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Abstract

In this paper the bilinear model BL(1, 0, 1, 1) driven by exponential distributed

innovations is studied in some detail. Conditions under which the model is strictly

stationary as well as some properties of the stationary distribution are discussed.

Moreover parameter estimation is also addressed.
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1 Introduction

In the analysis of stationary time series the class of linear models with finite variance,

which includes ARMA models, plays a central role. However, such models are unlikely

to provide a sufficiently broad class capable of accurately capturing features often ex-

hibited by data sets such as sudden burst of large positive and negative values, almost

no correlation in data, volatility changes in time, and high threshold exceedances ap-

pearing in clusters. Since there is no unifying theory that is applicable to all nonlinear

systems the study of such systems has to be restricted to special classes of nonlin-

ear models. Various non-linear models have been introduced addressing these issues.

Among the more successful non-linear models we mention the bilinear (BL) models,

first proposed and developed by Granger and Andersen (1978). A time series {Xt}
is called a bilinear process of order (p, q, P, Q), denoted by BL(p, q, P,Q), for some

integers p, q, P,Q ≥ 0, if it satisfies the recurrence equation

Xt =
p∑

j=1

ajXt−j +
q∑

j=0

cjεt−j +
P∑

j=1

Q∑

k=0

bjkXt−jεt−k,

where {εt} is a sequence of independent and identically distributed (i.i.d.) random

variables and the aj , cj , and bjk are real constants with c0 = 1. In terms of poten-

tial applications, bilinear models are suitable for modelling seismological data such as

records of explosions and earthquakes. One step towards the application of bilinear

models to real data sets is the estimation of parameters. Most of the work in parame-

ter estimation in the literature, is focused in the time-domain approach. For instance

the least squared method has been considered among others by Pham and Tran (1981),

Subba Rao and Gabr (1984) and Guegan and Phan (1989). Kim and Billard (1990)

have obtained moment estimators for the first order bilinear model and derived their

asymptotic distribution. In contrast, Bayesian analysis of bilinear time series has not

received much attention in the literature; see Chen (1992a, b) for details.

A different approach is by considering frequency-domain methods and in particular

the Whittle criterion. This method was originally proposed to estimate the parameters
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of Gaussian ARMA processes (i.e., linear processes with finite variance). The applica-

bility of the Whittle criterion for non-Gaussian and non-linear processes was discussed

in detail by Dzhaparidze and Yaglom (1983) who introduced the class of non-Gaussian

mixing processes. Dzhaparidze and Yaglom showed that for this class of processes the

Whittle estimator is weakly consistent and asymptotically normal. Nevertheless the

Whittle estimator can also be used when estimating the parameters of ARMA pro-

cesses with i.i.d infinite variance innovations; see Mikosch et al. (1995). Sesay and

Subba Rao (1992) used Dzhaparidze and Yaglom’s results to estimate the parameters

of the bilinear model BL(p, 0, p, 1).

When dealing with bilinear models it is common to assume that the innovations are

normally distributed. Recently, however, there has been considerable interest in non-

negative time-series models. The motivation to include such models comes from the

need to account for the non-negative nature of certain data sets such as CPU time to

complete a job, call holding times, interarrival times between packets in a network and

lengths of on/off cycles; see Adler et al. (1997) and references therein.

In this paper we consider the bilinear models BL(1, 0, 1, 1) driven by exponential dis-

tributed innovations. The purpose of this work is two-folded: first we give conditions

under which the first-order non-negative bilinear model is strictly stationary and some

properties of the stationary distribution, such as moments, are discussed. Moreover,

we also consider parameter estimation. In particular we cast the BL(1, 0, 1, 1) in a

Bayesian framework and make inferences by using the Gibbs sampler. Furthermore we

also consider the Whittle criterion.

The rest of the article is organized as follows. In Section 2, we summarize some of

the basic probabilistic properties of the BL(1, 0, 1, 1) model. Section 3 gives the gen-

eral Bayesian setting for this special bilinear model. Section 4 introduces the Whittle

criterion. Finally, a simulation study is presented in Section 5.
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2 Basic properties of the first-order exponential bilinear

model

Let (Ω,A, P ) be a probability space and X = {Xt}t≥1 a process which is defined from

(Ω,A, P ) to (IR,B) satisfying

Xt = bεt−1Xt−1 + εt, (1)

where {εt} are i.i.d. random variables exponentially distributed in the interval (0,∞)

with parameter λ > 0. First note that the representation given in (1) is not Marko-

vian and the random pair (bεt−1, εt) forms an 1-dependent, identically distributed pair.

However, by setting Zt = bεtXt we see that Xt has a Markovian representation in the

form 



Xt = Zt−1 + εt

Zt = bεtZt−1 + bε2t

,

based on Z = {Zt}t≥1. The Markovian representation above implies that the study of

several properties of the bilinear process in (1), related with its probabilistic structure

and the existence of moments, can be obtained via the analysis of stochastic difference

equations (SDE) of the form Yt = AtYt−1 + Bt, where (At, Bt) are i.i.d. IR2-valued

random pairs with some joint distribution and Y0 is independent of these, with some

given starting distribution.

We first present a result related with some useful properties of the exponential dis-

tribution. For simplicity in notation we define Γ′(1, λ) = ∂Γ(α,λ)
∂α

∣∣∣
α=1

.

Lemma 2.1 For a random variable ε exponentially distributed with parameter λ > 0

and b ∈ (0, exp{−λΓ′(1, λ)}), define

h(b, u, λ) = E(bε)u, u ≥ 0, b > 0.

Then E(ln bε) < 0 and the function h is strictly convex in u, and there exist a unique

solution κ = κ(b, λ) > 0 to the equation h(u) = 1, that is
(

b

λ

)u

Γ(u + 1) = 1.
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Furthermore define and Q1 = {λ ∈ (0, 1) : Γ′(1, λ) > 0}, Q2 = {λ ∈ (0, 1] : Γ′(1, λ) <

0}, Q3 = {λ ∈ [1,∞) : Γ′(1, λ) > 0}, and Q4 = {λ ∈ (1,∞) : Γ′(1, λ) < 0}, then it

follows that

κ(b, λ) =





> 1 b ∈ (0, 1), λ ∈ Q3, or b = 1, λ > 1,

= 1 b = 1, λ = 1

< 1 b ∈ (1, exp{−λΓ′(1, λ)}), λ ∈ Q2, or b = 1, λ < 1,

> 0 b ∈ (0, 1), λ ∈ Q1 or b ∈ (1, exp{−λΓ′(1, λ)}), λ ∈ Q4

Proof. It is easy to check that h(b, u, λ) =
(

b
λ

)u
Γ(u + 1), h

′
u(b, u, λ) = E[(bε)u ln(bε)]

and h
′′
u(b, u, λ) = E[(bε)u(ln(bε))2] > 0 where h

′
u(·) and h

′′
u(·) denote the first and second

derivates of h(·) with respect to u, respectively. Hence h(·) is strictly increasing in b,

for a fixed value of λ, and convex in u. Note that h
′
u(b, 0, λ) = ln b + λΓ′(1, λ) < 0, for

b ∈ (0, exp{−λΓ′(1, λ)}). Thus h(b, 0, λ) = 1 and the convexity of h implies that there

exist a unique κ > 0 such that h(κ) = 1. The values of κ are obtained by a monocity

argument and the properties of the Gamma function. This concludes the proof.

The value of κ = κ(b, λ) > 0 is crucial for the existence of moments of the non-negative

exponential bilinear process. For example, the necessary and sufficient condition for the

existence of the mth moment is that κ > m, or equivalently, b ∈ (0, (λm/m!)1/m). Note

that the equation h(b, u, λ) = 1 cannot be solved explicitly, but numerical solutions can

be found in Table 1 below.

Table 1 about here

It is worth to mention here that when b/λ > 1 the process has no finite mean where

as b/λ > 0.705 implies no finite variance. In order to obtain the stationary solution on

(1) as well as its moments, we use the fact that Xt can be embedded as a function of

a SDE of the form 



Xt = Zt−1 + εt

Zt = AtZt−1 + Bt

,

with (At, Bt) = (bεt, bε
2
t ). The main result of this section is given in Theorem 2.1 below.
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Theorem 2.1 Let X be the non-negative exponential bilinear process defined in (1)

and {εt} be a sequence of i.i.d. random variables, each exponentially distributed in

the interval (0,∞), with parameter λ > 0. It is also assumed that X0 is independent

of Z. Suppose that b ∈ (0, exp{−λΓ′(1, λ)}), then the processes Z and X are strictly

stationary if

Z1
d= b

∞∑

m=1

ε2m

m−1∏

j=1

(bεj) (2)

and

X0
d= ε0 + b

∞∑

m=1

ε2m

m−1∏

j=1

(bεj). (3)

Proof. Set At = bεt and Bt = bε2t in Proposition 8.4.3 in Embrechts et al. (1997, pp.

457-458). By Lemma 2.1, E ln+ A < ∞ and E ln B < 0 when b ∈ (0, exp{−λΓ′(1, λ)}).
Hence (2) is proved. Finally, (3) follows by the Markovian representation of Xt.

Now we are prepared to obtain the moments of the process.

Lemma 2.2 Assume that Z is strictly stationary and write Z = Z1. Let κ be the

unique positive solution of the equation h(u) = 1. Then E(Z)u < ∞ for 0 ≤ u < κ.

Denote by p the largest integer strictly less than κ. Then for r = 1, . . . , p

EZr =
(

b

λ2

)r r∑

i=0




r

i


 (2r − i)!

λ−i
EZi, r = 1, 2, . . . , p.

Furthermore, let X be the non-negative exponential bilinear process defined in (1) and

write X = X0. Then

EXr =
r∑

k=0




r

k


 E(Zkεr−k), r = 1, 2, . . . , p.

Proof. The convexity of the function h and the fact that h(b, 0, λ) = h(b, κ, λ) = 1,

for a fixed values b, λ > 0, implies that h(b, κ, λ) < 1 for 0 < u < κ. According with
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Proposition 8.4.3 in Embrechts et al. (1997, pp. 457-458), E(Z)u < ∞ for u < κ and

Z
d= AZ +B, providing the first statement. Moreover, the second statement follows by

considering the Markovian representation of Xt and the fact that all moments of the

exponential distribution are finite.

Corollary 2.1 Let X be the strictly stationary non-negative process defined in (1).

Suppose that 0 < 2b2α2 < 1 with α = λ−1 = E(εt). Then X is second-order stationary,

and

1. E(X) = bα2+α
1−bα , E(Z) = 2bα2

1−bα , E(A) = bα, E(B) = 2bα2;

2. V (X) = V (Z) = α2

q1
(20b2α2+q2

2 +8bαq2+q1), with q1 = 1−2b2α2 and q2 = 2b2α2

1−bα ;

3. γ(k) = Cov(X0, Xk) = [E(A)]k−1γ(1), k ≥ 1, with

γ(1) = E(A)R′(0) + 2E(B)E(Z) + E(Bε)− E(B)[E(Z) + E(ε)](1− E(A))−1, (4)

with E(Bε) = 6bα3 and R′(0) = α2

q1
(20b2α2 + q2

2 + 8bαq2) + [E(Z)]2;

4. The spectral density function is given by

f(ω) =
1
2π

{
γ(0) + 2γ(1)

cos(ω)− E(A)
1 + (E(A))2 − 2E(A) cos(ω)

}
, −π ≤ ω ≤ π. (5)

Proof. The statements follows by Lemma 2.2 and after tedious calculations.

For a time series model to be useful for forecasting purposes, it is necessary that it

should be invertible. A sufficient condition for the invertibility of the bilinear model is

given below.

Proposition 2.1 Let X be the strictly stationary non-negative exponential bilinear

process defined in (1). If 0 < b < λ
1+
√

2
then the model is invertible.

Proof. Following Pham and Tran (1981), Xt is invertible if |b| < exp{−E(log |Xt|)}. By

Jensen inequality we have that bE(Xt) < 1. The result follows by the first statement

in Corollary 2.1.

Next result shows that X is strongly mixing.
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Lemma 2.3 Let X be the strictly stationary non-negative exponential bilinear process

defined in (1). Then X is strongly mixing with geometric rate.

Proof. The proof follows as that of Basrak et al. (1999, pp. 7-8) with some minor

changes. We omit the details.

3 Bayesian Inference

Let x = (x1, . . . , xn) be a sample generated by the the non-negative exponential bilinear

process defined in (1) being θ = (b, λ) the vector of unknown parameters. We assume

that one has observed the first observation before formulating the model and let ε1 = 0.

Since ε2, . . . , εn are i.i.d. exponentially distributed random variables, the conditional

likelihood may be approximated by

L(θ|x) ∝ λn−1 exp{−λ
n∑

t=2

εt},

with εt = xt − bxt−1εt−1. Since we have no information on the parameters we use a

non-informative prior for θ of the form p(θ) ∝ λ−1IΘ(θ) where Θ = {(b, λ) : b, λ > 0}.
For this prior the posterior distribution of θ is

p(θ|x) ∝ λn−2 exp{−λ
n∑

t=2

εt}, (6)

with support θ ∈ Θ∗ = {(b, λ) ∈ IR+ : xt − bxt−1εt−1 > 0, t = 2, 3 . . .}. It is

convenient to notice that we have a constrained parameter problem since the support of

the posterior distribution depends on the data. Furthermore the support also depends

on the sequence of innovations {εt}, which are unknown. Moreover, since the inference

for the vector of unknown parameters will be done through the Gibbs sampler, we have

to derive the set of full conditional posterior densities. The results are summarized

below.

Proposition 3.1 Given the approximate posterior function (6), the full conditional

posterior densities are

p(λ|b, x) ∝ λn−2 exp{−λ(
n∑

t=2

xt − b
n∑

t=2

xt−1εt−1)}, b(1 +
√

2) < λ < ∞ (7)
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and

p(b|λ, x) ∝ exp{bλ
n∑

t=2

xt−1εt−1}, 0 < b < min{1, γ1, γ2}, (8)

with γ1 = min3≤ t≤n
xt

xt−1εt−1
, and γ2 = λ(

√
2− 1).

Note that the restriction on the support of the full conditional posterior densities is

imposed in order to ensure the invertibility of the model. Moreover, by (7) and (8) the

steps required to implement the Gibbs sampler are the following: (a) from an arbitrary

set of initial values θ0 = (λ(0), b(0)) obtain an estimation of εt, say ε0t , by ε01 = 0 and

ε0t =





x1 t = 2

xt +
∑t−2

i=1(−b(0))ixt−i
∏t−1

j=t−i xj t = 3, 4, . . . , n
;

(b) draw λ(1) from p(λ|b(0), x) with εt = ε0t ; (c) draw b(1) from p(b|λ(1), x) with εt = ε0t ;

(d) recalculate the residuals εt by using the value b(1); (e) generate N sets of random

numbers by repeating stages (b), (c), and (d) from the full conditional distributions (7)

and (8), obtaining a sequence of Gibbs for θ given by (λ(1), b(1)), . . . , (λ(N), b(N)). Since

the estimates (λ(k), b(k), k ≥ 1) generated by the above procedure are correlated, we

will only include in the final sample the observations

(λ(l), b(l)), (λ(l+k), b(l+k)), . . . , (λ(l+km), b(l+km)),

to obtain an approximate i.i.d sample.

4 Whittle estimation

For estimating the parameters of a stationary Gaussian linear process, say X̂ = {X̂t}t≥1,

with strictly positive and continuous spectral density f(ω, ·), Whittle suggested a pro-

cedure which is based on the periodogram. In his setup, the Gaussian log-likelihood

function of X̂ is approximated by

L(X̂; θ̃n) =
n

4π

∫ π

−π

{
log f(ω, θn) +

In(ω)
f(ω, θn)

}
dω, (9)
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where In(ω) is the periodogram of the observations. The Whittle estimate θ̃n of the set

of parameters θ is obtained by minimizing (9). For non-Gaussian and non-linear pro-

cesses Dzhaparidze and Yaglom (1983) have introduced a class of non-Gaussian mixing

processes, for which the Whittle’s criterion remains valid. It is worth to mention here

that an important features of SDE is that, in virtue of Proposition 8.4.3 in Embrechts

et al. (1997, pp. 457-458) not all moments exist. This is due to the fact that SDE with

light-tailed input are, in general, heavy-tailed. It is not clear, indeed, from Dzhaparidze

and Yaglom’s work the assumption of finite absolute moments of all orders since W(θ)

only depends on the cumulants up to fourth order. This is, indeed, the argument used

by Sesay and Subba Rao (1992) to justify the use of the Whittle criterion to estimate

the parameters of stationary BL(p, 0, p, 1). In Section 5 we will analyze the impact of

the moments on the estimates obtained through the Whittle criterion.

5 Simulation results

The object of this section is to compare the performance of Bayes and Whittle esti-

mators presented in the previous sections. Through the simulation study we want to

highlight the following issues: a) how the results depend on the underlying bilinear pa-

rameter b and the parameter λ; b) what is the impact of sample size on the simulation

results and c) what is the influence of the tail parameter κ. We consider four distinct

bilinear models with exponential innovations leading to values of the tail parameter κ

between 9.78 and 156.41. Note than all models have finite variance and are invertible.

For each of the four models we simulate time series of length n = 100, 500, 1000, 10000

with 500 independent replicates. A closer look at the tables reveals that both esti-

mators of b and λ tend to be positively skewed. The skewness increases when the

sample size becomes large (up to size 1000) and reduces for very large sample size.

A comparison of the standard deviations for the two estimators shows the superiority

of the Whittle estimator for both small and large sample sizes. The simulation study

also indicates that what is important for estimation purposes is the parameter λ. For

example, when the parameter λ is small the Whittle criterion provides better estimates
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that the Bayesian estimator regardless the values of the parameter b and the tail pa-

rameter κ. In contrast, large values of λ implies a better performance of the Bayes

estimates. Another observation concerns the speed of convergence. Note that large

values of λ the speed of convergence towards the true values is relatively slow for the

Whittle estimator. Moreover, it is worthwhile to mention that the actual computation

of the Whittle estimates is simpler and faster (in cpu time) than the computation of

the Bayes estimates. In summary, we can conclude that the overall performance of the

Whittle estimates seems to be better than the Bayes estimates.

Tables 2 and 3 about here
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[2] Basrak, B., Davis, R. A., and Mikosch, T. (1999). The sample ACF of a simple bilinear process.

Stoch. Proc. Appl., 83, 1–14.

[3] Chen, C. W. S. (1992a). Bayesian inferences and forecasting in bilinear time series models. Com-

mun. Statist.- Theory Meth., 21, 1725–1743.

[4] Chen, C. W. S. (1992b). Bayesian analysis of time series models:a Gibbs sampling approach.

Commun. Statist.- Theory Meth., 21, 3407–3425.

[5] Dzhaparidze, K. O. and Yaglom, A. M. (1983). Spectrum parameter estimation in time series

analysis. Developments in Statistics , 4, New York: Academic Press.
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λ 2.0 4.0 0.5 4.0 2.0 4.0 0.5

b 0.70 0.90 0.10 0.70 0.30 0.50 0.05

κ 5.65 9.78 11.24 13.13 15.64 19.19 24.53

Table 1: Values of κ = κ(b, λ) for different combinations of b and λ.
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Whittle est. bW Bayes est. bB Whittle est. λW Bayes est. λB

Model n Mean (StD) Mean (StD) Mean (StD) Mean(StD)

1 100 0.55(0.03) 0.03(0.02) 0.53(0.25) 0.50(0.06)

λ = 0.5 500 0.05(0.08) 0.03(0.02) 0.51(0.12) 0.45(0.04)

b = 0.05 1000 0.05(0.07) 0.02(0.02) 0.50(0.08) 0.45(0.04)

κ = 24.5 10000 0.05(0.01) 0.02(0.02) 0.50(0.02) 0.45(0.04)

2 100 0.08(0.15) 0.25(0.07) 6.34(0.03) 15.3(1.60)

λ = 15.0 500 0.10(0.10) 0.25(0.01) 10.82(0.02) 15.04(0.69)

b = 0.25 1000 0.15(0.09) 0.24(0.01) 12.38(0.02) 15.03(0.48)

κ = 156.4 10000 0.24(0.02) 0.24(0.02) 14.61(0.09) 15.01(0.14)

3 100 0.14(0.07) 0.89(0.17) 6.65(0.01) 30.55(3.11)

λ = 30.0 500 0.06(0.07) 0.88(0.10) 13.83(0.01) 30.10(1.34)

b = 0.90 1000 0.14(0.10) 0.88(0.11) 18.18(0.01) 30.03(1.03)

κ = 87.4 10000 0.71(0.11) 0.86(0.15) 27.70(0.09) 29.98(0.47)

4 100 0.81(0.47) 0.18(0.22) 3.798(0.06) 2.90(0.60)

λ = 4.0 500 0.80(0.11) 0.05(0.07) 3.93(0.03) 2.63(0.21)

b = 0.90 1000 0.81(0.07) 0.03(0.02) 3.98(0.04) 2.61(0.20)

κ = 9.80 10000 0.89(0.02) 0.02(0.01) 3.99(0.08) 2.57(0.18)

Table 2: Estimates of b and λ via Whittle and Bayes approaches. Standard Deviations

(StD) in parenthesis

14



Model 500 1000 10000

1 1.84 1.90 1.92

2 8.17 6.76 2.77

3 16.0 17.3 7.89

4 2.38 2.61 2.76

Table 3: Estimates of the skewness.
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