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Abstract

In this work we consider the problem of forecasting integer-valued time series, modelled by
the INAR(1) process introduced by McKenzie (1988) and Al-Osh and Alzaid (1987). The theo-
retical properties and practical applications of INAR and related processes have been discussed
extensively in the literature but there is still some discussion on the problem of producing co-
herent, ie, integer predictions. Here Bayesian methodology is used to obtain point predictions
as well as confidence intervals for future values of the process. The predictions thus obtained
are compared with their classic counterparts. The proposed approaches are illustrated with a
simulation study and a real example.

Keywords: INAR models, Bayesian prediction, integer prediction, Markov Chain Monte
Carlo algorithm

1 Introduction

In applications we are frequently faced with time series whose characteristics are not compatible
with a continuous modelling approach. Discrete variate time series occur in many contexts, often as
counts of events or individuals in consecutive intervals or at consecutive points in time. Examples
of these are the number of costumers waiting to be served, the daily number of absent workers in
a firm, the number of busy lines in a telephone network noted every hour, the number of accidents
in a manufacturing plant each month, etc. Several models that take the discreteness of the data
explicitly into account have been developed in the literature. Cox (1981) proposed dividing them into
two categories: observation-driven and parameter-driven models. MacDonald and Zucchini (1997),
Cameron and Trivedi (1998) and the review by McKenzie (2003) provide an excellent overview of
the literature in this area.
In this work we are interested in a special class of observation-driven models, the so-called integer-
valued autoregressive (INAR) process introduced by McKenzie (1985) and Al-Osh and Alzaid (1987).
The theoretical properties and practical applications of INAR and related processes have been dis-
cussed extensively in the literature. Silva et al. (2005) consider independent replications of count
time series modelled by INAR(1) and proposed several estimation methods using the classical and
Bayesian approaches in time and frequency domains. Nevertheless, there is still little consensus on

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório Institucional da Universidade de Aveiro

https://core.ac.uk/display/15564543?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


which processes or model classes are best used in practice in contrast to the role played by the
Box-Jenkins Gaussian ARMA methodology for continuous variables. This is partly due to the lack
of reliable techniques for estimation, testing and prediction. In particular, the lack of forecasting
methods that are coherent in the sense of producing only integer predictions, seems to render useless
the effort of using more complex models.
Usually the forecast values are obtained from the conditional expectations, which have the optimality
property but rarely will generate integer values. In order to produce coherent forecasts Freeland
and McCabe (2004) use the median of the k-step-ahead conditional distribution to emphasize the
intention of preserving the integer structure of the data in generating the forecasts. McCabe and
Martin (2005) develop a general methodology for producing coherent predictions of low count data.
In contrast to the usual applications of the model INAR(1), in which the arrival process is usually
Poisson, they allow the arrivals to follow any distribution in the integer class. The forecasts are based
on an estimate of the k-step–ahead predictive probability mass function. To eliminate unwanted
values from the conditioning set of the predictive function, Bayesian methods are used. Jung and
Tremayne (2006) extend some of the ideas used by Freeland and McCabe in higher order dependence
structure by proposing a computer intensive method for generating coherent, integer out-of-sample
predictions, particularly obtaining the h-step-ahead predictor for the INAR(2). They use a Monte
Carlo approach using estimated sampling distributions from the bootstrap methodology as a means
of generating one and multi-step ahead forecasts which respects the integer structure of the data.
The purpose of this paper is to obtain coherent forecasts for the Poisson INAR(1) process. Bayesian
methodology is used to obtain point predictions as well as confidence intervals for future values of
the process which are compared with their classic counterpart.
The remainder of the paper is divided into four main sections. Section 2 provides the theoretical
results in order to obtain the point forecasts. Section 3 presents methods for producing confidence
intervals or highest posterior predictive density intervals for forecasts. In Section 4 we conduct a
simulation study to compare the performance of the classical and Bayesian approaches, considering
point and interval predictions. Section 5 gives an example of forecasting a count data series using
PoINAR(1) model. The data are the number of claimants receiving wage loss benefits due to injuries
from burns, supplied by the Workers Compensation Board of the Province of British Columbia,
Canada. The proposed methodology presented in this work is applied to this data set and compared
with classical inference and forecast procedures made by Freeland (1998).

2 Point Prediction

Consider a non negative integer-valued random variable X and α ∈ [0, 1], the generalized thinning
operation, hereafter denoted by ‘◦’, is defined as

α ◦X =
X∑

j=1

Yj , (1)

where {Yj}, j = 1, . . . , X, is a sequence of independent and identically distributed non-negative
integer-valued random variables, independent of X, with finite mean α and variance σ2. This sequence
is called the counting series of α ◦X. When {Yj} is a sequence of Bernoulli random variables, the



thinning operation is called binomial thinning operation and was defined by Steutel and van Harn
(1979).
The well-known INAR(1) process {Xt; t = 0,±1,±2, . . .} is defined on the discrete support N0 by
the equation

Xt = α ◦Xt−1 + εt,

where 0 < α < 1, {εt} is a sequence of independent and identically distributed integer-valued random
variables, with E[et] = µe and V ar[et] = σ2

e .
In this paper we consider only Poisson INAR(1) process, i.e., {εt} is a sequence of independent
Poisson distributed variables with parameter λ, independent of all counting series {Yj}. Note that,
assuming εt _ Po(λ) it is straightforward to show that Xt _ Po(λ/(1−α)). The Poisson INAR(1)
process will henceforth be denoted PoINAR(1), and is a natural first candidate for modelling the
data partly because its marginal distribution appears to be equidispersed.
Given that we have observed the series up through time n, i.e., xn = (x1, x2, . . . , xn) is known,
the most common procedure for constructing predictions in time series models is to use conditional
expectations. In order to find predictions for future values, the theorem below is very important,

Theorem 1 (Freeland, 1998, pp. 30) The moment generation function of Xn+h given Xn is

ϕXn+h|Xn
(s) =

[
αhes +

(
1− αh

)]Xn exp
[
λ

1− αh

1− α
(es − 1)

]
. (2)

Expression (2) shows that the distribution of Xn+h|Xn is a convolution of a binomial distribution
with parameters αh and Xn and a Poisson distribution with parameter λ(1− αh)/(1− α). That is,
the probability function of Xn+h|Xn is given by

f(xn+h|xn) = P (Xn+h = xn+h|Xn = xn)

= exp
{
−λ1−αh

1−α

}∑Mh
i=0

1
(xn+h−i)!×

×
(
λ1−αh

1−α

)xn+h−i (
xn

i

)
(αh)i(1− αh)xn−i, xn+h = 0, 1, . . . ,

(3)

where Mh = min(Xn+h, Xn).
Consequently, we have the following corollary,

Corollary 1 The INAR(1) model satisfies the properties

a) E[Xn+h|Xn] = αh
[
Xn − λ

1−α

]
+ λ

1−α , h = 1, 2, 3, . . . ,

b) V ar[Xn+h|Xn] = αh(1− αh)Xn + λ1−αh

1−α , h = 1, 2, 3, . . . ,

c) As h −→ +∞, Xn+h|Xn is a Poisson distribution with parameter λ/(1− α).

So, we can conclude that for α constant, limh→+∞E[Xn+h|Xn] = limh→+∞ V ar[Xn+h|Xn] = λ/(1−
α), i.e., as h −→ ∞ and 0 < α < 1, the mean and the variance of Xn+h|Xn remain equal and
approach the mean of the process.



2.1 Classical Methodology

The h-step-ahead predictor based on the conditional expectation of INAR(1),

X̂n+h|xn = E[Xn+h|Xn] = αh

[
Xn − λ

1− α

]
+

λ

1− α
, h = 1, 2, 3, . . . (4)

was obtained by Brännäs (1994) and Freeland and McCabe (2003), but it will hardly produce
integer valued forecasts. In order to obtain coherent predictions for Xn+h Freeland and McCabe
(2003) suggest using the value which minimizes the expected absolute error given the sample, i.e.,
the value that minimizes E[|Xn+h − X̂n+h|

∣∣∣Xn]. So, they concluded that X̂n+h = m̂n+h is the
median of the h-step-ahead conditional distribution f(xn+h|xn).

2.2 Bayesian Methodology

The Bayesian predictive probability function is very simple to understand, it is based on, both, the
future observation, Xn+h and the vector of unknown parameters θ = (α, λ) to be random. As we
know the information about θ is given by the observed sample xn and quantified in the posterior
predictive, π(θ|xn).

Definition 1 Let θ ∈ Θ be the vector of unknown parameters. The h-step-ahead Bayesian posterior
predictive distribution is given by

f(xn+h|xn) =
∫
Θ f(xn+h;θ|xn)dθ

=
∫
Θ f(xn+h|xn; θ)π(θ|xn)dθ,

(5)

where π(θ|xn) is the posterior probability function of θ and f(xn+h|xn; θ) is the predictive distribution
(classical) given by (3).

The h-step-ahead predictive distribution of Xn+h|xn given by expression (5) can be viewed as having
all information about the future values. Once f(xn+h|xn) is obtained, the Bayesian h-step-ahead
predictor can be given by the expected valued, the median or the mode of Xn+h given xn.
Since beta and gamma are conjugate of binomial and Poisson distributions, respectively, we use
them for prior distributions of the parameters to INAR(1) model, α _ Beta(a, b), a, b > 0 and
λ _ Gamma(c, d), c, d > 0. Considering independence between α and λ, the prior distribution of
(α, λ) is proportional to

p(α, λ) ∝ λc−1 exp(−dλ)αa−1(1− α)b−1, λ > 0, 0 < α < 1, (6)

where a, b, c and d are known parameters. Note that, as a → 0, b → 0, c → 0 and d → 0 we have a
vague prior distribution.
The posterior distribution of (α, λ) can be written as

p(α, λ|xn) ∝ L(xn, α, λ|x1) p(λ, α)
= exp [−(d + (n− 1))λ] λc−1αa−1(1− α)b−1

n∏

t=2

Mt∑

i=0

λxt−i

(xt − i)!

(
xt−1

i

)
αi(1− α)xt−1−i,



where L(xn|x1) is the conditional likelihood function and Mt = min(Xt, Xt−1).
Consequently for the PoINAR(1) model, the Bayesian predictive function of Xn+h given xn is given
by,

f(xn+h|xn) ∝ ∫
α

∫
λ

∑Mh
i=0

(
xn

i

)
(αh)i(1− αh)xn−i 1

(xn+h − i)!
×

× exp
(
−λ1−αh

1−α

)(
λ1−αh

1−α

)xn+h−i
exp [−(d + n)λ] λc−1

×αa−1(1− α)b−1
n∏

t=2

Mt∑

i=0

λxt−i

(xt − i)!

(
xt−1

i

)
αi(1− α)xt−1−idαdλ .

(7)

The complexity of f(xn+h|xn) does not allow us to work with it directly. In order to estimate
Xn+h, we can adapt to the integer case the Tanner composition method. That is, to sample
(Xn+h,1, Xn+h,2, . . . , Xn+h,m), we can use the following algorithm:

Algorithm 1 1. from the sample (X1, X2, . . . , Xn), calculate (through the classical method) a
starting estimative to α, let α0;

2. using the adaptive rejection Metropolis sampling (ARMS) within Gibbs methodology, calculate
from the full conditional distributions of parameters α and λ, a sample (α1, λ1), (α2, λ2), . . . , (αm, λm);

3. For each i (i = 1, . . . ,m) sample Xn+h,i from f(xn+h|xn, αi, λi), using the inverse transform
method adapted to integer variables, that is,

(a) sample u from uniform U(0, 1),

(b) calculate the least integer valued s:
∑s

i=0 f(xn+h|xn, αi, λi) ≥ u,

(c) consider Xn+h,i = s.

After sampling Xn+h,1, Xn+h,2, . . . , Xn+h,m, the h-step-ahead predictor X̂n+h, can be calculated
from sample mean (X̃n+h), median (m̃n+h) or mode (m̃on+h).
But we can also calculate E(Xn+h|xn) using an appropriate property of mathematical expectation.
As we know E[g(Xn+h)|xn] = E[E[g(Xn+h)|xn, θ]|xn]; thus,

E(Xn+h|xn) = E[E(Xn+h|θ,xn)|xn]

= E
[
αhXn + 1−αh

1−α λ
∣∣∣xn

]

= XnE
[
αh|xn

]
+ E

[
1−αh

1−α λ
∣∣∣xn

]
.

These expected values can be estimated through Markov Chain Monte Carlo (MCMC) algorithms.
We perform Metropolis algorithm in conjunction with Adaptive Rejection Sampling Method (ARMS)
in order to sample values from full conditional distributions of α and λ; let them be noted by



(α1, α2, . . . , αm), (λ1, λ2, . . . , λm), respectively (see Silva et al., 2005). We have,

Ê
[
αh|xn

]
= 1

m

∑m
i=1 αh

i ,

Ê
[

1−αh

1−α λ
∣∣∣xn

]
= 1

m

∑m
i=1

1−αh
i

1−αi
λi.

Consequently the predictor can be written as

X̂n+h = Xn

(
1
m

m∑

i=1

αh
i

)
+

(
1
m

m∑

i=1

1− αh
i

1− αi
λi

)
. (8)

3 Interval Prediction

3.1 Classical Methodology

A confidence interval for the predictor X̂n+h, can be calculated through the probability function of
the h-step-ahead prediction error, given by

en+h|xn = Xn+h|xn − X̂n+h|xn.

Replacing X̂n+h|xn given by (4), we obtain

en+h|xn = Xn+h − αhxn − λ
1− αh

1− α
.

Since en+h|xn is a function of discrete random variable Xn+h, we have

en+h|xn = k − αhxn − λ
1− αh

1− α
, k = 0, 1, 2, . . . .

So,
P (en+h = k − αhxn − λ1−αh

1−α |xn) = P (Xn+h = k|Xn = xn) =

exp
{
−λ

1− αh

1− α

} Mh∑

i=0

1
(k − i)!

(
λ

1− αh

1− α

)k−i (
xn

i

)
(αh)i(1− αh)xn−i.

(9)

From the expression (9) we obtain a γ level confidence interval for Xn+h

(X̂n+h + et1 , X̂n+h + et2), (10)

where X̂n+h is given by (4), et1 is the largest value of en+h such as P(en+h ≤ et1) ≤ (1− γ)/2 and
et2 is the smallest value of en+h such as P(en+h ≤ et2) ≥ (1 + γ)/2.

3.2 Bayesian Methodology

The procedure used in this section is an adaptive generalization of the method used to obtain HPD
(Highest Posterior Density) intervals of the model parameters, in which we consider the predictive
distribution instead of the posterior.

Definition 2 A 100γ% predictive interval for Xn+h is given by

P (XL ≤ Xn+h ≤ XR) =
XR∑

xn+h=XL

f(xn+h|xn).



However, since f(xn+h|xn) is not always symmetric1, the intervals with a maximum posterior pre-
dictive probability are more desirable than predictive intervals (Chen et al., 2000).

Definition 3 R(γ) = (XL, XR) is a 100γ% HPD interval for Xn+h if

P (XL ≤ Xn+h ≤ XR) =
XR∑

xn+h=XL

f(xn+h|xn) ≥ Kγ , (11)

where Kγ is the largest constant such that P [Xn+h ∈ R(γ)] ≥ γ.

Due to complexity of the predictive probability function given by (7) it is not possible to calculate
the exact HPD interval for Xn+h; we can give an approximation for R(γ) by using the Chen and
Shao (1999) algorithm, because this method does not require the knowledge of the closed form of
f(xn+h|xn). The Chen and Shao algorithm, can be described as,

Algorithm 2 1. Obtain an MCMC sample (Xn+h,1, Xn+h,2, . . . , Xn+h,m) (Algorithm 1);

2. consider (X(n+h,1) ≤ X(n+h,2) ≤ . . . ≤ X(n+h,m));

3. compute the 100γ% credible intervals

Ri(γ) = (X(n+h,i), X(n+h,i+[mγ])), 1 ≤ i ≤ m− [mγ],

where [mγ] is integer part of mγ;

4. the 100γ% HPD interval to Xn+h is the one, denoted by R̂(γ), with the smallest amplitude
among all credible intervals.

Under certain regularity conditions, R̂(γ) → R(γ) a.s. as n → ∞, where R(γ) is defined in (11)
(Chen et al., 2000).
Sometimes we obtain more than one interval. For this situation, we consider for R̂(γ) the interval
with greater absolute frequency, among the smaller intervals width. When the interval is still not
unique we take the one with the smallest lower limit of the interval.

4 A simulation Study

For the simulation study we consider samples with size n = 40, 90, 190 generated by INAR(1) models
with the parameters values α = 0.2, 0.5, 0.8 and λ = 1, 3.
Point predictions for 10 steps ahead given the last observation are displayed in Table 1. The ta-
ble includes the h-step ahead simulated and predicted values, the squared and the absolute devi-
ations between x190 and x190+h, h = 1, . . . , 10. The last line contains the classical limiting dis-
tribution. Independently of prediction methodology used, the forecasts performance depends on
two basic aspects: one is the difference between xn and xn+h, h > 1 (see Figure 1); the other
is the approximation between xn and λ̂/(1 − α̂), in particular with the increase in h (note that
Ê(Xn+h|Xn) → λ̂/(1− α̂), h →∞).



From the various simulated samples we conclude that large values of α and λ are related with high
dispersion values. Consequently the increase in α and λ provides large values of |xn+h − xn|, h > 1.
To confront classical and Bayesian methodologies we use the mean square error (MSE) to compare
means, the mean absolute deviation (MAD) to compare medians and the "everything or nothing"
lost function (FPTN), given by 1/n

∑
I(xn+h) where

I(xn+h) =

{
1 if |x̂n+h − xn+h| > δ

0 if |x̂n+h − xn+h| ≤ δ
,

to compare modes. In this situation we consider δ = 1 since we have integer values.
Table 2 shows the MSE, MAD and FPTN values from 10 predictions h-step-ahead. Values of
MSE(X̂n+h) and MSE(X̃n+h) are obtained considering the Bayesian predictors given by (8) and Al-
gorithm 1, respectively. Values of MAD and FPTN were calculated, respectively, through medians
and modes obtained by Algorithm 1. As we can see, when α = 0.8 Bayesian methodology pro-
vides smaller values than classical methodology, so the Bayesian predictions seems to have a better
performance than classical predictions.
In order to study and compare the estimates given by the sample mean, sample median and sample
mode we used the minimum absolute percentual error (MAPE), given by

1/H

H∑

h=1

|X̂n+h −Xn+h|/Xn+h,

where H represents the number of predictions realized. This criteria does not benefit any measure
in particular. The results are presented in Table 3 for three samples with sizes 40, 90 and 190 of the
model xt = α ◦ xt−1 + εt, εt _ P (3). As we can see, neither of them (mean, median or mode) is the
best. Both tables are presented considering λ = 3, but for λ = 1 the conclusions are similar.
Prediction intervals for future observations were calculated using expression (10) for classical method-
ology and Chen and Shao algorithm for Bayesian methodology. The simulation results for the case
λ = 3, n = 90, γ = 0.95, which are typical, are presented in Tables 4 and 5 which show, respectively,
classical and Bayesian situations.
Tables 4 and 5 indicate that the prediction interval amplitude increases not only with the number of
steps ahead but also with the increase in α (see also Figures 2 and 3 ). Independently of the value
of λ, when α is small the prediction interval converges more quickly than when α is large. Since
we are working with discrete variables the confidence level is not always attained in the classical
methodology.

1We made a previous study with some samples from PoINAR(1) and we verified that many were neither symmetric
nor unimodal.
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Figure 1: Values of |x̂n+h − xn+h| for a PoINAR(1) sample with α = 0.8, λ = 3, n = 190 and
h = 1, 2, . . . , 10.
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Table 1: Point predictions considering two samples of size n=190 with parameters (λ = 1, α =
0.2, x190 = 0) and (λ = 3, α = 0.8, x190 = 16), respectively.

(λ = 1, α = 0.2;x190 = 0)
classical approach Bayesian approach

h x190+h jump x̂190+h (x190+h − x̂n+h)2 x̂190+h (x190+h − x̂n+h)2

1 2 2 1.068 0.869 1.090 0.828
2 0 0 1.247 1.555 1.292 1.670
3 0 0 1.277 1.631 1.340 1.796
4 0 0 1.282 1.643 1.342 1.801
5 5 5 1.283 13.816 1.288 13.779
6 0 0 1.283 1.646 1.302 1.695
7 1 1 1.283 0.080 1.210 0.044
8 1 1 1.283 0.080 1.348 0.121
9 1 1 1.283 0.080 1.248 0.061
10 2 2 1.283 0.514 1.298 0.493
∞ 1.283

(λ = 3, α = 0.8;x190 = 16))
classical approach Bayesian approach

h x190+h jump x̂190+h (x190+h − x̂n+h)2 x̂190+h (x190+h − x̂n+h)2

1 16 0 15.477 0.274 15.530 0.221
2 16 0 15.084 0.839 15.010 0.980
3 16 0 14.787 1.471 14.678 1.748
4 20 4 14.564 29.550 14.574 29.441
5 19 3 14.396 21.197 14.408 21.086
6 17 1 14.270 7.453 14.516 6.170
7 18 2 14.175 14.631 14.128 14.992
8 19 3 14.103 23.981 14.182 23.213
9 20 4 14.049 35.414 14.066 35.212
10 17 1 14.008 8.952 13.986 9.084
∞ 13.884



Table 2: Mean square error, mean absolute deviation and FPTN values of h-step-ahead (h =
1, 2, . . . , 10), considering samples with sizes 40, 90 and 190 simulated from PoINAR(1) model,
xt = α ◦ xt−1 + εt, εt _ P(3) The indices "C" or "B" indicate which methodology is used (classical
or Bayesian, respectively).

α 0.2 0.8
n 40 90 190 40 90 190

X̂n+h,C 6.75 2.01 5.64 15.16 4.11 14.54
MSE X̂n+h,B 6.72 2.03 5.61 13.02 4.66 13.74

X̃n+h,B 6.76 1.87 5.69 15.70 4.01 14.26
m̂n+h,C 2.18 1.18 2.00 3.36 1.73 3.55

MAD m̃n+h,B 2.46 1.18 2.09 3.27 1.77 3.46
m̂on+h,C 0.45 0.45 0.45 0.64 0.55 0.82

FPTN m̃on+h,B 0.64 0.45 0.64 0.64 0.73 0.73

Table 3: Values of MAPE considering 10 one-step-ahead predictions for the model xt = α ◦ xt−1 +
εt, εt _ P(3) and sample sizes 40, 90 and 190. The indices "C" or "B" indicate which methodology
is used (classical or Bayesian, respectively).

α 0.2 0.8
n 40 90 190 40 90 190

X̂n+h,C 0.714 0.573 0.870 0.707 0.564 0.919
X̃n+h,B 0.178 0.137 0.260 0.110 0.109 0.0811
m̂n+h,C 0.652 0.588 0.631 0.606 0.561 0.831
m̃n+h,B 0.187 0.120 0.209 0.115 0.103 0.091
m̂on+h,C 0.619 0.464 0.929 0.625 0.506 0.831
m̃on+h,B 0.187 0.127 0.231 0.086 0.125 0.098



Table 4: 95% confidence intervals for the h-step-ahead future values for INAR(1) model (n = 90, λ =
3).

α = 0.2 α = 0.5 α = 0.8

h xn+h x̂n+h int. xn+h x̂n+h int xn+h x̂n+h int
1 2 3.91 (0.11,8.11) 4 5.39 (0.88,9.89) 16 13.96 (8.76,18.77)
2 4 3.89 (0.13,8.13) 3 5.57 (0.82,10.82) 16 13.92 (7.56,19.56)
3 1 3.89 (0.14,8.14) 3 5.66 (0.79,10.79) 13 13.90 (6.41,20.41)
4 2 3.89 (0.14,8.14) 7 5.71 (0.77,10.77) 14 13.88 (6.29,21.29)
5 5 3.89 (0.14,8.14) 6 5.73 (0.76,10.76) 11 13.86 (6.19,21.19)
6 5 3.89 (0.14,8.14) 4 5.74 (0.75,10.75) 12 13.85 (6.11,21.11)
7 5 3.89 (0.14,8.14) 6 5.74 (0.75,10.75) 14 13.84 (6.05,22.05)
8 3 3.89 (0.14,8.14) 7 5.74 (0.75,10.75) 14 13.83 (5.99,21.99)
9 3 3.89 (0.14,8.14) 6 5.74 (0.75,10.75) 11 13.83 (5.96,21.96)
10 4 3.89 (0.14,8.14) 5 5.74 (0.75,10.75) 11 13.82 (5.93,21.93)
∞ 3.89 (0,8) 5.75 (1,11) 13.80 (6,22)

Table 5: 95% HPD intervals or the h-step-ahead future values for INAR(1) model (n = 90, λ = 3)
based on 500 replications.

α = 0.2 α = 0.5 α = 0.8

h xn+h x̃n+h int. xn+h x̃n+h int xn+h x̃n+h int
1 2 3.712 (1,8) 4 5.346 (2,10) 16 13.990 (10,19)
2 4 4.064 (0,8) 3 5.626 (2,10) 16 14.092 (9,20)
3 1 3.776 (0,7) 3 5.754 (2,11) 13 13.956 (8,20)
4 2 3.924 (1,8) 7 5.662 (1,10) 14 13.638 (7,20)
5 5 3.808 (0,7) 6 5.708 (1,10) 11 13.930 (8,22)
6 5 4.060 (1,8) 4 5.866 (2,11) 12 13.906 (7,20)
7 5 3.952 (0,8) 6 5.828 (2,11) 14 13.870 (6,21)
8 3 3.902 (1,8) 7 5.774 (2,11) 14 13.906 (7,22)
9 3 3.892 (0,8) 6 5.910 (1,10) 11 13.904 (6,21)
10 4 3.942 (1,8) 5 5.728 (2,11) 11 13.792 (7,21)



5 Analysis of burn claims data

We apply the proposed methodology to a data set analysed by Freeland (1998) comprising 120
monthly counts of workers collecting Wage Loss Benefits (WLB) for burn injuries received. All the
claimants are male, between the ages of 35 and 54, work in the logging industry and reported their
claim to the Richmond service delivery location. Clearly these data may be considered as a birth
and death process. Let Xt be the number of workers collecting WLB at time t. This number can
be viewed as the sum of the number of claimants from time t − 1 and the number of new claims
at time t. All the descriptive details of the data set can be found in Freeland and McCabe (2004)
which conclude PoINAR(1) is a plausible choice of modelling the data.
In order to evaluate and compare the different prediction methodologies, h-step ahead forecasts
(h = 1, 2, 3, 4, 5, 6) are produced for the time period from July to December 1994, for which we know
the observed values. The point forecasts based on the mean, median and mode and the observed
values are presented in Tables 6 and 7. The mean squared error of classic point predictions is smaller
than that of Bayesian predictions. This result is expected in view of the simulation results presented
in the last section since the estimated value for alpha is 0.4. Also, as expected, one step-ahead
predictions present smaller errors (Table 6).
Interval predictions for the period July to December 1994 are obtained using the two approaches
proposed given by equation (10) and Algorithm 2. The intervals obtained, presented in Table 8, are
analogous, although the Bayesian have smaller width.
Table 9 presents pontual predictions for the first semester of 1995, given observations up to December
1994, obtained using Bayesian and classical (Freeland, 1998) methodologies. The analysis of the table
indicates that Bayesian predictions based on means are slightly higher than the classical ones, whilst
those based on the median coincide. However, point predictions based on the mode differ between
the two methodologies. The intervals obtained, presented in Table 10, are the same considering each
approach and h > 3. However, as happened before, the HPD interval has smaller width.

6 Final remarks

Forecasting low integer values of time series of counts remains an open problem. Conditional means
do not preserve coherently the integer nature of the data. Here we use a Bayesian approach which al-
lows the estimation of both point and interval predictions. Simulations indicate that the performance
of the different methods depend on the value of the model parameter.
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Table 8: 95% confidence and HPD intervals for h-step ahead of monthly claims count from July to
December 1994.

h h=1 h=2 h=3 h=4 h=5 h=6
classical (2.04,13.04) (2.03,14.03) (2.02,14.02) (2.01,15.01) (2.00,15.00) (2.00,15.00)
Bayesian (3.00,13.00) (3.00,14.00) (3.00,14.00) (3.00,14.00) (3.00,14.00) (3.00,14.00)

Table 9: h-step ahead predictions of monthly claims count from January to June 1995.

classical predictions Bayesian predictions
(Freeland)

h year/month mean median mode mean median mode
1 95/1 9.60 9 9 9.73 10 11
2 95/2 9.04 9 9 9.19 9 7
3 95/3 8.82 9 8 8.99 9 7
4 95/4 8.73 9 8 8.91 9 9
5 95/5 8.69 9 8 8.89 9 10
6 95/6 8.68 9 8 8.86 9 10

Table 10: 95% confidence and HPD intervals for h-step ahead of monthly claims count from January
to June 1995.

h h=1 h=2 h=3 h=4 h=5 h=6
classical (3.04,15.04) (3.09,15.09) (2.12,15.12) (2.14,15.14) (2.15,15.15) (2.16,15.16)
Bayesian (5,16) (4,16) (3,15) (3,15) (3,15) (3,15)


