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Abstract

In many phenomena described by stochastic processes the implementation of an

alarm system becomes fundamental to predict the occurrence of future events. In this

work we develop an alarm system to predict whether a count process will upcross a

certain level and give an alarm whenever the upcrossing level is predicted. We consider

count models with parameters being functions of covariates of interest and varying on

time. The paper presents classical and Bayesian methodology for producing optimal

alarm systems. Both methodologies are illustrated and their performance compared

through a simulation study. The work finishes with an empirical application to a set

of data concerning the number of sunspot on the surface of the sun.
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1 Introduction

Currently, a major theme in the analysis of a large variety of random phenomena consists

in detecting and warning the occurrence of a catastrophe or some other event connected

with an alarm mechanism. Examples range from the prediction of increases in mean sea

level and flood frequencies due to global warming arising from increased greenhouse gas

concentrations to the assessment of the health impact of air pollution. One way of doing so

is by using a naive alarm system, based on the predictor X̂t+h = E [Xt+h|Xs,−∞ < s ≤ t],

for h > 0, where an alarm is given every time the predictor exceeds some level. This alarm

system, however, is far from being optimal because it does not have a good performance

on the ability to detect the events, locate them accurately in time and give as few false

alarms as possible. Addressing this issue Lindgren (1975a and b, 1980, 1985) and de

Maré (1980) set the principles of optimal prediction of level crossings; later Svensson et

al. (1996) applied Lindgren and de Maré’s results on the development of optimal alarm

systems to predict high water levels in the Baltic. A major drawback of the alarm sys-

tem introduced by Lindgren and de Maré is that it ignores the sampling variation of the

model parameters. In order to overcome this limitation Amaral Turkman and Turkman

(1990) suggested a Bayesian approach and particular calculations were carried out for an

autoregressive model of order one, although no attempt was made to solve the difficult

computational problems involved. More recently, Antunes et al. (2003) extended the re-

sults given in Amaral Turkman and Turkman (1990) autoregressive models of order p and

show how the alarm characteristics can numerically be obtained.

It is worth to mention that all references given in the previous paragraph deal with the

case of continuous-valued processes. A related interesting problem, which has not been

addressed yet, is to develop an alarm system for series of counts which are represented

through integer-valued autoregressive models. This paper aims at giving a contribution

towards this direction.

The analysis of count processes has become an important area of research in the last

two decades partially because its wide applicability to experimental biology (Zhou and
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Basawa, 2005), social science (McCabe and Martin, 2005), international tourism demand

(Nordström 1996, Garcia-Ferrer and Queralt, 1997, Brännäs et al., 2002, and Brännäs and

Nordström, 2006), queueing systems (Ahn et al., 2000) and economy (Quoreshi, 2006). We

refer to McKenzie (2003) for an overview of the early work in this area. Among the most

successful integer-valued time series models proposed in the literature we mention the

INteger-valued AutoRegressive model of order p (INAR(p)) and the INteger-valued Mov-

ing Average model of order q (INMA(q)). The former was first introduced by McKenzie

(e.g., 1985) and Al-Osh and Alzaid (1987) for the case p = 1. Empirical relevant ex-

tensions have been suggested by Brännäs (1995, explanatory variables), Blundell et al.

(2002, panel data), Brännäs and Hellström (2001, extended dependence structure), and

more recently by Silva et al. (2005, replicated data). Extensions and generalizations were

proposed by Du and Li (1991) and Latour (1988). The INMA(q) model was proposed by

Al-Osh and Alzaid (1988) and subsequently studied by Brännäs and Hall (2001). Related

models were introduced by Aly and Bouzar (1994, 2005), Zhu and Joe (2003) and more

recently by Neal and Subba Rao (2007). Extensions for random coefficients integer-valued

autoregressive models have been proposed by Zheng et al. (2006, 2007) who investigate

basic probabilistic and statistical properties of these models. Zheng and co-workers il-

lustrate their performance in the analysis of epileptic seizure counts (e.g., Latour, 1988)

and in the analysis of the monthly number cases of poliomyelitis in the US for the period

1970-1983.

Potential applications of optimal alarm systems for count processes can be found in the

study of short-term effects of environmental factors, such as pollutants (ozone, nitro-

gen dioxide, etc) and climate variables (pressure, temperature, relative humidity, etc) on

mortality (daily or monthly number of deaths). Much of the early work in this subject

is based on the use of generalized linear models and generalized additive models using

nonparametric techniques. Examples can be found in the study of the relationship be-

tween mortality and air pollution (Katsouyanni et al., 2002), hospital admissions and air

pollution (Touloumi et al., 2004), atmospheric pressure with mortality (Campbell et al.,

2001, Braga et al., 2001), and infectious gastrointestinal illness related to drinking water

(Schwartz et al., 1997); see Koop and Tale (2004) for further references. All the above
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referred references, however, are not directly applicable to predict in advance future up-

crossings (i.e., a large number of deaths). Is in this context that the implementation of

an alarm system reveals to be useful. Similar questions occur when modelling daily or

monthly guest nights in hotels (Brännäs et al., 2002 and Brännäs and Nordström, 2006)

incorporating the effect of economic variables such as the income level of the country of

guest’s origin, prices and exchange rates. Again the models proposed by Brännäs and

co-workers fail in predicting the probability of a catastrophe such as, for example, the

accommodation demand exceeding the capacity of the hotels.

For completeness and reader’s convenience background description of basic theoretical

concepts related with event prediction are given below. We follow closely Antunes et al.

(2003). Their ideas will be extensively used throughout this paper.

Let X = (Xt)t∈IN be a count process with parameter space Θ ⊂ IRk, for some k ∈ IN.

The time sequel {1, 2, . . . , t − 1, t, t + 1, . . .} is divided in three sections {1, 2, . . . , t − q},
{t − q + 1, . . . , t} and {t + 1, . . .} i.e., the past, present and future such that for some

q > 0 the sets Dt = {X1, X2, . . . , Xt−q}, X2 = {Xt−q+1, . . . , Xt} and X3 = {Xt+1, . . .}
represent respectively the informative experiment, the present experiment and the future

experiment at time t. Any event of interest, say Ct,j , in the σ-field generated by X3 is

defined as a catastrophe. Throughout this work a catastrophe will be considered as the

upcrossing event Ct,j = {Xt+j−1 ≤ u < Xt+j}, for some j ∈ IN. Moreover, any event At,j

in the σ-field generated by X2, predictor of Ct,j , will be alarm region. It is said that an

alarm is given at time t, for the catastrophe Ct,j , if the observed value of X2 belongs to

the alarm region. In addition, the alarm is said to be correct if the event At,j is followed

by the event Ct,j . Conversly, a false alarm is defined as the occurrence of At,j without

Ct,j . If an alarm is given when the catastrophe occurs, it is said that the catastrophe is

detected. Furthermore the alarm region At,j is said to have size αt,j if αt,j = P (At,j |Dt).

The alarm region is optimal of size αt,j if

P (At,j |Ct,j , Dt) = sup
B∈σX2

P (B|Ct,j , Dt), (1)
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with P (B|Dt) = αt,j . Note that this alarm region also is the supreme, among all events in

σX2 , of the probability of correct alarm; see Lemma 1 of Antunes et al. (2003) for details.

Definition 1.1. An optimal alarm system of size {αt,j} is a family of alarm regions {At,j}
in time satisfying (1).

Lemma 1.1 below is a slight modification of Lemma 2 in Antunes et al. (2003) for

count processes.

Lemma 1.1. Let p(x2|Dt) and p(x2|Ct,j , Dt) be the predictive probabilities of X2 and

X2|Ct,j, respectively. The alarm system {At,j} defined by

At,j = {x2 ∈ INq :
P (Ct,j |x2, Dt)

P (Ct,j |Dt)
≥ kt,j},

for a fixed kt,j : P (X2 ∈ At,j |Dt) = αt,j, is optimal of size αt,j.

This lemma ensures that the alarm region defined above renders the highest detection

probability. Moreover to enhance the fact that the optimal alarm system depends on the

choice of kt,j , it is important to stress that in view of the fact that P (Ct,j |Dt) does not

depend on x2, the alarm region can be rewritten in the form

At,j = {x2 ∈ INq : P (Ct,j |x2, Dt) ≥ k}, (2)

where k = kt,jP (Ct,j |Dt) is chosen in some optimal way to accommodate conditions over

the following operating characteristics of the alarm system:

Definition 1.2 [Operating characteristics]

1. Size of the alarm: P (At,j |Dt);

2. Probability of correct alarm: P (Ct,j |At,j , Dt);

3. Probability of detecting the event: P (At,j |Ct,j , Dt);

4. Probability of false alarm: P (C̄t,j |At,j , Dt);

5. Probability of undetected the event: P (Āt,j |Ct,j , Dt).
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The choice of k must be such that maximizes the probabilities of correct alarm and

detection and simultaneously minimizes the probabilities of non detection and false alarm.

In view of the fact that simultaneous maximization of the probability of correct alarm and

the probability of detection it is not possible in general, a compromise must be reached

between those operating characteristics. Svensson et al. (1996), for example, suggest to

choose the value of k that corresponds to the equality of the above referred probabilities.

In this work a different approach will be adopted. Details are given in Section 4.

The rest of the paper is organized as follows: in Section 2 an optimal alarm system

for a Doubly Stochastic INteger-valued AutoRegressive (DSINAR) process of order one is

developed. Expressions for the probability of the alarm size, correct alarm and the prob-

ability of detecting the catastrophe are given. Parameter estimation from both classical

and Bayesian approaches is covered in Section 3. In Section 4, the results are illustrated

through a simulation study. Section 5 gives and empirical example of a set of data con-

cerning the number of sunspot on the surface of the sun. Finally, some concluding remarks

are given in Section 6.

In this paper we want to highlight the following issues:

1. whereas for the continuous-valued models considered by Svensson et al. (1996) the

percentages of correct alarm, when considering as the upcrossing level an extremal

event, is nearly 50% in the discrete case this percentage falls to 30% at least for

the models under consideration. Our results are not directly comparable with those

obtained by Antunes et al. (2003) since the authors have considered as upcrossings

non-extremal level events;

2. there is no unifying criterion to choose an optimal alarm system. The ones considered

by Antunes et al. (2003) and Svensson et al. (1996) do not directly apply in the

present setting mainly due to the discrete nature of the data. Thus a different

approach has to be adopted;

3. the event prediction considered in this work allow us on-line prediction in the sense

that, the parameter estimates of the model, the alarm regions and the operating
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characteristics are updated at each time point.

2 Optimal Alarm Systems for DSINAR(1) Processes

In this section an optimal alarm system for a Doubly Stochastic INteger-valued AutoRe-

gressive processes of order one (hereafter DSINAR(1)) is developed. A DSINAR(1) model

is defined by the recursive equation

Xt = αt ◦Xt−1 + Zt, t = 1, 2, . . . , (3)

where the thinning operator ◦ is defined as

αt ◦Xt−1
d=

Xt−1∑

i=1

Ui,t(αt),

being (Ui,t(αt)), for i = 1, 2, . . . , an i.i.d. sequence of Bernoulli random variables with

success probability P (Ui,t(αt) = 1) = αt. Furthermore (Zt)t∈IN constitutes an i.i.d. se-

quence of Poisson-distributed random variables with mean λ, which are assumed to be

independent of Xt−1, αt and αt ◦Xt−1. Note that the operator ◦ incorporates the discrete

nature of the variates and acts as the analogue of the standard multiplication used in the

continuous-valued processes. We further assume that X0 = x0, is observed. For αt the

conventional specification

αt =
eYt−sω

1 + eYt−sω
, s ≥ 0,

is adopted with Yt = (Y1,t, Y2,t, . . . , Yl,t) being a vector of covariates of interest, and

ω = (ω1, ω2, . . . , ωl)T the corresponding unknown vector of parameters. It is worth to

mention that although for the large majority of processes involving series of counts the

assumption of s > 0 is tenable, the motivation for considering the case s = 0 comes from

the fact that in the analysis of international tourism demand and other related processes

this assumption is more appropriate in terms of modelling purposes; see Brännäs et al.

(2002) and Brännäs and Nordström (2004, 2006).

For the DSINAR(1) model the probabilistic computation of the operating characteristics is

as follows: the probability of catastrophe conditional on Dt and X2, i.e., P (Ct,j |x2, Dt, SY, λ,ω)

and the probability of catastrophe conditional on Dt, P (Ct,j |Dt,SY, λ,ω) (hereafter P1
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and P2 respectively) with SY defined as the σ-field generated by (Yt)t∈IN, can be obtain

through the calculation of the set of conditional probabilities P (xt+h|xt,SY, λ,ω), with

h ∈ IN. In order to obtain P (xt+h|xt, SY, λ, ω) we need the following result.

Proposition 2.1. For the DSINAR(1) model defined in (3) it follows that

Xt+h|SY, λ,ω
d=

(
h−1∏

i=0

αt+h−i

)
◦Xt +


Zt+h +

h−1∑

j=1

(
j−1∏

m=0

αt+h−m

)
◦ Zt+h−j


 , (4)

with the convention
∑0

j=1 = 0.

Proof. See Appendix A.

The expression on the right-hand side of (4) is the sum of two independent components,

one depending only on Xt and the other depending only on the innovations. Having in

mind the properties of the thinning operator it is easy to check that the 2nd term in

brackets is Poisson-distributed with parameter λ∗ = λ
h−1∑
j=0

βt+h,j being

βt,s =





s−1∏
m=0

αt−m s ≥ 1

1 s = 0
.

Moreover, the first term on the right-hand side of (4) conditioned on Xt = xt is Binomial-

distributed with parameters xt and βt+h,h. Hence the probability function of Xt+h condi-

tional on Xt and SY can be written as

P (xt+h|xt, SY, λ, ω) = e−λ∗
min(xt,xt+h)∑

i=0

(λ∗)xt+h−i

(xt+h − i)!
Cxt

i (βt+h,h)i (1− βt+h,h)xt−i, (5)

providing

P (Ct,j |x2, Dt,SY, λ, ω) =

= P (Xt+j−1 ≤ u < Xt+j |x1, . . . , xt,SY, λ,ω)

=
u∑

xt+j−1=0

P (Xt+j−1 = xt+j−1, Xt+j > u|x2, Dt, SY, λ,ω)

=
u∑

xt+j−1=0

[P (Xt+j−1 = xt+j−1|x2, Dt, SY, λ,ω)× P (Xt+j > u|xt+j−1,x2, Dt, SY, λ,ω)]

=
∑

xt+j−1≤u

p(xt+j−1|xt,SY, λ,ω)×

1−

∑

xt+j≤u

p(xt+j |xt+j−1, SY, λ, ω)


 . (6)
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Finally, P2 can be calculated through the expression

P (Ct,j |Dt,SY, λ,ω) =

= P (Xt+j−1 ≤ u < Xt+j |Dt, SY, λ,ω)

=
u∑

xt+j−1=0

P (Xt+j−1 = xt+j−1, Xt+j > u|Dt, SY, λ, ω)

=
u∑

xt+j−1=0

[P (Xt+j−1 = xt+j−1|Dt, SY, λ, ω)× P (Xt+j > u|xt+j−1, Dt,SY, λ, ω)]

=
∑

xt+j−1≤u

p(xt+j−1|xt−q,SY, λ, ω)×

1−

∑

xt+j≤u

p(xt+j |xt+j−1, SY, λ, ω)


 . (7)

Since X is Markovian the probabilities p(xt+j |xt+j−1, SY, λ,ω) and

p(xt+j−1|x1, . . . , xt, SY, λ, ω) are calculated through (5), after making the necessary adap-

tations. With these preliminaries out of the way, the operating characteristics can now be

easily calculated.

1. Alarm size

P (At,j |Dt, SY, λ, ω) =
∑∑∑

x2∈At,j

P (X2 = x2|Dt, SY, λ,ω)

=
∑∑∑

x2∈At,j

q−1∏

i=0

p(xt−i|xt−i−1, SY, λ, ω);

2. Probability of correct alarm

P (Ct,j |At,j , Dt,SY, λ, ω) =

=
P (Ct,j ∩At,j |Dt,SY, λ,ω)

P (At,j |Dt, SY, λ,ω)

=

∑∑∑

x2∈At,j

P (X2 = x2|Dt, SY, λ, ω)P (Ct,j |X2 = x2, Dt, SY, λ,ω)

P (X2 = x2|Dt, SY, λ,ω)

=

∑∑∑

x2∈At,j

q−1∏

i=0

p(xt−i|xt−i−1,SY, λ,ω)P (Ct,j |X2 = x2, Dt, SY, λ, ω)

∑∑∑

x2∈At,j

q−1∏

i=0

p(xt−i|xt−i−1, SY, λ, ω)

.
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The expression of the alarm size along with the expression in (6) allow us to rewrite

the probability of correct alarm as

P (Ct,j |At,j , Dt,SY, λ, ω) =

=
∑∑∑

x2∈At,j




q−1∏

i=0

p(xt−i|xt−i−1, SY, λ, ω)
u∑

xt+j−1=0

p (xt+j−1|xt,SY, λ,ω) ×

×

1−

u∑

xt+j=0

p(xt+j |xt+j−1, SY, λ,ω)








 ∑∑∑

x2∈At,j

q−1∏

i=0

p(xt−i|xt−i−1, SY, λ,ω)



−1

;

3. Probability of detecting the catastrophe

P (At,j |Ct,j , Dt,SY, λ, ω) =

=
P (Ct,j ∩At,j |Dt, SY, λ,ω)

P (Ct,j |Dt, SY, λ, ω)

=

∑∑∑

x2∈At,j

P (X2 = x2|Dt, SY, λ, ω)P (Ct,j |X2 = x2, Dt, SY, λ,ω)

P (Ct,j |Dt,SY, λ,ω)

=
∑∑∑

x2∈At,j




q−1∏

i=0

p(xt−i|xt−i−1, SY, λ, ω)
u∑

xt+j−1=0

p (xt+j−1|xt,SY, λ,ω) ×

×

1−

u∑

xt+j=0

p(xt+j |xt+j−1, SY, λ,ω)





×

×

 ∑

xt+j−1≤u

p(xt+j−1|xt−q, SY, λ,ω)


1−

∑

xt+j≤u

p(xt+j |xt+j−1, SY, λ,ω)






−1

.

3 Estimation methods

In this section we consider the estimation of the operating characteristics. From the

classical framework an estimative method (plug-in) is used to estimate these probabili-

ties based on the the well-known conditional maximum likelihood (CML) method. The

CML estimates of the unknown parameters θ = (λ,ω) are obtained maximizing the condi-

tional log-likelihood function with respect to θ, recurring to the iterative Newton-Raphson

method. The starting values needed to initialize the algorithm are the conditional least
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squared estimates. Moreover, the values of Yt+j are calculated through the optimal linear

j-period ahead forecast given by Ŷt+j = E(Yt+j |y), being y = (yt, yt−1, . . . ).

From the Bayesian perspective a prior distribution for the vector of parameters θ is needed.

This distribution is intended to represent beliefs about parameter values, prior to the avail-

ability of data. We consider that λ ∼ Gamma(a, b), a, b > 0 and ωi ∼ N(µi, τ
−1
i ) with

µi ∈ IR and τi > 0, i = 1, . . . , l. Assuming independence between all the parameters

involved the prior distribution of θ, say h(θ), is proportional to

h(θ) ∝ 1
l∏

i=1

√
2πτ−1

i

λa−1 exp

{
−bλ− 1

2

l∑

i=1

τi (ωi − µi)
2

}
. (8)

Note that this distribution is vague when the hyperparameters tend to zero. Moreover, the

distribution of Dt conditioned on x0 is the convolution of the Binomial and the Poisson

distributions taking the form

fDt (dt|x0, θ, SY) =
t−q∏

n=1

e−λ

min(xn−1,xn)∑

i=0

λxn−i

(xn − i)!
C

xn−1

i αi
n(1− αn)xn−1−i. (9)

Conjugating (8) and (9) it follows that the posterior distribution is proportional to

h(θ|dt,SY) ∝ 1
∏l

i=1

√
2πτ−1

i

λa−1 exp

{
−bλ− 1

2

l∑

i=1

τi (ωi − µi)
2 − (t− q)λ

}

×
t−q∏

n=1

min(xn−1,xn)∑

i=0

λxn−i

(xn − i)!
C

xn−1

i αi
n(1− αn)xn−1−i. (10)

The probability P1 is given by

P (Ct,j |x2, Dt, SY) =
∫

Γ

∫
P (Ct,j |x2, Dt, SY, θ)h (θ|Dt, SY ) dωdλ, (11)

with Γ = {(ω1, ω2, . . . , ωl) ∈ (−∞,∞)l} whereas the probability of P2 takes the form

P (Ct,j |Dt, SY) =
∫

Γ

∫
P (Ct,j |Dt,SY,θ)h (θ|Dt, SY) dωdλ, (12)

where P (Ct,j |x2, Dt, SY, θ) and P (Ct,j |Dt, SY, θ) are calculated through (6) and (7) res-

pectively. In this case, the predictive values Yt+j are estimated by calculating the mean of

the corresponding predictive distribution via the composition method suggested by Tanner
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(1996).

It is worth to mention that the complexity of expressions (11) and (12) do not permit

their analytical calculation, even in the simplest case j = 1. Regarding expression (11)

since by definition P (Ct,j |x2, Dt, SY) = Eθ|Dt=dt,SY
[P (Ct,j |x2, Dt, SY, θ)] it is easy to

obtain its respective Monte Carlo approximation through the expression

P̂ (Ct,j |x2, Dt, SY) =
1
m

m∑

i=1

P (Ct,j |x2, Dt, θi,SY), (13)

where the observations θi = (λi,ωi), i = 1, . . . , m form a sample of the posterior distribu-

tion h(θ|Dt, SY). In view of the fact that this sample can not be generate directly from

the posterior distribution, we use the Gibbs methodology with Metropolis step, available

in the program WINBUGS, to sample from (10). A similar procedure it is applied to

estimate the probability P2 and the operating characteristics.

4 Simulation study

In this section we present a simulation study to illustrate the performance of the alarm

system using data sets generated from the DSINAR(1) model in (3) with one covari-

ate. Moreover, we assume that q = 1. The simulation study contemplates six different

combinations of (λ, ω1) namely λ = 2, 3, 4 and ω1 = 0.2, 0.3. For the covariate Yt the

continuous-valued first-order autoregressive model

Yt − 3 = 0.6(Yt−1 − 3) + εt, t = 1, 2, . . . ,

with εt ∼ N(0, 1), is adopted. 200 samples of size 250 are generated for each combination

of (λ, ω1). The analysis of the alarm system is carried out at t = 200, i.e., X2 = {x200}.
The event of interest is the two step ahead catastrophe given by the upcrossing level u

at time t + 2, i.e., C200,2 = {X201 ≤ u < X202}. A two-step ahead catastrophe was

used to diminish the computational effort, but it is possible to construct a j-step ahead

catastrophe with j > 2. The choice of u is carried out in four stages: (a) for each one of

the 200 samples obtained for a fixed combination of (λ, ω1) the corresponding probability

12



P2 in (7) considering the true values for the parameters, say P
(i)
2 , given by

P
(i)
2 =

∑

x
(i)
t+j−1≤u

p(x(i)
t+j−1|x(i)

t−1, SY )


1−

∑

x
(i)
t+j≤u

p(x(i)
t+j |x(i)

t+j−1, SY )


 ,

with i = 1, . . . , 200 is calculated, for a fixed value of u ∈ [10, 25]; (b) for the set of probabil-

ities (P (1)
2 , . . . , P

(200)
2 ) calculate the corresponding sample mean (P (1)

2 + · · ·+ P
(200)
2 )/200

(c) repeat steps (a) and (b) for different values of u ranging from 10 to 25; (d) choose

as the appropriate value of u the one corresponding to the sample mean closer to 0.1.

The choice of this value is justified by the fact that we are interested in relatively rare

events. The previous procedure lead us to select u = 8 for (λ, ω1) = (2, 0.2), u = 9 for

(λ, ω1) = (2, 0.3), u = 11 for (λ, ω1) = (3, 0.2), u = 13 for (λ, ω1) = (3, 0.3), u = 12 for

(λ, ω1) = (4, 0.2), and u = 17 for (λ, ω1) = (4, 0.3).

For each one of the 200 samples obtained for a fixed combination of (λ, ω1) an optimal

alarm region is generated through expression (2) for values of k ranging from P2 to P2+0.1.

For each optimal alarm region the corresponding operating characteristics are calculated.

This procedure is repeated for the classical (using the true values of the parameters and

their maximum likelihood estimates) and the Bayesian approach. In the Bayesian setting

a sample of length 35000, including a burn-in period of 15000 observations, of the posterior

distribution is generated. Furthermore, only every twentieth iteration is stored in order

to obtain an, approximately, independent and identically distributed sample.

As previously mentioned, the choice of k plays a key role in order to obtain the best

collection of operating characteristics. Besides Svensson’s criterion already mentioned in

section 2 another procedures to deal with this problem include (a) to choose the value of

k such that the alarm size approximately equals the probability P2; and (b) to choose the

value of k that verifies P (At,2|Dt) ≈ 2P (Ct,2|Dt); see Antunes (2002) for details. When

dealing with count processes, however, these criteria can not be directly applied due to

the discrete nature of the data. Giving heed to this problem we consider two different

criteria for the selection of k:
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Criterion 1: (B1) 0.5 <
P (At,2|Dt)
P (Ct,2|Dt)

≤ 1.5; (B2) 1.5 <
P (At,2|Dt)
P (Ct,2|Dt)

≤ 2.5; (B3) 2.5 <

P (At,2|Dt)
P (Ct,2|Dt)

≤ 3.5;

For criterion Bj with j = 1, 2, 3 the optimal value k = k∗ turn out to be

k∗ = min
k:j−1/2<

P (At,2|Dt)

P (Ct,2|Dt)
≤j+1/2

∣∣∣∣
P (At,2|Dt)
P (Ct,2|Dt)

− j

∣∣∣∣ .

Since for all values of k considered the probability of correct alarm is too small we in-

troduce the alternative Criterion 2 in which the value of k is such that the probability of

detection is approximately 0.5.

Criterion 2: (B4) P (At,2|Ct,2, Dt) ≈ 0.5.

Table 1 below shows the operating characteristics of the alarm system obtained by con-

sidering the classical approach replacing the true values for their maximum likelihood

estimates and the Bayesian approach for λ = 2, 3, 4 and ω1 = 0.2, 0.3, considering only the

values of k satisfying criterion B2.

(Table 1 about here)

Table 2 represents the results for λ = 2. For ω1 = 0.2 the ratio alarms/catastrophes is

in general above the interval defined by the respective criterion whereas for ω1 = 0.3 this

ratio is below the considered interval. The number of false alarms is very high, for both

values of ω1, being nearly 80%. For ω1 = 0.2 the criterion B3 has the highest percentages

of detection regardless the approach considered whereas for ω1 = 0.3 the criteria B4 rends

the best collection of operating characteristics.

(Table 2 about here)

In Table 3 for λ = 3 and ω1 = 0.2 the ratio alarms/catastrophes falls into the respective

interval regardless the criteria and approach adopted. For the case λ = 3 and ω1 = 0.3,

however, the ratio alarms/catastrophes does not fall into the respective interval for the

criterion B3; and criterion B2 when considering the true parameters. In terms of false

alarms the results in Table 3 are very similar to the ones obtained in Table 2 being the

percentages around 80%. Arguably, for λ = 3 it seems that criterion B4 rends the best

collection of operating characteristics.
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(Table 3 about here)

The results in Table 4 show that the ratio alarms/catastrophes is in general below the

interval defined by the respective criterion. Note that for λ = 4 and ω1 = 0.2 the most

balanced criterion seems to be B2. The percentages of false alarms are below 70% and the

percentages of detection are between 30% and 44.4%. For λ = 4 and ω1 = 0.3, however,

the criterion that seems to rend the best collection of operating characteristics is B3. The

percentages of false alarms are below 70% and the percentage of detecting the catastrophe

for the classical approach (considering the true values of the parameters) is 30% whereas

for the other two approaches this percentage is equal to 44.4%.

(Table 4 about here)

Finally, in order to illustrate how the online prediction performs in practice, we consider

a single realization of the DSINAR(1) process with parameters λ = 4 and ω1 = 0.3. The

event to predict is Ct,2 = {Xt+1 ≤ 17 < Xt+2}, t = 199, . . . , 205. First of all, we start by

analysing the alarm region and the operating characteristics at the time t = 200. Hence

for this process, the alarm regions for values of k ranging from 0.151 to 0.175, considering

both Bayesian and maximum likelihood estimtes, are calculated. The plot containing the

alarm regions obtained by using maximum likelihood estimates is given in Figure 1. The

alarm regions obtained by adopting the Bayesian perspective are identical.

(Figure 1 about here)

Table 5 contains the corresponding operating characteristics obtained by considering both

Bayesian and maximum likelihood estimates.

(Table 5 about here)

In Figure 2 the probability of alarm region, considering maximum likelihood estimates,

against k is plotted. In the figure are also represented the criteria B1, B2 and B3. The

optimal alarm system and the associated operating characteristics for criterion B1 are

obtained with k = 0.175, for criterion B2 the value of k is 0.172 and for criterion B3 k is

0.164.
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(Figure 2 about here)

Table 6 summarizes the operating characteristics of the alarm system for t = 199, 200, . . . , 205

and the corresponding alarm region obtained by criteria B3.

(Table 6 about here)

5 Example

In this section we model a data set containing the number of sunspot groups (Zurich clas-

sification) available in the annual Solar Observations Bulletins published by the Catania

Astrophysical Observatory. These reports track the birth, the growth, and the decay of

spot groups, as solar rotation carries them across the face of the sun.

Sunspots appear as dark spots on the surface of the sun. Temperatures in the dark

centers of sunspots drop to about 3700K (compared to 5700K for the surrounding photo-

sphere). They typically last for several days, although very large ones may live for several

weeks. Sunspots are magnetic regions on the sun with magnetic field strengths thousands

of times stronger than the Earth’s magnetic field. Sunspots usually come in groups with

two sets of spots. One set will have positive or north magnetic field while the other set

will have negative or south magnetic field. The field is strongest in the darker parts of the

sunspots - the umbra. The field is weaker and more horizontal in the lighter part - the

penumbra.

The sunspot series of day-by-day observations is collected for the period December 1,

1998, to 30 April, 1999. As covariate we consider the corrected total area in millionths

of solar hemisphere. The first problem to be dealt with is the lack of some data in the

records. The method to fill gaps in a time series depends basically on their duration. In

the time series under analysis (sunspot of the surface on the sun and the corrected total

area in millionths of solar hemisphere) small gaps have been filled by a direct ordinary

interpolation between the neighboring observations. Note that this method, when applied

to the sunspot data set, lacks of data coherency in the sense that the interpolated values
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have to be restricted to the set of the integers. To overcome this difficulty the interpolated

values were adjusted to the nearest integer. Both series are exhibited in Figure 3.

(Figure 3 about here)

The autocorrelation function and the partial autocorrelation function of the series of cor-

rected total area in millionths of solar hemisphere is displayed in Figure 4. Included as

dotted lines on each plot are approximate 95% data confidence limits.

(Figure 4 about here)

Both functions are consistent with the data being generated by an AR(1) and it seems

reasonable, therefore, to proceed with the estimation of the parameters and the events

of interest. In order to fit the DSINAR(1) model we only use the observations between

December 1, 1998 to February 12, 1999 for modelling purposes whereas the rest of the

observations (i.e., from February 13 to April 30 of 1999) are used to illustrate the per-

formance of the online prediction procedure to predict the extremal upcrossing event

Ct,2 = {Xt+1 ≤ 4 ≤ Xt+2} with t = 75, 76, . . . , 149. Note that the probability of catastro-

phe given the past Dt is P (Ct,j |Dt, SY) ≈ 0.09. In order to calculate the optimal alarm

region and its corresponding operating characteristics at every fixed instant t, the values

of Yt+j , j = 0, 1, 2, are obtained through the optimal linear j-period ahead forecast given

by Ŷt+j = µ̂t−1 + φ̂j
t−1(Yt−1 − µ̂t−1), being (µ̂t−1, φ̂t−1) the CML estimates of µ = E(Yt)

and φ the parameter of the autoregressive model of order one, respectively, for the classical

approach. From the Bayesian point of view the predictive values Yt+j are estimated by cal-

culating the mean of the corresponding predictive distribution. The results for the online

alarm system of the DSINAR(1) model considering criterion B4 are presented in Table 7.

(Table 7 about here)

In February the alarm system correctly predicts the catastrophe whereas in April the prob-

ability of detecting a catastrophe is 33% (3 catastrophes being 1 detected). The number of

false alarms is rather high although this depends on our strict definition of correct alarm.

This number will be smaller if we accept alarms that are one step early and do not count

the alarms we get while we are still in the catastrophe state. Hence, it can be discussed

whether these kinds of false alarms in a practical meaning should be considered false.
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It is worth to mention that other studies have found similar result regarding the num-

ber of false alarms. For example, Svensson and Holst (1998) in the analysis of high water

levels at the Danish coast in the Baltic sea report a rate of false alarms nearly 95%; see

also Svensson and Holst (1997) for further details.

6 Conclusions

This paper has presented an optimal alarm system for processes described by integer-

valued autoregressive processes with parameters being functions of covariates of interest

and varying on time. The optimal alarm technique leads to optimal event predictors

in the sense that they give the least number of false alarms for a predetermined alarm

size. As stressed throughout the paper the number of false alarms is rather high both in

the simulation study and in the working example. A possibility to lower the number of

false alarms is to include in the model additional external information or to consider a

time-varying catastrophe level. This remains a topic of future research.

Appendix A

Proof of Proposition 2.1:

the proof follows by induction and relies on the properties of the thinning operator (see Silva and

Oliveira, 2004). If h = 1 then Xt+1
d=αt+1 ◦Xt + Zt+1. If the result is true for h = p− 1, (p > 1),

then for h = p
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Xt+p|SY, λ, ω
d= αt+p ◦Xt+p−1 + Zt+p

d= αt+p ◦



(
p−2∏

i=0

αt+p−1−i

)
◦Xt + Zt+p−1 +

p−2∑

j=1

(
j−1∏
m=0

αt+p−1−m

)
◦ Zt+p−1−j




+ Zt+p

d=

(
αt+p

p−2∏

i=0

αt+p−1−i

)
◦Xt + αt+p ◦ Zt+p−1 +

p−2∑

j=1

(
αt+p

j−1∏
m=0

αt+p−1−m

)
◦ Zt+p−1−j

+ Zt+p

d=

(
p−1∏

i=0

αt+p−i

)
◦Xt + αt+p ◦ Zt+p−1 +

p−2∑

j=1

(
j∏

m=0

αt+p−m

)
◦ Zt+p−1−j + Zt+p

d=

(
p−1∏

i=0

αt+p−i

)
◦Xt + αt+p ◦ Zt+p−1 +

p−1∑

j=2

(
j−1∏
m=0

αt+p−m

)
◦ Zt+p−j + Zt+p

d=

(
p−1∏

i=0

αt+p−1−i

)
◦Xt + Zt+p +

p−1∑

j=1

(
j−1∏
m=0

αt+p−m

)
◦ Zt+p−j .

References

[1] Ahn, S., Gyemin, L. and Jongwoo, J. (2000). Analysis of the M/D/1-type queue based on an integer-

valued autoregressive process. Oper. Res. Lett. 27:235–241.

[2] Al-Osh, M. A. and Alzaid, A. A. (1987). First order integer-valued autoregressive INAR(1) process.

J. Time Ser. Anal. 8:261–275.

[3] Al-Osh, M. and Alzaid, A. (1988). Integer-valued moving average (INMA) process. Stat. Pap. 29:281–

300.

[4] Aly, E.-E. and Bouzar, N. (1994). Explicit stationary distributions for some Galton-Watson processes

with immigration. Comm. Statist. Stochastic Models 10:499–517.

[5] Aly, E.-E. and Bouzar, N. (2005). Stationary solutions for integer-valued autoregressive processes.

Int. J. Math. Math. Sci. 1:1–18.

[6] Amaral-Turkman, M. A. and Turkman, K. F. (1990). Optimal alarm systems for autoregressive

processes; a Bayesian approach. Comput. Statist. Data Anal. 10:307–314.

[7] Antunes, M. (2002). Some problems in non-linear prediction. Unpublished doctoral dissertation.

University of Lisbon.

19



[8] Antunes, M., Amaral-Turkman, M. A. and Turkman, K. F. (2003). A Bayesian approach to event

prediction intervals. J. Time Ser. Anal. 24:631–646.

[9] Blundell, R., Griffith, R. and Windmeijer, F. (2002). Individual effects and dynamics in count data

models. J. Econometrics 108:113–131.

[10] Braga, A. L., Zanobetti, A., Schwartz, J. (2001). The time course of weather-related deaths. Epi-

demiology 12:662-667.

[11] Brännäs, K. (1995). Explanatory variables in the AR(1) count data model. Ume̊a Economic Studies

381.

[12] Brännäs, K. and Hall, A. (2001). Estimation in integer-valued moving average models. Appl. Stochas-

tic Models Bus. Ind. 17:277–291.

[13] Brännäs, K. and Hellström, J. (2001). Generalized integer-valued autoregression. Econometric Rev.

20:425–443.

[14] Brännäs, K. Hellström, and J. Nordström, J. (2002). A new approach to modelling and forecasting

monthly guest nights in hotels. Int. J. Forecast. 18:9–30.

[15] Brännäs, K. and Nordström, J. (2004). An integer-valued time series model for hotels that accounts

for constrained capacity. Studies in Nonlinear Dynamics and Econometrics 8:4, article 6.

[16] Brännäs, K. and Nordström, J. (2006). Tourist accomodation effects of festivals. Tourism Economics

12:291–302.

[17] Campbell, M. J., Julious, S. A., Peterson, C. K. and Tobias, A. (2001). Atmospheric pressure and

sudden infant death syndrome in Cook County, Chicago. Paediatr Perinat Epidemiol. 15:287-289.
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Figure 1: Alarm regions for values of k ∈ [0.151, 0.175] considering maximum likelihood

estimates at time point t = 200.
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t = 200 and j = 2 considering maximum likelihood estimates.
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Figure 3: Time series plots for the number of sunspot in groups and the corrected total

area in millionths of solar hemisphere/100 for the period December 1, 1998 to 30 Abril,

1999.
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Figure 4: Autocorrelation function and partial autocorrelation of the series corrected total

area in millionths of solar hemisphere.
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ω1 = 0.2 ω1 = 0.3

Approach Criterion Alarms Catastrophes Alarms Catastrophes

False Total Detected Total False Total Detected Total

B1 1 1 0 4 11 11 0 6

B2 32 (0.84) 38 6 (0.35) 17 14 (0.88) 16 2 (0.13) 16

True parameters B3 22(0.85) 26 4(0.67) 6 19 (0.83) 23 4 (0.33) 12

B4 81 (0.9) 90 9 (0.50) 18 57 (0.84) 68 11 (0.58) 19

B1 4 4 0 5 10 10 0 3

B2 28 (0.88) 32 4 (0.31) 13 19 (0.90) 21 2 (0.12) 17

M.L. Estimates B3 16 (0.84) 19 3 (0.6) 5 21 (0.84) 25 4 (0.31) 13

B4 83 (0.90) 92 9 (0.50) 18 108 (0.89) 121 13 (0.68) 19

B1 4 4 0 6 10 10 0 3

B2 28 (0.88) 32 4 (0.20) 20 19 (0.90) 21 2(0.11) 18

Bayesian B3 18 (0.82) 22 4 (0.67) 6 21 (0.84) 25 4 (0.31) 13

B4 82 (0.90) 91 9 (0.50) 18 62 (0.85) 73 11 (0.58) 19

Table 2: Results for λ = 2 at time point t = 200. Percentages in parenthesis.
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ω1 = 0.2 ω1 = 0.3

Approach Criterion Alarms Catastrophes Alarms Catastrophes

False Total Detected Total False Total Detected Total

B1 11 (0.85) 13 2 (0.20) 10 23 (0.852) 27 4 (0.14) 28

B2 23 (0.92) 25 2 (0.15) 13 15 (0.94) 16 1 (0.33) 3

True parameters B3 45 (0.80) 56 11(0.52) 21 37 (0.80) 46 9 (0.35) 26

B4 74 (0.85) 87 13 (0.54) 24 65 (0.84) 77 12 (0.43) 28

B1 15 (0.88) 17 2 (0.17) 12 18 (0.82) 22 4 (0.20) 20

B2 25 (0.89) 28 3 (0.21) 14 22 (0.88) 25 3 (0.23) 13

M.L. Estimates B3 37 (0.84) 44 7 (0.47) 15 36 (0.80) 45 9 (0.38) 24

B4 78 (0.85) 92 14 (0.58) 24 66 (0.85) 78 12 (0.43) 28

B1 14 (0.88) 16 2 (0.20) 10 19 (0.83) 23 4 (0.20) 20

B2 25 (0.89) 28 3 (0.21) 14 21 (0.88) 24 3 (0.27) 11

Bayesian B3 40 (0.85) 47 7 (0.50) 14 36 (0.81) 44 8 (0.35) 23

B4 78 (0.85) 92 14 (0.58) 24 65 (0.84) 77 12 (0.43) 28

Table 3: Results for λ = 3 at time point t = 200. Percentages in parenthesis.
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ω1 = 0.2 ω1 = 0.3

Approach Criterion Alarms Catastrophes Alarms Catastrophes

False Total Detected Total False Total Detected Total

B1 0 0 0 27 13 (0.81) 16 3 (0.10) 30

B2 25 (0.76) 33 8 (0.30) 27 23 (0.76) 30 7 (0.23) 30

True parameters B3 0 0 0 27 21 (0.70) 30 9 (0.30) 30

B4 76 (0.81) 93 17 (0.63) 27 46 (0.75) 61 15 (0.50) 30

B1 3 3 0 6 8 (0.80) 10 2 (0.07) 28

B2 14 (0.66) 21 7 (0.36) 19 18 (0.90) 20 2 (0.10) 20

M.L. Estimates B3 21 (0.80) 26 5 (0.33) 15 23 (0.65) 35 12 (0.44) 27

B4 71 (0.80) 88 17 (0.63) 27 50 (0.75) 66 16 (0.53) 30

B1 4 4 0 6 9 (0.81) 11 2 (0.09) 27

B2 14 (0.63) 22 8 (0.44) 18 19 (0.90) 21 2 (0.28) 7

Bayesian B3 21 (0.75) 28 7 (0.50) 14 23 (0.67) 35 12 (0.44) 27

B4 72 (0.81) 89 17 (0.63) 27 49 (0.75) 65 16 (0.53) 30

Table 4: Results for λ = 4 at time point t = 200. Percentages in parenthesis.

Approach k P (Ct,2|D) P (At,2,k|D) P (Ct,2|At,2,k) P (At,2,k|Ct,2)

0.151 0.151 0.633 0.170 0.712

0.157 0.151 0.537 0.172 0.612

M.L.Estimates 0,164 0.151 0.410 0.175 0.476

0.172 0.151 0.286 0.176 0.334

0.175 0.151 0.142 0.178 0.168

0.151 0.150 0.633 0.169 0.714

0.157 0.150 0.538 0.172 0.615

Bayesian 0.164 0.150 0.411 0.175 0.478

0.172 0.150 0.287 0.176 0.336

0.175 0.150 0.143 0.178 0.169

Table 5: Operating characteristics for the DSINAR(1) process with λ = 4 and ω1 = 0.3

at time point t = 200.
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Month Approach Alarms Catastrophes

False Total Detected Total

February M.L. Estimates 8 (0.88) 9 1 (1.00) 1

Bayesian 8 (0.88) 9 1 (1.00) 1

March M.L. Estimates 8 (1.00) 8 0 0

Bayesian 8 (1.00) 8 0 0

April M.L. Estimates 13 (0.92) 14 1 (0.33) 3

Bayesian 13 (0.92) 14 1 (0.33) 3

Table 7: Results of the alarm system with u = 4 Percentages in parenthesis.
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