

Under these assumptions the contribution to the Doppler signal from an elemental volume

m in tube q is,

uqm(t) = Aqm e�j(2 cos(�)kxqm(t)+�qm)Gqm(t) (4.3)

where:

Gqm(t) = G (xqm; yqm; zqm) (4.4)

and where Aqm and ��qm represent respectively the random amplitude and initial phase, at

t = 0, of the signal from elemental volume qm, k is the modulus of the wave vector, � is the

angle between this wave vector and the direction of movement, (xqm; yqm; zqm) is the position

of the elemental volume in the vessel coordinate system at any time and G(:) is the variation

in sensitivity within the instrument's sample volume. Note that for streamline ow xqm (but

not yqm and zqm) is a function of time.

If the ow is steady then:

xqm(t) = vqmt+ xqm0 (4.5)

where vqm is the velocity of the elemental volume, xqm0 is the position at t = 0 and

uqm(t) = Aqme
�j(!dt+�1qm)Gqm(t) (4.6)

where �1qm = �qm + 2 cos(�)kxqm0,

!d =
2vcos (�)

c
!0 (4.7)
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is the angular Doppler frequency, !0 is the angular transmitted frequency and c is the ultra-

sound propagation speed. However, if the ow is time-varying then we should write:

xqm(t) = xqm(tr) +

Z t

tr

vqm(�) d� (4.8)

where tr is any �xed reference time, and calculate the Doppler signal from (4.3) and (4.8).

The Doppler signal sq(t) from an elemental tube, q, is obtained by adding the contribution

from all its elemental volumes that pass through the sample volume,

sq(t) =
X
m

Aqm e�j(2 cos(�)kxqm(t)+�qm)Gqm(t) (4.9)

The Doppler signal from the complete sample volume is simply the summation of the

signals from all its elemental tubes,

s(t) =
X
q

X
m

Aqm e�j(2 cos(�)kxqm(t)+�qm)Gqm(t) (4.10)

The implementation of the model described here uses planewave conditions throughout the

sample volume (as is approximately true in the vicinity of the focus of a focused transducer,

including one with Gaussian appodisation (see for example [Ata & Fish 1991, Filipczy�nski &

Etienne 1972]) and a Rayleigh random variable (RV) for the signal amplitude with the initial

phase given by a random variable uniformly distributed in the interval [0{2�). As a result,

the signal received from an elemental volume is a Gaussian stochastic process.

Note that the results presented here will not be signi�cantly a�ected by the assumption

of particular element signal statistics as a result of the relatively large number of elemental

volumes used to calculate Doppler signal and the Central Limit Theorem.

4.3 Ensemble averaged Doppler spectrum

We have seen that the Doppler signal from a single elemental tube is given by equation (4.9).

In order to estimate the time-varying spectrum of the Doppler signal at a particular time we

multiply the signal by a window function w (t� tw) centred at time tw.

Assuming Aqm and �qm constants during the passage of the elemental volume through

the sample volume, the expected energy spectrum of the windowed signal at time tw from a

single streamline is then:

Sq (!; tw) = E

�����
Z 1

�1

X
m

Aqm e�j (2 cos(�)kxqm(t)+�qm)Gqm(t)w (t� tw) e
�j !t dt

����2
�

(4.11)

where Ef:g is the expectation operator.
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Since Aqm and �qm do not depend on t we can re-write (4.11) by changing the order

between the summation and the integral, giving:

Sq (!; tw) = E

(����X
m

Aqm e�j �qm

Fqm(!;tw)z }| {Z 1

�1
e�j 2 cos(�)kxqm(t)Gqm(t)w (t� tw) e

�j !t dt
����2
)

(4.12)

if for each m the integral

Fqm(!; tw) =

Z 1

�1
e�j 2 cos(�)kxqm(t)Gqm(t)w (t� tw) e

�j !t dt (4.13)

exists, the corresponding power spectrum is:

Sq (!; tw) = E

��X
m

Aqm e�j �qmFqm(!; tw)
�
�
�X

r

Aqr e
�j �qrFqr(!; tw)

���

= E

��X
m

Aqm e�j �qmFqm(!; tw)
�
�
�X

r

Aqr e
j �qrF �

qr(!; tw)
�� (4.14)

which can be re-written as,

Sq (!; tw) = E

�X
m

A2
qmFqm(!; tw)F

�
qm(!; tw)

+

m6=rz }| {X
m;r

Aqm e�j �qmFqm(!; tw)�Aqr e
j �qrF �

qr(!; tw)

�
(4.15)

Since the expectation of the product of uncorrelated zero mean random processes is zero

[Papoulis 1991], the expected value is simply the expectation of the �rst right hand side

term.

Sq (!; tw) = E

�X
m

A2
qmFqm(!; tw)F

�
qm(!; tw)

�
(4.16)

which may be simpli�ed to [Papoulis 1991]:

Sq(!; tw) =
X
m

Sqm(!; tw)EfA2
qmg (4.17)

and assuming that the statistics are invariant along an elemental volume,

Sq (!; tw) = A2
q

X
m

Sqm(!; tw) (4.18)

where A2
q = EfA2

qmg.
Since the signals from di�erent elemental tubes are zero-mean uncorrelated random pro-

cesses, the ensemble averaged power spectrum from the complete sample volume is simply
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the summation of the power spectra from all the elemental tubes

S(!; tw) =
X
q

A2
q

X
m

Sqm(!; tw) (4.19)

If we consider that the random uctuations in local density and compressibility are in-

dependent of radial position then A2
q(= A) is equal for all elemental tubes and the expected

value for the ensemble averaged energy spectrum of the windowed Doppler signal may be

expressed as:

S(!; tw) = A2
X
q

X
m

Sqm(!; tw) (4.20)

We note that A2
q does depend on ow conditions [Bascom et al. 1988, Cloutier & Shung 1993,

Mo & Cobbold 1992, Wu & Shung 1996] and the approximation that this is constant may

have to be revisited when more is known. Limiting the range of velocities within the sample

volume (small sample volume and/or blunt pro�le) will increase the validity of the above

assumption.

4.4 Time-varying blood velocity pro�les

For pulsatile blood ow the calculation of the position function for each elemental tube

involves the computation of the time varying velocity pro�le. If the spatial mean velocity

waveform v(t) is assumed to be periodic then it can be expressed as a Fourier cosine series,

v(t) = v0 +

1X
p=1

vp cos (p!1t+ �p) (4.21)

where vp and �p are the amplitude and phase of the pth harmonic of the fundamental angular

frequency !1. Assuming that blood is a Newtonian incompressible uid and that the ow

is fully established, Evans [Evans 1982a] extended Womersley theory and showed that the

velocity pro�le for pulsatile periodic ow in a cylindrical rigid tube is given by,

v(y1; t) = 2v0
�
1� y21

�
+

1X
p=1

vp j	p(y1)j cos
�
p!1t+ �p + �p(y1)

�
(4.22)

	p(y1) = �p
J0(�p)� J1(y1�p)

�pJ0(�p)� 2J1(�p)
, �p = �pj

3=2 (4.23)

where y1 = r=R0, �p = R0

p
p!1=� is the Womersley parameter, r is the radial co-ordinate,

R is the vessel radius, � is the kinematic viscosity of blood, J0 and J1 are Bessel functions of

the �rst kind and orders 0 and 1, and �p is the phase of 	p.

Expressions for the pulsatile periodic velocity pro�les were already introduced in Chap-

ter 2, (2.11) and (2.12). For rigid circular arteries the mean spatial velocity is equal to the
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mean volumetric ow divided by the vessel area, �R2
0.

The position function of any elemental volume, xqm(t), is computed by using (4.8) where

the velocity waveform, vqm(t), is computed using (4.22) and y1 is the distance of elemental

tube q to the centre of the vessel.

Figure 4.4 shows the velocity pro�le of the blood ow in a common femoral artery in order

to illustrate the time-varying nature of the velocity pro�le in pulsatile ow. The velocity

pro�le was computed using equations (4.21{4.23) and the cosine series coe�cients were taken

from [Evans et al. 1989].
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4.5 Implementation issues

This section briey describes how the model for the generation of simulated Doppler signals

and spectra was implemented.

The model was implemented in software running on a Unix workstation computer. It

was written using MATLAB [Mat 1998] and C [Kernighan & Ritchie 1988] to code the most

demanding (in terms of execution time) parts of the model program. Much of the low level

implementation details are deliberately omitted because they depend on the software language

used and are not relevant for the work being described, a model for Doppler ultrasound

signals.

A Gaussian shaped sample volume was implemented but other shapes could easily be

implemented. The Gaussian shape was chosen because it is a reasonable approximation of the

sample volumes commonly associated with pulsed wave systems [Bascom & Cobbold 1990].

The sensitivity of a Gaussian sample volume may be represented by

G0(x0; y0; z0) = exp

 
� x02

2�2x0
� y02

2�2y0
� z02

2�2z0

!
(4.24)

where �x0 ; �y0 and �z0 are the root mean square (rms) widths of the beam sensitivity along

the x0; y0 and z0 axes respectively (�gure 4.3). The signal from an elemental volume was only

considered for the positions, (x; y; z), where Gqm(x; y; z) � exp (�8).

Two basic modes of operation of the model were implemented; one to generate simulated

Doppler signals and another mode to generate the expected power spectrum.

In the implementation of both modes of operation vqm(t), xqm(t) and Gqm(t) were calcu-

lated in the same way. When the model was used to generate simulated signals from blood

moving with a periodic velocity, the velocity of each ow streamline, vq(t), was computed us-

ing equations (4.21{4.23) and in other cases (e.g. parabolic blood ow) the velocity waveform

of each streamline was computed using the equation of the velocity pro�le. The position of

each elemental volume, xqm(t), was then computed from the velocity of the streamline and

equation (4.8). Gqm(t) was then computed from xqm(t) and the de�nition of the sample

volume shape (equation 4.24 for a Gaussian sample volume).

The model then used xqm(t), Gqm(t) and the other characteristics of the beam and the

vessel to either generate simulated Doppler signals using equation (4.10) or the expected

power spectrum using equations (4.12), (4.13), and (4.20)

Spatial and temporal sampling

In order to compute the simulated signals from each streamline the vessel cross-section was

divided into streamlines with a square section. This type of spatial sampling of the vessel

cross-section is illustrated in �gure 4.5.
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Figure 4.5: Division of the vessel cross-section with a grid of square sections.

For large sample volumes the use of a square grid to sample the vessel cross-section results

in very long run times of the computer program due to the large number of streamlines. When

both the sample volume and the velocity pro�le are axis-symmetric, a circular grid may be

used in order to signi�cantly reduce the execution time of the computer program. When

the circular grid is used the signal from each ow shell is computed as the signal from a

streamline in the shell multiplied by the area of the ow shell cross-section. The signal from

the complete sample volume is computed simply as the sum of the signals from all the ow

shells.

Figure 4.6 shows an example of the division of the vessel cross-section with a circular grid.

r0 r1 r2 rN

Figure 4.6: Division of the vessel cross-section with a circular grid when both the sample
volume and the velocity pro�le are axis-symmetric.

The area of each ow shell in �gure 4.6 is:

arean =

8>>>><
>>>>:
�

�
�r

2

�
2 , n = 0

2�rn�r , n = 1; 2; : : : ; N

(4.25)
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where �r is the constant distance between the centre of the consecutive ow shells; �r =

rn � rn�1; 1 � n � N .

The three dimensions (width and height) of the elemental volumes were set, following a

recommendation by Angelsen [1980], to approximately �=10 where � is the wavelength of

the transmitted ultrasonic wave. For a 5 MHz wave and assuming that the sound velocity in

blood is 1540 m s�1 the wavelength is 308 �m and the dimensions of the elemental volumes

were set to 30 �m.

The above spatial resolution was su�cient for most experimental simulations, but, as will

be seen in the next section, when the sample volume is placed in a region of high velocity

gradients the lateral resolution must be higher in order to sample the velocity pro�le at a

su�cient rate.

As was mentioned in Chapter 2 the Doppler signals are normally sampled and processed

in a digital computer. The sampling frequency must be at least 2 times the higher frequency

of the sampled signal. For convenience a sampling frequency of 25.6 kHz was used so that a

typical 10 ms data segment contains 256 samples. The FFT algorithm is signi�cantly faster

when the number of samples per data segment is a natural power of 2.

4.6 Simulation experiments

This section presents the results of some experiments that were carried out with the Doppler

model described in the previous sections of this chapter. Some of the experiments were

carried out to evaluate the quality of the model results, while others serve to show simulated

Doppler signals from various places in the lower limb arterial circulation. In the future the

model results should also be compared with signals obtained from in vitro experiments as a

last check on the quality of the model.

4.6.1 Assessment of model results

Unless otherwise stated all the experiments described in this section were carried out with the

parameters set above: f0 = 5 MHz; c = 1540 m s�1; sampling frequency, 25.6 kHz; elemental
volumes with 30�30�30 �m (length, width, height); and the angle between beam and vessel

axis was � = 60o.

Constant velocity

The �rst experiment carried out in order to assess the model results was the simulation of

Doppler signals from a single streamline with constant velocity. Figure 4.7 shows 40 ms of

the simulated signal from a single streamline moving at 1 m s�1 through a Gaussian sample

volume with spherical symmetry, �0x = �0y = �0z = �sv. The sample volume used in this

experiment had �sv = 1 mm.
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0 10 20
−5

0

5

time (ms)

Figure 4.7: Example of 20 ms of the in-phase simulated signal from a single streamline with
constant velocity of 1 m s�1 passing through the centre of a symmetric Gaussian sample
volume with �sv = 1 mm.

Figure 4.8 shows the expected and measured power spectra of the simulated signals from

the same experiment that generated the signal shown in �gure 4.7. In order to reduce

spectral leakage and window broadening, the signal was multiplied by a `long' (1.28 s) Hanning

window.

The theoretically expected power spectrum in �gure 4.8 was computed as the square of

the Fourier transform of Gqm(t) e
j2�fdt, which for a streamline with constant velocity passing
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Figure 4.8: Normalised power spectra for the simulated Doppler signals from a single stream-
line with constant velocity of 1 m s�1 passing through the centre of a symmetric Gaussian
sample volume with �sv = 1 mm. The solid line represents the expected normalised spectrum
in both plots and the dotted line represents: a) ensemble averaged spectrum (100 runs), and
b) spectrum computed by the model in spectrum mode of operation (only 1 in every 10
samples of the power spectrum were plotted to allow the visualisation of the solid line).
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through a Gaussian sample volume is given by:

Sqm(f) = K exp

0
B@� (f � fd)

2

2
�

v
2
p
2��sv

�2
1
CA (4.26)

where v is the velocity of the streamline, K is a constant, and fd is the expected Doppler

frequency shift computed with the Doppler equation, (2.37).

As can be seen from �gure 4.8-b) the spectrum generated by the Doppler model, in the

spectrum mode of operation, agrees very well with the theoretical spectrum. The ensemble

averaged spectrum computed from the simulated Doppler signals is close to the theoretical

spectrum but it shows some variance. If lower variance is required then a larger number of

spectra must be averaged.
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Figure 4.9: Fractional variance of the ensemble (100) averaged spectrum of �gure 4.8-a).

Figure 4.9 shows the fractional variance of the 100 ensemble averaged spectrum to illus-

trate the reduction in spectral variance obtained by averaging the spectra. As expected (see

equation 2.56) the fractional variance of the averaged spectrum uctuates around 1=100. Re-

call from section 2.4.2 that the fractional variance of the periodogram of a Gaussian stochastic

process uctuates around unity.

Time-varying velocities

In order to assess the ability of the Doppler signal model to generate signals whose mean

frequency follows a predetermined waveform two experiments were carried out. In one of

the experiments the model was used to simulate signals corresponding to blood accelerating

uniformly with time and in the other experiment a typical common femoral waveform was

used to drive the model. The details and model parameters used in each experiment are

presented below.
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In the �rst of the experiments, the signal was simulated for a single streamline in a

symmetric Gassian sample volume with �sv = 1 mm, and the velocity varying linearly with

time (v(t) = �0:1� a t m s�1) for three blood accelerations, a = 5, 10, and 15 m s�2.
Figure 4.10-a) shows the spectrogram of the simulated signal for a = 10 m s�2. The

spectrogram was computed with 10 ms data segments (Hanning window) with 50% overlap.

As expected, the frequency of the spectrogram increases almost linearly with time.

The mean frequency waveform was computed for each of the 10 ms data segments (no

overlap) and averaged (100 spectra). The averaged and the expected mean frequency vari-

ations are shown in �gure 4.10-b) for the three blood accelerations. The close agreement

between the expected and measured mean frequency waveforms indicates that our model is

capable of simulating Doppler signals whose mean frequency variation follow accurately the

mean frequency variation expected for the Doppler signal from blood moving with constant

acceleration. Plots comparing the spectral width of the simulated signal with that expected

for Doppler signals from blood moving with constant acceleration are presented in section

6.4.1.

The second experiment to assess the ability of the model to simulate time-varying Doppler

signal used a typical common femoral artery [Evans et al. 1989, pp. 16, 17] velocity wave-

form as the input velocity. This experiment also checked the ability of the model to simulate

signals with forward and reverse ow.

Figure 4.11 shows the results of this experiment. Except for the velocity waveform and

the time duration of the simulated signal all the other parameters of the experiment were the
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Figure 4.10: Spectrogram and mean frequency time variation of the simulated Doppler signal
from a single streamline at the centre of a symmetric Gaussian sample volume, �sv = 1 mm
and a velocity waveform, v(t) = �0:1 � a t m s�1: a) spectrogram of the simulated signal
(a = 10 m s�2) computed from 10 ms data segments (50% overlap) multiplied by a Hanning
window; b) comparison between the expected, , and measured mean frequency variation,

, for a = 5, 10, and 15 m s�2.
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Figure 4.11: Spectrogram and mean frequency time variation of the simulated Doppler signal
from a single streamline at the centre of a symmetric Gaussian sample volume, �sv = 1 mm,
the velocity input was a typical common femoral artery velocity waveform: a) spectrogram
of the simulated signal computed from 10 ms non-overlapping data segments multiplied by a
Hanning window; b) comparison between the expected, , and measured mean frequency
variation, .

same as those used to generate �gure 4.10.

Once again the average of the mean frequency variation of the simulated signal closely

follows the expected mean Doppler frequency waveform.

Parabolic velocity pro�le under a wide uniform beam

The model results presented previously in this section were all obtained from a single stream-

line to avoid the inuence of velocity pro�le shape. We present now results from two experi-

ments that used blood ow with a parabolic velocity pro�le passing through a large Gaussian

sample volume.

Figure 4.12 shows the normalised spectra for a parabolic velocity pro�le, v(r) = v0(1 �
(r=R0)

2) with v0 = 1 m s�1, passing through two symmetrical Gaussian sample volumes

centred in a vessel with a radius of 4.2 mm. One of the sample volumes had �sv = 8 mm

(�gure 4.12-a) while in the other �sv = 16 mm. Large sample volumes were used to reduce the

e�ect of transit time broadening so that the expected spectrum could be predicted using the

expressions derived in Chapter 5. The signal was windowed with a 80 ms Hanning window

and the vessel cross-section was sampled with a circular grid where each ow shell had a

width of 2.5 �m.

The derivation of the theoretical Doppler power spectrum obtained from a power law

velocity pro�le under a Gaussian sample volume is presented in Chapter 5. The expression

for the normalised power spectrum from parabolic velocity pro�le under a symmetric Gaussian
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Figure 4.12: Normalised power spectra for parabolic velocity pro�le, v(r) =�
1� (r=R0)

2
�
m s�1, for a vessel with R0 = 4:2 mm. The solid lines represent the theo-

retical spectra, (4.27), and the dotted lines represent the simulated spectra: a) �sv = 8 mm,
b) �sv = 16 mm. Only 1 in every 10 samples of the simulated spectra is displayed to allow
the visualisation of the solid lines. The width of each ow shell is 2.5 �m.

sample volume centred in the vessel is

Snorm(!) = exp

�
�R2

0

�2sv

�
1� !

!d0

��
(4.27)

where !d0 is the angular Doppler frequency shift corresponding to the central streamline

travelling with velocity v0. Expression (4.27) was obtained from (5.35) by making the sub-

stitution, n = 2, and by normalising the spectrum. The experimental spectra were obtained

with the model running in the spectrum mode of operation.

As can be seen from �gure 4.12 the model generates spectra identical to the theoretical

ones for parabolic pro�les for large symmetric Gaussian sample volumes.

It is worth mentioning that when simulating spectra from ow with high velocity gradients

like those plotted in �gure 4.12 the spatial resolution has to be high so that the simulated

spectrum does not contain large frequency gaps which result in ripple.

As an example, �gure 4.13 shows the simulated spectrum for the same parameters as

�gure 4.12-b) but with a lower spatial resolution of the sampling grid. The width of each

ow shell in this case was 15 �m.

In order to make sure that the spectrum generated by the model has no ripple it is

su�cient that the maximum frequency gap between adjacent ow shells is less than the

frequency resolution of the spectrum, being the reciprocal of the window duration.
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Figure 4.13: Normalised power spectrum for parabolic velocity pro�le, v(r) =�
1� (r=R0)

2
�
m s�1, for a vessel with R0 = 4:2 mm illuminated by a symmetric Gaussian

sample volume with �sv = 16 mm. The width of the circular grid ow shells is 15 �m.

4.7 Concluding remarks

Due to the complex nature of the Doppler ultrasound signal backscattered by blood, it was

necessary to develop a model capable of simulating Doppler signals.

The Doppler signal model described in this chapter uses a new formulation for modelling

the Doppler spectrum, which enables to study the e�ect of the characteristics of the blood

velocity measuring system on the Doppler spectrum. One such study is presented in Chapter 6

where the inuence of blood acceleration, data window duration and sample volume size on

the root mean square width of the Doppler spectrum is analysed.

Since the model generates signals whose characteristics are easily controlled and repeated,

its output can be used to carry out experiments under controlled conditions. Thus, the model

may be very useful in the development and testing of new signal processing techniques for

the Doppler ultrasound signal.

The software implementation of the model has two modes of operation, one to generate

simulated random Doppler signals and another to generate the ensemble averaged Doppler

spectrum.

In order to assess the model results, the model was used to generate simulated Doppler

signals for situations in which its characteristics could be predicted. The model outputs were

very similar to those expected.

Although the model results agreed well with the theoretical predictions, it is recognised

that the model should be validated experimentally in the future.

In future the model may evolve to simulate Doppler signals from non laminar ow, for

example helical ow. The current software implementation may be improved in the future

by permitting the simulation of other sample volume shapes and by reducing the execution

times.





Chapter 5

Doppler power spectrum due solely

to the range of blood velocities

passing through a Gaussian sample

volume

5.1 Introduction

Under ideal conditions, the Doppler power spectrum would be determined solely by the range

of blood velocities passing through the sample volume of the ow detector and the frequency

of the emitted ultrasonic beam. Unfortunately that is not generally the case and factors like

the size and shape of the sample volume, the spectral estimation technique used and the time

variation of the velocity �eld also a�ect the Doppler spectrum. Thus, the measured spectrum

results from the contributions of all these factors and the e�ect of the velocity �eld on the

spectrum cannot, in general, be isolated from the rest.

In order to use our model described in the previous chapter to study the individual e�ect

of the various factors to the resulting Doppler spectrum we need to calculate the spectrum

due solely to the range of velocities passing through a sample volume of known form.

We describe in this chapter the derivation of a closed-form expression for the Doppler

spectrum due solely to the range of velocities passing through a Gaussian sample volume

placed anywhere in a vessel where the ow is steady and axisymmetric with a power law

velocity pro�le.

We also present closed form expressions for the mean frequency and root mean square

(rms) width of the Doppler spectrum for the special case of a symmetric Gaussian sample

volume placed in the centre of the vessel.

This work extends the range of beam/ow conditions for which closed-form expressions

for the Doppler spectrum are known.
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98 Chapter 5. Doppler power spectrum from a Gaussian sample volume

5.2 Derivation of the Doppler spectrum

The following analyses make use of the coordinate system de�ned in �gure 5.1. The vessel

cartesian coordinate system is (x; y; z) and the beam coordinate system (x0; y0; z0). The axes
z and z0 are parallel. The origins of both systems, O0 and O, are in the plane perpendicular

to the vessel which includes the centre of the beam sample volume, O0 = (0; y0; z0). The

angle between the beam and vessel axis is �. It is convenient, in some places, to make use of

axial symmetry and use the cylindrical coordinates r, � de�ned in �gure 5.1b. Axisymmetric

ow, uniform backscatter, negligible intrinsic spectral broadening are assumed. The sample

volume sensitivity variation is that measured in situ.
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Figure 5.1: Geometry and coordinate systems: a) cartesian coordinate systems for the
beam/vessel arrangement (x; y; z for the vessel and x0; y0; z0 for the beam), the origins O
and O0 are in a plane perpendicular to the vessel which includes the centre of the beam sam-
ple volume, the axes z and z0 are parallel and point out of the diagram plane; b) cross-section
showing the vessel cartesian and cylindrical coordinate systems.

For uniform blood ow moving through a wide (negligible transit time broadening) ul-

trasound beam each streamline contributes with a single frequency to the Doppler power

spectrum which is [Fish 1986, p. 368]:

S(!) =

Z
�(! � !d(y; z))W (y; z) dydz (5.1)

where ! is the angular frequency, � is the Delta function, !d(y; z) is the Doppler frequency

for the streamline at position y; z, and W (y; z) is the power received from the streamline.



5.2 Derivation of the Doppler spectrum 99

Assuming that the backscatter from blood does not depend on the ow conditions and is

constant over the entire vessel, the power from a streamline is proportional to the integral of

the square of the beam sensitivity, G(x; y; z), along the streamline [Fish 1986, p. 360]

W (y; z) = C

Z
G2(x; y; z) dx (5.2)

where C is a constant incorporating blood backscatter and other factors not dependent on

the beam sensitivity.

Changing (5.1) to cylindrical coordinates:

S(!) =

Z 2�

0

Z R0

0
�(! � !0d(r; �))W

0(r; �) r drd� (5.3)

where r is the radial coordinate, � is the angle coordinate, R0 is the radius of the vessel and

!0d(r; �) and W 0(r; �) are !d(y; z) and W (y; z) in the cylindrical coordinate system.

For axisymmetric ow !0d(r; �) depends only on r and (5.3) can be rewritten as:

S(!) =

Z R0

0
�(! � !0d(r))Wsh(r) r dr (5.4)

where

Wsh(r) =

Z 2�

0
W 0(r; �) d� (5.5)

is the power returned by a shell at a distance r from the centre of the vessel.

If the velocity pro�le is a monotonic function of r then the inverse function, r(!0d), exists
and (5.4) can be simpli�ed by changing the integration variable to !0d and making use of the

�ltering property of the � function:

S(!) =

Z !d0

0
�(! � !0d)Wsh(r(!

0
d)) r(!

0
d)
dr(!0d)
d!0d

d!0d

=Wsh(r(!)) r(!)

���� drd!0d
����
!0
d
=!

(5.6)

for 0 � ! � !d0 and zero otherwise, !d0 is the angular Doppler frequency corresponding

to the velocity of the central streamline. All the following expressions for S(!) are for the

interval 0 � ! � !d0 although no explicit mention of this is made in the text.

In this study we present results for the Doppler spectrum from blood ow with monotonic

velocity pro�les of the form:

v(r) = v0

�
1� rn

Rn
0

�
(5.7)
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which give rise to a Doppler frequency shift:

!0d(r) = !d0

�
1� rn

Rn
0

�
(5.8)

where !d0 is the angular frequency of the shifted signal and is given by the Doppler equation,

!d0 = �2v0 cos(�)!0=c. The minus sign arises from the convention that positive velocities

correspond to moving away from the transducer (negative frequency shift), !0 represents the

angular frequency of the transmitted signal and c is the speed of sound.

For these velocity pro�les the inverse function of !0d(r) is:

r(!0d) = R0

�
1� !0d

!d0

� 1
n

(5.9)

and the derivative of r(!0d) with respect to !0d is:

dr(!0d)
d!0d

= � R0

n!d0

�
1� !0d

!d0

� 1
n
�1

(5.10)

Thus from equations (5.6),(5.9) and (5.10) the Doppler power spectrum is:

S(!) =
R2
0

nj!d0j
�
1� !

!d0

� 2
n
�1

Wsh

 
R0

�
1� !

!d0

� 1
n

!
(5.11)

In order to compute the Doppler power spectrum for di�erent sample volumes we need

only calculate the power from each ow shell, Wsh(r).

5.2.1 Wide uniform beam

For a uniform beam wider than the vessel the power from each streamline is constant,

W 0(r; �) =W , and the Doppler power spectrum is given by:

S(w) = 2�
WR2

0

nj!d0j
�
1� !

!d0

� 2
n
�1

(5.12)

which is equivalent to expressions derived previously by others [Aldis & Thompson 1992,

Bascom & Cobbold 1990, Fish 1986].

5.2.2 Gaussian sample volume

The square of a Gaussian beam sensitivity function in the beam coordinate system is:

G02(x0; y0; z0) = exp

 
� x02

2�2x0
� y02

2�2y0
� z02

2�2z0

!2

(5.13)
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where �x0 ; �y0 and �z0 are the rms widths of the beam sensitivity along the x0; y0 and z0 axes
respectively. Equation (5.13) can be transformed into the vessel coordinate system by the

transformations:

x0 = x cos(�)� (y � y0) sin(�) (5.14)

y0 = x sin(�) + (y � y0) cos(�) (5.15)

z0 = z � z0 (5.16)

which gives:

G2(x; y; z) = exp

 
�(z � z0)

2

�2z0
� ((y � y0) cos(�) + x sin(�))2

�y02

�(x cos(�)� (y � y0) sin(�))
2

�x02

!
(5.17)

Expressing the argument of the exponential as a second order polynomial in x leads to:

G2(x; y; z) = exp
�
p2 + p1 x+ p0 x

2
�

(5.18)

with polynomial coe�cients given by:

p0 = �cos2(�)

�2x0
� sin2(�)

�2y0
(5.19)

p1 = 2 cos(�) sin(�)

 
1

�2x0
� 1

�2y0

!
(y � y0) (5.20)

p2 = �(z � z0)
2

�2z0
�
 
cos2(�)

�2y0
+
sin2(�)

�2x0

!
(y � y0)

2 (5.21)

The power received from each streamline can be evaluated from (5.2) using the standard

result [Gradshtein & Ryzhik 1980, p. 307]:

Z 1

�1
exp

��p2 x2 � q x
�
dx =

p
�

p
exp

�
q2

4p2

�
p > 0 (5.22)

giving,

W (y; z) =
C
p
�p�p0 exp

��p12
4 p0

+ p2

�
p0 < 0 (5.23)

which, after substitution of the p coe�cients and some algebraic simpli�cations is:

W (y; z) = K exp

 
�(z � z0)

2

�2z0
� (y � y0)

2

�2y0 cos
2(�) + �2x0 sin

2(�)

!
(5.24)
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where K is a constant given by,

K =
C
p
� �x0 �y0q

�2y0 cos
2(�) + �2x0 sin

2(�)
(5.25)

Equation (5.24) is a two dimensional Gaussian function which can be re-written, for

simplicity, as:

W (y; z) = K exp

�
�(z � z0)

2

�2z
� (y � y0)

2

�2y

�
(5.26)

�z = �z0 (5.27)

�y =
q
�2y0 cos

2(�) + �2x0 sin
2(�) (5.28)

Changing now to cylindrical coordinates using the transformations y = r cos(�), z =

r sin(�) and making use of standard trigonometric identities gives:

W 0(r; �) = K exp

�
� z20
�2z
� y20
�2y

�
exp

 
�r2 �

2
z + �2y
2�2z �

2
y

!

� exp

0
@�r2 �2z � �2y

2�2z�
2
y

cos(2�) + 2 r

q
�4yz

2
0 + �4zy

2
0

�2z�
2
y

cos(�� �)

1
A (5.29)

where � = arctan(z0 �
2
y=y0 �

2
z) and � = 0 if y0 = z0 = 0.

The power from each ow shell is:

Wsh(r) =

Z 2�

0
W 0(r; �) d�

= K exp

�
� z20
�2z
� y20
�2y

�
exp

 
�r2 �

2
z + �2y
2�2z �

2
y

!

�M

0
@2 r

q
�4yz

2
0 + �4zy

2
0

�2z�
2
y

; �r2 �
2
z � �2y
2�2z�

2
y

; �

1
A (5.30)

where M(a; b; �) is given by:

M(a; b; �) =

Z 2�

0
exp (a cos(�� �) + b cos(2�)) d�

= 2�

"
I0(a)I0(b) + 2

1X
k=1

I2k(a)Ik(b) cos(2k�)

# (5.31)

where the Ik are modi�ed Bessel functions of order k. See appendix A for the derivation of

the above result.
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The Doppler power spectrum can then be calculated from (5.11) and (5.30) giving,

S(!) =
K R2

0

nj!d0j exp
�
� z20
�2z
� y20
�2y

��
1� !

!d0

� 2
n
�1

exp

 
�R2

0

�2z + �2y
2�2z �

2
y

�
1� !

!d0

� 2
n

!

�M

0
@2R0

q
�4yz

2
0 + �4zy

2
0

�2z�
2
y

�
1� !

!d0

� 1
n

; �R2
0

�2z � �2y
2�2z �

2
y

�
1� !

!d0

� 2
n

; �

1
A (5.32)

For the speci�c case [� = 90o; �y0 ; �z0 � �x0 ; z0 = y0 = 0 ] expression (5.32) for the

Doppler power spectrum is the same as those derived previously by [Aldis & Thompson

1992, Bascom & Cobbold 1990]. For these conditions, note that the values of �x0 ; �y0 ; �z0 here

are greater, by a factor of
p
2, than the corresponding variables used by the cited authors.

In the general case the Doppler spectrum can be calculated using (5.32), but when the

sample volume/vessel arrangement exhibits symmetry, �y = �z, or the sample volume is

placed at the centre of the vessel, y0 = z0 = 0, the expression can be simpli�ed. Moreover,

when the sample volume is symmetric and centred in the vessel, analytical expressions for

the Doppler spectral width and mean frequency can be derived.

5.2.3 Symmetric sample volume

When �y = �z = �sv the power from the streamlines, W (y; z), is symmetric in relation to

the centre of the sample volume, the second argument of M(a; b; �) in equation (5.32) is zero

and the Doppler spectrum is given by,

S(!) =
2�K R2

0

nj!d0j exp

�
�z

2
0 + y20
�2sv

��
1� !

!d0

� 2
n
�1

� exp

 
�R2

0

�2sv

�
1� !

!d0

� 2
n

!
I0

 
2R0

p
z20 + y20
�2sv

�
1� !

!d0

� 1
n

!
(5.33)

5.2.4 Sample volume centred in the vessel

When the sample volume is centred in the vessel (y0 = z0 = 0), the �rst argument of M(a; b; �)

in equation (5.32) is zero and the Doppler spectrum is:

S(!) =
2�K R2

0

nj!d0j
�
1� !

!d0

� 2
n
�1

exp

 
�R2

0

�2z + �2y
2�2z �

2
y

�
1� !

!d0

� 2
n

!

� I0

 
�R2

0

�2z � �2y
2�2z �

2
y

�
1� !

!d0

� 2
n

!
(5.34)

5.2.5 Symmetric sample volume centred in the vessel

If the sample volume is centred in the vessel (y0 = z0 = 0) and the power from each streamline

is a Gaussian function symmetric in relation to the centre of the sample volume (�y = �z =
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�sv), the �rst and second arguments of function M are zero and (5.32) can be signi�cantly

simpli�ed because M(0; 0; �) = 2�. The expression for the Doppler spectrum can then be

re-written as:

S(!) =
2�K R2

0

nj!d0j
�
1� !

!d0

� 2
n
�1

exp

 
�R2

0

�2sv

�
1� !

!d0

� 2
n

!
(5.35)

For this special case with maximum symmetry we can derive analytical expressions for

the Doppler mean frequency and rms spectral width as functions of the velocity pro�le and

sample volume size.

Mean frequency and rms spectral width

As already mentioned in Chapter 2, we use the rms width, �, as the measure of spectral

width. It is de�ned as,

� =
1

2�

sR
(! � !)2 S(!) d!R

S(!) d!
(5.36)

where ! is the mean angular frequency,

! =

R
!S(!) d!R
S(!) d!

(5.37)

and the mean frequency is:

f =
!

2�
(5.38)

The expressions for the mean frequency and rms spectral width may be re-written as:

f =
1

2�
� 
1


0
(5.39)

� =
1

2�

sR
!2S(!) d!R
S(!) d!

� !2

=
1

2�

s

2


0
�
�

1


0

�2
(5.40)

where 
m represents the moment of S(!) of order m,


m =

Z
!mS(!) d! (5.41)

To evaluate the moments for the power spectrum de�ned by equation (5.35) we make the

substitution u = (1�!=!d0)
1=n and note that the spectrum is only not zero for 0 � ! � !d0.
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Thus:


m =

Z !d0

0
!mS(!) d!

= nK 0!m+1
d0

Z 1

0
(1� un)m u e�(�u)

2
du

(5.42)

where K 0 and � are constants de�ned by:

K 0 =
2�K R2

0

nj!d0j (5.43)

� =
R0

�sv
(5.44)

The 
m can be expressed as a sum of integrals of the form

Xp(�) =

Z 1

0
upe�(�u)

2
du

=

8>>>>><
>>>>>:


�
1+p
2 ; �2

�
2�p+1

, � > 0

1

p+ 1
, � = 0

(5.45)

where (a; x) is the incomplete gamma function de�ned by [Abramowitz & Stegun 1972,

p. 260] as:

(a; x) =

Z x

0
ta�1e�t dt (5.46)

The �rst three moments of S(!) are,


0 = nK 0!d0
Z 1

0
ue�(�u)

2
du

= nK 0!d0X1(�) (5.47)


1 = nK 0!2d0

Z 1

0
(1� un) ue�(�u)

2
du

= nK 0!2d0 [X1(�)�Xn+1(�)] (5.48)


2 = nK 0!3d0

Z 1

0
(1� un)2 ue�(�u)

2
du

= nK 0!3d0 [X1(�)� 2Xn+1(�) +X2n+1(�)] (5.49)
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The mean frequency may be computed by substituting 
0 and 
1 in equation (5.39):

f(n; �) =
!d0
2�

�

8>>>>><
>>>>>:
1� 

�
n=2 + 1; �2

�
�n+2

�
1� e��2

� , � > 0

n

n+ 2
, � = 0

(5.50)

and the rms width is from equation (5.40):

�(n; �) =
j!d0j
2�

s
X1(�) � 2Xn+1(�) +X2n+1(�)

X1(�)
�
�
X1(�)�Xn+1(�)

X1(�)

�2

=
j!d0j
2�

s
X1(�)X2n+1(�) �X2

n+1(�)

X2
1 (�)

=
j!d0j
2�

�

8>>>>>><
>>>>>>:

q�
1� e��2

�
(n+ 1; �2)� 2(n=2 + 1; �2)

�n
�
1� e��2

� , � > 0

n

n+ 2

r
1

n+ 1
, � = 0

(5.51)

5.3 Experiments

In order to study the e�ect of the dimensions and position of a Gaussian sample volume on the

mean frequency and width of the Doppler spectrum, the expressions derived in the previous

section were used to compute the Doppler spectrum for various beam/vessel arrangements.

The mean Doppler frequency and the spectral width were computed using expressions

(5.36) to (5.38), the only exception being the case of a symmetrical sample volume centred

in the vessel for which expressions (5.50) and (5.51) were used.

Data was computed for three velocity pro�les corresponding to n = 2, n = 5 and n = 9.

Data for other velocity pro�les with a power law could have been computed but a large

number of plots would make the diagrams di�cult to read and interpret.

Firstly, the general case of a Gaussian sample volume placed at various positions in the

vessel was studied. Next, other cases in which the sample volume is either symmetric or

centred in the vessel were considered, and �nally the special case of a symmetric sample

volume centred in the vessel.
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5.4 Results

5.4.1 Non-symmetric sample volumes

Figure 5.2 shows, as an example, the Doppler power spectra normalised to a maximum of

unity for a parabolic velocity pro�le. The spectra were obtained using equation (5.32) for

three Gaussian sample volumes with centres placed at nine di�erent locations as de�ned in

�gure 5.3. The three sample volumes have constant �z = 0:25R0 and �y = �z; 3�z and 5�z.

As the sample volume centre moves from the vessel centre to the vessel wall the spectra

widen and the peak frequency moves to lower frequencies. For the elongated sample volumes

this peak frequency shift is more sensitive to movement of the sample volume centre along the

z direction than along the y direction. Elongation of the sample volume leads to an increase

in spectral width.

0 0.5 1
0

0.5

1

ω / ωd0

N
or

m
 S

(ω
)

g)

0 0.5 1
0

0.5

1

ω / ωd0

h)

0 0.5 1
0

0.5

1

ω / ωd0

z 0
=

 0

i)

0 0.5 1
0

0.5

1

N
or

m
 S

(ω
)

d)

0 0.5 1
0

0.5

1

e)

0 0.5 1
0

0.5

1

z 0
=

 0
.2

5 
R

0
f)

0 0.5 1
0

0.5

1

N
or

m
 S

(ω
)

y0= 0

a)

0 0.5 1
0

0.5

1
y0= 0.25 R0

b)

0 0.5 1
0

0.5

1

z 0
=

 0
.5

 R
0

y0= 0.5 R0

c)

Figure 5.2: Normalised Doppler spectra from parabolic velocity pro�le using Gaussian sample
volumes placed at the positions set in �gure 5.3: �z = 0:25R0; , �y = �z; , �y = 3�z ;

, �y = 5�z .
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−R

 0
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Figure 5.3: Locations of the sample volume in the vessel for computing the results shown
in �gures 5.2, 5.4 and 5.5. The lines in the centre of the vessel are iso-sensitivity curves for
G2(y; z) = exp(�1=2): �z = 0:25R0; , �y = �z; , �y = 3�z; , �y = 5�z .
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Figure 5.4: Normalised Doppler spectral width from Gaussian sample volumes centred on
the positions set in �gure 5.3: �z = 0:25R0; , n = 2; , n = 5; , n = 9.
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Figures 5.4 and 5.5 present the normalised spectral width and normalised Doppler mean

frequency for Doppler signals generated by three velocity pro�les, n = 2; 5 and 9. The

sample volumes have the same characteristics as those used to compute the power spectra

displayed in �gure 5.2 and were placed at the same positions in the vessel. The normalisation

of the plots is performed by dividing the spectral width and mean frequency values by fd0

(= !d0=(2�)), the Doppler frequency shift for the mid-stream velocity.

The spectral width increases with sample volume size and with decreasing n value as the

range of velocities involved increases. As expected, �=jfd0j is more sensitive to the position

of the smaller sample volumes than to the position of the larger ones.
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Figure 5.5: Normalised mean frequency for the Doppler signal from Gaussian sample volumes
centred on the positions set in �gure 5.3: �z = 0:25R0; , n = 2; , n = 5; , n = 9.

As can be seen from �gure 5.5 the mean frequency generally decreases as the size of the

sample volume increases. This decrease is more noticeable for the parabolic velocity pro�le

than for the higher order velocity pro�les because the later are much atter than the former.

In the positions where y0 = 0:5R0 the mean frequency is almost constant, even for the

parabolic pro�le case, over the range of sample volume sizes studied. Probably the increased

range of velocities due to the larger sample volume compensates the higher weighting of the

slow moving ow shells.
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5.4.2 Sample volumes with some symmetry

Symmetric sample volume

Figure 5.6 shows the normalised spectral width and normalised mean frequency of three

symmetric Gaussian sample volumes as a function of the distance between the centre of the

sample volume and the centre of the vessel. In this case the spectra were calculated using

equation (5.33).
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Figure 5.6: Normalised Doppler spectral width a) and normalised Doppler mean frequency b)
from symmetric Gaussian sample volumes not centred in the vessel: , n = 2; , n = 5;

, n = 9.

Neither the spectral width nor the mean frequency depend signi�cantly on the position

of the sample volume within the vessel when using large symmetric sample volumes since the

vessel can be considered 'spanned' by the sample volume in all the positions considered.

For the smaller sample volumes the mean frequency decreases as the distance between the

centre of the vessel and the centre of the sample volume increases and the velocities within

the sample volume shift to lower values. On the other hand the spectral width increases with

an increase in the range of velocities but only up to a maximum that depends on the velocity

pro�le and the size of the sample volume. After this maximum the velocity range within the

sample volume decreases as part of the sample volume moves out of the vessel.

Sample volume centred in the vessel

Figure 5.7 shows the normalised spectral width and mean frequency of centred Gaussian

sample volumes as a function of sample volume size. The spectra were calculated using

equation (5.34).
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Figure 5.7: Normalised Doppler spectral width a) and normalised Doppler mean frequency b)
from non-symmetric Gaussian sample volumes centred in the vessel: , n = 2; , n = 5;

, n = 9.

The plots show, as expected, an increase of the Doppler spectral width and a decrease of

the mean frequency with increasing sample volume size as a result of an increasing range of

velocities passing through the sample volume. The mean frequency and spectral width are

largely independent of sample volume size provided it is su�ciently large to span the vessel.

Symmetric sample volume centred in the vessel

Figure 5.8 shows the normalised spectral width and the normalised mean frequency for the

Doppler spectrum described by (5.35). In this case these quantities can be calculated using

equations (5.50) and (5.51).
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As expected, the spectral width decreases with decreasing sample volume size (increasing

�) and decreasing range of velocities within the sample volume (increasing n). The mean

frequency approaches fd0 as the sample volume decreases in size. When the ultrasonic beam

is uniform and in�nitely wide, � = 0, the normalised rms spectral width reaches its maximum

value and the mean frequency its minimum value determined by the average velocity within

the vessel.

5.5 Concluding remarks

Previous investigations into closed-form expressions relating Doppler spectra to ultrasound

beam characteristics [Aldis & Thompson 1992, Bascom & Cobbold 1990] were valid only for

very long sample volumes (continuous wave Doppler systems) and assumed that the centre of

the sample volume was aligned with the centre of the vessel. We have derived an analytical ex-

pression for the Doppler power spectrum due solely to the range of velocities passing through

a Gaussian sample volume placed anywhere within axisymmetric ow thereby extending the

range of conditions for which closed-form expressions are available. Our formulation allows

the speci�cation of the sample volume position and the independent speci�cation of its width

in the three dimensions and should enable simpler estimations of spectral shape for pulsed

wave systems.

In order to derive the Doppler spectrum we have computed the power received from

each ow shell by integrating the contribution of each streamline at a constant distance

from the centre of the vessel. Although our method is valid for steady axisymmetric ow

with monotonic (in r) velocity pro�les we have presented only expressions for the Doppler

spectrum from blood ow with a simple power law which is the most common description for

physiologic velocity pro�les.

For sample volume/vessel arrangements with some symmetry (sample volumes centred

in the vessel and/or sample volumes symmetric with respect to its centre) several simpler

expressions were derived for the Doppler power spectrum. These simpler expressions allow

the study of the inuence of the position and shape of a Gaussian sample volume on the

Doppler power spectrum.

The expressions derived ignore the e�ects of intrinsic spectral broadening, �nite spectral

estimator resolution and unsteady ow and are limited to Gaussian sample volumes and

axisymmetric ow. However, in many situations the range of blood velocities within the

sample volume is the dominant factor in determining spectral shape and width and in these

cases it should be possible to express the e�ect of deviations from a Gaussian shape and the

factors tending to broaden the spectrum as perturbations on the spectra derived using the

techniques described in this work.



Chapter 6

Spectral broadening in the Doppler

signal|a model based study

6.1 Introduction

The measured spectrum of the Doppler signal depends on the spatial and temporal variation

of velocity, sensitivity variation within the sample volume, deviations from plane-wave con-

ditions and window type and length. Clearly if the sample volume is very small, intrinsic

broadening will dominate and the other factors will have a negligible e�ect. If the blood expe-

riences a large acceleration for a long data window, the sample volume is large and the range

of velocities passing through the sample volume is small, the spectrum will be dominated by

nonstationarity broadening.

A better knowledge of the e�ect of all these contributory factors may allow for partial

correction of the Doppler spectrum and an increase in the accuracy of velocity estimation,

lesion detection and lesion size quanti�cation. In order to make these corrections, simple

but accurate methods of estimating the spectral shape from knowledge of the time-varying

velocity pro�le, sample volume and spectral estimator characteristics would be useful in order

to develop solutions to the inverse problem.

In this chapter we present a study showing the inuence of blood acceleration, sample

volume size and window length on the rms width of the Doppler power spectrum. We also

present a simple estimation formula for the rms spectral width of Doppler spectra.

We use the rms spectral width to measure the width of the Doppler spectrum because, as

mentioned in Chapter 2, this measure potentially allows correction for two spectral broadening

mechanisms, window and non-stationarity broadening [Wang & Fish 1997].

113
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6.2 Separation of factors a�ecting the Doppler spectrum

Various spectral estimation techniques currently in use to estimate the Doppler spectrum were

introduced in Chapter 2. Although, various authors have suggested that some of the more

recent time-frequency distributions, like the BD [Guo et al. 1994a] and the CWD [Cardoso

et al. 1996], give better spectral estimates than the more traditional ones (spectrogram,

ARMA modelling), we opted to use the spectrogram because it is the spectral estimation

technique most frequently used in clinical applications.

In order to see the e�ect of the various components on spectral width it is useful to return

to the time signal in (4.10) and to attempt to separate out these components.

We start with the Doppler signal given by (4.10),

s(t) =
X
q

X
m

Aqm e�j(2 cos(�)kxqm(t)+�qm)Gqm(t)

The signal during the window centred on time tw is:

sw(t; tw) = w(t� tw)
X
q

X
m

Aqm e�j(2 cos(�)kxqm(t)+�qm)G(xqm; yqm; zqm) (6.1)

Substituting xqm from (4.8), putting tr = tw,

�1qm = �qm + 2 cos(�)k xqm(tw) (6.2)

and

vqm(t) = vqm(tw) + vdqm(t) (6.3)

where vdqm(t) is the di�erence between the velocity of the elemental volume and the mid-

window velocity (vqm(tw)). We then obtain:

sw(t; tw) = w(t� tw)
X
q

X
m

Aqm e�j(2 cos(�)k(vqm(tw)(t�tw)+
R t
tw

vdqm(�) d�)+�1qm)

�G
�
xqm(tw) + vqm(tw)(t� tw) +

Z t

tw

vdqm(�) d� ; yqm; zqm

�
(6.4)

Extracting a factor e�j!(tw)(t�tw)e�j
R t
tw

!d(�) d� where !(tw) is the mid-window mean Doppler

frequency and !d(tw) is the deviation from this during the window period, we can write:

s(t; tw) = smod(t; tw)w1(t; tw)sb(t; tw) (6.5)
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where

smod(t; tw) = e�j!(tw)(t�tw) (6.6)

w1(t; tw) = w(t� tw) e
�j R t

tw
!d(�) d� (6.7)

sb(t; tw) =
X
q

X
m

Aqm e�j(2 cos(�)k((vqm(tw)�v(tw))(t�tw)+
R t
tw
(vdqm(�)�vd(�))d�)+�1qm)

�G
�
xqm(tw) + vqm(tw)(t� tw) +

Z t

tw

vdqm(�) d� ; yqm; zqm

�
(6.8)

and

v(t) = v(tw) + vd(t) (6.9)

is the spatial mean blood velocity within the sample volume, vd(t) is the di�erence between

this and the mid-window velocity v(tw). The corresponding Doppler frequencies are !(t) and

!d(t); (i.e. !(t) = 2 cos(�)k v(t)).

The �rst term in (6.5), smod(t; tw), is a modulation at the mean Doppler shift frequency

calculated from the spectrum at time tw. In the frequency domain this is a shift to frequency

!(tw) which means that the remainder of the signal is base-band (centred on zero frequency).

The term w1(t; tw) is a complex chirp with an envelope equal to the window function and

a frequency variation given by the acceleration-induced change in spatial mean frequency

during the window.

The remaining term sb(t; tw) describes the e�ect of the beam (G(:)) - intrinsic spectral

broadening - and the velocity variation within the sample volume. The modulation term

e�j2 cos(�)k(vqm(tw)�v(tw))(t�tw) supplying a frequency component to the base-band spectrum

determined by the deviation of the element velocity from the spatial mean velocity of the

blood within the sample volume at time tw and the chirp term e�j2 cos(�)k
R t
tw
(vdqm(�)�vd(�))d�

broadening each component according to the deviation of the time-variation of the element

velocity from the time-variation of the spatial mean blood velocity within the window dura-

tion.

6.2.1 E�ect of window and acceleration

If the temporal variation of the blood velocity within the window duration is zero (vd(t) =

vqm = 0) or negligible then the windowed signal (6.5) is:

s(t; tw) = e�j!(tw)(t�tw)w(t� tw)sb(t; tw) (6.10)

where w(t) is the window function. The energy spectrum of the windowed signal is [Papoulis

1991]

S(!) = Sb(! � !(tw)) � jW (!)j2 (6.11)



116 Chapter 6. Spectral broadening in the Doppler signal|a model based study

whereW (!) is the Fourier transform of w(t), Sb(!) is the unwindowed signal base-band signal

spectrum, and � denotes convolution. Since variances add during convolution [Bracewell

1986],

� =
q
�2b + �2w (6.12)

where �b and �w are the rms width of Sb(!) and jW (!)j2 respectively. The width �w of the

window spectrum is inversely proportional to the time duration, TD, of the window function.

For the case of the Hanning window, for example, �w is given by,

�w(Hanning) =
1p
3TD

(6.13)

Note that �w is �nite, and therefore the rms spectral width usable, only if the second moment

of jW (!)j2 is convergent (that is jW (!)j2 decreases faster than 1=!2 as ! !1). This is true

for the Hanning and Bartlett windows, for example, but not for the Boxcar and Hamming

[Papoulis 1988].

In accelerating or decelerating ow equations (6.11) and (6.12) are replaced by:

S(!) = Sb(! � !(tw)) � jW1(!)j2 (6.14)

� =
q
�2b + �21 (6.15)

where W1(!) is the Fourier transform of w1(t; tw) [Fish 1991] and incorporates the change in

spatial mean velocity during the window period, and �1 is the rms width of jW1(!)j2 .

This change also leads to an increase in spectral width [Fish 1991] and in this case this

non-stationarity broadening increases with an increase in window duration TD. Fish [1992]

and Wang & Fish [1997] discuss two methods of correcting for this combined window and

non-stationarity broadening.

A closed form expression for jW1(!)j2 and �1 exists if the mean frequency of the signal

varies at a constant rate, � (constant acceleration) during the window period, the window is

an even function with a long duration and intrinsic broadening is small - that is jW1(!)j2 is
dominated by the e�ect of mean frequency variation. Under these conditions the stationary

phase method can be used to compute jW1(!)j2 [Skolnik 1970, Papoulis 1988, Fish 1991],

giving:

jW1(!)j2 � w2 (!=2��)

2��
(6.16)

and:

�1 = ��t =
!0 cos(�)a�t

�c
(6.17)
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where !0 is the angular frequency of the transmitted ultrasonic wave, c is the speed of sound

in blood and �t is the rms width of w2(t) and we have related � to the acceleration a using

the standard Doppler equation. For the case of the Hanning window �t is given by,

�t(Hanning) =
TD
2�

r
2�2 � 15

6
(6.18)

Thus, when the Doppler spectrum width is dominated by nonstationarity broadening the

spectral width is proportional to the rate of frequency variation and to the width of the

squared window function.

Although it has been shown [Fish 1991] that in the case of the Gaussian window and

constant acceleration, non-stationarity (��t) and window broadening (�w) can be combined

to give:

�1 =
q
�2w + �2�2t (6.19)

this is also a very good approximation for the Bartlett and Hanning windows. Comparison

of this approximate formula with a rms width calculated from jW1j2 shows that it gives an
error of less than 1% over a � range of 0{0.2 kHz=ms and window duration TD of 1{40 ms.

Note, however, that the above addresses only the e�ect on the spectral width due to mean

frequency variation. Blood acceleration also has an e�ect on the base band signal sb(t; tw)

spectrum (see (6.8)) by means of the spread of blood acceleration within the sample volume

and distorting the shape of G(:) as a function of time.

The e�ect of acceleration on intrinsic spectral broadening cannot be simply expressed in

the general case. However, limiting the consideration to constant acceleration aqm the term

governing intrinsic broadening becomes:

G
�
xqm(tw) + vqm(tw)(t� tw) +

Z t

tw

vdqm(�) d� ; yqm; zqm

�
=

G
�
xqm(tw) + vqm(tw)(t� tw) +

aqm
�
t2 � t2w

�
2

; yqm; zqm

�
(6.20)

For a Gaussian G(:), taking the position origin to be the centre of the beam, putting

xqm(tw) = 0 and tw = 0 (these conditions merely simplify the expression, they do not a�ect

the shape of G(:) or its spectrum) and dropping the subscripts, we have:

G
�
xqm(tw) + vqm(tw)(t� tw) +

Z t

tw

vdqm(�) d� ; yqm; zqm

�
=

exp
�
�
�
v(0)t+ at2=2

�2
2�2sv

�
(6.21)

The width of the energy spectrum of this signal determines the degree of intrinsic broad-
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ening but no simple expression for this or its width (except for the a = 0 case) has been found.

However, it is possible to derive an index which determines the degree to which acceleration

distorts the shape of G(:) and therefore the width of its spectrum.

The degree of distortion is clearly governed by the ratio of the term at2=2 to v(0)t. At a

time given by v(0)t = �sv this ratio is:

Id =
a�sv
2v(0)2

(6.22)

Considering an extreme case of �sv = 2 mm and a = 50 m s�2 a scatterer starting at rest
at the `edge' of the beam (3�sv from the centre) will have a velocity of 0.775 m s�1 at the

centre giving Id = 0:083. The plot of G(:) for this case compared with that for the same

beam width and mid-beam velocity but zero acceleration is shown in �gure 6.1a.
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Figure 6.1: E�ect of acceleration on (a) G = exp
� �(v(0)t+at2=2)2

2�2sv

�
and (b) its spectrum.

v(0) = 0:775 m s�1, �sv = 2 mm. Dashed line - a = 0 m s�2, continuous line - a = 50 m s�2.

Their normalised energy spectra are shown in �gure 6.1b. The rms width of the a =

0 m s�2 and a = 50 m s�2 spectra are 43.6 Hz and 42.6 Hz respectively. Note that the

di�erence (1 Hz) is negligibly small. For ow conditions giving Id values of 0.083 or less it is

clear that the e�ect of acceleration on intrinsic spectral broadening may be neglected.
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6.2.2 E�ect of velocity pro�le and sample volume size.

In steady ow the spectrum is unchanging, the window can be su�ciently large to have a

negligible broadening e�ect and there is clearly no non-stationarity broadening. The spectrum

shape and width are determined solely by the sensitivity variation within the sample volume

and the velocity pro�le.

In general there is no closed form expression for the spectrum shape and width and these

are found only for particular cases.

Uniform sensitivity and nth power pro�le

One of these cases, uniform sensitivity over the vessel cross-section with a sample volume

width in the direction of ow su�ciently wide such that intrinsic broadening is negligible,

together with a velocity pro�le of the form:

vq = v0 (1� (rq=R0)
n) (6.23)

where rq is the distance of the elemental tube q from the centre of the vessel and v0 is the

velocity at the centre of the vessel, is well known (see for example [Fish 1986]). In this case:

S(!) =
C2�R2

0

n j!d0j (1� !=!d0)
(1�2=n) (U(!)� U(! � !d0)) (6.24)

where U(!) is the unit step function and C is a constant depending on instrument sensitivity

and blood backscatter.

For a parabolic pro�le (n = 2) the spectrum is constant from zero to !d0. The rms width,

from (2.39) and (6.24) is:

� =
j!d0j
2�

n

n+ 2

r
1

n+ 1
(6.25)

Figure 6.2 shows the power law velocity pro�le and the normalised Doppler spectrum for

n = 2; 4 and 8.

Gaussian sample volume and nth power pro�le

Another case for which closed form expressions exist is the one of a Gaussian sample volume

in a power law velocity pro�le (6.23).

An analytical expression (5.32) for the Doppler spectrum from a generic Gaussian sample

volume placed anywhere in a vessel with a power law velocity pro�le was derived in Chapter 5.

Plots of the Doppler spectrum for Gaussian sample volumes of various sizes placed at di�erent

positions in a blood vessel can also be found in Chapter 5 (�gure 5.2).
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Figure 6.2: Velocity pro�le and normalised Doppler spectrum for n = 2; 4 and 8. The spectra
were normalised to have a unit area below the curve.

6.2.3 Intrinsic spectral broadening.

It is not easy to see how the e�ect of intrinsic spectral broadening on the spectrum as a

whole rather than the components arising from individual streamlines can be calculated.

The di�culty arises because the width of G(:) as a function of time depends on the velocity

of the streamline as well as the sensitivity variation (G(:) as a function of distance) along

the streamline. It is therefore not possible to separate this factor out from (6.8). However,

if we restrict attention to the case when the range of velocities within the sample volume is

small (small sample volume and/or sample volume centred in blunt pro�le ow) then vqm(tw)

and vdqm(t) may be replaced by the spatial mean velocities within the argument of G(:). If,

further, we restrict attention to the case where the shape of G(:) and width ( as a function of

x or t) is approximately independent of y and z (or q) and changes only in amplitude between

streamlines, then the signal from each element in (6.8) is multiplied by a time function having

the form:

G

�
xqm(tw) + v(tw)(t� tw) +

Z t

tw

vd(�) d� ; y0; z0

�
(6.26)

where y0 and z0 are the y and z coordinates of the sample volume centre. Thus the base-band

spectrum Sb(!) can be written:

Sb(!) = Sb1(!) � SG(!) (6.27)

where Sb1(!) and SG(!) are the baseband spectrum without intrinsic broadening and the

energy spectrum of G
�
v(tw)(t� tw) +

R t
tw
vd(�) d� ; y; z

�
respectively ( note that the constant
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xqm(tw) does not a�ect the spectrum). In this case we can also write:

�b =
q
�2b1 + �2G (6.28)

where �b1 and �G are the rms widths of Sb1(!) and SG(!) respectively.

Although we have derived this result under the condition of small velocity range we expect

to be able to use (6.28) more widely since an increasing velocity range leads to a higher �b1,

thereby dominating �G and making inaccuracy in this irrelevant.

6.2.4 Variation of acceleration

Note that, referring back to (6.8), �b1 is determined not only by the mid-window range of

velocities vqm(tw)� v(tw) within the sample volume but also by the variation of acceleration

within the sample volume and window - determined by the term
R t
tw
(vdqm(�)� vd(�))d� . It

is not easy to see how to separate the e�ect of these terms without a priori knowledge of the

time-varying pro�le. In an attempt to overcome this problem we briey explore the e�ect of

assuming that �b1 is dominated by the e�ect of the mid-window velocity variation and that

the e�ect of acceleration variation is negligible.

If the acceleration for each streamline is approximately constant in time and the range of

accelerations within the sample volume is �a then the error in the spectral width �b1 arising

from the assumption that �a is negligible will be �r ' �t!0�a cos(�)=(�c).

The magnitude of this error can be estimated for typical ow patterns by using equations

(4.21) to (4.23). For example, using a velocity waveform typical of that found in the femoral

artery, a transmitted frequency of 5 MHz, a centred sample volume with a width of 0.5 of

the vessel diameter and �t = 5:66 ms (corresponding to a Hanning window width of 40 ms),

the velocity, acceleration range and �r have been calculated and shown in �gure 6.3.

The maximum error, within the accelerative phase of systole is approximately 40 Hz. It

will be lower for smaller sample volumes and window durations.

6.2.5 Approximate spectral width.

It follows from the above that, under the conditions speci�ed, (6.15), (6.19) and (6.28) may

be combined to give:

� =
q
�2b1 + �2G + �2w + �2�2t (6.29)

noting that acceleration may be neglected in calculating �G and that, if the range of accel-

eration within the sample volume may be neglected and the sample volume is symmetrical

Gaussian and centred on the vessel carrying blood with a power-law pro�le, closed form ex-

pressions exist for all the terms in (6.29). Speci�cally, �b1 is given by (5.51), �G is the rms

width of the energy spectrum of exp
�
� v2dt

2

2�2sv

�
,
�
�G = vd

2��sv
p
2

�
, �w is the rms width of the

energy spectrum of the window (given by (6.13) for the Hanning window), ��t is given by
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Figure 6.3: Derivation of typical error in spectral width assuming acceleration range in sample
volume is negligible. (a) Mean velocity waveform �v(t) (m s�1). (b) Maximum-minimum ve-
locity �v (m s�1) in radius range 0{0.5R0. (c) Maximum-minimum acceleration �a (m s�2)
in radius range 0{0.5R0. (d) Acceleration related error in spectral width �r (Hz).

(6.17) and �t (the rms width of the window function squared) is given by (6.18) for a Hanning

window.

Figure 6.4 shows the expected spectral broadening due to each of the factors considered

separately: window broadening, nonstationarity broadening, transit time broadening and the

spectral width due to the range of velocities passing through the sample volume.

The plot for the transit time broadening is computed for a streamline velocity of 1 m s�1.
For a given sample volume �G is proportional to velocity. It can be seen that for nonstationary

Doppler signals an increase of the window duration a�ects the spectral width in two opposite

directions; it decreases window broadening but increases the nonstationary broadening. The

sample volume size also a�ects the spectral width in two ways; for a speci�c velocity pro�le

a larger sample volume reduces transit time broadening but increases the spectral width

as a result of the velocity range increase. Note that this will only be true if we consider

sample volume change without shape change since the spatial velocity variation is in a plane

orthogonal to the axis along which transit-time broadening is determined.
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Figure 6.4: Spectral width due to each of the broadening factors. The data was obtained
with the following parameters: transmitted frequency, 5 MHz; � = 60o; c = 1540 m s�1 and
R0 = 4:2 mm. The transit time broadening displayed is for a single streamline in the centre
of the vessel with v0 = 1 m s�1.

6.3 Simulation experiments

Unfortunately, in the general case when the spectral width is dependent on the range of veloc-

ities within a non-centred sample volume and/or having a non-Gaussian sensitivity function

together with window and acceleration-induced broadening a simple expression is not avail-

able and it is necessary to �nd the spectrum from numerical calculations. However, it is

possible to use the theoretical results of the preceding sections to calculate the spectral width

in limited circumstances and it is the purpose of the following experiments to compare the

results of the spectral width estimation given by the approximate formula (6.29) with those

given by the computer signal model in order to gauge its accuracy over a range of ow and

measurement conditions.

The experiments were carried out with the same parameters as used in Chapter 4 (page

89), the sample volume was Gaussian with spherical symmetry and with a sensitivity variation
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given by

G(x; y; z) = e
�x2+y2+z2

2�2sv (6.30)

where �sv is the rms width of the sample volume that was varied from 0.2 mm to 2.0 mm

and the model computed the signal from elemental volumes within �4�sv and +4�sv.

The blood acceleration was varied from 0 to 50 m s�2. Kikkawa et al. [1987] in their

study used an acceleration of 42 m s�2 for the blood ow in the ascending aorta of the dog

and Milnor [1989] says that the maximum blood acceleration in the dog is in the range

50{80 m s�2 and that the acceleration in man is somewhat lower.

The simulated Doppler signals were windowed with Hanning windows of duration: 2.5 ms,

10 ms and 40 ms. The expected ensemble averaged power spectra were computed by adding

the power spectra of each elemental volume as described in section 4.3.

Firstly, the spectrum from a single streamline was calculated for steady and accelerating

ow to check the agreement between model and theoretical predictions at this level. Next

the spectral width for a range of sample volume sizes, accelerations, window durations and

velocity ranges for a vessel-centred Gaussian sample volume in power-law ow for a range of

measurement conditions was calculated using the Doppler signal model and the error between

these calculations and the estimate using (6.29) was calculated.

6.4 Results

6.4.1 Single streamline

Intrinsic broadening dominant

Figure 6.5 presents the variation of the Doppler spectral width when it is dominated by in-

trinsic spectral broadening. The spectra were generated for a single streamline with constant

velocity of 1 m s�1 and the simulated signals were multiplied by a 1 s Hanning window, su�-

ciently long to reduce window broadening to a negligible level. The expected spectral width,

which is v=
�
2
p
2��sv

�
, was computed from the theoretical Doppler spectrum for a Gaussian

sample volume from a single streamline (4.26).

Non-stationarity broadening dominant

With a combination of relatively long window duration and high acceleration we expect the

width of the Doppler spectrum to be dominated by nonstationarity broadening. Figure 6.6

shows the variation of the spectral width with acceleration for a single streamline of velocity

v(t) = 1+at m s�1 passing through a sample volume with �sv = 2:0 mm (large sample volume

to reduce intrinsic broadening), the signal was windowed by a 40 ms Hanning window. The

straight line was computed from (6.17).
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Figure 6.5: Variation of rms spectral width of the simulated signal from a streamline as a
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Figure 6.6: Variation of rms spectral width of the simulated signal from a single streamline as
a function of blood acceleration, �sv = 2:0 mm and TD = 40 ms. The straight line represents
the spectral width due solely to nonstationarity broadening.

The deviation, at low accelerations, of the model results from the expected straight line

results from transit time broadening becoming important as the acceleration approaches zero.

From �gures 6.5 and 6.7 we see that the model generates signals with spectral characteris-

tics similar to those expected. For very speci�c cases where the intrinsic and nonstationarity

broadening e�ects can be individually evaluated, the width of the spectra computed with the

model is very close to the expected values.



126 Chapter 6. Spectral broadening in the Doppler signal|a model based study

6.4.2 Velocity pro�le

It is not possible to investigate every possible combination of ow and measurement con-

dition. So, in order to �nd a suitable pro�le shape for testing equations (4.21{4.23 were

used to compute the time-varying velocity pro�le for the CFA velocity waveform used to

simulate the signal whose sonogram is displayed in �gure 4.11. The velocity pro�le in the

mid systolic accelerative phase of the CFA velocity waveform was found to be approximately

v0
�
1� (r=R0)

9
�
and this pro�le has been used as the basis of the next test.

Figure 6.7 shows the expected ensemble averaged spectra for a range of blood acceleration,

sample volume size and window duration. The blood velocity was:

v(r; t) = (v0 + a(t� tw))

�
1�

�
r

R0

�n�
; �TD=2 < (t� tw) < TD=2 (6.31)
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Figure 6.7: Normalised power spectrum of the simulated signal from a 4.2 mm radius ves-
sel. The velocity pro�le is v(r; t) = (1 + a(t� tw))

�
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9
�
m s�1. Each signal was

windowed by a Hanning window with time duration TD, the sample volumes are Gaussian
with �sv: 0.2 mm and 2.0 mm. The spectra were normalised by dividing by their
maximum power.
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with v0 = 1 m s�1 and n = 9 and all the sample volumes were spherically symmetric Gaussian

and centred in a vessel of radius 4.2 mm.

The widths of the spectra are shown plotted against window duration and acceleration

for sample volume widths 0.2, 1.0 and 2.0 mm in �gure 6.8a and against sample volume

width and acceleration for window durations 2.5, 10 and 40 ms in �gure 6.8c. In each case

investigated the approximate spectral width given by (6.29) was calculated and the % error

in this width compared with that calculated from the model plotted in �gures 6.8b and d

respectively.

It is clear from �gures 6.7, 6.8a and 6.8c that, as expected, acceleration has little impact

on the spectral shape and width when the window duration is small, only becoming noticeable

for window durations greater than 10 ms. For high duration windows and high accelerations

the e�ect is clearly dominant. Spectral shape skewing [Cloutier et al. 1993] is also only

really noticeable at the high window duration-acceleration combinations (�gure 6.7). Window

broadening, as expected from consideration of �gure 6.4, only becomes signi�cant for window

durations well below 10 ms and is dominant (�gure 6.8c) for mid-range sample volume sizes

(�sv=R0 � 1=4). The opposing e�ects of sample volume size are clearly shown in �gure 6.8c

where the spectral width increases at low �sv as a result of increasing intrinsic spectral

broadening and at high �sv as a result of the increased velocity range.

As can be seen from �gure 6.8b and d the estimation of spectral width using (6.29) is

good over the whole range of conditions studied for this blunt pro�le.

Although unlikely to be found in practice it is useful to consider an accelerating parabolic

pro�le as an extreme case. Therefore the above test was repeated with n = 2 in equation

(6.31) and the corresponding results are shown in �gure 6.9. As expected the errors are

greater, particularly at high acceleration, window duration, and sample volume size combi-

nations. Nevertheless, (6.29) still leads to a reasonable approximation as long as the extremes

are avoided.

The increased error is expected as a result of the increased range of acceleration in the

n = 2 case because of our inability to separate the e�ects of spatial velocity and acceleration

variation and the neglect, in deriving (6.29), of the e�ect of acceleration variation. As has been

shown the magnitude of the resulting error is dependent on �r = �t!0�a cos(�)=(�c) where

�a is the range of acceleration within the sample volume. Identifying the range r = 0! �sv

over which �a is calculated then, from (6.31):

�a =
@v

@t
(0; tw)� @v

@t
(�sv; tw) = a

�
�sv
R0

�n
(6.32)

and

�r =
�ta!0 cos(�)

�c

�
�sv
R0

�n
(6.33)

It should be noted that this error estimate is fairly crude and should be taken only as a guide
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Figure 6.8: RMS spectral width calculated using model and di�erence between this and
simple width estimation formula (6.29) for n = 9 pro�le. (a) spectral width versus window
duration and acceleration for three sample volume widths. (b) Percentage error in width
calculated using (6.29) compared with width from model. (c) spectral width versus sample
volume width and acceleration for three window durations. (d) Percentage error in width
calculated using (6.29) compared with width from model.
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Figure 6.9: RMS spectral width calculated using model and di�erence between this and
simple width estimation formula (6.29) for n = 2 pro�le. (a) spectral width versus window
duration and acceleration for three sample volume widths. (b) Percentage error in width
calculated using (6.29) compared with width from model. (c) spectral width versus sample
volume width and acceleration for three window durations. (d) Percentage error in width
calculated using (6.29) compared with width from model.
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to the combination of �t, a and �sv=R0 at which (6.29) becomes inaccurate.

The maximum �r within model range occurs when TD = 40 ms (�t = 5:66 ms), �sv =

2 mm and a = 50 m s�2. Then, �r = 208 Hz for n = 2 and 1.2 Hz for n = 9. It can be

seen that this is a fair agreement with the error shown in �gure 6.9. The higher error than

expected in the �sv = 2:0 mm, n = 9 case (�gures 6.8b, d) is probably due to the assumption

that intrinsic broadening is governed by the mid-sample volume streamline - an assumption

that will begin to break down as the sample volume increases in size. This e�ect will be

swamped by the increase in velocity range in the n = 2 case.

Overall it is reasonable to assume that as long as �r is small then we can expect (6.29) to

give good estimations of rms spectral width. We have already seen that �r can be expected

to be reasonably low for a typical femoral artery waveform.

6.5 Concluding remarks

A new formulation for the Doppler signal generation process in pulsatile ow has been devel-

oped enabling easier identi�cation and quanti�cation of the mechanisms involved in spectral

broadening and the development of simple estimation formula for the measured rms spec-

tral width. The accuracy of the estimation formula was tested by comparing it with the

spectral widths found by using conventional spectral estimation on simulated Doppler signals

generated using our model described in chapter 4.

The model assumes nonturbulent pulsatile ow parallel to the vessel wall and considers

that neighbour red blood cells have similar velocities so that their signals can be considered

as if arising from an elemental volume. Elemental volumes at a constant distance from the

vessel axis are grouped into an elemental tube. These assumptions are acceptable for slow

varying laminar velocity pro�les and away from regions of high velocity gradient (dv=dr).

It is shown that when the spectral width is dominated by any of the spectral broadening

e�ects studied here, our Doppler signal model generates simulated signals whose spectral

width agrees very well with the predicted values. Therefore, it is reasonable to extrapolate the

validity of the results for situations where none of the spectral broadening e�ects dominates

over the others.

The inuence of acceleration, sample volume size and time window duration on the

Doppler spectral width was investigated for a blunt velocity pro�le passing through spher-

ically symmetric Gaussian shaped sample volumes. This represents a somewhat idealised

sample volume shape for investigating these inuences but is, nevertheless, a useful starting

point.

Our results show that for short duration windows, the spectral width is dominated by

window broadening and that acceleration has a small e�ect on the spectral width. For long

duration windows the e�ect of acceleration must be taken into account.

The size of the sample volume a�ects the spectral width of the Doppler signal in two

ways; by intrinsic broadening and by the range of velocities passing through it. Since these
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e�ects act in opposite directions it is reasonable to say that for each velocity �eld there must

exist a sample volume size that minimises the spectral broadening.

The simple spectral width estimation formula was shown to have excellent agreement

with widths calculated using the model and indicates the potential for correcting not only

for window and non-stationarity broadening but also for intrinsic broadening.

It should be emphasised that the spectral width results indicate that a relatively simple

method of estimation is accurate only in as much as the assumptions of the underlying model

are valid. More realistic models are being developed by our research group and by other

investigators and the �ndings here will need to be updated. In particular the dependence

of local backscatter cross-section on the local time-varying velocity �eld will have to be

incorporated when work in this area is more advanced.

In addition it is recognised that the theoretical results presented here require experimental

validation.





Chapter 7

Conclusion

7.1 General conclusions

The Doppler ultrasonic ow detector has been extensively used in the last forty year to assess

the cardiovascular system. It is a non-invasive technique that uses ultrasonic waves, which

are non-ionising, and the Doppler e�ect to measure the velocity of blood in vessels of human

beings. The Doppler ultrasonic ow detector estimates the blood velocity by measuring the

shift in frequency between the transmitted and the received waves.

The Doppler signal, which is the output of the ow detector, is stochastic because it is the

sum of the signals backscattered by a random distribution of blood cells. The Doppler signal

is also pulsatile due to the pumping action of the heart and as a consequence the signal is not

a stationary stochastic process, it is approximately cyclo-stationary. Both the shape and the

width of the time-varying Doppler spectrum are of clinical interest; usually an altered shape

or an increased spectral width is a sign of a diseased blood vessel.

The random pulsatile nature of the Doppler signal and its high variability from person

to person and with time (in the same person) make in vivo signals not particularly suitable

for testing signal processing methods. The characteristics of in vivo Doppler signals cannot

be controlled and because of the randomness usually only estimates of the characteristics are

available. Simulated signals generated by a model are normally used as test signals.

Besides providing us with test signals with controllable characteristics, models usually

contribute to improve our knowledge of the process being modelled. Since models are so

valuable we developed a model for generating simulated Doppler signal.

The Doppler signal model inputs are the characteristics of the lower limb arterial tree and

the characteristics of the ultrasonic sample volume and it outputs simulated Doppler signals

with characteristics similar to those measured in vivo. The model developed is particularly

suited for studying Doppler signals from accelerative and decelerative blood ow.

The model for the Doppler signal that we developed was divided in two sub-models, one

for simulating blood ow in the lower limb and another to simulate the inter-action between

133
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the velocity and ultrasonic �elds.

The blood ow model is an electric analogue of the lower limb circulation and generates

ow and pressure waveforms whose shapes are similar to those expected. The amplitude of

the ow waveform decreases as it moves to the periphery while the pulsatility index increases

as usually happens in the normal lower limb. The amplitude of the pressure waveform is

ampli�ed by the reections at the branches and other impedance mismatches.

For modelling the inter-action between the velocity and ultrasonic �elds we divided the

vessel into small elemental volumes and added the contributions of all the elemental volumes

passing through the sample volume. The characteristics of the simulated Doppler signals are

similar to those predicted on theoretical grounds. We tested our sub-model in situations were

one broadening e�ect clearly dominates over the others and then compared the experimental

spectral width with that predicted; usually the model results agreed very well with the

predictions.

Using our model we studied the inuence of acceleration, sample volume size and time

window duration on the Doppler spectral width of signals obtained from a blunt pro�le

passing through spherically Gaussian shaped sample volumes. Our results show that the

e�ect of acceleration must be taken into account when long duration windows are used and

that for short duration windows the spectral width is dominated by window broadening. The

size of the sample volume a�ects the spectral width of the Doppler signal in two ways; by

intrinsic broadening and by the range of velocities passing through it. Since these e�ects act

in opposite directions it is reasonable to say that for each velocity �eld there must exist a

sample volume size that minimises the spectral broadening.

A simple formula for estimating the spectral of Doppler signals was proposed in this work.

The spectral widths computed with the formula agree well with the widths computed from

the signals simulated by the model in various situations. This simple formula has probably

the potential to allow for correction of windows broadening, non-stationarity broadening and

intrinsic broadening.

We believe that the work described here is a contribution, though a small one, to improve

the understanding of the Doppler signal and the e�ects of various factors on the Doppler

spectral width. It also contributes to setting up the basis for the development of model based

vascular disease detection. To achieve this latter goal the blood ow model must be improved

in future (see the next section).

Our model generates simulated Doppler signals with controllable characteristics thus en-

abling their use as test signals during the development stages of new signal processing tech-

niques. The model also enabled to study the e�ect of acceleration, sample volume size and

data window duration on the Doppler spectral width.
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7.2 Recommendations for future work

A model of any system represents our knowledge of the system and there is always the

possibility for improving its representation of the real system. The improvement may be

achieved in various ways, for example by lifting some of the model constraints or by improving

the accuracy with which particular features of the system are modelled.

We indicate below some possible research lines for future work in this project.

One limitation of the lower limb blood ow model described in Chapter 3 is its inability to

simulate the peculiarities of blood ow around branches and stenoses. It would be interesting

to use the pressure and ow waveforms generated by the lower limb model to drive detailed

models of ow around branches and stenoses. This could probably be achieved using Com-

putational Fluid Dynamic (CFD) techniques to numerically solve the Navier-Stokes equation

in the branches and the stenoses. Note that if stenoses are to be modelled the current model

must be changed to account for the pressure drop experienced at a stenosis.

Another interesting improvement to the blood ow model would be to make the estimation

of the model parameters an iterative process. The model would adjust autonomously its

parameters to minimise the di�erences between its outputs and the waveforms measured in

the lower limb arterial tree. This would make it possible to introduce a feedback loop capable

of simulating the autonomous regulation of blood ow. Disease states and disease induced

alterations, such as the opening of collaterals, could also be introduced into the lower limb

model after an extensive investigation of their e�ect on blood ow, both on a local and

sistemic scale.

The feedback mechanisms would permit the study of the inuence of various vasomotor

states on the blood ow and pressure waveforms and would, eventually, be a signi�cant

contribution to achieve model based arterial disease detection.

SPICE was a good option to implement the electric analogue of blood ow in the lower

limb because it is very easy to change the model parameter during the development phase.

However in future, if iterative selection of model parameters and feedback mechanisms are to

be introduced into the blood ow model it will probably be better to use other techniques,

such as scattering matrices, capable of simulating the circuit much faster than SPICE.

Experimental work should be carried out to validate in vitro the model for the inter-action

between the velocity and ultrasonic �elds presented in Chapter 4. This would require setting

up an experiment for measuring and characterising the sample volume of a real Doppler ow

detector.

Other interesting improvements to the model would be the implementation of sample

volumes with diverse shapes corresponding, if possible, to real sample volumes produced by

blood ow detectors. The model could probably be altered to lift the restriction of modelling

laminar ow, extending its applicability to helical ow which is sometimes encountered in
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the major vessel [Kilner et al. 1993].

The simple formula estimating the rms spectral width of the Doppler signal, which was

derived in Chapter 6 from our Doppler model needs to be tested with in vitro experiments.

The theoretical derivation of the formula and the numerical model against which the results

were checked share the same assumptions, the experimental validation of the results would

make the formula more useful.

As pointed out in Chapter 4 the local blood backscatter cross-section depends on the local

time-varying velocity �eld (see for example, [Bascom et al. 1988, Cloutier & Shung 1993, Mo

& Cobbold 1992, Wu & Shung 1996]). When more is known about this dependence and

quantitative data is available the phenomenon should be incorporated into our Doppler signal

model.

Finally we would like to propose the construction of a large scale database with typical

in vivo Doppler signals characteristic of various disease stages and of normality. This would

make the testing of new signal processing techniques easier and would allow the development

of automatic classi�cation techniques for the Doppler signal. It would also allow to compare

the results of Doppler models with standard in vivo signals.

Similar databases exist or are under construction in other areas of biomedical engineering

research such as in the processing of electroencephalogram signals.



Appendix A

Evaluation of function M(a; b; �)

from chapter 5

In order to evaluate the following integral

M(a; b; �) =

Z 2�

0
exp (a cos(�� �) + b cos(2�)) d� (A.1)

we note that exp(a cos(�)) can be expressed as a series of modi�ed Bessel functions [Abramo-

witz & Stegun 1972, p. 376]. So the terms in the integrand of equation (A.1) can be written

as:

exp(a cos(�� �)) = I0(a) + 2

1X
k=1

Ik(a) cos(k(�� �)) (A.2)

exp(b cos(2�)) = I0(b) + 2

1X
n=1

In(b) cos(2n�) (A.3)

Multiplying term by term and expanding cos(k(�� �)) we obtain:

M(a; b; �) =

Z 2�

0
I0(a)I0(b) d� + 2 I0(a)

Z 2�

0

1X
n=1

In(b) cos(2n�) d�

+ 2 I0(b)

Z 2�

0

1X
k=1

Ik(a) cos(k(�� �)) d�

+ 4

Z 2�

0

1X
k=1

(
Ik(a) cos(k�) cos(k�)

1X
n=1

In(b) cos(2n�)

)
d�

+ 4

Z 2�

0

1X
k=1

(
Ik(a) sin(k�) sin(k�)

1X
n=1

In(b) cos(2n�)

)
d�

(A.4)

The 2nd, 3rd and 5th right hand terms of equation (A.4) are zero for all k; n, and the 4th

137
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term is not zero only for k = 2n. Its value is:

4�
1X
k=1

I2k(a)Ik(b) cos(2k�) (A.5)

and the complete integral is,

M(a; b; �) = 2�

"
I0(a)I0(b) + 2

1X
k=1

I2k(a)Ik(b) cos(2k�)

#
(A.6)
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