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Abstract

This work considers a generalization of the INAR(1) model to the panel data first order
Seemingly Unrelated INteger AutoRegressive Poisson model, SUINAR(1). It presents Bayesian
and classical methodologies to estimate the parameters of Poisson SUINAR(1) model and to
forecast future observations of the process. In particular, prediction intervals for forecasts -
classical approach - and HPD prediction intervals - Bayesian approach - are derived. A simulation
study is provided to give additional insight into the finite sample behaviour of the parameter
estimates and forecasts.
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1 Introduction

The usual linear models for time series are suitable for modelling stationary dependent sequences
under the assumption of Gaussianity, which is inappropriate for modelling counting processes. Moti-
vated by the need of modelling correlated series counts, the INteger-valued AutoRegressive (INAR)
process was proposed by Al-Osh and Alzaid (1987) and Mckenzie (1985). Generalizing the Poisson
INAR(1) model, PoINAR(1), for a r units panel with n time periods where the parameters are
constant along the time but different from individual to individual, we have the expression

Xk,t = αk ◦Xk,t−1 + εk,t, k = 1, . . . , r; t = 2, . . . , n, (1)

where xk,1 is known, αk ◦Xk,t−1|Xk,t−1 ∼ B(Xk,t−1, αk), αk ∈ (0, 1), εk,t, are, for each k = 1, . . . , r

Poisson random variables with parameter µk and, moreover, εk,t and Xk,t−1 are independent, for all
k and t. In many data sets individuals are not independent and here this dependence is modeled in
(1) through the innovations term by

εk,t = ε∗k,t + ζt, k = 1, . . . , r; t = 2, . . . , n.
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Thus, equation (1) takes the form

Xk,t = αk ◦Xk,t−1 + ε∗k,t + ζt, k = 1, . . . , r; t = 2, . . . , n, (2)

with ε∗k,t ∼ P (λk) i.i.d., k = 1, . . . , r; ζt ∼ P (δ) i.i.d., t = 2, . . . , n; ε∗k,t and ζt are independent for
k = 1, . . . , r, t = 2, . . . , n.
The model defined in (2) is called Seemingly Unrelated INteger AutoRegressive, SUINAR, since the
individuals appear independent from each other.
Particular situations of the model defined in (1) were studied by Silva et al. (2005b) - PoRINAR(1)
model - where the parameters are constant along the time and from individual to individual, i.e.,
considering independent replicates of the PoINAR(1) model.
Other authors, Berglund and Brännäs (2001), Blundell et al. (1999) and Böckenholt (1999), con-
sidered a generalization of this model in which the parameters depend on exogenous variables and
vary with time and from individual to individual.
In time series analysis we are usually interested in estimating the underlying model and in the
predictive capabilities of that model. Thus, the aim of this study is to establish a comparison
between classical and Bayesian approaches in order to conduct inference for model parameters and
obtain predictions for future values.
The remaining of the paper is organized as follows: Section 2, the SUINAR process is introduced
and some properties of the model are derived. In Section 3, the estimation of the parameters is
studied under several classical methods and Bayesian methodology. This is analysed using an MCMC
algorithm - ARMS - for which we give full details. In Section 4, forecasts of future observations and
prediction intervals are derived, under both approaches. In Section 5, the results are illustrated
through a simulation study. Finally, in Section 6 we some concluding remarks are given.

2 The SUINAR (1) model and its properties

Equation (2) is written in matrix form as



X1

X2

...
Xr




t

=




α1 0 · · · 0
0 α2 · · · 0
...

...
. . .

...
0 0 · · · αr



◦




X1

X2

...
Xr




t−1

+




ε∗1
ε∗2
...
ε∗r




t

+




1
1
...
1




t

ζt,

or alternatively
x.t = A ◦ x.(t−1) + ε.t + 1rζt, t = 2, . . . , n,

with

A ◦ x.(t−1) =

(
α1 ◦X1 =

X1∑

i=1

Bi1, · · · , αr ◦Xr =
Xr∑

i=1

Bir

)′

t−1

,

where x.t = (X1,t, X2,t, . . . , Xr,t), Bik are i.i.d. Bernoulli random variables with αk as the success
probability and independent of xt−1 and εt, t = 1, 2, . . . , n.

The following properties are important for the remainder of the paper.
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1. Let ε.t = ε∗.t + ζt1r− The covariance matrix of (ε.t) at lag j is given by,

γε(j) = Cov(ε.t, ε.(t+j))

=




cov(ε1,t, ε1,t+j) cov(ε1,t, ε2,t+j) . . . cov(ε1,t, εr,t+j)
cov(ε2,t, ε1,t+j) cov(ε2,t, ε2,t+j) . . . cov(ε2,t, εr,t+j)

...
...

. . .
...

cov(εr,t, ε1,t+j) cov(εr,t, ε2,t+j) . . . cov(εr,t, εr,t+j)




.

When j = 0, it follows that

γε(0) =




λ1 + δ δ · · · δ

δ λ2 + δ · · · δ
...

...
. . .

...
δ δ · · · λr + δ




.

If j ≥ 1, then γε(j) = 0, due to the independence between ε∗k,t and ζt for k = 1, . . . , r,
t = 2, . . . , n.

2. The mean value of the process x.t is given by

E(x.t) = (Ir −A)−1(λ + δ1r),

where x.t = (X1,t, X2,t, . . . , Xr,t), λ = (λ1, . . . , λr) and Ir is the (r × r) identity matrix.

For the kth individual, we have

E[Xk,t] = (λk + δ)/(1− αk), k = 1, . . . , r.

3. The covariance matrix of the process, x.t, is defined by

γX(0) =




(λ1 + δ)/(1− α1) δ/(1− α1α2) · · · δ/(1− α1αr)
δ/(1− α2α1) (λ2 + δ)/(1− α2) · · · δ/(1− α2αr)

...
...

. . . · · ·
δ/(1− αrα1) δ/(1− αrα2) · · · (λr + δ)/(1− αr)




. (3)

4. The covariance matrix x.t at lag j is given by

γX(j) = E
[
(x.t − E(x.t))

(
x.(t−j) −E(x.(t−j))

)]′ = AjγX(0), j = 1, 2, . . . .

3 Parameter Estimation

In this section we consider the estimation of the 2r + 1 unknown parameters θ = (α,λ, δ) =
(α1, α2, . . . , αr; λ1, λ2, . . . , λr; δ)of the SUINAR(1) process from the sample xr,n = {Xk,t; k = 1, 2, . . . , r; t =
1, 2, . . . , n}. The methods under study are the Conditional Maximum Likelihood, Conditional Min-
imum Square, method of moments and Bayesian methodology.
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3.1 Classical Approach

3.1.1 Conditional Maximum Likelihood Estimators

The likelihood function, conditional on x.1=(x1,1, x2,1, . . . , xr,1), is given by the following expression

L(xr,n; θ|x.1) =
∏r

k=1

∏n
t=2 P (Xk,t = xk,t|Xk,t−1 = xk,t−1)

=
∏r

k=1

∏n
t=2

∑Mk,t

i=0 exp[−(λk + δ)] (λk+δ)
xk,t−i

(xk,t−i)!

(xk,t−1

i

)
αi

k(1− αk)xk,t−1−i,
(4)

with Mk,t = min(xk,t, xk,t−1).
Estimates for δ and λk, k = 1, . . . , r cannot be obtained separatly due to the term (λk + δ)xk,t−i.
Thus, we consider µk = λk + δ in the expression (4), and we obtain the conditional maximum
likelihood (CML) estimates of αk and µk.
The CML estimates satisfy the following system, where the equations were obtained by canceling
the derivatives of the logarithm of expression (4)





∂ log L(xr,n; θ|x.1)
∂µk

= 0 ⇔
n∑

t=2

Pt(xk,t − 1)
Pt(xk,t)

= (n− 1)

∂ log L(xr,n; θ|x.1)
∂αk

= 0 ⇔
n∑

t=2

xk,t − αk

n∑

t=2

xk,t−1 − µk

n∑

t=2

Pt(xk,t − 1)
Pt(xk,t)

= 0

,

where

Pt(y) = exp[−(λk + δ)]
Mk,t∑

i=0

(λk + δ)y−i

(y − i)!

(
xk,t−1

i

)
αi

k(1− αk)xk,t−1 − i.

These equations do not yield explicit forms for the estimators of µk and αk, therefore iterative
methods are used to solve the system. We use the bisection method, halving the amplitude of the
interval which contains the zero of the function until the required precision is obtained.

3.1.2 Conditional Minimum Square Estimators

To obtain the Conditional Least Squares (CLS) estimators, we proceed similarly as Al-Osh and
Alzaid (1987) analysis of PoINAR(1) model. Thus, the Conditional Least Squares (CLS) estimator
of the parameter is obtained by minimizing

Q =
r∑

k=1

n∑

t=2

[Xk,t − E(Xk,t|Xk,t−1)]
2 =

r∑

k=1

n∑

t=2

[Xk,t − αkXk,t − λk − δ]2 . (5)

Therefore, calculating the derivatives of the previous expression in order to αk, λk and δ, we obtain
respectively





∂Q/∂αk =
∑n

t=2−2Xk,t−1[Xk,t − αkXk,t−1 − λk − δ]

∂Q/∂λk =
∑n

t=2−2[Xk,t − αkXk,t−1 − λk − δ], k = 1, . . . , r

∂Q/∂δ = −2
∑r

k=1

∑n
t=2[Xk,t − αkXk,t−1 − λk − δ]

. (6)
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Setting the derivatives to zero, we observe that ∂Q/∂δ is multiple of ∂Q/∂λk. It is easy to check that
the normal equations constitute an indeterminate system and, similarly to the maximum likelihood
method, it is not possible to estimate the parameters δ, αk, λk, k = 1, . . . , r, separately. Therefore,
once again we consider µk = λk + δ in expression (5).
After some simple algebraic operations the estimators are given by

α̂k,LSE =
(n− 1)

∑n
t=2 Xk,tXk,t−1 − (

∑n
t=2 Xk,t) (

∑n
t=2 Xk,t−1)

(n− 1)
∑n

t=2 X2
k,t−1 − (

∑n
t=2 Xk,t−1)

2

and

µ̂k,LSE =
∑n

t=2 Xk,t − α̂k,LSE
∑n

t=2 Xk,t−1

(n− 1)
.

3.1.3 Moment Estimators

Considering that the one step ahead prediction error is

ek,t = Xk,t − E(Xk,t|Xk,t−1), k = 1, 2, . . . , r,

we have that E(ek,t|Xk,t−1) = 0, E(Xk,t−1ek,t|Xk,t−1) = 0 and the corresponding sample moments
are the following





1
n−1

∑n
t=2(Xk,t − αkXk,t−1 − λk − δ) = 0

,
1

n−1

∑n
t=2 Xk,t−1(Xk,t − αkXk,t−1 − λk − δ) = 0

(7)

for k=1,2,. . . ,r . This system has 2r equations and 2r+1 unknown parameters so it will be necessary
to add another equation in order to estimate all the parameters. Through the analysis of covariance
matrix given in (3), we observe that

Cov(Xi,t, Xj,t)− δ

1− αiαj
= 0 , i, j = 1, 2, . . . , r, i 6= j,

being the corresponding sample moment given by

1(
r
2

)
r−1∑

i=1

r∑

j=i+1

[
1

n− 1

n∑

t=2

(Xi,t − X̄i·)(Xj,t − X̄j·)− δ

1− αiαj

]
, i, j = 1, 2, . . . , r, (8)

with X̄k· =
∑n

t=2 Xk,t/(n− 1), k = 1, 2, . . . , r.
The system (7) together with (8), allow us to obtain the estimators of the parameters δ, αk and
λk, k = 1, . . . , r, which are given by

α̂k,MM =
(n− 1)

∑n
t=2 Xk,tXk,t−1 − (

∑n
t=2 Xk,t) (

∑n
t=2 Xk,t−1)

(n− 1)
∑n

t=2 X2
k,t−1 − (

∑n
t=2 Xk,t−1)

2 ,

δ̂MM =

∑r−1
i=1

∑r
j=i+1

∑n
t=2

[
(Xi,t − X̄i·)(Xj,t − X̄j·)

]

(n− 1)
∑r−1

i=1

∑r
j=1[1/(1− αiαj)]

,

λ̂k,MM =
∑n

t=2 Xk,t − α̂k,m.m.
∑n

t=2 Xk,t−1

(n− 1)
− δ̂MM .
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3.2 Bayesian Approach

It is well known that Bayesian inference is based on the posterior distribution, since this distribution
contains all the available information about the unknown parameters θ. After observing the partic-
ular sample xn, the updated information about θ is expressed by Bayes theorem through posterior
distribution which is given by,

π(θ|xr,n) =
L(xr,n; θ|x.1)π(θ)∫

Θ L(xr,n; θ|x.1)π(θ)dθ
∝ L(xr,n;θ|x1)π(θ) , θ ∈ Θ, (9)

where π(θ) denotes the prior distribution. In a Bayesian framework it is necessary to assign priors
to each parameter. In this work, the prior distributions considered are the beta and gamma dis-
tributions since they are conjugated of binomial and Poisson distributions, respectively. Therefore,
beta distribution with parameters ak, bk > 0 is the prior for αk, αk _ Be(ak, bk), and gamma dis-
tributions with parameters ck, dk > 0, λk _ Ga(ck, dk) and e, f > 0, δ _ Ga(e, f) are the priors for
λk and δ, respectively.
Moreover, we assume independence between αk, λk and δ, for k = 1, 2, . . . , r, as well as the knowledge
of hiperparameters ak, bk, ck, dk, e and f , k = 1, 2, . . . , r. Therefore, the prior distribution of the 2r+1
parameters (α1, α2, . . . , αr; λ1, λ2, . . . , λr; δ) has the form,

π(θ) = π(δ)
∏r

k=1 π(αk)π(λk) ∝ δe−1 exp(−fδ)
∏r

k=1 αk
ak−1(1− αk)bk−1λck−1

k exp(−dkλk).

Thus, by Bayes theorem it follows from the prior and the likelihood (4), that the posterior distribution
is given by the following expression

π(θ|xr,n) ∝= δe−1 exp(−fδ)

(
r∏

k=1

αk
ak−1(1− αk)bk−1λck−1

k exp(−dkλk)

)
×

×



r∏

k=1

n∏

t=2

Mk,t∑

i=0

exp[−(λk + δ)]
(λk + δ)xk,t−i

(xk,t − i)!

(
xk,t−1

i

)
αi

k(1− αk)xk,t−1−i


 .

(10)

The Bayes estimate for θ is the mean of this distribution which cannot be obatined analitically.
Thus we use the Gibbs sampler in order to generate values of π(θ|xr,n). Through Gibbs sampler and
based on a irredutible Markov chain with state space Θ whose stationary distribution is π(θ|xr,n),
a sequence of correlated realizations is generated. In this context the algorithm is based on the
fact that (Besag, 1974 and Gelfand and Smith, 1990), if the joint distribution π(θ|xr,n) is posi-
tive over its entire domain, then it is uniquely determined by the m full conditional distributions
π(θi|xr,n,θ−i), i = 1, 2, . . . ,m, where θ−i represents the vector θ after being removed θi component.
The full conditional posterior densities are

• for αk

π(αk|α−k, λ, δ,xr,n) = π(αk|λk, δ,xk·)

∝ αak−1
k (1− αk)bk−1

∏n
t=2

∑Mk,t

i=0

(λk + δ)xk,t−i

(xk,t − i)!

(
xk,t−1

i

)
αi

k(1− αk)xk,t−1−i,
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with α−k = (α1, . . . , αk−1, αk+1, . . . , αr), xk· = (xk,t : t = 1, 2, . . . , n);

• for λk

π(λk|λ−k, α, δ,xr,n) = π(λk|αk, δ,xk·)

∝ λck−1
k exp[−(λkdk)]

∏n
t=2

∑Mk,t

i=0 exp[−(λk + δ)]

(λk + δ)xk,t−i

(xk,t − i)!

(
xk,t−1

i

)
αi

k(1− αk)xk,t−1 − i,

with λ−k = (λ1, . . . , λk−1, λk+1, . . . , λr);

• for δ
π(δ|α, λ,xr,n) ∝ δe−1 exp(−fδ)

∏r
k=1

∏n
t=2

∑Mk,t

i=0 exp[−(λk + δ)]

(λk + δ)xk,t−i

(xk,t − i)!

(
xk,t−1

i

)
αi

k(1− αk)xk,t−1−i.

The generation of pseudo-random numbers through the full conditional posterior densities may be
achieved through the Adaptive Rejection Sampling (ARS) if the functions were surely log-concave.
However, since this is not generally the case, we use Adaptive Rejection Metropolis Sampling
(ARMS), which is an hybrid method introduced by Gilks et al.(1995). Thus, in Gibbs sampler
each value θ−i is generated from π(θi|xr,n, θ−i) through ARMS algorithm in the following way:

Algorithm 1 1. generate a random sample of the model (2);

2. calculate the initial estimates of α1, . . . , αr and δ, by the moments method; denote them by
α1,0, . . . , αr,0 and δ0;

3. using ARMS method, simulate for each k = 1, 2, . . . , r,

λk,1 from π(λk|xk·, δ0, αk,0),

and
αk,1 from π(αk|xk·, δ0, λk,1);

4. simulate, using ARMS method,

δ1 from π(δ|xr,n, α1,1, . . . , αr,1, λ1,1, . . . , λr,1);

5. repeat steps 3. and 4. with i = 2, . . . , nig (number of Gibbs sampler iterations); that is, for
k = 1, 2, . . . , r,

λk,i is simulated from π(λk|xk·, δi−1, αk,i−1)

αk,i is simulated from π(αk|xk·, δi−1, λk,i)

δi is simulated from π(δ|xr,n, α1,i, . . . , αr,i, λ1,i, . . . , λr,i);
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6. despising the first b values (corresponding to the burn-in period) and picking up each value,
obtain a sample with m = (nig − b)/l elements. Denote the corresponding sample means by:
α

(1)
k,B, λ

(1)
k,B e δ

(1)
B ;

7. repeat nrep times the steps 1. to 6..

Afterwards Bayes estimates can be calculated through the expression

α̂k,B =
1

nrep

nrep∑

i=1

α
(i)
k,B, λ̂k,B =

1
nrep

nrep∑

i=1

λ
(i)
k,B and δ̂B =

1
nrep

nrep∑

i=1

δ(i).

4 Predictive Inference

Let xn = {Xk,t : k = 1, . . . , r, t = 2, . . . , n} be a sample generated by the Poisson SUINAR(1) model.
We aim at obtaining the h-step-ahead predictor of Xk,n+h, X̂k,n+h. We begin by presenting some
results fundamental to the understanding of the work.
According to the definition of SUINAR(1) process, we have that

Xk,n+h = αk ◦Xk,n+h−1 + εk,n+h. (11)

Iterating backwards h times, equation (11) can be written as

Xk,n+h = αh
k ◦Xk,n +

h∑

j=1

αh−j
k ◦ εk,n+j , h = 1, 2, . . . ·

Since Xk,n is independent of εk,n+j , j = 1, . . . , h, the conditional distribution of Xk,n+h on Xk,n is

P
(
Xk,n+h = x

∣∣∣Xk,n

)
= P

(
αh

k ◦Xk,n +
∑h

j=1 αh−j
k ◦ εk,n+j = x

∣∣∣ Xk,n

)

=
∑min Xk,n,x

y=0 P
(
αh

k ◦Xk,n = y
∣∣∣ Xk,n

)
P

(∑h
j=1 αh−j

k ◦ εk,n+j = x− y
)

.

Noting that αk◦Xk,n

∣∣∣ Xk,n ∼ Bi(Xk,n, αk) and εk,t ∼ P (λk), it follows easily that the distribution of
Xk,n+h|Xk,n is the convolution of the distribution of the innovation process, Poisson distribution with
parameter (λk+δ)(1−αh

k)/(1−αk), and that resulting from the binomial thinning operation, binomial
distribution with parameters Xk,n and αh

k . This result, proved in Silva (2005a), is established in the
following theorem:

Theorem 1 For the Poisson SUINAR(1) model, the distribution of Xk,n+h given Xk,n is the con-
volution of a binomial distribution with parameters Xk,n and αh

k and a Poisson distribution with
parameter (λk + δ)(1− αh

k)/(1− αk). That is to say, Xk,n+h|Xk,n has the moment generating func-
tion

ϕXk,n+h|Xk,n
(s) =

[
αh

kes + (1− αh
k)

]xk,n

exp
{

(λk + δ)
1− αh

k

1− αk
(es − 1)

}
. (12)

Thus, the probabilitity function of Xk,n+h|Xk,n, k = 1, 2 . . . , r, is given by

p(xk,n+h|xk,n) = P (Xk,n+h = x|Xk,n = xk,n) =
∑min(x,xk,n)

i=0

(xk,n

i

)
(αh

k)i(1− αh
k)xk,n − i

exp
[
−(λk + δ)1−αh

k
1−αk

]
1

(x−i)!

[
(λk + δ)1−αh

k
1−αk

]x−i
, k = 1, 2 . . . , r.

(13)

Since limh→+∞ ϕXk,n+h|Xk,n
(s) = exp

[
λk+δ
1−αk

(es − 1)
]
, the corollary follows.

Corollary 1 Xk,n+h|Xk,n has the Poisson limit distribution with parameter (λk + δ)/(1− αk).
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4.1 Classical Prediction

4.1.1 Forecasts of future observations

Analogously to the study made by Silva et al.(2006) concerning prediction in PoINAR(1) processes,
we will calculate two predictors of Xk,n+h. One of them is based on the minimization of mean square
error and the other minimizes the mean absolute error.
Due to the fact that the best predictor which minimizes the mean square error is X̂k,n+h =E[Xk,n+h|Xk,n]
and according to expression (12), it comes straightforwardly that E[Xk,n+h|Xk,n] = ϕ′Xk,n+h|Xk,n

(s)
calculated on s = 0. Therefore

X̂k,n+h = E[Xk,n+h|Xk,n] = αh
kXk,n +

1− αh
k

1− αk
(λk + δ), k = 1, 2, . . . , r. (14)

This method hardly produces coherent predictions in the sense that forecasts of integer values must
be integer values as well (see Chatfield, 2001). In order to obtain coherent predictions for Xn+h,
Freeland and McCabe (2003) suggest using the value which minimizes the expected absolute error
given the sample, i.e., the value that minimizes E[|Xn+h−X̂n+h|

∣∣∣Xn]. Let mk,h be the median of the

conditional distribution Xk,n+h|Xk,n. It can be proved that E[|Xk,n+h− m̂k,n+h|
∣∣∣Xk,n] has a global

minimum in m̂k,n+h = mk,h; in this sense, this means that median of the predictive distribution is
the best predictor of Xk,n+h.

4.1.2 Prediction Intervals

A prediction interval is always more informative than a point forecast. The method of obtaining
confidence intervals for the predicted value is based on the probability function of the h-steps-ahead
forecast error, which is given by

ek,n+h|xr,n = Xk,n+h − X̂k,n+h = Xk,n+h − αh
kxk,n −

1− αh
k

1− αk
(λk + δ).

It is worth to mention that ek,n+h is a discrete variable taking values on {j −αh
kxk,n− [(λk + δ)(1−

αh
k)/(1− αk)]; j = 0, 1, 2 . . .}; hence has the probability function,

P

(
ek,n+h|xr,n = j − αh

kxk,n − (λk + δ)
1− αh

k

1− αk

)
= P(Xk,n+h = j|Xk,n = xk,n) =

= exp
[
−(λk + δ)

1− αh
k

1− αk

]∑min(j,xk,n)
i=0

[(λk+δ)(1−αh
k)/(1−αk)]j−i

(j−i)! × (xk,n

i

)
(αh

k)i(1− αh
k)xk,n−i.

Once known the probability function of the forecast error, the 100γ% confidence interval for Xk,n+h

is given by
(X̂k,n+h + et1 , X̂k,n+h + et2), (15)

where X̂k,n+h is defined by (14), et1 is the greatest value ek,n+h|xr,n such as P(ek,n+h|xr,n ≤ et1) ≤
(1− γ)/2 and et2 is the lowest value of ek,n+h|xr,n, such as P(ek,n+h|xr,n ≤ et2) ≥ (1 + γ)/2.

4.2 Bayesian Prediction

To obtain the Bayesian predictive function we use the randomness of both, the future observation
Xk,n+h we want to predict and the vector of unknown parameters θ. Moreover, information about

9



θ is contained in the observed sample xr,n and is quantified on the posterior distribution π(θ|xr,n).
Thus the following definition.

Definition 1 Let θ ∈ Θ be the vector of unknown parameters. The h steps-ahead bayesian posterior
predictive distribution is defined by

π(xk,n+h|xr,n) =
∫
Θ π(xn+h; θ|xr,n)dθ =

∫
Θ p(xk,n+h|xr,n; θ)π(θ|xr,n)dθ, (16)

where π(θ|xr,n) is the posterior probability density function of θ and p(xk,n+h|xr,n; θ) is the classic
predictive function.

The predictive distribution Xn+h|xr,n given by (16) is looked upon as containing all the accumulated
information on the future values. Therefore, the Bayesian predictor of Xk,n+h can be calculated
through the mean value, the median or the mode of the predictive function π(xk,n+h|xr,n).

4.2.1 Forecasts of future observations

According to the Definition 1, the h-steps-ahead Bayesian predictive function for the kth individual
of the SUINAR(1) model is given by,

π(xk,n+h|xr,n) =
∫

Θk

π(xk,n+h, θk|xr,n)dθk

=
∫

Θk

p(xk,n+h|xr,n,θk)π(θk|xr,n)dθk

=
∫

Θk

p(xk,n+h|xk,n,θk)π(θk|xr,n)dθk,

(17)

where,θk = (δ, αk, λk), p(xk,n+h|xk,n, θk), k = 1, 2, . . . , r, is given by (13) and π(θk|xr,n) is the
posterior probability density function of θk defined by,

π(θk|xr,n) ∝ π(θk)L(xr,n, δ, λk, αk|x·1) ∝
∝ δe−1 exp(−fδ)αk

ak−1(1− αk)bk−1λck−1
k exp(−dkλk)×(∏n

t=2

∑Mk,t

i=0 exp[−(λk + δ)] (λk+δ)
xk,t−i

(xk,t−i)!

(xk,t−1

i

)
αi

k(1− αk)xk,t−1 − i
)

.

Usually, Xk,n+h is predicted by E(Xk,n+h|xr,n) which does not seem feasible here due to the com-
plexity of equation (17). Thus we propose two methodologies to deal with the problem. In the first
approach, using the expected value properties E(Xk,n+h|xr,n) is rewriten as follows.

E[Xk,n+h|xr,n] = E[E(Xk,n+h|xr,n, θk)|xr,n]

= E[αh
kXk,n + (1− αh

k)(λk + δ)/(1− αk)
∣∣∣xr,n] por (14)

= Xk,nE(αh
k |xr,n) + E[(1− αh

k)(λk + δ)/(1− αk)
∣∣∣xr,n].

Now, the mean values E(αh
k |xr,n) and E[(1−αh

k)(λk+δ)/(1−αk)
∣∣∣xr,n], can be estimated using Gibbs

methodology jointly with ARMS algorithm to generate values of the full conditional distributions:
(δ1, δ2, . . . , δm), (α1

k, α
2
k, . . . , α

m
k ) and (λ1

k, λ
2
k, . . . , λ

m
k ) for k = 1, 2, . . . , r, necessary to the evaluation

of correspondent ergodic means (see section 3.2). Thus, Xk,n+h can be estimated by,

X̂k,n+h = xk,n
1
m

m∑

i=1

(αi
k)

h +

[
1
m

m∑

i=1

1− (αi
k)

h

1− αi
k

(
λi

k + δi
)
]

. (18)
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The second approach applies Tanner composition method, Tanner (1996), to the SUINAR(1) model.
A sample (Xk,n+h,1, Xk,n+h,2, . . . , Xk,n+h,m) is generated from the predictive distribution (17) using
Algorithm 2 described bellow. Then, the forecast for the future observation Xk,n+h can be calculated
through the sample mean, median or mode.

Algorithm 2 1. Calculate an initial estimate α0 and δ0 for αk and δ, respectively, using a classic
estimation method from a sample {Xk,t : k = 1, . . . , r, t = 2, . . . , n} of the Poisson SUINAR(1)
defined by (2),;

2. using Gibbs methodology jointly with adaptive rejection Metropolis sampling (ARMS), sample
values of the triplets (αk,1, λk,1, δ1), (αk,2, λk,2, δ2), . . . , (αk,m, λk,m, δm) from the full condi-
tional distributions of αk, λk and δ;

3. for each i (i = 1, . . . ,m) draw Xk,n+h,i from π(xk,n+h|xr,n, αk,i, λk,i, δi), using the inverse
transformation method adapted to discrete variables. That means,

(a) sample u from U(0, 1),

(b) evaluate the lowest integer value s:
∑s

i=0 π(xk,n+h|xr,n, αi, λi, δi) ≥ u,

(c) consider Xk,n+h,i = s.

Thus, we have sampled Xk,n+h,1, Xk,n+h,2, . . . , Xk,n+h,m from the posterior predictive distribution.

4.2.2 HPD predictive intervals

In this section Highest Probability Density (HPD) predictive intervals are obtained from the posterior
predictive distribution (Paulino et al., 2003).

Definition 2 R(γ) = (XL, XR) is a prediction interval HPD (degree γ) for Xk,n+h if

P (XL ≤ Xk,n+h ≤ XR) =
XR∑

xk,n+h=XL

π(xk,n+h|xr,n) ≥ Kγ ,

where Kγ is the largest constant such that P [Xn+h ∈ R(γ)] ≥ γ.

The computation of the HPD interval for Xk,n+h is hindered by the lack of an explicit expession for
the posterior predictive probability function, equation (17). However an estimate of R(γ) may be
obtained using Chen and Shao (1999) algorithm which is outlined next.

Algorithm 3 1. draw a sample from π(xk,n+h|xr,n) (Algorithm 2);

2. order the sample values X(k,n+h,1), X(k,n+h,2), . . . , X(k,n+h,m), obtained in 1.;

3. for fixed γ, calculate the intervals

R̂i(γ) =
(
X(k,n+h,i), X(k,n+h,i+[mγ])

)
, 1 ≤ i ≤ m− [mγ],

where [mγ] is the integer part of mγ. Choose for 100γ% HPD interval for Xk,n+h, the R̂(γ)
with smallest amplitude.

11



R̂(γ) is an estimator of R(γ), whose asymptotic properties are valid under certain regularity condi-
tions (Theorem 7.3.1., Chen et al., 2000).
Noting that we are considering point processes, the Algorithm 3 can produce more than one interval.
When this is the case we choose for R̂(γ) the interval with highest absolute frequency, between those
with smaller amplitude; in the case of equality the absolute frequencies, the interval considered is
the one with smaller inferior limit as suggested by Chen et al. (2000).

5 Simulation Study

In this section the small sample properties of the estimation and forecasting methods proposed are
accessed by means of a simulation study. The data are generated according to the model (2) with
r = 5, values for αk and λk as described in Table 1 and setting δ = 2, in a total of nine models. For
each model, 200 time series of dimension n = 25, 50, 100 are generated.

Table 1: Values of the vector parameters α and λ used to simulate the samples

k 1 2 3 4 5 k 1 2 3 4 5
αs 0.2 0.2 0.1 0.1 0.2 λs 1.5 1.0 1.0 1.5 1.0

αk αl 0.8 0.8 0.8 0.9 0.9 λk λl 3.0 3.0 2.5 2.5 3.0
αsl 0.2 0.8 0.9 0.1 0.2 λsl 3.0 0.5 1.0 3.0 0.1

5.1 Parameter Estimation

To calculate the Bayesian estimates we use vague prior distributions, considering all the hyperpa-
rameters approximately null. This choice is due to the fact that, for one hand we are dealing with
simulated samples hence there is no available prior information, and for the other hand the main
purpose is to compare the performance between classical and Bayesian methodologies. In Algorithm
1, we set nig =3100, with b = 1100 as burn-in period and l = 20, to reduce autocorrelation between
MCMC samples. We consider 200 independent replicates.
A problem that occurs frequently when estimating INAR models by classic methodology is that the
estimates for the parameters αk are inadmissible, that is to say that αk /∈ (0, 1). In this study these
samples are eliminated.
The performance of the estimation methods is illustrated in Tables 2 and 3 for two particular
situations of the Poisson SUINAR(1) model. In Table 2 we consider the model (αsl, λsl) with
parameters αsl : α1 = 0.2, α2 = 0.8, α3 = 0.9, α4 = 0.1, α5 = 0.2, λsl : λ1 = 3.0, λ2 = 0.5, λ3 =
1.0, λ4 = 3.0, λ5 = 0.1 and δ = 2 which is caracterized by both αk and λk ranging from low to high
values, meaning that the mean of the innovations varies among the individuals. Table 3 presents
the estimation results for the model(αs, λl) with parameters, αs : α1 = 0.2, α2 = 0.2, α3 = 0.1, α4 =
0.1, α5 = 0.2, λl : λ1 = 3.0, λ2 = 3.0, λ3 = 2.5, λ4 = 2.5, λ5 = 3.0 and δ = 2 which is caracterized
by low values for the parameters α and high values for the innnovations for all the individuals, with
small variation between individuals.
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These results indicate that the method of moments (mm) provides better estimates for small values
of αk (αk ≤ 0.2) whereas the maximum likelihood (ml) and Bayesian methodology (B) are more
appropriate when the αk parameter has large values (αk ≥ 0.8); however, the Bayesian approach
has the advantage of estimating δ, αk and λk separately, which is not possible with the maximum
likelihood. Regarding the estimation of λk the simulation results indicate that the Bayesian method-
ology has a better performance when the mean value of entrances is very different from individual
to individual, but on contrary, if the differences between the mean values are small, the behavior is
not so good. It can be noticed that the method of moments provides always poor estimates for λk.
Moreover, the parameter δ is underestimated by both methods and the bias increases in the samples
where the mean number of entrances differ between the individuals. Regarding the estimation of
µk = δ + λk the method of moments provides the estimates with smallest bias and whereas the
maximum likelihood estimates are the most biased. It is important to note once again that µk is
estimated as a parameter by ml while µ̂k,mm = δ̂mm + λ̂k,mm.

5.2 Prediction

In this section h-steps-ahead (h = 1, 2, . . . , 10) point forecasts and prediction intervals are obtained
using classic methodology, equations 14 and 15 and Bayesian methodology, equation 18 and Algo-
rithm 3 to obtain HPD predictive intervals.
The performance of the forecasting methods is illustrated in Tables 4 and 5 for two particular Poisson
SUINAR(1) models.
Table 4 displays forecasts for xk,n+h, the jump between xk,n and xk,n+h, and the squared errors
between x̂k,n+h and xk,n+h, considering samples of sizes n = 25 and n = 100 simulated from the
model with parameters (αs : α1 = 0.2, α2 = 0.2, α3 = 0.1, α4 = 0.1, α5 = 0.2), (λs : λ1 = 1.5, λ2 =
1.0, λ3 = 1.0, λ4 = 1.5, λ5 = 1.0) and δ = 2.
Table 5 presents similar results for samples generated from the model with parameters (αl : α1 =
0.8, α2 = 0.8, α3 = 0.8, α4 = 0.9, α5 = 0.9), (λl : λ1 = 3.0, λ2 = 3.0, λ3 = 2.5, λ4 = 2.5, λ5 = 3.0) and
δ = 2.
Additionally Figure 1 presents absolute errors between predicted values and corresponding simulated
values, regarding several samples of size 25 of SUINAR(1) model.
According to the present simulation study we can conclude that the results are independent of the
prediction method and the methodology. Moreover, the observed prediction error depends on two
factors: the jump between xk,n and xk,n+h for h ≤ 4 and the proximity between xk,n+h and (λ̂k +
δ̂)/(1− α̂k) for large values of h (h ≤ 5) (remark that limh→∞E(Xk,n+h|Xk,n) = (λk + δ)/(1−αk))
(see Figure 1).
Several simulated examples indicate that the variability of the predictive function increases with
the magnitude of αk and λk, justifying that the predictions shown in Table 5 are worst than those
in Table 4. Moreover it is worthwhile to mention that the values of x̂k,n+h are constant for h ≥ 8
(Table ??) when αk and λk are small. In contrast, these values are not constant when αk and λk

are large.
There is evidence that the confidence interval gets wider as h increases, as expected and converges
to the asymptotic interval. However, the rate of convergence is higher for smaller values of αk and
λk.
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Table 2: Estimates of (α, λ, δ) model with parameters αsl = (0.2, 0.8, 0.9, 0.1, 0.2), λsl =
(3.0, 0.5, 1.0, 3.0, 0.1) and δ = 2 (absolute value of bias in brackets)

n=25 n=100
k αk α̂k,mm α̂k,ml α̂k,B α̂k,mm α̂k,ml α̂k,B

1 0.2 0.230 0.334 0.256 0.183 0.250 0.197
(0.03) (0.13) (0.06) (0.02) (0.05) (0.00)

2 0.8 0.673 0.847 0.842 0.766 0.865 0.865
(0.13) (0.05) (0.04) (0.03) (0.07) (0.07)

3 0.9 0.794 0.919 0.918 0.873 0.924 0.924
(0.11) (0.02) (0.02) (0.03) (0.02) (0.02)

4 0.1 0.177 0.275 0.224 0.118 0.174 0.125
(0.08) (0.18) (0.12) (0.02) (0.07) (0.03)

5 0.2 0.143 0.673 0.623 0.155 0.761 0.758
(0.06) (0.47) (0.42) (0.05) (0.56) (0.56)

k λk λ̂k,mm λ̂k,B λ̂k,mm λ̂k,B

1 3.0 3.783 3.333 4.004 3.812
(0.78) (0.33) (1.00) (0.81)

2 0.5 2.445 0.685 1.659 0.782
(1.95) (0.19) (1.16) (0.28)

3 1.0 4.322 1.088 2.494 1.303
(3.32) (0.09) (1.49) (0.30)

4 3.0 3.548 3.016 3.845 3.695
(0.55) (0.02) (0.85) (0.70)

5 0.1 1.082 0.155 1.114 0.154
(0.98) (0.06) (1.01) (0.05)

k µk µ̂k,mm µ̂k,ml µ̂k,B µ̂k,mm µ̂k,ml µ̂k,B

1 2.2 3.917 3.381 3.779 4.076 3.739 4.005
(1.08) (1.62) (1.22) (0.92) (1.26) (0.99)

2 2.8 2.581 1.097 1.130 1.730 0.977 0.975
(0.08) (1.40) (1.37) (0.77) (1.52) (1.52)

3 2.9 4.457 1.524 1.535 2.565 1.488 1.496
(1.45) (1.48) (1.47) (0.43) (1.51) (1.50)

4 2.1 3.683 3.241 3.462 3.916 3.667 3.889
(1.32) (1.76) (1.54) (1.08) (1.33) (1.11)

5 2.2 1.217 0.436 0.601 1.185 0.331 0.347
(0.88) (1.66) (1.50) (0.92) (1.77) (1.75)

δ̂mm δ̂B δ̂mm δ̂B

δ = 2 0.135 0.446 0.071 0.193
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Table 3: Estimates of (α, λ, δ) of SUINAR(1) model with parameters αs = (0.2, 0.2, 0.1, 0.1, 0.2),
λl = (3.0, 3.0, 2.5, 2.5, 3.0) and δ = 2 (absolute value of bias in brackets)

n=25 n=100
k αk α̂k,mm α̂k,ml α̂k,B α̂k,mm α̂k,ml α̂k,B

1 0.2 0.212 0.323 0.238 0.181 0.243 0.201
(0.01) (0.12) (0.04) (0.02) (0.04) (0.00)

2 0.2 0.217 0.320 0.243 0.196 0.267 0.215
(0.02) (0.12) (0.04) (0.00) (0.07) (0.02)

3 0.1 0.180 0.306 0.162 0.125 0.204 0.094
(0.08) (0.21) (0.06) (0.03) (0.10) (0.01)

4 0.1 0.183 0.310 0.167 0.119 0.189 0.088
(0.08) (0.21) (0.07) (0.02) (0.09) (0.01)

5 0.2 0.215 0.325 0.237 0.187 0.256 0.211
(0.02) (0.13) (0.04) (0.01) (0.06) (0.01)

k λk λ̂k,mm λ̂k,B λ̂k,mm λ̂k,B

1 3.0 3.926 1.018 4.079 0.673
(0.93) (1.98) (1.08) (2.33)

2 3.0 3.948 1.050 3.999 0.603
(0.93) (1.95) (1.00) (2.40)

3 2.5 3.174 0.553 3.411 0.255
(0.67) (1.95) (0.91) (2.25)

4 2.5 3.150 0.526 3.432 0.272
(0.65) (1.97) (0.93) (2.23)

5 3.0 3.909 1.026 4.096 0.669
(0.91) (1.97) (1.10) (2.33)

k µk µ̂k,mm µ̂k,ml µ̂k,B µ̂k,mm µ̂k,ml µ̂k,B

1 2.2 3.947 3.388 3.787 4.079 3.767 3.966
(1.05) (1.61) (1.21) (0.92) (1.23) (1.03)

2 2.2 3.968 3.447 3.819 3.999 3.646 3.897
(1.03) (1.55) (1.18) (1.00) (1.35) (1.10)

3 2.1 3.195 2.702 3.322 3.412 3.102 3.549
(1.30) (1.80) (1.18) (1.09) (1.40) (0.96)

4 2.1 3.171 2.675 3.294 3.433 3.159 3.566
(1.33) (1.83) (1.21) (1.07) (1.34) (0.93)

5 2.2 3.930 3.376 3.795 4.096 3.747 3.963
(1.07) (1.62) (1.21) (0.90) (1.25) (1.03)

δ̂mm δ̂B δ̂mm δ̂B

δ = 2 0.0211 1.3832 0.0005 1.1759

15



0

1

2

3

4

5

6

1 4,8 8,6 12,4 16,2

classical

bayesian

  0                      1                     2                      3 5

125,25, kk
xx

125,125,
ˆ

kk
xx

Figure 1: Values of |x̂k,25+1 − xk,25+1| with different samples of SUINAR(1) model
.

6 Final Comments

In this work classical and Bayesian approaches to time series analysis and forecasting are applied
to the SUINAR(1) models. Regarding the estimation of the model, the Bayesian approach has
the advantage of allowing the estimation of all the parameters of the model. However, the two
methodologies perform similarly regarding the forecasting of future values.
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Table 4: Forecasts for xk,n+h and values of square deviances (DA2 = (x̂k,n+h − xk,n+h)2) of
SUINAR(1) model with initial values αs = (0.2, 0.2, 0.1, 0.1, 0.2), λs = (1.5, 1.0, 1.0, 1.5, 1.0) and
δ = 2.

n=25 n=100
classical bayesian classical bayesian

h k jump x̂k,n+h DA2 x̂k,n+h DA2 jump x̂k,n+h DA2 x̂k,n+h DA2

1 1 2.672 0.107 2.323 0.458 2 3.191 1.418 3.254 1.571
2 0 2.272 0.530 2.744 0.066 3 2.864 3.474 3.180 4.752

1 3 0 2.618 0.146 2.712 0.083 1 2.328 0.452 2.233 0.588
4 0 2.789 0.045 2.841 0.025 1 3.095 3.629 3.178 3.320
5 3 1.340 7.076 1.307 7.252 0 2.721 0.078 2.812 0.035
1 1 2.857 3.448 2.626 2.644 2 3.135 1.288 3.216 1.479
2 2 2.213 1.471 2.679 2.819 2 2.514 0.264 2.876 0.767

2 3 1 2.528 0.279 2.641 0.411 1 2.359 1.847 2.324 1.753
4 0 2.697 0.092 2.811 0.036 1 2.956 0.002 3.097 0.009
5 1 1.523 0.228 1.539 0.213 1 2.617 0.381 2.743 0.552
1 2 2.922 1.162 2.933 1.138 1 3.131 0.017 3.200 0.040
2 1 2.208 3.211 2.552 2.097 1 2.373 0.393 2.575 0.181

4 3 1 2.502 0.252 2.697 0.486 2 2.362 2.683 2.460 2.372
4 3 2.639 11.296 2.811 10.170 1 2.932 0.004 2.991 0.000
5 2 1.675 1.756 1.812 1.411 1 2.564 2.062 2.721 1.636
1 5 2.927 16.589 3.247 14.085 3 3.131 4.541 3.173 4.722
2 0 2.208 0.627 2.472 0.279 3 2.358 1.844 2.509 2.277

8 3 1 2.500 0.250 2.781 0.610 0 2.363 0.132 2.443 0.196
4 2 2.626 5.636 2.799 4.844 0 2.931 1.143 3.021 0.958
5 0 1.731 0.534 2.114 1.241 1 2.556 0.309 2.705 0.497
1 0 2.927 0.859 3.259 1.585 3 3.131 4.541 3.200 4.840
2 2 2.208 7.795 2.626 5.636 0 2.358 0.696 2.429 2.468

10 3 0 2.500 0.250 2.755 0.060 1 2.363 0.406 2.452 0.300
4 1 2.625 1.891 3.108 0.796 2 2.931 0.867 3.047 1.096
5 0 1.735 0.540 2.157 1.339 1 2.556 2.085 2.731 1.610
1 2.927 3.131
2 2.208 2.358

∞ 3 2.500 2.363
4 2.623 2.931
5 1.736 2.556

McKenzie, E. (1985). Some simple models for discrete variate time series. Water Resources Bulletin,
Vol.21, p. 645-650.

Paulino, C. D., Amaral Turkman, M.A. and Murteira, B. (2003). Estatística bayesiana. Fundação
Calouste Gulbenkian. Lisboa.

Silva, N. (2005a). Análise Bayesiana de Séries Temporais de Valores Inteiros. Phd thesis, Department
of Mathematics, University of Aveiro.

Silva, I., Silva M.E., Pereira, I. and Silva, N. (2005b). Replicated INAR(1) Process. Methodology and
Computing in Applied Probability, Vol.7, p. 517-542.

Silva, N., Pereira, I., Silva, M.E. (2006). Forecasting in INAR(1) models. Cadernos de Matemática,
CM06; I-46, Department of Mathematics, University of Aveiro.

Tanner, M.A. (1996). Tools for statistical inference. 3rd ed. Springer Verlag, New York.

17



Table 5: Forecasts for xk,n+h and values of square deviances (DA2 = (x̂k,n+h − xk,n+h)2) of
SUINAR(1) model with initial values αl = (0.8, 0.8, 0.8, 0.9, 0.9), λl = (3.0, 3.0, 2.5, 2.5, 3.0) e δ = 2.

n=25 n=100
classical bayesian classical bayesian

h k jump x̂k,n+h DA2 x̂k,n+h DA2 jump x̂k,n+h DA2 x̂k,n+h DA2

1 2 20.585 2.002 20.173 3.338 1 23.667 5.443 24.375 2.641
2 5 24.906 37.137 24.969 36.373 0 18.680 0.102 18.755 0.060

1 3 1 14.379 0.386 14.244 0.572 1 19.572 2.039 19.782 1.848
4 0 38.856 0.733 37.932 0.005 1 24.611 0.151 24.677 0.104
5 3 35.765 10.465 36.073 8.567 5 37.463 29.844 37.173 26.760
1 1 20.992 3.968 20.254 1.573 1 22.811 1.414 23.876 0.015
2 1 24.025 8.851 24.442 6.543 3 18.442 5.963 18.576 6.636

2 3 2 14.876 1.263 14.449 2.253 1 19.273 2.983 19.591 1.985
4 7 39.266 32.879 37.863 50.937 3 25.156 3.400 25.227 3.144
5 6 35.765 38.875 36.307 32.410 7 57.844 61.528 37.341 53.890
1 1 21.476 0.227 20.686 0.099 0 21.908 9.560 23.224 3.154
2 3 22.745 0.065 23.153 0.023 1 18.131 0.017 18.406 0.165

4 3 1 15.035 4.141 14.895 3.591 2 18.918 9.499 19.326 7.150
4 5 39.557 11.854 37.774 27.311 6 26.076 15.398 26.395 12.996
5 9 35.109 97.832 36.589 70.745 3 38.418 19.519 37.582 12.831
1 1 21.826 0.682 21.049 0.002 2 21.381 31.573 22.387 21.280
2 8 21.375 11.391 22.538 20.593 2 17.862 9.847 17.928 9.437

8 3 2 15.359 11.283 15.537 12.510 2 18.660 11.156 18.837 10.005
4 4 39.640 5.570 37.370 21.437 5 27.391 2.589 27.647 1.758
5 5 34.336 44.409 37.207 14.387 4 39.072 3.717 37.995 9.030
1 2 21.882 0.014 20.714 1.654 6 21.317 5.368 22.037 9.223
2 7 21.026 4.105 21.638 6.959 7 17.808 67.109 18.054 63.139

10 3 2 15.425 11.731 15.334 11.116 0 18.619 1.907 18.840 1.346
4 3 39.643 1.841 37.658 11.169 3 27.855 0.731 28.230 1.513
5 6 33.989 64.176 37.444 20.757 14 39.252 138.016 38.340 161.188
1 21.937 21.273
2 20.384 17.738

∞ 3 15.510 18.577
4 39.645 29.664
5 29.221 39.640
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